1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Hashing.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/ConvertUTF.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Transforms/Utils/SanitizerStats.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 //===--------------------------------------------------------------------===// 43 // Miscellaneous Helper Methods 44 //===--------------------------------------------------------------------===// 45 46 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 47 unsigned addressSpace = 48 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 49 50 llvm::PointerType *destType = Int8PtrTy; 51 if (addressSpace) 52 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 53 54 if (value->getType() == destType) return value; 55 return Builder.CreateBitCast(value, destType); 56 } 57 58 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 59 /// block. 60 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 61 const Twine &Name) { 62 auto Alloca = CreateTempAlloca(Ty, Name); 63 Alloca->setAlignment(Align.getQuantity()); 64 return Address(Alloca, Align); 65 } 66 67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 68 /// block. 69 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 70 const Twine &Name) { 71 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 72 } 73 74 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 75 /// default alignment of the corresponding LLVM type, which is *not* 76 /// guaranteed to be related in any way to the expected alignment of 77 /// an AST type that might have been lowered to Ty. 78 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 79 const Twine &Name) { 80 CharUnits Align = 81 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 82 return CreateTempAlloca(Ty, Align, Name); 83 } 84 85 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 86 assert(isa<llvm::AllocaInst>(Var.getPointer())); 87 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 88 Store->setAlignment(Var.getAlignment().getQuantity()); 89 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 90 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 91 } 92 93 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 94 CharUnits Align = getContext().getTypeAlignInChars(Ty); 95 return CreateTempAlloca(ConvertType(Ty), Align, Name); 96 } 97 98 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 99 // FIXME: Should we prefer the preferred type alignment here? 100 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 101 } 102 103 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 104 const Twine &Name) { 105 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 106 } 107 108 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 109 /// expression and compare the result against zero, returning an Int1Ty value. 110 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 111 PGO.setCurrentStmt(E); 112 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 113 llvm::Value *MemPtr = EmitScalarExpr(E); 114 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 115 } 116 117 QualType BoolTy = getContext().BoolTy; 118 SourceLocation Loc = E->getExprLoc(); 119 if (!E->getType()->isAnyComplexType()) 120 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 121 122 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 123 Loc); 124 } 125 126 /// EmitIgnoredExpr - Emit code to compute the specified expression, 127 /// ignoring the result. 128 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 129 if (E->isRValue()) 130 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 131 132 // Just emit it as an l-value and drop the result. 133 EmitLValue(E); 134 } 135 136 /// EmitAnyExpr - Emit code to compute the specified expression which 137 /// can have any type. The result is returned as an RValue struct. 138 /// If this is an aggregate expression, AggSlot indicates where the 139 /// result should be returned. 140 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 141 AggValueSlot aggSlot, 142 bool ignoreResult) { 143 switch (getEvaluationKind(E->getType())) { 144 case TEK_Scalar: 145 return RValue::get(EmitScalarExpr(E, ignoreResult)); 146 case TEK_Complex: 147 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 148 case TEK_Aggregate: 149 if (!ignoreResult && aggSlot.isIgnored()) 150 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 151 EmitAggExpr(E, aggSlot); 152 return aggSlot.asRValue(); 153 } 154 llvm_unreachable("bad evaluation kind"); 155 } 156 157 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 158 /// always be accessible even if no aggregate location is provided. 159 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 160 AggValueSlot AggSlot = AggValueSlot::ignored(); 161 162 if (hasAggregateEvaluationKind(E->getType())) 163 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 164 return EmitAnyExpr(E, AggSlot); 165 } 166 167 /// EmitAnyExprToMem - Evaluate an expression into a given memory 168 /// location. 169 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 170 Address Location, 171 Qualifiers Quals, 172 bool IsInit) { 173 // FIXME: This function should take an LValue as an argument. 174 switch (getEvaluationKind(E->getType())) { 175 case TEK_Complex: 176 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 177 /*isInit*/ false); 178 return; 179 180 case TEK_Aggregate: { 181 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 182 AggValueSlot::IsDestructed_t(IsInit), 183 AggValueSlot::DoesNotNeedGCBarriers, 184 AggValueSlot::IsAliased_t(!IsInit))); 185 return; 186 } 187 188 case TEK_Scalar: { 189 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 190 LValue LV = MakeAddrLValue(Location, E->getType()); 191 EmitStoreThroughLValue(RV, LV); 192 return; 193 } 194 } 195 llvm_unreachable("bad evaluation kind"); 196 } 197 198 static void 199 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 200 const Expr *E, Address ReferenceTemporary) { 201 // Objective-C++ ARC: 202 // If we are binding a reference to a temporary that has ownership, we 203 // need to perform retain/release operations on the temporary. 204 // 205 // FIXME: This should be looking at E, not M. 206 if (auto Lifetime = M->getType().getObjCLifetime()) { 207 switch (Lifetime) { 208 case Qualifiers::OCL_None: 209 case Qualifiers::OCL_ExplicitNone: 210 // Carry on to normal cleanup handling. 211 break; 212 213 case Qualifiers::OCL_Autoreleasing: 214 // Nothing to do; cleaned up by an autorelease pool. 215 return; 216 217 case Qualifiers::OCL_Strong: 218 case Qualifiers::OCL_Weak: 219 switch (StorageDuration Duration = M->getStorageDuration()) { 220 case SD_Static: 221 // Note: we intentionally do not register a cleanup to release 222 // the object on program termination. 223 return; 224 225 case SD_Thread: 226 // FIXME: We should probably register a cleanup in this case. 227 return; 228 229 case SD_Automatic: 230 case SD_FullExpression: 231 CodeGenFunction::Destroyer *Destroy; 232 CleanupKind CleanupKind; 233 if (Lifetime == Qualifiers::OCL_Strong) { 234 const ValueDecl *VD = M->getExtendingDecl(); 235 bool Precise = 236 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 237 CleanupKind = CGF.getARCCleanupKind(); 238 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 239 : &CodeGenFunction::destroyARCStrongImprecise; 240 } else { 241 // __weak objects always get EH cleanups; otherwise, exceptions 242 // could cause really nasty crashes instead of mere leaks. 243 CleanupKind = NormalAndEHCleanup; 244 Destroy = &CodeGenFunction::destroyARCWeak; 245 } 246 if (Duration == SD_FullExpression) 247 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 248 M->getType(), *Destroy, 249 CleanupKind & EHCleanup); 250 else 251 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), 253 *Destroy, CleanupKind & EHCleanup); 254 return; 255 256 case SD_Dynamic: 257 llvm_unreachable("temporary cannot have dynamic storage duration"); 258 } 259 llvm_unreachable("unknown storage duration"); 260 } 261 } 262 263 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 264 if (const RecordType *RT = 265 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 266 // Get the destructor for the reference temporary. 267 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 268 if (!ClassDecl->hasTrivialDestructor()) 269 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 270 } 271 272 if (!ReferenceTemporaryDtor) 273 return; 274 275 // Call the destructor for the temporary. 276 switch (M->getStorageDuration()) { 277 case SD_Static: 278 case SD_Thread: { 279 llvm::Constant *CleanupFn; 280 llvm::Constant *CleanupArg; 281 if (E->getType()->isArrayType()) { 282 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 283 ReferenceTemporary, E->getType(), 284 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 285 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 286 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 287 } else { 288 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 289 StructorType::Complete); 290 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 291 } 292 CGF.CGM.getCXXABI().registerGlobalDtor( 293 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 294 break; 295 } 296 297 case SD_FullExpression: 298 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 299 CodeGenFunction::destroyCXXObject, 300 CGF.getLangOpts().Exceptions); 301 break; 302 303 case SD_Automatic: 304 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 305 ReferenceTemporary, E->getType(), 306 CodeGenFunction::destroyCXXObject, 307 CGF.getLangOpts().Exceptions); 308 break; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 } 314 315 static Address 316 createReferenceTemporary(CodeGenFunction &CGF, 317 const MaterializeTemporaryExpr *M, const Expr *Inner) { 318 switch (M->getStorageDuration()) { 319 case SD_FullExpression: 320 case SD_Automatic: { 321 // If we have a constant temporary array or record try to promote it into a 322 // constant global under the same rules a normal constant would've been 323 // promoted. This is easier on the optimizer and generally emits fewer 324 // instructions. 325 QualType Ty = Inner->getType(); 326 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 327 (Ty->isArrayType() || Ty->isRecordType()) && 328 CGF.CGM.isTypeConstant(Ty, true)) 329 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 330 auto *GV = new llvm::GlobalVariable( 331 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 332 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 333 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 334 GV->setAlignment(alignment.getQuantity()); 335 // FIXME: Should we put the new global into a COMDAT? 336 return Address(GV, alignment); 337 } 338 return CGF.CreateMemTemp(Ty, "ref.tmp"); 339 } 340 case SD_Thread: 341 case SD_Static: 342 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 343 344 case SD_Dynamic: 345 llvm_unreachable("temporary can't have dynamic storage duration"); 346 } 347 llvm_unreachable("unknown storage duration"); 348 } 349 350 LValue CodeGenFunction:: 351 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 352 const Expr *E = M->GetTemporaryExpr(); 353 354 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 355 // as that will cause the lifetime adjustment to be lost for ARC 356 auto ownership = M->getType().getObjCLifetime(); 357 if (ownership != Qualifiers::OCL_None && 358 ownership != Qualifiers::OCL_ExplicitNone) { 359 Address Object = createReferenceTemporary(*this, M, E); 360 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 361 Object = Address(llvm::ConstantExpr::getBitCast(Var, 362 ConvertTypeForMem(E->getType()) 363 ->getPointerTo(Object.getAddressSpace())), 364 Object.getAlignment()); 365 366 // createReferenceTemporary will promote the temporary to a global with a 367 // constant initializer if it can. It can only do this to a value of 368 // ARC-manageable type if the value is global and therefore "immune" to 369 // ref-counting operations. Therefore we have no need to emit either a 370 // dynamic initialization or a cleanup and we can just return the address 371 // of the temporary. 372 if (Var->hasInitializer()) 373 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 374 375 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 376 } 377 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 378 AlignmentSource::Decl); 379 380 switch (getEvaluationKind(E->getType())) { 381 default: llvm_unreachable("expected scalar or aggregate expression"); 382 case TEK_Scalar: 383 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 384 break; 385 case TEK_Aggregate: { 386 EmitAggExpr(E, AggValueSlot::forAddr(Object, 387 E->getType().getQualifiers(), 388 AggValueSlot::IsDestructed, 389 AggValueSlot::DoesNotNeedGCBarriers, 390 AggValueSlot::IsNotAliased)); 391 break; 392 } 393 } 394 395 pushTemporaryCleanup(*this, M, E, Object); 396 return RefTempDst; 397 } 398 399 SmallVector<const Expr *, 2> CommaLHSs; 400 SmallVector<SubobjectAdjustment, 2> Adjustments; 401 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 402 403 for (const auto &Ignored : CommaLHSs) 404 EmitIgnoredExpr(Ignored); 405 406 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 407 if (opaque->getType()->isRecordType()) { 408 assert(Adjustments.empty()); 409 return EmitOpaqueValueLValue(opaque); 410 } 411 } 412 413 // Create and initialize the reference temporary. 414 Address Object = createReferenceTemporary(*this, M, E); 415 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 416 Object = Address(llvm::ConstantExpr::getBitCast( 417 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 418 Object.getAlignment()); 419 // If the temporary is a global and has a constant initializer or is a 420 // constant temporary that we promoted to a global, we may have already 421 // initialized it. 422 if (!Var->hasInitializer()) { 423 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 424 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 425 } 426 } else { 427 switch (M->getStorageDuration()) { 428 case SD_Automatic: 429 case SD_FullExpression: 430 if (auto *Size = EmitLifetimeStart( 431 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 432 Object.getPointer())) { 433 if (M->getStorageDuration() == SD_Automatic) 434 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 435 Object, Size); 436 else 437 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 438 Size); 439 } 440 break; 441 default: 442 break; 443 } 444 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 445 } 446 pushTemporaryCleanup(*this, M, E, Object); 447 448 // Perform derived-to-base casts and/or field accesses, to get from the 449 // temporary object we created (and, potentially, for which we extended 450 // the lifetime) to the subobject we're binding the reference to. 451 for (unsigned I = Adjustments.size(); I != 0; --I) { 452 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 453 switch (Adjustment.Kind) { 454 case SubobjectAdjustment::DerivedToBaseAdjustment: 455 Object = 456 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 457 Adjustment.DerivedToBase.BasePath->path_begin(), 458 Adjustment.DerivedToBase.BasePath->path_end(), 459 /*NullCheckValue=*/ false, E->getExprLoc()); 460 break; 461 462 case SubobjectAdjustment::FieldAdjustment: { 463 LValue LV = MakeAddrLValue(Object, E->getType(), 464 AlignmentSource::Decl); 465 LV = EmitLValueForField(LV, Adjustment.Field); 466 assert(LV.isSimple() && 467 "materialized temporary field is not a simple lvalue"); 468 Object = LV.getAddress(); 469 break; 470 } 471 472 case SubobjectAdjustment::MemberPointerAdjustment: { 473 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 474 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 475 Adjustment.Ptr.MPT); 476 break; 477 } 478 } 479 } 480 481 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 482 } 483 484 RValue 485 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 486 // Emit the expression as an lvalue. 487 LValue LV = EmitLValue(E); 488 assert(LV.isSimple()); 489 llvm::Value *Value = LV.getPointer(); 490 491 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 492 // C++11 [dcl.ref]p5 (as amended by core issue 453): 493 // If a glvalue to which a reference is directly bound designates neither 494 // an existing object or function of an appropriate type nor a region of 495 // storage of suitable size and alignment to contain an object of the 496 // reference's type, the behavior is undefined. 497 QualType Ty = E->getType(); 498 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 499 } 500 501 return RValue::get(Value); 502 } 503 504 505 /// getAccessedFieldNo - Given an encoded value and a result number, return the 506 /// input field number being accessed. 507 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 508 const llvm::Constant *Elts) { 509 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 510 ->getZExtValue(); 511 } 512 513 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 514 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 515 llvm::Value *High) { 516 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 517 llvm::Value *K47 = Builder.getInt64(47); 518 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 519 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 520 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 521 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 522 return Builder.CreateMul(B1, KMul); 523 } 524 525 bool CodeGenFunction::sanitizePerformTypeCheck() const { 526 return SanOpts.has(SanitizerKind::Null) | 527 SanOpts.has(SanitizerKind::Alignment) | 528 SanOpts.has(SanitizerKind::ObjectSize) | 529 SanOpts.has(SanitizerKind::Vptr); 530 } 531 532 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 533 llvm::Value *Ptr, QualType Ty, 534 CharUnits Alignment, bool SkipNullCheck) { 535 if (!sanitizePerformTypeCheck()) 536 return; 537 538 // Don't check pointers outside the default address space. The null check 539 // isn't correct, the object-size check isn't supported by LLVM, and we can't 540 // communicate the addresses to the runtime handler for the vptr check. 541 if (Ptr->getType()->getPointerAddressSpace()) 542 return; 543 544 SanitizerScope SanScope(this); 545 546 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 547 llvm::BasicBlock *Done = nullptr; 548 549 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 550 TCK == TCK_UpcastToVirtualBase; 551 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 552 !SkipNullCheck) { 553 // The glvalue must not be an empty glvalue. 554 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 555 556 if (AllowNullPointers) { 557 // When performing pointer casts, it's OK if the value is null. 558 // Skip the remaining checks in that case. 559 Done = createBasicBlock("null"); 560 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 561 Builder.CreateCondBr(IsNonNull, Rest, Done); 562 EmitBlock(Rest); 563 } else { 564 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 565 } 566 } 567 568 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 569 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 570 571 // The glvalue must refer to a large enough storage region. 572 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 573 // to check this. 574 // FIXME: Get object address space 575 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 576 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 577 llvm::Value *Min = Builder.getFalse(); 578 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 579 llvm::Value *LargeEnough = 580 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 581 llvm::ConstantInt::get(IntPtrTy, Size)); 582 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 583 } 584 585 uint64_t AlignVal = 0; 586 587 if (SanOpts.has(SanitizerKind::Alignment)) { 588 AlignVal = Alignment.getQuantity(); 589 if (!Ty->isIncompleteType() && !AlignVal) 590 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 591 592 // The glvalue must be suitably aligned. 593 if (AlignVal) { 594 llvm::Value *Align = 595 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 596 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 597 llvm::Value *Aligned = 598 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 599 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 600 } 601 } 602 603 if (Checks.size() > 0) { 604 llvm::Constant *StaticData[] = { 605 EmitCheckSourceLocation(Loc), 606 EmitCheckTypeDescriptor(Ty), 607 llvm::ConstantInt::get(SizeTy, AlignVal), 608 llvm::ConstantInt::get(Int8Ty, TCK) 609 }; 610 EmitCheck(Checks, "type_mismatch", StaticData, Ptr); 611 } 612 613 // If possible, check that the vptr indicates that there is a subobject of 614 // type Ty at offset zero within this object. 615 // 616 // C++11 [basic.life]p5,6: 617 // [For storage which does not refer to an object within its lifetime] 618 // The program has undefined behavior if: 619 // -- the [pointer or glvalue] is used to access a non-static data member 620 // or call a non-static member function 621 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 622 if (SanOpts.has(SanitizerKind::Vptr) && 623 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 624 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 625 TCK == TCK_UpcastToVirtualBase) && 626 RD && RD->hasDefinition() && RD->isDynamicClass()) { 627 // Compute a hash of the mangled name of the type. 628 // 629 // FIXME: This is not guaranteed to be deterministic! Move to a 630 // fingerprinting mechanism once LLVM provides one. For the time 631 // being the implementation happens to be deterministic. 632 SmallString<64> MangledName; 633 llvm::raw_svector_ostream Out(MangledName); 634 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 635 Out); 636 637 // Blacklist based on the mangled type. 638 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 639 Out.str())) { 640 llvm::hash_code TypeHash = hash_value(Out.str()); 641 642 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 643 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 644 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 645 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 646 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 647 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 648 649 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 650 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 651 652 // Look the hash up in our cache. 653 const int CacheSize = 128; 654 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 655 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 656 "__ubsan_vptr_type_cache"); 657 llvm::Value *Slot = Builder.CreateAnd(Hash, 658 llvm::ConstantInt::get(IntPtrTy, 659 CacheSize-1)); 660 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 661 llvm::Value *CacheVal = 662 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 663 getPointerAlign()); 664 665 // If the hash isn't in the cache, call a runtime handler to perform the 666 // hard work of checking whether the vptr is for an object of the right 667 // type. This will either fill in the cache and return, or produce a 668 // diagnostic. 669 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 670 llvm::Constant *StaticData[] = { 671 EmitCheckSourceLocation(Loc), 672 EmitCheckTypeDescriptor(Ty), 673 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 674 llvm::ConstantInt::get(Int8Ty, TCK) 675 }; 676 llvm::Value *DynamicData[] = { Ptr, Hash }; 677 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 678 "dynamic_type_cache_miss", StaticData, DynamicData); 679 } 680 } 681 682 if (Done) { 683 Builder.CreateBr(Done); 684 EmitBlock(Done); 685 } 686 } 687 688 /// Determine whether this expression refers to a flexible array member in a 689 /// struct. We disable array bounds checks for such members. 690 static bool isFlexibleArrayMemberExpr(const Expr *E) { 691 // For compatibility with existing code, we treat arrays of length 0 or 692 // 1 as flexible array members. 693 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 694 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 695 if (CAT->getSize().ugt(1)) 696 return false; 697 } else if (!isa<IncompleteArrayType>(AT)) 698 return false; 699 700 E = E->IgnoreParens(); 701 702 // A flexible array member must be the last member in the class. 703 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 704 // FIXME: If the base type of the member expr is not FD->getParent(), 705 // this should not be treated as a flexible array member access. 706 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 707 RecordDecl::field_iterator FI( 708 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 709 return ++FI == FD->getParent()->field_end(); 710 } 711 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 712 return IRE->getDecl()->getNextIvar() == nullptr; 713 } 714 715 return false; 716 } 717 718 /// If Base is known to point to the start of an array, return the length of 719 /// that array. Return 0 if the length cannot be determined. 720 static llvm::Value *getArrayIndexingBound( 721 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 722 // For the vector indexing extension, the bound is the number of elements. 723 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 724 IndexedType = Base->getType(); 725 return CGF.Builder.getInt32(VT->getNumElements()); 726 } 727 728 Base = Base->IgnoreParens(); 729 730 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 731 if (CE->getCastKind() == CK_ArrayToPointerDecay && 732 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 733 IndexedType = CE->getSubExpr()->getType(); 734 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 735 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 736 return CGF.Builder.getInt(CAT->getSize()); 737 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 738 return CGF.getVLASize(VAT).first; 739 } 740 } 741 742 return nullptr; 743 } 744 745 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 746 llvm::Value *Index, QualType IndexType, 747 bool Accessed) { 748 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 749 "should not be called unless adding bounds checks"); 750 SanitizerScope SanScope(this); 751 752 QualType IndexedType; 753 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 754 if (!Bound) 755 return; 756 757 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 758 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 759 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 760 761 llvm::Constant *StaticData[] = { 762 EmitCheckSourceLocation(E->getExprLoc()), 763 EmitCheckTypeDescriptor(IndexedType), 764 EmitCheckTypeDescriptor(IndexType) 765 }; 766 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 767 : Builder.CreateICmpULE(IndexVal, BoundVal); 768 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 769 StaticData, Index); 770 } 771 772 773 CodeGenFunction::ComplexPairTy CodeGenFunction:: 774 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 775 bool isInc, bool isPre) { 776 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 777 778 llvm::Value *NextVal; 779 if (isa<llvm::IntegerType>(InVal.first->getType())) { 780 uint64_t AmountVal = isInc ? 1 : -1; 781 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 782 783 // Add the inc/dec to the real part. 784 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 785 } else { 786 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 787 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 788 if (!isInc) 789 FVal.changeSign(); 790 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 791 792 // Add the inc/dec to the real part. 793 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 794 } 795 796 ComplexPairTy IncVal(NextVal, InVal.second); 797 798 // Store the updated result through the lvalue. 799 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 800 801 // If this is a postinc, return the value read from memory, otherwise use the 802 // updated value. 803 return isPre ? IncVal : InVal; 804 } 805 806 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 807 CodeGenFunction *CGF) { 808 // Bind VLAs in the cast type. 809 if (CGF && E->getType()->isVariablyModifiedType()) 810 CGF->EmitVariablyModifiedType(E->getType()); 811 812 if (CGDebugInfo *DI = getModuleDebugInfo()) 813 DI->EmitExplicitCastType(E->getType()); 814 } 815 816 //===----------------------------------------------------------------------===// 817 // LValue Expression Emission 818 //===----------------------------------------------------------------------===// 819 820 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 821 /// derive a more accurate bound on the alignment of the pointer. 822 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 823 AlignmentSource *Source) { 824 // We allow this with ObjC object pointers because of fragile ABIs. 825 assert(E->getType()->isPointerType() || 826 E->getType()->isObjCObjectPointerType()); 827 E = E->IgnoreParens(); 828 829 // Casts: 830 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 831 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 832 CGM.EmitExplicitCastExprType(ECE, this); 833 834 switch (CE->getCastKind()) { 835 // Non-converting casts (but not C's implicit conversion from void*). 836 case CK_BitCast: 837 case CK_NoOp: 838 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 839 if (PtrTy->getPointeeType()->isVoidType()) 840 break; 841 842 AlignmentSource InnerSource; 843 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 844 if (Source) *Source = InnerSource; 845 846 // If this is an explicit bitcast, and the source l-value is 847 // opaque, honor the alignment of the casted-to type. 848 if (isa<ExplicitCastExpr>(CE) && 849 InnerSource != AlignmentSource::Decl) { 850 Addr = Address(Addr.getPointer(), 851 getNaturalPointeeTypeAlignment(E->getType(), Source)); 852 } 853 854 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 855 CE->getCastKind() == CK_BitCast) { 856 if (auto PT = E->getType()->getAs<PointerType>()) 857 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 858 /*MayBeNull=*/true, 859 CodeGenFunction::CFITCK_UnrelatedCast, 860 CE->getLocStart()); 861 } 862 863 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 864 } 865 break; 866 867 // Array-to-pointer decay. 868 case CK_ArrayToPointerDecay: 869 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 870 871 // Derived-to-base conversions. 872 case CK_UncheckedDerivedToBase: 873 case CK_DerivedToBase: { 874 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 875 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 876 return GetAddressOfBaseClass(Addr, Derived, 877 CE->path_begin(), CE->path_end(), 878 ShouldNullCheckClassCastValue(CE), 879 CE->getExprLoc()); 880 } 881 882 // TODO: Is there any reason to treat base-to-derived conversions 883 // specially? 884 default: 885 break; 886 } 887 } 888 889 // Unary &. 890 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 891 if (UO->getOpcode() == UO_AddrOf) { 892 LValue LV = EmitLValue(UO->getSubExpr()); 893 if (Source) *Source = LV.getAlignmentSource(); 894 return LV.getAddress(); 895 } 896 } 897 898 // TODO: conditional operators, comma. 899 900 // Otherwise, use the alignment of the type. 901 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 902 return Address(EmitScalarExpr(E), Align); 903 } 904 905 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 906 if (Ty->isVoidType()) 907 return RValue::get(nullptr); 908 909 switch (getEvaluationKind(Ty)) { 910 case TEK_Complex: { 911 llvm::Type *EltTy = 912 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 913 llvm::Value *U = llvm::UndefValue::get(EltTy); 914 return RValue::getComplex(std::make_pair(U, U)); 915 } 916 917 // If this is a use of an undefined aggregate type, the aggregate must have an 918 // identifiable address. Just because the contents of the value are undefined 919 // doesn't mean that the address can't be taken and compared. 920 case TEK_Aggregate: { 921 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 922 return RValue::getAggregate(DestPtr); 923 } 924 925 case TEK_Scalar: 926 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 927 } 928 llvm_unreachable("bad evaluation kind"); 929 } 930 931 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 932 const char *Name) { 933 ErrorUnsupported(E, Name); 934 return GetUndefRValue(E->getType()); 935 } 936 937 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 938 const char *Name) { 939 ErrorUnsupported(E, Name); 940 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 941 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 942 E->getType()); 943 } 944 945 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 946 LValue LV; 947 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 948 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 949 else 950 LV = EmitLValue(E); 951 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 952 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 953 E->getType(), LV.getAlignment()); 954 return LV; 955 } 956 957 /// EmitLValue - Emit code to compute a designator that specifies the location 958 /// of the expression. 959 /// 960 /// This can return one of two things: a simple address or a bitfield reference. 961 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 962 /// an LLVM pointer type. 963 /// 964 /// If this returns a bitfield reference, nothing about the pointee type of the 965 /// LLVM value is known: For example, it may not be a pointer to an integer. 966 /// 967 /// If this returns a normal address, and if the lvalue's C type is fixed size, 968 /// this method guarantees that the returned pointer type will point to an LLVM 969 /// type of the same size of the lvalue's type. If the lvalue has a variable 970 /// length type, this is not possible. 971 /// 972 LValue CodeGenFunction::EmitLValue(const Expr *E) { 973 ApplyDebugLocation DL(*this, E); 974 switch (E->getStmtClass()) { 975 default: return EmitUnsupportedLValue(E, "l-value expression"); 976 977 case Expr::ObjCPropertyRefExprClass: 978 llvm_unreachable("cannot emit a property reference directly"); 979 980 case Expr::ObjCSelectorExprClass: 981 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 982 case Expr::ObjCIsaExprClass: 983 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 984 case Expr::BinaryOperatorClass: 985 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 986 case Expr::CompoundAssignOperatorClass: { 987 QualType Ty = E->getType(); 988 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 989 Ty = AT->getValueType(); 990 if (!Ty->isAnyComplexType()) 991 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 992 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 993 } 994 case Expr::CallExprClass: 995 case Expr::CXXMemberCallExprClass: 996 case Expr::CXXOperatorCallExprClass: 997 case Expr::UserDefinedLiteralClass: 998 return EmitCallExprLValue(cast<CallExpr>(E)); 999 case Expr::VAArgExprClass: 1000 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1001 case Expr::DeclRefExprClass: 1002 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1003 case Expr::ParenExprClass: 1004 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1005 case Expr::GenericSelectionExprClass: 1006 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1007 case Expr::PredefinedExprClass: 1008 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1009 case Expr::StringLiteralClass: 1010 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1011 case Expr::ObjCEncodeExprClass: 1012 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1013 case Expr::PseudoObjectExprClass: 1014 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1015 case Expr::InitListExprClass: 1016 return EmitInitListLValue(cast<InitListExpr>(E)); 1017 case Expr::CXXTemporaryObjectExprClass: 1018 case Expr::CXXConstructExprClass: 1019 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1020 case Expr::CXXBindTemporaryExprClass: 1021 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1022 case Expr::CXXUuidofExprClass: 1023 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1024 case Expr::LambdaExprClass: 1025 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1026 1027 case Expr::ExprWithCleanupsClass: { 1028 const auto *cleanups = cast<ExprWithCleanups>(E); 1029 enterFullExpression(cleanups); 1030 RunCleanupsScope Scope(*this); 1031 return EmitLValue(cleanups->getSubExpr()); 1032 } 1033 1034 case Expr::CXXDefaultArgExprClass: 1035 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1036 case Expr::CXXDefaultInitExprClass: { 1037 CXXDefaultInitExprScope Scope(*this); 1038 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1039 } 1040 case Expr::CXXTypeidExprClass: 1041 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1042 1043 case Expr::ObjCMessageExprClass: 1044 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1045 case Expr::ObjCIvarRefExprClass: 1046 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1047 case Expr::StmtExprClass: 1048 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1049 case Expr::UnaryOperatorClass: 1050 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1051 case Expr::ArraySubscriptExprClass: 1052 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1053 case Expr::OMPArraySectionExprClass: 1054 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1055 case Expr::ExtVectorElementExprClass: 1056 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1057 case Expr::MemberExprClass: 1058 return EmitMemberExpr(cast<MemberExpr>(E)); 1059 case Expr::CompoundLiteralExprClass: 1060 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1061 case Expr::ConditionalOperatorClass: 1062 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1063 case Expr::BinaryConditionalOperatorClass: 1064 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1065 case Expr::ChooseExprClass: 1066 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1067 case Expr::OpaqueValueExprClass: 1068 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1069 case Expr::SubstNonTypeTemplateParmExprClass: 1070 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1071 case Expr::ImplicitCastExprClass: 1072 case Expr::CStyleCastExprClass: 1073 case Expr::CXXFunctionalCastExprClass: 1074 case Expr::CXXStaticCastExprClass: 1075 case Expr::CXXDynamicCastExprClass: 1076 case Expr::CXXReinterpretCastExprClass: 1077 case Expr::CXXConstCastExprClass: 1078 case Expr::ObjCBridgedCastExprClass: 1079 return EmitCastLValue(cast<CastExpr>(E)); 1080 1081 case Expr::MaterializeTemporaryExprClass: 1082 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1083 } 1084 } 1085 1086 /// Given an object of the given canonical type, can we safely copy a 1087 /// value out of it based on its initializer? 1088 static bool isConstantEmittableObjectType(QualType type) { 1089 assert(type.isCanonical()); 1090 assert(!type->isReferenceType()); 1091 1092 // Must be const-qualified but non-volatile. 1093 Qualifiers qs = type.getLocalQualifiers(); 1094 if (!qs.hasConst() || qs.hasVolatile()) return false; 1095 1096 // Otherwise, all object types satisfy this except C++ classes with 1097 // mutable subobjects or non-trivial copy/destroy behavior. 1098 if (const auto *RT = dyn_cast<RecordType>(type)) 1099 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1100 if (RD->hasMutableFields() || !RD->isTrivial()) 1101 return false; 1102 1103 return true; 1104 } 1105 1106 /// Can we constant-emit a load of a reference to a variable of the 1107 /// given type? This is different from predicates like 1108 /// Decl::isUsableInConstantExpressions because we do want it to apply 1109 /// in situations that don't necessarily satisfy the language's rules 1110 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1111 /// to do this with const float variables even if those variables 1112 /// aren't marked 'constexpr'. 1113 enum ConstantEmissionKind { 1114 CEK_None, 1115 CEK_AsReferenceOnly, 1116 CEK_AsValueOrReference, 1117 CEK_AsValueOnly 1118 }; 1119 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1120 type = type.getCanonicalType(); 1121 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1122 if (isConstantEmittableObjectType(ref->getPointeeType())) 1123 return CEK_AsValueOrReference; 1124 return CEK_AsReferenceOnly; 1125 } 1126 if (isConstantEmittableObjectType(type)) 1127 return CEK_AsValueOnly; 1128 return CEK_None; 1129 } 1130 1131 /// Try to emit a reference to the given value without producing it as 1132 /// an l-value. This is actually more than an optimization: we can't 1133 /// produce an l-value for variables that we never actually captured 1134 /// in a block or lambda, which means const int variables or constexpr 1135 /// literals or similar. 1136 CodeGenFunction::ConstantEmission 1137 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1138 ValueDecl *value = refExpr->getDecl(); 1139 1140 // The value needs to be an enum constant or a constant variable. 1141 ConstantEmissionKind CEK; 1142 if (isa<ParmVarDecl>(value)) { 1143 CEK = CEK_None; 1144 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1145 CEK = checkVarTypeForConstantEmission(var->getType()); 1146 } else if (isa<EnumConstantDecl>(value)) { 1147 CEK = CEK_AsValueOnly; 1148 } else { 1149 CEK = CEK_None; 1150 } 1151 if (CEK == CEK_None) return ConstantEmission(); 1152 1153 Expr::EvalResult result; 1154 bool resultIsReference; 1155 QualType resultType; 1156 1157 // It's best to evaluate all the way as an r-value if that's permitted. 1158 if (CEK != CEK_AsReferenceOnly && 1159 refExpr->EvaluateAsRValue(result, getContext())) { 1160 resultIsReference = false; 1161 resultType = refExpr->getType(); 1162 1163 // Otherwise, try to evaluate as an l-value. 1164 } else if (CEK != CEK_AsValueOnly && 1165 refExpr->EvaluateAsLValue(result, getContext())) { 1166 resultIsReference = true; 1167 resultType = value->getType(); 1168 1169 // Failure. 1170 } else { 1171 return ConstantEmission(); 1172 } 1173 1174 // In any case, if the initializer has side-effects, abandon ship. 1175 if (result.HasSideEffects) 1176 return ConstantEmission(); 1177 1178 // Emit as a constant. 1179 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1180 1181 // Make sure we emit a debug reference to the global variable. 1182 // This should probably fire even for 1183 if (isa<VarDecl>(value)) { 1184 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1185 EmitDeclRefExprDbgValue(refExpr, result.Val); 1186 } else { 1187 assert(isa<EnumConstantDecl>(value)); 1188 EmitDeclRefExprDbgValue(refExpr, result.Val); 1189 } 1190 1191 // If we emitted a reference constant, we need to dereference that. 1192 if (resultIsReference) 1193 return ConstantEmission::forReference(C); 1194 1195 return ConstantEmission::forValue(C); 1196 } 1197 1198 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1199 SourceLocation Loc) { 1200 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1201 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1202 lvalue.getTBAAInfo(), 1203 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1204 lvalue.isNontemporal()); 1205 } 1206 1207 static bool hasBooleanRepresentation(QualType Ty) { 1208 if (Ty->isBooleanType()) 1209 return true; 1210 1211 if (const EnumType *ET = Ty->getAs<EnumType>()) 1212 return ET->getDecl()->getIntegerType()->isBooleanType(); 1213 1214 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1215 return hasBooleanRepresentation(AT->getValueType()); 1216 1217 return false; 1218 } 1219 1220 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1221 llvm::APInt &Min, llvm::APInt &End, 1222 bool StrictEnums) { 1223 const EnumType *ET = Ty->getAs<EnumType>(); 1224 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1225 ET && !ET->getDecl()->isFixed(); 1226 bool IsBool = hasBooleanRepresentation(Ty); 1227 if (!IsBool && !IsRegularCPlusPlusEnum) 1228 return false; 1229 1230 if (IsBool) { 1231 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1232 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1233 } else { 1234 const EnumDecl *ED = ET->getDecl(); 1235 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1236 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1237 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1238 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1239 1240 if (NumNegativeBits) { 1241 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1242 assert(NumBits <= Bitwidth); 1243 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1244 Min = -End; 1245 } else { 1246 assert(NumPositiveBits <= Bitwidth); 1247 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1248 Min = llvm::APInt(Bitwidth, 0); 1249 } 1250 } 1251 return true; 1252 } 1253 1254 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1255 llvm::APInt Min, End; 1256 if (!getRangeForType(*this, Ty, Min, End, 1257 CGM.getCodeGenOpts().StrictEnums)) 1258 return nullptr; 1259 1260 llvm::MDBuilder MDHelper(getLLVMContext()); 1261 return MDHelper.createRange(Min, End); 1262 } 1263 1264 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1265 QualType Ty, 1266 SourceLocation Loc, 1267 AlignmentSource AlignSource, 1268 llvm::MDNode *TBAAInfo, 1269 QualType TBAABaseType, 1270 uint64_t TBAAOffset, 1271 bool isNontemporal) { 1272 // For better performance, handle vector loads differently. 1273 if (Ty->isVectorType()) { 1274 const llvm::Type *EltTy = Addr.getElementType(); 1275 1276 const auto *VTy = cast<llvm::VectorType>(EltTy); 1277 1278 // Handle vectors of size 3 like size 4 for better performance. 1279 if (VTy->getNumElements() == 3) { 1280 1281 // Bitcast to vec4 type. 1282 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1283 4); 1284 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1285 // Now load value. 1286 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1287 1288 // Shuffle vector to get vec3. 1289 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1290 {0, 1, 2}, "extractVec"); 1291 return EmitFromMemory(V, Ty); 1292 } 1293 } 1294 1295 // Atomic operations have to be done on integral types. 1296 LValue AtomicLValue = 1297 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1298 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1299 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1300 } 1301 1302 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1303 if (isNontemporal) { 1304 llvm::MDNode *Node = llvm::MDNode::get( 1305 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1306 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1307 } 1308 if (TBAAInfo) { 1309 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1310 TBAAOffset); 1311 if (TBAAPath) 1312 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1313 false /*ConvertTypeToTag*/); 1314 } 1315 1316 bool NeedsBoolCheck = 1317 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1318 bool NeedsEnumCheck = 1319 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1320 if (NeedsBoolCheck || NeedsEnumCheck) { 1321 SanitizerScope SanScope(this); 1322 llvm::APInt Min, End; 1323 if (getRangeForType(*this, Ty, Min, End, true)) { 1324 --End; 1325 llvm::Value *Check; 1326 if (!Min) 1327 Check = Builder.CreateICmpULE( 1328 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1329 else { 1330 llvm::Value *Upper = Builder.CreateICmpSLE( 1331 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1332 llvm::Value *Lower = Builder.CreateICmpSGE( 1333 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1334 Check = Builder.CreateAnd(Upper, Lower); 1335 } 1336 llvm::Constant *StaticArgs[] = { 1337 EmitCheckSourceLocation(Loc), 1338 EmitCheckTypeDescriptor(Ty) 1339 }; 1340 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1341 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1342 EmitCheckValue(Load)); 1343 } 1344 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1345 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1346 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1347 1348 return EmitFromMemory(Load, Ty); 1349 } 1350 1351 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1352 // Bool has a different representation in memory than in registers. 1353 if (hasBooleanRepresentation(Ty)) { 1354 // This should really always be an i1, but sometimes it's already 1355 // an i8, and it's awkward to track those cases down. 1356 if (Value->getType()->isIntegerTy(1)) 1357 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1358 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1359 "wrong value rep of bool"); 1360 } 1361 1362 return Value; 1363 } 1364 1365 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1366 // Bool has a different representation in memory than in registers. 1367 if (hasBooleanRepresentation(Ty)) { 1368 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1369 "wrong value rep of bool"); 1370 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1371 } 1372 1373 return Value; 1374 } 1375 1376 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1377 bool Volatile, QualType Ty, 1378 AlignmentSource AlignSource, 1379 llvm::MDNode *TBAAInfo, 1380 bool isInit, QualType TBAABaseType, 1381 uint64_t TBAAOffset, 1382 bool isNontemporal) { 1383 1384 // Handle vectors differently to get better performance. 1385 if (Ty->isVectorType()) { 1386 llvm::Type *SrcTy = Value->getType(); 1387 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1388 // Handle vec3 special. 1389 if (VecTy->getNumElements() == 3) { 1390 // Our source is a vec3, do a shuffle vector to make it a vec4. 1391 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1392 Builder.getInt32(2), 1393 llvm::UndefValue::get(Builder.getInt32Ty())}; 1394 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1395 Value = Builder.CreateShuffleVector(Value, 1396 llvm::UndefValue::get(VecTy), 1397 MaskV, "extractVec"); 1398 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1399 } 1400 if (Addr.getElementType() != SrcTy) { 1401 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1402 } 1403 } 1404 1405 Value = EmitToMemory(Value, Ty); 1406 1407 LValue AtomicLValue = 1408 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1409 if (Ty->isAtomicType() || 1410 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1411 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1412 return; 1413 } 1414 1415 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1416 if (isNontemporal) { 1417 llvm::MDNode *Node = 1418 llvm::MDNode::get(Store->getContext(), 1419 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1420 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1421 } 1422 if (TBAAInfo) { 1423 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1424 TBAAOffset); 1425 if (TBAAPath) 1426 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1427 false /*ConvertTypeToTag*/); 1428 } 1429 } 1430 1431 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1432 bool isInit) { 1433 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1434 lvalue.getType(), lvalue.getAlignmentSource(), 1435 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1436 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1437 } 1438 1439 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1440 /// method emits the address of the lvalue, then loads the result as an rvalue, 1441 /// returning the rvalue. 1442 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1443 if (LV.isObjCWeak()) { 1444 // load of a __weak object. 1445 Address AddrWeakObj = LV.getAddress(); 1446 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1447 AddrWeakObj)); 1448 } 1449 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1450 // In MRC mode, we do a load+autorelease. 1451 if (!getLangOpts().ObjCAutoRefCount) { 1452 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1453 } 1454 1455 // In ARC mode, we load retained and then consume the value. 1456 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1457 Object = EmitObjCConsumeObject(LV.getType(), Object); 1458 return RValue::get(Object); 1459 } 1460 1461 if (LV.isSimple()) { 1462 assert(!LV.getType()->isFunctionType()); 1463 1464 // Everything needs a load. 1465 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1466 } 1467 1468 if (LV.isVectorElt()) { 1469 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1470 LV.isVolatileQualified()); 1471 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1472 "vecext")); 1473 } 1474 1475 // If this is a reference to a subset of the elements of a vector, either 1476 // shuffle the input or extract/insert them as appropriate. 1477 if (LV.isExtVectorElt()) 1478 return EmitLoadOfExtVectorElementLValue(LV); 1479 1480 // Global Register variables always invoke intrinsics 1481 if (LV.isGlobalReg()) 1482 return EmitLoadOfGlobalRegLValue(LV); 1483 1484 assert(LV.isBitField() && "Unknown LValue type!"); 1485 return EmitLoadOfBitfieldLValue(LV); 1486 } 1487 1488 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1489 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1490 1491 // Get the output type. 1492 llvm::Type *ResLTy = ConvertType(LV.getType()); 1493 1494 Address Ptr = LV.getBitFieldAddress(); 1495 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1496 1497 if (Info.IsSigned) { 1498 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1499 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1500 if (HighBits) 1501 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1502 if (Info.Offset + HighBits) 1503 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1504 } else { 1505 if (Info.Offset) 1506 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1507 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1508 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1509 Info.Size), 1510 "bf.clear"); 1511 } 1512 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1513 1514 return RValue::get(Val); 1515 } 1516 1517 // If this is a reference to a subset of the elements of a vector, create an 1518 // appropriate shufflevector. 1519 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1520 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1521 LV.isVolatileQualified()); 1522 1523 const llvm::Constant *Elts = LV.getExtVectorElts(); 1524 1525 // If the result of the expression is a non-vector type, we must be extracting 1526 // a single element. Just codegen as an extractelement. 1527 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1528 if (!ExprVT) { 1529 unsigned InIdx = getAccessedFieldNo(0, Elts); 1530 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1531 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1532 } 1533 1534 // Always use shuffle vector to try to retain the original program structure 1535 unsigned NumResultElts = ExprVT->getNumElements(); 1536 1537 SmallVector<llvm::Constant*, 4> Mask; 1538 for (unsigned i = 0; i != NumResultElts; ++i) 1539 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1540 1541 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1542 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1543 MaskV); 1544 return RValue::get(Vec); 1545 } 1546 1547 /// @brief Generates lvalue for partial ext_vector access. 1548 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1549 Address VectorAddress = LV.getExtVectorAddress(); 1550 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1551 QualType EQT = ExprVT->getElementType(); 1552 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1553 1554 Address CastToPointerElement = 1555 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1556 "conv.ptr.element"); 1557 1558 const llvm::Constant *Elts = LV.getExtVectorElts(); 1559 unsigned ix = getAccessedFieldNo(0, Elts); 1560 1561 Address VectorBasePtrPlusIx = 1562 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1563 getContext().getTypeSizeInChars(EQT), 1564 "vector.elt"); 1565 1566 return VectorBasePtrPlusIx; 1567 } 1568 1569 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1570 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1571 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1572 "Bad type for register variable"); 1573 llvm::MDNode *RegName = cast<llvm::MDNode>( 1574 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1575 1576 // We accept integer and pointer types only 1577 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1578 llvm::Type *Ty = OrigTy; 1579 if (OrigTy->isPointerTy()) 1580 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1581 llvm::Type *Types[] = { Ty }; 1582 1583 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1584 llvm::Value *Call = Builder.CreateCall( 1585 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1586 if (OrigTy->isPointerTy()) 1587 Call = Builder.CreateIntToPtr(Call, OrigTy); 1588 return RValue::get(Call); 1589 } 1590 1591 1592 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1593 /// lvalue, where both are guaranteed to the have the same type, and that type 1594 /// is 'Ty'. 1595 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1596 bool isInit) { 1597 if (!Dst.isSimple()) { 1598 if (Dst.isVectorElt()) { 1599 // Read/modify/write the vector, inserting the new element. 1600 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1601 Dst.isVolatileQualified()); 1602 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1603 Dst.getVectorIdx(), "vecins"); 1604 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1605 Dst.isVolatileQualified()); 1606 return; 1607 } 1608 1609 // If this is an update of extended vector elements, insert them as 1610 // appropriate. 1611 if (Dst.isExtVectorElt()) 1612 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1613 1614 if (Dst.isGlobalReg()) 1615 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1616 1617 assert(Dst.isBitField() && "Unknown LValue type"); 1618 return EmitStoreThroughBitfieldLValue(Src, Dst); 1619 } 1620 1621 // There's special magic for assigning into an ARC-qualified l-value. 1622 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1623 switch (Lifetime) { 1624 case Qualifiers::OCL_None: 1625 llvm_unreachable("present but none"); 1626 1627 case Qualifiers::OCL_ExplicitNone: 1628 // nothing special 1629 break; 1630 1631 case Qualifiers::OCL_Strong: 1632 if (isInit) { 1633 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1634 break; 1635 } 1636 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1637 return; 1638 1639 case Qualifiers::OCL_Weak: 1640 if (isInit) 1641 // Initialize and then skip the primitive store. 1642 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1643 else 1644 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1645 return; 1646 1647 case Qualifiers::OCL_Autoreleasing: 1648 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1649 Src.getScalarVal())); 1650 // fall into the normal path 1651 break; 1652 } 1653 } 1654 1655 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1656 // load of a __weak object. 1657 Address LvalueDst = Dst.getAddress(); 1658 llvm::Value *src = Src.getScalarVal(); 1659 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1660 return; 1661 } 1662 1663 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1664 // load of a __strong object. 1665 Address LvalueDst = Dst.getAddress(); 1666 llvm::Value *src = Src.getScalarVal(); 1667 if (Dst.isObjCIvar()) { 1668 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1669 llvm::Type *ResultType = IntPtrTy; 1670 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1671 llvm::Value *RHS = dst.getPointer(); 1672 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1673 llvm::Value *LHS = 1674 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1675 "sub.ptr.lhs.cast"); 1676 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1677 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1678 BytesBetween); 1679 } else if (Dst.isGlobalObjCRef()) { 1680 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1681 Dst.isThreadLocalRef()); 1682 } 1683 else 1684 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1685 return; 1686 } 1687 1688 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1689 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1690 } 1691 1692 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1693 llvm::Value **Result) { 1694 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1695 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1696 Address Ptr = Dst.getBitFieldAddress(); 1697 1698 // Get the source value, truncated to the width of the bit-field. 1699 llvm::Value *SrcVal = Src.getScalarVal(); 1700 1701 // Cast the source to the storage type and shift it into place. 1702 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1703 /*IsSigned=*/false); 1704 llvm::Value *MaskedVal = SrcVal; 1705 1706 // See if there are other bits in the bitfield's storage we'll need to load 1707 // and mask together with source before storing. 1708 if (Info.StorageSize != Info.Size) { 1709 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1710 llvm::Value *Val = 1711 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1712 1713 // Mask the source value as needed. 1714 if (!hasBooleanRepresentation(Dst.getType())) 1715 SrcVal = Builder.CreateAnd(SrcVal, 1716 llvm::APInt::getLowBitsSet(Info.StorageSize, 1717 Info.Size), 1718 "bf.value"); 1719 MaskedVal = SrcVal; 1720 if (Info.Offset) 1721 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1722 1723 // Mask out the original value. 1724 Val = Builder.CreateAnd(Val, 1725 ~llvm::APInt::getBitsSet(Info.StorageSize, 1726 Info.Offset, 1727 Info.Offset + Info.Size), 1728 "bf.clear"); 1729 1730 // Or together the unchanged values and the source value. 1731 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1732 } else { 1733 assert(Info.Offset == 0); 1734 } 1735 1736 // Write the new value back out. 1737 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1738 1739 // Return the new value of the bit-field, if requested. 1740 if (Result) { 1741 llvm::Value *ResultVal = MaskedVal; 1742 1743 // Sign extend the value if needed. 1744 if (Info.IsSigned) { 1745 assert(Info.Size <= Info.StorageSize); 1746 unsigned HighBits = Info.StorageSize - Info.Size; 1747 if (HighBits) { 1748 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1749 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1750 } 1751 } 1752 1753 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1754 "bf.result.cast"); 1755 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1756 } 1757 } 1758 1759 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1760 LValue Dst) { 1761 // This access turns into a read/modify/write of the vector. Load the input 1762 // value now. 1763 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1764 Dst.isVolatileQualified()); 1765 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1766 1767 llvm::Value *SrcVal = Src.getScalarVal(); 1768 1769 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1770 unsigned NumSrcElts = VTy->getNumElements(); 1771 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1772 if (NumDstElts == NumSrcElts) { 1773 // Use shuffle vector is the src and destination are the same number of 1774 // elements and restore the vector mask since it is on the side it will be 1775 // stored. 1776 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1777 for (unsigned i = 0; i != NumSrcElts; ++i) 1778 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1779 1780 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1781 Vec = Builder.CreateShuffleVector(SrcVal, 1782 llvm::UndefValue::get(Vec->getType()), 1783 MaskV); 1784 } else if (NumDstElts > NumSrcElts) { 1785 // Extended the source vector to the same length and then shuffle it 1786 // into the destination. 1787 // FIXME: since we're shuffling with undef, can we just use the indices 1788 // into that? This could be simpler. 1789 SmallVector<llvm::Constant*, 4> ExtMask; 1790 for (unsigned i = 0; i != NumSrcElts; ++i) 1791 ExtMask.push_back(Builder.getInt32(i)); 1792 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1793 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1794 llvm::Value *ExtSrcVal = 1795 Builder.CreateShuffleVector(SrcVal, 1796 llvm::UndefValue::get(SrcVal->getType()), 1797 ExtMaskV); 1798 // build identity 1799 SmallVector<llvm::Constant*, 4> Mask; 1800 for (unsigned i = 0; i != NumDstElts; ++i) 1801 Mask.push_back(Builder.getInt32(i)); 1802 1803 // When the vector size is odd and .odd or .hi is used, the last element 1804 // of the Elts constant array will be one past the size of the vector. 1805 // Ignore the last element here, if it is greater than the mask size. 1806 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1807 NumSrcElts--; 1808 1809 // modify when what gets shuffled in 1810 for (unsigned i = 0; i != NumSrcElts; ++i) 1811 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1812 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1813 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1814 } else { 1815 // We should never shorten the vector 1816 llvm_unreachable("unexpected shorten vector length"); 1817 } 1818 } else { 1819 // If the Src is a scalar (not a vector) it must be updating one element. 1820 unsigned InIdx = getAccessedFieldNo(0, Elts); 1821 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1822 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1823 } 1824 1825 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1826 Dst.isVolatileQualified()); 1827 } 1828 1829 /// @brief Store of global named registers are always calls to intrinsics. 1830 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1831 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1832 "Bad type for register variable"); 1833 llvm::MDNode *RegName = cast<llvm::MDNode>( 1834 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1835 assert(RegName && "Register LValue is not metadata"); 1836 1837 // We accept integer and pointer types only 1838 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1839 llvm::Type *Ty = OrigTy; 1840 if (OrigTy->isPointerTy()) 1841 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1842 llvm::Type *Types[] = { Ty }; 1843 1844 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1845 llvm::Value *Value = Src.getScalarVal(); 1846 if (OrigTy->isPointerTy()) 1847 Value = Builder.CreatePtrToInt(Value, Ty); 1848 Builder.CreateCall( 1849 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1850 } 1851 1852 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1853 // generating write-barries API. It is currently a global, ivar, 1854 // or neither. 1855 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1856 LValue &LV, 1857 bool IsMemberAccess=false) { 1858 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1859 return; 1860 1861 if (isa<ObjCIvarRefExpr>(E)) { 1862 QualType ExpTy = E->getType(); 1863 if (IsMemberAccess && ExpTy->isPointerType()) { 1864 // If ivar is a structure pointer, assigning to field of 1865 // this struct follows gcc's behavior and makes it a non-ivar 1866 // writer-barrier conservatively. 1867 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1868 if (ExpTy->isRecordType()) { 1869 LV.setObjCIvar(false); 1870 return; 1871 } 1872 } 1873 LV.setObjCIvar(true); 1874 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1875 LV.setBaseIvarExp(Exp->getBase()); 1876 LV.setObjCArray(E->getType()->isArrayType()); 1877 return; 1878 } 1879 1880 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1881 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1882 if (VD->hasGlobalStorage()) { 1883 LV.setGlobalObjCRef(true); 1884 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1885 } 1886 } 1887 LV.setObjCArray(E->getType()->isArrayType()); 1888 return; 1889 } 1890 1891 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1892 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1893 return; 1894 } 1895 1896 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1897 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1898 if (LV.isObjCIvar()) { 1899 // If cast is to a structure pointer, follow gcc's behavior and make it 1900 // a non-ivar write-barrier. 1901 QualType ExpTy = E->getType(); 1902 if (ExpTy->isPointerType()) 1903 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1904 if (ExpTy->isRecordType()) 1905 LV.setObjCIvar(false); 1906 } 1907 return; 1908 } 1909 1910 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1911 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1912 return; 1913 } 1914 1915 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1916 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1917 return; 1918 } 1919 1920 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1921 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1922 return; 1923 } 1924 1925 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1926 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1927 return; 1928 } 1929 1930 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1931 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1932 if (LV.isObjCIvar() && !LV.isObjCArray()) 1933 // Using array syntax to assigning to what an ivar points to is not 1934 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1935 LV.setObjCIvar(false); 1936 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1937 // Using array syntax to assigning to what global points to is not 1938 // same as assigning to the global itself. {id *G;} G[i] = 0; 1939 LV.setGlobalObjCRef(false); 1940 return; 1941 } 1942 1943 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1944 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1945 // We don't know if member is an 'ivar', but this flag is looked at 1946 // only in the context of LV.isObjCIvar(). 1947 LV.setObjCArray(E->getType()->isArrayType()); 1948 return; 1949 } 1950 } 1951 1952 static llvm::Value * 1953 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1954 llvm::Value *V, llvm::Type *IRType, 1955 StringRef Name = StringRef()) { 1956 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1957 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1958 } 1959 1960 static LValue EmitThreadPrivateVarDeclLValue( 1961 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 1962 llvm::Type *RealVarTy, SourceLocation Loc) { 1963 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 1964 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 1965 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 1966 } 1967 1968 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 1969 const ReferenceType *RefTy, 1970 AlignmentSource *Source) { 1971 llvm::Value *Ptr = Builder.CreateLoad(Addr); 1972 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 1973 Source, /*forPointee*/ true)); 1974 1975 } 1976 1977 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 1978 const ReferenceType *RefTy) { 1979 AlignmentSource Source; 1980 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 1981 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 1982 } 1983 1984 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 1985 const PointerType *PtrTy, 1986 AlignmentSource *Source) { 1987 llvm::Value *Addr = Builder.CreateLoad(Ptr); 1988 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 1989 /*forPointeeType=*/true)); 1990 } 1991 1992 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 1993 const PointerType *PtrTy) { 1994 AlignmentSource Source; 1995 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 1996 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 1997 } 1998 1999 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2000 const Expr *E, const VarDecl *VD) { 2001 QualType T = E->getType(); 2002 2003 // If it's thread_local, emit a call to its wrapper function instead. 2004 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2005 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2006 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2007 2008 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2009 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2010 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2011 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2012 Address Addr(V, Alignment); 2013 LValue LV; 2014 // Emit reference to the private copy of the variable if it is an OpenMP 2015 // threadprivate variable. 2016 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2017 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2018 E->getExprLoc()); 2019 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2020 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2021 } else { 2022 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2023 } 2024 setObjCGCLValueClass(CGF.getContext(), E, LV); 2025 return LV; 2026 } 2027 2028 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2029 const FunctionDecl *FD) { 2030 if (FD->hasAttr<WeakRefAttr>()) { 2031 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2032 return aliasee.getPointer(); 2033 } 2034 2035 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2036 if (!FD->hasPrototype()) { 2037 if (const FunctionProtoType *Proto = 2038 FD->getType()->getAs<FunctionProtoType>()) { 2039 // Ugly case: for a K&R-style definition, the type of the definition 2040 // isn't the same as the type of a use. Correct for this with a 2041 // bitcast. 2042 QualType NoProtoType = 2043 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2044 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2045 V = llvm::ConstantExpr::getBitCast(V, 2046 CGM.getTypes().ConvertType(NoProtoType)); 2047 } 2048 } 2049 return V; 2050 } 2051 2052 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2053 const Expr *E, const FunctionDecl *FD) { 2054 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2055 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2056 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2057 } 2058 2059 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2060 llvm::Value *ThisValue) { 2061 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2062 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2063 return CGF.EmitLValueForField(LV, FD); 2064 } 2065 2066 /// Named Registers are named metadata pointing to the register name 2067 /// which will be read from/written to as an argument to the intrinsic 2068 /// @llvm.read/write_register. 2069 /// So far, only the name is being passed down, but other options such as 2070 /// register type, allocation type or even optimization options could be 2071 /// passed down via the metadata node. 2072 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2073 SmallString<64> Name("llvm.named.register."); 2074 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2075 assert(Asm->getLabel().size() < 64-Name.size() && 2076 "Register name too big"); 2077 Name.append(Asm->getLabel()); 2078 llvm::NamedMDNode *M = 2079 CGM.getModule().getOrInsertNamedMetadata(Name); 2080 if (M->getNumOperands() == 0) { 2081 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2082 Asm->getLabel()); 2083 llvm::Metadata *Ops[] = {Str}; 2084 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2085 } 2086 2087 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2088 2089 llvm::Value *Ptr = 2090 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2091 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2092 } 2093 2094 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2095 const NamedDecl *ND = E->getDecl(); 2096 QualType T = E->getType(); 2097 2098 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2099 // Global Named registers access via intrinsics only 2100 if (VD->getStorageClass() == SC_Register && 2101 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2102 return EmitGlobalNamedRegister(VD, CGM); 2103 2104 // A DeclRefExpr for a reference initialized by a constant expression can 2105 // appear without being odr-used. Directly emit the constant initializer. 2106 const Expr *Init = VD->getAnyInitializer(VD); 2107 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2108 VD->isUsableInConstantExpressions(getContext()) && 2109 VD->checkInitIsICE() && 2110 // Do not emit if it is private OpenMP variable. 2111 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2112 LocalDeclMap.count(VD))) { 2113 llvm::Constant *Val = 2114 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2115 assert(Val && "failed to emit reference constant expression"); 2116 // FIXME: Eventually we will want to emit vector element references. 2117 2118 // Should we be using the alignment of the constant pointer we emitted? 2119 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2120 /*pointee*/ true); 2121 2122 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2123 } 2124 2125 // Check for captured variables. 2126 if (E->refersToEnclosingVariableOrCapture()) { 2127 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2128 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2129 else if (CapturedStmtInfo) { 2130 auto I = LocalDeclMap.find(VD); 2131 if (I != LocalDeclMap.end()) { 2132 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2133 return EmitLoadOfReferenceLValue(I->second, RefTy); 2134 return MakeAddrLValue(I->second, T); 2135 } 2136 LValue CapLVal = 2137 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2138 CapturedStmtInfo->getContextValue()); 2139 return MakeAddrLValue( 2140 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2141 CapLVal.getType(), AlignmentSource::Decl); 2142 } 2143 2144 assert(isa<BlockDecl>(CurCodeDecl)); 2145 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2146 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2147 } 2148 } 2149 2150 // FIXME: We should be able to assert this for FunctionDecls as well! 2151 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2152 // those with a valid source location. 2153 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2154 !E->getLocation().isValid()) && 2155 "Should not use decl without marking it used!"); 2156 2157 if (ND->hasAttr<WeakRefAttr>()) { 2158 const auto *VD = cast<ValueDecl>(ND); 2159 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2160 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2161 } 2162 2163 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2164 // Check if this is a global variable. 2165 if (VD->hasLinkage() || VD->isStaticDataMember()) 2166 return EmitGlobalVarDeclLValue(*this, E, VD); 2167 2168 Address addr = Address::invalid(); 2169 2170 // The variable should generally be present in the local decl map. 2171 auto iter = LocalDeclMap.find(VD); 2172 if (iter != LocalDeclMap.end()) { 2173 addr = iter->second; 2174 2175 // Otherwise, it might be static local we haven't emitted yet for 2176 // some reason; most likely, because it's in an outer function. 2177 } else if (VD->isStaticLocal()) { 2178 addr = Address(CGM.getOrCreateStaticVarDecl( 2179 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2180 getContext().getDeclAlign(VD)); 2181 2182 // No other cases for now. 2183 } else { 2184 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2185 } 2186 2187 2188 // Check for OpenMP threadprivate variables. 2189 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2190 return EmitThreadPrivateVarDeclLValue( 2191 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2192 E->getExprLoc()); 2193 } 2194 2195 // Drill into block byref variables. 2196 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2197 if (isBlockByref) { 2198 addr = emitBlockByrefAddress(addr, VD); 2199 } 2200 2201 // Drill into reference types. 2202 LValue LV; 2203 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2204 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2205 } else { 2206 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2207 } 2208 2209 bool isLocalStorage = VD->hasLocalStorage(); 2210 2211 bool NonGCable = isLocalStorage && 2212 !VD->getType()->isReferenceType() && 2213 !isBlockByref; 2214 if (NonGCable) { 2215 LV.getQuals().removeObjCGCAttr(); 2216 LV.setNonGC(true); 2217 } 2218 2219 bool isImpreciseLifetime = 2220 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2221 if (isImpreciseLifetime) 2222 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2223 setObjCGCLValueClass(getContext(), E, LV); 2224 return LV; 2225 } 2226 2227 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2228 return EmitFunctionDeclLValue(*this, E, FD); 2229 2230 // FIXME: While we're emitting a binding from an enclosing scope, all other 2231 // DeclRefExprs we see should be implicitly treated as if they also refer to 2232 // an enclosing scope. 2233 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2234 return EmitLValue(BD->getBinding()); 2235 2236 llvm_unreachable("Unhandled DeclRefExpr"); 2237 } 2238 2239 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2240 // __extension__ doesn't affect lvalue-ness. 2241 if (E->getOpcode() == UO_Extension) 2242 return EmitLValue(E->getSubExpr()); 2243 2244 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2245 switch (E->getOpcode()) { 2246 default: llvm_unreachable("Unknown unary operator lvalue!"); 2247 case UO_Deref: { 2248 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2249 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2250 2251 AlignmentSource AlignSource; 2252 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2253 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2254 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2255 2256 // We should not generate __weak write barrier on indirect reference 2257 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2258 // But, we continue to generate __strong write barrier on indirect write 2259 // into a pointer to object. 2260 if (getLangOpts().ObjC1 && 2261 getLangOpts().getGC() != LangOptions::NonGC && 2262 LV.isObjCWeak()) 2263 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2264 return LV; 2265 } 2266 case UO_Real: 2267 case UO_Imag: { 2268 LValue LV = EmitLValue(E->getSubExpr()); 2269 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2270 2271 // __real is valid on scalars. This is a faster way of testing that. 2272 // __imag can only produce an rvalue on scalars. 2273 if (E->getOpcode() == UO_Real && 2274 !LV.getAddress().getElementType()->isStructTy()) { 2275 assert(E->getSubExpr()->getType()->isArithmeticType()); 2276 return LV; 2277 } 2278 2279 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2280 2281 Address Component = 2282 (E->getOpcode() == UO_Real 2283 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2284 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2285 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2286 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2287 return ElemLV; 2288 } 2289 case UO_PreInc: 2290 case UO_PreDec: { 2291 LValue LV = EmitLValue(E->getSubExpr()); 2292 bool isInc = E->getOpcode() == UO_PreInc; 2293 2294 if (E->getType()->isAnyComplexType()) 2295 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2296 else 2297 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2298 return LV; 2299 } 2300 } 2301 } 2302 2303 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2304 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2305 E->getType(), AlignmentSource::Decl); 2306 } 2307 2308 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2309 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2310 E->getType(), AlignmentSource::Decl); 2311 } 2312 2313 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2314 auto SL = E->getFunctionName(); 2315 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2316 StringRef FnName = CurFn->getName(); 2317 if (FnName.startswith("\01")) 2318 FnName = FnName.substr(1); 2319 StringRef NameItems[] = { 2320 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2321 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2322 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2323 std::string Name = SL->getString(); 2324 if (!Name.empty()) { 2325 unsigned Discriminator = 2326 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2327 if (Discriminator) 2328 Name += "_" + Twine(Discriminator + 1).str(); 2329 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2330 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2331 } else { 2332 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2333 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2334 } 2335 } 2336 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2337 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2338 } 2339 2340 /// Emit a type description suitable for use by a runtime sanitizer library. The 2341 /// format of a type descriptor is 2342 /// 2343 /// \code 2344 /// { i16 TypeKind, i16 TypeInfo } 2345 /// \endcode 2346 /// 2347 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2348 /// integer, 1 for a floating point value, and -1 for anything else. 2349 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2350 // Only emit each type's descriptor once. 2351 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2352 return C; 2353 2354 uint16_t TypeKind = -1; 2355 uint16_t TypeInfo = 0; 2356 2357 if (T->isIntegerType()) { 2358 TypeKind = 0; 2359 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2360 (T->isSignedIntegerType() ? 1 : 0); 2361 } else if (T->isFloatingType()) { 2362 TypeKind = 1; 2363 TypeInfo = getContext().getTypeSize(T); 2364 } 2365 2366 // Format the type name as if for a diagnostic, including quotes and 2367 // optionally an 'aka'. 2368 SmallString<32> Buffer; 2369 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2370 (intptr_t)T.getAsOpaquePtr(), 2371 StringRef(), StringRef(), None, Buffer, 2372 None); 2373 2374 llvm::Constant *Components[] = { 2375 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2376 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2377 }; 2378 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2379 2380 auto *GV = new llvm::GlobalVariable( 2381 CGM.getModule(), Descriptor->getType(), 2382 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2383 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2384 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2385 2386 // Remember the descriptor for this type. 2387 CGM.setTypeDescriptorInMap(T, GV); 2388 2389 return GV; 2390 } 2391 2392 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2393 llvm::Type *TargetTy = IntPtrTy; 2394 2395 // Floating-point types which fit into intptr_t are bitcast to integers 2396 // and then passed directly (after zero-extension, if necessary). 2397 if (V->getType()->isFloatingPointTy()) { 2398 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2399 if (Bits <= TargetTy->getIntegerBitWidth()) 2400 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2401 Bits)); 2402 } 2403 2404 // Integers which fit in intptr_t are zero-extended and passed directly. 2405 if (V->getType()->isIntegerTy() && 2406 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2407 return Builder.CreateZExt(V, TargetTy); 2408 2409 // Pointers are passed directly, everything else is passed by address. 2410 if (!V->getType()->isPointerTy()) { 2411 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2412 Builder.CreateStore(V, Ptr); 2413 V = Ptr.getPointer(); 2414 } 2415 return Builder.CreatePtrToInt(V, TargetTy); 2416 } 2417 2418 /// \brief Emit a representation of a SourceLocation for passing to a handler 2419 /// in a sanitizer runtime library. The format for this data is: 2420 /// \code 2421 /// struct SourceLocation { 2422 /// const char *Filename; 2423 /// int32_t Line, Column; 2424 /// }; 2425 /// \endcode 2426 /// For an invalid SourceLocation, the Filename pointer is null. 2427 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2428 llvm::Constant *Filename; 2429 int Line, Column; 2430 2431 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2432 if (PLoc.isValid()) { 2433 StringRef FilenameString = PLoc.getFilename(); 2434 2435 int PathComponentsToStrip = 2436 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2437 if (PathComponentsToStrip < 0) { 2438 assert(PathComponentsToStrip != INT_MIN); 2439 int PathComponentsToKeep = -PathComponentsToStrip; 2440 auto I = llvm::sys::path::rbegin(FilenameString); 2441 auto E = llvm::sys::path::rend(FilenameString); 2442 while (I != E && --PathComponentsToKeep) 2443 ++I; 2444 2445 FilenameString = FilenameString.substr(I - E); 2446 } else if (PathComponentsToStrip > 0) { 2447 auto I = llvm::sys::path::begin(FilenameString); 2448 auto E = llvm::sys::path::end(FilenameString); 2449 while (I != E && PathComponentsToStrip--) 2450 ++I; 2451 2452 if (I != E) 2453 FilenameString = 2454 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2455 else 2456 FilenameString = llvm::sys::path::filename(FilenameString); 2457 } 2458 2459 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2460 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2461 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2462 Filename = FilenameGV.getPointer(); 2463 Line = PLoc.getLine(); 2464 Column = PLoc.getColumn(); 2465 } else { 2466 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2467 Line = Column = 0; 2468 } 2469 2470 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2471 Builder.getInt32(Column)}; 2472 2473 return llvm::ConstantStruct::getAnon(Data); 2474 } 2475 2476 namespace { 2477 /// \brief Specify under what conditions this check can be recovered 2478 enum class CheckRecoverableKind { 2479 /// Always terminate program execution if this check fails. 2480 Unrecoverable, 2481 /// Check supports recovering, runtime has both fatal (noreturn) and 2482 /// non-fatal handlers for this check. 2483 Recoverable, 2484 /// Runtime conditionally aborts, always need to support recovery. 2485 AlwaysRecoverable 2486 }; 2487 } 2488 2489 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2490 assert(llvm::countPopulation(Kind) == 1); 2491 switch (Kind) { 2492 case SanitizerKind::Vptr: 2493 return CheckRecoverableKind::AlwaysRecoverable; 2494 case SanitizerKind::Return: 2495 case SanitizerKind::Unreachable: 2496 return CheckRecoverableKind::Unrecoverable; 2497 default: 2498 return CheckRecoverableKind::Recoverable; 2499 } 2500 } 2501 2502 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2503 llvm::FunctionType *FnType, 2504 ArrayRef<llvm::Value *> FnArgs, 2505 StringRef CheckName, 2506 CheckRecoverableKind RecoverKind, bool IsFatal, 2507 llvm::BasicBlock *ContBB) { 2508 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2509 bool NeedsAbortSuffix = 2510 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2511 std::string FnName = ("__ubsan_handle_" + CheckName + 2512 (NeedsAbortSuffix ? "_abort" : "")).str(); 2513 bool MayReturn = 2514 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2515 2516 llvm::AttrBuilder B; 2517 if (!MayReturn) { 2518 B.addAttribute(llvm::Attribute::NoReturn) 2519 .addAttribute(llvm::Attribute::NoUnwind); 2520 } 2521 B.addAttribute(llvm::Attribute::UWTable); 2522 2523 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2524 FnType, FnName, 2525 llvm::AttributeSet::get(CGF.getLLVMContext(), 2526 llvm::AttributeSet::FunctionIndex, B)); 2527 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2528 if (!MayReturn) { 2529 HandlerCall->setDoesNotReturn(); 2530 CGF.Builder.CreateUnreachable(); 2531 } else { 2532 CGF.Builder.CreateBr(ContBB); 2533 } 2534 } 2535 2536 void CodeGenFunction::EmitCheck( 2537 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2538 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2539 ArrayRef<llvm::Value *> DynamicArgs) { 2540 assert(IsSanitizerScope); 2541 assert(Checked.size() > 0); 2542 2543 llvm::Value *FatalCond = nullptr; 2544 llvm::Value *RecoverableCond = nullptr; 2545 llvm::Value *TrapCond = nullptr; 2546 for (int i = 0, n = Checked.size(); i < n; ++i) { 2547 llvm::Value *Check = Checked[i].first; 2548 // -fsanitize-trap= overrides -fsanitize-recover=. 2549 llvm::Value *&Cond = 2550 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2551 ? TrapCond 2552 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2553 ? RecoverableCond 2554 : FatalCond; 2555 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2556 } 2557 2558 if (TrapCond) 2559 EmitTrapCheck(TrapCond); 2560 if (!FatalCond && !RecoverableCond) 2561 return; 2562 2563 llvm::Value *JointCond; 2564 if (FatalCond && RecoverableCond) 2565 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2566 else 2567 JointCond = FatalCond ? FatalCond : RecoverableCond; 2568 assert(JointCond); 2569 2570 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2571 assert(SanOpts.has(Checked[0].second)); 2572 #ifndef NDEBUG 2573 for (int i = 1, n = Checked.size(); i < n; ++i) { 2574 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2575 "All recoverable kinds in a single check must be same!"); 2576 assert(SanOpts.has(Checked[i].second)); 2577 } 2578 #endif 2579 2580 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2581 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2582 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2583 // Give hint that we very much don't expect to execute the handler 2584 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2585 llvm::MDBuilder MDHelper(getLLVMContext()); 2586 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2587 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2588 EmitBlock(Handlers); 2589 2590 // Handler functions take an i8* pointing to the (handler-specific) static 2591 // information block, followed by a sequence of intptr_t arguments 2592 // representing operand values. 2593 SmallVector<llvm::Value *, 4> Args; 2594 SmallVector<llvm::Type *, 4> ArgTypes; 2595 Args.reserve(DynamicArgs.size() + 1); 2596 ArgTypes.reserve(DynamicArgs.size() + 1); 2597 2598 // Emit handler arguments and create handler function type. 2599 if (!StaticArgs.empty()) { 2600 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2601 auto *InfoPtr = 2602 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2603 llvm::GlobalVariable::PrivateLinkage, Info); 2604 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2605 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2606 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2607 ArgTypes.push_back(Int8PtrTy); 2608 } 2609 2610 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2611 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2612 ArgTypes.push_back(IntPtrTy); 2613 } 2614 2615 llvm::FunctionType *FnType = 2616 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2617 2618 if (!FatalCond || !RecoverableCond) { 2619 // Simple case: we need to generate a single handler call, either 2620 // fatal, or non-fatal. 2621 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2622 (FatalCond != nullptr), Cont); 2623 } else { 2624 // Emit two handler calls: first one for set of unrecoverable checks, 2625 // another one for recoverable. 2626 llvm::BasicBlock *NonFatalHandlerBB = 2627 createBasicBlock("non_fatal." + CheckName); 2628 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2629 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2630 EmitBlock(FatalHandlerBB); 2631 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2632 NonFatalHandlerBB); 2633 EmitBlock(NonFatalHandlerBB); 2634 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2635 Cont); 2636 } 2637 2638 EmitBlock(Cont); 2639 } 2640 2641 void CodeGenFunction::EmitCfiSlowPathCheck( 2642 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2643 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2644 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2645 2646 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2647 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2648 2649 llvm::MDBuilder MDHelper(getLLVMContext()); 2650 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2651 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2652 2653 EmitBlock(CheckBB); 2654 2655 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2656 2657 llvm::CallInst *CheckCall; 2658 if (WithDiag) { 2659 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2660 auto *InfoPtr = 2661 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2662 llvm::GlobalVariable::PrivateLinkage, Info); 2663 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2664 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2665 2666 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2667 "__cfi_slowpath_diag", 2668 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2669 false)); 2670 CheckCall = Builder.CreateCall( 2671 SlowPathDiagFn, 2672 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2673 } else { 2674 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2675 "__cfi_slowpath", 2676 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2677 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2678 } 2679 2680 CheckCall->setDoesNotThrow(); 2681 2682 EmitBlock(Cont); 2683 } 2684 2685 // This function is basically a switch over the CFI failure kind, which is 2686 // extracted from CFICheckFailData (1st function argument). Each case is either 2687 // llvm.trap or a call to one of the two runtime handlers, based on 2688 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2689 // failure kind) traps, but this should really never happen. CFICheckFailData 2690 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2691 // check kind; in this case __cfi_check_fail traps as well. 2692 void CodeGenFunction::EmitCfiCheckFail() { 2693 SanitizerScope SanScope(this); 2694 FunctionArgList Args; 2695 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2696 getContext().VoidPtrTy); 2697 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2698 getContext().VoidPtrTy); 2699 Args.push_back(&ArgData); 2700 Args.push_back(&ArgAddr); 2701 2702 const CGFunctionInfo &FI = 2703 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2704 2705 llvm::Function *F = llvm::Function::Create( 2706 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2707 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2708 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2709 2710 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2711 SourceLocation()); 2712 2713 llvm::Value *Data = 2714 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2715 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2716 llvm::Value *Addr = 2717 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2718 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2719 2720 // Data == nullptr means the calling module has trap behaviour for this check. 2721 llvm::Value *DataIsNotNullPtr = 2722 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2723 EmitTrapCheck(DataIsNotNullPtr); 2724 2725 llvm::StructType *SourceLocationTy = 2726 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2727 llvm::StructType *CfiCheckFailDataTy = 2728 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2729 2730 llvm::Value *V = Builder.CreateConstGEP2_32( 2731 CfiCheckFailDataTy, 2732 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2733 0); 2734 Address CheckKindAddr(V, getIntAlign()); 2735 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2736 2737 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2738 CGM.getLLVMContext(), 2739 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2740 llvm::Value *ValidVtable = Builder.CreateZExt( 2741 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2742 {Addr, AllVtables}), 2743 IntPtrTy); 2744 2745 const std::pair<int, SanitizerMask> CheckKinds[] = { 2746 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2747 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2748 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2749 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2750 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2751 2752 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2753 for (auto CheckKindMaskPair : CheckKinds) { 2754 int Kind = CheckKindMaskPair.first; 2755 SanitizerMask Mask = CheckKindMaskPair.second; 2756 llvm::Value *Cond = 2757 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2758 if (CGM.getLangOpts().Sanitize.has(Mask)) 2759 EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {}, 2760 {Data, Addr, ValidVtable}); 2761 else 2762 EmitTrapCheck(Cond); 2763 } 2764 2765 FinishFunction(); 2766 // The only reference to this function will be created during LTO link. 2767 // Make sure it survives until then. 2768 CGM.addUsedGlobal(F); 2769 } 2770 2771 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2772 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2773 2774 // If we're optimizing, collapse all calls to trap down to just one per 2775 // function to save on code size. 2776 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2777 TrapBB = createBasicBlock("trap"); 2778 Builder.CreateCondBr(Checked, Cont, TrapBB); 2779 EmitBlock(TrapBB); 2780 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2781 TrapCall->setDoesNotReturn(); 2782 TrapCall->setDoesNotThrow(); 2783 Builder.CreateUnreachable(); 2784 } else { 2785 Builder.CreateCondBr(Checked, Cont, TrapBB); 2786 } 2787 2788 EmitBlock(Cont); 2789 } 2790 2791 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2792 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2793 2794 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2795 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2796 CGM.getCodeGenOpts().TrapFuncName); 2797 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A); 2798 } 2799 2800 return TrapCall; 2801 } 2802 2803 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2804 AlignmentSource *AlignSource) { 2805 assert(E->getType()->isArrayType() && 2806 "Array to pointer decay must have array source type!"); 2807 2808 // Expressions of array type can't be bitfields or vector elements. 2809 LValue LV = EmitLValue(E); 2810 Address Addr = LV.getAddress(); 2811 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2812 2813 // If the array type was an incomplete type, we need to make sure 2814 // the decay ends up being the right type. 2815 llvm::Type *NewTy = ConvertType(E->getType()); 2816 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2817 2818 // Note that VLA pointers are always decayed, so we don't need to do 2819 // anything here. 2820 if (!E->getType()->isVariableArrayType()) { 2821 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2822 "Expected pointer to array"); 2823 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2824 } 2825 2826 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2827 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2828 } 2829 2830 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2831 /// array to pointer, return the array subexpression. 2832 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2833 // If this isn't just an array->pointer decay, bail out. 2834 const auto *CE = dyn_cast<CastExpr>(E); 2835 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2836 return nullptr; 2837 2838 // If this is a decay from variable width array, bail out. 2839 const Expr *SubExpr = CE->getSubExpr(); 2840 if (SubExpr->getType()->isVariableArrayType()) 2841 return nullptr; 2842 2843 return SubExpr; 2844 } 2845 2846 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2847 llvm::Value *ptr, 2848 ArrayRef<llvm::Value*> indices, 2849 bool inbounds, 2850 const llvm::Twine &name = "arrayidx") { 2851 if (inbounds) { 2852 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2853 } else { 2854 return CGF.Builder.CreateGEP(ptr, indices, name); 2855 } 2856 } 2857 2858 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2859 llvm::Value *idx, 2860 CharUnits eltSize) { 2861 // If we have a constant index, we can use the exact offset of the 2862 // element we're accessing. 2863 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2864 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2865 return arrayAlign.alignmentAtOffset(offset); 2866 2867 // Otherwise, use the worst-case alignment for any element. 2868 } else { 2869 return arrayAlign.alignmentOfArrayElement(eltSize); 2870 } 2871 } 2872 2873 static QualType getFixedSizeElementType(const ASTContext &ctx, 2874 const VariableArrayType *vla) { 2875 QualType eltType; 2876 do { 2877 eltType = vla->getElementType(); 2878 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2879 return eltType; 2880 } 2881 2882 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 2883 ArrayRef<llvm::Value*> indices, 2884 QualType eltType, bool inbounds, 2885 const llvm::Twine &name = "arrayidx") { 2886 // All the indices except that last must be zero. 2887 #ifndef NDEBUG 2888 for (auto idx : indices.drop_back()) 2889 assert(isa<llvm::ConstantInt>(idx) && 2890 cast<llvm::ConstantInt>(idx)->isZero()); 2891 #endif 2892 2893 // Determine the element size of the statically-sized base. This is 2894 // the thing that the indices are expressed in terms of. 2895 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 2896 eltType = getFixedSizeElementType(CGF.getContext(), vla); 2897 } 2898 2899 // We can use that to compute the best alignment of the element. 2900 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2901 CharUnits eltAlign = 2902 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 2903 2904 llvm::Value *eltPtr = 2905 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 2906 return Address(eltPtr, eltAlign); 2907 } 2908 2909 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2910 bool Accessed) { 2911 // The index must always be an integer, which is not an aggregate. Emit it 2912 // in lexical order (this complexity is, sadly, required by C++17). 2913 llvm::Value *IdxPre = 2914 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 2915 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 2916 auto *Idx = IdxPre; 2917 if (E->getLHS() != E->getIdx()) { 2918 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 2919 Idx = EmitScalarExpr(E->getIdx()); 2920 } 2921 2922 QualType IdxTy = E->getIdx()->getType(); 2923 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2924 2925 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2926 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2927 2928 // Extend or truncate the index type to 32 or 64-bits. 2929 if (Promote && Idx->getType() != IntPtrTy) 2930 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2931 2932 return Idx; 2933 }; 2934 IdxPre = nullptr; 2935 2936 // If the base is a vector type, then we are forming a vector element lvalue 2937 // with this subscript. 2938 if (E->getBase()->getType()->isVectorType() && 2939 !isa<ExtVectorElementExpr>(E->getBase())) { 2940 // Emit the vector as an lvalue to get its address. 2941 LValue LHS = EmitLValue(E->getBase()); 2942 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 2943 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2944 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2945 E->getBase()->getType(), 2946 LHS.getAlignmentSource()); 2947 } 2948 2949 // All the other cases basically behave like simple offsetting. 2950 2951 // Handle the extvector case we ignored above. 2952 if (isa<ExtVectorElementExpr>(E->getBase())) { 2953 LValue LV = EmitLValue(E->getBase()); 2954 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 2955 Address Addr = EmitExtVectorElementLValue(LV); 2956 2957 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 2958 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 2959 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 2960 } 2961 2962 AlignmentSource AlignSource; 2963 Address Addr = Address::invalid(); 2964 if (const VariableArrayType *vla = 2965 getContext().getAsVariableArrayType(E->getType())) { 2966 // The base must be a pointer, which is not an aggregate. Emit 2967 // it. It needs to be emitted first in case it's what captures 2968 // the VLA bounds. 2969 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2970 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 2971 2972 // The element count here is the total number of non-VLA elements. 2973 llvm::Value *numElements = getVLASize(vla).first; 2974 2975 // Effectively, the multiply by the VLA size is part of the GEP. 2976 // GEP indexes are signed, and scaling an index isn't permitted to 2977 // signed-overflow, so we use the same semantics for our explicit 2978 // multiply. We suppress this if overflow is not undefined behavior. 2979 if (getLangOpts().isSignedOverflowDefined()) { 2980 Idx = Builder.CreateMul(Idx, numElements); 2981 } else { 2982 Idx = Builder.CreateNSWMul(Idx, numElements); 2983 } 2984 2985 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 2986 !getLangOpts().isSignedOverflowDefined()); 2987 2988 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2989 // Indexing over an interface, as in "NSString *P; P[4];" 2990 2991 // Emit the base pointer. 2992 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2993 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 2994 2995 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 2996 llvm::Value *InterfaceSizeVal = 2997 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 2998 2999 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3000 3001 // We don't necessarily build correct LLVM struct types for ObjC 3002 // interfaces, so we can't rely on GEP to do this scaling 3003 // correctly, so we need to cast to i8*. FIXME: is this actually 3004 // true? A lot of other things in the fragile ABI would break... 3005 llvm::Type *OrigBaseTy = Addr.getType(); 3006 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3007 3008 // Do the GEP. 3009 CharUnits EltAlign = 3010 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3011 llvm::Value *EltPtr = 3012 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3013 Addr = Address(EltPtr, EltAlign); 3014 3015 // Cast back. 3016 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3017 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3018 // If this is A[i] where A is an array, the frontend will have decayed the 3019 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3020 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3021 // "gep x, i" here. Emit one "gep A, 0, i". 3022 assert(Array->getType()->isArrayType() && 3023 "Array to pointer decay must have array source type!"); 3024 LValue ArrayLV; 3025 // For simple multidimensional array indexing, set the 'accessed' flag for 3026 // better bounds-checking of the base expression. 3027 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3028 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3029 else 3030 ArrayLV = EmitLValue(Array); 3031 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3032 3033 // Propagate the alignment from the array itself to the result. 3034 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3035 {CGM.getSize(CharUnits::Zero()), Idx}, 3036 E->getType(), 3037 !getLangOpts().isSignedOverflowDefined()); 3038 AlignSource = ArrayLV.getAlignmentSource(); 3039 } else { 3040 // The base must be a pointer; emit it with an estimate of its alignment. 3041 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3042 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3043 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3044 !getLangOpts().isSignedOverflowDefined()); 3045 } 3046 3047 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3048 3049 // TODO: Preserve/extend path TBAA metadata? 3050 3051 if (getLangOpts().ObjC1 && 3052 getLangOpts().getGC() != LangOptions::NonGC) { 3053 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3054 setObjCGCLValueClass(getContext(), E, LV); 3055 } 3056 return LV; 3057 } 3058 3059 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3060 AlignmentSource &AlignSource, 3061 QualType BaseTy, QualType ElTy, 3062 bool IsLowerBound) { 3063 LValue BaseLVal; 3064 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3065 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3066 if (BaseTy->isArrayType()) { 3067 Address Addr = BaseLVal.getAddress(); 3068 AlignSource = BaseLVal.getAlignmentSource(); 3069 3070 // If the array type was an incomplete type, we need to make sure 3071 // the decay ends up being the right type. 3072 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3073 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3074 3075 // Note that VLA pointers are always decayed, so we don't need to do 3076 // anything here. 3077 if (!BaseTy->isVariableArrayType()) { 3078 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3079 "Expected pointer to array"); 3080 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3081 "arraydecay"); 3082 } 3083 3084 return CGF.Builder.CreateElementBitCast(Addr, 3085 CGF.ConvertTypeForMem(ElTy)); 3086 } 3087 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3088 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3089 } 3090 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3091 } 3092 3093 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3094 bool IsLowerBound) { 3095 QualType BaseTy; 3096 if (auto *ASE = 3097 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3098 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3099 else 3100 BaseTy = E->getBase()->getType(); 3101 QualType ResultExprTy; 3102 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3103 ResultExprTy = AT->getElementType(); 3104 else 3105 ResultExprTy = BaseTy->getPointeeType(); 3106 llvm::Value *Idx = nullptr; 3107 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3108 // Requesting lower bound or upper bound, but without provided length and 3109 // without ':' symbol for the default length -> length = 1. 3110 // Idx = LowerBound ?: 0; 3111 if (auto *LowerBound = E->getLowerBound()) { 3112 Idx = Builder.CreateIntCast( 3113 EmitScalarExpr(LowerBound), IntPtrTy, 3114 LowerBound->getType()->hasSignedIntegerRepresentation()); 3115 } else 3116 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3117 } else { 3118 // Try to emit length or lower bound as constant. If this is possible, 1 3119 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3120 // IR (LB + Len) - 1. 3121 auto &C = CGM.getContext(); 3122 auto *Length = E->getLength(); 3123 llvm::APSInt ConstLength; 3124 if (Length) { 3125 // Idx = LowerBound + Length - 1; 3126 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3127 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3128 Length = nullptr; 3129 } 3130 auto *LowerBound = E->getLowerBound(); 3131 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3132 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3133 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3134 LowerBound = nullptr; 3135 } 3136 if (!Length) 3137 --ConstLength; 3138 else if (!LowerBound) 3139 --ConstLowerBound; 3140 3141 if (Length || LowerBound) { 3142 auto *LowerBoundVal = 3143 LowerBound 3144 ? Builder.CreateIntCast( 3145 EmitScalarExpr(LowerBound), IntPtrTy, 3146 LowerBound->getType()->hasSignedIntegerRepresentation()) 3147 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3148 auto *LengthVal = 3149 Length 3150 ? Builder.CreateIntCast( 3151 EmitScalarExpr(Length), IntPtrTy, 3152 Length->getType()->hasSignedIntegerRepresentation()) 3153 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3154 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3155 /*HasNUW=*/false, 3156 !getLangOpts().isSignedOverflowDefined()); 3157 if (Length && LowerBound) { 3158 Idx = Builder.CreateSub( 3159 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3160 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3161 } 3162 } else 3163 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3164 } else { 3165 // Idx = ArraySize - 1; 3166 QualType ArrayTy = BaseTy->isPointerType() 3167 ? E->getBase()->IgnoreParenImpCasts()->getType() 3168 : BaseTy; 3169 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3170 Length = VAT->getSizeExpr(); 3171 if (Length->isIntegerConstantExpr(ConstLength, C)) 3172 Length = nullptr; 3173 } else { 3174 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3175 ConstLength = CAT->getSize(); 3176 } 3177 if (Length) { 3178 auto *LengthVal = Builder.CreateIntCast( 3179 EmitScalarExpr(Length), IntPtrTy, 3180 Length->getType()->hasSignedIntegerRepresentation()); 3181 Idx = Builder.CreateSub( 3182 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3183 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3184 } else { 3185 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3186 --ConstLength; 3187 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3188 } 3189 } 3190 } 3191 assert(Idx); 3192 3193 Address EltPtr = Address::invalid(); 3194 AlignmentSource AlignSource; 3195 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3196 // The base must be a pointer, which is not an aggregate. Emit 3197 // it. It needs to be emitted first in case it's what captures 3198 // the VLA bounds. 3199 Address Base = 3200 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3201 VLA->getElementType(), IsLowerBound); 3202 // The element count here is the total number of non-VLA elements. 3203 llvm::Value *NumElements = getVLASize(VLA).first; 3204 3205 // Effectively, the multiply by the VLA size is part of the GEP. 3206 // GEP indexes are signed, and scaling an index isn't permitted to 3207 // signed-overflow, so we use the same semantics for our explicit 3208 // multiply. We suppress this if overflow is not undefined behavior. 3209 if (getLangOpts().isSignedOverflowDefined()) 3210 Idx = Builder.CreateMul(Idx, NumElements); 3211 else 3212 Idx = Builder.CreateNSWMul(Idx, NumElements); 3213 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3214 !getLangOpts().isSignedOverflowDefined()); 3215 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3216 // If this is A[i] where A is an array, the frontend will have decayed the 3217 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3218 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3219 // "gep x, i" here. Emit one "gep A, 0, i". 3220 assert(Array->getType()->isArrayType() && 3221 "Array to pointer decay must have array source type!"); 3222 LValue ArrayLV; 3223 // For simple multidimensional array indexing, set the 'accessed' flag for 3224 // better bounds-checking of the base expression. 3225 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3226 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3227 else 3228 ArrayLV = EmitLValue(Array); 3229 3230 // Propagate the alignment from the array itself to the result. 3231 EltPtr = emitArraySubscriptGEP( 3232 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3233 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3234 AlignSource = ArrayLV.getAlignmentSource(); 3235 } else { 3236 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3237 BaseTy, ResultExprTy, IsLowerBound); 3238 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3239 !getLangOpts().isSignedOverflowDefined()); 3240 } 3241 3242 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3243 } 3244 3245 LValue CodeGenFunction:: 3246 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3247 // Emit the base vector as an l-value. 3248 LValue Base; 3249 3250 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3251 if (E->isArrow()) { 3252 // If it is a pointer to a vector, emit the address and form an lvalue with 3253 // it. 3254 AlignmentSource AlignSource; 3255 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3256 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3257 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3258 Base.getQuals().removeObjCGCAttr(); 3259 } else if (E->getBase()->isGLValue()) { 3260 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3261 // emit the base as an lvalue. 3262 assert(E->getBase()->getType()->isVectorType()); 3263 Base = EmitLValue(E->getBase()); 3264 } else { 3265 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3266 assert(E->getBase()->getType()->isVectorType() && 3267 "Result must be a vector"); 3268 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3269 3270 // Store the vector to memory (because LValue wants an address). 3271 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3272 Builder.CreateStore(Vec, VecMem); 3273 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3274 AlignmentSource::Decl); 3275 } 3276 3277 QualType type = 3278 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3279 3280 // Encode the element access list into a vector of unsigned indices. 3281 SmallVector<uint32_t, 4> Indices; 3282 E->getEncodedElementAccess(Indices); 3283 3284 if (Base.isSimple()) { 3285 llvm::Constant *CV = 3286 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3287 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3288 Base.getAlignmentSource()); 3289 } 3290 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3291 3292 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3293 SmallVector<llvm::Constant *, 4> CElts; 3294 3295 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3296 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3297 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3298 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3299 Base.getAlignmentSource()); 3300 } 3301 3302 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3303 Expr *BaseExpr = E->getBase(); 3304 3305 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3306 LValue BaseLV; 3307 if (E->isArrow()) { 3308 AlignmentSource AlignSource; 3309 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3310 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3311 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy); 3312 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3313 } else 3314 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3315 3316 NamedDecl *ND = E->getMemberDecl(); 3317 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3318 LValue LV = EmitLValueForField(BaseLV, Field); 3319 setObjCGCLValueClass(getContext(), E, LV); 3320 return LV; 3321 } 3322 3323 if (auto *VD = dyn_cast<VarDecl>(ND)) 3324 return EmitGlobalVarDeclLValue(*this, E, VD); 3325 3326 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3327 return EmitFunctionDeclLValue(*this, E, FD); 3328 3329 llvm_unreachable("Unhandled member declaration!"); 3330 } 3331 3332 /// Given that we are currently emitting a lambda, emit an l-value for 3333 /// one of its members. 3334 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3335 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3336 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3337 QualType LambdaTagType = 3338 getContext().getTagDeclType(Field->getParent()); 3339 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3340 return EmitLValueForField(LambdaLV, Field); 3341 } 3342 3343 /// Drill down to the storage of a field without walking into 3344 /// reference types. 3345 /// 3346 /// The resulting address doesn't necessarily have the right type. 3347 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3348 const FieldDecl *field) { 3349 const RecordDecl *rec = field->getParent(); 3350 3351 unsigned idx = 3352 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3353 3354 CharUnits offset; 3355 // Adjust the alignment down to the given offset. 3356 // As a special case, if the LLVM field index is 0, we know that this 3357 // is zero. 3358 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3359 .getFieldOffset(field->getFieldIndex()) == 0) && 3360 "LLVM field at index zero had non-zero offset?"); 3361 if (idx != 0) { 3362 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3363 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3364 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3365 } 3366 3367 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3368 } 3369 3370 LValue CodeGenFunction::EmitLValueForField(LValue base, 3371 const FieldDecl *field) { 3372 AlignmentSource fieldAlignSource = 3373 getFieldAlignmentSource(base.getAlignmentSource()); 3374 3375 if (field->isBitField()) { 3376 const CGRecordLayout &RL = 3377 CGM.getTypes().getCGRecordLayout(field->getParent()); 3378 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3379 Address Addr = base.getAddress(); 3380 unsigned Idx = RL.getLLVMFieldNo(field); 3381 if (Idx != 0) 3382 // For structs, we GEP to the field that the record layout suggests. 3383 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3384 field->getName()); 3385 // Get the access type. 3386 llvm::Type *FieldIntTy = 3387 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3388 if (Addr.getElementType() != FieldIntTy) 3389 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3390 3391 QualType fieldType = 3392 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3393 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3394 } 3395 3396 const RecordDecl *rec = field->getParent(); 3397 QualType type = field->getType(); 3398 3399 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3400 3401 Address addr = base.getAddress(); 3402 unsigned cvr = base.getVRQualifiers(); 3403 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3404 if (rec->isUnion()) { 3405 // For unions, there is no pointer adjustment. 3406 assert(!type->isReferenceType() && "union has reference member"); 3407 // TODO: handle path-aware TBAA for union. 3408 TBAAPath = false; 3409 } else { 3410 // For structs, we GEP to the field that the record layout suggests. 3411 addr = emitAddrOfFieldStorage(*this, addr, field); 3412 3413 // If this is a reference field, load the reference right now. 3414 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3415 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3416 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3417 3418 // Loading the reference will disable path-aware TBAA. 3419 TBAAPath = false; 3420 if (CGM.shouldUseTBAA()) { 3421 llvm::MDNode *tbaa; 3422 if (mayAlias) 3423 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3424 else 3425 tbaa = CGM.getTBAAInfo(type); 3426 if (tbaa) 3427 CGM.DecorateInstructionWithTBAA(load, tbaa); 3428 } 3429 3430 mayAlias = false; 3431 type = refType->getPointeeType(); 3432 3433 CharUnits alignment = 3434 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3435 addr = Address(load, alignment); 3436 3437 // Qualifiers on the struct don't apply to the referencee, and 3438 // we'll pick up CVR from the actual type later, so reset these 3439 // additional qualifiers now. 3440 cvr = 0; 3441 } 3442 } 3443 3444 // Make sure that the address is pointing to the right type. This is critical 3445 // for both unions and structs. A union needs a bitcast, a struct element 3446 // will need a bitcast if the LLVM type laid out doesn't match the desired 3447 // type. 3448 addr = Builder.CreateElementBitCast(addr, 3449 CGM.getTypes().ConvertTypeForMem(type), 3450 field->getName()); 3451 3452 if (field->hasAttr<AnnotateAttr>()) 3453 addr = EmitFieldAnnotations(field, addr); 3454 3455 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3456 LV.getQuals().addCVRQualifiers(cvr); 3457 if (TBAAPath) { 3458 const ASTRecordLayout &Layout = 3459 getContext().getASTRecordLayout(field->getParent()); 3460 // Set the base type to be the base type of the base LValue and 3461 // update offset to be relative to the base type. 3462 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3463 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3464 Layout.getFieldOffset(field->getFieldIndex()) / 3465 getContext().getCharWidth()); 3466 } 3467 3468 // __weak attribute on a field is ignored. 3469 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3470 LV.getQuals().removeObjCGCAttr(); 3471 3472 // Fields of may_alias structs act like 'char' for TBAA purposes. 3473 // FIXME: this should get propagated down through anonymous structs 3474 // and unions. 3475 if (mayAlias && LV.getTBAAInfo()) 3476 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3477 3478 return LV; 3479 } 3480 3481 LValue 3482 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3483 const FieldDecl *Field) { 3484 QualType FieldType = Field->getType(); 3485 3486 if (!FieldType->isReferenceType()) 3487 return EmitLValueForField(Base, Field); 3488 3489 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3490 3491 // Make sure that the address is pointing to the right type. 3492 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3493 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3494 3495 // TODO: access-path TBAA? 3496 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3497 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3498 } 3499 3500 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3501 if (E->isFileScope()) { 3502 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3503 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3504 } 3505 if (E->getType()->isVariablyModifiedType()) 3506 // make sure to emit the VLA size. 3507 EmitVariablyModifiedType(E->getType()); 3508 3509 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3510 const Expr *InitExpr = E->getInitializer(); 3511 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3512 3513 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3514 /*Init*/ true); 3515 3516 return Result; 3517 } 3518 3519 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3520 if (!E->isGLValue()) 3521 // Initializing an aggregate temporary in C++11: T{...}. 3522 return EmitAggExprToLValue(E); 3523 3524 // An lvalue initializer list must be initializing a reference. 3525 assert(E->getNumInits() == 1 && "reference init with multiple values"); 3526 return EmitLValue(E->getInit(0)); 3527 } 3528 3529 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3530 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3531 /// LValue is returned and the current block has been terminated. 3532 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3533 const Expr *Operand) { 3534 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3535 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3536 return None; 3537 } 3538 3539 return CGF.EmitLValue(Operand); 3540 } 3541 3542 LValue CodeGenFunction:: 3543 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3544 if (!expr->isGLValue()) { 3545 // ?: here should be an aggregate. 3546 assert(hasAggregateEvaluationKind(expr->getType()) && 3547 "Unexpected conditional operator!"); 3548 return EmitAggExprToLValue(expr); 3549 } 3550 3551 OpaqueValueMapping binding(*this, expr); 3552 3553 const Expr *condExpr = expr->getCond(); 3554 bool CondExprBool; 3555 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3556 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3557 if (!CondExprBool) std::swap(live, dead); 3558 3559 if (!ContainsLabel(dead)) { 3560 // If the true case is live, we need to track its region. 3561 if (CondExprBool) 3562 incrementProfileCounter(expr); 3563 return EmitLValue(live); 3564 } 3565 } 3566 3567 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3568 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3569 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3570 3571 ConditionalEvaluation eval(*this); 3572 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3573 3574 // Any temporaries created here are conditional. 3575 EmitBlock(lhsBlock); 3576 incrementProfileCounter(expr); 3577 eval.begin(*this); 3578 Optional<LValue> lhs = 3579 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3580 eval.end(*this); 3581 3582 if (lhs && !lhs->isSimple()) 3583 return EmitUnsupportedLValue(expr, "conditional operator"); 3584 3585 lhsBlock = Builder.GetInsertBlock(); 3586 if (lhs) 3587 Builder.CreateBr(contBlock); 3588 3589 // Any temporaries created here are conditional. 3590 EmitBlock(rhsBlock); 3591 eval.begin(*this); 3592 Optional<LValue> rhs = 3593 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3594 eval.end(*this); 3595 if (rhs && !rhs->isSimple()) 3596 return EmitUnsupportedLValue(expr, "conditional operator"); 3597 rhsBlock = Builder.GetInsertBlock(); 3598 3599 EmitBlock(contBlock); 3600 3601 if (lhs && rhs) { 3602 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3603 2, "cond-lvalue"); 3604 phi->addIncoming(lhs->getPointer(), lhsBlock); 3605 phi->addIncoming(rhs->getPointer(), rhsBlock); 3606 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3607 AlignmentSource alignSource = 3608 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3609 return MakeAddrLValue(result, expr->getType(), alignSource); 3610 } else { 3611 assert((lhs || rhs) && 3612 "both operands of glvalue conditional are throw-expressions?"); 3613 return lhs ? *lhs : *rhs; 3614 } 3615 } 3616 3617 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3618 /// type. If the cast is to a reference, we can have the usual lvalue result, 3619 /// otherwise if a cast is needed by the code generator in an lvalue context, 3620 /// then it must mean that we need the address of an aggregate in order to 3621 /// access one of its members. This can happen for all the reasons that casts 3622 /// are permitted with aggregate result, including noop aggregate casts, and 3623 /// cast from scalar to union. 3624 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3625 switch (E->getCastKind()) { 3626 case CK_ToVoid: 3627 case CK_BitCast: 3628 case CK_ArrayToPointerDecay: 3629 case CK_FunctionToPointerDecay: 3630 case CK_NullToMemberPointer: 3631 case CK_NullToPointer: 3632 case CK_IntegralToPointer: 3633 case CK_PointerToIntegral: 3634 case CK_PointerToBoolean: 3635 case CK_VectorSplat: 3636 case CK_IntegralCast: 3637 case CK_BooleanToSignedIntegral: 3638 case CK_IntegralToBoolean: 3639 case CK_IntegralToFloating: 3640 case CK_FloatingToIntegral: 3641 case CK_FloatingToBoolean: 3642 case CK_FloatingCast: 3643 case CK_FloatingRealToComplex: 3644 case CK_FloatingComplexToReal: 3645 case CK_FloatingComplexToBoolean: 3646 case CK_FloatingComplexCast: 3647 case CK_FloatingComplexToIntegralComplex: 3648 case CK_IntegralRealToComplex: 3649 case CK_IntegralComplexToReal: 3650 case CK_IntegralComplexToBoolean: 3651 case CK_IntegralComplexCast: 3652 case CK_IntegralComplexToFloatingComplex: 3653 case CK_DerivedToBaseMemberPointer: 3654 case CK_BaseToDerivedMemberPointer: 3655 case CK_MemberPointerToBoolean: 3656 case CK_ReinterpretMemberPointer: 3657 case CK_AnyPointerToBlockPointerCast: 3658 case CK_ARCProduceObject: 3659 case CK_ARCConsumeObject: 3660 case CK_ARCReclaimReturnedObject: 3661 case CK_ARCExtendBlockObject: 3662 case CK_CopyAndAutoreleaseBlockObject: 3663 case CK_AddressSpaceConversion: 3664 case CK_IntToOCLSampler: 3665 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3666 3667 case CK_Dependent: 3668 llvm_unreachable("dependent cast kind in IR gen!"); 3669 3670 case CK_BuiltinFnToFnPtr: 3671 llvm_unreachable("builtin functions are handled elsewhere"); 3672 3673 // These are never l-values; just use the aggregate emission code. 3674 case CK_NonAtomicToAtomic: 3675 case CK_AtomicToNonAtomic: 3676 return EmitAggExprToLValue(E); 3677 3678 case CK_Dynamic: { 3679 LValue LV = EmitLValue(E->getSubExpr()); 3680 Address V = LV.getAddress(); 3681 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3682 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3683 } 3684 3685 case CK_ConstructorConversion: 3686 case CK_UserDefinedConversion: 3687 case CK_CPointerToObjCPointerCast: 3688 case CK_BlockPointerToObjCPointerCast: 3689 case CK_NoOp: 3690 case CK_LValueToRValue: 3691 return EmitLValue(E->getSubExpr()); 3692 3693 case CK_UncheckedDerivedToBase: 3694 case CK_DerivedToBase: { 3695 const RecordType *DerivedClassTy = 3696 E->getSubExpr()->getType()->getAs<RecordType>(); 3697 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3698 3699 LValue LV = EmitLValue(E->getSubExpr()); 3700 Address This = LV.getAddress(); 3701 3702 // Perform the derived-to-base conversion 3703 Address Base = GetAddressOfBaseClass( 3704 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3705 /*NullCheckValue=*/false, E->getExprLoc()); 3706 3707 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3708 } 3709 case CK_ToUnion: 3710 return EmitAggExprToLValue(E); 3711 case CK_BaseToDerived: { 3712 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3713 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3714 3715 LValue LV = EmitLValue(E->getSubExpr()); 3716 3717 // Perform the base-to-derived conversion 3718 Address Derived = 3719 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3720 E->path_begin(), E->path_end(), 3721 /*NullCheckValue=*/false); 3722 3723 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3724 // performed and the object is not of the derived type. 3725 if (sanitizePerformTypeCheck()) 3726 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3727 Derived.getPointer(), E->getType()); 3728 3729 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3730 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3731 /*MayBeNull=*/false, 3732 CFITCK_DerivedCast, E->getLocStart()); 3733 3734 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3735 } 3736 case CK_LValueBitCast: { 3737 // This must be a reinterpret_cast (or c-style equivalent). 3738 const auto *CE = cast<ExplicitCastExpr>(E); 3739 3740 CGM.EmitExplicitCastExprType(CE, this); 3741 LValue LV = EmitLValue(E->getSubExpr()); 3742 Address V = Builder.CreateBitCast(LV.getAddress(), 3743 ConvertType(CE->getTypeAsWritten())); 3744 3745 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3746 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3747 /*MayBeNull=*/false, 3748 CFITCK_UnrelatedCast, E->getLocStart()); 3749 3750 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3751 } 3752 case CK_ObjCObjectLValueCast: { 3753 LValue LV = EmitLValue(E->getSubExpr()); 3754 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3755 ConvertType(E->getType())); 3756 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3757 } 3758 case CK_ZeroToOCLEvent: 3759 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3760 } 3761 3762 llvm_unreachable("Unhandled lvalue cast kind?"); 3763 } 3764 3765 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3766 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3767 return getOpaqueLValueMapping(e); 3768 } 3769 3770 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3771 const FieldDecl *FD, 3772 SourceLocation Loc) { 3773 QualType FT = FD->getType(); 3774 LValue FieldLV = EmitLValueForField(LV, FD); 3775 switch (getEvaluationKind(FT)) { 3776 case TEK_Complex: 3777 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3778 case TEK_Aggregate: 3779 return FieldLV.asAggregateRValue(); 3780 case TEK_Scalar: 3781 // This routine is used to load fields one-by-one to perform a copy, so 3782 // don't load reference fields. 3783 if (FD->getType()->isReferenceType()) 3784 return RValue::get(FieldLV.getPointer()); 3785 return EmitLoadOfLValue(FieldLV, Loc); 3786 } 3787 llvm_unreachable("bad evaluation kind"); 3788 } 3789 3790 //===--------------------------------------------------------------------===// 3791 // Expression Emission 3792 //===--------------------------------------------------------------------===// 3793 3794 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3795 ReturnValueSlot ReturnValue) { 3796 // Builtins never have block type. 3797 if (E->getCallee()->getType()->isBlockPointerType()) 3798 return EmitBlockCallExpr(E, ReturnValue); 3799 3800 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3801 return EmitCXXMemberCallExpr(CE, ReturnValue); 3802 3803 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3804 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3805 3806 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3807 if (const CXXMethodDecl *MD = 3808 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3809 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3810 3811 CGCallee callee = EmitCallee(E->getCallee()); 3812 3813 if (callee.isBuiltin()) { 3814 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3815 E, ReturnValue); 3816 } 3817 3818 if (callee.isPseudoDestructor()) { 3819 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3820 } 3821 3822 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3823 } 3824 3825 /// Emit a CallExpr without considering whether it might be a subclass. 3826 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3827 ReturnValueSlot ReturnValue) { 3828 CGCallee Callee = EmitCallee(E->getCallee()); 3829 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3830 } 3831 3832 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3833 if (auto builtinID = FD->getBuiltinID()) { 3834 return CGCallee::forBuiltin(builtinID, FD); 3835 } 3836 3837 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3838 return CGCallee::forDirect(calleePtr, FD); 3839 } 3840 3841 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3842 E = E->IgnoreParens(); 3843 3844 // Look through function-to-pointer decay. 3845 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3846 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3847 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3848 return EmitCallee(ICE->getSubExpr()); 3849 } 3850 3851 // Resolve direct calls. 3852 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 3853 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3854 return EmitDirectCallee(*this, FD); 3855 } 3856 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 3857 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 3858 EmitIgnoredExpr(ME->getBase()); 3859 return EmitDirectCallee(*this, FD); 3860 } 3861 3862 // Look through template substitutions. 3863 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 3864 return EmitCallee(NTTP->getReplacement()); 3865 3866 // Treat pseudo-destructor calls differently. 3867 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 3868 return CGCallee::forPseudoDestructor(PDE); 3869 } 3870 3871 // Otherwise, we have an indirect reference. 3872 llvm::Value *calleePtr; 3873 QualType functionType; 3874 if (auto ptrType = E->getType()->getAs<PointerType>()) { 3875 calleePtr = EmitScalarExpr(E); 3876 functionType = ptrType->getPointeeType(); 3877 } else { 3878 functionType = E->getType(); 3879 calleePtr = EmitLValue(E).getPointer(); 3880 } 3881 assert(functionType->isFunctionType()); 3882 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 3883 E->getReferencedDeclOfCallee()); 3884 CGCallee callee(calleeInfo, calleePtr); 3885 return callee; 3886 } 3887 3888 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3889 // Comma expressions just emit their LHS then their RHS as an l-value. 3890 if (E->getOpcode() == BO_Comma) { 3891 EmitIgnoredExpr(E->getLHS()); 3892 EnsureInsertPoint(); 3893 return EmitLValue(E->getRHS()); 3894 } 3895 3896 if (E->getOpcode() == BO_PtrMemD || 3897 E->getOpcode() == BO_PtrMemI) 3898 return EmitPointerToDataMemberBinaryExpr(E); 3899 3900 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3901 3902 // Note that in all of these cases, __block variables need the RHS 3903 // evaluated first just in case the variable gets moved by the RHS. 3904 3905 switch (getEvaluationKind(E->getType())) { 3906 case TEK_Scalar: { 3907 switch (E->getLHS()->getType().getObjCLifetime()) { 3908 case Qualifiers::OCL_Strong: 3909 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3910 3911 case Qualifiers::OCL_Autoreleasing: 3912 return EmitARCStoreAutoreleasing(E).first; 3913 3914 // No reason to do any of these differently. 3915 case Qualifiers::OCL_None: 3916 case Qualifiers::OCL_ExplicitNone: 3917 case Qualifiers::OCL_Weak: 3918 break; 3919 } 3920 3921 RValue RV = EmitAnyExpr(E->getRHS()); 3922 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3923 EmitStoreThroughLValue(RV, LV); 3924 return LV; 3925 } 3926 3927 case TEK_Complex: 3928 return EmitComplexAssignmentLValue(E); 3929 3930 case TEK_Aggregate: 3931 return EmitAggExprToLValue(E); 3932 } 3933 llvm_unreachable("bad evaluation kind"); 3934 } 3935 3936 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3937 RValue RV = EmitCallExpr(E); 3938 3939 if (!RV.isScalar()) 3940 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3941 AlignmentSource::Decl); 3942 3943 assert(E->getCallReturnType(getContext())->isReferenceType() && 3944 "Can't have a scalar return unless the return type is a " 3945 "reference type!"); 3946 3947 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3948 } 3949 3950 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3951 // FIXME: This shouldn't require another copy. 3952 return EmitAggExprToLValue(E); 3953 } 3954 3955 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3956 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3957 && "binding l-value to type which needs a temporary"); 3958 AggValueSlot Slot = CreateAggTemp(E->getType()); 3959 EmitCXXConstructExpr(E, Slot); 3960 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3961 AlignmentSource::Decl); 3962 } 3963 3964 LValue 3965 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3966 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3967 } 3968 3969 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3970 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 3971 ConvertType(E->getType())); 3972 } 3973 3974 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3975 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 3976 AlignmentSource::Decl); 3977 } 3978 3979 LValue 3980 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3981 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3982 Slot.setExternallyDestructed(); 3983 EmitAggExpr(E->getSubExpr(), Slot); 3984 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 3985 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3986 AlignmentSource::Decl); 3987 } 3988 3989 LValue 3990 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3991 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3992 EmitLambdaExpr(E, Slot); 3993 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3994 AlignmentSource::Decl); 3995 } 3996 3997 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3998 RValue RV = EmitObjCMessageExpr(E); 3999 4000 if (!RV.isScalar()) 4001 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4002 AlignmentSource::Decl); 4003 4004 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4005 "Can't have a scalar return unless the return type is a " 4006 "reference type!"); 4007 4008 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4009 } 4010 4011 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4012 Address V = 4013 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4014 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4015 } 4016 4017 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4018 const ObjCIvarDecl *Ivar) { 4019 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4020 } 4021 4022 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4023 llvm::Value *BaseValue, 4024 const ObjCIvarDecl *Ivar, 4025 unsigned CVRQualifiers) { 4026 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4027 Ivar, CVRQualifiers); 4028 } 4029 4030 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4031 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4032 llvm::Value *BaseValue = nullptr; 4033 const Expr *BaseExpr = E->getBase(); 4034 Qualifiers BaseQuals; 4035 QualType ObjectTy; 4036 if (E->isArrow()) { 4037 BaseValue = EmitScalarExpr(BaseExpr); 4038 ObjectTy = BaseExpr->getType()->getPointeeType(); 4039 BaseQuals = ObjectTy.getQualifiers(); 4040 } else { 4041 LValue BaseLV = EmitLValue(BaseExpr); 4042 BaseValue = BaseLV.getPointer(); 4043 ObjectTy = BaseExpr->getType(); 4044 BaseQuals = ObjectTy.getQualifiers(); 4045 } 4046 4047 LValue LV = 4048 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4049 BaseQuals.getCVRQualifiers()); 4050 setObjCGCLValueClass(getContext(), E, LV); 4051 return LV; 4052 } 4053 4054 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4055 // Can only get l-value for message expression returning aggregate type 4056 RValue RV = EmitAnyExprToTemp(E); 4057 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4058 AlignmentSource::Decl); 4059 } 4060 4061 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4062 const CallExpr *E, ReturnValueSlot ReturnValue, 4063 llvm::Value *Chain) { 4064 // Get the actual function type. The callee type will always be a pointer to 4065 // function type or a block pointer type. 4066 assert(CalleeType->isFunctionPointerType() && 4067 "Call must have function pointer type!"); 4068 4069 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4070 4071 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4072 // We can only guarantee that a function is called from the correct 4073 // context/function based on the appropriate target attributes, 4074 // so only check in the case where we have both always_inline and target 4075 // since otherwise we could be making a conditional call after a check for 4076 // the proper cpu features (and it won't cause code generation issues due to 4077 // function based code generation). 4078 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4079 TargetDecl->hasAttr<TargetAttr>()) 4080 checkTargetFeatures(E, FD); 4081 4082 CalleeType = getContext().getCanonicalType(CalleeType); 4083 4084 const auto *FnType = 4085 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4086 4087 CGCallee Callee = OrigCallee; 4088 4089 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4090 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4091 if (llvm::Constant *PrefixSig = 4092 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4093 SanitizerScope SanScope(this); 4094 llvm::Constant *FTRTTIConst = 4095 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4096 llvm::Type *PrefixStructTyElems[] = { 4097 PrefixSig->getType(), 4098 FTRTTIConst->getType() 4099 }; 4100 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4101 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4102 4103 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4104 4105 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4106 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4107 llvm::Value *CalleeSigPtr = 4108 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4109 llvm::Value *CalleeSig = 4110 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4111 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4112 4113 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4114 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4115 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4116 4117 EmitBlock(TypeCheck); 4118 llvm::Value *CalleeRTTIPtr = 4119 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4120 llvm::Value *CalleeRTTI = 4121 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4122 llvm::Value *CalleeRTTIMatch = 4123 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4124 llvm::Constant *StaticData[] = { 4125 EmitCheckSourceLocation(E->getLocStart()), 4126 EmitCheckTypeDescriptor(CalleeType) 4127 }; 4128 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4129 "function_type_mismatch", StaticData, CalleePtr); 4130 4131 Builder.CreateBr(Cont); 4132 EmitBlock(Cont); 4133 } 4134 } 4135 4136 // If we are checking indirect calls and this call is indirect, check that the 4137 // function pointer is a member of the bit set for the function type. 4138 if (SanOpts.has(SanitizerKind::CFIICall) && 4139 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4140 SanitizerScope SanScope(this); 4141 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4142 4143 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4144 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4145 4146 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4147 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4148 llvm::Value *TypeTest = Builder.CreateCall( 4149 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4150 4151 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4152 llvm::Constant *StaticData[] = { 4153 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4154 EmitCheckSourceLocation(E->getLocStart()), 4155 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4156 }; 4157 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4158 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4159 CastedCallee, StaticData); 4160 } else { 4161 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4162 "cfi_check_fail", StaticData, 4163 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4164 } 4165 } 4166 4167 CallArgList Args; 4168 if (Chain) 4169 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4170 CGM.getContext().VoidPtrTy); 4171 4172 // C++17 requires that we evaluate arguments to a call using assignment syntax 4173 // right-to-left, and that we evaluate arguments to certain other operators 4174 // left-to-right. Note that we allow this to override the order dictated by 4175 // the calling convention on the MS ABI, which means that parameter 4176 // destruction order is not necessarily reverse construction order. 4177 // FIXME: Revisit this based on C++ committee response to unimplementability. 4178 EvaluationOrder Order = EvaluationOrder::Default; 4179 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4180 if (OCE->isAssignmentOp()) 4181 Order = EvaluationOrder::ForceRightToLeft; 4182 else { 4183 switch (OCE->getOperator()) { 4184 case OO_LessLess: 4185 case OO_GreaterGreater: 4186 case OO_AmpAmp: 4187 case OO_PipePipe: 4188 case OO_Comma: 4189 case OO_ArrowStar: 4190 Order = EvaluationOrder::ForceLeftToRight; 4191 break; 4192 default: 4193 break; 4194 } 4195 } 4196 } 4197 4198 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4199 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4200 4201 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4202 Args, FnType, /*isChainCall=*/Chain); 4203 4204 // C99 6.5.2.2p6: 4205 // If the expression that denotes the called function has a type 4206 // that does not include a prototype, [the default argument 4207 // promotions are performed]. If the number of arguments does not 4208 // equal the number of parameters, the behavior is undefined. If 4209 // the function is defined with a type that includes a prototype, 4210 // and either the prototype ends with an ellipsis (, ...) or the 4211 // types of the arguments after promotion are not compatible with 4212 // the types of the parameters, the behavior is undefined. If the 4213 // function is defined with a type that does not include a 4214 // prototype, and the types of the arguments after promotion are 4215 // not compatible with those of the parameters after promotion, 4216 // the behavior is undefined [except in some trivial cases]. 4217 // That is, in the general case, we should assume that a call 4218 // through an unprototyped function type works like a *non-variadic* 4219 // call. The way we make this work is to cast to the exact type 4220 // of the promoted arguments. 4221 // 4222 // Chain calls use this same code path to add the invisible chain parameter 4223 // to the function type. 4224 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4225 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4226 CalleeTy = CalleeTy->getPointerTo(); 4227 4228 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4229 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4230 Callee.setFunctionPointer(CalleePtr); 4231 } 4232 4233 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4234 } 4235 4236 LValue CodeGenFunction:: 4237 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4238 Address BaseAddr = Address::invalid(); 4239 if (E->getOpcode() == BO_PtrMemI) { 4240 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4241 } else { 4242 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4243 } 4244 4245 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4246 4247 const MemberPointerType *MPT 4248 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4249 4250 AlignmentSource AlignSource; 4251 Address MemberAddr = 4252 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4253 &AlignSource); 4254 4255 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4256 } 4257 4258 /// Given the address of a temporary variable, produce an r-value of 4259 /// its type. 4260 RValue CodeGenFunction::convertTempToRValue(Address addr, 4261 QualType type, 4262 SourceLocation loc) { 4263 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4264 switch (getEvaluationKind(type)) { 4265 case TEK_Complex: 4266 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4267 case TEK_Aggregate: 4268 return lvalue.asAggregateRValue(); 4269 case TEK_Scalar: 4270 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4271 } 4272 llvm_unreachable("bad evaluation kind"); 4273 } 4274 4275 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4276 assert(Val->getType()->isFPOrFPVectorTy()); 4277 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4278 return; 4279 4280 llvm::MDBuilder MDHelper(getLLVMContext()); 4281 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4282 4283 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4284 } 4285 4286 namespace { 4287 struct LValueOrRValue { 4288 LValue LV; 4289 RValue RV; 4290 }; 4291 } 4292 4293 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4294 const PseudoObjectExpr *E, 4295 bool forLValue, 4296 AggValueSlot slot) { 4297 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4298 4299 // Find the result expression, if any. 4300 const Expr *resultExpr = E->getResultExpr(); 4301 LValueOrRValue result; 4302 4303 for (PseudoObjectExpr::const_semantics_iterator 4304 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4305 const Expr *semantic = *i; 4306 4307 // If this semantic expression is an opaque value, bind it 4308 // to the result of its source expression. 4309 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4310 4311 // If this is the result expression, we may need to evaluate 4312 // directly into the slot. 4313 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4314 OVMA opaqueData; 4315 if (ov == resultExpr && ov->isRValue() && !forLValue && 4316 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4317 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4318 4319 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4320 AlignmentSource::Decl); 4321 opaqueData = OVMA::bind(CGF, ov, LV); 4322 result.RV = slot.asRValue(); 4323 4324 // Otherwise, emit as normal. 4325 } else { 4326 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4327 4328 // If this is the result, also evaluate the result now. 4329 if (ov == resultExpr) { 4330 if (forLValue) 4331 result.LV = CGF.EmitLValue(ov); 4332 else 4333 result.RV = CGF.EmitAnyExpr(ov, slot); 4334 } 4335 } 4336 4337 opaques.push_back(opaqueData); 4338 4339 // Otherwise, if the expression is the result, evaluate it 4340 // and remember the result. 4341 } else if (semantic == resultExpr) { 4342 if (forLValue) 4343 result.LV = CGF.EmitLValue(semantic); 4344 else 4345 result.RV = CGF.EmitAnyExpr(semantic, slot); 4346 4347 // Otherwise, evaluate the expression in an ignored context. 4348 } else { 4349 CGF.EmitIgnoredExpr(semantic); 4350 } 4351 } 4352 4353 // Unbind all the opaques now. 4354 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4355 opaques[i].unbind(CGF); 4356 4357 return result; 4358 } 4359 4360 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4361 AggValueSlot slot) { 4362 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4363 } 4364 4365 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4366 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4367 } 4368