1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/Hashing.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/Support/ConvertUTF.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===--------------------------------------------------------------------===// 36 // Miscellaneous Helper Methods 37 //===--------------------------------------------------------------------===// 38 39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49 } 50 51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 52 /// block. 53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58 } 59 60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65 } 66 67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74 } 75 76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83 } 84 85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86 /// expression and compare the result against zero, returning an Int1Ty value. 87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 89 llvm::Value *MemPtr = EmitScalarExpr(E); 90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 91 } 92 93 QualType BoolTy = getContext().BoolTy; 94 if (!E->getType()->isAnyComplexType()) 95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 96 97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 98 } 99 100 /// EmitIgnoredExpr - Emit code to compute the specified expression, 101 /// ignoring the result. 102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 103 if (E->isRValue()) 104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 105 106 // Just emit it as an l-value and drop the result. 107 EmitLValue(E); 108 } 109 110 /// EmitAnyExpr - Emit code to compute the specified expression which 111 /// can have any type. The result is returned as an RValue struct. 112 /// If this is an aggregate expression, AggSlot indicates where the 113 /// result should be returned. 114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 115 AggValueSlot aggSlot, 116 bool ignoreResult) { 117 switch (getEvaluationKind(E->getType())) { 118 case TEK_Scalar: 119 return RValue::get(EmitScalarExpr(E, ignoreResult)); 120 case TEK_Complex: 121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 122 case TEK_Aggregate: 123 if (!ignoreResult && aggSlot.isIgnored()) 124 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 125 EmitAggExpr(E, aggSlot); 126 return aggSlot.asRValue(); 127 } 128 llvm_unreachable("bad evaluation kind"); 129 } 130 131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 132 /// always be accessible even if no aggregate location is provided. 133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 134 AggValueSlot AggSlot = AggValueSlot::ignored(); 135 136 if (hasAggregateEvaluationKind(E->getType())) 137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 138 return EmitAnyExpr(E, AggSlot); 139 } 140 141 /// EmitAnyExprToMem - Evaluate an expression into a given memory 142 /// location. 143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 144 llvm::Value *Location, 145 Qualifiers Quals, 146 bool IsInit) { 147 // FIXME: This function should take an LValue as an argument. 148 switch (getEvaluationKind(E->getType())) { 149 case TEK_Complex: 150 EmitComplexExprIntoLValue(E, 151 MakeNaturalAlignAddrLValue(Location, E->getType()), 152 /*isInit*/ false); 153 return; 154 155 case TEK_Aggregate: { 156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 158 AggValueSlot::IsDestructed_t(IsInit), 159 AggValueSlot::DoesNotNeedGCBarriers, 160 AggValueSlot::IsAliased_t(!IsInit))); 161 return; 162 } 163 164 case TEK_Scalar: { 165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 166 LValue LV = MakeAddrLValue(Location, E->getType()); 167 EmitStoreThroughLValue(RV, LV); 168 return; 169 } 170 } 171 llvm_unreachable("bad evaluation kind"); 172 } 173 174 static void 175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 176 const Expr *E, llvm::Value *ReferenceTemporary) { 177 // Objective-C++ ARC: 178 // If we are binding a reference to a temporary that has ownership, we 179 // need to perform retain/release operations on the temporary. 180 // 181 // FIXME: This should be looking at E, not M. 182 if (CGF.getLangOpts().ObjCAutoRefCount && 183 M->getType()->isObjCLifetimeType()) { 184 QualType ObjCARCReferenceLifetimeType = M->getType(); 185 switch (Qualifiers::ObjCLifetime Lifetime = 186 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 187 case Qualifiers::OCL_None: 188 case Qualifiers::OCL_ExplicitNone: 189 // Carry on to normal cleanup handling. 190 break; 191 192 case Qualifiers::OCL_Autoreleasing: 193 // Nothing to do; cleaned up by an autorelease pool. 194 return; 195 196 case Qualifiers::OCL_Strong: 197 case Qualifiers::OCL_Weak: 198 switch (StorageDuration Duration = M->getStorageDuration()) { 199 case SD_Static: 200 // Note: we intentionally do not register a cleanup to release 201 // the object on program termination. 202 return; 203 204 case SD_Thread: 205 // FIXME: We should probably register a cleanup in this case. 206 return; 207 208 case SD_Automatic: 209 case SD_FullExpression: 210 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 211 CodeGenFunction::Destroyer *Destroy; 212 CleanupKind CleanupKind; 213 if (Lifetime == Qualifiers::OCL_Strong) { 214 const ValueDecl *VD = M->getExtendingDecl(); 215 bool Precise = 216 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 217 CleanupKind = CGF.getARCCleanupKind(); 218 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 219 : &CodeGenFunction::destroyARCStrongImprecise; 220 } else { 221 // __weak objects always get EH cleanups; otherwise, exceptions 222 // could cause really nasty crashes instead of mere leaks. 223 CleanupKind = NormalAndEHCleanup; 224 Destroy = &CodeGenFunction::destroyARCWeak; 225 } 226 if (Duration == SD_FullExpression) 227 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 228 ObjCARCReferenceLifetimeType, *Destroy, 229 CleanupKind & EHCleanup); 230 else 231 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 232 ObjCARCReferenceLifetimeType, 233 *Destroy, CleanupKind & EHCleanup); 234 return; 235 236 case SD_Dynamic: 237 llvm_unreachable("temporary cannot have dynamic storage duration"); 238 } 239 llvm_unreachable("unknown storage duration"); 240 } 241 } 242 243 CXXDestructorDecl *ReferenceTemporaryDtor = 0; 244 if (const RecordType *RT = 245 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 246 // Get the destructor for the reference temporary. 247 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 248 if (!ClassDecl->hasTrivialDestructor()) 249 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 250 } 251 252 if (!ReferenceTemporaryDtor) 253 return; 254 255 // Call the destructor for the temporary. 256 switch (M->getStorageDuration()) { 257 case SD_Static: 258 case SD_Thread: { 259 llvm::Constant *CleanupFn; 260 llvm::Constant *CleanupArg; 261 if (E->getType()->isArrayType()) { 262 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 263 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 264 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions); 265 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 266 } else { 267 CleanupFn = 268 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 269 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 270 } 271 CGF.CGM.getCXXABI().registerGlobalDtor( 272 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 273 break; 274 } 275 276 case SD_FullExpression: 277 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 278 CodeGenFunction::destroyCXXObject, 279 CGF.getLangOpts().Exceptions); 280 break; 281 282 case SD_Automatic: 283 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 284 ReferenceTemporary, E->getType(), 285 CodeGenFunction::destroyCXXObject, 286 CGF.getLangOpts().Exceptions); 287 break; 288 289 case SD_Dynamic: 290 llvm_unreachable("temporary cannot have dynamic storage duration"); 291 } 292 } 293 294 static llvm::Value * 295 createReferenceTemporary(CodeGenFunction &CGF, 296 const MaterializeTemporaryExpr *M, const Expr *Inner) { 297 switch (M->getStorageDuration()) { 298 case SD_FullExpression: 299 case SD_Automatic: 300 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 301 302 case SD_Thread: 303 case SD_Static: 304 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 305 306 case SD_Dynamic: 307 llvm_unreachable("temporary can't have dynamic storage duration"); 308 } 309 llvm_unreachable("unknown storage duration"); 310 } 311 312 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 313 const MaterializeTemporaryExpr *M) { 314 const Expr *E = M->GetTemporaryExpr(); 315 316 if (getLangOpts().ObjCAutoRefCount && 317 M->getType()->isObjCLifetimeType() && 318 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 319 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 320 // FIXME: Fold this into the general case below. 321 llvm::Value *Object = createReferenceTemporary(*this, M, E); 322 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 323 324 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 325 // We should not have emitted the initializer for this temporary as a 326 // constant. 327 assert(!Var->hasInitializer()); 328 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 329 } 330 331 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 332 333 pushTemporaryCleanup(*this, M, E, Object); 334 return RefTempDst; 335 } 336 337 SmallVector<const Expr *, 2> CommaLHSs; 338 SmallVector<SubobjectAdjustment, 2> Adjustments; 339 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 340 341 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 342 EmitIgnoredExpr(CommaLHSs[I]); 343 344 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) { 345 if (opaque->getType()->isRecordType()) { 346 assert(Adjustments.empty()); 347 return EmitOpaqueValueLValue(opaque); 348 } 349 } 350 351 // Create and initialize the reference temporary. 352 llvm::Value *Object = createReferenceTemporary(*this, M, E); 353 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 354 // If the temporary is a global and has a constant initializer, we may 355 // have already initialized it. 356 if (!Var->hasInitializer()) { 357 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 358 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 359 } 360 } else { 361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 362 } 363 pushTemporaryCleanup(*this, M, E, Object); 364 365 // Perform derived-to-base casts and/or field accesses, to get from the 366 // temporary object we created (and, potentially, for which we extended 367 // the lifetime) to the subobject we're binding the reference to. 368 for (unsigned I = Adjustments.size(); I != 0; --I) { 369 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 370 switch (Adjustment.Kind) { 371 case SubobjectAdjustment::DerivedToBaseAdjustment: 372 Object = 373 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 374 Adjustment.DerivedToBase.BasePath->path_begin(), 375 Adjustment.DerivedToBase.BasePath->path_end(), 376 /*NullCheckValue=*/ false); 377 break; 378 379 case SubobjectAdjustment::FieldAdjustment: { 380 LValue LV = MakeAddrLValue(Object, E->getType()); 381 LV = EmitLValueForField(LV, Adjustment.Field); 382 assert(LV.isSimple() && 383 "materialized temporary field is not a simple lvalue"); 384 Object = LV.getAddress(); 385 break; 386 } 387 388 case SubobjectAdjustment::MemberPointerAdjustment: { 389 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 390 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 391 *this, Object, Ptr, Adjustment.Ptr.MPT); 392 break; 393 } 394 } 395 } 396 397 return MakeAddrLValue(Object, M->getType()); 398 } 399 400 RValue 401 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 402 // Emit the expression as an lvalue. 403 LValue LV = EmitLValue(E); 404 assert(LV.isSimple()); 405 llvm::Value *Value = LV.getAddress(); 406 407 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 408 // C++11 [dcl.ref]p5 (as amended by core issue 453): 409 // If a glvalue to which a reference is directly bound designates neither 410 // an existing object or function of an appropriate type nor a region of 411 // storage of suitable size and alignment to contain an object of the 412 // reference's type, the behavior is undefined. 413 QualType Ty = E->getType(); 414 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 415 } 416 417 return RValue::get(Value); 418 } 419 420 421 /// getAccessedFieldNo - Given an encoded value and a result number, return the 422 /// input field number being accessed. 423 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 424 const llvm::Constant *Elts) { 425 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 426 ->getZExtValue(); 427 } 428 429 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 430 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 431 llvm::Value *High) { 432 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 433 llvm::Value *K47 = Builder.getInt64(47); 434 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 435 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 436 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 437 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 438 return Builder.CreateMul(B1, KMul); 439 } 440 441 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 442 llvm::Value *Address, 443 QualType Ty, CharUnits Alignment) { 444 if (!SanitizePerformTypeCheck) 445 return; 446 447 // Don't check pointers outside the default address space. The null check 448 // isn't correct, the object-size check isn't supported by LLVM, and we can't 449 // communicate the addresses to the runtime handler for the vptr check. 450 if (Address->getType()->getPointerAddressSpace()) 451 return; 452 453 llvm::Value *Cond = 0; 454 llvm::BasicBlock *Done = 0; 455 456 if (SanOpts->Null) { 457 // The glvalue must not be an empty glvalue. 458 Cond = Builder.CreateICmpNE( 459 Address, llvm::Constant::getNullValue(Address->getType())); 460 461 if (TCK == TCK_DowncastPointer) { 462 // When performing a pointer downcast, it's OK if the value is null. 463 // Skip the remaining checks in that case. 464 Done = createBasicBlock("null"); 465 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 466 Builder.CreateCondBr(Cond, Rest, Done); 467 EmitBlock(Rest); 468 Cond = 0; 469 } 470 } 471 472 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 473 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 474 475 // The glvalue must refer to a large enough storage region. 476 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 477 // to check this. 478 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 479 llvm::Value *Min = Builder.getFalse(); 480 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 481 llvm::Value *LargeEnough = 482 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 483 llvm::ConstantInt::get(IntPtrTy, Size)); 484 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 485 } 486 487 uint64_t AlignVal = 0; 488 489 if (SanOpts->Alignment) { 490 AlignVal = Alignment.getQuantity(); 491 if (!Ty->isIncompleteType() && !AlignVal) 492 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 493 494 // The glvalue must be suitably aligned. 495 if (AlignVal) { 496 llvm::Value *Align = 497 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 498 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 499 llvm::Value *Aligned = 500 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 501 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 502 } 503 } 504 505 if (Cond) { 506 llvm::Constant *StaticData[] = { 507 EmitCheckSourceLocation(Loc), 508 EmitCheckTypeDescriptor(Ty), 509 llvm::ConstantInt::get(SizeTy, AlignVal), 510 llvm::ConstantInt::get(Int8Ty, TCK) 511 }; 512 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 513 } 514 515 // If possible, check that the vptr indicates that there is a subobject of 516 // type Ty at offset zero within this object. 517 // 518 // C++11 [basic.life]p5,6: 519 // [For storage which does not refer to an object within its lifetime] 520 // The program has undefined behavior if: 521 // -- the [pointer or glvalue] is used to access a non-static data member 522 // or call a non-static member function 523 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 524 if (SanOpts->Vptr && 525 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 526 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 527 RD && RD->hasDefinition() && RD->isDynamicClass()) { 528 // Compute a hash of the mangled name of the type. 529 // 530 // FIXME: This is not guaranteed to be deterministic! Move to a 531 // fingerprinting mechanism once LLVM provides one. For the time 532 // being the implementation happens to be deterministic. 533 SmallString<64> MangledName; 534 llvm::raw_svector_ostream Out(MangledName); 535 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 536 Out); 537 llvm::hash_code TypeHash = hash_value(Out.str()); 538 539 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 540 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 541 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 542 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 543 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 544 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 545 546 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 547 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 548 549 // Look the hash up in our cache. 550 const int CacheSize = 128; 551 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 552 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 553 "__ubsan_vptr_type_cache"); 554 llvm::Value *Slot = Builder.CreateAnd(Hash, 555 llvm::ConstantInt::get(IntPtrTy, 556 CacheSize-1)); 557 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 558 llvm::Value *CacheVal = 559 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 560 561 // If the hash isn't in the cache, call a runtime handler to perform the 562 // hard work of checking whether the vptr is for an object of the right 563 // type. This will either fill in the cache and return, or produce a 564 // diagnostic. 565 llvm::Constant *StaticData[] = { 566 EmitCheckSourceLocation(Loc), 567 EmitCheckTypeDescriptor(Ty), 568 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 569 llvm::ConstantInt::get(Int8Ty, TCK) 570 }; 571 llvm::Value *DynamicData[] = { Address, Hash }; 572 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 573 "dynamic_type_cache_miss", StaticData, DynamicData, 574 CRK_AlwaysRecoverable); 575 } 576 577 if (Done) { 578 Builder.CreateBr(Done); 579 EmitBlock(Done); 580 } 581 } 582 583 /// Determine whether this expression refers to a flexible array member in a 584 /// struct. We disable array bounds checks for such members. 585 static bool isFlexibleArrayMemberExpr(const Expr *E) { 586 // For compatibility with existing code, we treat arrays of length 0 or 587 // 1 as flexible array members. 588 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 589 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 590 if (CAT->getSize().ugt(1)) 591 return false; 592 } else if (!isa<IncompleteArrayType>(AT)) 593 return false; 594 595 E = E->IgnoreParens(); 596 597 // A flexible array member must be the last member in the class. 598 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 599 // FIXME: If the base type of the member expr is not FD->getParent(), 600 // this should not be treated as a flexible array member access. 601 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 602 RecordDecl::field_iterator FI( 603 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 604 return ++FI == FD->getParent()->field_end(); 605 } 606 } 607 608 return false; 609 } 610 611 /// If Base is known to point to the start of an array, return the length of 612 /// that array. Return 0 if the length cannot be determined. 613 static llvm::Value *getArrayIndexingBound( 614 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 615 // For the vector indexing extension, the bound is the number of elements. 616 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 617 IndexedType = Base->getType(); 618 return CGF.Builder.getInt32(VT->getNumElements()); 619 } 620 621 Base = Base->IgnoreParens(); 622 623 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) { 624 if (CE->getCastKind() == CK_ArrayToPointerDecay && 625 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 626 IndexedType = CE->getSubExpr()->getType(); 627 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 628 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 629 return CGF.Builder.getInt(CAT->getSize()); 630 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) 631 return CGF.getVLASize(VAT).first; 632 } 633 } 634 635 return 0; 636 } 637 638 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 639 llvm::Value *Index, QualType IndexType, 640 bool Accessed) { 641 assert(SanOpts->Bounds && "should not be called unless adding bounds checks"); 642 643 QualType IndexedType; 644 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 645 if (!Bound) 646 return; 647 648 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 649 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 650 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 651 652 llvm::Constant *StaticData[] = { 653 EmitCheckSourceLocation(E->getExprLoc()), 654 EmitCheckTypeDescriptor(IndexedType), 655 EmitCheckTypeDescriptor(IndexType) 656 }; 657 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 658 : Builder.CreateICmpULE(IndexVal, BoundVal); 659 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 660 } 661 662 663 CodeGenFunction::ComplexPairTy CodeGenFunction:: 664 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 665 bool isInc, bool isPre) { 666 ComplexPairTy InVal = EmitLoadOfComplex(LV); 667 668 llvm::Value *NextVal; 669 if (isa<llvm::IntegerType>(InVal.first->getType())) { 670 uint64_t AmountVal = isInc ? 1 : -1; 671 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 672 673 // Add the inc/dec to the real part. 674 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 675 } else { 676 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 677 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 678 if (!isInc) 679 FVal.changeSign(); 680 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 681 682 // Add the inc/dec to the real part. 683 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 684 } 685 686 ComplexPairTy IncVal(NextVal, InVal.second); 687 688 // Store the updated result through the lvalue. 689 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 690 691 // If this is a postinc, return the value read from memory, otherwise use the 692 // updated value. 693 return isPre ? IncVal : InVal; 694 } 695 696 697 //===----------------------------------------------------------------------===// 698 // LValue Expression Emission 699 //===----------------------------------------------------------------------===// 700 701 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 702 if (Ty->isVoidType()) 703 return RValue::get(0); 704 705 switch (getEvaluationKind(Ty)) { 706 case TEK_Complex: { 707 llvm::Type *EltTy = 708 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 709 llvm::Value *U = llvm::UndefValue::get(EltTy); 710 return RValue::getComplex(std::make_pair(U, U)); 711 } 712 713 // If this is a use of an undefined aggregate type, the aggregate must have an 714 // identifiable address. Just because the contents of the value are undefined 715 // doesn't mean that the address can't be taken and compared. 716 case TEK_Aggregate: { 717 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 718 return RValue::getAggregate(DestPtr); 719 } 720 721 case TEK_Scalar: 722 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 723 } 724 llvm_unreachable("bad evaluation kind"); 725 } 726 727 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 728 const char *Name) { 729 ErrorUnsupported(E, Name); 730 return GetUndefRValue(E->getType()); 731 } 732 733 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 734 const char *Name) { 735 ErrorUnsupported(E, Name); 736 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 737 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 738 } 739 740 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 741 LValue LV; 742 if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E)) 743 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 744 else 745 LV = EmitLValue(E); 746 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 747 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 748 E->getType(), LV.getAlignment()); 749 return LV; 750 } 751 752 /// EmitLValue - Emit code to compute a designator that specifies the location 753 /// of the expression. 754 /// 755 /// This can return one of two things: a simple address or a bitfield reference. 756 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 757 /// an LLVM pointer type. 758 /// 759 /// If this returns a bitfield reference, nothing about the pointee type of the 760 /// LLVM value is known: For example, it may not be a pointer to an integer. 761 /// 762 /// If this returns a normal address, and if the lvalue's C type is fixed size, 763 /// this method guarantees that the returned pointer type will point to an LLVM 764 /// type of the same size of the lvalue's type. If the lvalue has a variable 765 /// length type, this is not possible. 766 /// 767 LValue CodeGenFunction::EmitLValue(const Expr *E) { 768 switch (E->getStmtClass()) { 769 default: return EmitUnsupportedLValue(E, "l-value expression"); 770 771 case Expr::ObjCPropertyRefExprClass: 772 llvm_unreachable("cannot emit a property reference directly"); 773 774 case Expr::ObjCSelectorExprClass: 775 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 776 case Expr::ObjCIsaExprClass: 777 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 778 case Expr::BinaryOperatorClass: 779 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 780 case Expr::CompoundAssignOperatorClass: 781 if (!E->getType()->isAnyComplexType()) 782 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 783 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 784 case Expr::CallExprClass: 785 case Expr::CXXMemberCallExprClass: 786 case Expr::CXXOperatorCallExprClass: 787 case Expr::UserDefinedLiteralClass: 788 return EmitCallExprLValue(cast<CallExpr>(E)); 789 case Expr::VAArgExprClass: 790 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 791 case Expr::DeclRefExprClass: 792 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 793 case Expr::ParenExprClass: 794 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 795 case Expr::GenericSelectionExprClass: 796 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 797 case Expr::PredefinedExprClass: 798 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 799 case Expr::StringLiteralClass: 800 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 801 case Expr::ObjCEncodeExprClass: 802 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 803 case Expr::PseudoObjectExprClass: 804 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 805 case Expr::InitListExprClass: 806 return EmitInitListLValue(cast<InitListExpr>(E)); 807 case Expr::CXXTemporaryObjectExprClass: 808 case Expr::CXXConstructExprClass: 809 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 810 case Expr::CXXBindTemporaryExprClass: 811 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 812 case Expr::CXXUuidofExprClass: 813 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 814 case Expr::LambdaExprClass: 815 return EmitLambdaLValue(cast<LambdaExpr>(E)); 816 817 case Expr::ExprWithCleanupsClass: { 818 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 819 enterFullExpression(cleanups); 820 RunCleanupsScope Scope(*this); 821 return EmitLValue(cleanups->getSubExpr()); 822 } 823 824 case Expr::CXXScalarValueInitExprClass: 825 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 826 case Expr::CXXDefaultArgExprClass: 827 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 828 case Expr::CXXDefaultInitExprClass: { 829 CXXDefaultInitExprScope Scope(*this); 830 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 831 } 832 case Expr::CXXTypeidExprClass: 833 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 834 835 case Expr::ObjCMessageExprClass: 836 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 837 case Expr::ObjCIvarRefExprClass: 838 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 839 case Expr::StmtExprClass: 840 return EmitStmtExprLValue(cast<StmtExpr>(E)); 841 case Expr::UnaryOperatorClass: 842 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 843 case Expr::ArraySubscriptExprClass: 844 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 845 case Expr::ExtVectorElementExprClass: 846 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 847 case Expr::MemberExprClass: 848 return EmitMemberExpr(cast<MemberExpr>(E)); 849 case Expr::CompoundLiteralExprClass: 850 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 851 case Expr::ConditionalOperatorClass: 852 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 853 case Expr::BinaryConditionalOperatorClass: 854 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 855 case Expr::ChooseExprClass: 856 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 857 case Expr::OpaqueValueExprClass: 858 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 859 case Expr::SubstNonTypeTemplateParmExprClass: 860 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 861 case Expr::ImplicitCastExprClass: 862 case Expr::CStyleCastExprClass: 863 case Expr::CXXFunctionalCastExprClass: 864 case Expr::CXXStaticCastExprClass: 865 case Expr::CXXDynamicCastExprClass: 866 case Expr::CXXReinterpretCastExprClass: 867 case Expr::CXXConstCastExprClass: 868 case Expr::ObjCBridgedCastExprClass: 869 return EmitCastLValue(cast<CastExpr>(E)); 870 871 case Expr::MaterializeTemporaryExprClass: 872 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 873 } 874 } 875 876 /// Given an object of the given canonical type, can we safely copy a 877 /// value out of it based on its initializer? 878 static bool isConstantEmittableObjectType(QualType type) { 879 assert(type.isCanonical()); 880 assert(!type->isReferenceType()); 881 882 // Must be const-qualified but non-volatile. 883 Qualifiers qs = type.getLocalQualifiers(); 884 if (!qs.hasConst() || qs.hasVolatile()) return false; 885 886 // Otherwise, all object types satisfy this except C++ classes with 887 // mutable subobjects or non-trivial copy/destroy behavior. 888 if (const RecordType *RT = dyn_cast<RecordType>(type)) 889 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 890 if (RD->hasMutableFields() || !RD->isTrivial()) 891 return false; 892 893 return true; 894 } 895 896 /// Can we constant-emit a load of a reference to a variable of the 897 /// given type? This is different from predicates like 898 /// Decl::isUsableInConstantExpressions because we do want it to apply 899 /// in situations that don't necessarily satisfy the language's rules 900 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 901 /// to do this with const float variables even if those variables 902 /// aren't marked 'constexpr'. 903 enum ConstantEmissionKind { 904 CEK_None, 905 CEK_AsReferenceOnly, 906 CEK_AsValueOrReference, 907 CEK_AsValueOnly 908 }; 909 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 910 type = type.getCanonicalType(); 911 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 912 if (isConstantEmittableObjectType(ref->getPointeeType())) 913 return CEK_AsValueOrReference; 914 return CEK_AsReferenceOnly; 915 } 916 if (isConstantEmittableObjectType(type)) 917 return CEK_AsValueOnly; 918 return CEK_None; 919 } 920 921 /// Try to emit a reference to the given value without producing it as 922 /// an l-value. This is actually more than an optimization: we can't 923 /// produce an l-value for variables that we never actually captured 924 /// in a block or lambda, which means const int variables or constexpr 925 /// literals or similar. 926 CodeGenFunction::ConstantEmission 927 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 928 ValueDecl *value = refExpr->getDecl(); 929 930 // The value needs to be an enum constant or a constant variable. 931 ConstantEmissionKind CEK; 932 if (isa<ParmVarDecl>(value)) { 933 CEK = CEK_None; 934 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 935 CEK = checkVarTypeForConstantEmission(var->getType()); 936 } else if (isa<EnumConstantDecl>(value)) { 937 CEK = CEK_AsValueOnly; 938 } else { 939 CEK = CEK_None; 940 } 941 if (CEK == CEK_None) return ConstantEmission(); 942 943 Expr::EvalResult result; 944 bool resultIsReference; 945 QualType resultType; 946 947 // It's best to evaluate all the way as an r-value if that's permitted. 948 if (CEK != CEK_AsReferenceOnly && 949 refExpr->EvaluateAsRValue(result, getContext())) { 950 resultIsReference = false; 951 resultType = refExpr->getType(); 952 953 // Otherwise, try to evaluate as an l-value. 954 } else if (CEK != CEK_AsValueOnly && 955 refExpr->EvaluateAsLValue(result, getContext())) { 956 resultIsReference = true; 957 resultType = value->getType(); 958 959 // Failure. 960 } else { 961 return ConstantEmission(); 962 } 963 964 // In any case, if the initializer has side-effects, abandon ship. 965 if (result.HasSideEffects) 966 return ConstantEmission(); 967 968 // Emit as a constant. 969 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 970 971 // Make sure we emit a debug reference to the global variable. 972 // This should probably fire even for 973 if (isa<VarDecl>(value)) { 974 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 975 EmitDeclRefExprDbgValue(refExpr, C); 976 } else { 977 assert(isa<EnumConstantDecl>(value)); 978 EmitDeclRefExprDbgValue(refExpr, C); 979 } 980 981 // If we emitted a reference constant, we need to dereference that. 982 if (resultIsReference) 983 return ConstantEmission::forReference(C); 984 985 return ConstantEmission::forValue(C); 986 } 987 988 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 989 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 990 lvalue.getAlignment().getQuantity(), 991 lvalue.getType(), lvalue.getTBAAInfo(), 992 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 993 } 994 995 static bool hasBooleanRepresentation(QualType Ty) { 996 if (Ty->isBooleanType()) 997 return true; 998 999 if (const EnumType *ET = Ty->getAs<EnumType>()) 1000 return ET->getDecl()->getIntegerType()->isBooleanType(); 1001 1002 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1003 return hasBooleanRepresentation(AT->getValueType()); 1004 1005 return false; 1006 } 1007 1008 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1009 llvm::APInt &Min, llvm::APInt &End, 1010 bool StrictEnums) { 1011 const EnumType *ET = Ty->getAs<EnumType>(); 1012 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1013 ET && !ET->getDecl()->isFixed(); 1014 bool IsBool = hasBooleanRepresentation(Ty); 1015 if (!IsBool && !IsRegularCPlusPlusEnum) 1016 return false; 1017 1018 if (IsBool) { 1019 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1020 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1021 } else { 1022 const EnumDecl *ED = ET->getDecl(); 1023 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1024 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1025 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1026 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1027 1028 if (NumNegativeBits) { 1029 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1030 assert(NumBits <= Bitwidth); 1031 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1032 Min = -End; 1033 } else { 1034 assert(NumPositiveBits <= Bitwidth); 1035 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1036 Min = llvm::APInt(Bitwidth, 0); 1037 } 1038 } 1039 return true; 1040 } 1041 1042 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1043 llvm::APInt Min, End; 1044 if (!getRangeForType(*this, Ty, Min, End, 1045 CGM.getCodeGenOpts().StrictEnums)) 1046 return 0; 1047 1048 llvm::MDBuilder MDHelper(getLLVMContext()); 1049 return MDHelper.createRange(Min, End); 1050 } 1051 1052 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1053 unsigned Alignment, QualType Ty, 1054 llvm::MDNode *TBAAInfo, 1055 QualType TBAABaseType, 1056 uint64_t TBAAOffset) { 1057 // For better performance, handle vector loads differently. 1058 if (Ty->isVectorType()) { 1059 llvm::Value *V; 1060 const llvm::Type *EltTy = 1061 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1062 1063 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 1064 1065 // Handle vectors of size 3, like size 4 for better performance. 1066 if (VTy->getNumElements() == 3) { 1067 1068 // Bitcast to vec4 type. 1069 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1070 4); 1071 llvm::PointerType *ptVec4Ty = 1072 llvm::PointerType::get(vec4Ty, 1073 (cast<llvm::PointerType>( 1074 Addr->getType()))->getAddressSpace()); 1075 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1076 "castToVec4"); 1077 // Now load value. 1078 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1079 1080 // Shuffle vector to get vec3. 1081 llvm::Constant *Mask[] = { 1082 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1083 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1084 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1085 }; 1086 1087 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1088 V = Builder.CreateShuffleVector(LoadVal, 1089 llvm::UndefValue::get(vec4Ty), 1090 MaskV, "extractVec"); 1091 return EmitFromMemory(V, Ty); 1092 } 1093 } 1094 1095 // Atomic operations have to be done on integral types. 1096 if (Ty->isAtomicType()) { 1097 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1098 CharUnits::fromQuantity(Alignment), 1099 getContext(), TBAAInfo); 1100 return EmitAtomicLoad(lvalue).getScalarVal(); 1101 } 1102 1103 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1104 if (Volatile) 1105 Load->setVolatile(true); 1106 if (Alignment) 1107 Load->setAlignment(Alignment); 1108 if (TBAAInfo) { 1109 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1110 TBAAOffset); 1111 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1112 } 1113 1114 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1115 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1116 llvm::APInt Min, End; 1117 if (getRangeForType(*this, Ty, Min, End, true)) { 1118 --End; 1119 llvm::Value *Check; 1120 if (!Min) 1121 Check = Builder.CreateICmpULE( 1122 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1123 else { 1124 llvm::Value *Upper = Builder.CreateICmpSLE( 1125 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1126 llvm::Value *Lower = Builder.CreateICmpSGE( 1127 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1128 Check = Builder.CreateAnd(Upper, Lower); 1129 } 1130 // FIXME: Provide a SourceLocation. 1131 EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty), 1132 EmitCheckValue(Load), CRK_Recoverable); 1133 } 1134 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1135 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1136 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1137 1138 return EmitFromMemory(Load, Ty); 1139 } 1140 1141 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1142 // Bool has a different representation in memory than in registers. 1143 if (hasBooleanRepresentation(Ty)) { 1144 // This should really always be an i1, but sometimes it's already 1145 // an i8, and it's awkward to track those cases down. 1146 if (Value->getType()->isIntegerTy(1)) 1147 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1148 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1149 "wrong value rep of bool"); 1150 } 1151 1152 return Value; 1153 } 1154 1155 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1156 // Bool has a different representation in memory than in registers. 1157 if (hasBooleanRepresentation(Ty)) { 1158 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1159 "wrong value rep of bool"); 1160 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1161 } 1162 1163 return Value; 1164 } 1165 1166 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1167 bool Volatile, unsigned Alignment, 1168 QualType Ty, 1169 llvm::MDNode *TBAAInfo, 1170 bool isInit, QualType TBAABaseType, 1171 uint64_t TBAAOffset) { 1172 1173 // Handle vectors differently to get better performance. 1174 if (Ty->isVectorType()) { 1175 llvm::Type *SrcTy = Value->getType(); 1176 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1177 // Handle vec3 special. 1178 if (VecTy->getNumElements() == 3) { 1179 llvm::LLVMContext &VMContext = getLLVMContext(); 1180 1181 // Our source is a vec3, do a shuffle vector to make it a vec4. 1182 SmallVector<llvm::Constant*, 4> Mask; 1183 Mask.push_back(llvm::ConstantInt::get( 1184 llvm::Type::getInt32Ty(VMContext), 1185 0)); 1186 Mask.push_back(llvm::ConstantInt::get( 1187 llvm::Type::getInt32Ty(VMContext), 1188 1)); 1189 Mask.push_back(llvm::ConstantInt::get( 1190 llvm::Type::getInt32Ty(VMContext), 1191 2)); 1192 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1193 1194 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1195 Value = Builder.CreateShuffleVector(Value, 1196 llvm::UndefValue::get(VecTy), 1197 MaskV, "extractVec"); 1198 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1199 } 1200 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1201 if (DstPtr->getElementType() != SrcTy) { 1202 llvm::Type *MemTy = 1203 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1204 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1205 } 1206 } 1207 1208 Value = EmitToMemory(Value, Ty); 1209 1210 if (Ty->isAtomicType()) { 1211 EmitAtomicStore(RValue::get(Value), 1212 LValue::MakeAddr(Addr, Ty, 1213 CharUnits::fromQuantity(Alignment), 1214 getContext(), TBAAInfo), 1215 isInit); 1216 return; 1217 } 1218 1219 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1220 if (Alignment) 1221 Store->setAlignment(Alignment); 1222 if (TBAAInfo) { 1223 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1224 TBAAOffset); 1225 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1226 } 1227 } 1228 1229 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1230 bool isInit) { 1231 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1232 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1233 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1234 lvalue.getTBAAOffset()); 1235 } 1236 1237 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1238 /// method emits the address of the lvalue, then loads the result as an rvalue, 1239 /// returning the rvalue. 1240 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1241 if (LV.isObjCWeak()) { 1242 // load of a __weak object. 1243 llvm::Value *AddrWeakObj = LV.getAddress(); 1244 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1245 AddrWeakObj)); 1246 } 1247 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1248 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1249 Object = EmitObjCConsumeObject(LV.getType(), Object); 1250 return RValue::get(Object); 1251 } 1252 1253 if (LV.isSimple()) { 1254 assert(!LV.getType()->isFunctionType()); 1255 1256 // Everything needs a load. 1257 return RValue::get(EmitLoadOfScalar(LV)); 1258 } 1259 1260 if (LV.isVectorElt()) { 1261 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1262 LV.isVolatileQualified()); 1263 Load->setAlignment(LV.getAlignment().getQuantity()); 1264 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1265 "vecext")); 1266 } 1267 1268 // If this is a reference to a subset of the elements of a vector, either 1269 // shuffle the input or extract/insert them as appropriate. 1270 if (LV.isExtVectorElt()) 1271 return EmitLoadOfExtVectorElementLValue(LV); 1272 1273 assert(LV.isBitField() && "Unknown LValue type!"); 1274 return EmitLoadOfBitfieldLValue(LV); 1275 } 1276 1277 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1278 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1279 1280 // Get the output type. 1281 llvm::Type *ResLTy = ConvertType(LV.getType()); 1282 1283 llvm::Value *Ptr = LV.getBitFieldAddr(); 1284 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1285 "bf.load"); 1286 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1287 1288 if (Info.IsSigned) { 1289 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1290 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1291 if (HighBits) 1292 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1293 if (Info.Offset + HighBits) 1294 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1295 } else { 1296 if (Info.Offset) 1297 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1298 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1299 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1300 Info.Size), 1301 "bf.clear"); 1302 } 1303 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1304 1305 return RValue::get(Val); 1306 } 1307 1308 // If this is a reference to a subset of the elements of a vector, create an 1309 // appropriate shufflevector. 1310 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1311 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1312 LV.isVolatileQualified()); 1313 Load->setAlignment(LV.getAlignment().getQuantity()); 1314 llvm::Value *Vec = Load; 1315 1316 const llvm::Constant *Elts = LV.getExtVectorElts(); 1317 1318 // If the result of the expression is a non-vector type, we must be extracting 1319 // a single element. Just codegen as an extractelement. 1320 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1321 if (!ExprVT) { 1322 unsigned InIdx = getAccessedFieldNo(0, Elts); 1323 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1324 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1325 } 1326 1327 // Always use shuffle vector to try to retain the original program structure 1328 unsigned NumResultElts = ExprVT->getNumElements(); 1329 1330 SmallVector<llvm::Constant*, 4> Mask; 1331 for (unsigned i = 0; i != NumResultElts; ++i) 1332 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1333 1334 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1335 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1336 MaskV); 1337 return RValue::get(Vec); 1338 } 1339 1340 1341 1342 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1343 /// lvalue, where both are guaranteed to the have the same type, and that type 1344 /// is 'Ty'. 1345 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1346 if (!Dst.isSimple()) { 1347 if (Dst.isVectorElt()) { 1348 // Read/modify/write the vector, inserting the new element. 1349 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1350 Dst.isVolatileQualified()); 1351 Load->setAlignment(Dst.getAlignment().getQuantity()); 1352 llvm::Value *Vec = Load; 1353 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1354 Dst.getVectorIdx(), "vecins"); 1355 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1356 Dst.isVolatileQualified()); 1357 Store->setAlignment(Dst.getAlignment().getQuantity()); 1358 return; 1359 } 1360 1361 // If this is an update of extended vector elements, insert them as 1362 // appropriate. 1363 if (Dst.isExtVectorElt()) 1364 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1365 1366 assert(Dst.isBitField() && "Unknown LValue type"); 1367 return EmitStoreThroughBitfieldLValue(Src, Dst); 1368 } 1369 1370 // There's special magic for assigning into an ARC-qualified l-value. 1371 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1372 switch (Lifetime) { 1373 case Qualifiers::OCL_None: 1374 llvm_unreachable("present but none"); 1375 1376 case Qualifiers::OCL_ExplicitNone: 1377 // nothing special 1378 break; 1379 1380 case Qualifiers::OCL_Strong: 1381 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1382 return; 1383 1384 case Qualifiers::OCL_Weak: 1385 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1386 return; 1387 1388 case Qualifiers::OCL_Autoreleasing: 1389 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1390 Src.getScalarVal())); 1391 // fall into the normal path 1392 break; 1393 } 1394 } 1395 1396 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1397 // load of a __weak object. 1398 llvm::Value *LvalueDst = Dst.getAddress(); 1399 llvm::Value *src = Src.getScalarVal(); 1400 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1401 return; 1402 } 1403 1404 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1405 // load of a __strong object. 1406 llvm::Value *LvalueDst = Dst.getAddress(); 1407 llvm::Value *src = Src.getScalarVal(); 1408 if (Dst.isObjCIvar()) { 1409 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1410 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1411 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1412 llvm::Value *dst = RHS; 1413 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1414 llvm::Value *LHS = 1415 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1416 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1417 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1418 BytesBetween); 1419 } else if (Dst.isGlobalObjCRef()) { 1420 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1421 Dst.isThreadLocalRef()); 1422 } 1423 else 1424 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1425 return; 1426 } 1427 1428 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1429 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1430 } 1431 1432 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1433 llvm::Value **Result) { 1434 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1435 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1436 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1437 1438 // Get the source value, truncated to the width of the bit-field. 1439 llvm::Value *SrcVal = Src.getScalarVal(); 1440 1441 // Cast the source to the storage type and shift it into place. 1442 SrcVal = Builder.CreateIntCast(SrcVal, 1443 Ptr->getType()->getPointerElementType(), 1444 /*IsSigned=*/false); 1445 llvm::Value *MaskedVal = SrcVal; 1446 1447 // See if there are other bits in the bitfield's storage we'll need to load 1448 // and mask together with source before storing. 1449 if (Info.StorageSize != Info.Size) { 1450 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1451 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1452 "bf.load"); 1453 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1454 1455 // Mask the source value as needed. 1456 if (!hasBooleanRepresentation(Dst.getType())) 1457 SrcVal = Builder.CreateAnd(SrcVal, 1458 llvm::APInt::getLowBitsSet(Info.StorageSize, 1459 Info.Size), 1460 "bf.value"); 1461 MaskedVal = SrcVal; 1462 if (Info.Offset) 1463 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1464 1465 // Mask out the original value. 1466 Val = Builder.CreateAnd(Val, 1467 ~llvm::APInt::getBitsSet(Info.StorageSize, 1468 Info.Offset, 1469 Info.Offset + Info.Size), 1470 "bf.clear"); 1471 1472 // Or together the unchanged values and the source value. 1473 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1474 } else { 1475 assert(Info.Offset == 0); 1476 } 1477 1478 // Write the new value back out. 1479 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1480 Dst.isVolatileQualified()); 1481 Store->setAlignment(Info.StorageAlignment); 1482 1483 // Return the new value of the bit-field, if requested. 1484 if (Result) { 1485 llvm::Value *ResultVal = MaskedVal; 1486 1487 // Sign extend the value if needed. 1488 if (Info.IsSigned) { 1489 assert(Info.Size <= Info.StorageSize); 1490 unsigned HighBits = Info.StorageSize - Info.Size; 1491 if (HighBits) { 1492 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1493 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1494 } 1495 } 1496 1497 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1498 "bf.result.cast"); 1499 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1500 } 1501 } 1502 1503 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1504 LValue Dst) { 1505 // This access turns into a read/modify/write of the vector. Load the input 1506 // value now. 1507 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1508 Dst.isVolatileQualified()); 1509 Load->setAlignment(Dst.getAlignment().getQuantity()); 1510 llvm::Value *Vec = Load; 1511 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1512 1513 llvm::Value *SrcVal = Src.getScalarVal(); 1514 1515 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1516 unsigned NumSrcElts = VTy->getNumElements(); 1517 unsigned NumDstElts = 1518 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1519 if (NumDstElts == NumSrcElts) { 1520 // Use shuffle vector is the src and destination are the same number of 1521 // elements and restore the vector mask since it is on the side it will be 1522 // stored. 1523 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1524 for (unsigned i = 0; i != NumSrcElts; ++i) 1525 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1526 1527 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1528 Vec = Builder.CreateShuffleVector(SrcVal, 1529 llvm::UndefValue::get(Vec->getType()), 1530 MaskV); 1531 } else if (NumDstElts > NumSrcElts) { 1532 // Extended the source vector to the same length and then shuffle it 1533 // into the destination. 1534 // FIXME: since we're shuffling with undef, can we just use the indices 1535 // into that? This could be simpler. 1536 SmallVector<llvm::Constant*, 4> ExtMask; 1537 for (unsigned i = 0; i != NumSrcElts; ++i) 1538 ExtMask.push_back(Builder.getInt32(i)); 1539 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1540 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1541 llvm::Value *ExtSrcVal = 1542 Builder.CreateShuffleVector(SrcVal, 1543 llvm::UndefValue::get(SrcVal->getType()), 1544 ExtMaskV); 1545 // build identity 1546 SmallVector<llvm::Constant*, 4> Mask; 1547 for (unsigned i = 0; i != NumDstElts; ++i) 1548 Mask.push_back(Builder.getInt32(i)); 1549 1550 // modify when what gets shuffled in 1551 for (unsigned i = 0; i != NumSrcElts; ++i) 1552 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1553 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1554 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1555 } else { 1556 // We should never shorten the vector 1557 llvm_unreachable("unexpected shorten vector length"); 1558 } 1559 } else { 1560 // If the Src is a scalar (not a vector) it must be updating one element. 1561 unsigned InIdx = getAccessedFieldNo(0, Elts); 1562 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1563 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1564 } 1565 1566 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1567 Dst.isVolatileQualified()); 1568 Store->setAlignment(Dst.getAlignment().getQuantity()); 1569 } 1570 1571 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1572 // generating write-barries API. It is currently a global, ivar, 1573 // or neither. 1574 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1575 LValue &LV, 1576 bool IsMemberAccess=false) { 1577 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1578 return; 1579 1580 if (isa<ObjCIvarRefExpr>(E)) { 1581 QualType ExpTy = E->getType(); 1582 if (IsMemberAccess && ExpTy->isPointerType()) { 1583 // If ivar is a structure pointer, assigning to field of 1584 // this struct follows gcc's behavior and makes it a non-ivar 1585 // writer-barrier conservatively. 1586 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1587 if (ExpTy->isRecordType()) { 1588 LV.setObjCIvar(false); 1589 return; 1590 } 1591 } 1592 LV.setObjCIvar(true); 1593 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1594 LV.setBaseIvarExp(Exp->getBase()); 1595 LV.setObjCArray(E->getType()->isArrayType()); 1596 return; 1597 } 1598 1599 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1600 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1601 if (VD->hasGlobalStorage()) { 1602 LV.setGlobalObjCRef(true); 1603 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1604 } 1605 } 1606 LV.setObjCArray(E->getType()->isArrayType()); 1607 return; 1608 } 1609 1610 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1611 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1612 return; 1613 } 1614 1615 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1616 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1617 if (LV.isObjCIvar()) { 1618 // If cast is to a structure pointer, follow gcc's behavior and make it 1619 // a non-ivar write-barrier. 1620 QualType ExpTy = E->getType(); 1621 if (ExpTy->isPointerType()) 1622 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1623 if (ExpTy->isRecordType()) 1624 LV.setObjCIvar(false); 1625 } 1626 return; 1627 } 1628 1629 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1630 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1631 return; 1632 } 1633 1634 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1635 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1636 return; 1637 } 1638 1639 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1640 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1641 return; 1642 } 1643 1644 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1645 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1646 return; 1647 } 1648 1649 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1650 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1651 if (LV.isObjCIvar() && !LV.isObjCArray()) 1652 // Using array syntax to assigning to what an ivar points to is not 1653 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1654 LV.setObjCIvar(false); 1655 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1656 // Using array syntax to assigning to what global points to is not 1657 // same as assigning to the global itself. {id *G;} G[i] = 0; 1658 LV.setGlobalObjCRef(false); 1659 return; 1660 } 1661 1662 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1663 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1664 // We don't know if member is an 'ivar', but this flag is looked at 1665 // only in the context of LV.isObjCIvar(). 1666 LV.setObjCArray(E->getType()->isArrayType()); 1667 return; 1668 } 1669 } 1670 1671 static llvm::Value * 1672 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1673 llvm::Value *V, llvm::Type *IRType, 1674 StringRef Name = StringRef()) { 1675 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1676 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1677 } 1678 1679 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1680 const Expr *E, const VarDecl *VD) { 1681 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1682 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1683 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1684 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1685 QualType T = E->getType(); 1686 LValue LV; 1687 if (VD->getType()->isReferenceType()) { 1688 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1689 LI->setAlignment(Alignment.getQuantity()); 1690 V = LI; 1691 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1692 } else { 1693 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1694 } 1695 setObjCGCLValueClass(CGF.getContext(), E, LV); 1696 return LV; 1697 } 1698 1699 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1700 const Expr *E, const FunctionDecl *FD) { 1701 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1702 if (!FD->hasPrototype()) { 1703 if (const FunctionProtoType *Proto = 1704 FD->getType()->getAs<FunctionProtoType>()) { 1705 // Ugly case: for a K&R-style definition, the type of the definition 1706 // isn't the same as the type of a use. Correct for this with a 1707 // bitcast. 1708 QualType NoProtoType = 1709 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1710 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1711 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1712 } 1713 } 1714 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1715 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1716 } 1717 1718 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1719 llvm::Value *ThisValue) { 1720 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1721 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1722 return CGF.EmitLValueForField(LV, FD); 1723 } 1724 1725 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1726 const NamedDecl *ND = E->getDecl(); 1727 CharUnits Alignment = getContext().getDeclAlign(ND); 1728 QualType T = E->getType(); 1729 1730 // A DeclRefExpr for a reference initialized by a constant expression can 1731 // appear without being odr-used. Directly emit the constant initializer. 1732 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1733 const Expr *Init = VD->getAnyInitializer(VD); 1734 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1735 VD->isUsableInConstantExpressions(getContext()) && 1736 VD->checkInitIsICE()) { 1737 llvm::Constant *Val = 1738 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1739 assert(Val && "failed to emit reference constant expression"); 1740 // FIXME: Eventually we will want to emit vector element references. 1741 return MakeAddrLValue(Val, T, Alignment); 1742 } 1743 } 1744 1745 // FIXME: We should be able to assert this for FunctionDecls as well! 1746 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1747 // those with a valid source location. 1748 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1749 !E->getLocation().isValid()) && 1750 "Should not use decl without marking it used!"); 1751 1752 if (ND->hasAttr<WeakRefAttr>()) { 1753 const ValueDecl *VD = cast<ValueDecl>(ND); 1754 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1755 return MakeAddrLValue(Aliasee, T, Alignment); 1756 } 1757 1758 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1759 // Check if this is a global variable. 1760 if (VD->hasLinkage() || VD->isStaticDataMember()) { 1761 // If it's thread_local, emit a call to its wrapper function instead. 1762 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1763 return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E); 1764 return EmitGlobalVarDeclLValue(*this, E, VD); 1765 } 1766 1767 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1768 1769 llvm::Value *V = LocalDeclMap.lookup(VD); 1770 if (!V && VD->isStaticLocal()) 1771 V = CGM.getStaticLocalDeclAddress(VD); 1772 1773 // Use special handling for lambdas. 1774 if (!V) { 1775 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1776 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1777 } else if (CapturedStmtInfo) { 1778 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1779 return EmitCapturedFieldLValue(*this, FD, 1780 CapturedStmtInfo->getContextValue()); 1781 } 1782 1783 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1784 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1785 T, Alignment); 1786 } 1787 1788 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1789 1790 if (isBlockVariable) 1791 V = BuildBlockByrefAddress(V, VD); 1792 1793 LValue LV; 1794 if (VD->getType()->isReferenceType()) { 1795 llvm::LoadInst *LI = Builder.CreateLoad(V); 1796 LI->setAlignment(Alignment.getQuantity()); 1797 V = LI; 1798 LV = MakeNaturalAlignAddrLValue(V, T); 1799 } else { 1800 LV = MakeAddrLValue(V, T, Alignment); 1801 } 1802 1803 bool isLocalStorage = VD->hasLocalStorage(); 1804 1805 bool NonGCable = isLocalStorage && 1806 !VD->getType()->isReferenceType() && 1807 !isBlockVariable; 1808 if (NonGCable) { 1809 LV.getQuals().removeObjCGCAttr(); 1810 LV.setNonGC(true); 1811 } 1812 1813 bool isImpreciseLifetime = 1814 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1815 if (isImpreciseLifetime) 1816 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1817 setObjCGCLValueClass(getContext(), E, LV); 1818 return LV; 1819 } 1820 1821 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1822 return EmitFunctionDeclLValue(*this, E, fn); 1823 1824 llvm_unreachable("Unhandled DeclRefExpr"); 1825 } 1826 1827 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1828 // __extension__ doesn't affect lvalue-ness. 1829 if (E->getOpcode() == UO_Extension) 1830 return EmitLValue(E->getSubExpr()); 1831 1832 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1833 switch (E->getOpcode()) { 1834 default: llvm_unreachable("Unknown unary operator lvalue!"); 1835 case UO_Deref: { 1836 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1837 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1838 1839 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1840 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1841 1842 // We should not generate __weak write barrier on indirect reference 1843 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1844 // But, we continue to generate __strong write barrier on indirect write 1845 // into a pointer to object. 1846 if (getLangOpts().ObjC1 && 1847 getLangOpts().getGC() != LangOptions::NonGC && 1848 LV.isObjCWeak()) 1849 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1850 return LV; 1851 } 1852 case UO_Real: 1853 case UO_Imag: { 1854 LValue LV = EmitLValue(E->getSubExpr()); 1855 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1856 llvm::Value *Addr = LV.getAddress(); 1857 1858 // __real is valid on scalars. This is a faster way of testing that. 1859 // __imag can only produce an rvalue on scalars. 1860 if (E->getOpcode() == UO_Real && 1861 !cast<llvm::PointerType>(Addr->getType()) 1862 ->getElementType()->isStructTy()) { 1863 assert(E->getSubExpr()->getType()->isArithmeticType()); 1864 return LV; 1865 } 1866 1867 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1868 1869 unsigned Idx = E->getOpcode() == UO_Imag; 1870 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1871 Idx, "idx"), 1872 ExprTy); 1873 } 1874 case UO_PreInc: 1875 case UO_PreDec: { 1876 LValue LV = EmitLValue(E->getSubExpr()); 1877 bool isInc = E->getOpcode() == UO_PreInc; 1878 1879 if (E->getType()->isAnyComplexType()) 1880 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1881 else 1882 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1883 return LV; 1884 } 1885 } 1886 } 1887 1888 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1889 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1890 E->getType()); 1891 } 1892 1893 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1894 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1895 E->getType()); 1896 } 1897 1898 static llvm::Constant* 1899 GetAddrOfConstantWideString(StringRef Str, 1900 const char *GlobalName, 1901 ASTContext &Context, 1902 QualType Ty, SourceLocation Loc, 1903 CodeGenModule &CGM) { 1904 1905 StringLiteral *SL = StringLiteral::Create(Context, 1906 Str, 1907 StringLiteral::Wide, 1908 /*Pascal = */false, 1909 Ty, Loc); 1910 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1911 llvm::GlobalVariable *GV = 1912 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1913 !CGM.getLangOpts().WritableStrings, 1914 llvm::GlobalValue::PrivateLinkage, 1915 C, GlobalName); 1916 const unsigned WideAlignment = 1917 Context.getTypeAlignInChars(Ty).getQuantity(); 1918 GV->setAlignment(WideAlignment); 1919 return GV; 1920 } 1921 1922 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1923 SmallString<32>& Target) { 1924 Target.resize(CharByteWidth * (Source.size() + 1)); 1925 char *ResultPtr = &Target[0]; 1926 const UTF8 *ErrorPtr; 1927 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1928 (void)success; 1929 assert(success); 1930 Target.resize(ResultPtr - &Target[0]); 1931 } 1932 1933 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1934 switch (E->getIdentType()) { 1935 default: 1936 return EmitUnsupportedLValue(E, "predefined expression"); 1937 1938 case PredefinedExpr::Func: 1939 case PredefinedExpr::Function: 1940 case PredefinedExpr::LFunction: 1941 case PredefinedExpr::PrettyFunction: { 1942 unsigned IdentType = E->getIdentType(); 1943 std::string GlobalVarName; 1944 1945 switch (IdentType) { 1946 default: llvm_unreachable("Invalid type"); 1947 case PredefinedExpr::Func: 1948 GlobalVarName = "__func__."; 1949 break; 1950 case PredefinedExpr::Function: 1951 GlobalVarName = "__FUNCTION__."; 1952 break; 1953 case PredefinedExpr::LFunction: 1954 GlobalVarName = "L__FUNCTION__."; 1955 break; 1956 case PredefinedExpr::PrettyFunction: 1957 GlobalVarName = "__PRETTY_FUNCTION__."; 1958 break; 1959 } 1960 1961 StringRef FnName = CurFn->getName(); 1962 if (FnName.startswith("\01")) 1963 FnName = FnName.substr(1); 1964 GlobalVarName += FnName; 1965 1966 const Decl *CurDecl = CurCodeDecl; 1967 if (CurDecl == 0) 1968 CurDecl = getContext().getTranslationUnitDecl(); 1969 1970 std::string FunctionName = 1971 (isa<BlockDecl>(CurDecl) 1972 ? FnName.str() 1973 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1974 CurDecl)); 1975 1976 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1977 llvm::Constant *C; 1978 if (ElemType->isWideCharType()) { 1979 SmallString<32> RawChars; 1980 ConvertUTF8ToWideString( 1981 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1982 FunctionName, RawChars); 1983 C = GetAddrOfConstantWideString(RawChars, 1984 GlobalVarName.c_str(), 1985 getContext(), 1986 E->getType(), 1987 E->getLocation(), 1988 CGM); 1989 } else { 1990 C = CGM.GetAddrOfConstantCString(FunctionName, 1991 GlobalVarName.c_str(), 1992 1); 1993 } 1994 return MakeAddrLValue(C, E->getType()); 1995 } 1996 } 1997 } 1998 1999 /// Emit a type description suitable for use by a runtime sanitizer library. The 2000 /// format of a type descriptor is 2001 /// 2002 /// \code 2003 /// { i16 TypeKind, i16 TypeInfo } 2004 /// \endcode 2005 /// 2006 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2007 /// integer, 1 for a floating point value, and -1 for anything else. 2008 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2009 // FIXME: Only emit each type's descriptor once. 2010 uint16_t TypeKind = -1; 2011 uint16_t TypeInfo = 0; 2012 2013 if (T->isIntegerType()) { 2014 TypeKind = 0; 2015 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2016 (T->isSignedIntegerType() ? 1 : 0); 2017 } else if (T->isFloatingType()) { 2018 TypeKind = 1; 2019 TypeInfo = getContext().getTypeSize(T); 2020 } 2021 2022 // Format the type name as if for a diagnostic, including quotes and 2023 // optionally an 'aka'. 2024 SmallString<32> Buffer; 2025 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2026 (intptr_t)T.getAsOpaquePtr(), 2027 0, 0, 0, 0, 0, 0, Buffer, 2028 ArrayRef<intptr_t>()); 2029 2030 llvm::Constant *Components[] = { 2031 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2032 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2033 }; 2034 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2035 2036 llvm::GlobalVariable *GV = 2037 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 2038 /*isConstant=*/true, 2039 llvm::GlobalVariable::PrivateLinkage, 2040 Descriptor); 2041 GV->setUnnamedAddr(true); 2042 return GV; 2043 } 2044 2045 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2046 llvm::Type *TargetTy = IntPtrTy; 2047 2048 // Floating-point types which fit into intptr_t are bitcast to integers 2049 // and then passed directly (after zero-extension, if necessary). 2050 if (V->getType()->isFloatingPointTy()) { 2051 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2052 if (Bits <= TargetTy->getIntegerBitWidth()) 2053 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2054 Bits)); 2055 } 2056 2057 // Integers which fit in intptr_t are zero-extended and passed directly. 2058 if (V->getType()->isIntegerTy() && 2059 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2060 return Builder.CreateZExt(V, TargetTy); 2061 2062 // Pointers are passed directly, everything else is passed by address. 2063 if (!V->getType()->isPointerTy()) { 2064 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2065 Builder.CreateStore(V, Ptr); 2066 V = Ptr; 2067 } 2068 return Builder.CreatePtrToInt(V, TargetTy); 2069 } 2070 2071 /// \brief Emit a representation of a SourceLocation for passing to a handler 2072 /// in a sanitizer runtime library. The format for this data is: 2073 /// \code 2074 /// struct SourceLocation { 2075 /// const char *Filename; 2076 /// int32_t Line, Column; 2077 /// }; 2078 /// \endcode 2079 /// For an invalid SourceLocation, the Filename pointer is null. 2080 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2081 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2082 2083 llvm::Constant *Data[] = { 2084 // FIXME: Only emit each file name once. 2085 PLoc.isValid() ? cast<llvm::Constant>( 2086 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2087 : llvm::Constant::getNullValue(Int8PtrTy), 2088 Builder.getInt32(PLoc.getLine()), 2089 Builder.getInt32(PLoc.getColumn()) 2090 }; 2091 2092 return llvm::ConstantStruct::getAnon(Data); 2093 } 2094 2095 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2096 ArrayRef<llvm::Constant *> StaticArgs, 2097 ArrayRef<llvm::Value *> DynamicArgs, 2098 CheckRecoverableKind RecoverKind) { 2099 assert(SanOpts != &SanitizerOptions::Disabled); 2100 2101 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2102 assert (RecoverKind != CRK_AlwaysRecoverable && 2103 "Runtime call required for AlwaysRecoverable kind!"); 2104 return EmitTrapCheck(Checked); 2105 } 2106 2107 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2108 2109 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2110 2111 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2112 2113 // Give hint that we very much don't expect to execute the handler 2114 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2115 llvm::MDBuilder MDHelper(getLLVMContext()); 2116 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2117 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2118 2119 EmitBlock(Handler); 2120 2121 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2122 llvm::GlobalValue *InfoPtr = 2123 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2124 llvm::GlobalVariable::PrivateLinkage, Info); 2125 InfoPtr->setUnnamedAddr(true); 2126 2127 SmallVector<llvm::Value *, 4> Args; 2128 SmallVector<llvm::Type *, 4> ArgTypes; 2129 Args.reserve(DynamicArgs.size() + 1); 2130 ArgTypes.reserve(DynamicArgs.size() + 1); 2131 2132 // Handler functions take an i8* pointing to the (handler-specific) static 2133 // information block, followed by a sequence of intptr_t arguments 2134 // representing operand values. 2135 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2136 ArgTypes.push_back(Int8PtrTy); 2137 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2138 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2139 ArgTypes.push_back(IntPtrTy); 2140 } 2141 2142 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2143 ((RecoverKind == CRK_Recoverable) && 2144 CGM.getCodeGenOpts().SanitizeRecover); 2145 2146 llvm::FunctionType *FnType = 2147 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2148 llvm::AttrBuilder B; 2149 if (!Recover) { 2150 B.addAttribute(llvm::Attribute::NoReturn) 2151 .addAttribute(llvm::Attribute::NoUnwind); 2152 } 2153 B.addAttribute(llvm::Attribute::UWTable); 2154 2155 // Checks that have two variants use a suffix to differentiate them 2156 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2157 !CGM.getCodeGenOpts().SanitizeRecover; 2158 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2159 (NeedsAbortSuffix? "_abort" : "")).str(); 2160 llvm::Value *Fn = 2161 CGM.CreateRuntimeFunction(FnType, FunctionName, 2162 llvm::AttributeSet::get(getLLVMContext(), 2163 llvm::AttributeSet::FunctionIndex, 2164 B)); 2165 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2166 if (Recover) { 2167 Builder.CreateBr(Cont); 2168 } else { 2169 HandlerCall->setDoesNotReturn(); 2170 Builder.CreateUnreachable(); 2171 } 2172 2173 EmitBlock(Cont); 2174 } 2175 2176 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2177 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2178 2179 // If we're optimizing, collapse all calls to trap down to just one per 2180 // function to save on code size. 2181 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2182 TrapBB = createBasicBlock("trap"); 2183 Builder.CreateCondBr(Checked, Cont, TrapBB); 2184 EmitBlock(TrapBB); 2185 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2186 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2187 TrapCall->setDoesNotReturn(); 2188 TrapCall->setDoesNotThrow(); 2189 Builder.CreateUnreachable(); 2190 } else { 2191 Builder.CreateCondBr(Checked, Cont, TrapBB); 2192 } 2193 2194 EmitBlock(Cont); 2195 } 2196 2197 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2198 /// array to pointer, return the array subexpression. 2199 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2200 // If this isn't just an array->pointer decay, bail out. 2201 const CastExpr *CE = dyn_cast<CastExpr>(E); 2202 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2203 return 0; 2204 2205 // If this is a decay from variable width array, bail out. 2206 const Expr *SubExpr = CE->getSubExpr(); 2207 if (SubExpr->getType()->isVariableArrayType()) 2208 return 0; 2209 2210 return SubExpr; 2211 } 2212 2213 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2214 bool Accessed) { 2215 // The index must always be an integer, which is not an aggregate. Emit it. 2216 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2217 QualType IdxTy = E->getIdx()->getType(); 2218 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2219 2220 if (SanOpts->Bounds) 2221 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2222 2223 // If the base is a vector type, then we are forming a vector element lvalue 2224 // with this subscript. 2225 if (E->getBase()->getType()->isVectorType()) { 2226 // Emit the vector as an lvalue to get its address. 2227 LValue LHS = EmitLValue(E->getBase()); 2228 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2229 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2230 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2231 E->getBase()->getType(), LHS.getAlignment()); 2232 } 2233 2234 // Extend or truncate the index type to 32 or 64-bits. 2235 if (Idx->getType() != IntPtrTy) 2236 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2237 2238 // We know that the pointer points to a type of the correct size, unless the 2239 // size is a VLA or Objective-C interface. 2240 llvm::Value *Address = 0; 2241 CharUnits ArrayAlignment; 2242 if (const VariableArrayType *vla = 2243 getContext().getAsVariableArrayType(E->getType())) { 2244 // The base must be a pointer, which is not an aggregate. Emit 2245 // it. It needs to be emitted first in case it's what captures 2246 // the VLA bounds. 2247 Address = EmitScalarExpr(E->getBase()); 2248 2249 // The element count here is the total number of non-VLA elements. 2250 llvm::Value *numElements = getVLASize(vla).first; 2251 2252 // Effectively, the multiply by the VLA size is part of the GEP. 2253 // GEP indexes are signed, and scaling an index isn't permitted to 2254 // signed-overflow, so we use the same semantics for our explicit 2255 // multiply. We suppress this if overflow is not undefined behavior. 2256 if (getLangOpts().isSignedOverflowDefined()) { 2257 Idx = Builder.CreateMul(Idx, numElements); 2258 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2259 } else { 2260 Idx = Builder.CreateNSWMul(Idx, numElements); 2261 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2262 } 2263 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2264 // Indexing over an interface, as in "NSString *P; P[4];" 2265 llvm::Value *InterfaceSize = 2266 llvm::ConstantInt::get(Idx->getType(), 2267 getContext().getTypeSizeInChars(OIT).getQuantity()); 2268 2269 Idx = Builder.CreateMul(Idx, InterfaceSize); 2270 2271 // The base must be a pointer, which is not an aggregate. Emit it. 2272 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2273 Address = EmitCastToVoidPtr(Base); 2274 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2275 Address = Builder.CreateBitCast(Address, Base->getType()); 2276 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2277 // If this is A[i] where A is an array, the frontend will have decayed the 2278 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2279 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2280 // "gep x, i" here. Emit one "gep A, 0, i". 2281 assert(Array->getType()->isArrayType() && 2282 "Array to pointer decay must have array source type!"); 2283 LValue ArrayLV; 2284 // For simple multidimensional array indexing, set the 'accessed' flag for 2285 // better bounds-checking of the base expression. 2286 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2287 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2288 else 2289 ArrayLV = EmitLValue(Array); 2290 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2291 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2292 llvm::Value *Args[] = { Zero, Idx }; 2293 2294 // Propagate the alignment from the array itself to the result. 2295 ArrayAlignment = ArrayLV.getAlignment(); 2296 2297 if (getLangOpts().isSignedOverflowDefined()) 2298 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2299 else 2300 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2301 } else { 2302 // The base must be a pointer, which is not an aggregate. Emit it. 2303 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2304 if (getLangOpts().isSignedOverflowDefined()) 2305 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2306 else 2307 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2308 } 2309 2310 QualType T = E->getBase()->getType()->getPointeeType(); 2311 assert(!T.isNull() && 2312 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2313 2314 2315 // Limit the alignment to that of the result type. 2316 LValue LV; 2317 if (!ArrayAlignment.isZero()) { 2318 CharUnits Align = getContext().getTypeAlignInChars(T); 2319 ArrayAlignment = std::min(Align, ArrayAlignment); 2320 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2321 } else { 2322 LV = MakeNaturalAlignAddrLValue(Address, T); 2323 } 2324 2325 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2326 2327 if (getLangOpts().ObjC1 && 2328 getLangOpts().getGC() != LangOptions::NonGC) { 2329 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2330 setObjCGCLValueClass(getContext(), E, LV); 2331 } 2332 return LV; 2333 } 2334 2335 static 2336 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2337 SmallVector<unsigned, 4> &Elts) { 2338 SmallVector<llvm::Constant*, 4> CElts; 2339 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2340 CElts.push_back(Builder.getInt32(Elts[i])); 2341 2342 return llvm::ConstantVector::get(CElts); 2343 } 2344 2345 LValue CodeGenFunction:: 2346 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2347 // Emit the base vector as an l-value. 2348 LValue Base; 2349 2350 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2351 if (E->isArrow()) { 2352 // If it is a pointer to a vector, emit the address and form an lvalue with 2353 // it. 2354 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2355 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2356 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2357 Base.getQuals().removeObjCGCAttr(); 2358 } else if (E->getBase()->isGLValue()) { 2359 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2360 // emit the base as an lvalue. 2361 assert(E->getBase()->getType()->isVectorType()); 2362 Base = EmitLValue(E->getBase()); 2363 } else { 2364 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2365 assert(E->getBase()->getType()->isVectorType() && 2366 "Result must be a vector"); 2367 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2368 2369 // Store the vector to memory (because LValue wants an address). 2370 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2371 Builder.CreateStore(Vec, VecMem); 2372 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2373 } 2374 2375 QualType type = 2376 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2377 2378 // Encode the element access list into a vector of unsigned indices. 2379 SmallVector<unsigned, 4> Indices; 2380 E->getEncodedElementAccess(Indices); 2381 2382 if (Base.isSimple()) { 2383 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2384 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2385 Base.getAlignment()); 2386 } 2387 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2388 2389 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2390 SmallVector<llvm::Constant *, 4> CElts; 2391 2392 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2393 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2394 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2395 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2396 Base.getAlignment()); 2397 } 2398 2399 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2400 Expr *BaseExpr = E->getBase(); 2401 2402 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2403 LValue BaseLV; 2404 if (E->isArrow()) { 2405 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2406 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2407 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2408 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2409 } else 2410 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2411 2412 NamedDecl *ND = E->getMemberDecl(); 2413 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2414 LValue LV = EmitLValueForField(BaseLV, Field); 2415 setObjCGCLValueClass(getContext(), E, LV); 2416 return LV; 2417 } 2418 2419 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2420 return EmitGlobalVarDeclLValue(*this, E, VD); 2421 2422 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2423 return EmitFunctionDeclLValue(*this, E, FD); 2424 2425 llvm_unreachable("Unhandled member declaration!"); 2426 } 2427 2428 /// Given that we are currently emitting a lambda, emit an l-value for 2429 /// one of its members. 2430 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2431 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2432 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2433 QualType LambdaTagType = 2434 getContext().getTagDeclType(Field->getParent()); 2435 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2436 return EmitLValueForField(LambdaLV, Field); 2437 } 2438 2439 LValue CodeGenFunction::EmitLValueForField(LValue base, 2440 const FieldDecl *field) { 2441 if (field->isBitField()) { 2442 const CGRecordLayout &RL = 2443 CGM.getTypes().getCGRecordLayout(field->getParent()); 2444 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2445 llvm::Value *Addr = base.getAddress(); 2446 unsigned Idx = RL.getLLVMFieldNo(field); 2447 if (Idx != 0) 2448 // For structs, we GEP to the field that the record layout suggests. 2449 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2450 // Get the access type. 2451 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2452 getLLVMContext(), Info.StorageSize, 2453 CGM.getContext().getTargetAddressSpace(base.getType())); 2454 if (Addr->getType() != PtrTy) 2455 Addr = Builder.CreateBitCast(Addr, PtrTy); 2456 2457 QualType fieldType = 2458 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2459 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2460 } 2461 2462 const RecordDecl *rec = field->getParent(); 2463 QualType type = field->getType(); 2464 CharUnits alignment = getContext().getDeclAlign(field); 2465 2466 // FIXME: It should be impossible to have an LValue without alignment for a 2467 // complete type. 2468 if (!base.getAlignment().isZero()) 2469 alignment = std::min(alignment, base.getAlignment()); 2470 2471 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2472 2473 llvm::Value *addr = base.getAddress(); 2474 unsigned cvr = base.getVRQualifiers(); 2475 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2476 if (rec->isUnion()) { 2477 // For unions, there is no pointer adjustment. 2478 assert(!type->isReferenceType() && "union has reference member"); 2479 // TODO: handle path-aware TBAA for union. 2480 TBAAPath = false; 2481 } else { 2482 // For structs, we GEP to the field that the record layout suggests. 2483 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2484 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2485 2486 // If this is a reference field, load the reference right now. 2487 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2488 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2489 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2490 load->setAlignment(alignment.getQuantity()); 2491 2492 // Loading the reference will disable path-aware TBAA. 2493 TBAAPath = false; 2494 if (CGM.shouldUseTBAA()) { 2495 llvm::MDNode *tbaa; 2496 if (mayAlias) 2497 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2498 else 2499 tbaa = CGM.getTBAAInfo(type); 2500 CGM.DecorateInstruction(load, tbaa); 2501 } 2502 2503 addr = load; 2504 mayAlias = false; 2505 type = refType->getPointeeType(); 2506 if (type->isIncompleteType()) 2507 alignment = CharUnits(); 2508 else 2509 alignment = getContext().getTypeAlignInChars(type); 2510 cvr = 0; // qualifiers don't recursively apply to referencee 2511 } 2512 } 2513 2514 // Make sure that the address is pointing to the right type. This is critical 2515 // for both unions and structs. A union needs a bitcast, a struct element 2516 // will need a bitcast if the LLVM type laid out doesn't match the desired 2517 // type. 2518 addr = EmitBitCastOfLValueToProperType(*this, addr, 2519 CGM.getTypes().ConvertTypeForMem(type), 2520 field->getName()); 2521 2522 if (field->hasAttr<AnnotateAttr>()) 2523 addr = EmitFieldAnnotations(field, addr); 2524 2525 LValue LV = MakeAddrLValue(addr, type, alignment); 2526 LV.getQuals().addCVRQualifiers(cvr); 2527 if (TBAAPath) { 2528 const ASTRecordLayout &Layout = 2529 getContext().getASTRecordLayout(field->getParent()); 2530 // Set the base type to be the base type of the base LValue and 2531 // update offset to be relative to the base type. 2532 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2533 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2534 Layout.getFieldOffset(field->getFieldIndex()) / 2535 getContext().getCharWidth()); 2536 } 2537 2538 // __weak attribute on a field is ignored. 2539 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2540 LV.getQuals().removeObjCGCAttr(); 2541 2542 // Fields of may_alias structs act like 'char' for TBAA purposes. 2543 // FIXME: this should get propagated down through anonymous structs 2544 // and unions. 2545 if (mayAlias && LV.getTBAAInfo()) 2546 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2547 2548 return LV; 2549 } 2550 2551 LValue 2552 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2553 const FieldDecl *Field) { 2554 QualType FieldType = Field->getType(); 2555 2556 if (!FieldType->isReferenceType()) 2557 return EmitLValueForField(Base, Field); 2558 2559 const CGRecordLayout &RL = 2560 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2561 unsigned idx = RL.getLLVMFieldNo(Field); 2562 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2563 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2564 2565 // Make sure that the address is pointing to the right type. This is critical 2566 // for both unions and structs. A union needs a bitcast, a struct element 2567 // will need a bitcast if the LLVM type laid out doesn't match the desired 2568 // type. 2569 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2570 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2571 2572 CharUnits Alignment = getContext().getDeclAlign(Field); 2573 2574 // FIXME: It should be impossible to have an LValue without alignment for a 2575 // complete type. 2576 if (!Base.getAlignment().isZero()) 2577 Alignment = std::min(Alignment, Base.getAlignment()); 2578 2579 return MakeAddrLValue(V, FieldType, Alignment); 2580 } 2581 2582 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2583 if (E->isFileScope()) { 2584 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2585 return MakeAddrLValue(GlobalPtr, E->getType()); 2586 } 2587 if (E->getType()->isVariablyModifiedType()) 2588 // make sure to emit the VLA size. 2589 EmitVariablyModifiedType(E->getType()); 2590 2591 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2592 const Expr *InitExpr = E->getInitializer(); 2593 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2594 2595 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2596 /*Init*/ true); 2597 2598 return Result; 2599 } 2600 2601 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2602 if (!E->isGLValue()) 2603 // Initializing an aggregate temporary in C++11: T{...}. 2604 return EmitAggExprToLValue(E); 2605 2606 // An lvalue initializer list must be initializing a reference. 2607 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2608 return EmitLValue(E->getInit(0)); 2609 } 2610 2611 LValue CodeGenFunction:: 2612 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2613 if (!expr->isGLValue()) { 2614 // ?: here should be an aggregate. 2615 assert(hasAggregateEvaluationKind(expr->getType()) && 2616 "Unexpected conditional operator!"); 2617 return EmitAggExprToLValue(expr); 2618 } 2619 2620 OpaqueValueMapping binding(*this, expr); 2621 2622 const Expr *condExpr = expr->getCond(); 2623 bool CondExprBool; 2624 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2625 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2626 if (!CondExprBool) std::swap(live, dead); 2627 2628 if (!ContainsLabel(dead)) 2629 return EmitLValue(live); 2630 } 2631 2632 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2633 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2634 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2635 2636 ConditionalEvaluation eval(*this); 2637 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2638 2639 // Any temporaries created here are conditional. 2640 EmitBlock(lhsBlock); 2641 eval.begin(*this); 2642 LValue lhs = EmitLValue(expr->getTrueExpr()); 2643 eval.end(*this); 2644 2645 if (!lhs.isSimple()) 2646 return EmitUnsupportedLValue(expr, "conditional operator"); 2647 2648 lhsBlock = Builder.GetInsertBlock(); 2649 Builder.CreateBr(contBlock); 2650 2651 // Any temporaries created here are conditional. 2652 EmitBlock(rhsBlock); 2653 eval.begin(*this); 2654 LValue rhs = EmitLValue(expr->getFalseExpr()); 2655 eval.end(*this); 2656 if (!rhs.isSimple()) 2657 return EmitUnsupportedLValue(expr, "conditional operator"); 2658 rhsBlock = Builder.GetInsertBlock(); 2659 2660 EmitBlock(contBlock); 2661 2662 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2663 "cond-lvalue"); 2664 phi->addIncoming(lhs.getAddress(), lhsBlock); 2665 phi->addIncoming(rhs.getAddress(), rhsBlock); 2666 return MakeAddrLValue(phi, expr->getType()); 2667 } 2668 2669 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2670 /// type. If the cast is to a reference, we can have the usual lvalue result, 2671 /// otherwise if a cast is needed by the code generator in an lvalue context, 2672 /// then it must mean that we need the address of an aggregate in order to 2673 /// access one of its members. This can happen for all the reasons that casts 2674 /// are permitted with aggregate result, including noop aggregate casts, and 2675 /// cast from scalar to union. 2676 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2677 switch (E->getCastKind()) { 2678 case CK_ToVoid: 2679 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2680 2681 case CK_Dependent: 2682 llvm_unreachable("dependent cast kind in IR gen!"); 2683 2684 case CK_BuiltinFnToFnPtr: 2685 llvm_unreachable("builtin functions are handled elsewhere"); 2686 2687 // These two casts are currently treated as no-ops, although they could 2688 // potentially be real operations depending on the target's ABI. 2689 case CK_NonAtomicToAtomic: 2690 case CK_AtomicToNonAtomic: 2691 2692 case CK_NoOp: 2693 case CK_LValueToRValue: 2694 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2695 || E->getType()->isRecordType()) 2696 return EmitLValue(E->getSubExpr()); 2697 // Fall through to synthesize a temporary. 2698 2699 case CK_BitCast: 2700 case CK_ArrayToPointerDecay: 2701 case CK_FunctionToPointerDecay: 2702 case CK_NullToMemberPointer: 2703 case CK_NullToPointer: 2704 case CK_IntegralToPointer: 2705 case CK_PointerToIntegral: 2706 case CK_PointerToBoolean: 2707 case CK_VectorSplat: 2708 case CK_IntegralCast: 2709 case CK_IntegralToBoolean: 2710 case CK_IntegralToFloating: 2711 case CK_FloatingToIntegral: 2712 case CK_FloatingToBoolean: 2713 case CK_FloatingCast: 2714 case CK_FloatingRealToComplex: 2715 case CK_FloatingComplexToReal: 2716 case CK_FloatingComplexToBoolean: 2717 case CK_FloatingComplexCast: 2718 case CK_FloatingComplexToIntegralComplex: 2719 case CK_IntegralRealToComplex: 2720 case CK_IntegralComplexToReal: 2721 case CK_IntegralComplexToBoolean: 2722 case CK_IntegralComplexCast: 2723 case CK_IntegralComplexToFloatingComplex: 2724 case CK_DerivedToBaseMemberPointer: 2725 case CK_BaseToDerivedMemberPointer: 2726 case CK_MemberPointerToBoolean: 2727 case CK_ReinterpretMemberPointer: 2728 case CK_AnyPointerToBlockPointerCast: 2729 case CK_ARCProduceObject: 2730 case CK_ARCConsumeObject: 2731 case CK_ARCReclaimReturnedObject: 2732 case CK_ARCExtendBlockObject: 2733 case CK_CopyAndAutoreleaseBlockObject: { 2734 // These casts only produce lvalues when we're binding a reference to a 2735 // temporary realized from a (converted) pure rvalue. Emit the expression 2736 // as a value, copy it into a temporary, and return an lvalue referring to 2737 // that temporary. 2738 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2739 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2740 return MakeAddrLValue(V, E->getType()); 2741 } 2742 2743 case CK_Dynamic: { 2744 LValue LV = EmitLValue(E->getSubExpr()); 2745 llvm::Value *V = LV.getAddress(); 2746 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2747 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2748 } 2749 2750 case CK_ConstructorConversion: 2751 case CK_UserDefinedConversion: 2752 case CK_CPointerToObjCPointerCast: 2753 case CK_BlockPointerToObjCPointerCast: 2754 return EmitLValue(E->getSubExpr()); 2755 2756 case CK_UncheckedDerivedToBase: 2757 case CK_DerivedToBase: { 2758 const RecordType *DerivedClassTy = 2759 E->getSubExpr()->getType()->getAs<RecordType>(); 2760 CXXRecordDecl *DerivedClassDecl = 2761 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2762 2763 LValue LV = EmitLValue(E->getSubExpr()); 2764 llvm::Value *This = LV.getAddress(); 2765 2766 // Perform the derived-to-base conversion 2767 llvm::Value *Base = 2768 GetAddressOfBaseClass(This, DerivedClassDecl, 2769 E->path_begin(), E->path_end(), 2770 /*NullCheckValue=*/false); 2771 2772 return MakeAddrLValue(Base, E->getType()); 2773 } 2774 case CK_ToUnion: 2775 return EmitAggExprToLValue(E); 2776 case CK_BaseToDerived: { 2777 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2778 CXXRecordDecl *DerivedClassDecl = 2779 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2780 2781 LValue LV = EmitLValue(E->getSubExpr()); 2782 2783 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2784 // performed and the object is not of the derived type. 2785 if (SanitizePerformTypeCheck) 2786 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2787 LV.getAddress(), E->getType()); 2788 2789 // Perform the base-to-derived conversion 2790 llvm::Value *Derived = 2791 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2792 E->path_begin(), E->path_end(), 2793 /*NullCheckValue=*/false); 2794 2795 return MakeAddrLValue(Derived, E->getType()); 2796 } 2797 case CK_LValueBitCast: { 2798 // This must be a reinterpret_cast (or c-style equivalent). 2799 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2800 2801 LValue LV = EmitLValue(E->getSubExpr()); 2802 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2803 ConvertType(CE->getTypeAsWritten())); 2804 return MakeAddrLValue(V, E->getType()); 2805 } 2806 case CK_ObjCObjectLValueCast: { 2807 LValue LV = EmitLValue(E->getSubExpr()); 2808 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2809 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2810 ConvertType(ToType)); 2811 return MakeAddrLValue(V, E->getType()); 2812 } 2813 case CK_ZeroToOCLEvent: 2814 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2815 } 2816 2817 llvm_unreachable("Unhandled lvalue cast kind?"); 2818 } 2819 2820 LValue CodeGenFunction::EmitNullInitializationLValue( 2821 const CXXScalarValueInitExpr *E) { 2822 QualType Ty = E->getType(); 2823 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2824 EmitNullInitialization(LV.getAddress(), Ty); 2825 return LV; 2826 } 2827 2828 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2829 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2830 return getOpaqueLValueMapping(e); 2831 } 2832 2833 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2834 const FieldDecl *FD) { 2835 QualType FT = FD->getType(); 2836 LValue FieldLV = EmitLValueForField(LV, FD); 2837 switch (getEvaluationKind(FT)) { 2838 case TEK_Complex: 2839 return RValue::getComplex(EmitLoadOfComplex(FieldLV)); 2840 case TEK_Aggregate: 2841 return FieldLV.asAggregateRValue(); 2842 case TEK_Scalar: 2843 return EmitLoadOfLValue(FieldLV); 2844 } 2845 llvm_unreachable("bad evaluation kind"); 2846 } 2847 2848 //===--------------------------------------------------------------------===// 2849 // Expression Emission 2850 //===--------------------------------------------------------------------===// 2851 2852 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2853 ReturnValueSlot ReturnValue) { 2854 if (CGDebugInfo *DI = getDebugInfo()) { 2855 SourceLocation Loc = E->getLocStart(); 2856 // Force column info to be generated so we can differentiate 2857 // multiple call sites on the same line in the debug info. 2858 const FunctionDecl* Callee = E->getDirectCallee(); 2859 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2860 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2861 } 2862 2863 // Builtins never have block type. 2864 if (E->getCallee()->getType()->isBlockPointerType()) 2865 return EmitBlockCallExpr(E, ReturnValue); 2866 2867 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2868 return EmitCXXMemberCallExpr(CE, ReturnValue); 2869 2870 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2871 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2872 2873 const Decl *TargetDecl = E->getCalleeDecl(); 2874 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2875 if (unsigned builtinID = FD->getBuiltinID()) 2876 return EmitBuiltinExpr(FD, builtinID, E); 2877 } 2878 2879 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2880 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2881 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2882 2883 if (const CXXPseudoDestructorExpr *PseudoDtor 2884 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2885 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2886 if (getLangOpts().ObjCAutoRefCount && 2887 DestroyedType->isObjCLifetimeType() && 2888 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2889 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2890 // Automatic Reference Counting: 2891 // If the pseudo-expression names a retainable object with weak or 2892 // strong lifetime, the object shall be released. 2893 Expr *BaseExpr = PseudoDtor->getBase(); 2894 llvm::Value *BaseValue = NULL; 2895 Qualifiers BaseQuals; 2896 2897 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2898 if (PseudoDtor->isArrow()) { 2899 BaseValue = EmitScalarExpr(BaseExpr); 2900 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2901 BaseQuals = PTy->getPointeeType().getQualifiers(); 2902 } else { 2903 LValue BaseLV = EmitLValue(BaseExpr); 2904 BaseValue = BaseLV.getAddress(); 2905 QualType BaseTy = BaseExpr->getType(); 2906 BaseQuals = BaseTy.getQualifiers(); 2907 } 2908 2909 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2910 case Qualifiers::OCL_None: 2911 case Qualifiers::OCL_ExplicitNone: 2912 case Qualifiers::OCL_Autoreleasing: 2913 break; 2914 2915 case Qualifiers::OCL_Strong: 2916 EmitARCRelease(Builder.CreateLoad(BaseValue, 2917 PseudoDtor->getDestroyedType().isVolatileQualified()), 2918 ARCPreciseLifetime); 2919 break; 2920 2921 case Qualifiers::OCL_Weak: 2922 EmitARCDestroyWeak(BaseValue); 2923 break; 2924 } 2925 } else { 2926 // C++ [expr.pseudo]p1: 2927 // The result shall only be used as the operand for the function call 2928 // operator (), and the result of such a call has type void. The only 2929 // effect is the evaluation of the postfix-expression before the dot or 2930 // arrow. 2931 EmitScalarExpr(E->getCallee()); 2932 } 2933 2934 return RValue::get(0); 2935 } 2936 2937 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2938 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2939 E->arg_begin(), E->arg_end(), TargetDecl); 2940 } 2941 2942 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2943 // Comma expressions just emit their LHS then their RHS as an l-value. 2944 if (E->getOpcode() == BO_Comma) { 2945 EmitIgnoredExpr(E->getLHS()); 2946 EnsureInsertPoint(); 2947 return EmitLValue(E->getRHS()); 2948 } 2949 2950 if (E->getOpcode() == BO_PtrMemD || 2951 E->getOpcode() == BO_PtrMemI) 2952 return EmitPointerToDataMemberBinaryExpr(E); 2953 2954 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2955 2956 // Note that in all of these cases, __block variables need the RHS 2957 // evaluated first just in case the variable gets moved by the RHS. 2958 2959 switch (getEvaluationKind(E->getType())) { 2960 case TEK_Scalar: { 2961 switch (E->getLHS()->getType().getObjCLifetime()) { 2962 case Qualifiers::OCL_Strong: 2963 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2964 2965 case Qualifiers::OCL_Autoreleasing: 2966 return EmitARCStoreAutoreleasing(E).first; 2967 2968 // No reason to do any of these differently. 2969 case Qualifiers::OCL_None: 2970 case Qualifiers::OCL_ExplicitNone: 2971 case Qualifiers::OCL_Weak: 2972 break; 2973 } 2974 2975 RValue RV = EmitAnyExpr(E->getRHS()); 2976 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2977 EmitStoreThroughLValue(RV, LV); 2978 return LV; 2979 } 2980 2981 case TEK_Complex: 2982 return EmitComplexAssignmentLValue(E); 2983 2984 case TEK_Aggregate: 2985 return EmitAggExprToLValue(E); 2986 } 2987 llvm_unreachable("bad evaluation kind"); 2988 } 2989 2990 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2991 RValue RV = EmitCallExpr(E); 2992 2993 if (!RV.isScalar()) 2994 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2995 2996 assert(E->getCallReturnType()->isReferenceType() && 2997 "Can't have a scalar return unless the return type is a " 2998 "reference type!"); 2999 3000 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3001 } 3002 3003 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3004 // FIXME: This shouldn't require another copy. 3005 return EmitAggExprToLValue(E); 3006 } 3007 3008 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3009 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3010 && "binding l-value to type which needs a temporary"); 3011 AggValueSlot Slot = CreateAggTemp(E->getType()); 3012 EmitCXXConstructExpr(E, Slot); 3013 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3014 } 3015 3016 LValue 3017 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3018 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3019 } 3020 3021 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3022 return CGM.GetAddrOfUuidDescriptor(E); 3023 } 3024 3025 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3026 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3027 } 3028 3029 LValue 3030 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3031 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3032 Slot.setExternallyDestructed(); 3033 EmitAggExpr(E->getSubExpr(), Slot); 3034 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3035 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3036 } 3037 3038 LValue 3039 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3040 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3041 EmitLambdaExpr(E, Slot); 3042 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3043 } 3044 3045 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3046 RValue RV = EmitObjCMessageExpr(E); 3047 3048 if (!RV.isScalar()) 3049 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3050 3051 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 3052 "Can't have a scalar return unless the return type is a " 3053 "reference type!"); 3054 3055 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3056 } 3057 3058 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3059 llvm::Value *V = 3060 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3061 return MakeAddrLValue(V, E->getType()); 3062 } 3063 3064 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3065 const ObjCIvarDecl *Ivar) { 3066 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3067 } 3068 3069 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3070 llvm::Value *BaseValue, 3071 const ObjCIvarDecl *Ivar, 3072 unsigned CVRQualifiers) { 3073 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3074 Ivar, CVRQualifiers); 3075 } 3076 3077 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3078 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3079 llvm::Value *BaseValue = 0; 3080 const Expr *BaseExpr = E->getBase(); 3081 Qualifiers BaseQuals; 3082 QualType ObjectTy; 3083 if (E->isArrow()) { 3084 BaseValue = EmitScalarExpr(BaseExpr); 3085 ObjectTy = BaseExpr->getType()->getPointeeType(); 3086 BaseQuals = ObjectTy.getQualifiers(); 3087 } else { 3088 LValue BaseLV = EmitLValue(BaseExpr); 3089 // FIXME: this isn't right for bitfields. 3090 BaseValue = BaseLV.getAddress(); 3091 ObjectTy = BaseExpr->getType(); 3092 BaseQuals = ObjectTy.getQualifiers(); 3093 } 3094 3095 LValue LV = 3096 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3097 BaseQuals.getCVRQualifiers()); 3098 setObjCGCLValueClass(getContext(), E, LV); 3099 return LV; 3100 } 3101 3102 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3103 // Can only get l-value for message expression returning aggregate type 3104 RValue RV = EmitAnyExprToTemp(E); 3105 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3106 } 3107 3108 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3109 ReturnValueSlot ReturnValue, 3110 CallExpr::const_arg_iterator ArgBeg, 3111 CallExpr::const_arg_iterator ArgEnd, 3112 const Decl *TargetDecl) { 3113 // Get the actual function type. The callee type will always be a pointer to 3114 // function type or a block pointer type. 3115 assert(CalleeType->isFunctionPointerType() && 3116 "Call must have function pointer type!"); 3117 3118 CalleeType = getContext().getCanonicalType(CalleeType); 3119 3120 const FunctionType *FnType 3121 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3122 3123 CallArgList Args; 3124 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 3125 3126 const CGFunctionInfo &FnInfo = 3127 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3128 3129 // C99 6.5.2.2p6: 3130 // If the expression that denotes the called function has a type 3131 // that does not include a prototype, [the default argument 3132 // promotions are performed]. If the number of arguments does not 3133 // equal the number of parameters, the behavior is undefined. If 3134 // the function is defined with a type that includes a prototype, 3135 // and either the prototype ends with an ellipsis (, ...) or the 3136 // types of the arguments after promotion are not compatible with 3137 // the types of the parameters, the behavior is undefined. If the 3138 // function is defined with a type that does not include a 3139 // prototype, and the types of the arguments after promotion are 3140 // not compatible with those of the parameters after promotion, 3141 // the behavior is undefined [except in some trivial cases]. 3142 // That is, in the general case, we should assume that a call 3143 // through an unprototyped function type works like a *non-variadic* 3144 // call. The way we make this work is to cast to the exact type 3145 // of the promoted arguments. 3146 if (isa<FunctionNoProtoType>(FnType)) { 3147 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3148 CalleeTy = CalleeTy->getPointerTo(); 3149 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3150 } 3151 3152 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3153 } 3154 3155 LValue CodeGenFunction:: 3156 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3157 llvm::Value *BaseV; 3158 if (E->getOpcode() == BO_PtrMemI) 3159 BaseV = EmitScalarExpr(E->getLHS()); 3160 else 3161 BaseV = EmitLValue(E->getLHS()).getAddress(); 3162 3163 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3164 3165 const MemberPointerType *MPT 3166 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3167 3168 llvm::Value *AddV = 3169 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3170 3171 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3172 } 3173 3174 /// Given the address of a temporary variable, produce an r-value of 3175 /// its type. 3176 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3177 QualType type) { 3178 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3179 switch (getEvaluationKind(type)) { 3180 case TEK_Complex: 3181 return RValue::getComplex(EmitLoadOfComplex(lvalue)); 3182 case TEK_Aggregate: 3183 return lvalue.asAggregateRValue(); 3184 case TEK_Scalar: 3185 return RValue::get(EmitLoadOfScalar(lvalue)); 3186 } 3187 llvm_unreachable("bad evaluation kind"); 3188 } 3189 3190 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3191 assert(Val->getType()->isFPOrFPVectorTy()); 3192 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3193 return; 3194 3195 llvm::MDBuilder MDHelper(getLLVMContext()); 3196 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3197 3198 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3199 } 3200 3201 namespace { 3202 struct LValueOrRValue { 3203 LValue LV; 3204 RValue RV; 3205 }; 3206 } 3207 3208 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3209 const PseudoObjectExpr *E, 3210 bool forLValue, 3211 AggValueSlot slot) { 3212 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3213 3214 // Find the result expression, if any. 3215 const Expr *resultExpr = E->getResultExpr(); 3216 LValueOrRValue result; 3217 3218 for (PseudoObjectExpr::const_semantics_iterator 3219 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3220 const Expr *semantic = *i; 3221 3222 // If this semantic expression is an opaque value, bind it 3223 // to the result of its source expression. 3224 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3225 3226 // If this is the result expression, we may need to evaluate 3227 // directly into the slot. 3228 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3229 OVMA opaqueData; 3230 if (ov == resultExpr && ov->isRValue() && !forLValue && 3231 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3232 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3233 3234 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3235 opaqueData = OVMA::bind(CGF, ov, LV); 3236 result.RV = slot.asRValue(); 3237 3238 // Otherwise, emit as normal. 3239 } else { 3240 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3241 3242 // If this is the result, also evaluate the result now. 3243 if (ov == resultExpr) { 3244 if (forLValue) 3245 result.LV = CGF.EmitLValue(ov); 3246 else 3247 result.RV = CGF.EmitAnyExpr(ov, slot); 3248 } 3249 } 3250 3251 opaques.push_back(opaqueData); 3252 3253 // Otherwise, if the expression is the result, evaluate it 3254 // and remember the result. 3255 } else if (semantic == resultExpr) { 3256 if (forLValue) 3257 result.LV = CGF.EmitLValue(semantic); 3258 else 3259 result.RV = CGF.EmitAnyExpr(semantic, slot); 3260 3261 // Otherwise, evaluate the expression in an ignored context. 3262 } else { 3263 CGF.EmitIgnoredExpr(semantic); 3264 } 3265 } 3266 3267 // Unbind all the opaques now. 3268 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3269 opaques[i].unbind(CGF); 3270 3271 return result; 3272 } 3273 3274 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3275 AggValueSlot slot) { 3276 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3277 } 3278 3279 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3280 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3281 } 3282