1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===--------------------------------------------------------------------===// 32 // Miscellaneous Helper Methods 33 //===--------------------------------------------------------------------===// 34 35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45 } 46 47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 48 /// block. 49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54 } 55 56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61 } 62 63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70 } 71 72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79 } 80 81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82 /// expression and compare the result against zero, returning an Int1Ty value. 83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94 } 95 96 /// EmitIgnoredExpr - Emit code to compute the specified expression, 97 /// ignoring the result. 98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104 } 105 106 /// EmitAnyExpr - Emit code to compute the specified expression which 107 /// can have any type. The result is returned as an RValue struct. 108 /// If this is an aggregate expression, AggSlot indicates where the 109 /// result should be returned. 110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119 } 120 121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122 /// always be accessible even if no aggregate location is provided. 123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130 } 131 132 /// EmitAnyExprToMem - Evaluate an expression into a given memory 133 /// location. 134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152 } 153 154 namespace { 155 /// \brief An adjustment to be made to the temporary created when emitting a 156 /// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181 } 182 183 static llvm::Value * 184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 llvm::SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207 } 208 209 static llvm::Value * 210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOptions().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443 } 444 445 RValue 446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 // This local is a GCC and MSVC compiler workaround. 491 Destroyer *destroyer = precise ? &destroyARCStrongPrecise : 492 &destroyARCStrongImprecise; 493 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 494 *destroyer, cleanupKind & EHCleanup); 495 break; 496 } 497 498 case Qualifiers::OCL_Weak: { 499 // This local is a GCC and MSVC compiler workaround. 500 Destroyer *destroyer = &destroyARCWeak; 501 // __weak objects always get EH cleanups; otherwise, exceptions 502 // could cause really nasty crashes instead of mere leaks. 503 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 504 ObjCARCReferenceLifetimeType, *destroyer, true); 505 break; 506 } 507 } 508 } 509 510 return RValue::get(Value); 511 } 512 513 514 /// getAccessedFieldNo - Given an encoded value and a result number, return the 515 /// input field number being accessed. 516 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 517 const llvm::Constant *Elts) { 518 if (isa<llvm::ConstantAggregateZero>(Elts)) 519 return 0; 520 521 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 522 } 523 524 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 525 if (!CatchUndefined) 526 return; 527 528 // This needs to be to the standard address space. 529 Address = Builder.CreateBitCast(Address, Int8PtrTy); 530 531 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 532 533 // In time, people may want to control this and use a 1 here. 534 llvm::Value *Arg = Builder.getFalse(); 535 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 536 llvm::BasicBlock *Cont = createBasicBlock(); 537 llvm::BasicBlock *Check = createBasicBlock(); 538 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 539 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 540 541 EmitBlock(Check); 542 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 543 llvm::ConstantInt::get(IntPtrTy, Size)), 544 Cont, getTrapBB()); 545 EmitBlock(Cont); 546 } 547 548 549 CodeGenFunction::ComplexPairTy CodeGenFunction:: 550 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 551 bool isInc, bool isPre) { 552 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 553 LV.isVolatileQualified()); 554 555 llvm::Value *NextVal; 556 if (isa<llvm::IntegerType>(InVal.first->getType())) { 557 uint64_t AmountVal = isInc ? 1 : -1; 558 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 559 560 // Add the inc/dec to the real part. 561 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 562 } else { 563 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 564 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 565 if (!isInc) 566 FVal.changeSign(); 567 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 568 569 // Add the inc/dec to the real part. 570 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 571 } 572 573 ComplexPairTy IncVal(NextVal, InVal.second); 574 575 // Store the updated result through the lvalue. 576 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 577 578 // If this is a postinc, return the value read from memory, otherwise use the 579 // updated value. 580 return isPre ? IncVal : InVal; 581 } 582 583 584 //===----------------------------------------------------------------------===// 585 // LValue Expression Emission 586 //===----------------------------------------------------------------------===// 587 588 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 589 if (Ty->isVoidType()) 590 return RValue::get(0); 591 592 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 593 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 594 llvm::Value *U = llvm::UndefValue::get(EltTy); 595 return RValue::getComplex(std::make_pair(U, U)); 596 } 597 598 // If this is a use of an undefined aggregate type, the aggregate must have an 599 // identifiable address. Just because the contents of the value are undefined 600 // doesn't mean that the address can't be taken and compared. 601 if (hasAggregateLLVMType(Ty)) { 602 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 603 return RValue::getAggregate(DestPtr); 604 } 605 606 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 607 } 608 609 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 return GetUndefRValue(E->getType()); 613 } 614 615 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 616 const char *Name) { 617 ErrorUnsupported(E, Name); 618 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 619 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 620 } 621 622 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 623 LValue LV = EmitLValue(E); 624 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 625 EmitCheck(LV.getAddress(), 626 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 627 return LV; 628 } 629 630 /// EmitLValue - Emit code to compute a designator that specifies the location 631 /// of the expression. 632 /// 633 /// This can return one of two things: a simple address or a bitfield reference. 634 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 635 /// an LLVM pointer type. 636 /// 637 /// If this returns a bitfield reference, nothing about the pointee type of the 638 /// LLVM value is known: For example, it may not be a pointer to an integer. 639 /// 640 /// If this returns a normal address, and if the lvalue's C type is fixed size, 641 /// this method guarantees that the returned pointer type will point to an LLVM 642 /// type of the same size of the lvalue's type. If the lvalue has a variable 643 /// length type, this is not possible. 644 /// 645 LValue CodeGenFunction::EmitLValue(const Expr *E) { 646 switch (E->getStmtClass()) { 647 default: return EmitUnsupportedLValue(E, "l-value expression"); 648 649 case Expr::ObjCPropertyRefExprClass: 650 llvm_unreachable("cannot emit a property reference directly"); 651 652 case Expr::ObjCSelectorExprClass: 653 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 654 case Expr::ObjCIsaExprClass: 655 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 656 case Expr::BinaryOperatorClass: 657 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 658 case Expr::CompoundAssignOperatorClass: 659 if (!E->getType()->isAnyComplexType()) 660 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 661 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 662 case Expr::CallExprClass: 663 case Expr::CXXMemberCallExprClass: 664 case Expr::CXXOperatorCallExprClass: 665 return EmitCallExprLValue(cast<CallExpr>(E)); 666 case Expr::VAArgExprClass: 667 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 668 case Expr::DeclRefExprClass: 669 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 670 case Expr::ParenExprClass: 671 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 672 case Expr::GenericSelectionExprClass: 673 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 674 case Expr::PredefinedExprClass: 675 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 676 case Expr::StringLiteralClass: 677 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 678 case Expr::ObjCEncodeExprClass: 679 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 680 case Expr::PseudoObjectExprClass: 681 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 682 case Expr::InitListExprClass: 683 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 684 "Only single-element init list can be lvalue."); 685 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 686 687 case Expr::BlockDeclRefExprClass: 688 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 689 690 case Expr::CXXTemporaryObjectExprClass: 691 case Expr::CXXConstructExprClass: 692 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 693 case Expr::CXXBindTemporaryExprClass: 694 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 695 696 case Expr::ExprWithCleanupsClass: { 697 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 698 enterFullExpression(cleanups); 699 RunCleanupsScope Scope(*this); 700 return EmitLValue(cleanups->getSubExpr()); 701 } 702 703 case Expr::CXXScalarValueInitExprClass: 704 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 705 case Expr::CXXDefaultArgExprClass: 706 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 707 case Expr::CXXTypeidExprClass: 708 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 709 710 case Expr::ObjCMessageExprClass: 711 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 712 case Expr::ObjCIvarRefExprClass: 713 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 714 case Expr::StmtExprClass: 715 return EmitStmtExprLValue(cast<StmtExpr>(E)); 716 case Expr::UnaryOperatorClass: 717 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 718 case Expr::ArraySubscriptExprClass: 719 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 720 case Expr::ExtVectorElementExprClass: 721 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 722 case Expr::MemberExprClass: 723 return EmitMemberExpr(cast<MemberExpr>(E)); 724 case Expr::CompoundLiteralExprClass: 725 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 726 case Expr::ConditionalOperatorClass: 727 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 728 case Expr::BinaryConditionalOperatorClass: 729 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 730 case Expr::ChooseExprClass: 731 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 732 case Expr::OpaqueValueExprClass: 733 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 734 case Expr::SubstNonTypeTemplateParmExprClass: 735 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 736 case Expr::ImplicitCastExprClass: 737 case Expr::CStyleCastExprClass: 738 case Expr::CXXFunctionalCastExprClass: 739 case Expr::CXXStaticCastExprClass: 740 case Expr::CXXDynamicCastExprClass: 741 case Expr::CXXReinterpretCastExprClass: 742 case Expr::CXXConstCastExprClass: 743 case Expr::ObjCBridgedCastExprClass: 744 return EmitCastLValue(cast<CastExpr>(E)); 745 746 case Expr::MaterializeTemporaryExprClass: 747 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 748 } 749 } 750 751 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 752 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 753 lvalue.getAlignment().getQuantity(), 754 lvalue.getType(), lvalue.getTBAAInfo()); 755 } 756 757 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 758 unsigned Alignment, QualType Ty, 759 llvm::MDNode *TBAAInfo) { 760 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 761 if (Volatile) 762 Load->setVolatile(true); 763 if (Alignment) 764 Load->setAlignment(Alignment); 765 if (TBAAInfo) 766 CGM.DecorateInstruction(Load, TBAAInfo); 767 768 return EmitFromMemory(Load, Ty); 769 } 770 771 static bool isBooleanUnderlyingType(QualType Ty) { 772 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 773 return ET->getDecl()->getIntegerType()->isBooleanType(); 774 return false; 775 } 776 777 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 778 // Bool has a different representation in memory than in registers. 779 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 780 // This should really always be an i1, but sometimes it's already 781 // an i8, and it's awkward to track those cases down. 782 if (Value->getType()->isIntegerTy(1)) 783 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 784 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 785 } 786 787 return Value; 788 } 789 790 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 791 // Bool has a different representation in memory than in registers. 792 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 793 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 794 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 795 } 796 797 return Value; 798 } 799 800 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 801 bool Volatile, unsigned Alignment, 802 QualType Ty, 803 llvm::MDNode *TBAAInfo) { 804 Value = EmitToMemory(Value, Ty); 805 806 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 807 if (Alignment) 808 Store->setAlignment(Alignment); 809 if (TBAAInfo) 810 CGM.DecorateInstruction(Store, TBAAInfo); 811 } 812 813 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) { 814 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 815 lvalue.getAlignment().getQuantity(), lvalue.getType(), 816 lvalue.getTBAAInfo()); 817 } 818 819 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 820 /// method emits the address of the lvalue, then loads the result as an rvalue, 821 /// returning the rvalue. 822 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 823 if (LV.isObjCWeak()) { 824 // load of a __weak object. 825 llvm::Value *AddrWeakObj = LV.getAddress(); 826 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 827 AddrWeakObj)); 828 } 829 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 830 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 831 832 if (LV.isSimple()) { 833 assert(!LV.getType()->isFunctionType()); 834 835 // Everything needs a load. 836 return RValue::get(EmitLoadOfScalar(LV)); 837 } 838 839 if (LV.isVectorElt()) { 840 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 841 LV.isVolatileQualified()); 842 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 843 "vecext")); 844 } 845 846 // If this is a reference to a subset of the elements of a vector, either 847 // shuffle the input or extract/insert them as appropriate. 848 if (LV.isExtVectorElt()) 849 return EmitLoadOfExtVectorElementLValue(LV); 850 851 assert(LV.isBitField() && "Unknown LValue type!"); 852 return EmitLoadOfBitfieldLValue(LV); 853 } 854 855 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 856 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 857 858 // Get the output type. 859 llvm::Type *ResLTy = ConvertType(LV.getType()); 860 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 861 862 // Compute the result as an OR of all of the individual component accesses. 863 llvm::Value *Res = 0; 864 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 865 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 866 867 // Get the field pointer. 868 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 869 870 // Only offset by the field index if used, so that incoming values are not 871 // required to be structures. 872 if (AI.FieldIndex) 873 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 874 875 // Offset by the byte offset, if used. 876 if (!AI.FieldByteOffset.isZero()) { 877 Ptr = EmitCastToVoidPtr(Ptr); 878 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 879 "bf.field.offs"); 880 } 881 882 // Cast to the access type. 883 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 884 AI.AccessWidth, 885 CGM.getContext().getTargetAddressSpace(LV.getType())); 886 Ptr = Builder.CreateBitCast(Ptr, PTy); 887 888 // Perform the load. 889 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 890 if (!AI.AccessAlignment.isZero()) 891 Load->setAlignment(AI.AccessAlignment.getQuantity()); 892 893 // Shift out unused low bits and mask out unused high bits. 894 llvm::Value *Val = Load; 895 if (AI.FieldBitStart) 896 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 897 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 898 AI.TargetBitWidth), 899 "bf.clear"); 900 901 // Extend or truncate to the target size. 902 if (AI.AccessWidth < ResSizeInBits) 903 Val = Builder.CreateZExt(Val, ResLTy); 904 else if (AI.AccessWidth > ResSizeInBits) 905 Val = Builder.CreateTrunc(Val, ResLTy); 906 907 // Shift into place, and OR into the result. 908 if (AI.TargetBitOffset) 909 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 910 Res = Res ? Builder.CreateOr(Res, Val) : Val; 911 } 912 913 // If the bit-field is signed, perform the sign-extension. 914 // 915 // FIXME: This can easily be folded into the load of the high bits, which 916 // could also eliminate the mask of high bits in some situations. 917 if (Info.isSigned()) { 918 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 919 if (ExtraBits) 920 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 921 ExtraBits, "bf.val.sext"); 922 } 923 924 return RValue::get(Res); 925 } 926 927 // If this is a reference to a subset of the elements of a vector, create an 928 // appropriate shufflevector. 929 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 930 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 931 LV.isVolatileQualified()); 932 933 const llvm::Constant *Elts = LV.getExtVectorElts(); 934 935 // If the result of the expression is a non-vector type, we must be extracting 936 // a single element. Just codegen as an extractelement. 937 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 938 if (!ExprVT) { 939 unsigned InIdx = getAccessedFieldNo(0, Elts); 940 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 941 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 942 } 943 944 // Always use shuffle vector to try to retain the original program structure 945 unsigned NumResultElts = ExprVT->getNumElements(); 946 947 SmallVector<llvm::Constant*, 4> Mask; 948 for (unsigned i = 0; i != NumResultElts; ++i) { 949 unsigned InIdx = getAccessedFieldNo(i, Elts); 950 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 951 } 952 953 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 954 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 955 MaskV); 956 return RValue::get(Vec); 957 } 958 959 960 961 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 962 /// lvalue, where both are guaranteed to the have the same type, and that type 963 /// is 'Ty'. 964 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) { 965 if (!Dst.isSimple()) { 966 if (Dst.isVectorElt()) { 967 // Read/modify/write the vector, inserting the new element. 968 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 969 Dst.isVolatileQualified()); 970 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 971 Dst.getVectorIdx(), "vecins"); 972 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 973 return; 974 } 975 976 // If this is an update of extended vector elements, insert them as 977 // appropriate. 978 if (Dst.isExtVectorElt()) 979 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 980 981 assert(Dst.isBitField() && "Unknown LValue type"); 982 return EmitStoreThroughBitfieldLValue(Src, Dst); 983 } 984 985 // There's special magic for assigning into an ARC-qualified l-value. 986 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 987 switch (Lifetime) { 988 case Qualifiers::OCL_None: 989 llvm_unreachable("present but none"); 990 991 case Qualifiers::OCL_ExplicitNone: 992 // nothing special 993 break; 994 995 case Qualifiers::OCL_Strong: 996 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 997 return; 998 999 case Qualifiers::OCL_Weak: 1000 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1001 return; 1002 1003 case Qualifiers::OCL_Autoreleasing: 1004 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1005 Src.getScalarVal())); 1006 // fall into the normal path 1007 break; 1008 } 1009 } 1010 1011 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1012 // load of a __weak object. 1013 llvm::Value *LvalueDst = Dst.getAddress(); 1014 llvm::Value *src = Src.getScalarVal(); 1015 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1016 return; 1017 } 1018 1019 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1020 // load of a __strong object. 1021 llvm::Value *LvalueDst = Dst.getAddress(); 1022 llvm::Value *src = Src.getScalarVal(); 1023 if (Dst.isObjCIvar()) { 1024 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1025 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1026 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1027 llvm::Value *dst = RHS; 1028 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1029 llvm::Value *LHS = 1030 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1031 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1032 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1033 BytesBetween); 1034 } else if (Dst.isGlobalObjCRef()) { 1035 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1036 Dst.isThreadLocalRef()); 1037 } 1038 else 1039 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1040 return; 1041 } 1042 1043 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1044 EmitStoreOfScalar(Src.getScalarVal(), Dst); 1045 } 1046 1047 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1048 llvm::Value **Result) { 1049 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1050 1051 // Get the output type. 1052 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1053 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1054 1055 // Get the source value, truncated to the width of the bit-field. 1056 llvm::Value *SrcVal = Src.getScalarVal(); 1057 1058 if (Dst.getType()->isBooleanType()) 1059 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1060 1061 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1062 Info.getSize()), 1063 "bf.value"); 1064 1065 // Return the new value of the bit-field, if requested. 1066 if (Result) { 1067 // Cast back to the proper type for result. 1068 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1069 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1070 "bf.reload.val"); 1071 1072 // Sign extend if necessary. 1073 if (Info.isSigned()) { 1074 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1075 if (ExtraBits) 1076 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1077 ExtraBits, "bf.reload.sext"); 1078 } 1079 1080 *Result = ReloadVal; 1081 } 1082 1083 // Iterate over the components, writing each piece to memory. 1084 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1085 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1086 1087 // Get the field pointer. 1088 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1089 unsigned addressSpace = 1090 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1091 1092 // Only offset by the field index if used, so that incoming values are not 1093 // required to be structures. 1094 if (AI.FieldIndex) 1095 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1096 1097 // Offset by the byte offset, if used. 1098 if (!AI.FieldByteOffset.isZero()) { 1099 Ptr = EmitCastToVoidPtr(Ptr); 1100 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1101 "bf.field.offs"); 1102 } 1103 1104 // Cast to the access type. 1105 llvm::Type *AccessLTy = 1106 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1107 1108 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1109 Ptr = Builder.CreateBitCast(Ptr, PTy); 1110 1111 // Extract the piece of the bit-field value to write in this access, limited 1112 // to the values that are part of this access. 1113 llvm::Value *Val = SrcVal; 1114 if (AI.TargetBitOffset) 1115 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1116 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1117 AI.TargetBitWidth)); 1118 1119 // Extend or truncate to the access size. 1120 if (ResSizeInBits < AI.AccessWidth) 1121 Val = Builder.CreateZExt(Val, AccessLTy); 1122 else if (ResSizeInBits > AI.AccessWidth) 1123 Val = Builder.CreateTrunc(Val, AccessLTy); 1124 1125 // Shift into the position in memory. 1126 if (AI.FieldBitStart) 1127 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1128 1129 // If necessary, load and OR in bits that are outside of the bit-field. 1130 if (AI.TargetBitWidth != AI.AccessWidth) { 1131 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1132 if (!AI.AccessAlignment.isZero()) 1133 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1134 1135 // Compute the mask for zeroing the bits that are part of the bit-field. 1136 llvm::APInt InvMask = 1137 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1138 AI.FieldBitStart + AI.TargetBitWidth); 1139 1140 // Apply the mask and OR in to the value to write. 1141 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1142 } 1143 1144 // Write the value. 1145 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1146 Dst.isVolatileQualified()); 1147 if (!AI.AccessAlignment.isZero()) 1148 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1149 } 1150 } 1151 1152 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1153 LValue Dst) { 1154 // This access turns into a read/modify/write of the vector. Load the input 1155 // value now. 1156 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1157 Dst.isVolatileQualified()); 1158 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1159 1160 llvm::Value *SrcVal = Src.getScalarVal(); 1161 1162 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1163 unsigned NumSrcElts = VTy->getNumElements(); 1164 unsigned NumDstElts = 1165 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1166 if (NumDstElts == NumSrcElts) { 1167 // Use shuffle vector is the src and destination are the same number of 1168 // elements and restore the vector mask since it is on the side it will be 1169 // stored. 1170 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1171 for (unsigned i = 0; i != NumSrcElts; ++i) { 1172 unsigned InIdx = getAccessedFieldNo(i, Elts); 1173 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 1174 } 1175 1176 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1177 Vec = Builder.CreateShuffleVector(SrcVal, 1178 llvm::UndefValue::get(Vec->getType()), 1179 MaskV); 1180 } else if (NumDstElts > NumSrcElts) { 1181 // Extended the source vector to the same length and then shuffle it 1182 // into the destination. 1183 // FIXME: since we're shuffling with undef, can we just use the indices 1184 // into that? This could be simpler. 1185 SmallVector<llvm::Constant*, 4> ExtMask; 1186 unsigned i; 1187 for (i = 0; i != NumSrcElts; ++i) 1188 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1189 for (; i != NumDstElts; ++i) 1190 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 1191 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1192 llvm::Value *ExtSrcVal = 1193 Builder.CreateShuffleVector(SrcVal, 1194 llvm::UndefValue::get(SrcVal->getType()), 1195 ExtMaskV); 1196 // build identity 1197 SmallVector<llvm::Constant*, 4> Mask; 1198 for (unsigned i = 0; i != NumDstElts; ++i) 1199 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1200 1201 // modify when what gets shuffled in 1202 for (unsigned i = 0; i != NumSrcElts; ++i) { 1203 unsigned Idx = getAccessedFieldNo(i, Elts); 1204 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1205 } 1206 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1207 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1208 } else { 1209 // We should never shorten the vector 1210 llvm_unreachable("unexpected shorten vector length"); 1211 } 1212 } else { 1213 // If the Src is a scalar (not a vector) it must be updating one element. 1214 unsigned InIdx = getAccessedFieldNo(0, Elts); 1215 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1216 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1217 } 1218 1219 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1220 } 1221 1222 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1223 // generating write-barries API. It is currently a global, ivar, 1224 // or neither. 1225 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1226 LValue &LV, 1227 bool IsMemberAccess=false) { 1228 if (Ctx.getLangOptions().getGC() == LangOptions::NonGC) 1229 return; 1230 1231 if (isa<ObjCIvarRefExpr>(E)) { 1232 QualType ExpTy = E->getType(); 1233 if (IsMemberAccess && ExpTy->isPointerType()) { 1234 // If ivar is a structure pointer, assigning to field of 1235 // this struct follows gcc's behavior and makes it a non-ivar 1236 // writer-barrier conservatively. 1237 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1238 if (ExpTy->isRecordType()) { 1239 LV.setObjCIvar(false); 1240 return; 1241 } 1242 } 1243 LV.setObjCIvar(true); 1244 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1245 LV.setBaseIvarExp(Exp->getBase()); 1246 LV.setObjCArray(E->getType()->isArrayType()); 1247 return; 1248 } 1249 1250 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1251 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1252 if (VD->hasGlobalStorage()) { 1253 LV.setGlobalObjCRef(true); 1254 LV.setThreadLocalRef(VD->isThreadSpecified()); 1255 } 1256 } 1257 LV.setObjCArray(E->getType()->isArrayType()); 1258 return; 1259 } 1260 1261 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1262 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1263 return; 1264 } 1265 1266 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1267 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1268 if (LV.isObjCIvar()) { 1269 // If cast is to a structure pointer, follow gcc's behavior and make it 1270 // a non-ivar write-barrier. 1271 QualType ExpTy = E->getType(); 1272 if (ExpTy->isPointerType()) 1273 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1274 if (ExpTy->isRecordType()) 1275 LV.setObjCIvar(false); 1276 } 1277 return; 1278 } 1279 1280 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1281 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1282 return; 1283 } 1284 1285 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1286 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1287 return; 1288 } 1289 1290 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1291 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1292 return; 1293 } 1294 1295 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1296 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1297 return; 1298 } 1299 1300 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1301 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1302 if (LV.isObjCIvar() && !LV.isObjCArray()) 1303 // Using array syntax to assigning to what an ivar points to is not 1304 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1305 LV.setObjCIvar(false); 1306 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1307 // Using array syntax to assigning to what global points to is not 1308 // same as assigning to the global itself. {id *G;} G[i] = 0; 1309 LV.setGlobalObjCRef(false); 1310 return; 1311 } 1312 1313 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1314 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1315 // We don't know if member is an 'ivar', but this flag is looked at 1316 // only in the context of LV.isObjCIvar(). 1317 LV.setObjCArray(E->getType()->isArrayType()); 1318 return; 1319 } 1320 } 1321 1322 static llvm::Value * 1323 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1324 llvm::Value *V, llvm::Type *IRType, 1325 StringRef Name = StringRef()) { 1326 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1327 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1328 } 1329 1330 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1331 const Expr *E, const VarDecl *VD) { 1332 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1333 "Var decl must have external storage or be a file var decl!"); 1334 1335 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1336 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1337 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1338 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1339 QualType T = E->getType(); 1340 LValue LV; 1341 if (VD->getType()->isReferenceType()) { 1342 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1343 LI->setAlignment(Alignment.getQuantity()); 1344 V = LI; 1345 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1346 } else { 1347 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1348 } 1349 setObjCGCLValueClass(CGF.getContext(), E, LV); 1350 return LV; 1351 } 1352 1353 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1354 const Expr *E, const FunctionDecl *FD) { 1355 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1356 if (!FD->hasPrototype()) { 1357 if (const FunctionProtoType *Proto = 1358 FD->getType()->getAs<FunctionProtoType>()) { 1359 // Ugly case: for a K&R-style definition, the type of the definition 1360 // isn't the same as the type of a use. Correct for this with a 1361 // bitcast. 1362 QualType NoProtoType = 1363 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1364 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1365 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1366 } 1367 } 1368 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1369 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1370 } 1371 1372 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1373 const NamedDecl *ND = E->getDecl(); 1374 CharUnits Alignment = getContext().getDeclAlign(ND); 1375 QualType T = E->getType(); 1376 1377 if (ND->hasAttr<WeakRefAttr>()) { 1378 const ValueDecl *VD = cast<ValueDecl>(ND); 1379 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1380 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1381 } 1382 1383 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1384 1385 // Check if this is a global variable. 1386 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1387 return EmitGlobalVarDeclLValue(*this, E, VD); 1388 1389 bool NonGCable = VD->hasLocalStorage() && 1390 !VD->getType()->isReferenceType() && 1391 !VD->hasAttr<BlocksAttr>(); 1392 1393 llvm::Value *V = LocalDeclMap[VD]; 1394 if (!V && VD->isStaticLocal()) 1395 V = CGM.getStaticLocalDeclAddress(VD); 1396 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1397 1398 if (VD->hasAttr<BlocksAttr>()) 1399 V = BuildBlockByrefAddress(V, VD); 1400 1401 LValue LV; 1402 if (VD->getType()->isReferenceType()) { 1403 llvm::LoadInst *LI = Builder.CreateLoad(V); 1404 LI->setAlignment(Alignment.getQuantity()); 1405 V = LI; 1406 LV = MakeNaturalAlignAddrLValue(V, T); 1407 } else { 1408 LV = MakeAddrLValue(V, T, Alignment); 1409 } 1410 1411 if (NonGCable) { 1412 LV.getQuals().removeObjCGCAttr(); 1413 LV.setNonGC(true); 1414 } 1415 setObjCGCLValueClass(getContext(), E, LV); 1416 return LV; 1417 } 1418 1419 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1420 return EmitFunctionDeclLValue(*this, E, fn); 1421 1422 llvm_unreachable("Unhandled DeclRefExpr"); 1423 1424 // an invalid LValue, but the assert will 1425 // ensure that this point is never reached. 1426 return LValue(); 1427 } 1428 1429 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1430 CharUnits Alignment = getContext().getDeclAlign(E->getDecl()); 1431 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1432 } 1433 1434 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1435 // __extension__ doesn't affect lvalue-ness. 1436 if (E->getOpcode() == UO_Extension) 1437 return EmitLValue(E->getSubExpr()); 1438 1439 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1440 switch (E->getOpcode()) { 1441 default: llvm_unreachable("Unknown unary operator lvalue!"); 1442 case UO_Deref: { 1443 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1444 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1445 1446 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1447 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1448 1449 // We should not generate __weak write barrier on indirect reference 1450 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1451 // But, we continue to generate __strong write barrier on indirect write 1452 // into a pointer to object. 1453 if (getContext().getLangOptions().ObjC1 && 1454 getContext().getLangOptions().getGC() != LangOptions::NonGC && 1455 LV.isObjCWeak()) 1456 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1457 return LV; 1458 } 1459 case UO_Real: 1460 case UO_Imag: { 1461 LValue LV = EmitLValue(E->getSubExpr()); 1462 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1463 llvm::Value *Addr = LV.getAddress(); 1464 1465 // real and imag are valid on scalars. This is a faster way of 1466 // testing that. 1467 if (!cast<llvm::PointerType>(Addr->getType()) 1468 ->getElementType()->isStructTy()) { 1469 assert(E->getSubExpr()->getType()->isArithmeticType()); 1470 return LV; 1471 } 1472 1473 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1474 1475 unsigned Idx = E->getOpcode() == UO_Imag; 1476 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1477 Idx, "idx"), 1478 ExprTy); 1479 } 1480 case UO_PreInc: 1481 case UO_PreDec: { 1482 LValue LV = EmitLValue(E->getSubExpr()); 1483 bool isInc = E->getOpcode() == UO_PreInc; 1484 1485 if (E->getType()->isAnyComplexType()) 1486 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1487 else 1488 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1489 return LV; 1490 } 1491 } 1492 } 1493 1494 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1495 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1496 E->getType()); 1497 } 1498 1499 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1500 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1501 E->getType()); 1502 } 1503 1504 1505 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1506 switch (E->getIdentType()) { 1507 default: 1508 return EmitUnsupportedLValue(E, "predefined expression"); 1509 1510 case PredefinedExpr::Func: 1511 case PredefinedExpr::Function: 1512 case PredefinedExpr::PrettyFunction: { 1513 unsigned Type = E->getIdentType(); 1514 std::string GlobalVarName; 1515 1516 switch (Type) { 1517 default: llvm_unreachable("Invalid type"); 1518 case PredefinedExpr::Func: 1519 GlobalVarName = "__func__."; 1520 break; 1521 case PredefinedExpr::Function: 1522 GlobalVarName = "__FUNCTION__."; 1523 break; 1524 case PredefinedExpr::PrettyFunction: 1525 GlobalVarName = "__PRETTY_FUNCTION__."; 1526 break; 1527 } 1528 1529 StringRef FnName = CurFn->getName(); 1530 if (FnName.startswith("\01")) 1531 FnName = FnName.substr(1); 1532 GlobalVarName += FnName; 1533 1534 const Decl *CurDecl = CurCodeDecl; 1535 if (CurDecl == 0) 1536 CurDecl = getContext().getTranslationUnitDecl(); 1537 1538 std::string FunctionName = 1539 (isa<BlockDecl>(CurDecl) 1540 ? FnName.str() 1541 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1542 1543 llvm::Constant *C = 1544 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1545 return MakeAddrLValue(C, E->getType()); 1546 } 1547 } 1548 } 1549 1550 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1551 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1552 1553 // If we are not optimzing, don't collapse all calls to trap in the function 1554 // to the same call, that way, in the debugger they can see which operation 1555 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1556 // to just one per function to save on codesize. 1557 if (GCO.OptimizationLevel && TrapBB) 1558 return TrapBB; 1559 1560 llvm::BasicBlock *Cont = 0; 1561 if (HaveInsertPoint()) { 1562 Cont = createBasicBlock("cont"); 1563 EmitBranch(Cont); 1564 } 1565 TrapBB = createBasicBlock("trap"); 1566 EmitBlock(TrapBB); 1567 1568 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1569 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1570 TrapCall->setDoesNotReturn(); 1571 TrapCall->setDoesNotThrow(); 1572 Builder.CreateUnreachable(); 1573 1574 if (Cont) 1575 EmitBlock(Cont); 1576 return TrapBB; 1577 } 1578 1579 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1580 /// array to pointer, return the array subexpression. 1581 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1582 // If this isn't just an array->pointer decay, bail out. 1583 const CastExpr *CE = dyn_cast<CastExpr>(E); 1584 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1585 return 0; 1586 1587 // If this is a decay from variable width array, bail out. 1588 const Expr *SubExpr = CE->getSubExpr(); 1589 if (SubExpr->getType()->isVariableArrayType()) 1590 return 0; 1591 1592 return SubExpr; 1593 } 1594 1595 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1596 // The index must always be an integer, which is not an aggregate. Emit it. 1597 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1598 QualType IdxTy = E->getIdx()->getType(); 1599 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1600 1601 // If the base is a vector type, then we are forming a vector element lvalue 1602 // with this subscript. 1603 if (E->getBase()->getType()->isVectorType()) { 1604 // Emit the vector as an lvalue to get its address. 1605 LValue LHS = EmitLValue(E->getBase()); 1606 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1607 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1608 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1609 E->getBase()->getType()); 1610 } 1611 1612 // Extend or truncate the index type to 32 or 64-bits. 1613 if (Idx->getType() != IntPtrTy) 1614 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1615 1616 // FIXME: As llvm implements the object size checking, this can come out. 1617 if (CatchUndefined) { 1618 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1619 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1620 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1621 if (const ConstantArrayType *CAT 1622 = getContext().getAsConstantArrayType(DRE->getType())) { 1623 llvm::APInt Size = CAT->getSize(); 1624 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1625 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1626 llvm::ConstantInt::get(Idx->getType(), Size)), 1627 Cont, getTrapBB()); 1628 EmitBlock(Cont); 1629 } 1630 } 1631 } 1632 } 1633 } 1634 1635 // We know that the pointer points to a type of the correct size, unless the 1636 // size is a VLA or Objective-C interface. 1637 llvm::Value *Address = 0; 1638 CharUnits ArrayAlignment; 1639 if (const VariableArrayType *vla = 1640 getContext().getAsVariableArrayType(E->getType())) { 1641 // The base must be a pointer, which is not an aggregate. Emit 1642 // it. It needs to be emitted first in case it's what captures 1643 // the VLA bounds. 1644 Address = EmitScalarExpr(E->getBase()); 1645 1646 // The element count here is the total number of non-VLA elements. 1647 llvm::Value *numElements = getVLASize(vla).first; 1648 1649 // Effectively, the multiply by the VLA size is part of the GEP. 1650 // GEP indexes are signed, and scaling an index isn't permitted to 1651 // signed-overflow, so we use the same semantics for our explicit 1652 // multiply. We suppress this if overflow is not undefined behavior. 1653 if (getLangOptions().isSignedOverflowDefined()) { 1654 Idx = Builder.CreateMul(Idx, numElements); 1655 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1656 } else { 1657 Idx = Builder.CreateNSWMul(Idx, numElements); 1658 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1659 } 1660 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1661 // Indexing over an interface, as in "NSString *P; P[4];" 1662 llvm::Value *InterfaceSize = 1663 llvm::ConstantInt::get(Idx->getType(), 1664 getContext().getTypeSizeInChars(OIT).getQuantity()); 1665 1666 Idx = Builder.CreateMul(Idx, InterfaceSize); 1667 1668 // The base must be a pointer, which is not an aggregate. Emit it. 1669 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1670 Address = EmitCastToVoidPtr(Base); 1671 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1672 Address = Builder.CreateBitCast(Address, Base->getType()); 1673 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1674 // If this is A[i] where A is an array, the frontend will have decayed the 1675 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1676 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1677 // "gep x, i" here. Emit one "gep A, 0, i". 1678 assert(Array->getType()->isArrayType() && 1679 "Array to pointer decay must have array source type!"); 1680 LValue ArrayLV = EmitLValue(Array); 1681 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1682 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1683 llvm::Value *Args[] = { Zero, Idx }; 1684 1685 // Propagate the alignment from the array itself to the result. 1686 ArrayAlignment = ArrayLV.getAlignment(); 1687 1688 if (getContext().getLangOptions().isSignedOverflowDefined()) 1689 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1690 else 1691 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1692 } else { 1693 // The base must be a pointer, which is not an aggregate. Emit it. 1694 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1695 if (getContext().getLangOptions().isSignedOverflowDefined()) 1696 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1697 else 1698 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1699 } 1700 1701 QualType T = E->getBase()->getType()->getPointeeType(); 1702 assert(!T.isNull() && 1703 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1704 1705 // Limit the alignment to that of the result type. 1706 if (!ArrayAlignment.isZero()) { 1707 CharUnits Align = getContext().getTypeAlignInChars(T); 1708 ArrayAlignment = std::min(Align, ArrayAlignment); 1709 } 1710 1711 LValue LV = MakeAddrLValue(Address, T, ArrayAlignment); 1712 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1713 1714 if (getContext().getLangOptions().ObjC1 && 1715 getContext().getLangOptions().getGC() != LangOptions::NonGC) { 1716 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1717 setObjCGCLValueClass(getContext(), E, LV); 1718 } 1719 return LV; 1720 } 1721 1722 static 1723 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1724 SmallVector<unsigned, 4> &Elts) { 1725 SmallVector<llvm::Constant*, 4> CElts; 1726 1727 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1728 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1729 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1730 1731 return llvm::ConstantVector::get(CElts); 1732 } 1733 1734 LValue CodeGenFunction:: 1735 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1736 // Emit the base vector as an l-value. 1737 LValue Base; 1738 1739 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1740 if (E->isArrow()) { 1741 // If it is a pointer to a vector, emit the address and form an lvalue with 1742 // it. 1743 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1744 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1745 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1746 Base.getQuals().removeObjCGCAttr(); 1747 } else if (E->getBase()->isGLValue()) { 1748 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1749 // emit the base as an lvalue. 1750 assert(E->getBase()->getType()->isVectorType()); 1751 Base = EmitLValue(E->getBase()); 1752 } else { 1753 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1754 assert(E->getBase()->getType()->isVectorType() && 1755 "Result must be a vector"); 1756 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1757 1758 // Store the vector to memory (because LValue wants an address). 1759 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1760 Builder.CreateStore(Vec, VecMem); 1761 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1762 } 1763 1764 QualType type = 1765 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1766 1767 // Encode the element access list into a vector of unsigned indices. 1768 SmallVector<unsigned, 4> Indices; 1769 E->getEncodedElementAccess(Indices); 1770 1771 if (Base.isSimple()) { 1772 llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices); 1773 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1774 } 1775 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1776 1777 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1778 SmallVector<llvm::Constant *, 4> CElts; 1779 1780 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1781 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1782 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1783 else 1784 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1785 } 1786 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1787 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1788 } 1789 1790 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1791 bool isNonGC = false; 1792 Expr *BaseExpr = E->getBase(); 1793 llvm::Value *BaseValue = NULL; 1794 Qualifiers BaseQuals; 1795 1796 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1797 if (E->isArrow()) { 1798 BaseValue = EmitScalarExpr(BaseExpr); 1799 const PointerType *PTy = 1800 BaseExpr->getType()->getAs<PointerType>(); 1801 BaseQuals = PTy->getPointeeType().getQualifiers(); 1802 } else { 1803 LValue BaseLV = EmitLValue(BaseExpr); 1804 if (BaseLV.isNonGC()) 1805 isNonGC = true; 1806 // FIXME: this isn't right for bitfields. 1807 BaseValue = BaseLV.getAddress(); 1808 QualType BaseTy = BaseExpr->getType(); 1809 BaseQuals = BaseTy.getQualifiers(); 1810 } 1811 1812 NamedDecl *ND = E->getMemberDecl(); 1813 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1814 LValue LV = EmitLValueForField(BaseValue, Field, 1815 BaseQuals.getCVRQualifiers()); 1816 LV.setNonGC(isNonGC); 1817 setObjCGCLValueClass(getContext(), E, LV); 1818 return LV; 1819 } 1820 1821 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1822 return EmitGlobalVarDeclLValue(*this, E, VD); 1823 1824 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1825 return EmitFunctionDeclLValue(*this, E, FD); 1826 1827 llvm_unreachable("Unhandled member declaration!"); 1828 } 1829 1830 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1831 const FieldDecl *Field, 1832 unsigned CVRQualifiers) { 1833 const CGRecordLayout &RL = 1834 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1835 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1836 return LValue::MakeBitfield(BaseValue, Info, 1837 Field->getType().withCVRQualifiers(CVRQualifiers)); 1838 } 1839 1840 /// EmitLValueForAnonRecordField - Given that the field is a member of 1841 /// an anonymous struct or union buried inside a record, and given 1842 /// that the base value is a pointer to the enclosing record, derive 1843 /// an lvalue for the ultimate field. 1844 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1845 const IndirectFieldDecl *Field, 1846 unsigned CVRQualifiers) { 1847 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1848 IEnd = Field->chain_end(); 1849 while (true) { 1850 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1851 CVRQualifiers); 1852 if (++I == IEnd) return LV; 1853 1854 assert(LV.isSimple()); 1855 BaseValue = LV.getAddress(); 1856 CVRQualifiers |= LV.getVRQualifiers(); 1857 } 1858 } 1859 1860 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1861 const FieldDecl *field, 1862 unsigned cvr) { 1863 if (field->isBitField()) 1864 return EmitLValueForBitfield(baseAddr, field, cvr); 1865 1866 const RecordDecl *rec = field->getParent(); 1867 QualType type = field->getType(); 1868 CharUnits alignment = getContext().getDeclAlign(field); 1869 1870 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1871 1872 llvm::Value *addr = baseAddr; 1873 if (rec->isUnion()) { 1874 // For unions, there is no pointer adjustment. 1875 assert(!type->isReferenceType() && "union has reference member"); 1876 } else { 1877 // For structs, we GEP to the field that the record layout suggests. 1878 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1879 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 1880 1881 // If this is a reference field, load the reference right now. 1882 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1883 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1884 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1885 load->setAlignment(alignment.getQuantity()); 1886 1887 if (CGM.shouldUseTBAA()) { 1888 llvm::MDNode *tbaa; 1889 if (mayAlias) 1890 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1891 else 1892 tbaa = CGM.getTBAAInfo(type); 1893 CGM.DecorateInstruction(load, tbaa); 1894 } 1895 1896 addr = load; 1897 mayAlias = false; 1898 type = refType->getPointeeType(); 1899 if (type->isIncompleteType()) 1900 alignment = CharUnits(); 1901 else 1902 alignment = getContext().getTypeAlignInChars(type); 1903 cvr = 0; // qualifiers don't recursively apply to referencee 1904 } 1905 } 1906 1907 // Make sure that the address is pointing to the right type. This is critical 1908 // for both unions and structs. A union needs a bitcast, a struct element 1909 // will need a bitcast if the LLVM type laid out doesn't match the desired 1910 // type. 1911 addr = EmitBitCastOfLValueToProperType(*this, addr, 1912 CGM.getTypes().ConvertTypeForMem(type), 1913 field->getName()); 1914 1915 if (field->hasAttr<AnnotateAttr>()) 1916 addr = EmitFieldAnnotations(field, addr); 1917 1918 LValue LV = MakeAddrLValue(addr, type, alignment); 1919 LV.getQuals().addCVRQualifiers(cvr); 1920 1921 // __weak attribute on a field is ignored. 1922 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1923 LV.getQuals().removeObjCGCAttr(); 1924 1925 // Fields of may_alias structs act like 'char' for TBAA purposes. 1926 // FIXME: this should get propagated down through anonymous structs 1927 // and unions. 1928 if (mayAlias && LV.getTBAAInfo()) 1929 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1930 1931 return LV; 1932 } 1933 1934 LValue 1935 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1936 const FieldDecl *Field, 1937 unsigned CVRQualifiers) { 1938 QualType FieldType = Field->getType(); 1939 1940 if (!FieldType->isReferenceType()) 1941 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1942 1943 const CGRecordLayout &RL = 1944 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1945 unsigned idx = RL.getLLVMFieldNo(Field); 1946 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 1947 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1948 1949 1950 // Make sure that the address is pointing to the right type. This is critical 1951 // for both unions and structs. A union needs a bitcast, a struct element 1952 // will need a bitcast if the LLVM type laid out doesn't match the desired 1953 // type. 1954 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 1955 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1956 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 1957 1958 CharUnits Alignment = getContext().getDeclAlign(Field); 1959 return MakeAddrLValue(V, FieldType, Alignment); 1960 } 1961 1962 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1963 if (E->isFileScope()) { 1964 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 1965 return MakeAddrLValue(GlobalPtr, E->getType()); 1966 } 1967 1968 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1969 const Expr *InitExpr = E->getInitializer(); 1970 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1971 1972 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 1973 /*Init*/ true); 1974 1975 return Result; 1976 } 1977 1978 LValue CodeGenFunction:: 1979 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1980 if (!expr->isGLValue()) { 1981 // ?: here should be an aggregate. 1982 assert((hasAggregateLLVMType(expr->getType()) && 1983 !expr->getType()->isAnyComplexType()) && 1984 "Unexpected conditional operator!"); 1985 return EmitAggExprToLValue(expr); 1986 } 1987 1988 const Expr *condExpr = expr->getCond(); 1989 bool CondExprBool; 1990 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1991 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1992 if (!CondExprBool) std::swap(live, dead); 1993 1994 if (!ContainsLabel(dead)) 1995 return EmitLValue(live); 1996 } 1997 1998 OpaqueValueMapping binding(*this, expr); 1999 2000 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2001 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2002 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2003 2004 ConditionalEvaluation eval(*this); 2005 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2006 2007 // Any temporaries created here are conditional. 2008 EmitBlock(lhsBlock); 2009 eval.begin(*this); 2010 LValue lhs = EmitLValue(expr->getTrueExpr()); 2011 eval.end(*this); 2012 2013 if (!lhs.isSimple()) 2014 return EmitUnsupportedLValue(expr, "conditional operator"); 2015 2016 lhsBlock = Builder.GetInsertBlock(); 2017 Builder.CreateBr(contBlock); 2018 2019 // Any temporaries created here are conditional. 2020 EmitBlock(rhsBlock); 2021 eval.begin(*this); 2022 LValue rhs = EmitLValue(expr->getFalseExpr()); 2023 eval.end(*this); 2024 if (!rhs.isSimple()) 2025 return EmitUnsupportedLValue(expr, "conditional operator"); 2026 rhsBlock = Builder.GetInsertBlock(); 2027 2028 EmitBlock(contBlock); 2029 2030 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2031 "cond-lvalue"); 2032 phi->addIncoming(lhs.getAddress(), lhsBlock); 2033 phi->addIncoming(rhs.getAddress(), rhsBlock); 2034 return MakeAddrLValue(phi, expr->getType()); 2035 } 2036 2037 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2038 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 2039 /// otherwise if a cast is needed by the code generator in an lvalue context, 2040 /// then it must mean that we need the address of an aggregate in order to 2041 /// access one of its fields. This can happen for all the reasons that casts 2042 /// are permitted with aggregate result, including noop aggregate casts, and 2043 /// cast from scalar to union. 2044 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2045 switch (E->getCastKind()) { 2046 case CK_ToVoid: 2047 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2048 2049 case CK_Dependent: 2050 llvm_unreachable("dependent cast kind in IR gen!"); 2051 2052 case CK_NoOp: 2053 case CK_LValueToRValue: 2054 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2055 || E->getType()->isRecordType()) 2056 return EmitLValue(E->getSubExpr()); 2057 // Fall through to synthesize a temporary. 2058 2059 case CK_BitCast: 2060 case CK_ArrayToPointerDecay: 2061 case CK_FunctionToPointerDecay: 2062 case CK_NullToMemberPointer: 2063 case CK_NullToPointer: 2064 case CK_IntegralToPointer: 2065 case CK_PointerToIntegral: 2066 case CK_PointerToBoolean: 2067 case CK_VectorSplat: 2068 case CK_IntegralCast: 2069 case CK_IntegralToBoolean: 2070 case CK_IntegralToFloating: 2071 case CK_FloatingToIntegral: 2072 case CK_FloatingToBoolean: 2073 case CK_FloatingCast: 2074 case CK_FloatingRealToComplex: 2075 case CK_FloatingComplexToReal: 2076 case CK_FloatingComplexToBoolean: 2077 case CK_FloatingComplexCast: 2078 case CK_FloatingComplexToIntegralComplex: 2079 case CK_IntegralRealToComplex: 2080 case CK_IntegralComplexToReal: 2081 case CK_IntegralComplexToBoolean: 2082 case CK_IntegralComplexCast: 2083 case CK_IntegralComplexToFloatingComplex: 2084 case CK_DerivedToBaseMemberPointer: 2085 case CK_BaseToDerivedMemberPointer: 2086 case CK_MemberPointerToBoolean: 2087 case CK_AnyPointerToBlockPointerCast: 2088 case CK_ARCProduceObject: 2089 case CK_ARCConsumeObject: 2090 case CK_ARCReclaimReturnedObject: 2091 case CK_ARCExtendBlockObject: { 2092 // These casts only produce lvalues when we're binding a reference to a 2093 // temporary realized from a (converted) pure rvalue. Emit the expression 2094 // as a value, copy it into a temporary, and return an lvalue referring to 2095 // that temporary. 2096 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2097 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2098 return MakeAddrLValue(V, E->getType()); 2099 } 2100 2101 case CK_Dynamic: { 2102 LValue LV = EmitLValue(E->getSubExpr()); 2103 llvm::Value *V = LV.getAddress(); 2104 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2105 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2106 } 2107 2108 case CK_ConstructorConversion: 2109 case CK_UserDefinedConversion: 2110 case CK_CPointerToObjCPointerCast: 2111 case CK_BlockPointerToObjCPointerCast: 2112 return EmitLValue(E->getSubExpr()); 2113 2114 case CK_UncheckedDerivedToBase: 2115 case CK_DerivedToBase: { 2116 const RecordType *DerivedClassTy = 2117 E->getSubExpr()->getType()->getAs<RecordType>(); 2118 CXXRecordDecl *DerivedClassDecl = 2119 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2120 2121 LValue LV = EmitLValue(E->getSubExpr()); 2122 llvm::Value *This = LV.getAddress(); 2123 2124 // Perform the derived-to-base conversion 2125 llvm::Value *Base = 2126 GetAddressOfBaseClass(This, DerivedClassDecl, 2127 E->path_begin(), E->path_end(), 2128 /*NullCheckValue=*/false); 2129 2130 return MakeAddrLValue(Base, E->getType()); 2131 } 2132 case CK_ToUnion: 2133 return EmitAggExprToLValue(E); 2134 case CK_BaseToDerived: { 2135 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2136 CXXRecordDecl *DerivedClassDecl = 2137 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2138 2139 LValue LV = EmitLValue(E->getSubExpr()); 2140 2141 // Perform the base-to-derived conversion 2142 llvm::Value *Derived = 2143 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2144 E->path_begin(), E->path_end(), 2145 /*NullCheckValue=*/false); 2146 2147 return MakeAddrLValue(Derived, E->getType()); 2148 } 2149 case CK_LValueBitCast: { 2150 // This must be a reinterpret_cast (or c-style equivalent). 2151 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2152 2153 LValue LV = EmitLValue(E->getSubExpr()); 2154 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2155 ConvertType(CE->getTypeAsWritten())); 2156 return MakeAddrLValue(V, E->getType()); 2157 } 2158 case CK_ObjCObjectLValueCast: { 2159 LValue LV = EmitLValue(E->getSubExpr()); 2160 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2161 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2162 ConvertType(ToType)); 2163 return MakeAddrLValue(V, E->getType()); 2164 } 2165 } 2166 2167 llvm_unreachable("Unhandled lvalue cast kind?"); 2168 } 2169 2170 LValue CodeGenFunction::EmitNullInitializationLValue( 2171 const CXXScalarValueInitExpr *E) { 2172 QualType Ty = E->getType(); 2173 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2174 EmitNullInitialization(LV.getAddress(), Ty); 2175 return LV; 2176 } 2177 2178 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2179 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2180 return getOpaqueLValueMapping(e); 2181 } 2182 2183 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2184 const MaterializeTemporaryExpr *E) { 2185 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2186 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2187 } 2188 2189 2190 //===--------------------------------------------------------------------===// 2191 // Expression Emission 2192 //===--------------------------------------------------------------------===// 2193 2194 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2195 ReturnValueSlot ReturnValue) { 2196 if (CGDebugInfo *DI = getDebugInfo()) 2197 DI->EmitLocation(Builder, E->getLocStart()); 2198 2199 // Builtins never have block type. 2200 if (E->getCallee()->getType()->isBlockPointerType()) 2201 return EmitBlockCallExpr(E, ReturnValue); 2202 2203 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2204 return EmitCXXMemberCallExpr(CE, ReturnValue); 2205 2206 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2207 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2208 2209 const Decl *TargetDecl = E->getCalleeDecl(); 2210 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2211 if (unsigned builtinID = FD->getBuiltinID()) 2212 return EmitBuiltinExpr(FD, builtinID, E); 2213 } 2214 2215 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2216 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2217 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2218 2219 if (const CXXPseudoDestructorExpr *PseudoDtor 2220 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2221 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2222 if (getContext().getLangOptions().ObjCAutoRefCount && 2223 DestroyedType->isObjCLifetimeType() && 2224 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2225 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2226 // Automatic Reference Counting: 2227 // If the pseudo-expression names a retainable object with weak or 2228 // strong lifetime, the object shall be released. 2229 Expr *BaseExpr = PseudoDtor->getBase(); 2230 llvm::Value *BaseValue = NULL; 2231 Qualifiers BaseQuals; 2232 2233 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2234 if (PseudoDtor->isArrow()) { 2235 BaseValue = EmitScalarExpr(BaseExpr); 2236 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2237 BaseQuals = PTy->getPointeeType().getQualifiers(); 2238 } else { 2239 LValue BaseLV = EmitLValue(BaseExpr); 2240 BaseValue = BaseLV.getAddress(); 2241 QualType BaseTy = BaseExpr->getType(); 2242 BaseQuals = BaseTy.getQualifiers(); 2243 } 2244 2245 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2246 case Qualifiers::OCL_None: 2247 case Qualifiers::OCL_ExplicitNone: 2248 case Qualifiers::OCL_Autoreleasing: 2249 break; 2250 2251 case Qualifiers::OCL_Strong: 2252 EmitARCRelease(Builder.CreateLoad(BaseValue, 2253 PseudoDtor->getDestroyedType().isVolatileQualified()), 2254 /*precise*/ true); 2255 break; 2256 2257 case Qualifiers::OCL_Weak: 2258 EmitARCDestroyWeak(BaseValue); 2259 break; 2260 } 2261 } else { 2262 // C++ [expr.pseudo]p1: 2263 // The result shall only be used as the operand for the function call 2264 // operator (), and the result of such a call has type void. The only 2265 // effect is the evaluation of the postfix-expression before the dot or 2266 // arrow. 2267 EmitScalarExpr(E->getCallee()); 2268 } 2269 2270 return RValue::get(0); 2271 } 2272 2273 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2274 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2275 E->arg_begin(), E->arg_end(), TargetDecl); 2276 } 2277 2278 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2279 // Comma expressions just emit their LHS then their RHS as an l-value. 2280 if (E->getOpcode() == BO_Comma) { 2281 EmitIgnoredExpr(E->getLHS()); 2282 EnsureInsertPoint(); 2283 return EmitLValue(E->getRHS()); 2284 } 2285 2286 if (E->getOpcode() == BO_PtrMemD || 2287 E->getOpcode() == BO_PtrMemI) 2288 return EmitPointerToDataMemberBinaryExpr(E); 2289 2290 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2291 2292 // Note that in all of these cases, __block variables need the RHS 2293 // evaluated first just in case the variable gets moved by the RHS. 2294 2295 if (!hasAggregateLLVMType(E->getType())) { 2296 switch (E->getLHS()->getType().getObjCLifetime()) { 2297 case Qualifiers::OCL_Strong: 2298 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2299 2300 case Qualifiers::OCL_Autoreleasing: 2301 return EmitARCStoreAutoreleasing(E).first; 2302 2303 // No reason to do any of these differently. 2304 case Qualifiers::OCL_None: 2305 case Qualifiers::OCL_ExplicitNone: 2306 case Qualifiers::OCL_Weak: 2307 break; 2308 } 2309 2310 RValue RV = EmitAnyExpr(E->getRHS()); 2311 LValue LV = EmitLValue(E->getLHS()); 2312 EmitStoreThroughLValue(RV, LV); 2313 return LV; 2314 } 2315 2316 if (E->getType()->isAnyComplexType()) 2317 return EmitComplexAssignmentLValue(E); 2318 2319 return EmitAggExprToLValue(E); 2320 } 2321 2322 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2323 RValue RV = EmitCallExpr(E); 2324 2325 if (!RV.isScalar()) 2326 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2327 2328 assert(E->getCallReturnType()->isReferenceType() && 2329 "Can't have a scalar return unless the return type is a " 2330 "reference type!"); 2331 2332 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2333 } 2334 2335 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2336 // FIXME: This shouldn't require another copy. 2337 return EmitAggExprToLValue(E); 2338 } 2339 2340 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2341 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2342 && "binding l-value to type which needs a temporary"); 2343 AggValueSlot Slot = CreateAggTemp(E->getType()); 2344 EmitCXXConstructExpr(E, Slot); 2345 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2346 } 2347 2348 LValue 2349 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2350 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2351 } 2352 2353 LValue 2354 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2355 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2356 Slot.setExternallyDestructed(); 2357 EmitAggExpr(E->getSubExpr(), Slot); 2358 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2359 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2360 } 2361 2362 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2363 RValue RV = EmitObjCMessageExpr(E); 2364 2365 if (!RV.isScalar()) 2366 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2367 2368 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2369 "Can't have a scalar return unless the return type is a " 2370 "reference type!"); 2371 2372 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2373 } 2374 2375 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2376 llvm::Value *V = 2377 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2378 return MakeAddrLValue(V, E->getType()); 2379 } 2380 2381 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2382 const ObjCIvarDecl *Ivar) { 2383 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2384 } 2385 2386 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2387 llvm::Value *BaseValue, 2388 const ObjCIvarDecl *Ivar, 2389 unsigned CVRQualifiers) { 2390 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2391 Ivar, CVRQualifiers); 2392 } 2393 2394 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2395 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2396 llvm::Value *BaseValue = 0; 2397 const Expr *BaseExpr = E->getBase(); 2398 Qualifiers BaseQuals; 2399 QualType ObjectTy; 2400 if (E->isArrow()) { 2401 BaseValue = EmitScalarExpr(BaseExpr); 2402 ObjectTy = BaseExpr->getType()->getPointeeType(); 2403 BaseQuals = ObjectTy.getQualifiers(); 2404 } else { 2405 LValue BaseLV = EmitLValue(BaseExpr); 2406 // FIXME: this isn't right for bitfields. 2407 BaseValue = BaseLV.getAddress(); 2408 ObjectTy = BaseExpr->getType(); 2409 BaseQuals = ObjectTy.getQualifiers(); 2410 } 2411 2412 LValue LV = 2413 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2414 BaseQuals.getCVRQualifiers()); 2415 setObjCGCLValueClass(getContext(), E, LV); 2416 return LV; 2417 } 2418 2419 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2420 // Can only get l-value for message expression returning aggregate type 2421 RValue RV = EmitAnyExprToTemp(E); 2422 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2423 } 2424 2425 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2426 ReturnValueSlot ReturnValue, 2427 CallExpr::const_arg_iterator ArgBeg, 2428 CallExpr::const_arg_iterator ArgEnd, 2429 const Decl *TargetDecl) { 2430 // Get the actual function type. The callee type will always be a pointer to 2431 // function type or a block pointer type. 2432 assert(CalleeType->isFunctionPointerType() && 2433 "Call must have function pointer type!"); 2434 2435 CalleeType = getContext().getCanonicalType(CalleeType); 2436 2437 const FunctionType *FnType 2438 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2439 2440 CallArgList Args; 2441 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2442 2443 const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType); 2444 2445 // C99 6.5.2.2p6: 2446 // If the expression that denotes the called function has a type 2447 // that does not include a prototype, [the default argument 2448 // promotions are performed]. If the number of arguments does not 2449 // equal the number of parameters, the behavior is undefined. If 2450 // the function is defined with a type that includes a prototype, 2451 // and either the prototype ends with an ellipsis (, ...) or the 2452 // types of the arguments after promotion are not compatible with 2453 // the types of the parameters, the behavior is undefined. If the 2454 // function is defined with a type that does not include a 2455 // prototype, and the types of the arguments after promotion are 2456 // not compatible with those of the parameters after promotion, 2457 // the behavior is undefined [except in some trivial cases]. 2458 // That is, in the general case, we should assume that a call 2459 // through an unprototyped function type works like a *non-variadic* 2460 // call. The way we make this work is to cast to the exact type 2461 // of the promoted arguments. 2462 if (isa<FunctionNoProtoType>(FnType) && 2463 !getTargetHooks().isNoProtoCallVariadic(FnInfo)) { 2464 assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0)) 2465 ->isVarArg()); 2466 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false); 2467 CalleeTy = CalleeTy->getPointerTo(); 2468 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2469 } 2470 2471 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2472 } 2473 2474 LValue CodeGenFunction:: 2475 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2476 llvm::Value *BaseV; 2477 if (E->getOpcode() == BO_PtrMemI) 2478 BaseV = EmitScalarExpr(E->getLHS()); 2479 else 2480 BaseV = EmitLValue(E->getLHS()).getAddress(); 2481 2482 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2483 2484 const MemberPointerType *MPT 2485 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2486 2487 llvm::Value *AddV = 2488 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2489 2490 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2491 } 2492 2493 static void 2494 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2495 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2496 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2497 if (E->isCmpXChg()) { 2498 // Note that cmpxchg only supports specifying one ordering and 2499 // doesn't support weak cmpxchg, at least at the moment. 2500 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2501 LoadVal1->setAlignment(Align); 2502 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2503 LoadVal2->setAlignment(Align); 2504 llvm::AtomicCmpXchgInst *CXI = 2505 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2506 CXI->setVolatile(E->isVolatile()); 2507 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2508 StoreVal1->setAlignment(Align); 2509 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2510 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2511 return; 2512 } 2513 2514 if (E->getOp() == AtomicExpr::Load) { 2515 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2516 Load->setAtomic(Order); 2517 Load->setAlignment(Size); 2518 Load->setVolatile(E->isVolatile()); 2519 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2520 StoreDest->setAlignment(Align); 2521 return; 2522 } 2523 2524 if (E->getOp() == AtomicExpr::Store) { 2525 assert(!Dest && "Store does not return a value"); 2526 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2527 LoadVal1->setAlignment(Align); 2528 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2529 Store->setAtomic(Order); 2530 Store->setAlignment(Size); 2531 Store->setVolatile(E->isVolatile()); 2532 return; 2533 } 2534 2535 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2536 switch (E->getOp()) { 2537 case AtomicExpr::CmpXchgWeak: 2538 case AtomicExpr::CmpXchgStrong: 2539 case AtomicExpr::Store: 2540 case AtomicExpr::Load: assert(0 && "Already handled!"); 2541 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2542 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2543 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2544 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2545 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2546 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2547 } 2548 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2549 LoadVal1->setAlignment(Align); 2550 llvm::AtomicRMWInst *RMWI = 2551 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2552 RMWI->setVolatile(E->isVolatile()); 2553 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2554 StoreDest->setAlignment(Align); 2555 } 2556 2557 // This function emits any expression (scalar, complex, or aggregate) 2558 // into a temporary alloca. 2559 static llvm::Value * 2560 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2561 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2562 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2563 /*Init*/ true); 2564 return DeclPtr; 2565 } 2566 2567 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2568 llvm::Value *Dest) { 2569 if (Ty->isAnyComplexType()) 2570 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2571 if (CGF.hasAggregateLLVMType(Ty)) 2572 return RValue::getAggregate(Dest); 2573 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2574 } 2575 2576 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2577 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2578 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2579 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2580 uint64_t Size = sizeChars.getQuantity(); 2581 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2582 unsigned Align = alignChars.getQuantity(); 2583 unsigned MaxInlineWidth = 2584 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2585 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2586 2587 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2588 Ptr = EmitScalarExpr(E->getPtr()); 2589 Order = EmitScalarExpr(E->getOrder()); 2590 if (E->isCmpXChg()) { 2591 Val1 = EmitScalarExpr(E->getVal1()); 2592 Val2 = EmitValToTemp(*this, E->getVal2()); 2593 OrderFail = EmitScalarExpr(E->getOrderFail()); 2594 (void)OrderFail; // OrderFail is unused at the moment 2595 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2596 MemTy->isPointerType()) { 2597 // For pointers, we're required to do a bit of math: adding 1 to an int* 2598 // is not the same as adding 1 to a uintptr_t. 2599 QualType Val1Ty = E->getVal1()->getType(); 2600 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2601 CharUnits PointeeIncAmt = 2602 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2603 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2604 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2605 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2606 } else if (E->getOp() != AtomicExpr::Load) { 2607 Val1 = EmitValToTemp(*this, E->getVal1()); 2608 } 2609 2610 if (E->getOp() != AtomicExpr::Store && !Dest) 2611 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2612 2613 if (UseLibcall) { 2614 // FIXME: Finalize what the libcalls are actually supposed to look like. 2615 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2616 return EmitUnsupportedRValue(E, "atomic library call"); 2617 } 2618 #if 0 2619 if (UseLibcall) { 2620 const char* LibCallName; 2621 switch (E->getOp()) { 2622 case AtomicExpr::CmpXchgWeak: 2623 LibCallName = "__atomic_compare_exchange_generic"; break; 2624 case AtomicExpr::CmpXchgStrong: 2625 LibCallName = "__atomic_compare_exchange_generic"; break; 2626 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2627 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2628 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2629 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2630 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2631 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2632 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2633 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2634 } 2635 llvm::SmallVector<QualType, 4> Params; 2636 CallArgList Args; 2637 QualType RetTy = getContext().VoidTy; 2638 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2639 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2640 getContext().VoidPtrTy); 2641 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2642 getContext().VoidPtrTy); 2643 if (E->getOp() != AtomicExpr::Load) 2644 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2645 getContext().VoidPtrTy); 2646 if (E->isCmpXChg()) { 2647 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2648 getContext().VoidPtrTy); 2649 RetTy = getContext().IntTy; 2650 } 2651 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2652 getContext().getSizeType()); 2653 const CGFunctionInfo &FuncInfo = 2654 CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo()); 2655 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2656 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2657 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2658 if (E->isCmpXChg()) 2659 return Res; 2660 if (E->getOp() == AtomicExpr::Store) 2661 return RValue::get(0); 2662 return ConvertTempToRValue(*this, E->getType(), Dest); 2663 } 2664 #endif 2665 llvm::Type *IPtrTy = 2666 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2667 llvm::Value *OrigDest = Dest; 2668 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2669 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2670 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2671 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2672 2673 if (isa<llvm::ConstantInt>(Order)) { 2674 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2675 switch (ord) { 2676 case 0: // memory_order_relaxed 2677 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2678 llvm::Monotonic); 2679 break; 2680 case 1: // memory_order_consume 2681 case 2: // memory_order_acquire 2682 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2683 llvm::Acquire); 2684 break; 2685 case 3: // memory_order_release 2686 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2687 llvm::Release); 2688 break; 2689 case 4: // memory_order_acq_rel 2690 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2691 llvm::AcquireRelease); 2692 break; 2693 case 5: // memory_order_seq_cst 2694 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2695 llvm::SequentiallyConsistent); 2696 break; 2697 default: // invalid order 2698 // We should not ever get here normally, but it's hard to 2699 // enforce that in general. 2700 break; 2701 } 2702 if (E->getOp() == AtomicExpr::Store) 2703 return RValue::get(0); 2704 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2705 } 2706 2707 // Long case, when Order isn't obviously constant. 2708 2709 // Create all the relevant BB's 2710 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2711 *AcqRelBB = 0, *SeqCstBB = 0; 2712 MonotonicBB = createBasicBlock("monotonic", CurFn); 2713 if (E->getOp() != AtomicExpr::Store) 2714 AcquireBB = createBasicBlock("acquire", CurFn); 2715 if (E->getOp() != AtomicExpr::Load) 2716 ReleaseBB = createBasicBlock("release", CurFn); 2717 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2718 AcqRelBB = createBasicBlock("acqrel", CurFn); 2719 SeqCstBB = createBasicBlock("seqcst", CurFn); 2720 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2721 2722 // Create the switch for the split 2723 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2724 // doesn't matter unless someone is crazy enough to use something that 2725 // doesn't fold to a constant for the ordering. 2726 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2727 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2728 2729 // Emit all the different atomics 2730 Builder.SetInsertPoint(MonotonicBB); 2731 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2732 llvm::Monotonic); 2733 Builder.CreateBr(ContBB); 2734 if (E->getOp() != AtomicExpr::Store) { 2735 Builder.SetInsertPoint(AcquireBB); 2736 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2737 llvm::Acquire); 2738 Builder.CreateBr(ContBB); 2739 SI->addCase(Builder.getInt32(1), AcquireBB); 2740 SI->addCase(Builder.getInt32(2), AcquireBB); 2741 } 2742 if (E->getOp() != AtomicExpr::Load) { 2743 Builder.SetInsertPoint(ReleaseBB); 2744 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2745 llvm::Release); 2746 Builder.CreateBr(ContBB); 2747 SI->addCase(Builder.getInt32(3), ReleaseBB); 2748 } 2749 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2750 Builder.SetInsertPoint(AcqRelBB); 2751 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2752 llvm::AcquireRelease); 2753 Builder.CreateBr(ContBB); 2754 SI->addCase(Builder.getInt32(4), AcqRelBB); 2755 } 2756 Builder.SetInsertPoint(SeqCstBB); 2757 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2758 llvm::SequentiallyConsistent); 2759 Builder.CreateBr(ContBB); 2760 SI->addCase(Builder.getInt32(5), SeqCstBB); 2761 2762 // Cleanup and return 2763 Builder.SetInsertPoint(ContBB); 2764 if (E->getOp() == AtomicExpr::Store) 2765 return RValue::get(0); 2766 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2767 } 2768 2769 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2770 unsigned AccuracyD) { 2771 assert(Val->getType()->isFPOrFPVectorTy()); 2772 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2773 return; 2774 2775 llvm::Value *Vals[2]; 2776 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2777 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2778 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2779 2780 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2781 Node); 2782 } 2783 2784 namespace { 2785 struct LValueOrRValue { 2786 LValue LV; 2787 RValue RV; 2788 }; 2789 } 2790 2791 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 2792 const PseudoObjectExpr *E, 2793 bool forLValue, 2794 AggValueSlot slot) { 2795 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2796 2797 // Find the result expression, if any. 2798 const Expr *resultExpr = E->getResultExpr(); 2799 LValueOrRValue result; 2800 2801 for (PseudoObjectExpr::const_semantics_iterator 2802 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2803 const Expr *semantic = *i; 2804 2805 // If this semantic expression is an opaque value, bind it 2806 // to the result of its source expression. 2807 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2808 2809 // If this is the result expression, we may need to evaluate 2810 // directly into the slot. 2811 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2812 OVMA opaqueData; 2813 if (ov == resultExpr && ov->isRValue() && !forLValue && 2814 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 2815 !ov->getType()->isAnyComplexType()) { 2816 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 2817 2818 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 2819 opaqueData = OVMA::bind(CGF, ov, LV); 2820 result.RV = slot.asRValue(); 2821 2822 // Otherwise, emit as normal. 2823 } else { 2824 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2825 2826 // If this is the result, also evaluate the result now. 2827 if (ov == resultExpr) { 2828 if (forLValue) 2829 result.LV = CGF.EmitLValue(ov); 2830 else 2831 result.RV = CGF.EmitAnyExpr(ov, slot); 2832 } 2833 } 2834 2835 opaques.push_back(opaqueData); 2836 2837 // Otherwise, if the expression is the result, evaluate it 2838 // and remember the result. 2839 } else if (semantic == resultExpr) { 2840 if (forLValue) 2841 result.LV = CGF.EmitLValue(semantic); 2842 else 2843 result.RV = CGF.EmitAnyExpr(semantic, slot); 2844 2845 // Otherwise, evaluate the expression in an ignored context. 2846 } else { 2847 CGF.EmitIgnoredExpr(semantic); 2848 } 2849 } 2850 2851 // Unbind all the opaques now. 2852 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2853 opaques[i].unbind(CGF); 2854 2855 return result; 2856 } 2857 2858 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 2859 AggValueSlot slot) { 2860 return emitPseudoObjectExpr(*this, E, false, slot).RV; 2861 } 2862 2863 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 2864 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 2865 } 2866