1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===--------------------------------------------------------------------===//
37 //                        Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39 
40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41   unsigned addressSpace =
42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
43 
44   llvm::PointerType *destType = Int8PtrTy;
45   if (addressSpace)
46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47 
48   if (value->getType() == destType) return value;
49   return Builder.CreateBitCast(value, destType);
50 }
51 
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                     const Twine &Name) {
56   if (!Builder.isNamePreserving())
57     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59 }
60 
61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                      llvm::Value *Init) {
63   auto *Store = new llvm::StoreInst(Init, Var);
64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67 
68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                 const Twine &Name) {
70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71   // FIXME: Should we prefer the preferred type alignment here?
72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
73   Alloc->setAlignment(Align.getQuantity());
74   return Alloc;
75 }
76 
77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                  const Twine &Name) {
79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80   // FIXME: Should we prefer the preferred type alignment here?
81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
82   Alloc->setAlignment(Align.getQuantity());
83   return Alloc;
84 }
85 
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89   PGO.setCurrentStmt(E);
90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91     llvm::Value *MemPtr = EmitScalarExpr(E);
92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93   }
94 
95   QualType BoolTy = getContext().BoolTy;
96   if (!E->getType()->isAnyComplexType())
97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98 
99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101 
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105   if (E->isRValue())
106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107 
108   // Just emit it as an l-value and drop the result.
109   EmitLValue(E);
110 }
111 
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type.  The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                     AggValueSlot aggSlot,
118                                     bool ignoreResult) {
119   switch (getEvaluationKind(E->getType())) {
120   case TEK_Scalar:
121     return RValue::get(EmitScalarExpr(E, ignoreResult));
122   case TEK_Complex:
123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124   case TEK_Aggregate:
125     if (!ignoreResult && aggSlot.isIgnored())
126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127     EmitAggExpr(E, aggSlot);
128     return aggSlot.asRValue();
129   }
130   llvm_unreachable("bad evaluation kind");
131 }
132 
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136   AggValueSlot AggSlot = AggValueSlot::ignored();
137 
138   if (hasAggregateEvaluationKind(E->getType()))
139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140   return EmitAnyExpr(E, AggSlot);
141 }
142 
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                        llvm::Value *Location,
147                                        Qualifiers Quals,
148                                        bool IsInit) {
149   // FIXME: This function should take an LValue as an argument.
150   switch (getEvaluationKind(E->getType())) {
151   case TEK_Complex:
152     EmitComplexExprIntoLValue(E,
153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
154                               /*isInit*/ false);
155     return;
156 
157   case TEK_Aggregate: {
158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                          AggValueSlot::IsDestructed_t(IsInit),
161                                          AggValueSlot::DoesNotNeedGCBarriers,
162                                          AggValueSlot::IsAliased_t(!IsInit)));
163     return;
164   }
165 
166   case TEK_Scalar: {
167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168     LValue LV = MakeAddrLValue(Location, E->getType());
169     EmitStoreThroughLValue(RV, LV);
170     return;
171   }
172   }
173   llvm_unreachable("bad evaluation kind");
174 }
175 
176 static void
177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                      const Expr *E, llvm::Value *ReferenceTemporary) {
179   // Objective-C++ ARC:
180   //   If we are binding a reference to a temporary that has ownership, we
181   //   need to perform retain/release operations on the temporary.
182   //
183   // FIXME: This should be looking at E, not M.
184   if (CGF.getLangOpts().ObjCAutoRefCount &&
185       M->getType()->isObjCLifetimeType()) {
186     QualType ObjCARCReferenceLifetimeType = M->getType();
187     switch (Qualifiers::ObjCLifetime Lifetime =
188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189     case Qualifiers::OCL_None:
190     case Qualifiers::OCL_ExplicitNone:
191       // Carry on to normal cleanup handling.
192       break;
193 
194     case Qualifiers::OCL_Autoreleasing:
195       // Nothing to do; cleaned up by an autorelease pool.
196       return;
197 
198     case Qualifiers::OCL_Strong:
199     case Qualifiers::OCL_Weak:
200       switch (StorageDuration Duration = M->getStorageDuration()) {
201       case SD_Static:
202         // Note: we intentionally do not register a cleanup to release
203         // the object on program termination.
204         return;
205 
206       case SD_Thread:
207         // FIXME: We should probably register a cleanup in this case.
208         return;
209 
210       case SD_Automatic:
211       case SD_FullExpression:
212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
213         CodeGenFunction::Destroyer *Destroy;
214         CleanupKind CleanupKind;
215         if (Lifetime == Qualifiers::OCL_Strong) {
216           const ValueDecl *VD = M->getExtendingDecl();
217           bool Precise =
218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219           CleanupKind = CGF.getARCCleanupKind();
220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                             : &CodeGenFunction::destroyARCStrongImprecise;
222         } else {
223           // __weak objects always get EH cleanups; otherwise, exceptions
224           // could cause really nasty crashes instead of mere leaks.
225           CleanupKind = NormalAndEHCleanup;
226           Destroy = &CodeGenFunction::destroyARCWeak;
227         }
228         if (Duration == SD_FullExpression)
229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                           ObjCARCReferenceLifetimeType, *Destroy,
231                           CleanupKind & EHCleanup);
232         else
233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                           ObjCARCReferenceLifetimeType,
235                                           *Destroy, CleanupKind & EHCleanup);
236         return;
237 
238       case SD_Dynamic:
239         llvm_unreachable("temporary cannot have dynamic storage duration");
240       }
241       llvm_unreachable("unknown storage duration");
242     }
243   }
244 
245   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246   if (const RecordType *RT =
247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248     // Get the destructor for the reference temporary.
249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250     if (!ClassDecl->hasTrivialDestructor())
251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
252   }
253 
254   if (!ReferenceTemporaryDtor)
255     return;
256 
257   // Call the destructor for the temporary.
258   switch (M->getStorageDuration()) {
259   case SD_Static:
260   case SD_Thread: {
261     llvm::Constant *CleanupFn;
262     llvm::Constant *CleanupArg;
263     if (E->getType()->isArrayType()) {
264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269     } else {
270       CleanupFn =
271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273     }
274     CGF.CGM.getCXXABI().registerGlobalDtor(
275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276     break;
277   }
278 
279   case SD_FullExpression:
280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                     CodeGenFunction::destroyCXXObject,
282                     CGF.getLangOpts().Exceptions);
283     break;
284 
285   case SD_Automatic:
286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                     ReferenceTemporary, E->getType(),
288                                     CodeGenFunction::destroyCXXObject,
289                                     CGF.getLangOpts().Exceptions);
290     break;
291 
292   case SD_Dynamic:
293     llvm_unreachable("temporary cannot have dynamic storage duration");
294   }
295 }
296 
297 static llvm::Value *
298 createReferenceTemporary(CodeGenFunction &CGF,
299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
300   switch (M->getStorageDuration()) {
301   case SD_FullExpression:
302   case SD_Automatic:
303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304 
305   case SD_Thread:
306   case SD_Static:
307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308 
309   case SD_Dynamic:
310     llvm_unreachable("temporary can't have dynamic storage duration");
311   }
312   llvm_unreachable("unknown storage duration");
313 }
314 
315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                            const MaterializeTemporaryExpr *M) {
317   const Expr *E = M->GetTemporaryExpr();
318 
319   if (getLangOpts().ObjCAutoRefCount &&
320       M->getType()->isObjCLifetimeType() &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323     // FIXME: Fold this into the general case below.
324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326 
327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328       // We should not have emitted the initializer for this temporary as a
329       // constant.
330       assert(!Var->hasInitializer());
331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332     }
333 
334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335 
336     pushTemporaryCleanup(*this, M, E, Object);
337     return RefTempDst;
338   }
339 
340   SmallVector<const Expr *, 2> CommaLHSs;
341   SmallVector<SubobjectAdjustment, 2> Adjustments;
342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343 
344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345     EmitIgnoredExpr(CommaLHSs[I]);
346 
347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348     if (opaque->getType()->isRecordType()) {
349       assert(Adjustments.empty());
350       return EmitOpaqueValueLValue(opaque);
351     }
352   }
353 
354   // Create and initialize the reference temporary.
355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357     // If the temporary is a global and has a constant initializer, we may
358     // have already initialized it.
359     if (!Var->hasInitializer()) {
360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362     }
363   } else {
364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365   }
366   pushTemporaryCleanup(*this, M, E, Object);
367 
368   // Perform derived-to-base casts and/or field accesses, to get from the
369   // temporary object we created (and, potentially, for which we extended
370   // the lifetime) to the subobject we're binding the reference to.
371   for (unsigned I = Adjustments.size(); I != 0; --I) {
372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
373     switch (Adjustment.Kind) {
374     case SubobjectAdjustment::DerivedToBaseAdjustment:
375       Object =
376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
378                                 Adjustment.DerivedToBase.BasePath->path_end(),
379                                 /*NullCheckValue=*/ false);
380       break;
381 
382     case SubobjectAdjustment::FieldAdjustment: {
383       LValue LV = MakeAddrLValue(Object, E->getType());
384       LV = EmitLValueForField(LV, Adjustment.Field);
385       assert(LV.isSimple() &&
386              "materialized temporary field is not a simple lvalue");
387       Object = LV.getAddress();
388       break;
389     }
390 
391     case SubobjectAdjustment::MemberPointerAdjustment: {
392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395       break;
396     }
397     }
398   }
399 
400   return MakeAddrLValue(Object, M->getType());
401 }
402 
403 RValue
404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405   // Emit the expression as an lvalue.
406   LValue LV = EmitLValue(E);
407   assert(LV.isSimple());
408   llvm::Value *Value = LV.getAddress();
409 
410   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
412     //   If a glvalue to which a reference is directly bound designates neither
413     //   an existing object or function of an appropriate type nor a region of
414     //   storage of suitable size and alignment to contain an object of the
415     //   reference's type, the behavior is undefined.
416     QualType Ty = E->getType();
417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418   }
419 
420   return RValue::get(Value);
421 }
422 
423 
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                              const llvm::Constant *Elts) {
428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429       ->getZExtValue();
430 }
431 
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                     llvm::Value *High) {
435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436   llvm::Value *K47 = Builder.getInt64(47);
437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441   return Builder.CreateMul(B1, KMul);
442 }
443 
444 bool CodeGenFunction::sanitizePerformTypeCheck() const {
445   return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
446          SanOpts->Vptr;
447 }
448 
449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
450                                     llvm::Value *Address,
451                                     QualType Ty, CharUnits Alignment) {
452   if (!sanitizePerformTypeCheck())
453     return;
454 
455   // Don't check pointers outside the default address space. The null check
456   // isn't correct, the object-size check isn't supported by LLVM, and we can't
457   // communicate the addresses to the runtime handler for the vptr check.
458   if (Address->getType()->getPointerAddressSpace())
459     return;
460 
461   SanitizerScope SanScope(this);
462 
463   llvm::Value *Cond = nullptr;
464   llvm::BasicBlock *Done = nullptr;
465 
466   if (SanOpts->Null || TCK == TCK_DowncastPointer) {
467     // The glvalue must not be an empty glvalue.
468     Cond = Builder.CreateICmpNE(
469         Address, llvm::Constant::getNullValue(Address->getType()));
470 
471     if (TCK == TCK_DowncastPointer) {
472       // When performing a pointer downcast, it's OK if the value is null.
473       // Skip the remaining checks in that case.
474       Done = createBasicBlock("null");
475       llvm::BasicBlock *Rest = createBasicBlock("not.null");
476       Builder.CreateCondBr(Cond, Rest, Done);
477       EmitBlock(Rest);
478       Cond = nullptr;
479     }
480   }
481 
482   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
483     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
484 
485     // The glvalue must refer to a large enough storage region.
486     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
487     //        to check this.
488     // FIXME: Get object address space
489     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
490     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
491     llvm::Value *Min = Builder.getFalse();
492     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
493     llvm::Value *LargeEnough =
494         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
495                               llvm::ConstantInt::get(IntPtrTy, Size));
496     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
497   }
498 
499   uint64_t AlignVal = 0;
500 
501   if (SanOpts->Alignment) {
502     AlignVal = Alignment.getQuantity();
503     if (!Ty->isIncompleteType() && !AlignVal)
504       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
505 
506     // The glvalue must be suitably aligned.
507     if (AlignVal) {
508       llvm::Value *Align =
509           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
510                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
511       llvm::Value *Aligned =
512         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
513       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
514     }
515   }
516 
517   if (Cond) {
518     llvm::Constant *StaticData[] = {
519       EmitCheckSourceLocation(Loc),
520       EmitCheckTypeDescriptor(Ty),
521       llvm::ConstantInt::get(SizeTy, AlignVal),
522       llvm::ConstantInt::get(Int8Ty, TCK)
523     };
524     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
525   }
526 
527   // If possible, check that the vptr indicates that there is a subobject of
528   // type Ty at offset zero within this object.
529   //
530   // C++11 [basic.life]p5,6:
531   //   [For storage which does not refer to an object within its lifetime]
532   //   The program has undefined behavior if:
533   //    -- the [pointer or glvalue] is used to access a non-static data member
534   //       or call a non-static member function
535   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
536   if (SanOpts->Vptr &&
537       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
538        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
539       RD && RD->hasDefinition() && RD->isDynamicClass()) {
540     // Compute a hash of the mangled name of the type.
541     //
542     // FIXME: This is not guaranteed to be deterministic! Move to a
543     //        fingerprinting mechanism once LLVM provides one. For the time
544     //        being the implementation happens to be deterministic.
545     SmallString<64> MangledName;
546     llvm::raw_svector_ostream Out(MangledName);
547     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
548                                                      Out);
549 
550     // Blacklist based on the mangled type.
551     if (!CGM.getSanitizerBlacklist().isBlacklistedType(Out.str())) {
552       llvm::hash_code TypeHash = hash_value(Out.str());
553 
554       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
555       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
556       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
557       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
558       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
559       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
560 
561       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
562       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
563 
564       // Look the hash up in our cache.
565       const int CacheSize = 128;
566       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
567       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
568                                                      "__ubsan_vptr_type_cache");
569       llvm::Value *Slot = Builder.CreateAnd(Hash,
570                                             llvm::ConstantInt::get(IntPtrTy,
571                                                                    CacheSize-1));
572       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
573       llvm::Value *CacheVal =
574         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
575 
576       // If the hash isn't in the cache, call a runtime handler to perform the
577       // hard work of checking whether the vptr is for an object of the right
578       // type. This will either fill in the cache and return, or produce a
579       // diagnostic.
580       llvm::Constant *StaticData[] = {
581         EmitCheckSourceLocation(Loc),
582         EmitCheckTypeDescriptor(Ty),
583         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
584         llvm::ConstantInt::get(Int8Ty, TCK)
585       };
586       llvm::Value *DynamicData[] = { Address, Hash };
587       EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
588                 "dynamic_type_cache_miss", StaticData, DynamicData,
589                 CRK_AlwaysRecoverable);
590     }
591   }
592 
593   if (Done) {
594     Builder.CreateBr(Done);
595     EmitBlock(Done);
596   }
597 }
598 
599 /// Determine whether this expression refers to a flexible array member in a
600 /// struct. We disable array bounds checks for such members.
601 static bool isFlexibleArrayMemberExpr(const Expr *E) {
602   // For compatibility with existing code, we treat arrays of length 0 or
603   // 1 as flexible array members.
604   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
605   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
606     if (CAT->getSize().ugt(1))
607       return false;
608   } else if (!isa<IncompleteArrayType>(AT))
609     return false;
610 
611   E = E->IgnoreParens();
612 
613   // A flexible array member must be the last member in the class.
614   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
615     // FIXME: If the base type of the member expr is not FD->getParent(),
616     // this should not be treated as a flexible array member access.
617     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
618       RecordDecl::field_iterator FI(
619           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
620       return ++FI == FD->getParent()->field_end();
621     }
622   }
623 
624   return false;
625 }
626 
627 /// If Base is known to point to the start of an array, return the length of
628 /// that array. Return 0 if the length cannot be determined.
629 static llvm::Value *getArrayIndexingBound(
630     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
631   // For the vector indexing extension, the bound is the number of elements.
632   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
633     IndexedType = Base->getType();
634     return CGF.Builder.getInt32(VT->getNumElements());
635   }
636 
637   Base = Base->IgnoreParens();
638 
639   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
640     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
641         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
642       IndexedType = CE->getSubExpr()->getType();
643       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
644       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
645         return CGF.Builder.getInt(CAT->getSize());
646       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
647         return CGF.getVLASize(VAT).first;
648     }
649   }
650 
651   return nullptr;
652 }
653 
654 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
655                                       llvm::Value *Index, QualType IndexType,
656                                       bool Accessed) {
657   assert(SanOpts->ArrayBounds &&
658          "should not be called unless adding bounds checks");
659   SanitizerScope SanScope(this);
660 
661   QualType IndexedType;
662   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
663   if (!Bound)
664     return;
665 
666   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
667   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
668   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
669 
670   llvm::Constant *StaticData[] = {
671     EmitCheckSourceLocation(E->getExprLoc()),
672     EmitCheckTypeDescriptor(IndexedType),
673     EmitCheckTypeDescriptor(IndexType)
674   };
675   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
676                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
677   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
678 }
679 
680 
681 CodeGenFunction::ComplexPairTy CodeGenFunction::
682 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
683                          bool isInc, bool isPre) {
684   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
685 
686   llvm::Value *NextVal;
687   if (isa<llvm::IntegerType>(InVal.first->getType())) {
688     uint64_t AmountVal = isInc ? 1 : -1;
689     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
690 
691     // Add the inc/dec to the real part.
692     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
693   } else {
694     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
695     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
696     if (!isInc)
697       FVal.changeSign();
698     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
699 
700     // Add the inc/dec to the real part.
701     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
702   }
703 
704   ComplexPairTy IncVal(NextVal, InVal.second);
705 
706   // Store the updated result through the lvalue.
707   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
708 
709   // If this is a postinc, return the value read from memory, otherwise use the
710   // updated value.
711   return isPre ? IncVal : InVal;
712 }
713 
714 
715 //===----------------------------------------------------------------------===//
716 //                         LValue Expression Emission
717 //===----------------------------------------------------------------------===//
718 
719 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
720   if (Ty->isVoidType())
721     return RValue::get(nullptr);
722 
723   switch (getEvaluationKind(Ty)) {
724   case TEK_Complex: {
725     llvm::Type *EltTy =
726       ConvertType(Ty->castAs<ComplexType>()->getElementType());
727     llvm::Value *U = llvm::UndefValue::get(EltTy);
728     return RValue::getComplex(std::make_pair(U, U));
729   }
730 
731   // If this is a use of an undefined aggregate type, the aggregate must have an
732   // identifiable address.  Just because the contents of the value are undefined
733   // doesn't mean that the address can't be taken and compared.
734   case TEK_Aggregate: {
735     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
736     return RValue::getAggregate(DestPtr);
737   }
738 
739   case TEK_Scalar:
740     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
741   }
742   llvm_unreachable("bad evaluation kind");
743 }
744 
745 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
746                                               const char *Name) {
747   ErrorUnsupported(E, Name);
748   return GetUndefRValue(E->getType());
749 }
750 
751 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
752                                               const char *Name) {
753   ErrorUnsupported(E, Name);
754   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
755   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
756 }
757 
758 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
759   LValue LV;
760   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
761     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
762   else
763     LV = EmitLValue(E);
764   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
765     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
766                   E->getType(), LV.getAlignment());
767   return LV;
768 }
769 
770 /// EmitLValue - Emit code to compute a designator that specifies the location
771 /// of the expression.
772 ///
773 /// This can return one of two things: a simple address or a bitfield reference.
774 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
775 /// an LLVM pointer type.
776 ///
777 /// If this returns a bitfield reference, nothing about the pointee type of the
778 /// LLVM value is known: For example, it may not be a pointer to an integer.
779 ///
780 /// If this returns a normal address, and if the lvalue's C type is fixed size,
781 /// this method guarantees that the returned pointer type will point to an LLVM
782 /// type of the same size of the lvalue's type.  If the lvalue has a variable
783 /// length type, this is not possible.
784 ///
785 LValue CodeGenFunction::EmitLValue(const Expr *E) {
786   switch (E->getStmtClass()) {
787   default: return EmitUnsupportedLValue(E, "l-value expression");
788 
789   case Expr::ObjCPropertyRefExprClass:
790     llvm_unreachable("cannot emit a property reference directly");
791 
792   case Expr::ObjCSelectorExprClass:
793     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
794   case Expr::ObjCIsaExprClass:
795     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
796   case Expr::BinaryOperatorClass:
797     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
798   case Expr::CompoundAssignOperatorClass:
799     if (!E->getType()->isAnyComplexType())
800       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
801     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
802   case Expr::CallExprClass:
803   case Expr::CXXMemberCallExprClass:
804   case Expr::CXXOperatorCallExprClass:
805   case Expr::UserDefinedLiteralClass:
806     return EmitCallExprLValue(cast<CallExpr>(E));
807   case Expr::VAArgExprClass:
808     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
809   case Expr::DeclRefExprClass:
810     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
811   case Expr::ParenExprClass:
812     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
813   case Expr::GenericSelectionExprClass:
814     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
815   case Expr::PredefinedExprClass:
816     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
817   case Expr::StringLiteralClass:
818     return EmitStringLiteralLValue(cast<StringLiteral>(E));
819   case Expr::ObjCEncodeExprClass:
820     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
821   case Expr::PseudoObjectExprClass:
822     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
823   case Expr::InitListExprClass:
824     return EmitInitListLValue(cast<InitListExpr>(E));
825   case Expr::CXXTemporaryObjectExprClass:
826   case Expr::CXXConstructExprClass:
827     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
828   case Expr::CXXBindTemporaryExprClass:
829     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
830   case Expr::CXXUuidofExprClass:
831     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
832   case Expr::LambdaExprClass:
833     return EmitLambdaLValue(cast<LambdaExpr>(E));
834 
835   case Expr::ExprWithCleanupsClass: {
836     const auto *cleanups = cast<ExprWithCleanups>(E);
837     enterFullExpression(cleanups);
838     RunCleanupsScope Scope(*this);
839     return EmitLValue(cleanups->getSubExpr());
840   }
841 
842   case Expr::CXXDefaultArgExprClass:
843     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
844   case Expr::CXXDefaultInitExprClass: {
845     CXXDefaultInitExprScope Scope(*this);
846     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
847   }
848   case Expr::CXXTypeidExprClass:
849     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
850 
851   case Expr::ObjCMessageExprClass:
852     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
853   case Expr::ObjCIvarRefExprClass:
854     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
855   case Expr::StmtExprClass:
856     return EmitStmtExprLValue(cast<StmtExpr>(E));
857   case Expr::UnaryOperatorClass:
858     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
859   case Expr::ArraySubscriptExprClass:
860     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
861   case Expr::ExtVectorElementExprClass:
862     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
863   case Expr::MemberExprClass:
864     return EmitMemberExpr(cast<MemberExpr>(E));
865   case Expr::CompoundLiteralExprClass:
866     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
867   case Expr::ConditionalOperatorClass:
868     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
869   case Expr::BinaryConditionalOperatorClass:
870     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
871   case Expr::ChooseExprClass:
872     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
873   case Expr::OpaqueValueExprClass:
874     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
875   case Expr::SubstNonTypeTemplateParmExprClass:
876     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
877   case Expr::ImplicitCastExprClass:
878   case Expr::CStyleCastExprClass:
879   case Expr::CXXFunctionalCastExprClass:
880   case Expr::CXXStaticCastExprClass:
881   case Expr::CXXDynamicCastExprClass:
882   case Expr::CXXReinterpretCastExprClass:
883   case Expr::CXXConstCastExprClass:
884   case Expr::ObjCBridgedCastExprClass:
885     return EmitCastLValue(cast<CastExpr>(E));
886 
887   case Expr::MaterializeTemporaryExprClass:
888     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
889   }
890 }
891 
892 /// Given an object of the given canonical type, can we safely copy a
893 /// value out of it based on its initializer?
894 static bool isConstantEmittableObjectType(QualType type) {
895   assert(type.isCanonical());
896   assert(!type->isReferenceType());
897 
898   // Must be const-qualified but non-volatile.
899   Qualifiers qs = type.getLocalQualifiers();
900   if (!qs.hasConst() || qs.hasVolatile()) return false;
901 
902   // Otherwise, all object types satisfy this except C++ classes with
903   // mutable subobjects or non-trivial copy/destroy behavior.
904   if (const auto *RT = dyn_cast<RecordType>(type))
905     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
906       if (RD->hasMutableFields() || !RD->isTrivial())
907         return false;
908 
909   return true;
910 }
911 
912 /// Can we constant-emit a load of a reference to a variable of the
913 /// given type?  This is different from predicates like
914 /// Decl::isUsableInConstantExpressions because we do want it to apply
915 /// in situations that don't necessarily satisfy the language's rules
916 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
917 /// to do this with const float variables even if those variables
918 /// aren't marked 'constexpr'.
919 enum ConstantEmissionKind {
920   CEK_None,
921   CEK_AsReferenceOnly,
922   CEK_AsValueOrReference,
923   CEK_AsValueOnly
924 };
925 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
926   type = type.getCanonicalType();
927   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
928     if (isConstantEmittableObjectType(ref->getPointeeType()))
929       return CEK_AsValueOrReference;
930     return CEK_AsReferenceOnly;
931   }
932   if (isConstantEmittableObjectType(type))
933     return CEK_AsValueOnly;
934   return CEK_None;
935 }
936 
937 /// Try to emit a reference to the given value without producing it as
938 /// an l-value.  This is actually more than an optimization: we can't
939 /// produce an l-value for variables that we never actually captured
940 /// in a block or lambda, which means const int variables or constexpr
941 /// literals or similar.
942 CodeGenFunction::ConstantEmission
943 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
944   ValueDecl *value = refExpr->getDecl();
945 
946   // The value needs to be an enum constant or a constant variable.
947   ConstantEmissionKind CEK;
948   if (isa<ParmVarDecl>(value)) {
949     CEK = CEK_None;
950   } else if (auto *var = dyn_cast<VarDecl>(value)) {
951     CEK = checkVarTypeForConstantEmission(var->getType());
952   } else if (isa<EnumConstantDecl>(value)) {
953     CEK = CEK_AsValueOnly;
954   } else {
955     CEK = CEK_None;
956   }
957   if (CEK == CEK_None) return ConstantEmission();
958 
959   Expr::EvalResult result;
960   bool resultIsReference;
961   QualType resultType;
962 
963   // It's best to evaluate all the way as an r-value if that's permitted.
964   if (CEK != CEK_AsReferenceOnly &&
965       refExpr->EvaluateAsRValue(result, getContext())) {
966     resultIsReference = false;
967     resultType = refExpr->getType();
968 
969   // Otherwise, try to evaluate as an l-value.
970   } else if (CEK != CEK_AsValueOnly &&
971              refExpr->EvaluateAsLValue(result, getContext())) {
972     resultIsReference = true;
973     resultType = value->getType();
974 
975   // Failure.
976   } else {
977     return ConstantEmission();
978   }
979 
980   // In any case, if the initializer has side-effects, abandon ship.
981   if (result.HasSideEffects)
982     return ConstantEmission();
983 
984   // Emit as a constant.
985   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
986 
987   // Make sure we emit a debug reference to the global variable.
988   // This should probably fire even for
989   if (isa<VarDecl>(value)) {
990     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
991       EmitDeclRefExprDbgValue(refExpr, C);
992   } else {
993     assert(isa<EnumConstantDecl>(value));
994     EmitDeclRefExprDbgValue(refExpr, C);
995   }
996 
997   // If we emitted a reference constant, we need to dereference that.
998   if (resultIsReference)
999     return ConstantEmission::forReference(C);
1000 
1001   return ConstantEmission::forValue(C);
1002 }
1003 
1004 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1005                                                SourceLocation Loc) {
1006   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1007                           lvalue.getAlignment().getQuantity(),
1008                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1009                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1010 }
1011 
1012 static bool hasBooleanRepresentation(QualType Ty) {
1013   if (Ty->isBooleanType())
1014     return true;
1015 
1016   if (const EnumType *ET = Ty->getAs<EnumType>())
1017     return ET->getDecl()->getIntegerType()->isBooleanType();
1018 
1019   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1020     return hasBooleanRepresentation(AT->getValueType());
1021 
1022   return false;
1023 }
1024 
1025 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1026                             llvm::APInt &Min, llvm::APInt &End,
1027                             bool StrictEnums) {
1028   const EnumType *ET = Ty->getAs<EnumType>();
1029   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1030                                 ET && !ET->getDecl()->isFixed();
1031   bool IsBool = hasBooleanRepresentation(Ty);
1032   if (!IsBool && !IsRegularCPlusPlusEnum)
1033     return false;
1034 
1035   if (IsBool) {
1036     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1037     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1038   } else {
1039     const EnumDecl *ED = ET->getDecl();
1040     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1041     unsigned Bitwidth = LTy->getScalarSizeInBits();
1042     unsigned NumNegativeBits = ED->getNumNegativeBits();
1043     unsigned NumPositiveBits = ED->getNumPositiveBits();
1044 
1045     if (NumNegativeBits) {
1046       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1047       assert(NumBits <= Bitwidth);
1048       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1049       Min = -End;
1050     } else {
1051       assert(NumPositiveBits <= Bitwidth);
1052       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1053       Min = llvm::APInt(Bitwidth, 0);
1054     }
1055   }
1056   return true;
1057 }
1058 
1059 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1060   llvm::APInt Min, End;
1061   if (!getRangeForType(*this, Ty, Min, End,
1062                        CGM.getCodeGenOpts().StrictEnums))
1063     return nullptr;
1064 
1065   llvm::MDBuilder MDHelper(getLLVMContext());
1066   return MDHelper.createRange(Min, End);
1067 }
1068 
1069 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1070                                                unsigned Alignment, QualType Ty,
1071                                                SourceLocation Loc,
1072                                                llvm::MDNode *TBAAInfo,
1073                                                QualType TBAABaseType,
1074                                                uint64_t TBAAOffset) {
1075   // For better performance, handle vector loads differently.
1076   if (Ty->isVectorType()) {
1077     llvm::Value *V;
1078     const llvm::Type *EltTy =
1079     cast<llvm::PointerType>(Addr->getType())->getElementType();
1080 
1081     const auto *VTy = cast<llvm::VectorType>(EltTy);
1082 
1083     // Handle vectors of size 3, like size 4 for better performance.
1084     if (VTy->getNumElements() == 3) {
1085 
1086       // Bitcast to vec4 type.
1087       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1088                                                          4);
1089       llvm::PointerType *ptVec4Ty =
1090       llvm::PointerType::get(vec4Ty,
1091                              (cast<llvm::PointerType>(
1092                                       Addr->getType()))->getAddressSpace());
1093       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1094                                                 "castToVec4");
1095       // Now load value.
1096       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1097 
1098       // Shuffle vector to get vec3.
1099       llvm::Constant *Mask[] = {
1100         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1101         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1102         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1103       };
1104 
1105       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1106       V = Builder.CreateShuffleVector(LoadVal,
1107                                       llvm::UndefValue::get(vec4Ty),
1108                                       MaskV, "extractVec");
1109       return EmitFromMemory(V, Ty);
1110     }
1111   }
1112 
1113   // Atomic operations have to be done on integral types.
1114   if (Ty->isAtomicType()) {
1115     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1116                                      CharUnits::fromQuantity(Alignment),
1117                                      getContext(), TBAAInfo);
1118     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1119   }
1120 
1121   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1122   if (Volatile)
1123     Load->setVolatile(true);
1124   if (Alignment)
1125     Load->setAlignment(Alignment);
1126   if (TBAAInfo) {
1127     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1128                                                       TBAAOffset);
1129     if (TBAAPath)
1130       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1131   }
1132 
1133   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1134       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1135     SanitizerScope SanScope(this);
1136     llvm::APInt Min, End;
1137     if (getRangeForType(*this, Ty, Min, End, true)) {
1138       --End;
1139       llvm::Value *Check;
1140       if (!Min)
1141         Check = Builder.CreateICmpULE(
1142           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1143       else {
1144         llvm::Value *Upper = Builder.CreateICmpSLE(
1145           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1146         llvm::Value *Lower = Builder.CreateICmpSGE(
1147           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1148         Check = Builder.CreateAnd(Upper, Lower);
1149       }
1150       llvm::Constant *StaticArgs[] = {
1151         EmitCheckSourceLocation(Loc),
1152         EmitCheckTypeDescriptor(Ty)
1153       };
1154       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1155                 CRK_Recoverable);
1156     }
1157   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1158     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1159       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1160 
1161   return EmitFromMemory(Load, Ty);
1162 }
1163 
1164 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1165   // Bool has a different representation in memory than in registers.
1166   if (hasBooleanRepresentation(Ty)) {
1167     // This should really always be an i1, but sometimes it's already
1168     // an i8, and it's awkward to track those cases down.
1169     if (Value->getType()->isIntegerTy(1))
1170       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1171     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1172            "wrong value rep of bool");
1173   }
1174 
1175   return Value;
1176 }
1177 
1178 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1179   // Bool has a different representation in memory than in registers.
1180   if (hasBooleanRepresentation(Ty)) {
1181     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1182            "wrong value rep of bool");
1183     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1184   }
1185 
1186   return Value;
1187 }
1188 
1189 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1190                                         bool Volatile, unsigned Alignment,
1191                                         QualType Ty, llvm::MDNode *TBAAInfo,
1192                                         bool isInit, QualType TBAABaseType,
1193                                         uint64_t TBAAOffset) {
1194 
1195   // Handle vectors differently to get better performance.
1196   if (Ty->isVectorType()) {
1197     llvm::Type *SrcTy = Value->getType();
1198     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1199     // Handle vec3 special.
1200     if (VecTy->getNumElements() == 3) {
1201       llvm::LLVMContext &VMContext = getLLVMContext();
1202 
1203       // Our source is a vec3, do a shuffle vector to make it a vec4.
1204       SmallVector<llvm::Constant*, 4> Mask;
1205       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1206                                             0));
1207       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1208                                             1));
1209       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1210                                             2));
1211       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1212 
1213       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1214       Value = Builder.CreateShuffleVector(Value,
1215                                           llvm::UndefValue::get(VecTy),
1216                                           MaskV, "extractVec");
1217       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1218     }
1219     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1220     if (DstPtr->getElementType() != SrcTy) {
1221       llvm::Type *MemTy =
1222       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1223       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1224     }
1225   }
1226 
1227   Value = EmitToMemory(Value, Ty);
1228 
1229   if (Ty->isAtomicType()) {
1230     EmitAtomicStore(RValue::get(Value),
1231                     LValue::MakeAddr(Addr, Ty,
1232                                      CharUnits::fromQuantity(Alignment),
1233                                      getContext(), TBAAInfo),
1234                     isInit);
1235     return;
1236   }
1237 
1238   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1239   if (Alignment)
1240     Store->setAlignment(Alignment);
1241   if (TBAAInfo) {
1242     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1243                                                       TBAAOffset);
1244     if (TBAAPath)
1245       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1246   }
1247 }
1248 
1249 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1250                                         bool isInit) {
1251   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1252                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1253                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1254                     lvalue.getTBAAOffset());
1255 }
1256 
1257 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1258 /// method emits the address of the lvalue, then loads the result as an rvalue,
1259 /// returning the rvalue.
1260 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1261   if (LV.isObjCWeak()) {
1262     // load of a __weak object.
1263     llvm::Value *AddrWeakObj = LV.getAddress();
1264     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1265                                                              AddrWeakObj));
1266   }
1267   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1268     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1269     Object = EmitObjCConsumeObject(LV.getType(), Object);
1270     return RValue::get(Object);
1271   }
1272 
1273   if (LV.isSimple()) {
1274     assert(!LV.getType()->isFunctionType());
1275 
1276     // Everything needs a load.
1277     return RValue::get(EmitLoadOfScalar(LV, Loc));
1278   }
1279 
1280   if (LV.isVectorElt()) {
1281     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1282                                               LV.isVolatileQualified());
1283     Load->setAlignment(LV.getAlignment().getQuantity());
1284     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1285                                                     "vecext"));
1286   }
1287 
1288   // If this is a reference to a subset of the elements of a vector, either
1289   // shuffle the input or extract/insert them as appropriate.
1290   if (LV.isExtVectorElt())
1291     return EmitLoadOfExtVectorElementLValue(LV);
1292 
1293   // Global Register variables always invoke intrinsics
1294   if (LV.isGlobalReg())
1295     return EmitLoadOfGlobalRegLValue(LV);
1296 
1297   assert(LV.isBitField() && "Unknown LValue type!");
1298   return EmitLoadOfBitfieldLValue(LV);
1299 }
1300 
1301 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1302   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1303 
1304   // Get the output type.
1305   llvm::Type *ResLTy = ConvertType(LV.getType());
1306 
1307   llvm::Value *Ptr = LV.getBitFieldAddr();
1308   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1309                                         "bf.load");
1310   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1311 
1312   if (Info.IsSigned) {
1313     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1314     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1315     if (HighBits)
1316       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1317     if (Info.Offset + HighBits)
1318       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1319   } else {
1320     if (Info.Offset)
1321       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1322     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1323       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1324                                                               Info.Size),
1325                               "bf.clear");
1326   }
1327   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1328 
1329   return RValue::get(Val);
1330 }
1331 
1332 // If this is a reference to a subset of the elements of a vector, create an
1333 // appropriate shufflevector.
1334 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1335   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1336                                             LV.isVolatileQualified());
1337   Load->setAlignment(LV.getAlignment().getQuantity());
1338   llvm::Value *Vec = Load;
1339 
1340   const llvm::Constant *Elts = LV.getExtVectorElts();
1341 
1342   // If the result of the expression is a non-vector type, we must be extracting
1343   // a single element.  Just codegen as an extractelement.
1344   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1345   if (!ExprVT) {
1346     unsigned InIdx = getAccessedFieldNo(0, Elts);
1347     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1348     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1349   }
1350 
1351   // Always use shuffle vector to try to retain the original program structure
1352   unsigned NumResultElts = ExprVT->getNumElements();
1353 
1354   SmallVector<llvm::Constant*, 4> Mask;
1355   for (unsigned i = 0; i != NumResultElts; ++i)
1356     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1357 
1358   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1359   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1360                                     MaskV);
1361   return RValue::get(Vec);
1362 }
1363 
1364 /// @brief Generates lvalue for partial ext_vector access.
1365 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1366   llvm::Value *VectorAddress = LV.getExtVectorAddr();
1367   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1368   QualType EQT = ExprVT->getElementType();
1369   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1370   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1371 
1372   llvm::Value *CastToPointerElement =
1373     Builder.CreateBitCast(VectorAddress,
1374                           VectorElementPtrToTy, "conv.ptr.element");
1375 
1376   const llvm::Constant *Elts = LV.getExtVectorElts();
1377   unsigned ix = getAccessedFieldNo(0, Elts);
1378 
1379   llvm::Value *VectorBasePtrPlusIx =
1380     Builder.CreateInBoundsGEP(CastToPointerElement,
1381                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1382 
1383   return VectorBasePtrPlusIx;
1384 }
1385 
1386 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1387 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1388   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1389          "Bad type for register variable");
1390   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1391   assert(RegName && "Register LValue is not metadata");
1392 
1393   // We accept integer and pointer types only
1394   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1395   llvm::Type *Ty = OrigTy;
1396   if (OrigTy->isPointerTy())
1397     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1398   llvm::Type *Types[] = { Ty };
1399 
1400   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1401   llvm::Value *Call = Builder.CreateCall(F, RegName);
1402   if (OrigTy->isPointerTy())
1403     Call = Builder.CreateIntToPtr(Call, OrigTy);
1404   return RValue::get(Call);
1405 }
1406 
1407 
1408 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1409 /// lvalue, where both are guaranteed to the have the same type, and that type
1410 /// is 'Ty'.
1411 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1412                                              bool isInit) {
1413   if (!Dst.isSimple()) {
1414     if (Dst.isVectorElt()) {
1415       // Read/modify/write the vector, inserting the new element.
1416       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1417                                                 Dst.isVolatileQualified());
1418       Load->setAlignment(Dst.getAlignment().getQuantity());
1419       llvm::Value *Vec = Load;
1420       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1421                                         Dst.getVectorIdx(), "vecins");
1422       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1423                                                    Dst.isVolatileQualified());
1424       Store->setAlignment(Dst.getAlignment().getQuantity());
1425       return;
1426     }
1427 
1428     // If this is an update of extended vector elements, insert them as
1429     // appropriate.
1430     if (Dst.isExtVectorElt())
1431       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1432 
1433     if (Dst.isGlobalReg())
1434       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1435 
1436     assert(Dst.isBitField() && "Unknown LValue type");
1437     return EmitStoreThroughBitfieldLValue(Src, Dst);
1438   }
1439 
1440   // There's special magic for assigning into an ARC-qualified l-value.
1441   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1442     switch (Lifetime) {
1443     case Qualifiers::OCL_None:
1444       llvm_unreachable("present but none");
1445 
1446     case Qualifiers::OCL_ExplicitNone:
1447       // nothing special
1448       break;
1449 
1450     case Qualifiers::OCL_Strong:
1451       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1452       return;
1453 
1454     case Qualifiers::OCL_Weak:
1455       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1456       return;
1457 
1458     case Qualifiers::OCL_Autoreleasing:
1459       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1460                                                      Src.getScalarVal()));
1461       // fall into the normal path
1462       break;
1463     }
1464   }
1465 
1466   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1467     // load of a __weak object.
1468     llvm::Value *LvalueDst = Dst.getAddress();
1469     llvm::Value *src = Src.getScalarVal();
1470      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1471     return;
1472   }
1473 
1474   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1475     // load of a __strong object.
1476     llvm::Value *LvalueDst = Dst.getAddress();
1477     llvm::Value *src = Src.getScalarVal();
1478     if (Dst.isObjCIvar()) {
1479       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1480       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1481       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1482       llvm::Value *dst = RHS;
1483       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1484       llvm::Value *LHS =
1485         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1486       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1487       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1488                                               BytesBetween);
1489     } else if (Dst.isGlobalObjCRef()) {
1490       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1491                                                 Dst.isThreadLocalRef());
1492     }
1493     else
1494       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1495     return;
1496   }
1497 
1498   assert(Src.isScalar() && "Can't emit an agg store with this method");
1499   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1500 }
1501 
1502 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1503                                                      llvm::Value **Result) {
1504   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1505   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1506   llvm::Value *Ptr = Dst.getBitFieldAddr();
1507 
1508   // Get the source value, truncated to the width of the bit-field.
1509   llvm::Value *SrcVal = Src.getScalarVal();
1510 
1511   // Cast the source to the storage type and shift it into place.
1512   SrcVal = Builder.CreateIntCast(SrcVal,
1513                                  Ptr->getType()->getPointerElementType(),
1514                                  /*IsSigned=*/false);
1515   llvm::Value *MaskedVal = SrcVal;
1516 
1517   // See if there are other bits in the bitfield's storage we'll need to load
1518   // and mask together with source before storing.
1519   if (Info.StorageSize != Info.Size) {
1520     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1521     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1522                                           "bf.load");
1523     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1524 
1525     // Mask the source value as needed.
1526     if (!hasBooleanRepresentation(Dst.getType()))
1527       SrcVal = Builder.CreateAnd(SrcVal,
1528                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1529                                                             Info.Size),
1530                                  "bf.value");
1531     MaskedVal = SrcVal;
1532     if (Info.Offset)
1533       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1534 
1535     // Mask out the original value.
1536     Val = Builder.CreateAnd(Val,
1537                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1538                                                      Info.Offset,
1539                                                      Info.Offset + Info.Size),
1540                             "bf.clear");
1541 
1542     // Or together the unchanged values and the source value.
1543     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1544   } else {
1545     assert(Info.Offset == 0);
1546   }
1547 
1548   // Write the new value back out.
1549   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1550                                                Dst.isVolatileQualified());
1551   Store->setAlignment(Info.StorageAlignment);
1552 
1553   // Return the new value of the bit-field, if requested.
1554   if (Result) {
1555     llvm::Value *ResultVal = MaskedVal;
1556 
1557     // Sign extend the value if needed.
1558     if (Info.IsSigned) {
1559       assert(Info.Size <= Info.StorageSize);
1560       unsigned HighBits = Info.StorageSize - Info.Size;
1561       if (HighBits) {
1562         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1563         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1564       }
1565     }
1566 
1567     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1568                                       "bf.result.cast");
1569     *Result = EmitFromMemory(ResultVal, Dst.getType());
1570   }
1571 }
1572 
1573 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1574                                                                LValue Dst) {
1575   // This access turns into a read/modify/write of the vector.  Load the input
1576   // value now.
1577   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1578                                             Dst.isVolatileQualified());
1579   Load->setAlignment(Dst.getAlignment().getQuantity());
1580   llvm::Value *Vec = Load;
1581   const llvm::Constant *Elts = Dst.getExtVectorElts();
1582 
1583   llvm::Value *SrcVal = Src.getScalarVal();
1584 
1585   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1586     unsigned NumSrcElts = VTy->getNumElements();
1587     unsigned NumDstElts =
1588        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1589     if (NumDstElts == NumSrcElts) {
1590       // Use shuffle vector is the src and destination are the same number of
1591       // elements and restore the vector mask since it is on the side it will be
1592       // stored.
1593       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1594       for (unsigned i = 0; i != NumSrcElts; ++i)
1595         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1596 
1597       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1598       Vec = Builder.CreateShuffleVector(SrcVal,
1599                                         llvm::UndefValue::get(Vec->getType()),
1600                                         MaskV);
1601     } else if (NumDstElts > NumSrcElts) {
1602       // Extended the source vector to the same length and then shuffle it
1603       // into the destination.
1604       // FIXME: since we're shuffling with undef, can we just use the indices
1605       //        into that?  This could be simpler.
1606       SmallVector<llvm::Constant*, 4> ExtMask;
1607       for (unsigned i = 0; i != NumSrcElts; ++i)
1608         ExtMask.push_back(Builder.getInt32(i));
1609       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1610       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1611       llvm::Value *ExtSrcVal =
1612         Builder.CreateShuffleVector(SrcVal,
1613                                     llvm::UndefValue::get(SrcVal->getType()),
1614                                     ExtMaskV);
1615       // build identity
1616       SmallVector<llvm::Constant*, 4> Mask;
1617       for (unsigned i = 0; i != NumDstElts; ++i)
1618         Mask.push_back(Builder.getInt32(i));
1619 
1620       // When the vector size is odd and .odd or .hi is used, the last element
1621       // of the Elts constant array will be one past the size of the vector.
1622       // Ignore the last element here, if it is greater than the mask size.
1623       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1624         NumSrcElts--;
1625 
1626       // modify when what gets shuffled in
1627       for (unsigned i = 0; i != NumSrcElts; ++i)
1628         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1629       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1630       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1631     } else {
1632       // We should never shorten the vector
1633       llvm_unreachable("unexpected shorten vector length");
1634     }
1635   } else {
1636     // If the Src is a scalar (not a vector) it must be updating one element.
1637     unsigned InIdx = getAccessedFieldNo(0, Elts);
1638     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1639     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1640   }
1641 
1642   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1643                                                Dst.isVolatileQualified());
1644   Store->setAlignment(Dst.getAlignment().getQuantity());
1645 }
1646 
1647 /// @brief Store of global named registers are always calls to intrinsics.
1648 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1649   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1650          "Bad type for register variable");
1651   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1652   assert(RegName && "Register LValue is not metadata");
1653 
1654   // We accept integer and pointer types only
1655   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1656   llvm::Type *Ty = OrigTy;
1657   if (OrigTy->isPointerTy())
1658     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1659   llvm::Type *Types[] = { Ty };
1660 
1661   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1662   llvm::Value *Value = Src.getScalarVal();
1663   if (OrigTy->isPointerTy())
1664     Value = Builder.CreatePtrToInt(Value, Ty);
1665   Builder.CreateCall2(F, RegName, Value);
1666 }
1667 
1668 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1669 // generating write-barries API. It is currently a global, ivar,
1670 // or neither.
1671 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1672                                  LValue &LV,
1673                                  bool IsMemberAccess=false) {
1674   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1675     return;
1676 
1677   if (isa<ObjCIvarRefExpr>(E)) {
1678     QualType ExpTy = E->getType();
1679     if (IsMemberAccess && ExpTy->isPointerType()) {
1680       // If ivar is a structure pointer, assigning to field of
1681       // this struct follows gcc's behavior and makes it a non-ivar
1682       // writer-barrier conservatively.
1683       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1684       if (ExpTy->isRecordType()) {
1685         LV.setObjCIvar(false);
1686         return;
1687       }
1688     }
1689     LV.setObjCIvar(true);
1690     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1691     LV.setBaseIvarExp(Exp->getBase());
1692     LV.setObjCArray(E->getType()->isArrayType());
1693     return;
1694   }
1695 
1696   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1697     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1698       if (VD->hasGlobalStorage()) {
1699         LV.setGlobalObjCRef(true);
1700         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1701       }
1702     }
1703     LV.setObjCArray(E->getType()->isArrayType());
1704     return;
1705   }
1706 
1707   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1708     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1709     return;
1710   }
1711 
1712   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1713     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1714     if (LV.isObjCIvar()) {
1715       // If cast is to a structure pointer, follow gcc's behavior and make it
1716       // a non-ivar write-barrier.
1717       QualType ExpTy = E->getType();
1718       if (ExpTy->isPointerType())
1719         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1720       if (ExpTy->isRecordType())
1721         LV.setObjCIvar(false);
1722     }
1723     return;
1724   }
1725 
1726   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1727     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1728     return;
1729   }
1730 
1731   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1732     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1733     return;
1734   }
1735 
1736   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1737     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1738     return;
1739   }
1740 
1741   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1742     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1743     return;
1744   }
1745 
1746   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1747     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1748     if (LV.isObjCIvar() && !LV.isObjCArray())
1749       // Using array syntax to assigning to what an ivar points to is not
1750       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1751       LV.setObjCIvar(false);
1752     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1753       // Using array syntax to assigning to what global points to is not
1754       // same as assigning to the global itself. {id *G;} G[i] = 0;
1755       LV.setGlobalObjCRef(false);
1756     return;
1757   }
1758 
1759   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1760     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1761     // We don't know if member is an 'ivar', but this flag is looked at
1762     // only in the context of LV.isObjCIvar().
1763     LV.setObjCArray(E->getType()->isArrayType());
1764     return;
1765   }
1766 }
1767 
1768 static llvm::Value *
1769 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1770                                 llvm::Value *V, llvm::Type *IRType,
1771                                 StringRef Name = StringRef()) {
1772   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1773   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1774 }
1775 
1776 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1777                                       const Expr *E, const VarDecl *VD) {
1778   QualType T = E->getType();
1779 
1780   // If it's thread_local, emit a call to its wrapper function instead.
1781   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1782     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1783 
1784   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1785   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1786   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1787   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1788   LValue LV;
1789   if (VD->getType()->isReferenceType()) {
1790     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1791     LI->setAlignment(Alignment.getQuantity());
1792     V = LI;
1793     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1794   } else {
1795     LV = CGF.MakeAddrLValue(V, T, Alignment);
1796   }
1797   setObjCGCLValueClass(CGF.getContext(), E, LV);
1798   return LV;
1799 }
1800 
1801 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1802                                      const Expr *E, const FunctionDecl *FD) {
1803   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1804   if (!FD->hasPrototype()) {
1805     if (const FunctionProtoType *Proto =
1806             FD->getType()->getAs<FunctionProtoType>()) {
1807       // Ugly case: for a K&R-style definition, the type of the definition
1808       // isn't the same as the type of a use.  Correct for this with a
1809       // bitcast.
1810       QualType NoProtoType =
1811           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1812       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1813       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1814     }
1815   }
1816   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1817   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1818 }
1819 
1820 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1821                                       llvm::Value *ThisValue) {
1822   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1823   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1824   return CGF.EmitLValueForField(LV, FD);
1825 }
1826 
1827 /// Named Registers are named metadata pointing to the register name
1828 /// which will be read from/written to as an argument to the intrinsic
1829 /// @llvm.read/write_register.
1830 /// So far, only the name is being passed down, but other options such as
1831 /// register type, allocation type or even optimization options could be
1832 /// passed down via the metadata node.
1833 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1834                                       CodeGenModule &CGM,
1835                                       CharUnits Alignment) {
1836   SmallString<64> Name("llvm.named.register.");
1837   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1838   assert(Asm->getLabel().size() < 64-Name.size() &&
1839       "Register name too big");
1840   Name.append(Asm->getLabel());
1841   llvm::NamedMDNode *M =
1842     CGM.getModule().getOrInsertNamedMetadata(Name);
1843   if (M->getNumOperands() == 0) {
1844     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1845                                               Asm->getLabel());
1846     llvm::Value *Ops[] = { Str };
1847     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1848   }
1849   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1850 }
1851 
1852 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1853   const NamedDecl *ND = E->getDecl();
1854   CharUnits Alignment = getContext().getDeclAlign(ND);
1855   QualType T = E->getType();
1856 
1857   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1858     // Global Named registers access via intrinsics only
1859     if (VD->getStorageClass() == SC_Register &&
1860         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1861       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1862 
1863     // A DeclRefExpr for a reference initialized by a constant expression can
1864     // appear without being odr-used. Directly emit the constant initializer.
1865     const Expr *Init = VD->getAnyInitializer(VD);
1866     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1867         VD->isUsableInConstantExpressions(getContext()) &&
1868         VD->checkInitIsICE()) {
1869       llvm::Constant *Val =
1870         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1871       assert(Val && "failed to emit reference constant expression");
1872       // FIXME: Eventually we will want to emit vector element references.
1873       return MakeAddrLValue(Val, T, Alignment);
1874     }
1875   }
1876 
1877   // FIXME: We should be able to assert this for FunctionDecls as well!
1878   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1879   // those with a valid source location.
1880   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1881           !E->getLocation().isValid()) &&
1882          "Should not use decl without marking it used!");
1883 
1884   if (ND->hasAttr<WeakRefAttr>()) {
1885     const auto *VD = cast<ValueDecl>(ND);
1886     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1887     return MakeAddrLValue(Aliasee, T, Alignment);
1888   }
1889 
1890   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1891     // Check if this is a global variable.
1892     if (VD->hasLinkage() || VD->isStaticDataMember())
1893       return EmitGlobalVarDeclLValue(*this, E, VD);
1894 
1895     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1896 
1897     llvm::Value *V = LocalDeclMap.lookup(VD);
1898     if (!V && VD->isStaticLocal())
1899       V = CGM.getStaticLocalDeclAddress(VD);
1900 
1901     // Use special handling for lambdas.
1902     if (!V) {
1903       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1904         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1905       } else if (CapturedStmtInfo) {
1906         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1907           return EmitCapturedFieldLValue(*this, FD,
1908                                          CapturedStmtInfo->getContextValue());
1909       }
1910 
1911       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1912       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1913                             T, Alignment);
1914     }
1915 
1916     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1917 
1918     if (isBlockVariable)
1919       V = BuildBlockByrefAddress(V, VD);
1920 
1921     LValue LV;
1922     if (VD->getType()->isReferenceType()) {
1923       llvm::LoadInst *LI = Builder.CreateLoad(V);
1924       LI->setAlignment(Alignment.getQuantity());
1925       V = LI;
1926       LV = MakeNaturalAlignAddrLValue(V, T);
1927     } else {
1928       LV = MakeAddrLValue(V, T, Alignment);
1929     }
1930 
1931     bool isLocalStorage = VD->hasLocalStorage();
1932 
1933     bool NonGCable = isLocalStorage &&
1934                      !VD->getType()->isReferenceType() &&
1935                      !isBlockVariable;
1936     if (NonGCable) {
1937       LV.getQuals().removeObjCGCAttr();
1938       LV.setNonGC(true);
1939     }
1940 
1941     bool isImpreciseLifetime =
1942       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1943     if (isImpreciseLifetime)
1944       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1945     setObjCGCLValueClass(getContext(), E, LV);
1946     return LV;
1947   }
1948 
1949   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1950     return EmitFunctionDeclLValue(*this, E, FD);
1951 
1952   llvm_unreachable("Unhandled DeclRefExpr");
1953 }
1954 
1955 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1956   // __extension__ doesn't affect lvalue-ness.
1957   if (E->getOpcode() == UO_Extension)
1958     return EmitLValue(E->getSubExpr());
1959 
1960   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1961   switch (E->getOpcode()) {
1962   default: llvm_unreachable("Unknown unary operator lvalue!");
1963   case UO_Deref: {
1964     QualType T = E->getSubExpr()->getType()->getPointeeType();
1965     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1966 
1967     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1968     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1969 
1970     // We should not generate __weak write barrier on indirect reference
1971     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1972     // But, we continue to generate __strong write barrier on indirect write
1973     // into a pointer to object.
1974     if (getLangOpts().ObjC1 &&
1975         getLangOpts().getGC() != LangOptions::NonGC &&
1976         LV.isObjCWeak())
1977       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1978     return LV;
1979   }
1980   case UO_Real:
1981   case UO_Imag: {
1982     LValue LV = EmitLValue(E->getSubExpr());
1983     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1984     llvm::Value *Addr = LV.getAddress();
1985 
1986     // __real is valid on scalars.  This is a faster way of testing that.
1987     // __imag can only produce an rvalue on scalars.
1988     if (E->getOpcode() == UO_Real &&
1989         !cast<llvm::PointerType>(Addr->getType())
1990            ->getElementType()->isStructTy()) {
1991       assert(E->getSubExpr()->getType()->isArithmeticType());
1992       return LV;
1993     }
1994 
1995     assert(E->getSubExpr()->getType()->isAnyComplexType());
1996 
1997     unsigned Idx = E->getOpcode() == UO_Imag;
1998     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1999                                                   Idx, "idx"),
2000                           ExprTy);
2001   }
2002   case UO_PreInc:
2003   case UO_PreDec: {
2004     LValue LV = EmitLValue(E->getSubExpr());
2005     bool isInc = E->getOpcode() == UO_PreInc;
2006 
2007     if (E->getType()->isAnyComplexType())
2008       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2009     else
2010       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2011     return LV;
2012   }
2013   }
2014 }
2015 
2016 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2017   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2018                         E->getType());
2019 }
2020 
2021 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2022   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2023                         E->getType());
2024 }
2025 
2026 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2027                                     SmallString<32>& Target) {
2028   Target.resize(CharByteWidth * (Source.size() + 1));
2029   char *ResultPtr = &Target[0];
2030   const UTF8 *ErrorPtr;
2031   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2032   (void)success;
2033   assert(success);
2034   Target.resize(ResultPtr - &Target[0]);
2035 }
2036 
2037 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2038   switch (E->getIdentType()) {
2039   default:
2040     return EmitUnsupportedLValue(E, "predefined expression");
2041 
2042   case PredefinedExpr::Func:
2043   case PredefinedExpr::Function:
2044   case PredefinedExpr::LFunction:
2045   case PredefinedExpr::FuncDName:
2046   case PredefinedExpr::FuncSig:
2047   case PredefinedExpr::PrettyFunction: {
2048     PredefinedExpr::IdentType IdentType = E->getIdentType();
2049     std::string GVName;
2050 
2051     // FIXME: We should use the string literal mangling for the Microsoft C++
2052     // ABI so that strings get merged.
2053     switch (IdentType) {
2054     default: llvm_unreachable("Invalid type");
2055     case PredefinedExpr::Func:           GVName = "__func__."; break;
2056     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2057     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2058     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2059     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2060     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2061     }
2062 
2063     StringRef FnName = CurFn->getName();
2064     if (FnName.startswith("\01"))
2065       FnName = FnName.substr(1);
2066     GVName += FnName;
2067 
2068     // If this is outside of a function use the top level decl.
2069     const Decl *CurDecl = CurCodeDecl;
2070     if (!CurDecl || isa<VarDecl>(CurDecl))
2071       CurDecl = getContext().getTranslationUnitDecl();
2072 
2073     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2074     std::string FunctionName;
2075     if (isa<BlockDecl>(CurDecl)) {
2076       // Blocks use the mangled function name.
2077       // FIXME: ComputeName should handle blocks.
2078       FunctionName = FnName.str();
2079     } else if (isa<CapturedDecl>(CurDecl)) {
2080       // For a captured statement, the function name is its enclosing
2081       // function name not the one compiler generated.
2082       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2083     } else {
2084       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2085       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2086                  FunctionName.size() &&
2087              "Computed __func__ length differs from type!");
2088     }
2089 
2090     llvm::Constant *C;
2091     if (ElemType->isWideCharType()) {
2092       SmallString<32> RawChars;
2093       ConvertUTF8ToWideString(
2094           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2095           RawChars);
2096       StringLiteral *SL = StringLiteral::Create(
2097           getContext(), RawChars, StringLiteral::Wide,
2098           /*Pascal = */ false, E->getType(), E->getLocation());
2099       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2100     } else {
2101       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2102     }
2103     return MakeAddrLValue(C, E->getType());
2104   }
2105   }
2106 }
2107 
2108 /// Emit a type description suitable for use by a runtime sanitizer library. The
2109 /// format of a type descriptor is
2110 ///
2111 /// \code
2112 ///   { i16 TypeKind, i16 TypeInfo }
2113 /// \endcode
2114 ///
2115 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2116 /// integer, 1 for a floating point value, and -1 for anything else.
2117 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2118   // Only emit each type's descriptor once.
2119   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2120     return C;
2121 
2122   uint16_t TypeKind = -1;
2123   uint16_t TypeInfo = 0;
2124 
2125   if (T->isIntegerType()) {
2126     TypeKind = 0;
2127     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2128                (T->isSignedIntegerType() ? 1 : 0);
2129   } else if (T->isFloatingType()) {
2130     TypeKind = 1;
2131     TypeInfo = getContext().getTypeSize(T);
2132   }
2133 
2134   // Format the type name as if for a diagnostic, including quotes and
2135   // optionally an 'aka'.
2136   SmallString<32> Buffer;
2137   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2138                                     (intptr_t)T.getAsOpaquePtr(),
2139                                     StringRef(), StringRef(), None, Buffer,
2140                                     None);
2141 
2142   llvm::Constant *Components[] = {
2143     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2144     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2145   };
2146   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2147 
2148   auto *GV = new llvm::GlobalVariable(
2149       CGM.getModule(), Descriptor->getType(),
2150       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2151   GV->setUnnamedAddr(true);
2152   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2153 
2154   // Remember the descriptor for this type.
2155   CGM.setTypeDescriptorInMap(T, GV);
2156 
2157   return GV;
2158 }
2159 
2160 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2161   llvm::Type *TargetTy = IntPtrTy;
2162 
2163   // Floating-point types which fit into intptr_t are bitcast to integers
2164   // and then passed directly (after zero-extension, if necessary).
2165   if (V->getType()->isFloatingPointTy()) {
2166     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2167     if (Bits <= TargetTy->getIntegerBitWidth())
2168       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2169                                                          Bits));
2170   }
2171 
2172   // Integers which fit in intptr_t are zero-extended and passed directly.
2173   if (V->getType()->isIntegerTy() &&
2174       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2175     return Builder.CreateZExt(V, TargetTy);
2176 
2177   // Pointers are passed directly, everything else is passed by address.
2178   if (!V->getType()->isPointerTy()) {
2179     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2180     Builder.CreateStore(V, Ptr);
2181     V = Ptr;
2182   }
2183   return Builder.CreatePtrToInt(V, TargetTy);
2184 }
2185 
2186 /// \brief Emit a representation of a SourceLocation for passing to a handler
2187 /// in a sanitizer runtime library. The format for this data is:
2188 /// \code
2189 ///   struct SourceLocation {
2190 ///     const char *Filename;
2191 ///     int32_t Line, Column;
2192 ///   };
2193 /// \endcode
2194 /// For an invalid SourceLocation, the Filename pointer is null.
2195 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2196   llvm::Constant *Filename;
2197   int Line, Column;
2198 
2199   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2200   if (PLoc.isValid()) {
2201     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2202     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2203     Filename = FilenameGV;
2204     Line = PLoc.getLine();
2205     Column = PLoc.getColumn();
2206   } else {
2207     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2208     Line = Column = 0;
2209   }
2210 
2211   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2212                             Builder.getInt32(Column)};
2213 
2214   return llvm::ConstantStruct::getAnon(Data);
2215 }
2216 
2217 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2218                                 ArrayRef<llvm::Constant *> StaticArgs,
2219                                 ArrayRef<llvm::Value *> DynamicArgs,
2220                                 CheckRecoverableKind RecoverKind) {
2221   assert(SanOpts != &SanitizerOptions::Disabled);
2222   assert(IsSanitizerScope);
2223 
2224   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2225     assert (RecoverKind != CRK_AlwaysRecoverable &&
2226             "Runtime call required for AlwaysRecoverable kind!");
2227     return EmitTrapCheck(Checked);
2228   }
2229 
2230   llvm::BasicBlock *Cont = createBasicBlock("cont");
2231 
2232   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2233 
2234   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2235 
2236   // Give hint that we very much don't expect to execute the handler
2237   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2238   llvm::MDBuilder MDHelper(getLLVMContext());
2239   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2240   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2241 
2242   EmitBlock(Handler);
2243 
2244   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2245   auto *InfoPtr =
2246       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2247                                llvm::GlobalVariable::PrivateLinkage, Info);
2248   InfoPtr->setUnnamedAddr(true);
2249   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2250 
2251   SmallVector<llvm::Value *, 4> Args;
2252   SmallVector<llvm::Type *, 4> ArgTypes;
2253   Args.reserve(DynamicArgs.size() + 1);
2254   ArgTypes.reserve(DynamicArgs.size() + 1);
2255 
2256   // Handler functions take an i8* pointing to the (handler-specific) static
2257   // information block, followed by a sequence of intptr_t arguments
2258   // representing operand values.
2259   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2260   ArgTypes.push_back(Int8PtrTy);
2261   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2262     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2263     ArgTypes.push_back(IntPtrTy);
2264   }
2265 
2266   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2267                  (RecoverKind == CRK_Recoverable &&
2268                   CGM.getCodeGenOpts().SanitizeRecover);
2269 
2270   llvm::FunctionType *FnType =
2271     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2272   llvm::AttrBuilder B;
2273   if (!Recover) {
2274     B.addAttribute(llvm::Attribute::NoReturn)
2275      .addAttribute(llvm::Attribute::NoUnwind);
2276   }
2277   B.addAttribute(llvm::Attribute::UWTable);
2278 
2279   // Checks that have two variants use a suffix to differentiate them
2280   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2281                           !CGM.getCodeGenOpts().SanitizeRecover;
2282   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2283                               (NeedsAbortSuffix? "_abort" : "")).str();
2284   llvm::Value *Fn = CGM.CreateRuntimeFunction(
2285       FnType, FunctionName,
2286       llvm::AttributeSet::get(getLLVMContext(),
2287                               llvm::AttributeSet::FunctionIndex, B));
2288   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2289   if (Recover) {
2290     Builder.CreateBr(Cont);
2291   } else {
2292     HandlerCall->setDoesNotReturn();
2293     Builder.CreateUnreachable();
2294   }
2295 
2296   EmitBlock(Cont);
2297 }
2298 
2299 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2300   llvm::BasicBlock *Cont = createBasicBlock("cont");
2301 
2302   // If we're optimizing, collapse all calls to trap down to just one per
2303   // function to save on code size.
2304   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2305     TrapBB = createBasicBlock("trap");
2306     Builder.CreateCondBr(Checked, Cont, TrapBB);
2307     EmitBlock(TrapBB);
2308     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2309     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2310     TrapCall->setDoesNotReturn();
2311     TrapCall->setDoesNotThrow();
2312     Builder.CreateUnreachable();
2313   } else {
2314     Builder.CreateCondBr(Checked, Cont, TrapBB);
2315   }
2316 
2317   EmitBlock(Cont);
2318 }
2319 
2320 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2321 /// array to pointer, return the array subexpression.
2322 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2323   // If this isn't just an array->pointer decay, bail out.
2324   const auto *CE = dyn_cast<CastExpr>(E);
2325   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2326     return nullptr;
2327 
2328   // If this is a decay from variable width array, bail out.
2329   const Expr *SubExpr = CE->getSubExpr();
2330   if (SubExpr->getType()->isVariableArrayType())
2331     return nullptr;
2332 
2333   return SubExpr;
2334 }
2335 
2336 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2337                                                bool Accessed) {
2338   // The index must always be an integer, which is not an aggregate.  Emit it.
2339   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2340   QualType IdxTy  = E->getIdx()->getType();
2341   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2342 
2343   if (SanOpts->ArrayBounds)
2344     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2345 
2346   // If the base is a vector type, then we are forming a vector element lvalue
2347   // with this subscript.
2348   if (E->getBase()->getType()->isVectorType() &&
2349       !isa<ExtVectorElementExpr>(E->getBase())) {
2350     // Emit the vector as an lvalue to get its address.
2351     LValue LHS = EmitLValue(E->getBase());
2352     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2353     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2354                                  E->getBase()->getType(), LHS.getAlignment());
2355   }
2356 
2357   // Extend or truncate the index type to 32 or 64-bits.
2358   if (Idx->getType() != IntPtrTy)
2359     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2360 
2361   // We know that the pointer points to a type of the correct size, unless the
2362   // size is a VLA or Objective-C interface.
2363   llvm::Value *Address = nullptr;
2364   CharUnits ArrayAlignment;
2365   if (isa<ExtVectorElementExpr>(E->getBase())) {
2366     LValue LV = EmitLValue(E->getBase());
2367     Address = EmitExtVectorElementLValue(LV);
2368     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2369     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2370     QualType EQT = ExprVT->getElementType();
2371     return MakeAddrLValue(Address, EQT,
2372                           getContext().getTypeAlignInChars(EQT));
2373   }
2374   else if (const VariableArrayType *vla =
2375            getContext().getAsVariableArrayType(E->getType())) {
2376     // The base must be a pointer, which is not an aggregate.  Emit
2377     // it.  It needs to be emitted first in case it's what captures
2378     // the VLA bounds.
2379     Address = EmitScalarExpr(E->getBase());
2380 
2381     // The element count here is the total number of non-VLA elements.
2382     llvm::Value *numElements = getVLASize(vla).first;
2383 
2384     // Effectively, the multiply by the VLA size is part of the GEP.
2385     // GEP indexes are signed, and scaling an index isn't permitted to
2386     // signed-overflow, so we use the same semantics for our explicit
2387     // multiply.  We suppress this if overflow is not undefined behavior.
2388     if (getLangOpts().isSignedOverflowDefined()) {
2389       Idx = Builder.CreateMul(Idx, numElements);
2390       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2391     } else {
2392       Idx = Builder.CreateNSWMul(Idx, numElements);
2393       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2394     }
2395   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2396     // Indexing over an interface, as in "NSString *P; P[4];"
2397     llvm::Value *InterfaceSize =
2398       llvm::ConstantInt::get(Idx->getType(),
2399           getContext().getTypeSizeInChars(OIT).getQuantity());
2400 
2401     Idx = Builder.CreateMul(Idx, InterfaceSize);
2402 
2403     // The base must be a pointer, which is not an aggregate.  Emit it.
2404     llvm::Value *Base = EmitScalarExpr(E->getBase());
2405     Address = EmitCastToVoidPtr(Base);
2406     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2407     Address = Builder.CreateBitCast(Address, Base->getType());
2408   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2409     // If this is A[i] where A is an array, the frontend will have decayed the
2410     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2411     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2412     // "gep x, i" here.  Emit one "gep A, 0, i".
2413     assert(Array->getType()->isArrayType() &&
2414            "Array to pointer decay must have array source type!");
2415     LValue ArrayLV;
2416     // For simple multidimensional array indexing, set the 'accessed' flag for
2417     // better bounds-checking of the base expression.
2418     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2419       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2420     else
2421       ArrayLV = EmitLValue(Array);
2422     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2423     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2424     llvm::Value *Args[] = { Zero, Idx };
2425 
2426     // Propagate the alignment from the array itself to the result.
2427     ArrayAlignment = ArrayLV.getAlignment();
2428 
2429     if (getLangOpts().isSignedOverflowDefined())
2430       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2431     else
2432       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2433   } else {
2434     // The base must be a pointer, which is not an aggregate.  Emit it.
2435     llvm::Value *Base = EmitScalarExpr(E->getBase());
2436     if (getLangOpts().isSignedOverflowDefined())
2437       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2438     else
2439       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2440   }
2441 
2442   QualType T = E->getBase()->getType()->getPointeeType();
2443   assert(!T.isNull() &&
2444          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2445 
2446 
2447   // Limit the alignment to that of the result type.
2448   LValue LV;
2449   if (!ArrayAlignment.isZero()) {
2450     CharUnits Align = getContext().getTypeAlignInChars(T);
2451     ArrayAlignment = std::min(Align, ArrayAlignment);
2452     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2453   } else {
2454     LV = MakeNaturalAlignAddrLValue(Address, T);
2455   }
2456 
2457   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2458 
2459   if (getLangOpts().ObjC1 &&
2460       getLangOpts().getGC() != LangOptions::NonGC) {
2461     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2462     setObjCGCLValueClass(getContext(), E, LV);
2463   }
2464   return LV;
2465 }
2466 
2467 static
2468 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2469                                        SmallVectorImpl<unsigned> &Elts) {
2470   SmallVector<llvm::Constant*, 4> CElts;
2471   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2472     CElts.push_back(Builder.getInt32(Elts[i]));
2473 
2474   return llvm::ConstantVector::get(CElts);
2475 }
2476 
2477 LValue CodeGenFunction::
2478 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2479   // Emit the base vector as an l-value.
2480   LValue Base;
2481 
2482   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2483   if (E->isArrow()) {
2484     // If it is a pointer to a vector, emit the address and form an lvalue with
2485     // it.
2486     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2487     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2488     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2489     Base.getQuals().removeObjCGCAttr();
2490   } else if (E->getBase()->isGLValue()) {
2491     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2492     // emit the base as an lvalue.
2493     assert(E->getBase()->getType()->isVectorType());
2494     Base = EmitLValue(E->getBase());
2495   } else {
2496     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2497     assert(E->getBase()->getType()->isVectorType() &&
2498            "Result must be a vector");
2499     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2500 
2501     // Store the vector to memory (because LValue wants an address).
2502     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2503     Builder.CreateStore(Vec, VecMem);
2504     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2505   }
2506 
2507   QualType type =
2508     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2509 
2510   // Encode the element access list into a vector of unsigned indices.
2511   SmallVector<unsigned, 4> Indices;
2512   E->getEncodedElementAccess(Indices);
2513 
2514   if (Base.isSimple()) {
2515     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2516     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2517                                     Base.getAlignment());
2518   }
2519   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2520 
2521   llvm::Constant *BaseElts = Base.getExtVectorElts();
2522   SmallVector<llvm::Constant *, 4> CElts;
2523 
2524   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2525     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2526   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2527   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2528                                   Base.getAlignment());
2529 }
2530 
2531 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2532   Expr *BaseExpr = E->getBase();
2533 
2534   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2535   LValue BaseLV;
2536   if (E->isArrow()) {
2537     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2538     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2539     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2540     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2541   } else
2542     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2543 
2544   NamedDecl *ND = E->getMemberDecl();
2545   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2546     LValue LV = EmitLValueForField(BaseLV, Field);
2547     setObjCGCLValueClass(getContext(), E, LV);
2548     return LV;
2549   }
2550 
2551   if (auto *VD = dyn_cast<VarDecl>(ND))
2552     return EmitGlobalVarDeclLValue(*this, E, VD);
2553 
2554   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2555     return EmitFunctionDeclLValue(*this, E, FD);
2556 
2557   llvm_unreachable("Unhandled member declaration!");
2558 }
2559 
2560 /// Given that we are currently emitting a lambda, emit an l-value for
2561 /// one of its members.
2562 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2563   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2564   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2565   QualType LambdaTagType =
2566     getContext().getTagDeclType(Field->getParent());
2567   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2568   return EmitLValueForField(LambdaLV, Field);
2569 }
2570 
2571 LValue CodeGenFunction::EmitLValueForField(LValue base,
2572                                            const FieldDecl *field) {
2573   if (field->isBitField()) {
2574     const CGRecordLayout &RL =
2575       CGM.getTypes().getCGRecordLayout(field->getParent());
2576     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2577     llvm::Value *Addr = base.getAddress();
2578     unsigned Idx = RL.getLLVMFieldNo(field);
2579     if (Idx != 0)
2580       // For structs, we GEP to the field that the record layout suggests.
2581       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2582     // Get the access type.
2583     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2584       getLLVMContext(), Info.StorageSize,
2585       CGM.getContext().getTargetAddressSpace(base.getType()));
2586     if (Addr->getType() != PtrTy)
2587       Addr = Builder.CreateBitCast(Addr, PtrTy);
2588 
2589     QualType fieldType =
2590       field->getType().withCVRQualifiers(base.getVRQualifiers());
2591     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2592   }
2593 
2594   const RecordDecl *rec = field->getParent();
2595   QualType type = field->getType();
2596   CharUnits alignment = getContext().getDeclAlign(field);
2597 
2598   // FIXME: It should be impossible to have an LValue without alignment for a
2599   // complete type.
2600   if (!base.getAlignment().isZero())
2601     alignment = std::min(alignment, base.getAlignment());
2602 
2603   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2604 
2605   llvm::Value *addr = base.getAddress();
2606   unsigned cvr = base.getVRQualifiers();
2607   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2608   if (rec->isUnion()) {
2609     // For unions, there is no pointer adjustment.
2610     assert(!type->isReferenceType() && "union has reference member");
2611     // TODO: handle path-aware TBAA for union.
2612     TBAAPath = false;
2613   } else {
2614     // For structs, we GEP to the field that the record layout suggests.
2615     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2616     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2617 
2618     // If this is a reference field, load the reference right now.
2619     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2620       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2621       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2622       load->setAlignment(alignment.getQuantity());
2623 
2624       // Loading the reference will disable path-aware TBAA.
2625       TBAAPath = false;
2626       if (CGM.shouldUseTBAA()) {
2627         llvm::MDNode *tbaa;
2628         if (mayAlias)
2629           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2630         else
2631           tbaa = CGM.getTBAAInfo(type);
2632         if (tbaa)
2633           CGM.DecorateInstruction(load, tbaa);
2634       }
2635 
2636       addr = load;
2637       mayAlias = false;
2638       type = refType->getPointeeType();
2639       if (type->isIncompleteType())
2640         alignment = CharUnits();
2641       else
2642         alignment = getContext().getTypeAlignInChars(type);
2643       cvr = 0; // qualifiers don't recursively apply to referencee
2644     }
2645   }
2646 
2647   // Make sure that the address is pointing to the right type.  This is critical
2648   // for both unions and structs.  A union needs a bitcast, a struct element
2649   // will need a bitcast if the LLVM type laid out doesn't match the desired
2650   // type.
2651   addr = EmitBitCastOfLValueToProperType(*this, addr,
2652                                          CGM.getTypes().ConvertTypeForMem(type),
2653                                          field->getName());
2654 
2655   if (field->hasAttr<AnnotateAttr>())
2656     addr = EmitFieldAnnotations(field, addr);
2657 
2658   LValue LV = MakeAddrLValue(addr, type, alignment);
2659   LV.getQuals().addCVRQualifiers(cvr);
2660   if (TBAAPath) {
2661     const ASTRecordLayout &Layout =
2662         getContext().getASTRecordLayout(field->getParent());
2663     // Set the base type to be the base type of the base LValue and
2664     // update offset to be relative to the base type.
2665     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2666     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2667                      Layout.getFieldOffset(field->getFieldIndex()) /
2668                                            getContext().getCharWidth());
2669   }
2670 
2671   // __weak attribute on a field is ignored.
2672   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2673     LV.getQuals().removeObjCGCAttr();
2674 
2675   // Fields of may_alias structs act like 'char' for TBAA purposes.
2676   // FIXME: this should get propagated down through anonymous structs
2677   // and unions.
2678   if (mayAlias && LV.getTBAAInfo())
2679     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2680 
2681   return LV;
2682 }
2683 
2684 LValue
2685 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2686                                                   const FieldDecl *Field) {
2687   QualType FieldType = Field->getType();
2688 
2689   if (!FieldType->isReferenceType())
2690     return EmitLValueForField(Base, Field);
2691 
2692   const CGRecordLayout &RL =
2693     CGM.getTypes().getCGRecordLayout(Field->getParent());
2694   unsigned idx = RL.getLLVMFieldNo(Field);
2695   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2696   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2697 
2698   // Make sure that the address is pointing to the right type.  This is critical
2699   // for both unions and structs.  A union needs a bitcast, a struct element
2700   // will need a bitcast if the LLVM type laid out doesn't match the desired
2701   // type.
2702   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2703   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2704 
2705   CharUnits Alignment = getContext().getDeclAlign(Field);
2706 
2707   // FIXME: It should be impossible to have an LValue without alignment for a
2708   // complete type.
2709   if (!Base.getAlignment().isZero())
2710     Alignment = std::min(Alignment, Base.getAlignment());
2711 
2712   return MakeAddrLValue(V, FieldType, Alignment);
2713 }
2714 
2715 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2716   if (E->isFileScope()) {
2717     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2718     return MakeAddrLValue(GlobalPtr, E->getType());
2719   }
2720   if (E->getType()->isVariablyModifiedType())
2721     // make sure to emit the VLA size.
2722     EmitVariablyModifiedType(E->getType());
2723 
2724   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2725   const Expr *InitExpr = E->getInitializer();
2726   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2727 
2728   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2729                    /*Init*/ true);
2730 
2731   return Result;
2732 }
2733 
2734 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2735   if (!E->isGLValue())
2736     // Initializing an aggregate temporary in C++11: T{...}.
2737     return EmitAggExprToLValue(E);
2738 
2739   // An lvalue initializer list must be initializing a reference.
2740   assert(E->getNumInits() == 1 && "reference init with multiple values");
2741   return EmitLValue(E->getInit(0));
2742 }
2743 
2744 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2745 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2746 /// LValue is returned and the current block has been terminated.
2747 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2748                                                     const Expr *Operand) {
2749   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2750     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2751     return None;
2752   }
2753 
2754   return CGF.EmitLValue(Operand);
2755 }
2756 
2757 LValue CodeGenFunction::
2758 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2759   if (!expr->isGLValue()) {
2760     // ?: here should be an aggregate.
2761     assert(hasAggregateEvaluationKind(expr->getType()) &&
2762            "Unexpected conditional operator!");
2763     return EmitAggExprToLValue(expr);
2764   }
2765 
2766   OpaqueValueMapping binding(*this, expr);
2767   RegionCounter Cnt = getPGORegionCounter(expr);
2768 
2769   const Expr *condExpr = expr->getCond();
2770   bool CondExprBool;
2771   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2772     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2773     if (!CondExprBool) std::swap(live, dead);
2774 
2775     if (!ContainsLabel(dead)) {
2776       // If the true case is live, we need to track its region.
2777       if (CondExprBool)
2778         Cnt.beginRegion(Builder);
2779       return EmitLValue(live);
2780     }
2781   }
2782 
2783   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2784   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2785   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2786 
2787   ConditionalEvaluation eval(*this);
2788   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2789 
2790   // Any temporaries created here are conditional.
2791   EmitBlock(lhsBlock);
2792   Cnt.beginRegion(Builder);
2793   eval.begin(*this);
2794   Optional<LValue> lhs =
2795       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2796   eval.end(*this);
2797 
2798   if (lhs && !lhs->isSimple())
2799     return EmitUnsupportedLValue(expr, "conditional operator");
2800 
2801   lhsBlock = Builder.GetInsertBlock();
2802   if (lhs)
2803     Builder.CreateBr(contBlock);
2804 
2805   // Any temporaries created here are conditional.
2806   EmitBlock(rhsBlock);
2807   eval.begin(*this);
2808   Optional<LValue> rhs =
2809       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2810   eval.end(*this);
2811   if (rhs && !rhs->isSimple())
2812     return EmitUnsupportedLValue(expr, "conditional operator");
2813   rhsBlock = Builder.GetInsertBlock();
2814 
2815   EmitBlock(contBlock);
2816 
2817   if (lhs && rhs) {
2818     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2819                                            2, "cond-lvalue");
2820     phi->addIncoming(lhs->getAddress(), lhsBlock);
2821     phi->addIncoming(rhs->getAddress(), rhsBlock);
2822     return MakeAddrLValue(phi, expr->getType());
2823   } else {
2824     assert((lhs || rhs) &&
2825            "both operands of glvalue conditional are throw-expressions?");
2826     return lhs ? *lhs : *rhs;
2827   }
2828 }
2829 
2830 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2831 /// type. If the cast is to a reference, we can have the usual lvalue result,
2832 /// otherwise if a cast is needed by the code generator in an lvalue context,
2833 /// then it must mean that we need the address of an aggregate in order to
2834 /// access one of its members.  This can happen for all the reasons that casts
2835 /// are permitted with aggregate result, including noop aggregate casts, and
2836 /// cast from scalar to union.
2837 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2838   switch (E->getCastKind()) {
2839   case CK_ToVoid:
2840   case CK_BitCast:
2841   case CK_ArrayToPointerDecay:
2842   case CK_FunctionToPointerDecay:
2843   case CK_NullToMemberPointer:
2844   case CK_NullToPointer:
2845   case CK_IntegralToPointer:
2846   case CK_PointerToIntegral:
2847   case CK_PointerToBoolean:
2848   case CK_VectorSplat:
2849   case CK_IntegralCast:
2850   case CK_IntegralToBoolean:
2851   case CK_IntegralToFloating:
2852   case CK_FloatingToIntegral:
2853   case CK_FloatingToBoolean:
2854   case CK_FloatingCast:
2855   case CK_FloatingRealToComplex:
2856   case CK_FloatingComplexToReal:
2857   case CK_FloatingComplexToBoolean:
2858   case CK_FloatingComplexCast:
2859   case CK_FloatingComplexToIntegralComplex:
2860   case CK_IntegralRealToComplex:
2861   case CK_IntegralComplexToReal:
2862   case CK_IntegralComplexToBoolean:
2863   case CK_IntegralComplexCast:
2864   case CK_IntegralComplexToFloatingComplex:
2865   case CK_DerivedToBaseMemberPointer:
2866   case CK_BaseToDerivedMemberPointer:
2867   case CK_MemberPointerToBoolean:
2868   case CK_ReinterpretMemberPointer:
2869   case CK_AnyPointerToBlockPointerCast:
2870   case CK_ARCProduceObject:
2871   case CK_ARCConsumeObject:
2872   case CK_ARCReclaimReturnedObject:
2873   case CK_ARCExtendBlockObject:
2874   case CK_CopyAndAutoreleaseBlockObject:
2875   case CK_AddressSpaceConversion:
2876     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2877 
2878   case CK_Dependent:
2879     llvm_unreachable("dependent cast kind in IR gen!");
2880 
2881   case CK_BuiltinFnToFnPtr:
2882     llvm_unreachable("builtin functions are handled elsewhere");
2883 
2884   // These are never l-values; just use the aggregate emission code.
2885   case CK_NonAtomicToAtomic:
2886   case CK_AtomicToNonAtomic:
2887     return EmitAggExprToLValue(E);
2888 
2889   case CK_Dynamic: {
2890     LValue LV = EmitLValue(E->getSubExpr());
2891     llvm::Value *V = LV.getAddress();
2892     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2893     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2894   }
2895 
2896   case CK_ConstructorConversion:
2897   case CK_UserDefinedConversion:
2898   case CK_CPointerToObjCPointerCast:
2899   case CK_BlockPointerToObjCPointerCast:
2900   case CK_NoOp:
2901   case CK_LValueToRValue:
2902     return EmitLValue(E->getSubExpr());
2903 
2904   case CK_UncheckedDerivedToBase:
2905   case CK_DerivedToBase: {
2906     const RecordType *DerivedClassTy =
2907       E->getSubExpr()->getType()->getAs<RecordType>();
2908     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2909 
2910     LValue LV = EmitLValue(E->getSubExpr());
2911     llvm::Value *This = LV.getAddress();
2912 
2913     // Perform the derived-to-base conversion
2914     llvm::Value *Base =
2915       GetAddressOfBaseClass(This, DerivedClassDecl,
2916                             E->path_begin(), E->path_end(),
2917                             /*NullCheckValue=*/false);
2918 
2919     return MakeAddrLValue(Base, E->getType());
2920   }
2921   case CK_ToUnion:
2922     return EmitAggExprToLValue(E);
2923   case CK_BaseToDerived: {
2924     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2925     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2926 
2927     LValue LV = EmitLValue(E->getSubExpr());
2928 
2929     // Perform the base-to-derived conversion
2930     llvm::Value *Derived =
2931       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2932                                E->path_begin(), E->path_end(),
2933                                /*NullCheckValue=*/false);
2934 
2935     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2936     // performed and the object is not of the derived type.
2937     if (sanitizePerformTypeCheck())
2938       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2939                     Derived, E->getType());
2940 
2941     return MakeAddrLValue(Derived, E->getType());
2942   }
2943   case CK_LValueBitCast: {
2944     // This must be a reinterpret_cast (or c-style equivalent).
2945     const auto *CE = cast<ExplicitCastExpr>(E);
2946 
2947     LValue LV = EmitLValue(E->getSubExpr());
2948     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2949                                            ConvertType(CE->getTypeAsWritten()));
2950     return MakeAddrLValue(V, E->getType());
2951   }
2952   case CK_ObjCObjectLValueCast: {
2953     LValue LV = EmitLValue(E->getSubExpr());
2954     QualType ToType = getContext().getLValueReferenceType(E->getType());
2955     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2956                                            ConvertType(ToType));
2957     return MakeAddrLValue(V, E->getType());
2958   }
2959   case CK_ZeroToOCLEvent:
2960     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2961   }
2962 
2963   llvm_unreachable("Unhandled lvalue cast kind?");
2964 }
2965 
2966 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2967   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2968   return getOpaqueLValueMapping(e);
2969 }
2970 
2971 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2972                                            const FieldDecl *FD,
2973                                            SourceLocation Loc) {
2974   QualType FT = FD->getType();
2975   LValue FieldLV = EmitLValueForField(LV, FD);
2976   switch (getEvaluationKind(FT)) {
2977   case TEK_Complex:
2978     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2979   case TEK_Aggregate:
2980     return FieldLV.asAggregateRValue();
2981   case TEK_Scalar:
2982     return EmitLoadOfLValue(FieldLV, Loc);
2983   }
2984   llvm_unreachable("bad evaluation kind");
2985 }
2986 
2987 //===--------------------------------------------------------------------===//
2988 //                             Expression Emission
2989 //===--------------------------------------------------------------------===//
2990 
2991 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2992                                      ReturnValueSlot ReturnValue) {
2993   if (CGDebugInfo *DI = getDebugInfo()) {
2994     SourceLocation Loc = E->getLocStart();
2995     // Force column info to be generated so we can differentiate
2996     // multiple call sites on the same line in the debug info.
2997     // FIXME: This is insufficient. Two calls coming from the same macro
2998     // expansion will still get the same line/column and break debug info. It's
2999     // possible that LLVM can be fixed to not rely on this uniqueness, at which
3000     // point this workaround can be removed.
3001     const FunctionDecl* Callee = E->getDirectCallee();
3002     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
3003     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
3004   }
3005 
3006   // Builtins never have block type.
3007   if (E->getCallee()->getType()->isBlockPointerType())
3008     return EmitBlockCallExpr(E, ReturnValue);
3009 
3010   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3011     return EmitCXXMemberCallExpr(CE, ReturnValue);
3012 
3013   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3014     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3015 
3016   const Decl *TargetDecl = E->getCalleeDecl();
3017   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3018     if (unsigned builtinID = FD->getBuiltinID())
3019       return EmitBuiltinExpr(FD, builtinID, E);
3020   }
3021 
3022   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3023     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3024       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3025 
3026   if (const auto *PseudoDtor =
3027           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3028     QualType DestroyedType = PseudoDtor->getDestroyedType();
3029     if (getLangOpts().ObjCAutoRefCount &&
3030         DestroyedType->isObjCLifetimeType() &&
3031         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3032          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3033       // Automatic Reference Counting:
3034       //   If the pseudo-expression names a retainable object with weak or
3035       //   strong lifetime, the object shall be released.
3036       Expr *BaseExpr = PseudoDtor->getBase();
3037       llvm::Value *BaseValue = nullptr;
3038       Qualifiers BaseQuals;
3039 
3040       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3041       if (PseudoDtor->isArrow()) {
3042         BaseValue = EmitScalarExpr(BaseExpr);
3043         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3044         BaseQuals = PTy->getPointeeType().getQualifiers();
3045       } else {
3046         LValue BaseLV = EmitLValue(BaseExpr);
3047         BaseValue = BaseLV.getAddress();
3048         QualType BaseTy = BaseExpr->getType();
3049         BaseQuals = BaseTy.getQualifiers();
3050       }
3051 
3052       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3053       case Qualifiers::OCL_None:
3054       case Qualifiers::OCL_ExplicitNone:
3055       case Qualifiers::OCL_Autoreleasing:
3056         break;
3057 
3058       case Qualifiers::OCL_Strong:
3059         EmitARCRelease(Builder.CreateLoad(BaseValue,
3060                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3061                        ARCPreciseLifetime);
3062         break;
3063 
3064       case Qualifiers::OCL_Weak:
3065         EmitARCDestroyWeak(BaseValue);
3066         break;
3067       }
3068     } else {
3069       // C++ [expr.pseudo]p1:
3070       //   The result shall only be used as the operand for the function call
3071       //   operator (), and the result of such a call has type void. The only
3072       //   effect is the evaluation of the postfix-expression before the dot or
3073       //   arrow.
3074       EmitScalarExpr(E->getCallee());
3075     }
3076 
3077     return RValue::get(nullptr);
3078   }
3079 
3080   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3081   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3082                   TargetDecl);
3083 }
3084 
3085 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3086   // Comma expressions just emit their LHS then their RHS as an l-value.
3087   if (E->getOpcode() == BO_Comma) {
3088     EmitIgnoredExpr(E->getLHS());
3089     EnsureInsertPoint();
3090     return EmitLValue(E->getRHS());
3091   }
3092 
3093   if (E->getOpcode() == BO_PtrMemD ||
3094       E->getOpcode() == BO_PtrMemI)
3095     return EmitPointerToDataMemberBinaryExpr(E);
3096 
3097   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3098 
3099   // Note that in all of these cases, __block variables need the RHS
3100   // evaluated first just in case the variable gets moved by the RHS.
3101 
3102   switch (getEvaluationKind(E->getType())) {
3103   case TEK_Scalar: {
3104     switch (E->getLHS()->getType().getObjCLifetime()) {
3105     case Qualifiers::OCL_Strong:
3106       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3107 
3108     case Qualifiers::OCL_Autoreleasing:
3109       return EmitARCStoreAutoreleasing(E).first;
3110 
3111     // No reason to do any of these differently.
3112     case Qualifiers::OCL_None:
3113     case Qualifiers::OCL_ExplicitNone:
3114     case Qualifiers::OCL_Weak:
3115       break;
3116     }
3117 
3118     RValue RV = EmitAnyExpr(E->getRHS());
3119     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3120     EmitStoreThroughLValue(RV, LV);
3121     return LV;
3122   }
3123 
3124   case TEK_Complex:
3125     return EmitComplexAssignmentLValue(E);
3126 
3127   case TEK_Aggregate:
3128     return EmitAggExprToLValue(E);
3129   }
3130   llvm_unreachable("bad evaluation kind");
3131 }
3132 
3133 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3134   RValue RV = EmitCallExpr(E);
3135 
3136   if (!RV.isScalar())
3137     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3138 
3139   assert(E->getCallReturnType()->isReferenceType() &&
3140          "Can't have a scalar return unless the return type is a "
3141          "reference type!");
3142 
3143   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3144 }
3145 
3146 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3147   // FIXME: This shouldn't require another copy.
3148   return EmitAggExprToLValue(E);
3149 }
3150 
3151 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3152   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3153          && "binding l-value to type which needs a temporary");
3154   AggValueSlot Slot = CreateAggTemp(E->getType());
3155   EmitCXXConstructExpr(E, Slot);
3156   return MakeAddrLValue(Slot.getAddr(), E->getType());
3157 }
3158 
3159 LValue
3160 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3161   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3162 }
3163 
3164 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3165   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3166                                ConvertType(E->getType())->getPointerTo());
3167 }
3168 
3169 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3170   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3171 }
3172 
3173 LValue
3174 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3175   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3176   Slot.setExternallyDestructed();
3177   EmitAggExpr(E->getSubExpr(), Slot);
3178   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3179   return MakeAddrLValue(Slot.getAddr(), E->getType());
3180 }
3181 
3182 LValue
3183 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3184   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3185   EmitLambdaExpr(E, Slot);
3186   return MakeAddrLValue(Slot.getAddr(), E->getType());
3187 }
3188 
3189 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3190   RValue RV = EmitObjCMessageExpr(E);
3191 
3192   if (!RV.isScalar())
3193     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3194 
3195   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3196          "Can't have a scalar return unless the return type is a "
3197          "reference type!");
3198 
3199   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3200 }
3201 
3202 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3203   llvm::Value *V =
3204     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3205   return MakeAddrLValue(V, E->getType());
3206 }
3207 
3208 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3209                                              const ObjCIvarDecl *Ivar) {
3210   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3211 }
3212 
3213 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3214                                           llvm::Value *BaseValue,
3215                                           const ObjCIvarDecl *Ivar,
3216                                           unsigned CVRQualifiers) {
3217   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3218                                                    Ivar, CVRQualifiers);
3219 }
3220 
3221 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3222   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3223   llvm::Value *BaseValue = nullptr;
3224   const Expr *BaseExpr = E->getBase();
3225   Qualifiers BaseQuals;
3226   QualType ObjectTy;
3227   if (E->isArrow()) {
3228     BaseValue = EmitScalarExpr(BaseExpr);
3229     ObjectTy = BaseExpr->getType()->getPointeeType();
3230     BaseQuals = ObjectTy.getQualifiers();
3231   } else {
3232     LValue BaseLV = EmitLValue(BaseExpr);
3233     // FIXME: this isn't right for bitfields.
3234     BaseValue = BaseLV.getAddress();
3235     ObjectTy = BaseExpr->getType();
3236     BaseQuals = ObjectTy.getQualifiers();
3237   }
3238 
3239   LValue LV =
3240     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3241                       BaseQuals.getCVRQualifiers());
3242   setObjCGCLValueClass(getContext(), E, LV);
3243   return LV;
3244 }
3245 
3246 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3247   // Can only get l-value for message expression returning aggregate type
3248   RValue RV = EmitAnyExprToTemp(E);
3249   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3250 }
3251 
3252 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3253                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3254                                  const Decl *TargetDecl) {
3255   // Get the actual function type. The callee type will always be a pointer to
3256   // function type or a block pointer type.
3257   assert(CalleeType->isFunctionPointerType() &&
3258          "Call must have function pointer type!");
3259 
3260   CalleeType = getContext().getCanonicalType(CalleeType);
3261 
3262   const auto *FnType =
3263       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3264 
3265   // Force column info to differentiate multiple inlined call sites on
3266   // the same line, analoguous to EmitCallExpr.
3267   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3268   // will still get the same line/column and break debug info. It's possible
3269   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3270   // workaround can be removed.
3271   bool ForceColumnInfo = false;
3272   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3273     ForceColumnInfo = FD->isInlineSpecified();
3274 
3275   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3276       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3277     if (llvm::Constant *PrefixSig =
3278             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3279       SanitizerScope SanScope(this);
3280       llvm::Constant *FTRTTIConst =
3281           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3282       llvm::Type *PrefixStructTyElems[] = {
3283         PrefixSig->getType(),
3284         FTRTTIConst->getType()
3285       };
3286       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3287           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3288 
3289       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3290           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3291       llvm::Value *CalleeSigPtr =
3292           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3293       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3294       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3295 
3296       llvm::BasicBlock *Cont = createBasicBlock("cont");
3297       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3298       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3299 
3300       EmitBlock(TypeCheck);
3301       llvm::Value *CalleeRTTIPtr =
3302           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3303       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3304       llvm::Value *CalleeRTTIMatch =
3305           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3306       llvm::Constant *StaticData[] = {
3307         EmitCheckSourceLocation(E->getLocStart()),
3308         EmitCheckTypeDescriptor(CalleeType)
3309       };
3310       EmitCheck(CalleeRTTIMatch,
3311                 "function_type_mismatch",
3312                 StaticData,
3313                 Callee,
3314                 CRK_Recoverable);
3315 
3316       Builder.CreateBr(Cont);
3317       EmitBlock(Cont);
3318     }
3319   }
3320 
3321   CallArgList Args;
3322   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
3323                E->arg_end(), /*ParamsToSkip*/ 0, ForceColumnInfo);
3324 
3325   const CGFunctionInfo &FnInfo =
3326     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3327 
3328   // C99 6.5.2.2p6:
3329   //   If the expression that denotes the called function has a type
3330   //   that does not include a prototype, [the default argument
3331   //   promotions are performed]. If the number of arguments does not
3332   //   equal the number of parameters, the behavior is undefined. If
3333   //   the function is defined with a type that includes a prototype,
3334   //   and either the prototype ends with an ellipsis (, ...) or the
3335   //   types of the arguments after promotion are not compatible with
3336   //   the types of the parameters, the behavior is undefined. If the
3337   //   function is defined with a type that does not include a
3338   //   prototype, and the types of the arguments after promotion are
3339   //   not compatible with those of the parameters after promotion,
3340   //   the behavior is undefined [except in some trivial cases].
3341   // That is, in the general case, we should assume that a call
3342   // through an unprototyped function type works like a *non-variadic*
3343   // call.  The way we make this work is to cast to the exact type
3344   // of the promoted arguments.
3345   if (isa<FunctionNoProtoType>(FnType)) {
3346     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3347     CalleeTy = CalleeTy->getPointerTo();
3348     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3349   }
3350 
3351   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3352 }
3353 
3354 LValue CodeGenFunction::
3355 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3356   llvm::Value *BaseV;
3357   if (E->getOpcode() == BO_PtrMemI)
3358     BaseV = EmitScalarExpr(E->getLHS());
3359   else
3360     BaseV = EmitLValue(E->getLHS()).getAddress();
3361 
3362   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3363 
3364   const MemberPointerType *MPT
3365     = E->getRHS()->getType()->getAs<MemberPointerType>();
3366 
3367   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3368       *this, E, BaseV, OffsetV, MPT);
3369 
3370   return MakeAddrLValue(AddV, MPT->getPointeeType());
3371 }
3372 
3373 /// Given the address of a temporary variable, produce an r-value of
3374 /// its type.
3375 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3376                                             QualType type,
3377                                             SourceLocation loc) {
3378   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3379   switch (getEvaluationKind(type)) {
3380   case TEK_Complex:
3381     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3382   case TEK_Aggregate:
3383     return lvalue.asAggregateRValue();
3384   case TEK_Scalar:
3385     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3386   }
3387   llvm_unreachable("bad evaluation kind");
3388 }
3389 
3390 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3391   assert(Val->getType()->isFPOrFPVectorTy());
3392   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3393     return;
3394 
3395   llvm::MDBuilder MDHelper(getLLVMContext());
3396   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3397 
3398   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3399 }
3400 
3401 namespace {
3402   struct LValueOrRValue {
3403     LValue LV;
3404     RValue RV;
3405   };
3406 }
3407 
3408 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3409                                            const PseudoObjectExpr *E,
3410                                            bool forLValue,
3411                                            AggValueSlot slot) {
3412   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3413 
3414   // Find the result expression, if any.
3415   const Expr *resultExpr = E->getResultExpr();
3416   LValueOrRValue result;
3417 
3418   for (PseudoObjectExpr::const_semantics_iterator
3419          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3420     const Expr *semantic = *i;
3421 
3422     // If this semantic expression is an opaque value, bind it
3423     // to the result of its source expression.
3424     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3425 
3426       // If this is the result expression, we may need to evaluate
3427       // directly into the slot.
3428       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3429       OVMA opaqueData;
3430       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3431           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3432         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3433 
3434         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3435         opaqueData = OVMA::bind(CGF, ov, LV);
3436         result.RV = slot.asRValue();
3437 
3438       // Otherwise, emit as normal.
3439       } else {
3440         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3441 
3442         // If this is the result, also evaluate the result now.
3443         if (ov == resultExpr) {
3444           if (forLValue)
3445             result.LV = CGF.EmitLValue(ov);
3446           else
3447             result.RV = CGF.EmitAnyExpr(ov, slot);
3448         }
3449       }
3450 
3451       opaques.push_back(opaqueData);
3452 
3453     // Otherwise, if the expression is the result, evaluate it
3454     // and remember the result.
3455     } else if (semantic == resultExpr) {
3456       if (forLValue)
3457         result.LV = CGF.EmitLValue(semantic);
3458       else
3459         result.RV = CGF.EmitAnyExpr(semantic, slot);
3460 
3461     // Otherwise, evaluate the expression in an ignored context.
3462     } else {
3463       CGF.EmitIgnoredExpr(semantic);
3464     }
3465   }
3466 
3467   // Unbind all the opaques now.
3468   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3469     opaques[i].unbind(CGF);
3470 
3471   return result;
3472 }
3473 
3474 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3475                                                AggValueSlot slot) {
3476   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3477 }
3478 
3479 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3480   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3481 }
3482