1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/Hashing.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/Support/ConvertUTF.h" 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 //===--------------------------------------------------------------------===// 38 // Miscellaneous Helper Methods 39 //===--------------------------------------------------------------------===// 40 41 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 42 unsigned addressSpace = 43 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 44 45 llvm::PointerType *destType = Int8PtrTy; 46 if (addressSpace) 47 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 48 49 if (value->getType() == destType) return value; 50 return Builder.CreateBitCast(value, destType); 51 } 52 53 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 54 /// block. 55 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 56 const Twine &Name) { 57 if (!Builder.isNamePreserving()) 58 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 59 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 60 } 61 62 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 63 llvm::Value *Init) { 64 auto *Store = new llvm::StoreInst(Init, Var); 65 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 66 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 67 } 68 69 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 70 const Twine &Name) { 71 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 72 // FIXME: Should we prefer the preferred type alignment here? 73 CharUnits Align = getContext().getTypeAlignInChars(Ty); 74 Alloc->setAlignment(Align.getQuantity()); 75 return Alloc; 76 } 77 78 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 79 const Twine &Name) { 80 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 81 // FIXME: Should we prefer the preferred type alignment here? 82 CharUnits Align = getContext().getTypeAlignInChars(Ty); 83 Alloc->setAlignment(Align.getQuantity()); 84 return Alloc; 85 } 86 87 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 88 /// expression and compare the result against zero, returning an Int1Ty value. 89 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 90 PGO.setCurrentStmt(E); 91 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 92 llvm::Value *MemPtr = EmitScalarExpr(E); 93 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 94 } 95 96 QualType BoolTy = getContext().BoolTy; 97 if (!E->getType()->isAnyComplexType()) 98 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 99 100 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 101 } 102 103 /// EmitIgnoredExpr - Emit code to compute the specified expression, 104 /// ignoring the result. 105 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 106 if (E->isRValue()) 107 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 108 109 // Just emit it as an l-value and drop the result. 110 EmitLValue(E); 111 } 112 113 /// EmitAnyExpr - Emit code to compute the specified expression which 114 /// can have any type. The result is returned as an RValue struct. 115 /// If this is an aggregate expression, AggSlot indicates where the 116 /// result should be returned. 117 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 118 AggValueSlot aggSlot, 119 bool ignoreResult) { 120 switch (getEvaluationKind(E->getType())) { 121 case TEK_Scalar: 122 return RValue::get(EmitScalarExpr(E, ignoreResult)); 123 case TEK_Complex: 124 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 125 case TEK_Aggregate: 126 if (!ignoreResult && aggSlot.isIgnored()) 127 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 128 EmitAggExpr(E, aggSlot); 129 return aggSlot.asRValue(); 130 } 131 llvm_unreachable("bad evaluation kind"); 132 } 133 134 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 135 /// always be accessible even if no aggregate location is provided. 136 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 137 AggValueSlot AggSlot = AggValueSlot::ignored(); 138 139 if (hasAggregateEvaluationKind(E->getType())) 140 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 141 return EmitAnyExpr(E, AggSlot); 142 } 143 144 /// EmitAnyExprToMem - Evaluate an expression into a given memory 145 /// location. 146 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 147 llvm::Value *Location, 148 Qualifiers Quals, 149 bool IsInit) { 150 // FIXME: This function should take an LValue as an argument. 151 switch (getEvaluationKind(E->getType())) { 152 case TEK_Complex: 153 EmitComplexExprIntoLValue(E, 154 MakeNaturalAlignAddrLValue(Location, E->getType()), 155 /*isInit*/ false); 156 return; 157 158 case TEK_Aggregate: { 159 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 160 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 161 AggValueSlot::IsDestructed_t(IsInit), 162 AggValueSlot::DoesNotNeedGCBarriers, 163 AggValueSlot::IsAliased_t(!IsInit))); 164 return; 165 } 166 167 case TEK_Scalar: { 168 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 169 LValue LV = MakeAddrLValue(Location, E->getType()); 170 EmitStoreThroughLValue(RV, LV); 171 return; 172 } 173 } 174 llvm_unreachable("bad evaluation kind"); 175 } 176 177 static void 178 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 179 const Expr *E, llvm::Value *ReferenceTemporary) { 180 // Objective-C++ ARC: 181 // If we are binding a reference to a temporary that has ownership, we 182 // need to perform retain/release operations on the temporary. 183 // 184 // FIXME: This should be looking at E, not M. 185 if (CGF.getLangOpts().ObjCAutoRefCount && 186 M->getType()->isObjCLifetimeType()) { 187 QualType ObjCARCReferenceLifetimeType = M->getType(); 188 switch (Qualifiers::ObjCLifetime Lifetime = 189 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 190 case Qualifiers::OCL_None: 191 case Qualifiers::OCL_ExplicitNone: 192 // Carry on to normal cleanup handling. 193 break; 194 195 case Qualifiers::OCL_Autoreleasing: 196 // Nothing to do; cleaned up by an autorelease pool. 197 return; 198 199 case Qualifiers::OCL_Strong: 200 case Qualifiers::OCL_Weak: 201 switch (StorageDuration Duration = M->getStorageDuration()) { 202 case SD_Static: 203 // Note: we intentionally do not register a cleanup to release 204 // the object on program termination. 205 return; 206 207 case SD_Thread: 208 // FIXME: We should probably register a cleanup in this case. 209 return; 210 211 case SD_Automatic: 212 case SD_FullExpression: 213 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 214 CodeGenFunction::Destroyer *Destroy; 215 CleanupKind CleanupKind; 216 if (Lifetime == Qualifiers::OCL_Strong) { 217 const ValueDecl *VD = M->getExtendingDecl(); 218 bool Precise = 219 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 220 CleanupKind = CGF.getARCCleanupKind(); 221 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 222 : &CodeGenFunction::destroyARCStrongImprecise; 223 } else { 224 // __weak objects always get EH cleanups; otherwise, exceptions 225 // could cause really nasty crashes instead of mere leaks. 226 CleanupKind = NormalAndEHCleanup; 227 Destroy = &CodeGenFunction::destroyARCWeak; 228 } 229 if (Duration == SD_FullExpression) 230 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 231 ObjCARCReferenceLifetimeType, *Destroy, 232 CleanupKind & EHCleanup); 233 else 234 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 235 ObjCARCReferenceLifetimeType, 236 *Destroy, CleanupKind & EHCleanup); 237 return; 238 239 case SD_Dynamic: 240 llvm_unreachable("temporary cannot have dynamic storage duration"); 241 } 242 llvm_unreachable("unknown storage duration"); 243 } 244 } 245 246 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 247 if (const RecordType *RT = 248 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 249 // Get the destructor for the reference temporary. 250 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 251 if (!ClassDecl->hasTrivialDestructor()) 252 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 253 } 254 255 if (!ReferenceTemporaryDtor) 256 return; 257 258 // Call the destructor for the temporary. 259 switch (M->getStorageDuration()) { 260 case SD_Static: 261 case SD_Thread: { 262 llvm::Constant *CleanupFn; 263 llvm::Constant *CleanupArg; 264 if (E->getType()->isArrayType()) { 265 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 266 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 267 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 268 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 269 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 270 } else { 271 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 272 StructorType::Complete); 273 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 274 } 275 CGF.CGM.getCXXABI().registerGlobalDtor( 276 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 277 break; 278 } 279 280 case SD_FullExpression: 281 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 282 CodeGenFunction::destroyCXXObject, 283 CGF.getLangOpts().Exceptions); 284 break; 285 286 case SD_Automatic: 287 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 288 ReferenceTemporary, E->getType(), 289 CodeGenFunction::destroyCXXObject, 290 CGF.getLangOpts().Exceptions); 291 break; 292 293 case SD_Dynamic: 294 llvm_unreachable("temporary cannot have dynamic storage duration"); 295 } 296 } 297 298 static llvm::Value * 299 createReferenceTemporary(CodeGenFunction &CGF, 300 const MaterializeTemporaryExpr *M, const Expr *Inner) { 301 switch (M->getStorageDuration()) { 302 case SD_FullExpression: 303 case SD_Automatic: 304 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 305 306 case SD_Thread: 307 case SD_Static: 308 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary can't have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 316 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 317 const MaterializeTemporaryExpr *M) { 318 const Expr *E = M->GetTemporaryExpr(); 319 320 if (getLangOpts().ObjCAutoRefCount && 321 M->getType()->isObjCLifetimeType() && 322 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 323 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 324 // FIXME: Fold this into the general case below. 325 llvm::Value *Object = createReferenceTemporary(*this, M, E); 326 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 327 328 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 329 // We should not have emitted the initializer for this temporary as a 330 // constant. 331 assert(!Var->hasInitializer()); 332 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 333 } 334 335 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 336 337 pushTemporaryCleanup(*this, M, E, Object); 338 return RefTempDst; 339 } 340 341 SmallVector<const Expr *, 2> CommaLHSs; 342 SmallVector<SubobjectAdjustment, 2> Adjustments; 343 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 344 345 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 346 EmitIgnoredExpr(CommaLHSs[I]); 347 348 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 349 if (opaque->getType()->isRecordType()) { 350 assert(Adjustments.empty()); 351 return EmitOpaqueValueLValue(opaque); 352 } 353 } 354 355 // Create and initialize the reference temporary. 356 llvm::Value *Object = createReferenceTemporary(*this, M, E); 357 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 358 // If the temporary is a global and has a constant initializer, we may 359 // have already initialized it. 360 if (!Var->hasInitializer()) { 361 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 362 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 363 } 364 } else { 365 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 366 } 367 pushTemporaryCleanup(*this, M, E, Object); 368 369 // Perform derived-to-base casts and/or field accesses, to get from the 370 // temporary object we created (and, potentially, for which we extended 371 // the lifetime) to the subobject we're binding the reference to. 372 for (unsigned I = Adjustments.size(); I != 0; --I) { 373 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 374 switch (Adjustment.Kind) { 375 case SubobjectAdjustment::DerivedToBaseAdjustment: 376 Object = 377 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 378 Adjustment.DerivedToBase.BasePath->path_begin(), 379 Adjustment.DerivedToBase.BasePath->path_end(), 380 /*NullCheckValue=*/ false, E->getExprLoc()); 381 break; 382 383 case SubobjectAdjustment::FieldAdjustment: { 384 LValue LV = MakeAddrLValue(Object, E->getType()); 385 LV = EmitLValueForField(LV, Adjustment.Field); 386 assert(LV.isSimple() && 387 "materialized temporary field is not a simple lvalue"); 388 Object = LV.getAddress(); 389 break; 390 } 391 392 case SubobjectAdjustment::MemberPointerAdjustment: { 393 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 394 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 395 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 396 break; 397 } 398 } 399 } 400 401 return MakeAddrLValue(Object, M->getType()); 402 } 403 404 RValue 405 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 406 // Emit the expression as an lvalue. 407 LValue LV = EmitLValue(E); 408 assert(LV.isSimple()); 409 llvm::Value *Value = LV.getAddress(); 410 411 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 412 // C++11 [dcl.ref]p5 (as amended by core issue 453): 413 // If a glvalue to which a reference is directly bound designates neither 414 // an existing object or function of an appropriate type nor a region of 415 // storage of suitable size and alignment to contain an object of the 416 // reference's type, the behavior is undefined. 417 QualType Ty = E->getType(); 418 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 419 } 420 421 return RValue::get(Value); 422 } 423 424 425 /// getAccessedFieldNo - Given an encoded value and a result number, return the 426 /// input field number being accessed. 427 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 428 const llvm::Constant *Elts) { 429 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 430 ->getZExtValue(); 431 } 432 433 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 434 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 435 llvm::Value *High) { 436 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 437 llvm::Value *K47 = Builder.getInt64(47); 438 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 439 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 440 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 441 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 442 return Builder.CreateMul(B1, KMul); 443 } 444 445 bool CodeGenFunction::sanitizePerformTypeCheck() const { 446 return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize | 447 SanOpts->Vptr; 448 } 449 450 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 451 llvm::Value *Address, QualType Ty, 452 CharUnits Alignment, bool SkipNullCheck) { 453 if (!sanitizePerformTypeCheck()) 454 return; 455 456 // Don't check pointers outside the default address space. The null check 457 // isn't correct, the object-size check isn't supported by LLVM, and we can't 458 // communicate the addresses to the runtime handler for the vptr check. 459 if (Address->getType()->getPointerAddressSpace()) 460 return; 461 462 SanitizerScope SanScope(this); 463 464 llvm::Value *Cond = nullptr; 465 llvm::BasicBlock *Done = nullptr; 466 467 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 468 TCK == TCK_UpcastToVirtualBase; 469 if ((SanOpts->Null || AllowNullPointers) && !SkipNullCheck) { 470 // The glvalue must not be an empty glvalue. 471 Cond = Builder.CreateICmpNE( 472 Address, llvm::Constant::getNullValue(Address->getType())); 473 474 if (AllowNullPointers) { 475 // When performing pointer casts, it's OK if the value is null. 476 // Skip the remaining checks in that case. 477 Done = createBasicBlock("null"); 478 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 479 Builder.CreateCondBr(Cond, Rest, Done); 480 EmitBlock(Rest); 481 Cond = nullptr; 482 } 483 } 484 485 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 486 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 487 488 // The glvalue must refer to a large enough storage region. 489 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 490 // to check this. 491 // FIXME: Get object address space 492 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 493 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 494 llvm::Value *Min = Builder.getFalse(); 495 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 496 llvm::Value *LargeEnough = 497 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 498 llvm::ConstantInt::get(IntPtrTy, Size)); 499 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 500 } 501 502 uint64_t AlignVal = 0; 503 504 if (SanOpts->Alignment) { 505 AlignVal = Alignment.getQuantity(); 506 if (!Ty->isIncompleteType() && !AlignVal) 507 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 508 509 // The glvalue must be suitably aligned. 510 if (AlignVal) { 511 llvm::Value *Align = 512 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 513 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 514 llvm::Value *Aligned = 515 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 516 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 517 } 518 } 519 520 if (Cond) { 521 llvm::Constant *StaticData[] = { 522 EmitCheckSourceLocation(Loc), 523 EmitCheckTypeDescriptor(Ty), 524 llvm::ConstantInt::get(SizeTy, AlignVal), 525 llvm::ConstantInt::get(Int8Ty, TCK) 526 }; 527 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 528 } 529 530 // If possible, check that the vptr indicates that there is a subobject of 531 // type Ty at offset zero within this object. 532 // 533 // C++11 [basic.life]p5,6: 534 // [For storage which does not refer to an object within its lifetime] 535 // The program has undefined behavior if: 536 // -- the [pointer or glvalue] is used to access a non-static data member 537 // or call a non-static member function 538 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 539 if (SanOpts->Vptr && 540 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 541 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 542 TCK == TCK_UpcastToVirtualBase) && 543 RD && RD->hasDefinition() && RD->isDynamicClass()) { 544 // Compute a hash of the mangled name of the type. 545 // 546 // FIXME: This is not guaranteed to be deterministic! Move to a 547 // fingerprinting mechanism once LLVM provides one. For the time 548 // being the implementation happens to be deterministic. 549 SmallString<64> MangledName; 550 llvm::raw_svector_ostream Out(MangledName); 551 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 552 Out); 553 554 // Blacklist based on the mangled type. 555 if (!CGM.getSanitizerBlacklist().isBlacklistedType(Out.str())) { 556 llvm::hash_code TypeHash = hash_value(Out.str()); 557 558 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 559 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 560 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 561 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 562 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 563 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 564 565 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 566 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 567 568 // Look the hash up in our cache. 569 const int CacheSize = 128; 570 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 571 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 572 "__ubsan_vptr_type_cache"); 573 llvm::Value *Slot = Builder.CreateAnd(Hash, 574 llvm::ConstantInt::get(IntPtrTy, 575 CacheSize-1)); 576 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 577 llvm::Value *CacheVal = 578 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 579 580 // If the hash isn't in the cache, call a runtime handler to perform the 581 // hard work of checking whether the vptr is for an object of the right 582 // type. This will either fill in the cache and return, or produce a 583 // diagnostic. 584 llvm::Constant *StaticData[] = { 585 EmitCheckSourceLocation(Loc), 586 EmitCheckTypeDescriptor(Ty), 587 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 588 llvm::ConstantInt::get(Int8Ty, TCK) 589 }; 590 llvm::Value *DynamicData[] = { Address, Hash }; 591 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 592 "dynamic_type_cache_miss", StaticData, DynamicData, 593 CRK_AlwaysRecoverable); 594 } 595 } 596 597 if (Done) { 598 Builder.CreateBr(Done); 599 EmitBlock(Done); 600 } 601 } 602 603 /// Determine whether this expression refers to a flexible array member in a 604 /// struct. We disable array bounds checks for such members. 605 static bool isFlexibleArrayMemberExpr(const Expr *E) { 606 // For compatibility with existing code, we treat arrays of length 0 or 607 // 1 as flexible array members. 608 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 609 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 610 if (CAT->getSize().ugt(1)) 611 return false; 612 } else if (!isa<IncompleteArrayType>(AT)) 613 return false; 614 615 E = E->IgnoreParens(); 616 617 // A flexible array member must be the last member in the class. 618 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 619 // FIXME: If the base type of the member expr is not FD->getParent(), 620 // this should not be treated as a flexible array member access. 621 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 622 RecordDecl::field_iterator FI( 623 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 624 return ++FI == FD->getParent()->field_end(); 625 } 626 } 627 628 return false; 629 } 630 631 /// If Base is known to point to the start of an array, return the length of 632 /// that array. Return 0 if the length cannot be determined. 633 static llvm::Value *getArrayIndexingBound( 634 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 635 // For the vector indexing extension, the bound is the number of elements. 636 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 637 IndexedType = Base->getType(); 638 return CGF.Builder.getInt32(VT->getNumElements()); 639 } 640 641 Base = Base->IgnoreParens(); 642 643 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 644 if (CE->getCastKind() == CK_ArrayToPointerDecay && 645 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 646 IndexedType = CE->getSubExpr()->getType(); 647 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 648 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 649 return CGF.Builder.getInt(CAT->getSize()); 650 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 651 return CGF.getVLASize(VAT).first; 652 } 653 } 654 655 return nullptr; 656 } 657 658 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 659 llvm::Value *Index, QualType IndexType, 660 bool Accessed) { 661 assert(SanOpts->ArrayBounds && 662 "should not be called unless adding bounds checks"); 663 SanitizerScope SanScope(this); 664 665 QualType IndexedType; 666 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 667 if (!Bound) 668 return; 669 670 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 671 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 672 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 673 674 llvm::Constant *StaticData[] = { 675 EmitCheckSourceLocation(E->getExprLoc()), 676 EmitCheckTypeDescriptor(IndexedType), 677 EmitCheckTypeDescriptor(IndexType) 678 }; 679 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 680 : Builder.CreateICmpULE(IndexVal, BoundVal); 681 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 682 } 683 684 685 CodeGenFunction::ComplexPairTy CodeGenFunction:: 686 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 687 bool isInc, bool isPre) { 688 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 689 690 llvm::Value *NextVal; 691 if (isa<llvm::IntegerType>(InVal.first->getType())) { 692 uint64_t AmountVal = isInc ? 1 : -1; 693 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 694 695 // Add the inc/dec to the real part. 696 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 697 } else { 698 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 699 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 700 if (!isInc) 701 FVal.changeSign(); 702 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 703 704 // Add the inc/dec to the real part. 705 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 706 } 707 708 ComplexPairTy IncVal(NextVal, InVal.second); 709 710 // Store the updated result through the lvalue. 711 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 712 713 // If this is a postinc, return the value read from memory, otherwise use the 714 // updated value. 715 return isPre ? IncVal : InVal; 716 } 717 718 //===----------------------------------------------------------------------===// 719 // LValue Expression Emission 720 //===----------------------------------------------------------------------===// 721 722 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 723 if (Ty->isVoidType()) 724 return RValue::get(nullptr); 725 726 switch (getEvaluationKind(Ty)) { 727 case TEK_Complex: { 728 llvm::Type *EltTy = 729 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 730 llvm::Value *U = llvm::UndefValue::get(EltTy); 731 return RValue::getComplex(std::make_pair(U, U)); 732 } 733 734 // If this is a use of an undefined aggregate type, the aggregate must have an 735 // identifiable address. Just because the contents of the value are undefined 736 // doesn't mean that the address can't be taken and compared. 737 case TEK_Aggregate: { 738 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 739 return RValue::getAggregate(DestPtr); 740 } 741 742 case TEK_Scalar: 743 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 744 } 745 llvm_unreachable("bad evaluation kind"); 746 } 747 748 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 749 const char *Name) { 750 ErrorUnsupported(E, Name); 751 return GetUndefRValue(E->getType()); 752 } 753 754 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 755 const char *Name) { 756 ErrorUnsupported(E, Name); 757 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 758 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 759 } 760 761 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 762 LValue LV; 763 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E)) 764 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 765 else 766 LV = EmitLValue(E); 767 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 768 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 769 E->getType(), LV.getAlignment()); 770 return LV; 771 } 772 773 /// EmitLValue - Emit code to compute a designator that specifies the location 774 /// of the expression. 775 /// 776 /// This can return one of two things: a simple address or a bitfield reference. 777 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 778 /// an LLVM pointer type. 779 /// 780 /// If this returns a bitfield reference, nothing about the pointee type of the 781 /// LLVM value is known: For example, it may not be a pointer to an integer. 782 /// 783 /// If this returns a normal address, and if the lvalue's C type is fixed size, 784 /// this method guarantees that the returned pointer type will point to an LLVM 785 /// type of the same size of the lvalue's type. If the lvalue has a variable 786 /// length type, this is not possible. 787 /// 788 LValue CodeGenFunction::EmitLValue(const Expr *E) { 789 switch (E->getStmtClass()) { 790 default: return EmitUnsupportedLValue(E, "l-value expression"); 791 792 case Expr::ObjCPropertyRefExprClass: 793 llvm_unreachable("cannot emit a property reference directly"); 794 795 case Expr::ObjCSelectorExprClass: 796 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 797 case Expr::ObjCIsaExprClass: 798 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 799 case Expr::BinaryOperatorClass: 800 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 801 case Expr::CompoundAssignOperatorClass: 802 if (!E->getType()->isAnyComplexType()) 803 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 804 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 805 case Expr::CallExprClass: 806 case Expr::CXXMemberCallExprClass: 807 case Expr::CXXOperatorCallExprClass: 808 case Expr::UserDefinedLiteralClass: 809 return EmitCallExprLValue(cast<CallExpr>(E)); 810 case Expr::VAArgExprClass: 811 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 812 case Expr::DeclRefExprClass: 813 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 814 case Expr::ParenExprClass: 815 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 816 case Expr::GenericSelectionExprClass: 817 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 818 case Expr::PredefinedExprClass: 819 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 820 case Expr::StringLiteralClass: 821 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 822 case Expr::ObjCEncodeExprClass: 823 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 824 case Expr::PseudoObjectExprClass: 825 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 826 case Expr::InitListExprClass: 827 return EmitInitListLValue(cast<InitListExpr>(E)); 828 case Expr::CXXTemporaryObjectExprClass: 829 case Expr::CXXConstructExprClass: 830 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 831 case Expr::CXXBindTemporaryExprClass: 832 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 833 case Expr::CXXUuidofExprClass: 834 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 835 case Expr::LambdaExprClass: 836 return EmitLambdaLValue(cast<LambdaExpr>(E)); 837 838 case Expr::ExprWithCleanupsClass: { 839 const auto *cleanups = cast<ExprWithCleanups>(E); 840 enterFullExpression(cleanups); 841 RunCleanupsScope Scope(*this); 842 return EmitLValue(cleanups->getSubExpr()); 843 } 844 845 case Expr::CXXDefaultArgExprClass: 846 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 847 case Expr::CXXDefaultInitExprClass: { 848 CXXDefaultInitExprScope Scope(*this); 849 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 850 } 851 case Expr::CXXTypeidExprClass: 852 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 853 854 case Expr::ObjCMessageExprClass: 855 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 856 case Expr::ObjCIvarRefExprClass: 857 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 858 case Expr::StmtExprClass: 859 return EmitStmtExprLValue(cast<StmtExpr>(E)); 860 case Expr::UnaryOperatorClass: 861 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 862 case Expr::ArraySubscriptExprClass: 863 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 864 case Expr::ExtVectorElementExprClass: 865 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 866 case Expr::MemberExprClass: 867 return EmitMemberExpr(cast<MemberExpr>(E)); 868 case Expr::CompoundLiteralExprClass: 869 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 870 case Expr::ConditionalOperatorClass: 871 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 872 case Expr::BinaryConditionalOperatorClass: 873 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 874 case Expr::ChooseExprClass: 875 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 876 case Expr::OpaqueValueExprClass: 877 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 878 case Expr::SubstNonTypeTemplateParmExprClass: 879 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 880 case Expr::ImplicitCastExprClass: 881 case Expr::CStyleCastExprClass: 882 case Expr::CXXFunctionalCastExprClass: 883 case Expr::CXXStaticCastExprClass: 884 case Expr::CXXDynamicCastExprClass: 885 case Expr::CXXReinterpretCastExprClass: 886 case Expr::CXXConstCastExprClass: 887 case Expr::ObjCBridgedCastExprClass: 888 return EmitCastLValue(cast<CastExpr>(E)); 889 890 case Expr::MaterializeTemporaryExprClass: 891 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 892 } 893 } 894 895 /// Given an object of the given canonical type, can we safely copy a 896 /// value out of it based on its initializer? 897 static bool isConstantEmittableObjectType(QualType type) { 898 assert(type.isCanonical()); 899 assert(!type->isReferenceType()); 900 901 // Must be const-qualified but non-volatile. 902 Qualifiers qs = type.getLocalQualifiers(); 903 if (!qs.hasConst() || qs.hasVolatile()) return false; 904 905 // Otherwise, all object types satisfy this except C++ classes with 906 // mutable subobjects or non-trivial copy/destroy behavior. 907 if (const auto *RT = dyn_cast<RecordType>(type)) 908 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 909 if (RD->hasMutableFields() || !RD->isTrivial()) 910 return false; 911 912 return true; 913 } 914 915 /// Can we constant-emit a load of a reference to a variable of the 916 /// given type? This is different from predicates like 917 /// Decl::isUsableInConstantExpressions because we do want it to apply 918 /// in situations that don't necessarily satisfy the language's rules 919 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 920 /// to do this with const float variables even if those variables 921 /// aren't marked 'constexpr'. 922 enum ConstantEmissionKind { 923 CEK_None, 924 CEK_AsReferenceOnly, 925 CEK_AsValueOrReference, 926 CEK_AsValueOnly 927 }; 928 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 929 type = type.getCanonicalType(); 930 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 931 if (isConstantEmittableObjectType(ref->getPointeeType())) 932 return CEK_AsValueOrReference; 933 return CEK_AsReferenceOnly; 934 } 935 if (isConstantEmittableObjectType(type)) 936 return CEK_AsValueOnly; 937 return CEK_None; 938 } 939 940 /// Try to emit a reference to the given value without producing it as 941 /// an l-value. This is actually more than an optimization: we can't 942 /// produce an l-value for variables that we never actually captured 943 /// in a block or lambda, which means const int variables or constexpr 944 /// literals or similar. 945 CodeGenFunction::ConstantEmission 946 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 947 ValueDecl *value = refExpr->getDecl(); 948 949 // The value needs to be an enum constant or a constant variable. 950 ConstantEmissionKind CEK; 951 if (isa<ParmVarDecl>(value)) { 952 CEK = CEK_None; 953 } else if (auto *var = dyn_cast<VarDecl>(value)) { 954 CEK = checkVarTypeForConstantEmission(var->getType()); 955 } else if (isa<EnumConstantDecl>(value)) { 956 CEK = CEK_AsValueOnly; 957 } else { 958 CEK = CEK_None; 959 } 960 if (CEK == CEK_None) return ConstantEmission(); 961 962 Expr::EvalResult result; 963 bool resultIsReference; 964 QualType resultType; 965 966 // It's best to evaluate all the way as an r-value if that's permitted. 967 if (CEK != CEK_AsReferenceOnly && 968 refExpr->EvaluateAsRValue(result, getContext())) { 969 resultIsReference = false; 970 resultType = refExpr->getType(); 971 972 // Otherwise, try to evaluate as an l-value. 973 } else if (CEK != CEK_AsValueOnly && 974 refExpr->EvaluateAsLValue(result, getContext())) { 975 resultIsReference = true; 976 resultType = value->getType(); 977 978 // Failure. 979 } else { 980 return ConstantEmission(); 981 } 982 983 // In any case, if the initializer has side-effects, abandon ship. 984 if (result.HasSideEffects) 985 return ConstantEmission(); 986 987 // Emit as a constant. 988 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 989 990 // Make sure we emit a debug reference to the global variable. 991 // This should probably fire even for 992 if (isa<VarDecl>(value)) { 993 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 994 EmitDeclRefExprDbgValue(refExpr, C); 995 } else { 996 assert(isa<EnumConstantDecl>(value)); 997 EmitDeclRefExprDbgValue(refExpr, C); 998 } 999 1000 // If we emitted a reference constant, we need to dereference that. 1001 if (resultIsReference) 1002 return ConstantEmission::forReference(C); 1003 1004 return ConstantEmission::forValue(C); 1005 } 1006 1007 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1008 SourceLocation Loc) { 1009 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1010 lvalue.getAlignment().getQuantity(), 1011 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1012 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1013 } 1014 1015 static bool hasBooleanRepresentation(QualType Ty) { 1016 if (Ty->isBooleanType()) 1017 return true; 1018 1019 if (const EnumType *ET = Ty->getAs<EnumType>()) 1020 return ET->getDecl()->getIntegerType()->isBooleanType(); 1021 1022 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1023 return hasBooleanRepresentation(AT->getValueType()); 1024 1025 return false; 1026 } 1027 1028 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1029 llvm::APInt &Min, llvm::APInt &End, 1030 bool StrictEnums) { 1031 const EnumType *ET = Ty->getAs<EnumType>(); 1032 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1033 ET && !ET->getDecl()->isFixed(); 1034 bool IsBool = hasBooleanRepresentation(Ty); 1035 if (!IsBool && !IsRegularCPlusPlusEnum) 1036 return false; 1037 1038 if (IsBool) { 1039 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1040 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1041 } else { 1042 const EnumDecl *ED = ET->getDecl(); 1043 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1044 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1045 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1046 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1047 1048 if (NumNegativeBits) { 1049 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1050 assert(NumBits <= Bitwidth); 1051 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1052 Min = -End; 1053 } else { 1054 assert(NumPositiveBits <= Bitwidth); 1055 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1056 Min = llvm::APInt(Bitwidth, 0); 1057 } 1058 } 1059 return true; 1060 } 1061 1062 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1063 llvm::APInt Min, End; 1064 if (!getRangeForType(*this, Ty, Min, End, 1065 CGM.getCodeGenOpts().StrictEnums)) 1066 return nullptr; 1067 1068 llvm::MDBuilder MDHelper(getLLVMContext()); 1069 return MDHelper.createRange(Min, End); 1070 } 1071 1072 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1073 unsigned Alignment, QualType Ty, 1074 SourceLocation Loc, 1075 llvm::MDNode *TBAAInfo, 1076 QualType TBAABaseType, 1077 uint64_t TBAAOffset) { 1078 // For better performance, handle vector loads differently. 1079 if (Ty->isVectorType()) { 1080 llvm::Value *V; 1081 const llvm::Type *EltTy = 1082 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1083 1084 const auto *VTy = cast<llvm::VectorType>(EltTy); 1085 1086 // Handle vectors of size 3, like size 4 for better performance. 1087 if (VTy->getNumElements() == 3) { 1088 1089 // Bitcast to vec4 type. 1090 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1091 4); 1092 llvm::PointerType *ptVec4Ty = 1093 llvm::PointerType::get(vec4Ty, 1094 (cast<llvm::PointerType>( 1095 Addr->getType()))->getAddressSpace()); 1096 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1097 "castToVec4"); 1098 // Now load value. 1099 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1100 1101 // Shuffle vector to get vec3. 1102 llvm::Constant *Mask[] = { 1103 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1104 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1105 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1106 }; 1107 1108 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1109 V = Builder.CreateShuffleVector(LoadVal, 1110 llvm::UndefValue::get(vec4Ty), 1111 MaskV, "extractVec"); 1112 return EmitFromMemory(V, Ty); 1113 } 1114 } 1115 1116 // Atomic operations have to be done on integral types. 1117 if (Ty->isAtomicType()) { 1118 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1119 CharUnits::fromQuantity(Alignment), 1120 getContext(), TBAAInfo); 1121 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1122 } 1123 1124 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1125 if (Volatile) 1126 Load->setVolatile(true); 1127 if (Alignment) 1128 Load->setAlignment(Alignment); 1129 if (TBAAInfo) { 1130 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1131 TBAAOffset); 1132 if (TBAAPath) 1133 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1134 } 1135 1136 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1137 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1138 SanitizerScope SanScope(this); 1139 llvm::APInt Min, End; 1140 if (getRangeForType(*this, Ty, Min, End, true)) { 1141 --End; 1142 llvm::Value *Check; 1143 if (!Min) 1144 Check = Builder.CreateICmpULE( 1145 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1146 else { 1147 llvm::Value *Upper = Builder.CreateICmpSLE( 1148 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1149 llvm::Value *Lower = Builder.CreateICmpSGE( 1150 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1151 Check = Builder.CreateAnd(Upper, Lower); 1152 } 1153 llvm::Constant *StaticArgs[] = { 1154 EmitCheckSourceLocation(Loc), 1155 EmitCheckTypeDescriptor(Ty) 1156 }; 1157 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), 1158 CRK_Recoverable); 1159 } 1160 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1161 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1162 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1163 1164 return EmitFromMemory(Load, Ty); 1165 } 1166 1167 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1168 // Bool has a different representation in memory than in registers. 1169 if (hasBooleanRepresentation(Ty)) { 1170 // This should really always be an i1, but sometimes it's already 1171 // an i8, and it's awkward to track those cases down. 1172 if (Value->getType()->isIntegerTy(1)) 1173 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1174 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1175 "wrong value rep of bool"); 1176 } 1177 1178 return Value; 1179 } 1180 1181 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1182 // Bool has a different representation in memory than in registers. 1183 if (hasBooleanRepresentation(Ty)) { 1184 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1185 "wrong value rep of bool"); 1186 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1187 } 1188 1189 return Value; 1190 } 1191 1192 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1193 bool Volatile, unsigned Alignment, 1194 QualType Ty, llvm::MDNode *TBAAInfo, 1195 bool isInit, QualType TBAABaseType, 1196 uint64_t TBAAOffset) { 1197 1198 // Handle vectors differently to get better performance. 1199 if (Ty->isVectorType()) { 1200 llvm::Type *SrcTy = Value->getType(); 1201 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1202 // Handle vec3 special. 1203 if (VecTy->getNumElements() == 3) { 1204 llvm::LLVMContext &VMContext = getLLVMContext(); 1205 1206 // Our source is a vec3, do a shuffle vector to make it a vec4. 1207 SmallVector<llvm::Constant*, 4> Mask; 1208 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1209 0)); 1210 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1211 1)); 1212 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1213 2)); 1214 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1215 1216 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1217 Value = Builder.CreateShuffleVector(Value, 1218 llvm::UndefValue::get(VecTy), 1219 MaskV, "extractVec"); 1220 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1221 } 1222 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1223 if (DstPtr->getElementType() != SrcTy) { 1224 llvm::Type *MemTy = 1225 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1226 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1227 } 1228 } 1229 1230 Value = EmitToMemory(Value, Ty); 1231 1232 if (Ty->isAtomicType()) { 1233 EmitAtomicStore(RValue::get(Value), 1234 LValue::MakeAddr(Addr, Ty, 1235 CharUnits::fromQuantity(Alignment), 1236 getContext(), TBAAInfo), 1237 isInit); 1238 return; 1239 } 1240 1241 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1242 if (Alignment) 1243 Store->setAlignment(Alignment); 1244 if (TBAAInfo) { 1245 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1246 TBAAOffset); 1247 if (TBAAPath) 1248 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1249 } 1250 } 1251 1252 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1253 bool isInit) { 1254 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1255 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1256 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1257 lvalue.getTBAAOffset()); 1258 } 1259 1260 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1261 /// method emits the address of the lvalue, then loads the result as an rvalue, 1262 /// returning the rvalue. 1263 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1264 if (LV.isObjCWeak()) { 1265 // load of a __weak object. 1266 llvm::Value *AddrWeakObj = LV.getAddress(); 1267 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1268 AddrWeakObj)); 1269 } 1270 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1271 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1272 Object = EmitObjCConsumeObject(LV.getType(), Object); 1273 return RValue::get(Object); 1274 } 1275 1276 if (LV.isSimple()) { 1277 assert(!LV.getType()->isFunctionType()); 1278 1279 // Everything needs a load. 1280 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1281 } 1282 1283 if (LV.isVectorElt()) { 1284 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1285 LV.isVolatileQualified()); 1286 Load->setAlignment(LV.getAlignment().getQuantity()); 1287 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1288 "vecext")); 1289 } 1290 1291 // If this is a reference to a subset of the elements of a vector, either 1292 // shuffle the input or extract/insert them as appropriate. 1293 if (LV.isExtVectorElt()) 1294 return EmitLoadOfExtVectorElementLValue(LV); 1295 1296 // Global Register variables always invoke intrinsics 1297 if (LV.isGlobalReg()) 1298 return EmitLoadOfGlobalRegLValue(LV); 1299 1300 assert(LV.isBitField() && "Unknown LValue type!"); 1301 return EmitLoadOfBitfieldLValue(LV); 1302 } 1303 1304 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1305 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1306 1307 // Get the output type. 1308 llvm::Type *ResLTy = ConvertType(LV.getType()); 1309 1310 llvm::Value *Ptr = LV.getBitFieldAddr(); 1311 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1312 "bf.load"); 1313 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1314 1315 if (Info.IsSigned) { 1316 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1317 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1318 if (HighBits) 1319 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1320 if (Info.Offset + HighBits) 1321 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1322 } else { 1323 if (Info.Offset) 1324 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1325 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1326 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1327 Info.Size), 1328 "bf.clear"); 1329 } 1330 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1331 1332 return RValue::get(Val); 1333 } 1334 1335 // If this is a reference to a subset of the elements of a vector, create an 1336 // appropriate shufflevector. 1337 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1338 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1339 LV.isVolatileQualified()); 1340 Load->setAlignment(LV.getAlignment().getQuantity()); 1341 llvm::Value *Vec = Load; 1342 1343 const llvm::Constant *Elts = LV.getExtVectorElts(); 1344 1345 // If the result of the expression is a non-vector type, we must be extracting 1346 // a single element. Just codegen as an extractelement. 1347 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1348 if (!ExprVT) { 1349 unsigned InIdx = getAccessedFieldNo(0, Elts); 1350 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1351 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1352 } 1353 1354 // Always use shuffle vector to try to retain the original program structure 1355 unsigned NumResultElts = ExprVT->getNumElements(); 1356 1357 SmallVector<llvm::Constant*, 4> Mask; 1358 for (unsigned i = 0; i != NumResultElts; ++i) 1359 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1360 1361 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1362 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1363 MaskV); 1364 return RValue::get(Vec); 1365 } 1366 1367 /// @brief Generates lvalue for partial ext_vector access. 1368 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1369 llvm::Value *VectorAddress = LV.getExtVectorAddr(); 1370 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1371 QualType EQT = ExprVT->getElementType(); 1372 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1373 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo(); 1374 1375 llvm::Value *CastToPointerElement = 1376 Builder.CreateBitCast(VectorAddress, 1377 VectorElementPtrToTy, "conv.ptr.element"); 1378 1379 const llvm::Constant *Elts = LV.getExtVectorElts(); 1380 unsigned ix = getAccessedFieldNo(0, Elts); 1381 1382 llvm::Value *VectorBasePtrPlusIx = 1383 Builder.CreateInBoundsGEP(CastToPointerElement, 1384 llvm::ConstantInt::get(SizeTy, ix), "add.ptr"); 1385 1386 return VectorBasePtrPlusIx; 1387 } 1388 1389 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1390 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1391 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1392 "Bad type for register variable"); 1393 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg()); 1394 assert(RegName && "Register LValue is not metadata"); 1395 1396 // We accept integer and pointer types only 1397 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1398 llvm::Type *Ty = OrigTy; 1399 if (OrigTy->isPointerTy()) 1400 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1401 llvm::Type *Types[] = { Ty }; 1402 1403 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1404 llvm::Value *Call = Builder.CreateCall(F, RegName); 1405 if (OrigTy->isPointerTy()) 1406 Call = Builder.CreateIntToPtr(Call, OrigTy); 1407 return RValue::get(Call); 1408 } 1409 1410 1411 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1412 /// lvalue, where both are guaranteed to the have the same type, and that type 1413 /// is 'Ty'. 1414 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1415 bool isInit) { 1416 if (!Dst.isSimple()) { 1417 if (Dst.isVectorElt()) { 1418 // Read/modify/write the vector, inserting the new element. 1419 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1420 Dst.isVolatileQualified()); 1421 Load->setAlignment(Dst.getAlignment().getQuantity()); 1422 llvm::Value *Vec = Load; 1423 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1424 Dst.getVectorIdx(), "vecins"); 1425 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1426 Dst.isVolatileQualified()); 1427 Store->setAlignment(Dst.getAlignment().getQuantity()); 1428 return; 1429 } 1430 1431 // If this is an update of extended vector elements, insert them as 1432 // appropriate. 1433 if (Dst.isExtVectorElt()) 1434 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1435 1436 if (Dst.isGlobalReg()) 1437 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1438 1439 assert(Dst.isBitField() && "Unknown LValue type"); 1440 return EmitStoreThroughBitfieldLValue(Src, Dst); 1441 } 1442 1443 // There's special magic for assigning into an ARC-qualified l-value. 1444 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1445 switch (Lifetime) { 1446 case Qualifiers::OCL_None: 1447 llvm_unreachable("present but none"); 1448 1449 case Qualifiers::OCL_ExplicitNone: 1450 // nothing special 1451 break; 1452 1453 case Qualifiers::OCL_Strong: 1454 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1455 return; 1456 1457 case Qualifiers::OCL_Weak: 1458 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1459 return; 1460 1461 case Qualifiers::OCL_Autoreleasing: 1462 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1463 Src.getScalarVal())); 1464 // fall into the normal path 1465 break; 1466 } 1467 } 1468 1469 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1470 // load of a __weak object. 1471 llvm::Value *LvalueDst = Dst.getAddress(); 1472 llvm::Value *src = Src.getScalarVal(); 1473 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1474 return; 1475 } 1476 1477 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1478 // load of a __strong object. 1479 llvm::Value *LvalueDst = Dst.getAddress(); 1480 llvm::Value *src = Src.getScalarVal(); 1481 if (Dst.isObjCIvar()) { 1482 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1483 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1484 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1485 llvm::Value *dst = RHS; 1486 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1487 llvm::Value *LHS = 1488 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1489 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1490 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1491 BytesBetween); 1492 } else if (Dst.isGlobalObjCRef()) { 1493 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1494 Dst.isThreadLocalRef()); 1495 } 1496 else 1497 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1498 return; 1499 } 1500 1501 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1502 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1503 } 1504 1505 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1506 llvm::Value **Result) { 1507 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1508 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1509 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1510 1511 // Get the source value, truncated to the width of the bit-field. 1512 llvm::Value *SrcVal = Src.getScalarVal(); 1513 1514 // Cast the source to the storage type and shift it into place. 1515 SrcVal = Builder.CreateIntCast(SrcVal, 1516 Ptr->getType()->getPointerElementType(), 1517 /*IsSigned=*/false); 1518 llvm::Value *MaskedVal = SrcVal; 1519 1520 // See if there are other bits in the bitfield's storage we'll need to load 1521 // and mask together with source before storing. 1522 if (Info.StorageSize != Info.Size) { 1523 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1524 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1525 "bf.load"); 1526 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1527 1528 // Mask the source value as needed. 1529 if (!hasBooleanRepresentation(Dst.getType())) 1530 SrcVal = Builder.CreateAnd(SrcVal, 1531 llvm::APInt::getLowBitsSet(Info.StorageSize, 1532 Info.Size), 1533 "bf.value"); 1534 MaskedVal = SrcVal; 1535 if (Info.Offset) 1536 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1537 1538 // Mask out the original value. 1539 Val = Builder.CreateAnd(Val, 1540 ~llvm::APInt::getBitsSet(Info.StorageSize, 1541 Info.Offset, 1542 Info.Offset + Info.Size), 1543 "bf.clear"); 1544 1545 // Or together the unchanged values and the source value. 1546 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1547 } else { 1548 assert(Info.Offset == 0); 1549 } 1550 1551 // Write the new value back out. 1552 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1553 Dst.isVolatileQualified()); 1554 Store->setAlignment(Info.StorageAlignment); 1555 1556 // Return the new value of the bit-field, if requested. 1557 if (Result) { 1558 llvm::Value *ResultVal = MaskedVal; 1559 1560 // Sign extend the value if needed. 1561 if (Info.IsSigned) { 1562 assert(Info.Size <= Info.StorageSize); 1563 unsigned HighBits = Info.StorageSize - Info.Size; 1564 if (HighBits) { 1565 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1566 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1567 } 1568 } 1569 1570 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1571 "bf.result.cast"); 1572 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1573 } 1574 } 1575 1576 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1577 LValue Dst) { 1578 // This access turns into a read/modify/write of the vector. Load the input 1579 // value now. 1580 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1581 Dst.isVolatileQualified()); 1582 Load->setAlignment(Dst.getAlignment().getQuantity()); 1583 llvm::Value *Vec = Load; 1584 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1585 1586 llvm::Value *SrcVal = Src.getScalarVal(); 1587 1588 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1589 unsigned NumSrcElts = VTy->getNumElements(); 1590 unsigned NumDstElts = 1591 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1592 if (NumDstElts == NumSrcElts) { 1593 // Use shuffle vector is the src and destination are the same number of 1594 // elements and restore the vector mask since it is on the side it will be 1595 // stored. 1596 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1597 for (unsigned i = 0; i != NumSrcElts; ++i) 1598 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1599 1600 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1601 Vec = Builder.CreateShuffleVector(SrcVal, 1602 llvm::UndefValue::get(Vec->getType()), 1603 MaskV); 1604 } else if (NumDstElts > NumSrcElts) { 1605 // Extended the source vector to the same length and then shuffle it 1606 // into the destination. 1607 // FIXME: since we're shuffling with undef, can we just use the indices 1608 // into that? This could be simpler. 1609 SmallVector<llvm::Constant*, 4> ExtMask; 1610 for (unsigned i = 0; i != NumSrcElts; ++i) 1611 ExtMask.push_back(Builder.getInt32(i)); 1612 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1613 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1614 llvm::Value *ExtSrcVal = 1615 Builder.CreateShuffleVector(SrcVal, 1616 llvm::UndefValue::get(SrcVal->getType()), 1617 ExtMaskV); 1618 // build identity 1619 SmallVector<llvm::Constant*, 4> Mask; 1620 for (unsigned i = 0; i != NumDstElts; ++i) 1621 Mask.push_back(Builder.getInt32(i)); 1622 1623 // When the vector size is odd and .odd or .hi is used, the last element 1624 // of the Elts constant array will be one past the size of the vector. 1625 // Ignore the last element here, if it is greater than the mask size. 1626 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1627 NumSrcElts--; 1628 1629 // modify when what gets shuffled in 1630 for (unsigned i = 0; i != NumSrcElts; ++i) 1631 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1632 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1633 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1634 } else { 1635 // We should never shorten the vector 1636 llvm_unreachable("unexpected shorten vector length"); 1637 } 1638 } else { 1639 // If the Src is a scalar (not a vector) it must be updating one element. 1640 unsigned InIdx = getAccessedFieldNo(0, Elts); 1641 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1642 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1643 } 1644 1645 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1646 Dst.isVolatileQualified()); 1647 Store->setAlignment(Dst.getAlignment().getQuantity()); 1648 } 1649 1650 /// @brief Store of global named registers are always calls to intrinsics. 1651 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1652 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1653 "Bad type for register variable"); 1654 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg()); 1655 assert(RegName && "Register LValue is not metadata"); 1656 1657 // We accept integer and pointer types only 1658 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1659 llvm::Type *Ty = OrigTy; 1660 if (OrigTy->isPointerTy()) 1661 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1662 llvm::Type *Types[] = { Ty }; 1663 1664 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1665 llvm::Value *Value = Src.getScalarVal(); 1666 if (OrigTy->isPointerTy()) 1667 Value = Builder.CreatePtrToInt(Value, Ty); 1668 Builder.CreateCall2(F, RegName, Value); 1669 } 1670 1671 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1672 // generating write-barries API. It is currently a global, ivar, 1673 // or neither. 1674 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1675 LValue &LV, 1676 bool IsMemberAccess=false) { 1677 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1678 return; 1679 1680 if (isa<ObjCIvarRefExpr>(E)) { 1681 QualType ExpTy = E->getType(); 1682 if (IsMemberAccess && ExpTy->isPointerType()) { 1683 // If ivar is a structure pointer, assigning to field of 1684 // this struct follows gcc's behavior and makes it a non-ivar 1685 // writer-barrier conservatively. 1686 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1687 if (ExpTy->isRecordType()) { 1688 LV.setObjCIvar(false); 1689 return; 1690 } 1691 } 1692 LV.setObjCIvar(true); 1693 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1694 LV.setBaseIvarExp(Exp->getBase()); 1695 LV.setObjCArray(E->getType()->isArrayType()); 1696 return; 1697 } 1698 1699 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1700 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1701 if (VD->hasGlobalStorage()) { 1702 LV.setGlobalObjCRef(true); 1703 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1704 } 1705 } 1706 LV.setObjCArray(E->getType()->isArrayType()); 1707 return; 1708 } 1709 1710 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1711 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1712 return; 1713 } 1714 1715 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1716 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1717 if (LV.isObjCIvar()) { 1718 // If cast is to a structure pointer, follow gcc's behavior and make it 1719 // a non-ivar write-barrier. 1720 QualType ExpTy = E->getType(); 1721 if (ExpTy->isPointerType()) 1722 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1723 if (ExpTy->isRecordType()) 1724 LV.setObjCIvar(false); 1725 } 1726 return; 1727 } 1728 1729 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1730 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1731 return; 1732 } 1733 1734 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1735 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1736 return; 1737 } 1738 1739 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1740 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1741 return; 1742 } 1743 1744 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1745 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1746 return; 1747 } 1748 1749 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1750 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1751 if (LV.isObjCIvar() && !LV.isObjCArray()) 1752 // Using array syntax to assigning to what an ivar points to is not 1753 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1754 LV.setObjCIvar(false); 1755 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1756 // Using array syntax to assigning to what global points to is not 1757 // same as assigning to the global itself. {id *G;} G[i] = 0; 1758 LV.setGlobalObjCRef(false); 1759 return; 1760 } 1761 1762 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1763 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1764 // We don't know if member is an 'ivar', but this flag is looked at 1765 // only in the context of LV.isObjCIvar(). 1766 LV.setObjCArray(E->getType()->isArrayType()); 1767 return; 1768 } 1769 } 1770 1771 static llvm::Value * 1772 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1773 llvm::Value *V, llvm::Type *IRType, 1774 StringRef Name = StringRef()) { 1775 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1776 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1777 } 1778 1779 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1780 const Expr *E, const VarDecl *VD) { 1781 QualType T = E->getType(); 1782 1783 // If it's thread_local, emit a call to its wrapper function instead. 1784 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1785 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1786 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1787 1788 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1789 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1790 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1791 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1792 LValue LV; 1793 if (VD->getType()->isReferenceType()) { 1794 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1795 LI->setAlignment(Alignment.getQuantity()); 1796 V = LI; 1797 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1798 } else { 1799 LV = CGF.MakeAddrLValue(V, T, Alignment); 1800 } 1801 setObjCGCLValueClass(CGF.getContext(), E, LV); 1802 return LV; 1803 } 1804 1805 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1806 const Expr *E, const FunctionDecl *FD) { 1807 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1808 if (!FD->hasPrototype()) { 1809 if (const FunctionProtoType *Proto = 1810 FD->getType()->getAs<FunctionProtoType>()) { 1811 // Ugly case: for a K&R-style definition, the type of the definition 1812 // isn't the same as the type of a use. Correct for this with a 1813 // bitcast. 1814 QualType NoProtoType = 1815 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1816 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1817 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1818 } 1819 } 1820 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1821 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1822 } 1823 1824 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1825 llvm::Value *ThisValue) { 1826 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1827 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1828 return CGF.EmitLValueForField(LV, FD); 1829 } 1830 1831 /// Named Registers are named metadata pointing to the register name 1832 /// which will be read from/written to as an argument to the intrinsic 1833 /// @llvm.read/write_register. 1834 /// So far, only the name is being passed down, but other options such as 1835 /// register type, allocation type or even optimization options could be 1836 /// passed down via the metadata node. 1837 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1838 CodeGenModule &CGM, 1839 CharUnits Alignment) { 1840 SmallString<64> Name("llvm.named.register."); 1841 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1842 assert(Asm->getLabel().size() < 64-Name.size() && 1843 "Register name too big"); 1844 Name.append(Asm->getLabel()); 1845 llvm::NamedMDNode *M = 1846 CGM.getModule().getOrInsertNamedMetadata(Name); 1847 if (M->getNumOperands() == 0) { 1848 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1849 Asm->getLabel()); 1850 llvm::Value *Ops[] = { Str }; 1851 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1852 } 1853 return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment); 1854 } 1855 1856 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1857 const NamedDecl *ND = E->getDecl(); 1858 CharUnits Alignment = getContext().getDeclAlign(ND); 1859 QualType T = E->getType(); 1860 1861 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1862 // Global Named registers access via intrinsics only 1863 if (VD->getStorageClass() == SC_Register && 1864 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1865 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1866 1867 // A DeclRefExpr for a reference initialized by a constant expression can 1868 // appear without being odr-used. Directly emit the constant initializer. 1869 const Expr *Init = VD->getAnyInitializer(VD); 1870 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1871 VD->isUsableInConstantExpressions(getContext()) && 1872 VD->checkInitIsICE()) { 1873 llvm::Constant *Val = 1874 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1875 assert(Val && "failed to emit reference constant expression"); 1876 // FIXME: Eventually we will want to emit vector element references. 1877 return MakeAddrLValue(Val, T, Alignment); 1878 } 1879 } 1880 1881 // FIXME: We should be able to assert this for FunctionDecls as well! 1882 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1883 // those with a valid source location. 1884 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1885 !E->getLocation().isValid()) && 1886 "Should not use decl without marking it used!"); 1887 1888 if (ND->hasAttr<WeakRefAttr>()) { 1889 const auto *VD = cast<ValueDecl>(ND); 1890 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1891 return MakeAddrLValue(Aliasee, T, Alignment); 1892 } 1893 1894 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1895 // Check if this is a global variable. 1896 if (VD->hasLinkage() || VD->isStaticDataMember()) 1897 return EmitGlobalVarDeclLValue(*this, E, VD); 1898 1899 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1900 1901 llvm::Value *V = LocalDeclMap.lookup(VD); 1902 if (!V && VD->isStaticLocal()) 1903 V = CGM.getOrCreateStaticVarDecl( 1904 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1905 1906 // Use special handling for lambdas. 1907 if (!V) { 1908 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1909 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1910 } else if (CapturedStmtInfo) { 1911 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1912 return EmitCapturedFieldLValue(*this, FD, 1913 CapturedStmtInfo->getContextValue()); 1914 } 1915 1916 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1917 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1918 T, Alignment); 1919 } 1920 1921 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1922 1923 if (isBlockVariable) 1924 V = BuildBlockByrefAddress(V, VD); 1925 1926 LValue LV; 1927 if (VD->getType()->isReferenceType()) { 1928 llvm::LoadInst *LI = Builder.CreateLoad(V); 1929 LI->setAlignment(Alignment.getQuantity()); 1930 V = LI; 1931 LV = MakeNaturalAlignAddrLValue(V, T); 1932 } else { 1933 LV = MakeAddrLValue(V, T, Alignment); 1934 } 1935 1936 bool isLocalStorage = VD->hasLocalStorage(); 1937 1938 bool NonGCable = isLocalStorage && 1939 !VD->getType()->isReferenceType() && 1940 !isBlockVariable; 1941 if (NonGCable) { 1942 LV.getQuals().removeObjCGCAttr(); 1943 LV.setNonGC(true); 1944 } 1945 1946 bool isImpreciseLifetime = 1947 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1948 if (isImpreciseLifetime) 1949 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1950 setObjCGCLValueClass(getContext(), E, LV); 1951 return LV; 1952 } 1953 1954 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1955 return EmitFunctionDeclLValue(*this, E, FD); 1956 1957 llvm_unreachable("Unhandled DeclRefExpr"); 1958 } 1959 1960 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1961 // __extension__ doesn't affect lvalue-ness. 1962 if (E->getOpcode() == UO_Extension) 1963 return EmitLValue(E->getSubExpr()); 1964 1965 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1966 switch (E->getOpcode()) { 1967 default: llvm_unreachable("Unknown unary operator lvalue!"); 1968 case UO_Deref: { 1969 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1970 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1971 1972 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1973 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1974 1975 // We should not generate __weak write barrier on indirect reference 1976 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1977 // But, we continue to generate __strong write barrier on indirect write 1978 // into a pointer to object. 1979 if (getLangOpts().ObjC1 && 1980 getLangOpts().getGC() != LangOptions::NonGC && 1981 LV.isObjCWeak()) 1982 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1983 return LV; 1984 } 1985 case UO_Real: 1986 case UO_Imag: { 1987 LValue LV = EmitLValue(E->getSubExpr()); 1988 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1989 llvm::Value *Addr = LV.getAddress(); 1990 1991 // __real is valid on scalars. This is a faster way of testing that. 1992 // __imag can only produce an rvalue on scalars. 1993 if (E->getOpcode() == UO_Real && 1994 !cast<llvm::PointerType>(Addr->getType()) 1995 ->getElementType()->isStructTy()) { 1996 assert(E->getSubExpr()->getType()->isArithmeticType()); 1997 return LV; 1998 } 1999 2000 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2001 2002 unsigned Idx = E->getOpcode() == UO_Imag; 2003 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 2004 Idx, "idx"), 2005 ExprTy); 2006 } 2007 case UO_PreInc: 2008 case UO_PreDec: { 2009 LValue LV = EmitLValue(E->getSubExpr()); 2010 bool isInc = E->getOpcode() == UO_PreInc; 2011 2012 if (E->getType()->isAnyComplexType()) 2013 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2014 else 2015 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2016 return LV; 2017 } 2018 } 2019 } 2020 2021 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2022 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2023 E->getType()); 2024 } 2025 2026 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2027 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2028 E->getType()); 2029 } 2030 2031 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2032 auto SL = E->getFunctionName(); 2033 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2034 StringRef FnName = CurFn->getName(); 2035 if (FnName.startswith("\01")) 2036 FnName = FnName.substr(1); 2037 StringRef NameItems[] = { 2038 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2039 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2040 2041 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2042 return MakeAddrLValue(C, E->getType()); 2043 } 2044 2045 /// Emit a type description suitable for use by a runtime sanitizer library. The 2046 /// format of a type descriptor is 2047 /// 2048 /// \code 2049 /// { i16 TypeKind, i16 TypeInfo } 2050 /// \endcode 2051 /// 2052 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2053 /// integer, 1 for a floating point value, and -1 for anything else. 2054 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2055 // Only emit each type's descriptor once. 2056 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2057 return C; 2058 2059 uint16_t TypeKind = -1; 2060 uint16_t TypeInfo = 0; 2061 2062 if (T->isIntegerType()) { 2063 TypeKind = 0; 2064 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2065 (T->isSignedIntegerType() ? 1 : 0); 2066 } else if (T->isFloatingType()) { 2067 TypeKind = 1; 2068 TypeInfo = getContext().getTypeSize(T); 2069 } 2070 2071 // Format the type name as if for a diagnostic, including quotes and 2072 // optionally an 'aka'. 2073 SmallString<32> Buffer; 2074 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2075 (intptr_t)T.getAsOpaquePtr(), 2076 StringRef(), StringRef(), None, Buffer, 2077 None); 2078 2079 llvm::Constant *Components[] = { 2080 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2081 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2082 }; 2083 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2084 2085 auto *GV = new llvm::GlobalVariable( 2086 CGM.getModule(), Descriptor->getType(), 2087 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2088 GV->setUnnamedAddr(true); 2089 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2090 2091 // Remember the descriptor for this type. 2092 CGM.setTypeDescriptorInMap(T, GV); 2093 2094 return GV; 2095 } 2096 2097 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2098 llvm::Type *TargetTy = IntPtrTy; 2099 2100 // Floating-point types which fit into intptr_t are bitcast to integers 2101 // and then passed directly (after zero-extension, if necessary). 2102 if (V->getType()->isFloatingPointTy()) { 2103 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2104 if (Bits <= TargetTy->getIntegerBitWidth()) 2105 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2106 Bits)); 2107 } 2108 2109 // Integers which fit in intptr_t are zero-extended and passed directly. 2110 if (V->getType()->isIntegerTy() && 2111 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2112 return Builder.CreateZExt(V, TargetTy); 2113 2114 // Pointers are passed directly, everything else is passed by address. 2115 if (!V->getType()->isPointerTy()) { 2116 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2117 Builder.CreateStore(V, Ptr); 2118 V = Ptr; 2119 } 2120 return Builder.CreatePtrToInt(V, TargetTy); 2121 } 2122 2123 /// \brief Emit a representation of a SourceLocation for passing to a handler 2124 /// in a sanitizer runtime library. The format for this data is: 2125 /// \code 2126 /// struct SourceLocation { 2127 /// const char *Filename; 2128 /// int32_t Line, Column; 2129 /// }; 2130 /// \endcode 2131 /// For an invalid SourceLocation, the Filename pointer is null. 2132 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2133 llvm::Constant *Filename; 2134 int Line, Column; 2135 2136 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2137 if (PLoc.isValid()) { 2138 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2139 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV); 2140 Filename = FilenameGV; 2141 Line = PLoc.getLine(); 2142 Column = PLoc.getColumn(); 2143 } else { 2144 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2145 Line = Column = 0; 2146 } 2147 2148 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2149 Builder.getInt32(Column)}; 2150 2151 return llvm::ConstantStruct::getAnon(Data); 2152 } 2153 2154 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2155 ArrayRef<llvm::Constant *> StaticArgs, 2156 ArrayRef<llvm::Value *> DynamicArgs, 2157 CheckRecoverableKind RecoverKind) { 2158 assert(SanOpts != &SanitizerOptions::Disabled); 2159 assert(IsSanitizerScope); 2160 2161 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2162 assert (RecoverKind != CRK_AlwaysRecoverable && 2163 "Runtime call required for AlwaysRecoverable kind!"); 2164 return EmitTrapCheck(Checked); 2165 } 2166 2167 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2168 2169 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2170 2171 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2172 2173 // Give hint that we very much don't expect to execute the handler 2174 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2175 llvm::MDBuilder MDHelper(getLLVMContext()); 2176 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2177 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2178 2179 EmitBlock(Handler); 2180 2181 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2182 auto *InfoPtr = 2183 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2184 llvm::GlobalVariable::PrivateLinkage, Info); 2185 InfoPtr->setUnnamedAddr(true); 2186 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2187 2188 SmallVector<llvm::Value *, 4> Args; 2189 SmallVector<llvm::Type *, 4> ArgTypes; 2190 Args.reserve(DynamicArgs.size() + 1); 2191 ArgTypes.reserve(DynamicArgs.size() + 1); 2192 2193 // Handler functions take an i8* pointing to the (handler-specific) static 2194 // information block, followed by a sequence of intptr_t arguments 2195 // representing operand values. 2196 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2197 ArgTypes.push_back(Int8PtrTy); 2198 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2199 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2200 ArgTypes.push_back(IntPtrTy); 2201 } 2202 2203 bool Recover = RecoverKind == CRK_AlwaysRecoverable || 2204 (RecoverKind == CRK_Recoverable && 2205 CGM.getCodeGenOpts().SanitizeRecover); 2206 2207 llvm::FunctionType *FnType = 2208 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2209 llvm::AttrBuilder B; 2210 if (!Recover) { 2211 B.addAttribute(llvm::Attribute::NoReturn) 2212 .addAttribute(llvm::Attribute::NoUnwind); 2213 } 2214 B.addAttribute(llvm::Attribute::UWTable); 2215 2216 // Checks that have two variants use a suffix to differentiate them 2217 bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable && 2218 !CGM.getCodeGenOpts().SanitizeRecover; 2219 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2220 (NeedsAbortSuffix? "_abort" : "")).str(); 2221 llvm::Value *Fn = CGM.CreateRuntimeFunction( 2222 FnType, FunctionName, 2223 llvm::AttributeSet::get(getLLVMContext(), 2224 llvm::AttributeSet::FunctionIndex, B)); 2225 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2226 if (Recover) { 2227 Builder.CreateBr(Cont); 2228 } else { 2229 HandlerCall->setDoesNotReturn(); 2230 Builder.CreateUnreachable(); 2231 } 2232 2233 EmitBlock(Cont); 2234 } 2235 2236 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2237 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2238 2239 // If we're optimizing, collapse all calls to trap down to just one per 2240 // function to save on code size. 2241 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2242 TrapBB = createBasicBlock("trap"); 2243 Builder.CreateCondBr(Checked, Cont, TrapBB); 2244 EmitBlock(TrapBB); 2245 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2246 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2247 TrapCall->setDoesNotReturn(); 2248 TrapCall->setDoesNotThrow(); 2249 Builder.CreateUnreachable(); 2250 } else { 2251 Builder.CreateCondBr(Checked, Cont, TrapBB); 2252 } 2253 2254 EmitBlock(Cont); 2255 } 2256 2257 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2258 /// array to pointer, return the array subexpression. 2259 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2260 // If this isn't just an array->pointer decay, bail out. 2261 const auto *CE = dyn_cast<CastExpr>(E); 2262 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2263 return nullptr; 2264 2265 // If this is a decay from variable width array, bail out. 2266 const Expr *SubExpr = CE->getSubExpr(); 2267 if (SubExpr->getType()->isVariableArrayType()) 2268 return nullptr; 2269 2270 return SubExpr; 2271 } 2272 2273 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2274 bool Accessed) { 2275 // The index must always be an integer, which is not an aggregate. Emit it. 2276 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2277 QualType IdxTy = E->getIdx()->getType(); 2278 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2279 2280 if (SanOpts->ArrayBounds) 2281 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2282 2283 // If the base is a vector type, then we are forming a vector element lvalue 2284 // with this subscript. 2285 if (E->getBase()->getType()->isVectorType() && 2286 !isa<ExtVectorElementExpr>(E->getBase())) { 2287 // Emit the vector as an lvalue to get its address. 2288 LValue LHS = EmitLValue(E->getBase()); 2289 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2290 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2291 E->getBase()->getType(), LHS.getAlignment()); 2292 } 2293 2294 // Extend or truncate the index type to 32 or 64-bits. 2295 if (Idx->getType() != IntPtrTy) 2296 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2297 2298 // We know that the pointer points to a type of the correct size, unless the 2299 // size is a VLA or Objective-C interface. 2300 llvm::Value *Address = nullptr; 2301 CharUnits ArrayAlignment; 2302 if (isa<ExtVectorElementExpr>(E->getBase())) { 2303 LValue LV = EmitLValue(E->getBase()); 2304 Address = EmitExtVectorElementLValue(LV); 2305 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2306 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2307 QualType EQT = ExprVT->getElementType(); 2308 return MakeAddrLValue(Address, EQT, 2309 getContext().getTypeAlignInChars(EQT)); 2310 } 2311 else if (const VariableArrayType *vla = 2312 getContext().getAsVariableArrayType(E->getType())) { 2313 // The base must be a pointer, which is not an aggregate. Emit 2314 // it. It needs to be emitted first in case it's what captures 2315 // the VLA bounds. 2316 Address = EmitScalarExpr(E->getBase()); 2317 2318 // The element count here is the total number of non-VLA elements. 2319 llvm::Value *numElements = getVLASize(vla).first; 2320 2321 // Effectively, the multiply by the VLA size is part of the GEP. 2322 // GEP indexes are signed, and scaling an index isn't permitted to 2323 // signed-overflow, so we use the same semantics for our explicit 2324 // multiply. We suppress this if overflow is not undefined behavior. 2325 if (getLangOpts().isSignedOverflowDefined()) { 2326 Idx = Builder.CreateMul(Idx, numElements); 2327 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2328 } else { 2329 Idx = Builder.CreateNSWMul(Idx, numElements); 2330 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2331 } 2332 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2333 // Indexing over an interface, as in "NSString *P; P[4];" 2334 llvm::Value *InterfaceSize = 2335 llvm::ConstantInt::get(Idx->getType(), 2336 getContext().getTypeSizeInChars(OIT).getQuantity()); 2337 2338 Idx = Builder.CreateMul(Idx, InterfaceSize); 2339 2340 // The base must be a pointer, which is not an aggregate. Emit it. 2341 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2342 Address = EmitCastToVoidPtr(Base); 2343 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2344 Address = Builder.CreateBitCast(Address, Base->getType()); 2345 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2346 // If this is A[i] where A is an array, the frontend will have decayed the 2347 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2348 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2349 // "gep x, i" here. Emit one "gep A, 0, i". 2350 assert(Array->getType()->isArrayType() && 2351 "Array to pointer decay must have array source type!"); 2352 LValue ArrayLV; 2353 // For simple multidimensional array indexing, set the 'accessed' flag for 2354 // better bounds-checking of the base expression. 2355 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2356 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2357 else 2358 ArrayLV = EmitLValue(Array); 2359 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2360 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2361 llvm::Value *Args[] = { Zero, Idx }; 2362 2363 // Propagate the alignment from the array itself to the result. 2364 ArrayAlignment = ArrayLV.getAlignment(); 2365 2366 if (getLangOpts().isSignedOverflowDefined()) 2367 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2368 else 2369 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2370 } else { 2371 // The base must be a pointer, which is not an aggregate. Emit it. 2372 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2373 if (getLangOpts().isSignedOverflowDefined()) 2374 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2375 else 2376 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2377 } 2378 2379 QualType T = E->getBase()->getType()->getPointeeType(); 2380 assert(!T.isNull() && 2381 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2382 2383 2384 // Limit the alignment to that of the result type. 2385 LValue LV; 2386 if (!ArrayAlignment.isZero()) { 2387 CharUnits Align = getContext().getTypeAlignInChars(T); 2388 ArrayAlignment = std::min(Align, ArrayAlignment); 2389 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2390 } else { 2391 LV = MakeNaturalAlignAddrLValue(Address, T); 2392 } 2393 2394 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2395 2396 if (getLangOpts().ObjC1 && 2397 getLangOpts().getGC() != LangOptions::NonGC) { 2398 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2399 setObjCGCLValueClass(getContext(), E, LV); 2400 } 2401 return LV; 2402 } 2403 2404 static 2405 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2406 SmallVectorImpl<unsigned> &Elts) { 2407 SmallVector<llvm::Constant*, 4> CElts; 2408 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2409 CElts.push_back(Builder.getInt32(Elts[i])); 2410 2411 return llvm::ConstantVector::get(CElts); 2412 } 2413 2414 LValue CodeGenFunction:: 2415 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2416 // Emit the base vector as an l-value. 2417 LValue Base; 2418 2419 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2420 if (E->isArrow()) { 2421 // If it is a pointer to a vector, emit the address and form an lvalue with 2422 // it. 2423 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2424 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2425 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2426 Base.getQuals().removeObjCGCAttr(); 2427 } else if (E->getBase()->isGLValue()) { 2428 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2429 // emit the base as an lvalue. 2430 assert(E->getBase()->getType()->isVectorType()); 2431 Base = EmitLValue(E->getBase()); 2432 } else { 2433 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2434 assert(E->getBase()->getType()->isVectorType() && 2435 "Result must be a vector"); 2436 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2437 2438 // Store the vector to memory (because LValue wants an address). 2439 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2440 Builder.CreateStore(Vec, VecMem); 2441 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2442 } 2443 2444 QualType type = 2445 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2446 2447 // Encode the element access list into a vector of unsigned indices. 2448 SmallVector<unsigned, 4> Indices; 2449 E->getEncodedElementAccess(Indices); 2450 2451 if (Base.isSimple()) { 2452 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2453 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2454 Base.getAlignment()); 2455 } 2456 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2457 2458 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2459 SmallVector<llvm::Constant *, 4> CElts; 2460 2461 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2462 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2463 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2464 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2465 Base.getAlignment()); 2466 } 2467 2468 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2469 Expr *BaseExpr = E->getBase(); 2470 2471 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2472 LValue BaseLV; 2473 if (E->isArrow()) { 2474 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2475 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2476 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2477 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2478 } else 2479 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2480 2481 NamedDecl *ND = E->getMemberDecl(); 2482 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2483 LValue LV = EmitLValueForField(BaseLV, Field); 2484 setObjCGCLValueClass(getContext(), E, LV); 2485 return LV; 2486 } 2487 2488 if (auto *VD = dyn_cast<VarDecl>(ND)) 2489 return EmitGlobalVarDeclLValue(*this, E, VD); 2490 2491 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2492 return EmitFunctionDeclLValue(*this, E, FD); 2493 2494 llvm_unreachable("Unhandled member declaration!"); 2495 } 2496 2497 /// Given that we are currently emitting a lambda, emit an l-value for 2498 /// one of its members. 2499 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2500 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2501 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2502 QualType LambdaTagType = 2503 getContext().getTagDeclType(Field->getParent()); 2504 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2505 return EmitLValueForField(LambdaLV, Field); 2506 } 2507 2508 LValue CodeGenFunction::EmitLValueForField(LValue base, 2509 const FieldDecl *field) { 2510 if (field->isBitField()) { 2511 const CGRecordLayout &RL = 2512 CGM.getTypes().getCGRecordLayout(field->getParent()); 2513 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2514 llvm::Value *Addr = base.getAddress(); 2515 unsigned Idx = RL.getLLVMFieldNo(field); 2516 if (Idx != 0) 2517 // For structs, we GEP to the field that the record layout suggests. 2518 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2519 // Get the access type. 2520 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2521 getLLVMContext(), Info.StorageSize, 2522 CGM.getContext().getTargetAddressSpace(base.getType())); 2523 if (Addr->getType() != PtrTy) 2524 Addr = Builder.CreateBitCast(Addr, PtrTy); 2525 2526 QualType fieldType = 2527 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2528 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2529 } 2530 2531 const RecordDecl *rec = field->getParent(); 2532 QualType type = field->getType(); 2533 CharUnits alignment = getContext().getDeclAlign(field); 2534 2535 // FIXME: It should be impossible to have an LValue without alignment for a 2536 // complete type. 2537 if (!base.getAlignment().isZero()) 2538 alignment = std::min(alignment, base.getAlignment()); 2539 2540 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2541 2542 llvm::Value *addr = base.getAddress(); 2543 unsigned cvr = base.getVRQualifiers(); 2544 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2545 if (rec->isUnion()) { 2546 // For unions, there is no pointer adjustment. 2547 assert(!type->isReferenceType() && "union has reference member"); 2548 // TODO: handle path-aware TBAA for union. 2549 TBAAPath = false; 2550 } else { 2551 // For structs, we GEP to the field that the record layout suggests. 2552 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2553 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2554 2555 // If this is a reference field, load the reference right now. 2556 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2557 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2558 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2559 load->setAlignment(alignment.getQuantity()); 2560 2561 // Loading the reference will disable path-aware TBAA. 2562 TBAAPath = false; 2563 if (CGM.shouldUseTBAA()) { 2564 llvm::MDNode *tbaa; 2565 if (mayAlias) 2566 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2567 else 2568 tbaa = CGM.getTBAAInfo(type); 2569 if (tbaa) 2570 CGM.DecorateInstruction(load, tbaa); 2571 } 2572 2573 addr = load; 2574 mayAlias = false; 2575 type = refType->getPointeeType(); 2576 if (type->isIncompleteType()) 2577 alignment = CharUnits(); 2578 else 2579 alignment = getContext().getTypeAlignInChars(type); 2580 cvr = 0; // qualifiers don't recursively apply to referencee 2581 } 2582 } 2583 2584 // Make sure that the address is pointing to the right type. This is critical 2585 // for both unions and structs. A union needs a bitcast, a struct element 2586 // will need a bitcast if the LLVM type laid out doesn't match the desired 2587 // type. 2588 addr = EmitBitCastOfLValueToProperType(*this, addr, 2589 CGM.getTypes().ConvertTypeForMem(type), 2590 field->getName()); 2591 2592 if (field->hasAttr<AnnotateAttr>()) 2593 addr = EmitFieldAnnotations(field, addr); 2594 2595 LValue LV = MakeAddrLValue(addr, type, alignment); 2596 LV.getQuals().addCVRQualifiers(cvr); 2597 if (TBAAPath) { 2598 const ASTRecordLayout &Layout = 2599 getContext().getASTRecordLayout(field->getParent()); 2600 // Set the base type to be the base type of the base LValue and 2601 // update offset to be relative to the base type. 2602 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2603 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2604 Layout.getFieldOffset(field->getFieldIndex()) / 2605 getContext().getCharWidth()); 2606 } 2607 2608 // __weak attribute on a field is ignored. 2609 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2610 LV.getQuals().removeObjCGCAttr(); 2611 2612 // Fields of may_alias structs act like 'char' for TBAA purposes. 2613 // FIXME: this should get propagated down through anonymous structs 2614 // and unions. 2615 if (mayAlias && LV.getTBAAInfo()) 2616 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2617 2618 return LV; 2619 } 2620 2621 LValue 2622 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2623 const FieldDecl *Field) { 2624 QualType FieldType = Field->getType(); 2625 2626 if (!FieldType->isReferenceType()) 2627 return EmitLValueForField(Base, Field); 2628 2629 const CGRecordLayout &RL = 2630 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2631 unsigned idx = RL.getLLVMFieldNo(Field); 2632 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2633 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2634 2635 // Make sure that the address is pointing to the right type. This is critical 2636 // for both unions and structs. A union needs a bitcast, a struct element 2637 // will need a bitcast if the LLVM type laid out doesn't match the desired 2638 // type. 2639 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2640 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2641 2642 CharUnits Alignment = getContext().getDeclAlign(Field); 2643 2644 // FIXME: It should be impossible to have an LValue without alignment for a 2645 // complete type. 2646 if (!Base.getAlignment().isZero()) 2647 Alignment = std::min(Alignment, Base.getAlignment()); 2648 2649 return MakeAddrLValue(V, FieldType, Alignment); 2650 } 2651 2652 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2653 if (E->isFileScope()) { 2654 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2655 return MakeAddrLValue(GlobalPtr, E->getType()); 2656 } 2657 if (E->getType()->isVariablyModifiedType()) 2658 // make sure to emit the VLA size. 2659 EmitVariablyModifiedType(E->getType()); 2660 2661 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2662 const Expr *InitExpr = E->getInitializer(); 2663 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2664 2665 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2666 /*Init*/ true); 2667 2668 return Result; 2669 } 2670 2671 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2672 if (!E->isGLValue()) 2673 // Initializing an aggregate temporary in C++11: T{...}. 2674 return EmitAggExprToLValue(E); 2675 2676 // An lvalue initializer list must be initializing a reference. 2677 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2678 return EmitLValue(E->getInit(0)); 2679 } 2680 2681 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2682 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2683 /// LValue is returned and the current block has been terminated. 2684 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2685 const Expr *Operand) { 2686 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2687 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2688 return None; 2689 } 2690 2691 return CGF.EmitLValue(Operand); 2692 } 2693 2694 LValue CodeGenFunction:: 2695 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2696 if (!expr->isGLValue()) { 2697 // ?: here should be an aggregate. 2698 assert(hasAggregateEvaluationKind(expr->getType()) && 2699 "Unexpected conditional operator!"); 2700 return EmitAggExprToLValue(expr); 2701 } 2702 2703 OpaqueValueMapping binding(*this, expr); 2704 RegionCounter Cnt = getPGORegionCounter(expr); 2705 2706 const Expr *condExpr = expr->getCond(); 2707 bool CondExprBool; 2708 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2709 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2710 if (!CondExprBool) std::swap(live, dead); 2711 2712 if (!ContainsLabel(dead)) { 2713 // If the true case is live, we need to track its region. 2714 if (CondExprBool) 2715 Cnt.beginRegion(Builder); 2716 return EmitLValue(live); 2717 } 2718 } 2719 2720 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2721 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2722 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2723 2724 ConditionalEvaluation eval(*this); 2725 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2726 2727 // Any temporaries created here are conditional. 2728 EmitBlock(lhsBlock); 2729 Cnt.beginRegion(Builder); 2730 eval.begin(*this); 2731 Optional<LValue> lhs = 2732 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2733 eval.end(*this); 2734 2735 if (lhs && !lhs->isSimple()) 2736 return EmitUnsupportedLValue(expr, "conditional operator"); 2737 2738 lhsBlock = Builder.GetInsertBlock(); 2739 if (lhs) 2740 Builder.CreateBr(contBlock); 2741 2742 // Any temporaries created here are conditional. 2743 EmitBlock(rhsBlock); 2744 eval.begin(*this); 2745 Optional<LValue> rhs = 2746 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2747 eval.end(*this); 2748 if (rhs && !rhs->isSimple()) 2749 return EmitUnsupportedLValue(expr, "conditional operator"); 2750 rhsBlock = Builder.GetInsertBlock(); 2751 2752 EmitBlock(contBlock); 2753 2754 if (lhs && rhs) { 2755 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2756 2, "cond-lvalue"); 2757 phi->addIncoming(lhs->getAddress(), lhsBlock); 2758 phi->addIncoming(rhs->getAddress(), rhsBlock); 2759 return MakeAddrLValue(phi, expr->getType()); 2760 } else { 2761 assert((lhs || rhs) && 2762 "both operands of glvalue conditional are throw-expressions?"); 2763 return lhs ? *lhs : *rhs; 2764 } 2765 } 2766 2767 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2768 /// type. If the cast is to a reference, we can have the usual lvalue result, 2769 /// otherwise if a cast is needed by the code generator in an lvalue context, 2770 /// then it must mean that we need the address of an aggregate in order to 2771 /// access one of its members. This can happen for all the reasons that casts 2772 /// are permitted with aggregate result, including noop aggregate casts, and 2773 /// cast from scalar to union. 2774 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2775 switch (E->getCastKind()) { 2776 case CK_ToVoid: 2777 case CK_BitCast: 2778 case CK_ArrayToPointerDecay: 2779 case CK_FunctionToPointerDecay: 2780 case CK_NullToMemberPointer: 2781 case CK_NullToPointer: 2782 case CK_IntegralToPointer: 2783 case CK_PointerToIntegral: 2784 case CK_PointerToBoolean: 2785 case CK_VectorSplat: 2786 case CK_IntegralCast: 2787 case CK_IntegralToBoolean: 2788 case CK_IntegralToFloating: 2789 case CK_FloatingToIntegral: 2790 case CK_FloatingToBoolean: 2791 case CK_FloatingCast: 2792 case CK_FloatingRealToComplex: 2793 case CK_FloatingComplexToReal: 2794 case CK_FloatingComplexToBoolean: 2795 case CK_FloatingComplexCast: 2796 case CK_FloatingComplexToIntegralComplex: 2797 case CK_IntegralRealToComplex: 2798 case CK_IntegralComplexToReal: 2799 case CK_IntegralComplexToBoolean: 2800 case CK_IntegralComplexCast: 2801 case CK_IntegralComplexToFloatingComplex: 2802 case CK_DerivedToBaseMemberPointer: 2803 case CK_BaseToDerivedMemberPointer: 2804 case CK_MemberPointerToBoolean: 2805 case CK_ReinterpretMemberPointer: 2806 case CK_AnyPointerToBlockPointerCast: 2807 case CK_ARCProduceObject: 2808 case CK_ARCConsumeObject: 2809 case CK_ARCReclaimReturnedObject: 2810 case CK_ARCExtendBlockObject: 2811 case CK_CopyAndAutoreleaseBlockObject: 2812 case CK_AddressSpaceConversion: 2813 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2814 2815 case CK_Dependent: 2816 llvm_unreachable("dependent cast kind in IR gen!"); 2817 2818 case CK_BuiltinFnToFnPtr: 2819 llvm_unreachable("builtin functions are handled elsewhere"); 2820 2821 // These are never l-values; just use the aggregate emission code. 2822 case CK_NonAtomicToAtomic: 2823 case CK_AtomicToNonAtomic: 2824 return EmitAggExprToLValue(E); 2825 2826 case CK_Dynamic: { 2827 LValue LV = EmitLValue(E->getSubExpr()); 2828 llvm::Value *V = LV.getAddress(); 2829 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2830 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2831 } 2832 2833 case CK_ConstructorConversion: 2834 case CK_UserDefinedConversion: 2835 case CK_CPointerToObjCPointerCast: 2836 case CK_BlockPointerToObjCPointerCast: 2837 case CK_NoOp: 2838 case CK_LValueToRValue: 2839 return EmitLValue(E->getSubExpr()); 2840 2841 case CK_UncheckedDerivedToBase: 2842 case CK_DerivedToBase: { 2843 const RecordType *DerivedClassTy = 2844 E->getSubExpr()->getType()->getAs<RecordType>(); 2845 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2846 2847 LValue LV = EmitLValue(E->getSubExpr()); 2848 llvm::Value *This = LV.getAddress(); 2849 2850 // Perform the derived-to-base conversion 2851 llvm::Value *Base = GetAddressOfBaseClass( 2852 This, DerivedClassDecl, E->path_begin(), E->path_end(), 2853 /*NullCheckValue=*/false, E->getExprLoc()); 2854 2855 return MakeAddrLValue(Base, E->getType()); 2856 } 2857 case CK_ToUnion: 2858 return EmitAggExprToLValue(E); 2859 case CK_BaseToDerived: { 2860 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2861 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2862 2863 LValue LV = EmitLValue(E->getSubExpr()); 2864 2865 // Perform the base-to-derived conversion 2866 llvm::Value *Derived = 2867 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2868 E->path_begin(), E->path_end(), 2869 /*NullCheckValue=*/false); 2870 2871 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2872 // performed and the object is not of the derived type. 2873 if (sanitizePerformTypeCheck()) 2874 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2875 Derived, E->getType()); 2876 2877 return MakeAddrLValue(Derived, E->getType()); 2878 } 2879 case CK_LValueBitCast: { 2880 // This must be a reinterpret_cast (or c-style equivalent). 2881 const auto *CE = cast<ExplicitCastExpr>(E); 2882 2883 LValue LV = EmitLValue(E->getSubExpr()); 2884 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2885 ConvertType(CE->getTypeAsWritten())); 2886 return MakeAddrLValue(V, E->getType()); 2887 } 2888 case CK_ObjCObjectLValueCast: { 2889 LValue LV = EmitLValue(E->getSubExpr()); 2890 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2891 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2892 ConvertType(ToType)); 2893 return MakeAddrLValue(V, E->getType()); 2894 } 2895 case CK_ZeroToOCLEvent: 2896 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2897 } 2898 2899 llvm_unreachable("Unhandled lvalue cast kind?"); 2900 } 2901 2902 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2903 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2904 return getOpaqueLValueMapping(e); 2905 } 2906 2907 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2908 const FieldDecl *FD, 2909 SourceLocation Loc) { 2910 QualType FT = FD->getType(); 2911 LValue FieldLV = EmitLValueForField(LV, FD); 2912 switch (getEvaluationKind(FT)) { 2913 case TEK_Complex: 2914 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 2915 case TEK_Aggregate: 2916 return FieldLV.asAggregateRValue(); 2917 case TEK_Scalar: 2918 return EmitLoadOfLValue(FieldLV, Loc); 2919 } 2920 llvm_unreachable("bad evaluation kind"); 2921 } 2922 2923 //===--------------------------------------------------------------------===// 2924 // Expression Emission 2925 //===--------------------------------------------------------------------===// 2926 2927 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2928 ReturnValueSlot ReturnValue) { 2929 if (CGDebugInfo *DI = getDebugInfo()) { 2930 SourceLocation Loc = E->getLocStart(); 2931 // Force column info to be generated so we can differentiate 2932 // multiple call sites on the same line in the debug info. 2933 // FIXME: This is insufficient. Two calls coming from the same macro 2934 // expansion will still get the same line/column and break debug info. It's 2935 // possible that LLVM can be fixed to not rely on this uniqueness, at which 2936 // point this workaround can be removed. 2937 const FunctionDecl* Callee = E->getDirectCallee(); 2938 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2939 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2940 } 2941 2942 // Builtins never have block type. 2943 if (E->getCallee()->getType()->isBlockPointerType()) 2944 return EmitBlockCallExpr(E, ReturnValue); 2945 2946 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 2947 return EmitCXXMemberCallExpr(CE, ReturnValue); 2948 2949 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2950 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2951 2952 const Decl *TargetDecl = E->getCalleeDecl(); 2953 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2954 if (unsigned builtinID = FD->getBuiltinID()) 2955 return EmitBuiltinExpr(FD, builtinID, E); 2956 } 2957 2958 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2959 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2960 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2961 2962 if (const auto *PseudoDtor = 2963 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2964 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2965 if (getLangOpts().ObjCAutoRefCount && 2966 DestroyedType->isObjCLifetimeType() && 2967 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2968 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2969 // Automatic Reference Counting: 2970 // If the pseudo-expression names a retainable object with weak or 2971 // strong lifetime, the object shall be released. 2972 Expr *BaseExpr = PseudoDtor->getBase(); 2973 llvm::Value *BaseValue = nullptr; 2974 Qualifiers BaseQuals; 2975 2976 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2977 if (PseudoDtor->isArrow()) { 2978 BaseValue = EmitScalarExpr(BaseExpr); 2979 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2980 BaseQuals = PTy->getPointeeType().getQualifiers(); 2981 } else { 2982 LValue BaseLV = EmitLValue(BaseExpr); 2983 BaseValue = BaseLV.getAddress(); 2984 QualType BaseTy = BaseExpr->getType(); 2985 BaseQuals = BaseTy.getQualifiers(); 2986 } 2987 2988 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2989 case Qualifiers::OCL_None: 2990 case Qualifiers::OCL_ExplicitNone: 2991 case Qualifiers::OCL_Autoreleasing: 2992 break; 2993 2994 case Qualifiers::OCL_Strong: 2995 EmitARCRelease(Builder.CreateLoad(BaseValue, 2996 PseudoDtor->getDestroyedType().isVolatileQualified()), 2997 ARCPreciseLifetime); 2998 break; 2999 3000 case Qualifiers::OCL_Weak: 3001 EmitARCDestroyWeak(BaseValue); 3002 break; 3003 } 3004 } else { 3005 // C++ [expr.pseudo]p1: 3006 // The result shall only be used as the operand for the function call 3007 // operator (), and the result of such a call has type void. The only 3008 // effect is the evaluation of the postfix-expression before the dot or 3009 // arrow. 3010 EmitScalarExpr(E->getCallee()); 3011 } 3012 3013 return RValue::get(nullptr); 3014 } 3015 3016 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3017 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3018 TargetDecl); 3019 } 3020 3021 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3022 // Comma expressions just emit their LHS then their RHS as an l-value. 3023 if (E->getOpcode() == BO_Comma) { 3024 EmitIgnoredExpr(E->getLHS()); 3025 EnsureInsertPoint(); 3026 return EmitLValue(E->getRHS()); 3027 } 3028 3029 if (E->getOpcode() == BO_PtrMemD || 3030 E->getOpcode() == BO_PtrMemI) 3031 return EmitPointerToDataMemberBinaryExpr(E); 3032 3033 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3034 3035 // Note that in all of these cases, __block variables need the RHS 3036 // evaluated first just in case the variable gets moved by the RHS. 3037 3038 switch (getEvaluationKind(E->getType())) { 3039 case TEK_Scalar: { 3040 switch (E->getLHS()->getType().getObjCLifetime()) { 3041 case Qualifiers::OCL_Strong: 3042 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3043 3044 case Qualifiers::OCL_Autoreleasing: 3045 return EmitARCStoreAutoreleasing(E).first; 3046 3047 // No reason to do any of these differently. 3048 case Qualifiers::OCL_None: 3049 case Qualifiers::OCL_ExplicitNone: 3050 case Qualifiers::OCL_Weak: 3051 break; 3052 } 3053 3054 RValue RV = EmitAnyExpr(E->getRHS()); 3055 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3056 EmitStoreThroughLValue(RV, LV); 3057 return LV; 3058 } 3059 3060 case TEK_Complex: 3061 return EmitComplexAssignmentLValue(E); 3062 3063 case TEK_Aggregate: 3064 return EmitAggExprToLValue(E); 3065 } 3066 llvm_unreachable("bad evaluation kind"); 3067 } 3068 3069 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3070 RValue RV = EmitCallExpr(E); 3071 3072 if (!RV.isScalar()) 3073 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3074 3075 assert(E->getCallReturnType()->isReferenceType() && 3076 "Can't have a scalar return unless the return type is a " 3077 "reference type!"); 3078 3079 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3080 } 3081 3082 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3083 // FIXME: This shouldn't require another copy. 3084 return EmitAggExprToLValue(E); 3085 } 3086 3087 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3088 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3089 && "binding l-value to type which needs a temporary"); 3090 AggValueSlot Slot = CreateAggTemp(E->getType()); 3091 EmitCXXConstructExpr(E, Slot); 3092 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3093 } 3094 3095 LValue 3096 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3097 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3098 } 3099 3100 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3101 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3102 ConvertType(E->getType())->getPointerTo()); 3103 } 3104 3105 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3106 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3107 } 3108 3109 LValue 3110 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3111 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3112 Slot.setExternallyDestructed(); 3113 EmitAggExpr(E->getSubExpr(), Slot); 3114 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3115 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3116 } 3117 3118 LValue 3119 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3120 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3121 EmitLambdaExpr(E, Slot); 3122 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3123 } 3124 3125 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3126 RValue RV = EmitObjCMessageExpr(E); 3127 3128 if (!RV.isScalar()) 3129 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3130 3131 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3132 "Can't have a scalar return unless the return type is a " 3133 "reference type!"); 3134 3135 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3136 } 3137 3138 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3139 llvm::Value *V = 3140 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3141 return MakeAddrLValue(V, E->getType()); 3142 } 3143 3144 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3145 const ObjCIvarDecl *Ivar) { 3146 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3147 } 3148 3149 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3150 llvm::Value *BaseValue, 3151 const ObjCIvarDecl *Ivar, 3152 unsigned CVRQualifiers) { 3153 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3154 Ivar, CVRQualifiers); 3155 } 3156 3157 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3158 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3159 llvm::Value *BaseValue = nullptr; 3160 const Expr *BaseExpr = E->getBase(); 3161 Qualifiers BaseQuals; 3162 QualType ObjectTy; 3163 if (E->isArrow()) { 3164 BaseValue = EmitScalarExpr(BaseExpr); 3165 ObjectTy = BaseExpr->getType()->getPointeeType(); 3166 BaseQuals = ObjectTy.getQualifiers(); 3167 } else { 3168 LValue BaseLV = EmitLValue(BaseExpr); 3169 // FIXME: this isn't right for bitfields. 3170 BaseValue = BaseLV.getAddress(); 3171 ObjectTy = BaseExpr->getType(); 3172 BaseQuals = ObjectTy.getQualifiers(); 3173 } 3174 3175 LValue LV = 3176 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3177 BaseQuals.getCVRQualifiers()); 3178 setObjCGCLValueClass(getContext(), E, LV); 3179 return LV; 3180 } 3181 3182 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3183 // Can only get l-value for message expression returning aggregate type 3184 RValue RV = EmitAnyExprToTemp(E); 3185 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3186 } 3187 3188 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3189 const CallExpr *E, ReturnValueSlot ReturnValue, 3190 const Decl *TargetDecl) { 3191 // Get the actual function type. The callee type will always be a pointer to 3192 // function type or a block pointer type. 3193 assert(CalleeType->isFunctionPointerType() && 3194 "Call must have function pointer type!"); 3195 3196 CalleeType = getContext().getCanonicalType(CalleeType); 3197 3198 const auto *FnType = 3199 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3200 3201 // Force column info to differentiate multiple inlined call sites on 3202 // the same line, analoguous to EmitCallExpr. 3203 // FIXME: This is insufficient. Two calls coming from the same macro expansion 3204 // will still get the same line/column and break debug info. It's possible 3205 // that LLVM can be fixed to not rely on this uniqueness, at which point this 3206 // workaround can be removed. 3207 bool ForceColumnInfo = false; 3208 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3209 ForceColumnInfo = FD->isInlineSpecified(); 3210 3211 if (getLangOpts().CPlusPlus && SanOpts->Function && 3212 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3213 if (llvm::Constant *PrefixSig = 3214 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3215 SanitizerScope SanScope(this); 3216 llvm::Constant *FTRTTIConst = 3217 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3218 llvm::Type *PrefixStructTyElems[] = { 3219 PrefixSig->getType(), 3220 FTRTTIConst->getType() 3221 }; 3222 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3223 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3224 3225 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3226 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3227 llvm::Value *CalleeSigPtr = 3228 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3229 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3230 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3231 3232 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3233 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3234 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3235 3236 EmitBlock(TypeCheck); 3237 llvm::Value *CalleeRTTIPtr = 3238 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3239 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3240 llvm::Value *CalleeRTTIMatch = 3241 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3242 llvm::Constant *StaticData[] = { 3243 EmitCheckSourceLocation(E->getLocStart()), 3244 EmitCheckTypeDescriptor(CalleeType) 3245 }; 3246 EmitCheck(CalleeRTTIMatch, 3247 "function_type_mismatch", 3248 StaticData, 3249 Callee, 3250 CRK_Recoverable); 3251 3252 Builder.CreateBr(Cont); 3253 EmitBlock(Cont); 3254 } 3255 } 3256 3257 CallArgList Args; 3258 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(), 3259 E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0, 3260 ForceColumnInfo); 3261 3262 const CGFunctionInfo &FnInfo = 3263 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3264 3265 // C99 6.5.2.2p6: 3266 // If the expression that denotes the called function has a type 3267 // that does not include a prototype, [the default argument 3268 // promotions are performed]. If the number of arguments does not 3269 // equal the number of parameters, the behavior is undefined. If 3270 // the function is defined with a type that includes a prototype, 3271 // and either the prototype ends with an ellipsis (, ...) or the 3272 // types of the arguments after promotion are not compatible with 3273 // the types of the parameters, the behavior is undefined. If the 3274 // function is defined with a type that does not include a 3275 // prototype, and the types of the arguments after promotion are 3276 // not compatible with those of the parameters after promotion, 3277 // the behavior is undefined [except in some trivial cases]. 3278 // That is, in the general case, we should assume that a call 3279 // through an unprototyped function type works like a *non-variadic* 3280 // call. The way we make this work is to cast to the exact type 3281 // of the promoted arguments. 3282 if (isa<FunctionNoProtoType>(FnType)) { 3283 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3284 CalleeTy = CalleeTy->getPointerTo(); 3285 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3286 } 3287 3288 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3289 } 3290 3291 LValue CodeGenFunction:: 3292 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3293 llvm::Value *BaseV; 3294 if (E->getOpcode() == BO_PtrMemI) 3295 BaseV = EmitScalarExpr(E->getLHS()); 3296 else 3297 BaseV = EmitLValue(E->getLHS()).getAddress(); 3298 3299 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3300 3301 const MemberPointerType *MPT 3302 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3303 3304 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3305 *this, E, BaseV, OffsetV, MPT); 3306 3307 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3308 } 3309 3310 /// Given the address of a temporary variable, produce an r-value of 3311 /// its type. 3312 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3313 QualType type, 3314 SourceLocation loc) { 3315 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3316 switch (getEvaluationKind(type)) { 3317 case TEK_Complex: 3318 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3319 case TEK_Aggregate: 3320 return lvalue.asAggregateRValue(); 3321 case TEK_Scalar: 3322 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3323 } 3324 llvm_unreachable("bad evaluation kind"); 3325 } 3326 3327 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3328 assert(Val->getType()->isFPOrFPVectorTy()); 3329 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3330 return; 3331 3332 llvm::MDBuilder MDHelper(getLLVMContext()); 3333 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3334 3335 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3336 } 3337 3338 namespace { 3339 struct LValueOrRValue { 3340 LValue LV; 3341 RValue RV; 3342 }; 3343 } 3344 3345 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3346 const PseudoObjectExpr *E, 3347 bool forLValue, 3348 AggValueSlot slot) { 3349 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3350 3351 // Find the result expression, if any. 3352 const Expr *resultExpr = E->getResultExpr(); 3353 LValueOrRValue result; 3354 3355 for (PseudoObjectExpr::const_semantics_iterator 3356 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3357 const Expr *semantic = *i; 3358 3359 // If this semantic expression is an opaque value, bind it 3360 // to the result of its source expression. 3361 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3362 3363 // If this is the result expression, we may need to evaluate 3364 // directly into the slot. 3365 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3366 OVMA opaqueData; 3367 if (ov == resultExpr && ov->isRValue() && !forLValue && 3368 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3369 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3370 3371 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3372 opaqueData = OVMA::bind(CGF, ov, LV); 3373 result.RV = slot.asRValue(); 3374 3375 // Otherwise, emit as normal. 3376 } else { 3377 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3378 3379 // If this is the result, also evaluate the result now. 3380 if (ov == resultExpr) { 3381 if (forLValue) 3382 result.LV = CGF.EmitLValue(ov); 3383 else 3384 result.RV = CGF.EmitAnyExpr(ov, slot); 3385 } 3386 } 3387 3388 opaques.push_back(opaqueData); 3389 3390 // Otherwise, if the expression is the result, evaluate it 3391 // and remember the result. 3392 } else if (semantic == resultExpr) { 3393 if (forLValue) 3394 result.LV = CGF.EmitLValue(semantic); 3395 else 3396 result.RV = CGF.EmitAnyExpr(semantic, slot); 3397 3398 // Otherwise, evaluate the expression in an ignored context. 3399 } else { 3400 CGF.EmitIgnoredExpr(semantic); 3401 } 3402 } 3403 3404 // Unbind all the opaques now. 3405 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3406 opaques[i].unbind(CGF); 3407 3408 return result; 3409 } 3410 3411 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3412 AggValueSlot slot) { 3413 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3414 } 3415 3416 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3417 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3418 } 3419