1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/ConvertUTF.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/MDBuilder.h"
29 #include "llvm/DataLayout.h"
30 #include "llvm/ADT/Hashing.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===--------------------------------------------------------------------===//
35 //                        Miscellaneous Helper Methods
36 //===--------------------------------------------------------------------===//
37 
38 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
39   unsigned addressSpace =
40     cast<llvm::PointerType>(value->getType())->getAddressSpace();
41 
42   llvm::PointerType *destType = Int8PtrTy;
43   if (addressSpace)
44     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
45 
46   if (value->getType() == destType) return value;
47   return Builder.CreateBitCast(value, destType);
48 }
49 
50 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
51 /// block.
52 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
53                                                     const Twine &Name) {
54   if (!Builder.isNamePreserving())
55     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
56   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
57 }
58 
59 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
60                                      llvm::Value *Init) {
61   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
62   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
63   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
64 }
65 
66 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
67                                                 const Twine &Name) {
68   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
69   // FIXME: Should we prefer the preferred type alignment here?
70   CharUnits Align = getContext().getTypeAlignInChars(Ty);
71   Alloc->setAlignment(Align.getQuantity());
72   return Alloc;
73 }
74 
75 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
76                                                  const Twine &Name) {
77   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
78   // FIXME: Should we prefer the preferred type alignment here?
79   CharUnits Align = getContext().getTypeAlignInChars(Ty);
80   Alloc->setAlignment(Align.getQuantity());
81   return Alloc;
82 }
83 
84 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
85 /// expression and compare the result against zero, returning an Int1Ty value.
86 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
87   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
88     llvm::Value *MemPtr = EmitScalarExpr(E);
89     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
90   }
91 
92   QualType BoolTy = getContext().BoolTy;
93   if (!E->getType()->isAnyComplexType())
94     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
95 
96   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
97 }
98 
99 /// EmitIgnoredExpr - Emit code to compute the specified expression,
100 /// ignoring the result.
101 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
102   if (E->isRValue())
103     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
104 
105   // Just emit it as an l-value and drop the result.
106   EmitLValue(E);
107 }
108 
109 /// EmitAnyExpr - Emit code to compute the specified expression which
110 /// can have any type.  The result is returned as an RValue struct.
111 /// If this is an aggregate expression, AggSlot indicates where the
112 /// result should be returned.
113 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
114                                     AggValueSlot aggSlot,
115                                     bool ignoreResult) {
116   if (!hasAggregateLLVMType(E->getType()))
117     return RValue::get(EmitScalarExpr(E, ignoreResult));
118   else if (E->getType()->isAnyComplexType())
119     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
120 
121   if (!ignoreResult && aggSlot.isIgnored())
122     aggSlot = CreateAggTemp(E->getType(), "agg-temp");
123   EmitAggExpr(E, aggSlot);
124   return aggSlot.asRValue();
125 }
126 
127 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
128 /// always be accessible even if no aggregate location is provided.
129 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
130   AggValueSlot AggSlot = AggValueSlot::ignored();
131 
132   if (hasAggregateLLVMType(E->getType()) &&
133       !E->getType()->isAnyComplexType())
134     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
135   return EmitAnyExpr(E, AggSlot);
136 }
137 
138 /// EmitAnyExprToMem - Evaluate an expression into a given memory
139 /// location.
140 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
141                                        llvm::Value *Location,
142                                        Qualifiers Quals,
143                                        bool IsInit) {
144   // FIXME: This function should take an LValue as an argument.
145   if (E->getType()->isAnyComplexType()) {
146     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
147   } else if (hasAggregateLLVMType(E->getType())) {
148     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
149     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
150                                          AggValueSlot::IsDestructed_t(IsInit),
151                                          AggValueSlot::DoesNotNeedGCBarriers,
152                                          AggValueSlot::IsAliased_t(!IsInit)));
153   } else {
154     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
155     LValue LV = MakeAddrLValue(Location, E->getType());
156     EmitStoreThroughLValue(RV, LV);
157   }
158 }
159 
160 static llvm::Value *
161 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
162                          const NamedDecl *InitializedDecl) {
163   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
164     if (VD->hasGlobalStorage()) {
165       SmallString<256> Name;
166       llvm::raw_svector_ostream Out(Name);
167       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
168       Out.flush();
169 
170       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
171 
172       // Create the reference temporary.
173       llvm::GlobalValue *RefTemp =
174         new llvm::GlobalVariable(CGF.CGM.getModule(),
175                                  RefTempTy, /*isConstant=*/false,
176                                  llvm::GlobalValue::InternalLinkage,
177                                  llvm::Constant::getNullValue(RefTempTy),
178                                  Name.str());
179       return RefTemp;
180     }
181   }
182 
183   return CGF.CreateMemTemp(Type, "ref.tmp");
184 }
185 
186 static llvm::Value *
187 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
188                             llvm::Value *&ReferenceTemporary,
189                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
190                             QualType &ObjCARCReferenceLifetimeType,
191                             const NamedDecl *InitializedDecl) {
192   const MaterializeTemporaryExpr *M = NULL;
193   E = E->findMaterializedTemporary(M);
194   // Objective-C++ ARC:
195   //   If we are binding a reference to a temporary that has ownership, we
196   //   need to perform retain/release operations on the temporary.
197   if (M && CGF.getLangOpts().ObjCAutoRefCount &&
198       M->getType()->isObjCLifetimeType() &&
199       (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
200        M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
201        M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
202     ObjCARCReferenceLifetimeType = M->getType();
203 
204   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
205     CGF.enterFullExpression(EWC);
206     CodeGenFunction::RunCleanupsScope Scope(CGF);
207 
208     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
209                                        ReferenceTemporary,
210                                        ReferenceTemporaryDtor,
211                                        ObjCARCReferenceLifetimeType,
212                                        InitializedDecl);
213   }
214 
215   RValue RV;
216   if (E->isGLValue()) {
217     // Emit the expression as an lvalue.
218     LValue LV = CGF.EmitLValue(E);
219 
220     if (LV.isSimple())
221       return LV.getAddress();
222 
223     // We have to load the lvalue.
224     RV = CGF.EmitLoadOfLValue(LV);
225   } else {
226     if (!ObjCARCReferenceLifetimeType.isNull()) {
227       ReferenceTemporary = CreateReferenceTemporary(CGF,
228                                                   ObjCARCReferenceLifetimeType,
229                                                     InitializedDecl);
230 
231 
232       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
233                                              ObjCARCReferenceLifetimeType);
234 
235       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
236                          RefTempDst, false);
237 
238       bool ExtendsLifeOfTemporary = false;
239       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
240         if (Var->extendsLifetimeOfTemporary())
241           ExtendsLifeOfTemporary = true;
242       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
243         ExtendsLifeOfTemporary = true;
244       }
245 
246       if (!ExtendsLifeOfTemporary) {
247         // Since the lifetime of this temporary isn't going to be extended,
248         // we need to clean it up ourselves at the end of the full expression.
249         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
250         case Qualifiers::OCL_None:
251         case Qualifiers::OCL_ExplicitNone:
252         case Qualifiers::OCL_Autoreleasing:
253           break;
254 
255         case Qualifiers::OCL_Strong: {
256           assert(!ObjCARCReferenceLifetimeType->isArrayType());
257           CleanupKind cleanupKind = CGF.getARCCleanupKind();
258           CGF.pushDestroy(cleanupKind,
259                           ReferenceTemporary,
260                           ObjCARCReferenceLifetimeType,
261                           CodeGenFunction::destroyARCStrongImprecise,
262                           cleanupKind & EHCleanup);
263           break;
264         }
265 
266         case Qualifiers::OCL_Weak:
267           assert(!ObjCARCReferenceLifetimeType->isArrayType());
268           CGF.pushDestroy(NormalAndEHCleanup,
269                           ReferenceTemporary,
270                           ObjCARCReferenceLifetimeType,
271                           CodeGenFunction::destroyARCWeak,
272                           /*useEHCleanupForArray*/ true);
273           break;
274         }
275 
276         ObjCARCReferenceLifetimeType = QualType();
277       }
278 
279       return ReferenceTemporary;
280     }
281 
282     SmallVector<SubobjectAdjustment, 2> Adjustments;
283     E = E->skipRValueSubobjectAdjustments(Adjustments);
284     if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
285       if (opaque->getType()->isRecordType())
286         return CGF.EmitOpaqueValueLValue(opaque).getAddress();
287 
288     // Create a reference temporary if necessary.
289     AggValueSlot AggSlot = AggValueSlot::ignored();
290     if (CGF.hasAggregateLLVMType(E->getType()) &&
291         !E->getType()->isAnyComplexType()) {
292       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
293                                                     InitializedDecl);
294       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
295       AggValueSlot::IsDestructed_t isDestructed
296         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
297       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
298                                       Qualifiers(), isDestructed,
299                                       AggValueSlot::DoesNotNeedGCBarriers,
300                                       AggValueSlot::IsNotAliased);
301     }
302 
303     if (InitializedDecl) {
304       // Get the destructor for the reference temporary.
305       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
306         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
307         if (!ClassDecl->hasTrivialDestructor())
308           ReferenceTemporaryDtor = ClassDecl->getDestructor();
309       }
310     }
311 
312     RV = CGF.EmitAnyExpr(E, AggSlot);
313 
314     // Check if need to perform derived-to-base casts and/or field accesses, to
315     // get from the temporary object we created (and, potentially, for which we
316     // extended the lifetime) to the subobject we're binding the reference to.
317     if (!Adjustments.empty()) {
318       llvm::Value *Object = RV.getAggregateAddr();
319       for (unsigned I = Adjustments.size(); I != 0; --I) {
320         SubobjectAdjustment &Adjustment = Adjustments[I-1];
321         switch (Adjustment.Kind) {
322         case SubobjectAdjustment::DerivedToBaseAdjustment:
323           Object =
324               CGF.GetAddressOfBaseClass(Object,
325                                         Adjustment.DerivedToBase.DerivedClass,
326                               Adjustment.DerivedToBase.BasePath->path_begin(),
327                               Adjustment.DerivedToBase.BasePath->path_end(),
328                                         /*NullCheckValue=*/false);
329           break;
330 
331         case SubobjectAdjustment::FieldAdjustment: {
332           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
333           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
334           if (LV.isSimple()) {
335             Object = LV.getAddress();
336             break;
337           }
338 
339           // For non-simple lvalues, we actually have to create a copy of
340           // the object we're binding to.
341           QualType T = Adjustment.Field->getType().getNonReferenceType()
342                                                   .getUnqualifiedType();
343           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
344           LValue TempLV = CGF.MakeAddrLValue(Object,
345                                              Adjustment.Field->getType());
346           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
347           break;
348         }
349 
350         case SubobjectAdjustment::MemberPointerAdjustment: {
351           llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
352           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
353                         CGF, Object, Ptr, Adjustment.Ptr.MPT);
354           break;
355         }
356         }
357       }
358 
359       return Object;
360     }
361   }
362 
363   if (RV.isAggregate())
364     return RV.getAggregateAddr();
365 
366   // Create a temporary variable that we can bind the reference to.
367   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
368                                                 InitializedDecl);
369 
370 
371   unsigned Alignment =
372     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
373   if (RV.isScalar())
374     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
375                           /*Volatile=*/false, Alignment, E->getType());
376   else
377     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
378                            /*Volatile=*/false);
379   return ReferenceTemporary;
380 }
381 
382 RValue
383 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
384                                             const NamedDecl *InitializedDecl) {
385   llvm::Value *ReferenceTemporary = 0;
386   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
387   QualType ObjCARCReferenceLifetimeType;
388   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
389                                                    ReferenceTemporaryDtor,
390                                                    ObjCARCReferenceLifetimeType,
391                                                    InitializedDecl);
392   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
393     // C++11 [dcl.ref]p5 (as amended by core issue 453):
394     //   If a glvalue to which a reference is directly bound designates neither
395     //   an existing object or function of an appropriate type nor a region of
396     //   storage of suitable size and alignment to contain an object of the
397     //   reference's type, the behavior is undefined.
398     QualType Ty = E->getType();
399     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
400   }
401   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
402     return RValue::get(Value);
403 
404   // Make sure to call the destructor for the reference temporary.
405   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
406   if (VD && VD->hasGlobalStorage()) {
407     if (ReferenceTemporaryDtor) {
408       llvm::Constant *DtorFn =
409         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
410       CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
411                                     cast<llvm::Constant>(ReferenceTemporary));
412     } else {
413       assert(!ObjCARCReferenceLifetimeType.isNull());
414       // Note: We intentionally do not register a global "destructor" to
415       // release the object.
416     }
417 
418     return RValue::get(Value);
419   }
420 
421   if (ReferenceTemporaryDtor)
422     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
423   else {
424     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
425     case Qualifiers::OCL_None:
426       llvm_unreachable(
427                       "Not a reference temporary that needs to be deallocated");
428     case Qualifiers::OCL_ExplicitNone:
429     case Qualifiers::OCL_Autoreleasing:
430       // Nothing to do.
431       break;
432 
433     case Qualifiers::OCL_Strong: {
434       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
435       CleanupKind cleanupKind = getARCCleanupKind();
436       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
437                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
438                   cleanupKind & EHCleanup);
439       break;
440     }
441 
442     case Qualifiers::OCL_Weak: {
443       // __weak objects always get EH cleanups; otherwise, exceptions
444       // could cause really nasty crashes instead of mere leaks.
445       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
446                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
447       break;
448     }
449     }
450   }
451 
452   return RValue::get(Value);
453 }
454 
455 
456 /// getAccessedFieldNo - Given an encoded value and a result number, return the
457 /// input field number being accessed.
458 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
459                                              const llvm::Constant *Elts) {
460   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
461       ->getZExtValue();
462 }
463 
464 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
465 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
466                                     llvm::Value *High) {
467   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
468   llvm::Value *K47 = Builder.getInt64(47);
469   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
470   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
471   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
472   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
473   return Builder.CreateMul(B1, KMul);
474 }
475 
476 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
477                                     llvm::Value *Address,
478                                     QualType Ty, CharUnits Alignment) {
479   if (!SanitizePerformTypeCheck)
480     return;
481 
482   // Don't check pointers outside the default address space. The null check
483   // isn't correct, the object-size check isn't supported by LLVM, and we can't
484   // communicate the addresses to the runtime handler for the vptr check.
485   if (Address->getType()->getPointerAddressSpace())
486     return;
487 
488   llvm::Value *Cond = 0;
489 
490   if (getLangOpts().SanitizeNull) {
491     // The glvalue must not be an empty glvalue.
492     Cond = Builder.CreateICmpNE(
493         Address, llvm::Constant::getNullValue(Address->getType()));
494   }
495 
496   if (getLangOpts().SanitizeObjectSize && !Ty->isIncompleteType()) {
497     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
498 
499     // The glvalue must refer to a large enough storage region.
500     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
501     //        to check this.
502     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
503     llvm::Value *Min = Builder.getFalse();
504     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
505     llvm::Value *LargeEnough =
506         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
507                               llvm::ConstantInt::get(IntPtrTy, Size));
508     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
509   }
510 
511   uint64_t AlignVal = 0;
512 
513   if (getLangOpts().SanitizeAlignment) {
514     AlignVal = Alignment.getQuantity();
515     if (!Ty->isIncompleteType() && !AlignVal)
516       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
517 
518     // The glvalue must be suitably aligned.
519     if (AlignVal) {
520       llvm::Value *Align =
521           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
522                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
523       llvm::Value *Aligned =
524         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
525       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
526     }
527   }
528 
529   if (Cond) {
530     llvm::Constant *StaticData[] = {
531       EmitCheckSourceLocation(Loc),
532       EmitCheckTypeDescriptor(Ty),
533       llvm::ConstantInt::get(SizeTy, AlignVal),
534       llvm::ConstantInt::get(Int8Ty, TCK)
535     };
536     EmitCheck(Cond, "type_mismatch", StaticData, Address);
537   }
538 
539   // If possible, check that the vptr indicates that there is a subobject of
540   // type Ty at offset zero within this object.
541   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
542   if (getLangOpts().SanitizeVptr && TCK != TCK_ConstructorCall &&
543       RD && RD->hasDefinition() && RD->isDynamicClass()) {
544     // Compute a hash of the mangled name of the type.
545     //
546     // FIXME: This is not guaranteed to be deterministic! Move to a
547     //        fingerprinting mechanism once LLVM provides one. For the time
548     //        being the implementation happens to be deterministic.
549     llvm::SmallString<64> MangledName;
550     llvm::raw_svector_ostream Out(MangledName);
551     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
552                                                      Out);
553     llvm::hash_code TypeHash = hash_value(Out.str());
554 
555     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
556     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
557     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
558     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
559     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
560     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
561 
562     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
563     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
564 
565     // Look the hash up in our cache.
566     const int CacheSize = 128;
567     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
568     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
569                                                    "__ubsan_vptr_type_cache");
570     llvm::Value *Slot = Builder.CreateAnd(Hash,
571                                           llvm::ConstantInt::get(IntPtrTy,
572                                                                  CacheSize-1));
573     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
574     llvm::Value *CacheVal =
575       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
576 
577     // If the hash isn't in the cache, call a runtime handler to perform the
578     // hard work of checking whether the vptr is for an object of the right
579     // type. This will either fill in the cache and return, or produce a
580     // diagnostic.
581     llvm::Constant *StaticData[] = {
582       EmitCheckSourceLocation(Loc),
583       EmitCheckTypeDescriptor(Ty),
584       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
585       llvm::ConstantInt::get(Int8Ty, TCK)
586     };
587     llvm::Value *DynamicData[] = { Address, Hash };
588     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
589               "dynamic_type_cache_miss", StaticData, DynamicData, true);
590   }
591 }
592 
593 
594 CodeGenFunction::ComplexPairTy CodeGenFunction::
595 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
596                          bool isInc, bool isPre) {
597   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
598                                             LV.isVolatileQualified());
599 
600   llvm::Value *NextVal;
601   if (isa<llvm::IntegerType>(InVal.first->getType())) {
602     uint64_t AmountVal = isInc ? 1 : -1;
603     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
604 
605     // Add the inc/dec to the real part.
606     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
607   } else {
608     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
609     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
610     if (!isInc)
611       FVal.changeSign();
612     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
613 
614     // Add the inc/dec to the real part.
615     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
616   }
617 
618   ComplexPairTy IncVal(NextVal, InVal.second);
619 
620   // Store the updated result through the lvalue.
621   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
622 
623   // If this is a postinc, return the value read from memory, otherwise use the
624   // updated value.
625   return isPre ? IncVal : InVal;
626 }
627 
628 
629 //===----------------------------------------------------------------------===//
630 //                         LValue Expression Emission
631 //===----------------------------------------------------------------------===//
632 
633 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
634   if (Ty->isVoidType())
635     return RValue::get(0);
636 
637   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
638     llvm::Type *EltTy = ConvertType(CTy->getElementType());
639     llvm::Value *U = llvm::UndefValue::get(EltTy);
640     return RValue::getComplex(std::make_pair(U, U));
641   }
642 
643   // If this is a use of an undefined aggregate type, the aggregate must have an
644   // identifiable address.  Just because the contents of the value are undefined
645   // doesn't mean that the address can't be taken and compared.
646   if (hasAggregateLLVMType(Ty)) {
647     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
648     return RValue::getAggregate(DestPtr);
649   }
650 
651   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
652 }
653 
654 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
655                                               const char *Name) {
656   ErrorUnsupported(E, Name);
657   return GetUndefRValue(E->getType());
658 }
659 
660 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
661                                               const char *Name) {
662   ErrorUnsupported(E, Name);
663   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
664   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
665 }
666 
667 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
668   LValue LV = EmitLValue(E);
669   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
670     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
671                   E->getType(), LV.getAlignment());
672   return LV;
673 }
674 
675 /// EmitLValue - Emit code to compute a designator that specifies the location
676 /// of the expression.
677 ///
678 /// This can return one of two things: a simple address or a bitfield reference.
679 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
680 /// an LLVM pointer type.
681 ///
682 /// If this returns a bitfield reference, nothing about the pointee type of the
683 /// LLVM value is known: For example, it may not be a pointer to an integer.
684 ///
685 /// If this returns a normal address, and if the lvalue's C type is fixed size,
686 /// this method guarantees that the returned pointer type will point to an LLVM
687 /// type of the same size of the lvalue's type.  If the lvalue has a variable
688 /// length type, this is not possible.
689 ///
690 LValue CodeGenFunction::EmitLValue(const Expr *E) {
691   switch (E->getStmtClass()) {
692   default: return EmitUnsupportedLValue(E, "l-value expression");
693 
694   case Expr::ObjCPropertyRefExprClass:
695     llvm_unreachable("cannot emit a property reference directly");
696 
697   case Expr::ObjCSelectorExprClass:
698     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
699   case Expr::ObjCIsaExprClass:
700     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
701   case Expr::BinaryOperatorClass:
702     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
703   case Expr::CompoundAssignOperatorClass:
704     if (!E->getType()->isAnyComplexType())
705       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
706     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
707   case Expr::CallExprClass:
708   case Expr::CXXMemberCallExprClass:
709   case Expr::CXXOperatorCallExprClass:
710   case Expr::UserDefinedLiteralClass:
711     return EmitCallExprLValue(cast<CallExpr>(E));
712   case Expr::VAArgExprClass:
713     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
714   case Expr::DeclRefExprClass:
715     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
716   case Expr::ParenExprClass:
717     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
718   case Expr::GenericSelectionExprClass:
719     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
720   case Expr::PredefinedExprClass:
721     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
722   case Expr::StringLiteralClass:
723     return EmitStringLiteralLValue(cast<StringLiteral>(E));
724   case Expr::ObjCEncodeExprClass:
725     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
726   case Expr::PseudoObjectExprClass:
727     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
728   case Expr::InitListExprClass:
729     return EmitInitListLValue(cast<InitListExpr>(E));
730   case Expr::CXXTemporaryObjectExprClass:
731   case Expr::CXXConstructExprClass:
732     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
733   case Expr::CXXBindTemporaryExprClass:
734     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
735   case Expr::CXXUuidofExprClass:
736     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
737   case Expr::LambdaExprClass:
738     return EmitLambdaLValue(cast<LambdaExpr>(E));
739 
740   case Expr::ExprWithCleanupsClass: {
741     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
742     enterFullExpression(cleanups);
743     RunCleanupsScope Scope(*this);
744     return EmitLValue(cleanups->getSubExpr());
745   }
746 
747   case Expr::CXXScalarValueInitExprClass:
748     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
749   case Expr::CXXDefaultArgExprClass:
750     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
751   case Expr::CXXTypeidExprClass:
752     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
753 
754   case Expr::ObjCMessageExprClass:
755     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
756   case Expr::ObjCIvarRefExprClass:
757     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
758   case Expr::StmtExprClass:
759     return EmitStmtExprLValue(cast<StmtExpr>(E));
760   case Expr::UnaryOperatorClass:
761     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
762   case Expr::ArraySubscriptExprClass:
763     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
764   case Expr::ExtVectorElementExprClass:
765     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
766   case Expr::MemberExprClass:
767     return EmitMemberExpr(cast<MemberExpr>(E));
768   case Expr::CompoundLiteralExprClass:
769     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
770   case Expr::ConditionalOperatorClass:
771     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
772   case Expr::BinaryConditionalOperatorClass:
773     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
774   case Expr::ChooseExprClass:
775     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
776   case Expr::OpaqueValueExprClass:
777     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
778   case Expr::SubstNonTypeTemplateParmExprClass:
779     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
780   case Expr::ImplicitCastExprClass:
781   case Expr::CStyleCastExprClass:
782   case Expr::CXXFunctionalCastExprClass:
783   case Expr::CXXStaticCastExprClass:
784   case Expr::CXXDynamicCastExprClass:
785   case Expr::CXXReinterpretCastExprClass:
786   case Expr::CXXConstCastExprClass:
787   case Expr::ObjCBridgedCastExprClass:
788     return EmitCastLValue(cast<CastExpr>(E));
789 
790   case Expr::MaterializeTemporaryExprClass:
791     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
792   }
793 }
794 
795 /// Given an object of the given canonical type, can we safely copy a
796 /// value out of it based on its initializer?
797 static bool isConstantEmittableObjectType(QualType type) {
798   assert(type.isCanonical());
799   assert(!type->isReferenceType());
800 
801   // Must be const-qualified but non-volatile.
802   Qualifiers qs = type.getLocalQualifiers();
803   if (!qs.hasConst() || qs.hasVolatile()) return false;
804 
805   // Otherwise, all object types satisfy this except C++ classes with
806   // mutable subobjects or non-trivial copy/destroy behavior.
807   if (const RecordType *RT = dyn_cast<RecordType>(type))
808     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
809       if (RD->hasMutableFields() || !RD->isTrivial())
810         return false;
811 
812   return true;
813 }
814 
815 /// Can we constant-emit a load of a reference to a variable of the
816 /// given type?  This is different from predicates like
817 /// Decl::isUsableInConstantExpressions because we do want it to apply
818 /// in situations that don't necessarily satisfy the language's rules
819 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
820 /// to do this with const float variables even if those variables
821 /// aren't marked 'constexpr'.
822 enum ConstantEmissionKind {
823   CEK_None,
824   CEK_AsReferenceOnly,
825   CEK_AsValueOrReference,
826   CEK_AsValueOnly
827 };
828 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
829   type = type.getCanonicalType();
830   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
831     if (isConstantEmittableObjectType(ref->getPointeeType()))
832       return CEK_AsValueOrReference;
833     return CEK_AsReferenceOnly;
834   }
835   if (isConstantEmittableObjectType(type))
836     return CEK_AsValueOnly;
837   return CEK_None;
838 }
839 
840 /// Try to emit a reference to the given value without producing it as
841 /// an l-value.  This is actually more than an optimization: we can't
842 /// produce an l-value for variables that we never actually captured
843 /// in a block or lambda, which means const int variables or constexpr
844 /// literals or similar.
845 CodeGenFunction::ConstantEmission
846 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
847   ValueDecl *value = refExpr->getDecl();
848 
849   // The value needs to be an enum constant or a constant variable.
850   ConstantEmissionKind CEK;
851   if (isa<ParmVarDecl>(value)) {
852     CEK = CEK_None;
853   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
854     CEK = checkVarTypeForConstantEmission(var->getType());
855   } else if (isa<EnumConstantDecl>(value)) {
856     CEK = CEK_AsValueOnly;
857   } else {
858     CEK = CEK_None;
859   }
860   if (CEK == CEK_None) return ConstantEmission();
861 
862   Expr::EvalResult result;
863   bool resultIsReference;
864   QualType resultType;
865 
866   // It's best to evaluate all the way as an r-value if that's permitted.
867   if (CEK != CEK_AsReferenceOnly &&
868       refExpr->EvaluateAsRValue(result, getContext())) {
869     resultIsReference = false;
870     resultType = refExpr->getType();
871 
872   // Otherwise, try to evaluate as an l-value.
873   } else if (CEK != CEK_AsValueOnly &&
874              refExpr->EvaluateAsLValue(result, getContext())) {
875     resultIsReference = true;
876     resultType = value->getType();
877 
878   // Failure.
879   } else {
880     return ConstantEmission();
881   }
882 
883   // In any case, if the initializer has side-effects, abandon ship.
884   if (result.HasSideEffects)
885     return ConstantEmission();
886 
887   // Emit as a constant.
888   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
889 
890   // Make sure we emit a debug reference to the global variable.
891   // This should probably fire even for
892   if (isa<VarDecl>(value)) {
893     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
894       EmitDeclRefExprDbgValue(refExpr, C);
895   } else {
896     assert(isa<EnumConstantDecl>(value));
897     EmitDeclRefExprDbgValue(refExpr, C);
898   }
899 
900   // If we emitted a reference constant, we need to dereference that.
901   if (resultIsReference)
902     return ConstantEmission::forReference(C);
903 
904   return ConstantEmission::forValue(C);
905 }
906 
907 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
908   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
909                           lvalue.getAlignment().getQuantity(),
910                           lvalue.getType(), lvalue.getTBAAInfo());
911 }
912 
913 static bool hasBooleanRepresentation(QualType Ty) {
914   if (Ty->isBooleanType())
915     return true;
916 
917   if (const EnumType *ET = Ty->getAs<EnumType>())
918     return ET->getDecl()->getIntegerType()->isBooleanType();
919 
920   if (const AtomicType *AT = Ty->getAs<AtomicType>())
921     return hasBooleanRepresentation(AT->getValueType());
922 
923   return false;
924 }
925 
926 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
927   const EnumType *ET = Ty->getAs<EnumType>();
928   bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
929                                  CGM.getCodeGenOpts().StrictEnums &&
930                                  !ET->getDecl()->isFixed());
931   bool IsBool = hasBooleanRepresentation(Ty);
932   if (!IsBool && !IsRegularCPlusPlusEnum)
933     return NULL;
934 
935   llvm::APInt Min;
936   llvm::APInt End;
937   if (IsBool) {
938     Min = llvm::APInt(getContext().getTypeSize(Ty), 0);
939     End = llvm::APInt(getContext().getTypeSize(Ty), 2);
940   } else {
941     const EnumDecl *ED = ET->getDecl();
942     llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
943     unsigned Bitwidth = LTy->getScalarSizeInBits();
944     unsigned NumNegativeBits = ED->getNumNegativeBits();
945     unsigned NumPositiveBits = ED->getNumPositiveBits();
946 
947     if (NumNegativeBits) {
948       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
949       assert(NumBits <= Bitwidth);
950       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
951       Min = -End;
952     } else {
953       assert(NumPositiveBits <= Bitwidth);
954       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
955       Min = llvm::APInt(Bitwidth, 0);
956     }
957   }
958 
959   llvm::MDBuilder MDHelper(getLLVMContext());
960   return MDHelper.createRange(Min, End);
961 }
962 
963 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
964                                               unsigned Alignment, QualType Ty,
965                                               llvm::MDNode *TBAAInfo) {
966 
967   // For better performance, handle vector loads differently.
968   if (Ty->isVectorType()) {
969     llvm::Value *V;
970     const llvm::Type *EltTy =
971     cast<llvm::PointerType>(Addr->getType())->getElementType();
972 
973     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
974 
975     // Handle vectors of size 3, like size 4 for better performance.
976     if (VTy->getNumElements() == 3) {
977 
978       // Bitcast to vec4 type.
979       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
980                                                          4);
981       llvm::PointerType *ptVec4Ty =
982       llvm::PointerType::get(vec4Ty,
983                              (cast<llvm::PointerType>(
984                                       Addr->getType()))->getAddressSpace());
985       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
986                                                 "castToVec4");
987       // Now load value.
988       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
989 
990       // Shuffle vector to get vec3.
991       llvm::SmallVector<llvm::Constant*, 3> Mask;
992       Mask.push_back(llvm::ConstantInt::get(
993                                     llvm::Type::getInt32Ty(getLLVMContext()),
994                                             0));
995       Mask.push_back(llvm::ConstantInt::get(
996                                     llvm::Type::getInt32Ty(getLLVMContext()),
997                                             1));
998       Mask.push_back(llvm::ConstantInt::get(
999                                      llvm::Type::getInt32Ty(getLLVMContext()),
1000                                             2));
1001 
1002       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1003       V = Builder.CreateShuffleVector(LoadVal,
1004                                       llvm::UndefValue::get(vec4Ty),
1005                                       MaskV, "extractVec");
1006       return EmitFromMemory(V, Ty);
1007     }
1008   }
1009 
1010   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1011   if (Volatile)
1012     Load->setVolatile(true);
1013   if (Alignment)
1014     Load->setAlignment(Alignment);
1015   if (TBAAInfo)
1016     CGM.DecorateInstruction(Load, TBAAInfo);
1017   // If this is an atomic type, all normal reads must be atomic
1018   if (Ty->isAtomicType())
1019     Load->setAtomic(llvm::SequentiallyConsistent);
1020 
1021   if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1022     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1023       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1024 
1025   return EmitFromMemory(Load, Ty);
1026 }
1027 
1028 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1029   // Bool has a different representation in memory than in registers.
1030   if (hasBooleanRepresentation(Ty)) {
1031     // This should really always be an i1, but sometimes it's already
1032     // an i8, and it's awkward to track those cases down.
1033     if (Value->getType()->isIntegerTy(1))
1034       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1035     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1036            "wrong value rep of bool");
1037   }
1038 
1039   return Value;
1040 }
1041 
1042 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1043   // Bool has a different representation in memory than in registers.
1044   if (hasBooleanRepresentation(Ty)) {
1045     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1046            "wrong value rep of bool");
1047     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1048   }
1049 
1050   return Value;
1051 }
1052 
1053 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1054                                         bool Volatile, unsigned Alignment,
1055                                         QualType Ty,
1056                                         llvm::MDNode *TBAAInfo,
1057                                         bool isInit) {
1058 
1059   // Handle vectors differently to get better performance.
1060   if (Ty->isVectorType()) {
1061     llvm::Type *SrcTy = Value->getType();
1062     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1063     // Handle vec3 special.
1064     if (VecTy->getNumElements() == 3) {
1065       llvm::LLVMContext &VMContext = getLLVMContext();
1066 
1067       // Our source is a vec3, do a shuffle vector to make it a vec4.
1068       llvm::SmallVector<llvm::Constant*, 4> Mask;
1069       Mask.push_back(llvm::ConstantInt::get(
1070                                             llvm::Type::getInt32Ty(VMContext),
1071                                             0));
1072       Mask.push_back(llvm::ConstantInt::get(
1073                                             llvm::Type::getInt32Ty(VMContext),
1074                                             1));
1075       Mask.push_back(llvm::ConstantInt::get(
1076                                             llvm::Type::getInt32Ty(VMContext),
1077                                             2));
1078       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1079 
1080       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1081       Value = Builder.CreateShuffleVector(Value,
1082                                           llvm::UndefValue::get(VecTy),
1083                                           MaskV, "extractVec");
1084       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1085     }
1086     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1087     if (DstPtr->getElementType() != SrcTy) {
1088       llvm::Type *MemTy =
1089       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1090       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1091     }
1092   }
1093 
1094   Value = EmitToMemory(Value, Ty);
1095 
1096   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1097   if (Alignment)
1098     Store->setAlignment(Alignment);
1099   if (TBAAInfo)
1100     CGM.DecorateInstruction(Store, TBAAInfo);
1101   if (!isInit && Ty->isAtomicType())
1102     Store->setAtomic(llvm::SequentiallyConsistent);
1103 }
1104 
1105 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1106     bool isInit) {
1107   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1108                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1109                     lvalue.getTBAAInfo(), isInit);
1110 }
1111 
1112 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1113 /// method emits the address of the lvalue, then loads the result as an rvalue,
1114 /// returning the rvalue.
1115 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1116   if (LV.isObjCWeak()) {
1117     // load of a __weak object.
1118     llvm::Value *AddrWeakObj = LV.getAddress();
1119     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1120                                                              AddrWeakObj));
1121   }
1122   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1123     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1124 
1125   if (LV.isSimple()) {
1126     assert(!LV.getType()->isFunctionType());
1127 
1128     // Everything needs a load.
1129     return RValue::get(EmitLoadOfScalar(LV));
1130   }
1131 
1132   if (LV.isVectorElt()) {
1133     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1134                                               LV.isVolatileQualified());
1135     Load->setAlignment(LV.getAlignment().getQuantity());
1136     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1137                                                     "vecext"));
1138   }
1139 
1140   // If this is a reference to a subset of the elements of a vector, either
1141   // shuffle the input or extract/insert them as appropriate.
1142   if (LV.isExtVectorElt())
1143     return EmitLoadOfExtVectorElementLValue(LV);
1144 
1145   assert(LV.isBitField() && "Unknown LValue type!");
1146   return EmitLoadOfBitfieldLValue(LV);
1147 }
1148 
1149 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1150   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1151 
1152   // Get the output type.
1153   llvm::Type *ResLTy = ConvertType(LV.getType());
1154   unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy);
1155 
1156   // Compute the result as an OR of all of the individual component accesses.
1157   llvm::Value *Res = 0;
1158   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1159     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1160     CharUnits AccessAlignment = AI.AccessAlignment;
1161     if (!LV.getAlignment().isZero())
1162       AccessAlignment = std::min(AccessAlignment, LV.getAlignment());
1163 
1164     // Get the field pointer.
1165     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1166 
1167     // Only offset by the field index if used, so that incoming values are not
1168     // required to be structures.
1169     if (AI.FieldIndex)
1170       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1171 
1172     // Offset by the byte offset, if used.
1173     if (!AI.FieldByteOffset.isZero()) {
1174       Ptr = EmitCastToVoidPtr(Ptr);
1175       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1176                                        "bf.field.offs");
1177     }
1178 
1179     // Cast to the access type.
1180     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1181                        CGM.getContext().getTargetAddressSpace(LV.getType()));
1182     Ptr = Builder.CreateBitCast(Ptr, PTy);
1183 
1184     // Perform the load.
1185     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1186     Load->setAlignment(AccessAlignment.getQuantity());
1187 
1188     // Shift out unused low bits and mask out unused high bits.
1189     llvm::Value *Val = Load;
1190     if (AI.FieldBitStart)
1191       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1192     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1193                                                             AI.TargetBitWidth),
1194                             "bf.clear");
1195 
1196     // Extend or truncate to the target size.
1197     if (AI.AccessWidth < ResSizeInBits)
1198       Val = Builder.CreateZExt(Val, ResLTy);
1199     else if (AI.AccessWidth > ResSizeInBits)
1200       Val = Builder.CreateTrunc(Val, ResLTy);
1201 
1202     // Shift into place, and OR into the result.
1203     if (AI.TargetBitOffset)
1204       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1205     Res = Res ? Builder.CreateOr(Res, Val) : Val;
1206   }
1207 
1208   // If the bit-field is signed, perform the sign-extension.
1209   //
1210   // FIXME: This can easily be folded into the load of the high bits, which
1211   // could also eliminate the mask of high bits in some situations.
1212   if (Info.isSigned()) {
1213     unsigned ExtraBits = ResSizeInBits - Info.getSize();
1214     if (ExtraBits)
1215       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1216                                ExtraBits, "bf.val.sext");
1217   }
1218 
1219   return RValue::get(Res);
1220 }
1221 
1222 // If this is a reference to a subset of the elements of a vector, create an
1223 // appropriate shufflevector.
1224 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1225   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1226                                             LV.isVolatileQualified());
1227   Load->setAlignment(LV.getAlignment().getQuantity());
1228   llvm::Value *Vec = Load;
1229 
1230   const llvm::Constant *Elts = LV.getExtVectorElts();
1231 
1232   // If the result of the expression is a non-vector type, we must be extracting
1233   // a single element.  Just codegen as an extractelement.
1234   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1235   if (!ExprVT) {
1236     unsigned InIdx = getAccessedFieldNo(0, Elts);
1237     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1238     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1239   }
1240 
1241   // Always use shuffle vector to try to retain the original program structure
1242   unsigned NumResultElts = ExprVT->getNumElements();
1243 
1244   SmallVector<llvm::Constant*, 4> Mask;
1245   for (unsigned i = 0; i != NumResultElts; ++i)
1246     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1247 
1248   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1249   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1250                                     MaskV);
1251   return RValue::get(Vec);
1252 }
1253 
1254 
1255 
1256 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1257 /// lvalue, where both are guaranteed to the have the same type, and that type
1258 /// is 'Ty'.
1259 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1260   if (!Dst.isSimple()) {
1261     if (Dst.isVectorElt()) {
1262       // Read/modify/write the vector, inserting the new element.
1263       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1264                                                 Dst.isVolatileQualified());
1265       Load->setAlignment(Dst.getAlignment().getQuantity());
1266       llvm::Value *Vec = Load;
1267       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1268                                         Dst.getVectorIdx(), "vecins");
1269       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1270                                                    Dst.isVolatileQualified());
1271       Store->setAlignment(Dst.getAlignment().getQuantity());
1272       return;
1273     }
1274 
1275     // If this is an update of extended vector elements, insert them as
1276     // appropriate.
1277     if (Dst.isExtVectorElt())
1278       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1279 
1280     assert(Dst.isBitField() && "Unknown LValue type");
1281     return EmitStoreThroughBitfieldLValue(Src, Dst);
1282   }
1283 
1284   // There's special magic for assigning into an ARC-qualified l-value.
1285   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1286     switch (Lifetime) {
1287     case Qualifiers::OCL_None:
1288       llvm_unreachable("present but none");
1289 
1290     case Qualifiers::OCL_ExplicitNone:
1291       // nothing special
1292       break;
1293 
1294     case Qualifiers::OCL_Strong:
1295       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1296       return;
1297 
1298     case Qualifiers::OCL_Weak:
1299       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1300       return;
1301 
1302     case Qualifiers::OCL_Autoreleasing:
1303       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1304                                                      Src.getScalarVal()));
1305       // fall into the normal path
1306       break;
1307     }
1308   }
1309 
1310   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1311     // load of a __weak object.
1312     llvm::Value *LvalueDst = Dst.getAddress();
1313     llvm::Value *src = Src.getScalarVal();
1314      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1315     return;
1316   }
1317 
1318   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1319     // load of a __strong object.
1320     llvm::Value *LvalueDst = Dst.getAddress();
1321     llvm::Value *src = Src.getScalarVal();
1322     if (Dst.isObjCIvar()) {
1323       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1324       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1325       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1326       llvm::Value *dst = RHS;
1327       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1328       llvm::Value *LHS =
1329         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1330       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1331       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1332                                               BytesBetween);
1333     } else if (Dst.isGlobalObjCRef()) {
1334       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1335                                                 Dst.isThreadLocalRef());
1336     }
1337     else
1338       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1339     return;
1340   }
1341 
1342   assert(Src.isScalar() && "Can't emit an agg store with this method");
1343   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1344 }
1345 
1346 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1347                                                      llvm::Value **Result) {
1348   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1349 
1350   // Get the output type.
1351   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1352   unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy);
1353 
1354   // Get the source value, truncated to the width of the bit-field.
1355   llvm::Value *SrcVal = Src.getScalarVal();
1356 
1357   if (hasBooleanRepresentation(Dst.getType()))
1358     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1359 
1360   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1361                                                                 Info.getSize()),
1362                              "bf.value");
1363 
1364   // Return the new value of the bit-field, if requested.
1365   if (Result) {
1366     // Cast back to the proper type for result.
1367     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1368     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1369                                                    "bf.reload.val");
1370 
1371     // Sign extend if necessary.
1372     if (Info.isSigned()) {
1373       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1374       if (ExtraBits)
1375         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1376                                        ExtraBits, "bf.reload.sext");
1377     }
1378 
1379     *Result = ReloadVal;
1380   }
1381 
1382   // Iterate over the components, writing each piece to memory.
1383   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1384     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1385     CharUnits AccessAlignment = AI.AccessAlignment;
1386     if (!Dst.getAlignment().isZero())
1387       AccessAlignment = std::min(AccessAlignment, Dst.getAlignment());
1388 
1389     // Get the field pointer.
1390     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1391     unsigned addressSpace =
1392       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1393 
1394     // Only offset by the field index if used, so that incoming values are not
1395     // required to be structures.
1396     if (AI.FieldIndex)
1397       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1398 
1399     // Offset by the byte offset, if used.
1400     if (!AI.FieldByteOffset.isZero()) {
1401       Ptr = EmitCastToVoidPtr(Ptr);
1402       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1403                                        "bf.field.offs");
1404     }
1405 
1406     // Cast to the access type.
1407     llvm::Type *AccessLTy =
1408       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1409 
1410     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1411     Ptr = Builder.CreateBitCast(Ptr, PTy);
1412 
1413     // Extract the piece of the bit-field value to write in this access, limited
1414     // to the values that are part of this access.
1415     llvm::Value *Val = SrcVal;
1416     if (AI.TargetBitOffset)
1417       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1418     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1419                                                             AI.TargetBitWidth));
1420 
1421     // Extend or truncate to the access size.
1422     if (ResSizeInBits < AI.AccessWidth)
1423       Val = Builder.CreateZExt(Val, AccessLTy);
1424     else if (ResSizeInBits > AI.AccessWidth)
1425       Val = Builder.CreateTrunc(Val, AccessLTy);
1426 
1427     // Shift into the position in memory.
1428     if (AI.FieldBitStart)
1429       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1430 
1431     // If necessary, load and OR in bits that are outside of the bit-field.
1432     if (AI.TargetBitWidth != AI.AccessWidth) {
1433       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1434       Load->setAlignment(AccessAlignment.getQuantity());
1435 
1436       // Compute the mask for zeroing the bits that are part of the bit-field.
1437       llvm::APInt InvMask =
1438         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1439                                  AI.FieldBitStart + AI.TargetBitWidth);
1440 
1441       // Apply the mask and OR in to the value to write.
1442       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1443     }
1444 
1445     // Write the value.
1446     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1447                                                  Dst.isVolatileQualified());
1448     Store->setAlignment(AccessAlignment.getQuantity());
1449   }
1450 }
1451 
1452 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1453                                                                LValue Dst) {
1454   // This access turns into a read/modify/write of the vector.  Load the input
1455   // value now.
1456   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1457                                             Dst.isVolatileQualified());
1458   Load->setAlignment(Dst.getAlignment().getQuantity());
1459   llvm::Value *Vec = Load;
1460   const llvm::Constant *Elts = Dst.getExtVectorElts();
1461 
1462   llvm::Value *SrcVal = Src.getScalarVal();
1463 
1464   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1465     unsigned NumSrcElts = VTy->getNumElements();
1466     unsigned NumDstElts =
1467        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1468     if (NumDstElts == NumSrcElts) {
1469       // Use shuffle vector is the src and destination are the same number of
1470       // elements and restore the vector mask since it is on the side it will be
1471       // stored.
1472       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1473       for (unsigned i = 0; i != NumSrcElts; ++i)
1474         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1475 
1476       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1477       Vec = Builder.CreateShuffleVector(SrcVal,
1478                                         llvm::UndefValue::get(Vec->getType()),
1479                                         MaskV);
1480     } else if (NumDstElts > NumSrcElts) {
1481       // Extended the source vector to the same length and then shuffle it
1482       // into the destination.
1483       // FIXME: since we're shuffling with undef, can we just use the indices
1484       //        into that?  This could be simpler.
1485       SmallVector<llvm::Constant*, 4> ExtMask;
1486       for (unsigned i = 0; i != NumSrcElts; ++i)
1487         ExtMask.push_back(Builder.getInt32(i));
1488       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1489       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1490       llvm::Value *ExtSrcVal =
1491         Builder.CreateShuffleVector(SrcVal,
1492                                     llvm::UndefValue::get(SrcVal->getType()),
1493                                     ExtMaskV);
1494       // build identity
1495       SmallVector<llvm::Constant*, 4> Mask;
1496       for (unsigned i = 0; i != NumDstElts; ++i)
1497         Mask.push_back(Builder.getInt32(i));
1498 
1499       // modify when what gets shuffled in
1500       for (unsigned i = 0; i != NumSrcElts; ++i)
1501         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1502       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1503       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1504     } else {
1505       // We should never shorten the vector
1506       llvm_unreachable("unexpected shorten vector length");
1507     }
1508   } else {
1509     // If the Src is a scalar (not a vector) it must be updating one element.
1510     unsigned InIdx = getAccessedFieldNo(0, Elts);
1511     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1512     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1513   }
1514 
1515   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1516                                                Dst.isVolatileQualified());
1517   Store->setAlignment(Dst.getAlignment().getQuantity());
1518 }
1519 
1520 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1521 // generating write-barries API. It is currently a global, ivar,
1522 // or neither.
1523 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1524                                  LValue &LV,
1525                                  bool IsMemberAccess=false) {
1526   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1527     return;
1528 
1529   if (isa<ObjCIvarRefExpr>(E)) {
1530     QualType ExpTy = E->getType();
1531     if (IsMemberAccess && ExpTy->isPointerType()) {
1532       // If ivar is a structure pointer, assigning to field of
1533       // this struct follows gcc's behavior and makes it a non-ivar
1534       // writer-barrier conservatively.
1535       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1536       if (ExpTy->isRecordType()) {
1537         LV.setObjCIvar(false);
1538         return;
1539       }
1540     }
1541     LV.setObjCIvar(true);
1542     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1543     LV.setBaseIvarExp(Exp->getBase());
1544     LV.setObjCArray(E->getType()->isArrayType());
1545     return;
1546   }
1547 
1548   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1549     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1550       if (VD->hasGlobalStorage()) {
1551         LV.setGlobalObjCRef(true);
1552         LV.setThreadLocalRef(VD->isThreadSpecified());
1553       }
1554     }
1555     LV.setObjCArray(E->getType()->isArrayType());
1556     return;
1557   }
1558 
1559   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1560     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1561     return;
1562   }
1563 
1564   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1565     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1566     if (LV.isObjCIvar()) {
1567       // If cast is to a structure pointer, follow gcc's behavior and make it
1568       // a non-ivar write-barrier.
1569       QualType ExpTy = E->getType();
1570       if (ExpTy->isPointerType())
1571         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1572       if (ExpTy->isRecordType())
1573         LV.setObjCIvar(false);
1574     }
1575     return;
1576   }
1577 
1578   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1579     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1580     return;
1581   }
1582 
1583   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1584     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1585     return;
1586   }
1587 
1588   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1589     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1590     return;
1591   }
1592 
1593   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1594     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1595     return;
1596   }
1597 
1598   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1599     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1600     if (LV.isObjCIvar() && !LV.isObjCArray())
1601       // Using array syntax to assigning to what an ivar points to is not
1602       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1603       LV.setObjCIvar(false);
1604     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1605       // Using array syntax to assigning to what global points to is not
1606       // same as assigning to the global itself. {id *G;} G[i] = 0;
1607       LV.setGlobalObjCRef(false);
1608     return;
1609   }
1610 
1611   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1612     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1613     // We don't know if member is an 'ivar', but this flag is looked at
1614     // only in the context of LV.isObjCIvar().
1615     LV.setObjCArray(E->getType()->isArrayType());
1616     return;
1617   }
1618 }
1619 
1620 static llvm::Value *
1621 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1622                                 llvm::Value *V, llvm::Type *IRType,
1623                                 StringRef Name = StringRef()) {
1624   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1625   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1626 }
1627 
1628 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1629                                       const Expr *E, const VarDecl *VD) {
1630   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1631          "Var decl must have external storage or be a file var decl!");
1632 
1633   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1634   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1635   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1636   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1637   QualType T = E->getType();
1638   LValue LV;
1639   if (VD->getType()->isReferenceType()) {
1640     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1641     LI->setAlignment(Alignment.getQuantity());
1642     V = LI;
1643     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1644   } else {
1645     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1646   }
1647   setObjCGCLValueClass(CGF.getContext(), E, LV);
1648   return LV;
1649 }
1650 
1651 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1652                                      const Expr *E, const FunctionDecl *FD) {
1653   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1654   if (!FD->hasPrototype()) {
1655     if (const FunctionProtoType *Proto =
1656             FD->getType()->getAs<FunctionProtoType>()) {
1657       // Ugly case: for a K&R-style definition, the type of the definition
1658       // isn't the same as the type of a use.  Correct for this with a
1659       // bitcast.
1660       QualType NoProtoType =
1661           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1662       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1663       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1664     }
1665   }
1666   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1667   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1668 }
1669 
1670 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1671   const NamedDecl *ND = E->getDecl();
1672   CharUnits Alignment = getContext().getDeclAlign(ND);
1673   QualType T = E->getType();
1674 
1675   // A DeclRefExpr for a reference initialized by a constant expression can
1676   // appear without being odr-used. Directly emit the constant initializer.
1677   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1678     const Expr *Init = VD->getAnyInitializer(VD);
1679     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1680         VD->isUsableInConstantExpressions(getContext()) &&
1681         VD->checkInitIsICE()) {
1682       llvm::Constant *Val =
1683         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1684       assert(Val && "failed to emit reference constant expression");
1685       // FIXME: Eventually we will want to emit vector element references.
1686       return MakeAddrLValue(Val, T, Alignment);
1687     }
1688   }
1689 
1690   // FIXME: We should be able to assert this for FunctionDecls as well!
1691   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1692   // those with a valid source location.
1693   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1694           !E->getLocation().isValid()) &&
1695          "Should not use decl without marking it used!");
1696 
1697   if (ND->hasAttr<WeakRefAttr>()) {
1698     const ValueDecl *VD = cast<ValueDecl>(ND);
1699     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1700     return MakeAddrLValue(Aliasee, T, Alignment);
1701   }
1702 
1703   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1704     // Check if this is a global variable.
1705     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1706       return EmitGlobalVarDeclLValue(*this, E, VD);
1707 
1708     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1709 
1710     bool NonGCable = VD->hasLocalStorage() &&
1711                      !VD->getType()->isReferenceType() &&
1712                      !isBlockVariable;
1713 
1714     llvm::Value *V = LocalDeclMap[VD];
1715     if (!V && VD->isStaticLocal())
1716       V = CGM.getStaticLocalDeclAddress(VD);
1717 
1718     // Use special handling for lambdas.
1719     if (!V) {
1720       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1721         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1722         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1723                                                      LambdaTagType);
1724         return EmitLValueForField(LambdaLV, FD);
1725       }
1726 
1727       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1728       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1729                             T, Alignment);
1730     }
1731 
1732     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1733 
1734     if (isBlockVariable)
1735       V = BuildBlockByrefAddress(V, VD);
1736 
1737     LValue LV;
1738     if (VD->getType()->isReferenceType()) {
1739       llvm::LoadInst *LI = Builder.CreateLoad(V);
1740       LI->setAlignment(Alignment.getQuantity());
1741       V = LI;
1742       LV = MakeNaturalAlignAddrLValue(V, T);
1743     } else {
1744       LV = MakeAddrLValue(V, T, Alignment);
1745     }
1746 
1747     if (NonGCable) {
1748       LV.getQuals().removeObjCGCAttr();
1749       LV.setNonGC(true);
1750     }
1751     setObjCGCLValueClass(getContext(), E, LV);
1752     return LV;
1753   }
1754 
1755   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1756     return EmitFunctionDeclLValue(*this, E, fn);
1757 
1758   llvm_unreachable("Unhandled DeclRefExpr");
1759 }
1760 
1761 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1762   // __extension__ doesn't affect lvalue-ness.
1763   if (E->getOpcode() == UO_Extension)
1764     return EmitLValue(E->getSubExpr());
1765 
1766   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1767   switch (E->getOpcode()) {
1768   default: llvm_unreachable("Unknown unary operator lvalue!");
1769   case UO_Deref: {
1770     QualType T = E->getSubExpr()->getType()->getPointeeType();
1771     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1772 
1773     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1774     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1775 
1776     // We should not generate __weak write barrier on indirect reference
1777     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1778     // But, we continue to generate __strong write barrier on indirect write
1779     // into a pointer to object.
1780     if (getLangOpts().ObjC1 &&
1781         getLangOpts().getGC() != LangOptions::NonGC &&
1782         LV.isObjCWeak())
1783       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1784     return LV;
1785   }
1786   case UO_Real:
1787   case UO_Imag: {
1788     LValue LV = EmitLValue(E->getSubExpr());
1789     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1790     llvm::Value *Addr = LV.getAddress();
1791 
1792     // __real is valid on scalars.  This is a faster way of testing that.
1793     // __imag can only produce an rvalue on scalars.
1794     if (E->getOpcode() == UO_Real &&
1795         !cast<llvm::PointerType>(Addr->getType())
1796            ->getElementType()->isStructTy()) {
1797       assert(E->getSubExpr()->getType()->isArithmeticType());
1798       return LV;
1799     }
1800 
1801     assert(E->getSubExpr()->getType()->isAnyComplexType());
1802 
1803     unsigned Idx = E->getOpcode() == UO_Imag;
1804     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1805                                                   Idx, "idx"),
1806                           ExprTy);
1807   }
1808   case UO_PreInc:
1809   case UO_PreDec: {
1810     LValue LV = EmitLValue(E->getSubExpr());
1811     bool isInc = E->getOpcode() == UO_PreInc;
1812 
1813     if (E->getType()->isAnyComplexType())
1814       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1815     else
1816       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1817     return LV;
1818   }
1819   }
1820 }
1821 
1822 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1823   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1824                         E->getType());
1825 }
1826 
1827 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1828   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1829                         E->getType());
1830 }
1831 
1832 static llvm::Constant*
1833 GetAddrOfConstantWideString(StringRef Str,
1834                             const char *GlobalName,
1835                             ASTContext &Context,
1836                             QualType Ty, SourceLocation Loc,
1837                             CodeGenModule &CGM) {
1838 
1839   StringLiteral *SL = StringLiteral::Create(Context,
1840                                             Str,
1841                                             StringLiteral::Wide,
1842                                             /*Pascal = */false,
1843                                             Ty, Loc);
1844   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1845   llvm::GlobalVariable *GV =
1846     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1847                              !CGM.getLangOpts().WritableStrings,
1848                              llvm::GlobalValue::PrivateLinkage,
1849                              C, GlobalName);
1850   const unsigned WideAlignment =
1851     Context.getTypeAlignInChars(Ty).getQuantity();
1852   GV->setAlignment(WideAlignment);
1853   return GV;
1854 }
1855 
1856 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1857                                     SmallString<32>& Target) {
1858   Target.resize(CharByteWidth * (Source.size() + 1));
1859   char *ResultPtr = &Target[0];
1860   const UTF8 *ErrorPtr;
1861   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1862   (void)success;
1863   assert(success);
1864   Target.resize(ResultPtr - &Target[0]);
1865 }
1866 
1867 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1868   switch (E->getIdentType()) {
1869   default:
1870     return EmitUnsupportedLValue(E, "predefined expression");
1871 
1872   case PredefinedExpr::Func:
1873   case PredefinedExpr::Function:
1874   case PredefinedExpr::LFunction:
1875   case PredefinedExpr::PrettyFunction: {
1876     unsigned IdentType = E->getIdentType();
1877     std::string GlobalVarName;
1878 
1879     switch (IdentType) {
1880     default: llvm_unreachable("Invalid type");
1881     case PredefinedExpr::Func:
1882       GlobalVarName = "__func__.";
1883       break;
1884     case PredefinedExpr::Function:
1885       GlobalVarName = "__FUNCTION__.";
1886       break;
1887     case PredefinedExpr::LFunction:
1888       GlobalVarName = "L__FUNCTION__.";
1889       break;
1890     case PredefinedExpr::PrettyFunction:
1891       GlobalVarName = "__PRETTY_FUNCTION__.";
1892       break;
1893     }
1894 
1895     StringRef FnName = CurFn->getName();
1896     if (FnName.startswith("\01"))
1897       FnName = FnName.substr(1);
1898     GlobalVarName += FnName;
1899 
1900     const Decl *CurDecl = CurCodeDecl;
1901     if (CurDecl == 0)
1902       CurDecl = getContext().getTranslationUnitDecl();
1903 
1904     std::string FunctionName =
1905         (isa<BlockDecl>(CurDecl)
1906          ? FnName.str()
1907          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1908                                        CurDecl));
1909 
1910     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1911     llvm::Constant *C;
1912     if (ElemType->isWideCharType()) {
1913       SmallString<32> RawChars;
1914       ConvertUTF8ToWideString(
1915           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1916           FunctionName, RawChars);
1917       C = GetAddrOfConstantWideString(RawChars,
1918                                       GlobalVarName.c_str(),
1919                                       getContext(),
1920                                       E->getType(),
1921                                       E->getLocation(),
1922                                       CGM);
1923     } else {
1924       C = CGM.GetAddrOfConstantCString(FunctionName,
1925                                        GlobalVarName.c_str(),
1926                                        1);
1927     }
1928     return MakeAddrLValue(C, E->getType());
1929   }
1930   }
1931 }
1932 
1933 /// Emit a type description suitable for use by a runtime sanitizer library. The
1934 /// format of a type descriptor is
1935 ///
1936 /// \code
1937 ///   { i16 TypeKind, i16 TypeInfo }
1938 /// \endcode
1939 ///
1940 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
1941 /// integer, 1 for a floating point value, and -1 for anything else.
1942 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
1943   // FIXME: Only emit each type's descriptor once.
1944   uint16_t TypeKind = -1;
1945   uint16_t TypeInfo = 0;
1946 
1947   if (T->isIntegerType()) {
1948     TypeKind = 0;
1949     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
1950                T->isSignedIntegerType();
1951   } else if (T->isFloatingType()) {
1952     TypeKind = 1;
1953     TypeInfo = getContext().getTypeSize(T);
1954   }
1955 
1956   // Format the type name as if for a diagnostic, including quotes and
1957   // optionally an 'aka'.
1958   llvm::SmallString<32> Buffer;
1959   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
1960                                     (intptr_t)T.getAsOpaquePtr(),
1961                                     0, 0, 0, 0, 0, 0, Buffer,
1962                                     ArrayRef<intptr_t>());
1963 
1964   llvm::Constant *Components[] = {
1965     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
1966     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
1967   };
1968   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
1969 
1970   llvm::GlobalVariable *GV =
1971     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
1972                              /*isConstant=*/true,
1973                              llvm::GlobalVariable::PrivateLinkage,
1974                              Descriptor);
1975   GV->setUnnamedAddr(true);
1976   return GV;
1977 }
1978 
1979 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
1980   llvm::Type *TargetTy = IntPtrTy;
1981 
1982   // Integers which fit in intptr_t are zero-extended and passed directly.
1983   if (V->getType()->isIntegerTy() &&
1984       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
1985     return Builder.CreateZExt(V, TargetTy);
1986 
1987   // Pointers are passed directly, everything else is passed by address.
1988   if (!V->getType()->isPointerTy()) {
1989     llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
1990     Builder.CreateStore(V, Ptr);
1991     V = Ptr;
1992   }
1993   return Builder.CreatePtrToInt(V, TargetTy);
1994 }
1995 
1996 /// \brief Emit a representation of a SourceLocation for passing to a handler
1997 /// in a sanitizer runtime library. The format for this data is:
1998 /// \code
1999 ///   struct SourceLocation {
2000 ///     const char *Filename;
2001 ///     int32_t Line, Column;
2002 ///   };
2003 /// \endcode
2004 /// For an invalid SourceLocation, the Filename pointer is null.
2005 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2006   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2007 
2008   llvm::Constant *Data[] = {
2009     // FIXME: Only emit each file name once.
2010     PLoc.isValid() ? cast<llvm::Constant>(
2011                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2012                    : llvm::Constant::getNullValue(Int8PtrTy),
2013     Builder.getInt32(PLoc.getLine()),
2014     Builder.getInt32(PLoc.getColumn())
2015   };
2016 
2017   return llvm::ConstantStruct::getAnon(Data);
2018 }
2019 
2020 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2021                                 llvm::ArrayRef<llvm::Constant *> StaticArgs,
2022                                 llvm::ArrayRef<llvm::Value *> DynamicArgs,
2023                                 bool Recoverable) {
2024   llvm::BasicBlock *Cont = createBasicBlock("cont");
2025 
2026   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2027   Builder.CreateCondBr(Checked, Cont, Handler);
2028   EmitBlock(Handler);
2029 
2030   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2031   llvm::GlobalValue *InfoPtr =
2032       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true,
2033                                llvm::GlobalVariable::PrivateLinkage, Info);
2034   InfoPtr->setUnnamedAddr(true);
2035 
2036   llvm::SmallVector<llvm::Value *, 4> Args;
2037   llvm::SmallVector<llvm::Type *, 4> ArgTypes;
2038   Args.reserve(DynamicArgs.size() + 1);
2039   ArgTypes.reserve(DynamicArgs.size() + 1);
2040 
2041   // Handler functions take an i8* pointing to the (handler-specific) static
2042   // information block, followed by a sequence of intptr_t arguments
2043   // representing operand values.
2044   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2045   ArgTypes.push_back(Int8PtrTy);
2046   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2047     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2048     ArgTypes.push_back(IntPtrTy);
2049   }
2050 
2051   llvm::FunctionType *FnType =
2052     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2053   llvm::AttrBuilder B;
2054   if (!Recoverable) {
2055     B.addAttribute(llvm::Attributes::NoReturn)
2056      .addAttribute(llvm::Attributes::NoUnwind);
2057   }
2058   B.addAttribute(llvm::Attributes::UWTable);
2059   llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType,
2060                                           ("__ubsan_handle_" + CheckName).str(),
2061                                          llvm::Attributes::get(getLLVMContext(),
2062                                                                B));
2063   llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args);
2064   if (Recoverable) {
2065     Builder.CreateBr(Cont);
2066   } else {
2067     HandlerCall->setDoesNotReturn();
2068     HandlerCall->setDoesNotThrow();
2069     Builder.CreateUnreachable();
2070   }
2071 
2072   EmitBlock(Cont);
2073 }
2074 
2075 void CodeGenFunction::EmitTrapvCheck(llvm::Value *Checked) {
2076   llvm::BasicBlock *Cont = createBasicBlock("cont");
2077 
2078   // If we're optimizing, collapse all calls to trap down to just one per
2079   // function to save on code size.
2080   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2081     TrapBB = createBasicBlock("trap");
2082     Builder.CreateCondBr(Checked, Cont, TrapBB);
2083     EmitBlock(TrapBB);
2084     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2085     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2086     TrapCall->setDoesNotReturn();
2087     TrapCall->setDoesNotThrow();
2088     Builder.CreateUnreachable();
2089   } else {
2090     Builder.CreateCondBr(Checked, Cont, TrapBB);
2091   }
2092 
2093   EmitBlock(Cont);
2094 }
2095 
2096 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2097 /// array to pointer, return the array subexpression.
2098 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2099   // If this isn't just an array->pointer decay, bail out.
2100   const CastExpr *CE = dyn_cast<CastExpr>(E);
2101   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2102     return 0;
2103 
2104   // If this is a decay from variable width array, bail out.
2105   const Expr *SubExpr = CE->getSubExpr();
2106   if (SubExpr->getType()->isVariableArrayType())
2107     return 0;
2108 
2109   return SubExpr;
2110 }
2111 
2112 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2113   // The index must always be an integer, which is not an aggregate.  Emit it.
2114   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2115   QualType IdxTy  = E->getIdx()->getType();
2116   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2117 
2118   // If the base is a vector type, then we are forming a vector element lvalue
2119   // with this subscript.
2120   if (E->getBase()->getType()->isVectorType()) {
2121     // Emit the vector as an lvalue to get its address.
2122     LValue LHS = EmitLValue(E->getBase());
2123     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2124     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2125     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2126                                  E->getBase()->getType(), LHS.getAlignment());
2127   }
2128 
2129   // Extend or truncate the index type to 32 or 64-bits.
2130   if (Idx->getType() != IntPtrTy)
2131     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2132 
2133   // We know that the pointer points to a type of the correct size, unless the
2134   // size is a VLA or Objective-C interface.
2135   llvm::Value *Address = 0;
2136   CharUnits ArrayAlignment;
2137   if (const VariableArrayType *vla =
2138         getContext().getAsVariableArrayType(E->getType())) {
2139     // The base must be a pointer, which is not an aggregate.  Emit
2140     // it.  It needs to be emitted first in case it's what captures
2141     // the VLA bounds.
2142     Address = EmitScalarExpr(E->getBase());
2143 
2144     // The element count here is the total number of non-VLA elements.
2145     llvm::Value *numElements = getVLASize(vla).first;
2146 
2147     // Effectively, the multiply by the VLA size is part of the GEP.
2148     // GEP indexes are signed, and scaling an index isn't permitted to
2149     // signed-overflow, so we use the same semantics for our explicit
2150     // multiply.  We suppress this if overflow is not undefined behavior.
2151     if (getLangOpts().isSignedOverflowDefined()) {
2152       Idx = Builder.CreateMul(Idx, numElements);
2153       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2154     } else {
2155       Idx = Builder.CreateNSWMul(Idx, numElements);
2156       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2157     }
2158   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2159     // Indexing over an interface, as in "NSString *P; P[4];"
2160     llvm::Value *InterfaceSize =
2161       llvm::ConstantInt::get(Idx->getType(),
2162           getContext().getTypeSizeInChars(OIT).getQuantity());
2163 
2164     Idx = Builder.CreateMul(Idx, InterfaceSize);
2165 
2166     // The base must be a pointer, which is not an aggregate.  Emit it.
2167     llvm::Value *Base = EmitScalarExpr(E->getBase());
2168     Address = EmitCastToVoidPtr(Base);
2169     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2170     Address = Builder.CreateBitCast(Address, Base->getType());
2171   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2172     // If this is A[i] where A is an array, the frontend will have decayed the
2173     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2174     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2175     // "gep x, i" here.  Emit one "gep A, 0, i".
2176     assert(Array->getType()->isArrayType() &&
2177            "Array to pointer decay must have array source type!");
2178     LValue ArrayLV = EmitLValue(Array);
2179     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2180     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2181     llvm::Value *Args[] = { Zero, Idx };
2182 
2183     // Propagate the alignment from the array itself to the result.
2184     ArrayAlignment = ArrayLV.getAlignment();
2185 
2186     if (getLangOpts().isSignedOverflowDefined())
2187       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2188     else
2189       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2190   } else {
2191     // The base must be a pointer, which is not an aggregate.  Emit it.
2192     llvm::Value *Base = EmitScalarExpr(E->getBase());
2193     if (getLangOpts().isSignedOverflowDefined())
2194       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2195     else
2196       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2197   }
2198 
2199   QualType T = E->getBase()->getType()->getPointeeType();
2200   assert(!T.isNull() &&
2201          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2202 
2203 
2204   // Limit the alignment to that of the result type.
2205   LValue LV;
2206   if (!ArrayAlignment.isZero()) {
2207     CharUnits Align = getContext().getTypeAlignInChars(T);
2208     ArrayAlignment = std::min(Align, ArrayAlignment);
2209     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2210   } else {
2211     LV = MakeNaturalAlignAddrLValue(Address, T);
2212   }
2213 
2214   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2215 
2216   if (getLangOpts().ObjC1 &&
2217       getLangOpts().getGC() != LangOptions::NonGC) {
2218     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2219     setObjCGCLValueClass(getContext(), E, LV);
2220   }
2221   return LV;
2222 }
2223 
2224 static
2225 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2226                                        SmallVector<unsigned, 4> &Elts) {
2227   SmallVector<llvm::Constant*, 4> CElts;
2228   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2229     CElts.push_back(Builder.getInt32(Elts[i]));
2230 
2231   return llvm::ConstantVector::get(CElts);
2232 }
2233 
2234 LValue CodeGenFunction::
2235 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2236   // Emit the base vector as an l-value.
2237   LValue Base;
2238 
2239   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2240   if (E->isArrow()) {
2241     // If it is a pointer to a vector, emit the address and form an lvalue with
2242     // it.
2243     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2244     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2245     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2246     Base.getQuals().removeObjCGCAttr();
2247   } else if (E->getBase()->isGLValue()) {
2248     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2249     // emit the base as an lvalue.
2250     assert(E->getBase()->getType()->isVectorType());
2251     Base = EmitLValue(E->getBase());
2252   } else {
2253     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2254     assert(E->getBase()->getType()->isVectorType() &&
2255            "Result must be a vector");
2256     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2257 
2258     // Store the vector to memory (because LValue wants an address).
2259     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2260     Builder.CreateStore(Vec, VecMem);
2261     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2262   }
2263 
2264   QualType type =
2265     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2266 
2267   // Encode the element access list into a vector of unsigned indices.
2268   SmallVector<unsigned, 4> Indices;
2269   E->getEncodedElementAccess(Indices);
2270 
2271   if (Base.isSimple()) {
2272     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2273     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2274                                     Base.getAlignment());
2275   }
2276   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2277 
2278   llvm::Constant *BaseElts = Base.getExtVectorElts();
2279   SmallVector<llvm::Constant *, 4> CElts;
2280 
2281   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2282     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2283   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2284   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2285                                   Base.getAlignment());
2286 }
2287 
2288 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2289   Expr *BaseExpr = E->getBase();
2290 
2291   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2292   LValue BaseLV;
2293   if (E->isArrow()) {
2294     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2295     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2296     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2297     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2298   } else
2299     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2300 
2301   NamedDecl *ND = E->getMemberDecl();
2302   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2303     LValue LV = EmitLValueForField(BaseLV, Field);
2304     setObjCGCLValueClass(getContext(), E, LV);
2305     return LV;
2306   }
2307 
2308   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2309     return EmitGlobalVarDeclLValue(*this, E, VD);
2310 
2311   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2312     return EmitFunctionDeclLValue(*this, E, FD);
2313 
2314   llvm_unreachable("Unhandled member declaration!");
2315 }
2316 
2317 LValue CodeGenFunction::EmitLValueForField(LValue base,
2318                                            const FieldDecl *field) {
2319   if (field->isBitField()) {
2320     const CGRecordLayout &RL =
2321       CGM.getTypes().getCGRecordLayout(field->getParent());
2322     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2323     QualType fieldType =
2324       field->getType().withCVRQualifiers(base.getVRQualifiers());
2325     return LValue::MakeBitfield(base.getAddress(), Info, fieldType,
2326                                 base.getAlignment());
2327   }
2328 
2329   const RecordDecl *rec = field->getParent();
2330   QualType type = field->getType();
2331   CharUnits alignment = getContext().getDeclAlign(field);
2332 
2333   // FIXME: It should be impossible to have an LValue without alignment for a
2334   // complete type.
2335   if (!base.getAlignment().isZero())
2336     alignment = std::min(alignment, base.getAlignment());
2337 
2338   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2339 
2340   llvm::Value *addr = base.getAddress();
2341   unsigned cvr = base.getVRQualifiers();
2342   if (rec->isUnion()) {
2343     // For unions, there is no pointer adjustment.
2344     assert(!type->isReferenceType() && "union has reference member");
2345   } else {
2346     // For structs, we GEP to the field that the record layout suggests.
2347     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2348     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2349 
2350     // If this is a reference field, load the reference right now.
2351     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2352       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2353       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2354       load->setAlignment(alignment.getQuantity());
2355 
2356       if (CGM.shouldUseTBAA()) {
2357         llvm::MDNode *tbaa;
2358         if (mayAlias)
2359           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2360         else
2361           tbaa = CGM.getTBAAInfo(type);
2362         CGM.DecorateInstruction(load, tbaa);
2363       }
2364 
2365       addr = load;
2366       mayAlias = false;
2367       type = refType->getPointeeType();
2368       if (type->isIncompleteType())
2369         alignment = CharUnits();
2370       else
2371         alignment = getContext().getTypeAlignInChars(type);
2372       cvr = 0; // qualifiers don't recursively apply to referencee
2373     }
2374   }
2375 
2376   // Make sure that the address is pointing to the right type.  This is critical
2377   // for both unions and structs.  A union needs a bitcast, a struct element
2378   // will need a bitcast if the LLVM type laid out doesn't match the desired
2379   // type.
2380   addr = EmitBitCastOfLValueToProperType(*this, addr,
2381                                          CGM.getTypes().ConvertTypeForMem(type),
2382                                          field->getName());
2383 
2384   if (field->hasAttr<AnnotateAttr>())
2385     addr = EmitFieldAnnotations(field, addr);
2386 
2387   LValue LV = MakeAddrLValue(addr, type, alignment);
2388   LV.getQuals().addCVRQualifiers(cvr);
2389 
2390   // __weak attribute on a field is ignored.
2391   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2392     LV.getQuals().removeObjCGCAttr();
2393 
2394   // Fields of may_alias structs act like 'char' for TBAA purposes.
2395   // FIXME: this should get propagated down through anonymous structs
2396   // and unions.
2397   if (mayAlias && LV.getTBAAInfo())
2398     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2399 
2400   return LV;
2401 }
2402 
2403 LValue
2404 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2405                                                   const FieldDecl *Field) {
2406   QualType FieldType = Field->getType();
2407 
2408   if (!FieldType->isReferenceType())
2409     return EmitLValueForField(Base, Field);
2410 
2411   const CGRecordLayout &RL =
2412     CGM.getTypes().getCGRecordLayout(Field->getParent());
2413   unsigned idx = RL.getLLVMFieldNo(Field);
2414   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2415   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2416 
2417   // Make sure that the address is pointing to the right type.  This is critical
2418   // for both unions and structs.  A union needs a bitcast, a struct element
2419   // will need a bitcast if the LLVM type laid out doesn't match the desired
2420   // type.
2421   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2422   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2423 
2424   CharUnits Alignment = getContext().getDeclAlign(Field);
2425 
2426   // FIXME: It should be impossible to have an LValue without alignment for a
2427   // complete type.
2428   if (!Base.getAlignment().isZero())
2429     Alignment = std::min(Alignment, Base.getAlignment());
2430 
2431   return MakeAddrLValue(V, FieldType, Alignment);
2432 }
2433 
2434 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2435   if (E->isFileScope()) {
2436     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2437     return MakeAddrLValue(GlobalPtr, E->getType());
2438   }
2439   if (E->getType()->isVariablyModifiedType())
2440     // make sure to emit the VLA size.
2441     EmitVariablyModifiedType(E->getType());
2442 
2443   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2444   const Expr *InitExpr = E->getInitializer();
2445   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2446 
2447   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2448                    /*Init*/ true);
2449 
2450   return Result;
2451 }
2452 
2453 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2454   if (!E->isGLValue())
2455     // Initializing an aggregate temporary in C++11: T{...}.
2456     return EmitAggExprToLValue(E);
2457 
2458   // An lvalue initializer list must be initializing a reference.
2459   assert(E->getNumInits() == 1 && "reference init with multiple values");
2460   return EmitLValue(E->getInit(0));
2461 }
2462 
2463 LValue CodeGenFunction::
2464 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2465   if (!expr->isGLValue()) {
2466     // ?: here should be an aggregate.
2467     assert((hasAggregateLLVMType(expr->getType()) &&
2468             !expr->getType()->isAnyComplexType()) &&
2469            "Unexpected conditional operator!");
2470     return EmitAggExprToLValue(expr);
2471   }
2472 
2473   OpaqueValueMapping binding(*this, expr);
2474 
2475   const Expr *condExpr = expr->getCond();
2476   bool CondExprBool;
2477   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2478     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2479     if (!CondExprBool) std::swap(live, dead);
2480 
2481     if (!ContainsLabel(dead))
2482       return EmitLValue(live);
2483   }
2484 
2485   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2486   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2487   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2488 
2489   ConditionalEvaluation eval(*this);
2490   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2491 
2492   // Any temporaries created here are conditional.
2493   EmitBlock(lhsBlock);
2494   eval.begin(*this);
2495   LValue lhs = EmitLValue(expr->getTrueExpr());
2496   eval.end(*this);
2497 
2498   if (!lhs.isSimple())
2499     return EmitUnsupportedLValue(expr, "conditional operator");
2500 
2501   lhsBlock = Builder.GetInsertBlock();
2502   Builder.CreateBr(contBlock);
2503 
2504   // Any temporaries created here are conditional.
2505   EmitBlock(rhsBlock);
2506   eval.begin(*this);
2507   LValue rhs = EmitLValue(expr->getFalseExpr());
2508   eval.end(*this);
2509   if (!rhs.isSimple())
2510     return EmitUnsupportedLValue(expr, "conditional operator");
2511   rhsBlock = Builder.GetInsertBlock();
2512 
2513   EmitBlock(contBlock);
2514 
2515   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2516                                          "cond-lvalue");
2517   phi->addIncoming(lhs.getAddress(), lhsBlock);
2518   phi->addIncoming(rhs.getAddress(), rhsBlock);
2519   return MakeAddrLValue(phi, expr->getType());
2520 }
2521 
2522 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2523 /// type. If the cast is to a reference, we can have the usual lvalue result,
2524 /// otherwise if a cast is needed by the code generator in an lvalue context,
2525 /// then it must mean that we need the address of an aggregate in order to
2526 /// access one of its members.  This can happen for all the reasons that casts
2527 /// are permitted with aggregate result, including noop aggregate casts, and
2528 /// cast from scalar to union.
2529 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2530   switch (E->getCastKind()) {
2531   case CK_ToVoid:
2532     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2533 
2534   case CK_Dependent:
2535     llvm_unreachable("dependent cast kind in IR gen!");
2536 
2537   case CK_BuiltinFnToFnPtr:
2538     llvm_unreachable("builtin functions are handled elsewhere");
2539 
2540   // These two casts are currently treated as no-ops, although they could
2541   // potentially be real operations depending on the target's ABI.
2542   case CK_NonAtomicToAtomic:
2543   case CK_AtomicToNonAtomic:
2544 
2545   case CK_NoOp:
2546   case CK_LValueToRValue:
2547     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2548         || E->getType()->isRecordType())
2549       return EmitLValue(E->getSubExpr());
2550     // Fall through to synthesize a temporary.
2551 
2552   case CK_BitCast:
2553   case CK_ArrayToPointerDecay:
2554   case CK_FunctionToPointerDecay:
2555   case CK_NullToMemberPointer:
2556   case CK_NullToPointer:
2557   case CK_IntegralToPointer:
2558   case CK_PointerToIntegral:
2559   case CK_PointerToBoolean:
2560   case CK_VectorSplat:
2561   case CK_IntegralCast:
2562   case CK_IntegralToBoolean:
2563   case CK_IntegralToFloating:
2564   case CK_FloatingToIntegral:
2565   case CK_FloatingToBoolean:
2566   case CK_FloatingCast:
2567   case CK_FloatingRealToComplex:
2568   case CK_FloatingComplexToReal:
2569   case CK_FloatingComplexToBoolean:
2570   case CK_FloatingComplexCast:
2571   case CK_FloatingComplexToIntegralComplex:
2572   case CK_IntegralRealToComplex:
2573   case CK_IntegralComplexToReal:
2574   case CK_IntegralComplexToBoolean:
2575   case CK_IntegralComplexCast:
2576   case CK_IntegralComplexToFloatingComplex:
2577   case CK_DerivedToBaseMemberPointer:
2578   case CK_BaseToDerivedMemberPointer:
2579   case CK_MemberPointerToBoolean:
2580   case CK_ReinterpretMemberPointer:
2581   case CK_AnyPointerToBlockPointerCast:
2582   case CK_ARCProduceObject:
2583   case CK_ARCConsumeObject:
2584   case CK_ARCReclaimReturnedObject:
2585   case CK_ARCExtendBlockObject:
2586   case CK_CopyAndAutoreleaseBlockObject: {
2587     // These casts only produce lvalues when we're binding a reference to a
2588     // temporary realized from a (converted) pure rvalue. Emit the expression
2589     // as a value, copy it into a temporary, and return an lvalue referring to
2590     // that temporary.
2591     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2592     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2593     return MakeAddrLValue(V, E->getType());
2594   }
2595 
2596   case CK_Dynamic: {
2597     LValue LV = EmitLValue(E->getSubExpr());
2598     llvm::Value *V = LV.getAddress();
2599     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2600     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2601   }
2602 
2603   case CK_ConstructorConversion:
2604   case CK_UserDefinedConversion:
2605   case CK_CPointerToObjCPointerCast:
2606   case CK_BlockPointerToObjCPointerCast:
2607     return EmitLValue(E->getSubExpr());
2608 
2609   case CK_UncheckedDerivedToBase:
2610   case CK_DerivedToBase: {
2611     const RecordType *DerivedClassTy =
2612       E->getSubExpr()->getType()->getAs<RecordType>();
2613     CXXRecordDecl *DerivedClassDecl =
2614       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2615 
2616     LValue LV = EmitLValue(E->getSubExpr());
2617     llvm::Value *This = LV.getAddress();
2618 
2619     // Perform the derived-to-base conversion
2620     llvm::Value *Base =
2621       GetAddressOfBaseClass(This, DerivedClassDecl,
2622                             E->path_begin(), E->path_end(),
2623                             /*NullCheckValue=*/false);
2624 
2625     return MakeAddrLValue(Base, E->getType());
2626   }
2627   case CK_ToUnion:
2628     return EmitAggExprToLValue(E);
2629   case CK_BaseToDerived: {
2630     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2631     CXXRecordDecl *DerivedClassDecl =
2632       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2633 
2634     LValue LV = EmitLValue(E->getSubExpr());
2635 
2636     // Perform the base-to-derived conversion
2637     llvm::Value *Derived =
2638       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2639                                E->path_begin(), E->path_end(),
2640                                /*NullCheckValue=*/false);
2641 
2642     return MakeAddrLValue(Derived, E->getType());
2643   }
2644   case CK_LValueBitCast: {
2645     // This must be a reinterpret_cast (or c-style equivalent).
2646     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2647 
2648     LValue LV = EmitLValue(E->getSubExpr());
2649     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2650                                            ConvertType(CE->getTypeAsWritten()));
2651     return MakeAddrLValue(V, E->getType());
2652   }
2653   case CK_ObjCObjectLValueCast: {
2654     LValue LV = EmitLValue(E->getSubExpr());
2655     QualType ToType = getContext().getLValueReferenceType(E->getType());
2656     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2657                                            ConvertType(ToType));
2658     return MakeAddrLValue(V, E->getType());
2659   }
2660   }
2661 
2662   llvm_unreachable("Unhandled lvalue cast kind?");
2663 }
2664 
2665 LValue CodeGenFunction::EmitNullInitializationLValue(
2666                                               const CXXScalarValueInitExpr *E) {
2667   QualType Ty = E->getType();
2668   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2669   EmitNullInitialization(LV.getAddress(), Ty);
2670   return LV;
2671 }
2672 
2673 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2674   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2675   return getOpaqueLValueMapping(e);
2676 }
2677 
2678 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2679                                            const MaterializeTemporaryExpr *E) {
2680   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2681   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2682 }
2683 
2684 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2685                                            const FieldDecl *FD) {
2686   QualType FT = FD->getType();
2687   LValue FieldLV = EmitLValueForField(LV, FD);
2688   if (FT->isAnyComplexType())
2689     return RValue::getComplex(
2690         LoadComplexFromAddr(FieldLV.getAddress(),
2691                             FieldLV.isVolatileQualified()));
2692   else if (CodeGenFunction::hasAggregateLLVMType(FT))
2693     return FieldLV.asAggregateRValue();
2694 
2695   return EmitLoadOfLValue(FieldLV);
2696 }
2697 
2698 //===--------------------------------------------------------------------===//
2699 //                             Expression Emission
2700 //===--------------------------------------------------------------------===//
2701 
2702 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2703                                      ReturnValueSlot ReturnValue) {
2704   if (CGDebugInfo *DI = getDebugInfo())
2705     DI->EmitLocation(Builder, E->getLocStart());
2706 
2707   // Builtins never have block type.
2708   if (E->getCallee()->getType()->isBlockPointerType())
2709     return EmitBlockCallExpr(E, ReturnValue);
2710 
2711   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2712     return EmitCXXMemberCallExpr(CE, ReturnValue);
2713 
2714   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2715     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2716 
2717   const Decl *TargetDecl = E->getCalleeDecl();
2718   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2719     if (unsigned builtinID = FD->getBuiltinID())
2720       return EmitBuiltinExpr(FD, builtinID, E);
2721   }
2722 
2723   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2724     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2725       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2726 
2727   if (const CXXPseudoDestructorExpr *PseudoDtor
2728           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2729     QualType DestroyedType = PseudoDtor->getDestroyedType();
2730     if (getLangOpts().ObjCAutoRefCount &&
2731         DestroyedType->isObjCLifetimeType() &&
2732         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2733          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2734       // Automatic Reference Counting:
2735       //   If the pseudo-expression names a retainable object with weak or
2736       //   strong lifetime, the object shall be released.
2737       Expr *BaseExpr = PseudoDtor->getBase();
2738       llvm::Value *BaseValue = NULL;
2739       Qualifiers BaseQuals;
2740 
2741       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2742       if (PseudoDtor->isArrow()) {
2743         BaseValue = EmitScalarExpr(BaseExpr);
2744         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2745         BaseQuals = PTy->getPointeeType().getQualifiers();
2746       } else {
2747         LValue BaseLV = EmitLValue(BaseExpr);
2748         BaseValue = BaseLV.getAddress();
2749         QualType BaseTy = BaseExpr->getType();
2750         BaseQuals = BaseTy.getQualifiers();
2751       }
2752 
2753       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2754       case Qualifiers::OCL_None:
2755       case Qualifiers::OCL_ExplicitNone:
2756       case Qualifiers::OCL_Autoreleasing:
2757         break;
2758 
2759       case Qualifiers::OCL_Strong:
2760         EmitARCRelease(Builder.CreateLoad(BaseValue,
2761                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2762                        /*precise*/ true);
2763         break;
2764 
2765       case Qualifiers::OCL_Weak:
2766         EmitARCDestroyWeak(BaseValue);
2767         break;
2768       }
2769     } else {
2770       // C++ [expr.pseudo]p1:
2771       //   The result shall only be used as the operand for the function call
2772       //   operator (), and the result of such a call has type void. The only
2773       //   effect is the evaluation of the postfix-expression before the dot or
2774       //   arrow.
2775       EmitScalarExpr(E->getCallee());
2776     }
2777 
2778     return RValue::get(0);
2779   }
2780 
2781   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2782   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2783                   E->arg_begin(), E->arg_end(), TargetDecl);
2784 }
2785 
2786 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2787   // Comma expressions just emit their LHS then their RHS as an l-value.
2788   if (E->getOpcode() == BO_Comma) {
2789     EmitIgnoredExpr(E->getLHS());
2790     EnsureInsertPoint();
2791     return EmitLValue(E->getRHS());
2792   }
2793 
2794   if (E->getOpcode() == BO_PtrMemD ||
2795       E->getOpcode() == BO_PtrMemI)
2796     return EmitPointerToDataMemberBinaryExpr(E);
2797 
2798   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2799 
2800   // Note that in all of these cases, __block variables need the RHS
2801   // evaluated first just in case the variable gets moved by the RHS.
2802 
2803   if (!hasAggregateLLVMType(E->getType())) {
2804     switch (E->getLHS()->getType().getObjCLifetime()) {
2805     case Qualifiers::OCL_Strong:
2806       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2807 
2808     case Qualifiers::OCL_Autoreleasing:
2809       return EmitARCStoreAutoreleasing(E).first;
2810 
2811     // No reason to do any of these differently.
2812     case Qualifiers::OCL_None:
2813     case Qualifiers::OCL_ExplicitNone:
2814     case Qualifiers::OCL_Weak:
2815       break;
2816     }
2817 
2818     RValue RV = EmitAnyExpr(E->getRHS());
2819     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2820     EmitStoreThroughLValue(RV, LV);
2821     return LV;
2822   }
2823 
2824   if (E->getType()->isAnyComplexType())
2825     return EmitComplexAssignmentLValue(E);
2826 
2827   return EmitAggExprToLValue(E);
2828 }
2829 
2830 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2831   RValue RV = EmitCallExpr(E);
2832 
2833   if (!RV.isScalar())
2834     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2835 
2836   assert(E->getCallReturnType()->isReferenceType() &&
2837          "Can't have a scalar return unless the return type is a "
2838          "reference type!");
2839 
2840   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2841 }
2842 
2843 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2844   // FIXME: This shouldn't require another copy.
2845   return EmitAggExprToLValue(E);
2846 }
2847 
2848 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2849   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2850          && "binding l-value to type which needs a temporary");
2851   AggValueSlot Slot = CreateAggTemp(E->getType());
2852   EmitCXXConstructExpr(E, Slot);
2853   return MakeAddrLValue(Slot.getAddr(), E->getType());
2854 }
2855 
2856 LValue
2857 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2858   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2859 }
2860 
2861 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2862   return CGM.GetAddrOfUuidDescriptor(E);
2863 }
2864 
2865 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
2866   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
2867 }
2868 
2869 LValue
2870 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2871   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2872   Slot.setExternallyDestructed();
2873   EmitAggExpr(E->getSubExpr(), Slot);
2874   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2875   return MakeAddrLValue(Slot.getAddr(), E->getType());
2876 }
2877 
2878 LValue
2879 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2880   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2881   EmitLambdaExpr(E, Slot);
2882   return MakeAddrLValue(Slot.getAddr(), E->getType());
2883 }
2884 
2885 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2886   RValue RV = EmitObjCMessageExpr(E);
2887 
2888   if (!RV.isScalar())
2889     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2890 
2891   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2892          "Can't have a scalar return unless the return type is a "
2893          "reference type!");
2894 
2895   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2896 }
2897 
2898 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2899   llvm::Value *V =
2900     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2901   return MakeAddrLValue(V, E->getType());
2902 }
2903 
2904 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2905                                              const ObjCIvarDecl *Ivar) {
2906   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2907 }
2908 
2909 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2910                                           llvm::Value *BaseValue,
2911                                           const ObjCIvarDecl *Ivar,
2912                                           unsigned CVRQualifiers) {
2913   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2914                                                    Ivar, CVRQualifiers);
2915 }
2916 
2917 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2918   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2919   llvm::Value *BaseValue = 0;
2920   const Expr *BaseExpr = E->getBase();
2921   Qualifiers BaseQuals;
2922   QualType ObjectTy;
2923   if (E->isArrow()) {
2924     BaseValue = EmitScalarExpr(BaseExpr);
2925     ObjectTy = BaseExpr->getType()->getPointeeType();
2926     BaseQuals = ObjectTy.getQualifiers();
2927   } else {
2928     LValue BaseLV = EmitLValue(BaseExpr);
2929     // FIXME: this isn't right for bitfields.
2930     BaseValue = BaseLV.getAddress();
2931     ObjectTy = BaseExpr->getType();
2932     BaseQuals = ObjectTy.getQualifiers();
2933   }
2934 
2935   LValue LV =
2936     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2937                       BaseQuals.getCVRQualifiers());
2938   setObjCGCLValueClass(getContext(), E, LV);
2939   return LV;
2940 }
2941 
2942 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2943   // Can only get l-value for message expression returning aggregate type
2944   RValue RV = EmitAnyExprToTemp(E);
2945   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2946 }
2947 
2948 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2949                                  ReturnValueSlot ReturnValue,
2950                                  CallExpr::const_arg_iterator ArgBeg,
2951                                  CallExpr::const_arg_iterator ArgEnd,
2952                                  const Decl *TargetDecl) {
2953   // Get the actual function type. The callee type will always be a pointer to
2954   // function type or a block pointer type.
2955   assert(CalleeType->isFunctionPointerType() &&
2956          "Call must have function pointer type!");
2957 
2958   CalleeType = getContext().getCanonicalType(CalleeType);
2959 
2960   const FunctionType *FnType
2961     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2962 
2963   CallArgList Args;
2964   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2965 
2966   const CGFunctionInfo &FnInfo =
2967     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2968 
2969   // C99 6.5.2.2p6:
2970   //   If the expression that denotes the called function has a type
2971   //   that does not include a prototype, [the default argument
2972   //   promotions are performed]. If the number of arguments does not
2973   //   equal the number of parameters, the behavior is undefined. If
2974   //   the function is defined with a type that includes a prototype,
2975   //   and either the prototype ends with an ellipsis (, ...) or the
2976   //   types of the arguments after promotion are not compatible with
2977   //   the types of the parameters, the behavior is undefined. If the
2978   //   function is defined with a type that does not include a
2979   //   prototype, and the types of the arguments after promotion are
2980   //   not compatible with those of the parameters after promotion,
2981   //   the behavior is undefined [except in some trivial cases].
2982   // That is, in the general case, we should assume that a call
2983   // through an unprototyped function type works like a *non-variadic*
2984   // call.  The way we make this work is to cast to the exact type
2985   // of the promoted arguments.
2986   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2987     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2988     CalleeTy = CalleeTy->getPointerTo();
2989     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2990   }
2991 
2992   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2993 }
2994 
2995 LValue CodeGenFunction::
2996 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2997   llvm::Value *BaseV;
2998   if (E->getOpcode() == BO_PtrMemI)
2999     BaseV = EmitScalarExpr(E->getLHS());
3000   else
3001     BaseV = EmitLValue(E->getLHS()).getAddress();
3002 
3003   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3004 
3005   const MemberPointerType *MPT
3006     = E->getRHS()->getType()->getAs<MemberPointerType>();
3007 
3008   llvm::Value *AddV =
3009     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3010 
3011   return MakeAddrLValue(AddV, MPT->getPointeeType());
3012 }
3013 
3014 static void
3015 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
3016              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
3017              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
3018   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
3019   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
3020 
3021   switch (E->getOp()) {
3022   case AtomicExpr::AO__c11_atomic_init:
3023     llvm_unreachable("Already handled!");
3024 
3025   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3026   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3027   case AtomicExpr::AO__atomic_compare_exchange:
3028   case AtomicExpr::AO__atomic_compare_exchange_n: {
3029     // Note that cmpxchg only supports specifying one ordering and
3030     // doesn't support weak cmpxchg, at least at the moment.
3031     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3032     LoadVal1->setAlignment(Align);
3033     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
3034     LoadVal2->setAlignment(Align);
3035     llvm::AtomicCmpXchgInst *CXI =
3036         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
3037     CXI->setVolatile(E->isVolatile());
3038     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
3039     StoreVal1->setAlignment(Align);
3040     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
3041     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
3042     return;
3043   }
3044 
3045   case AtomicExpr::AO__c11_atomic_load:
3046   case AtomicExpr::AO__atomic_load_n:
3047   case AtomicExpr::AO__atomic_load: {
3048     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
3049     Load->setAtomic(Order);
3050     Load->setAlignment(Size);
3051     Load->setVolatile(E->isVolatile());
3052     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
3053     StoreDest->setAlignment(Align);
3054     return;
3055   }
3056 
3057   case AtomicExpr::AO__c11_atomic_store:
3058   case AtomicExpr::AO__atomic_store:
3059   case AtomicExpr::AO__atomic_store_n: {
3060     assert(!Dest && "Store does not return a value");
3061     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3062     LoadVal1->setAlignment(Align);
3063     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
3064     Store->setAtomic(Order);
3065     Store->setAlignment(Size);
3066     Store->setVolatile(E->isVolatile());
3067     return;
3068   }
3069 
3070   case AtomicExpr::AO__c11_atomic_exchange:
3071   case AtomicExpr::AO__atomic_exchange_n:
3072   case AtomicExpr::AO__atomic_exchange:
3073     Op = llvm::AtomicRMWInst::Xchg;
3074     break;
3075 
3076   case AtomicExpr::AO__atomic_add_fetch:
3077     PostOp = llvm::Instruction::Add;
3078     // Fall through.
3079   case AtomicExpr::AO__c11_atomic_fetch_add:
3080   case AtomicExpr::AO__atomic_fetch_add:
3081     Op = llvm::AtomicRMWInst::Add;
3082     break;
3083 
3084   case AtomicExpr::AO__atomic_sub_fetch:
3085     PostOp = llvm::Instruction::Sub;
3086     // Fall through.
3087   case AtomicExpr::AO__c11_atomic_fetch_sub:
3088   case AtomicExpr::AO__atomic_fetch_sub:
3089     Op = llvm::AtomicRMWInst::Sub;
3090     break;
3091 
3092   case AtomicExpr::AO__atomic_and_fetch:
3093     PostOp = llvm::Instruction::And;
3094     // Fall through.
3095   case AtomicExpr::AO__c11_atomic_fetch_and:
3096   case AtomicExpr::AO__atomic_fetch_and:
3097     Op = llvm::AtomicRMWInst::And;
3098     break;
3099 
3100   case AtomicExpr::AO__atomic_or_fetch:
3101     PostOp = llvm::Instruction::Or;
3102     // Fall through.
3103   case AtomicExpr::AO__c11_atomic_fetch_or:
3104   case AtomicExpr::AO__atomic_fetch_or:
3105     Op = llvm::AtomicRMWInst::Or;
3106     break;
3107 
3108   case AtomicExpr::AO__atomic_xor_fetch:
3109     PostOp = llvm::Instruction::Xor;
3110     // Fall through.
3111   case AtomicExpr::AO__c11_atomic_fetch_xor:
3112   case AtomicExpr::AO__atomic_fetch_xor:
3113     Op = llvm::AtomicRMWInst::Xor;
3114     break;
3115 
3116   case AtomicExpr::AO__atomic_nand_fetch:
3117     PostOp = llvm::Instruction::And;
3118     // Fall through.
3119   case AtomicExpr::AO__atomic_fetch_nand:
3120     Op = llvm::AtomicRMWInst::Nand;
3121     break;
3122   }
3123 
3124   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3125   LoadVal1->setAlignment(Align);
3126   llvm::AtomicRMWInst *RMWI =
3127       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
3128   RMWI->setVolatile(E->isVolatile());
3129 
3130   // For __atomic_*_fetch operations, perform the operation again to
3131   // determine the value which was written.
3132   llvm::Value *Result = RMWI;
3133   if (PostOp)
3134     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
3135   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
3136     Result = CGF.Builder.CreateNot(Result);
3137   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
3138   StoreDest->setAlignment(Align);
3139 }
3140 
3141 // This function emits any expression (scalar, complex, or aggregate)
3142 // into a temporary alloca.
3143 static llvm::Value *
3144 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
3145   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
3146   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3147                        /*Init*/ true);
3148   return DeclPtr;
3149 }
3150 
3151 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3152                                   llvm::Value *Dest) {
3153   if (Ty->isAnyComplexType())
3154     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3155   if (CGF.hasAggregateLLVMType(Ty))
3156     return RValue::getAggregate(Dest);
3157   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3158 }
3159 
3160 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3161   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3162   QualType MemTy = AtomicTy;
3163   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3164     MemTy = AT->getValueType();
3165   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3166   uint64_t Size = sizeChars.getQuantity();
3167   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3168   unsigned Align = alignChars.getQuantity();
3169   unsigned MaxInlineWidthInBits =
3170     getContext().getTargetInfo().getMaxAtomicInlineWidth();
3171   bool UseLibcall = (Size != Align ||
3172                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
3173 
3174   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3175   Ptr = EmitScalarExpr(E->getPtr());
3176 
3177   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3178     assert(!Dest && "Init does not return a value");
3179     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3180       QualType PointeeType
3181         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3182       EmitScalarInit(EmitScalarExpr(E->getVal1()),
3183                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
3184                                       getContext()));
3185     } else if (E->getType()->isAnyComplexType()) {
3186       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3187     } else {
3188       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3189                                         AtomicTy.getQualifiers(),
3190                                         AggValueSlot::IsNotDestructed,
3191                                         AggValueSlot::DoesNotNeedGCBarriers,
3192                                         AggValueSlot::IsNotAliased);
3193       EmitAggExpr(E->getVal1(), Slot);
3194     }
3195     return RValue::get(0);
3196   }
3197 
3198   Order = EmitScalarExpr(E->getOrder());
3199 
3200   switch (E->getOp()) {
3201   case AtomicExpr::AO__c11_atomic_init:
3202     llvm_unreachable("Already handled!");
3203 
3204   case AtomicExpr::AO__c11_atomic_load:
3205   case AtomicExpr::AO__atomic_load_n:
3206     break;
3207 
3208   case AtomicExpr::AO__atomic_load:
3209     Dest = EmitScalarExpr(E->getVal1());
3210     break;
3211 
3212   case AtomicExpr::AO__atomic_store:
3213     Val1 = EmitScalarExpr(E->getVal1());
3214     break;
3215 
3216   case AtomicExpr::AO__atomic_exchange:
3217     Val1 = EmitScalarExpr(E->getVal1());
3218     Dest = EmitScalarExpr(E->getVal2());
3219     break;
3220 
3221   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3222   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3223   case AtomicExpr::AO__atomic_compare_exchange_n:
3224   case AtomicExpr::AO__atomic_compare_exchange:
3225     Val1 = EmitScalarExpr(E->getVal1());
3226     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3227       Val2 = EmitScalarExpr(E->getVal2());
3228     else
3229       Val2 = EmitValToTemp(*this, E->getVal2());
3230     OrderFail = EmitScalarExpr(E->getOrderFail());
3231     // Evaluate and discard the 'weak' argument.
3232     if (E->getNumSubExprs() == 6)
3233       EmitScalarExpr(E->getWeak());
3234     break;
3235 
3236   case AtomicExpr::AO__c11_atomic_fetch_add:
3237   case AtomicExpr::AO__c11_atomic_fetch_sub:
3238     if (MemTy->isPointerType()) {
3239       // For pointer arithmetic, we're required to do a bit of math:
3240       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3241       // ... but only for the C11 builtins. The GNU builtins expect the
3242       // user to multiply by sizeof(T).
3243       QualType Val1Ty = E->getVal1()->getType();
3244       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3245       CharUnits PointeeIncAmt =
3246           getContext().getTypeSizeInChars(MemTy->getPointeeType());
3247       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3248       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3249       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3250       break;
3251     }
3252     // Fall through.
3253   case AtomicExpr::AO__atomic_fetch_add:
3254   case AtomicExpr::AO__atomic_fetch_sub:
3255   case AtomicExpr::AO__atomic_add_fetch:
3256   case AtomicExpr::AO__atomic_sub_fetch:
3257   case AtomicExpr::AO__c11_atomic_store:
3258   case AtomicExpr::AO__c11_atomic_exchange:
3259   case AtomicExpr::AO__atomic_store_n:
3260   case AtomicExpr::AO__atomic_exchange_n:
3261   case AtomicExpr::AO__c11_atomic_fetch_and:
3262   case AtomicExpr::AO__c11_atomic_fetch_or:
3263   case AtomicExpr::AO__c11_atomic_fetch_xor:
3264   case AtomicExpr::AO__atomic_fetch_and:
3265   case AtomicExpr::AO__atomic_fetch_or:
3266   case AtomicExpr::AO__atomic_fetch_xor:
3267   case AtomicExpr::AO__atomic_fetch_nand:
3268   case AtomicExpr::AO__atomic_and_fetch:
3269   case AtomicExpr::AO__atomic_or_fetch:
3270   case AtomicExpr::AO__atomic_xor_fetch:
3271   case AtomicExpr::AO__atomic_nand_fetch:
3272     Val1 = EmitValToTemp(*this, E->getVal1());
3273     break;
3274   }
3275 
3276   if (!E->getType()->isVoidType() && !Dest)
3277     Dest = CreateMemTemp(E->getType(), ".atomicdst");
3278 
3279   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3280   if (UseLibcall) {
3281 
3282     llvm::SmallVector<QualType, 5> Params;
3283     CallArgList Args;
3284     // Size is always the first parameter
3285     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3286              getContext().getSizeType());
3287     // Atomic address is always the second parameter
3288     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3289              getContext().VoidPtrTy);
3290 
3291     const char* LibCallName;
3292     QualType RetTy = getContext().VoidTy;
3293     switch (E->getOp()) {
3294     // There is only one libcall for compare an exchange, because there is no
3295     // optimisation benefit possible from a libcall version of a weak compare
3296     // and exchange.
3297     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3298     //                                void *desired, int success, int failure)
3299     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3300     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3301     case AtomicExpr::AO__atomic_compare_exchange:
3302     case AtomicExpr::AO__atomic_compare_exchange_n:
3303       LibCallName = "__atomic_compare_exchange";
3304       RetTy = getContext().BoolTy;
3305       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3306                getContext().VoidPtrTy);
3307       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3308                getContext().VoidPtrTy);
3309       Args.add(RValue::get(Order),
3310                getContext().IntTy);
3311       Order = OrderFail;
3312       break;
3313     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3314     //                        int order)
3315     case AtomicExpr::AO__c11_atomic_exchange:
3316     case AtomicExpr::AO__atomic_exchange_n:
3317     case AtomicExpr::AO__atomic_exchange:
3318       LibCallName = "__atomic_exchange";
3319       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3320                getContext().VoidPtrTy);
3321       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3322                getContext().VoidPtrTy);
3323       break;
3324     // void __atomic_store(size_t size, void *mem, void *val, int order)
3325     case AtomicExpr::AO__c11_atomic_store:
3326     case AtomicExpr::AO__atomic_store:
3327     case AtomicExpr::AO__atomic_store_n:
3328       LibCallName = "__atomic_store";
3329       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3330                getContext().VoidPtrTy);
3331       break;
3332     // void __atomic_load(size_t size, void *mem, void *return, int order)
3333     case AtomicExpr::AO__c11_atomic_load:
3334     case AtomicExpr::AO__atomic_load:
3335     case AtomicExpr::AO__atomic_load_n:
3336       LibCallName = "__atomic_load";
3337       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3338                getContext().VoidPtrTy);
3339       break;
3340 #if 0
3341     // These are only defined for 1-16 byte integers.  It is not clear what
3342     // their semantics would be on anything else...
3343     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3344     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3345     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3346     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3347     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3348 #endif
3349     default: return EmitUnsupportedRValue(E, "atomic library call");
3350     }
3351     // order is always the last parameter
3352     Args.add(RValue::get(Order),
3353              getContext().IntTy);
3354 
3355     const CGFunctionInfo &FuncInfo =
3356         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3357             FunctionType::ExtInfo(), RequiredArgs::All);
3358     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3359     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3360     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3361     if (E->isCmpXChg())
3362       return Res;
3363     if (E->getType()->isVoidType())
3364       return RValue::get(0);
3365     return ConvertTempToRValue(*this, E->getType(), Dest);
3366   }
3367 
3368   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3369                  E->getOp() == AtomicExpr::AO__atomic_store ||
3370                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3371   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3372                 E->getOp() == AtomicExpr::AO__atomic_load ||
3373                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3374 
3375   llvm::Type *IPtrTy =
3376       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3377   llvm::Value *OrigDest = Dest;
3378   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3379   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3380   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3381   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3382 
3383   if (isa<llvm::ConstantInt>(Order)) {
3384     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3385     switch (ord) {
3386     case 0:  // memory_order_relaxed
3387       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3388                    llvm::Monotonic);
3389       break;
3390     case 1:  // memory_order_consume
3391     case 2:  // memory_order_acquire
3392       if (IsStore)
3393         break; // Avoid crashing on code with undefined behavior
3394       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3395                    llvm::Acquire);
3396       break;
3397     case 3:  // memory_order_release
3398       if (IsLoad)
3399         break; // Avoid crashing on code with undefined behavior
3400       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3401                    llvm::Release);
3402       break;
3403     case 4:  // memory_order_acq_rel
3404       if (IsLoad || IsStore)
3405         break; // Avoid crashing on code with undefined behavior
3406       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3407                    llvm::AcquireRelease);
3408       break;
3409     case 5:  // memory_order_seq_cst
3410       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3411                    llvm::SequentiallyConsistent);
3412       break;
3413     default: // invalid order
3414       // We should not ever get here normally, but it's hard to
3415       // enforce that in general.
3416       break;
3417     }
3418     if (E->getType()->isVoidType())
3419       return RValue::get(0);
3420     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3421   }
3422 
3423   // Long case, when Order isn't obviously constant.
3424 
3425   // Create all the relevant BB's
3426   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3427                    *AcqRelBB = 0, *SeqCstBB = 0;
3428   MonotonicBB = createBasicBlock("monotonic", CurFn);
3429   if (!IsStore)
3430     AcquireBB = createBasicBlock("acquire", CurFn);
3431   if (!IsLoad)
3432     ReleaseBB = createBasicBlock("release", CurFn);
3433   if (!IsLoad && !IsStore)
3434     AcqRelBB = createBasicBlock("acqrel", CurFn);
3435   SeqCstBB = createBasicBlock("seqcst", CurFn);
3436   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3437 
3438   // Create the switch for the split
3439   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3440   // doesn't matter unless someone is crazy enough to use something that
3441   // doesn't fold to a constant for the ordering.
3442   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3443   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3444 
3445   // Emit all the different atomics
3446   Builder.SetInsertPoint(MonotonicBB);
3447   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3448                llvm::Monotonic);
3449   Builder.CreateBr(ContBB);
3450   if (!IsStore) {
3451     Builder.SetInsertPoint(AcquireBB);
3452     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3453                  llvm::Acquire);
3454     Builder.CreateBr(ContBB);
3455     SI->addCase(Builder.getInt32(1), AcquireBB);
3456     SI->addCase(Builder.getInt32(2), AcquireBB);
3457   }
3458   if (!IsLoad) {
3459     Builder.SetInsertPoint(ReleaseBB);
3460     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3461                  llvm::Release);
3462     Builder.CreateBr(ContBB);
3463     SI->addCase(Builder.getInt32(3), ReleaseBB);
3464   }
3465   if (!IsLoad && !IsStore) {
3466     Builder.SetInsertPoint(AcqRelBB);
3467     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3468                  llvm::AcquireRelease);
3469     Builder.CreateBr(ContBB);
3470     SI->addCase(Builder.getInt32(4), AcqRelBB);
3471   }
3472   Builder.SetInsertPoint(SeqCstBB);
3473   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3474                llvm::SequentiallyConsistent);
3475   Builder.CreateBr(ContBB);
3476   SI->addCase(Builder.getInt32(5), SeqCstBB);
3477 
3478   // Cleanup and return
3479   Builder.SetInsertPoint(ContBB);
3480   if (E->getType()->isVoidType())
3481     return RValue::get(0);
3482   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3483 }
3484 
3485 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3486   assert(Val->getType()->isFPOrFPVectorTy());
3487   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3488     return;
3489 
3490   llvm::MDBuilder MDHelper(getLLVMContext());
3491   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3492 
3493   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3494 }
3495 
3496 namespace {
3497   struct LValueOrRValue {
3498     LValue LV;
3499     RValue RV;
3500   };
3501 }
3502 
3503 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3504                                            const PseudoObjectExpr *E,
3505                                            bool forLValue,
3506                                            AggValueSlot slot) {
3507   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3508 
3509   // Find the result expression, if any.
3510   const Expr *resultExpr = E->getResultExpr();
3511   LValueOrRValue result;
3512 
3513   for (PseudoObjectExpr::const_semantics_iterator
3514          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3515     const Expr *semantic = *i;
3516 
3517     // If this semantic expression is an opaque value, bind it
3518     // to the result of its source expression.
3519     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3520 
3521       // If this is the result expression, we may need to evaluate
3522       // directly into the slot.
3523       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3524       OVMA opaqueData;
3525       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3526           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3527           !ov->getType()->isAnyComplexType()) {
3528         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3529 
3530         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3531         opaqueData = OVMA::bind(CGF, ov, LV);
3532         result.RV = slot.asRValue();
3533 
3534       // Otherwise, emit as normal.
3535       } else {
3536         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3537 
3538         // If this is the result, also evaluate the result now.
3539         if (ov == resultExpr) {
3540           if (forLValue)
3541             result.LV = CGF.EmitLValue(ov);
3542           else
3543             result.RV = CGF.EmitAnyExpr(ov, slot);
3544         }
3545       }
3546 
3547       opaques.push_back(opaqueData);
3548 
3549     // Otherwise, if the expression is the result, evaluate it
3550     // and remember the result.
3551     } else if (semantic == resultExpr) {
3552       if (forLValue)
3553         result.LV = CGF.EmitLValue(semantic);
3554       else
3555         result.RV = CGF.EmitAnyExpr(semantic, slot);
3556 
3557     // Otherwise, evaluate the expression in an ignored context.
3558     } else {
3559       CGF.EmitIgnoredExpr(semantic);
3560     }
3561   }
3562 
3563   // Unbind all the opaques now.
3564   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3565     opaques[i].unbind(CGF);
3566 
3567   return result;
3568 }
3569 
3570 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3571                                                AggValueSlot slot) {
3572   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3573 }
3574 
3575 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3576   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3577 }
3578