1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/ConvertUTF.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Transforms/Utils/SanitizerStats.h" 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 //===--------------------------------------------------------------------===// 41 // Miscellaneous Helper Methods 42 //===--------------------------------------------------------------------===// 43 44 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 45 unsigned addressSpace = 46 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 47 48 llvm::PointerType *destType = Int8PtrTy; 49 if (addressSpace) 50 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 51 52 if (value->getType() == destType) return value; 53 return Builder.CreateBitCast(value, destType); 54 } 55 56 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 57 /// block. 58 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 59 const Twine &Name) { 60 auto Alloca = CreateTempAlloca(Ty, Name); 61 Alloca->setAlignment(Align.getQuantity()); 62 return Address(Alloca, Align); 63 } 64 65 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 66 /// block. 67 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 68 const Twine &Name) { 69 if (!Builder.isNamePreserving()) 70 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 71 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 72 } 73 74 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 75 /// default alignment of the corresponding LLVM type, which is *not* 76 /// guaranteed to be related in any way to the expected alignment of 77 /// an AST type that might have been lowered to Ty. 78 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 79 const Twine &Name) { 80 CharUnits Align = 81 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 82 return CreateTempAlloca(Ty, Align, Name); 83 } 84 85 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 86 assert(isa<llvm::AllocaInst>(Var.getPointer())); 87 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 88 Store->setAlignment(Var.getAlignment().getQuantity()); 89 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 90 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 91 } 92 93 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 94 CharUnits Align = getContext().getTypeAlignInChars(Ty); 95 return CreateTempAlloca(ConvertType(Ty), Align, Name); 96 } 97 98 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 99 // FIXME: Should we prefer the preferred type alignment here? 100 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 101 } 102 103 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 104 const Twine &Name) { 105 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 106 } 107 108 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 109 /// expression and compare the result against zero, returning an Int1Ty value. 110 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 111 PGO.setCurrentStmt(E); 112 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 113 llvm::Value *MemPtr = EmitScalarExpr(E); 114 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 115 } 116 117 QualType BoolTy = getContext().BoolTy; 118 SourceLocation Loc = E->getExprLoc(); 119 if (!E->getType()->isAnyComplexType()) 120 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 121 122 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 123 Loc); 124 } 125 126 /// EmitIgnoredExpr - Emit code to compute the specified expression, 127 /// ignoring the result. 128 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 129 if (E->isRValue()) 130 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 131 132 // Just emit it as an l-value and drop the result. 133 EmitLValue(E); 134 } 135 136 /// EmitAnyExpr - Emit code to compute the specified expression which 137 /// can have any type. The result is returned as an RValue struct. 138 /// If this is an aggregate expression, AggSlot indicates where the 139 /// result should be returned. 140 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 141 AggValueSlot aggSlot, 142 bool ignoreResult) { 143 switch (getEvaluationKind(E->getType())) { 144 case TEK_Scalar: 145 return RValue::get(EmitScalarExpr(E, ignoreResult)); 146 case TEK_Complex: 147 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 148 case TEK_Aggregate: 149 if (!ignoreResult && aggSlot.isIgnored()) 150 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 151 EmitAggExpr(E, aggSlot); 152 return aggSlot.asRValue(); 153 } 154 llvm_unreachable("bad evaluation kind"); 155 } 156 157 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 158 /// always be accessible even if no aggregate location is provided. 159 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 160 AggValueSlot AggSlot = AggValueSlot::ignored(); 161 162 if (hasAggregateEvaluationKind(E->getType())) 163 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 164 return EmitAnyExpr(E, AggSlot); 165 } 166 167 /// EmitAnyExprToMem - Evaluate an expression into a given memory 168 /// location. 169 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 170 Address Location, 171 Qualifiers Quals, 172 bool IsInit) { 173 // FIXME: This function should take an LValue as an argument. 174 switch (getEvaluationKind(E->getType())) { 175 case TEK_Complex: 176 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 177 /*isInit*/ false); 178 return; 179 180 case TEK_Aggregate: { 181 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 182 AggValueSlot::IsDestructed_t(IsInit), 183 AggValueSlot::DoesNotNeedGCBarriers, 184 AggValueSlot::IsAliased_t(!IsInit))); 185 return; 186 } 187 188 case TEK_Scalar: { 189 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 190 LValue LV = MakeAddrLValue(Location, E->getType()); 191 EmitStoreThroughLValue(RV, LV); 192 return; 193 } 194 } 195 llvm_unreachable("bad evaluation kind"); 196 } 197 198 static void 199 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 200 const Expr *E, Address ReferenceTemporary) { 201 // Objective-C++ ARC: 202 // If we are binding a reference to a temporary that has ownership, we 203 // need to perform retain/release operations on the temporary. 204 // 205 // FIXME: This should be looking at E, not M. 206 if (auto Lifetime = M->getType().getObjCLifetime()) { 207 switch (Lifetime) { 208 case Qualifiers::OCL_None: 209 case Qualifiers::OCL_ExplicitNone: 210 // Carry on to normal cleanup handling. 211 break; 212 213 case Qualifiers::OCL_Autoreleasing: 214 // Nothing to do; cleaned up by an autorelease pool. 215 return; 216 217 case Qualifiers::OCL_Strong: 218 case Qualifiers::OCL_Weak: 219 switch (StorageDuration Duration = M->getStorageDuration()) { 220 case SD_Static: 221 // Note: we intentionally do not register a cleanup to release 222 // the object on program termination. 223 return; 224 225 case SD_Thread: 226 // FIXME: We should probably register a cleanup in this case. 227 return; 228 229 case SD_Automatic: 230 case SD_FullExpression: 231 CodeGenFunction::Destroyer *Destroy; 232 CleanupKind CleanupKind; 233 if (Lifetime == Qualifiers::OCL_Strong) { 234 const ValueDecl *VD = M->getExtendingDecl(); 235 bool Precise = 236 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 237 CleanupKind = CGF.getARCCleanupKind(); 238 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 239 : &CodeGenFunction::destroyARCStrongImprecise; 240 } else { 241 // __weak objects always get EH cleanups; otherwise, exceptions 242 // could cause really nasty crashes instead of mere leaks. 243 CleanupKind = NormalAndEHCleanup; 244 Destroy = &CodeGenFunction::destroyARCWeak; 245 } 246 if (Duration == SD_FullExpression) 247 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 248 M->getType(), *Destroy, 249 CleanupKind & EHCleanup); 250 else 251 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), 253 *Destroy, CleanupKind & EHCleanup); 254 return; 255 256 case SD_Dynamic: 257 llvm_unreachable("temporary cannot have dynamic storage duration"); 258 } 259 llvm_unreachable("unknown storage duration"); 260 } 261 } 262 263 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 264 if (const RecordType *RT = 265 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 266 // Get the destructor for the reference temporary. 267 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 268 if (!ClassDecl->hasTrivialDestructor()) 269 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 270 } 271 272 if (!ReferenceTemporaryDtor) 273 return; 274 275 // Call the destructor for the temporary. 276 switch (M->getStorageDuration()) { 277 case SD_Static: 278 case SD_Thread: { 279 llvm::Constant *CleanupFn; 280 llvm::Constant *CleanupArg; 281 if (E->getType()->isArrayType()) { 282 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 283 ReferenceTemporary, E->getType(), 284 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 285 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 286 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 287 } else { 288 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 289 StructorType::Complete); 290 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 291 } 292 CGF.CGM.getCXXABI().registerGlobalDtor( 293 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 294 break; 295 } 296 297 case SD_FullExpression: 298 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 299 CodeGenFunction::destroyCXXObject, 300 CGF.getLangOpts().Exceptions); 301 break; 302 303 case SD_Automatic: 304 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 305 ReferenceTemporary, E->getType(), 306 CodeGenFunction::destroyCXXObject, 307 CGF.getLangOpts().Exceptions); 308 break; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 } 314 315 static Address 316 createReferenceTemporary(CodeGenFunction &CGF, 317 const MaterializeTemporaryExpr *M, const Expr *Inner) { 318 switch (M->getStorageDuration()) { 319 case SD_FullExpression: 320 case SD_Automatic: { 321 // If we have a constant temporary array or record try to promote it into a 322 // constant global under the same rules a normal constant would've been 323 // promoted. This is easier on the optimizer and generally emits fewer 324 // instructions. 325 QualType Ty = Inner->getType(); 326 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 327 (Ty->isArrayType() || Ty->isRecordType()) && 328 CGF.CGM.isTypeConstant(Ty, true)) 329 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 330 auto *GV = new llvm::GlobalVariable( 331 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 332 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 333 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 334 GV->setAlignment(alignment.getQuantity()); 335 // FIXME: Should we put the new global into a COMDAT? 336 return Address(GV, alignment); 337 } 338 return CGF.CreateMemTemp(Ty, "ref.tmp"); 339 } 340 case SD_Thread: 341 case SD_Static: 342 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 343 344 case SD_Dynamic: 345 llvm_unreachable("temporary can't have dynamic storage duration"); 346 } 347 llvm_unreachable("unknown storage duration"); 348 } 349 350 LValue CodeGenFunction:: 351 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 352 const Expr *E = M->GetTemporaryExpr(); 353 354 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 355 // as that will cause the lifetime adjustment to be lost for ARC 356 auto ownership = M->getType().getObjCLifetime(); 357 if (ownership != Qualifiers::OCL_None && 358 ownership != Qualifiers::OCL_ExplicitNone) { 359 Address Object = createReferenceTemporary(*this, M, E); 360 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 361 Object = Address(llvm::ConstantExpr::getBitCast(Var, 362 ConvertTypeForMem(E->getType()) 363 ->getPointerTo(Object.getAddressSpace())), 364 Object.getAlignment()); 365 // We should not have emitted the initializer for this temporary as a 366 // constant. 367 assert(!Var->hasInitializer()); 368 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 369 } 370 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 371 AlignmentSource::Decl); 372 373 switch (getEvaluationKind(E->getType())) { 374 default: llvm_unreachable("expected scalar or aggregate expression"); 375 case TEK_Scalar: 376 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 377 break; 378 case TEK_Aggregate: { 379 EmitAggExpr(E, AggValueSlot::forAddr(Object, 380 E->getType().getQualifiers(), 381 AggValueSlot::IsDestructed, 382 AggValueSlot::DoesNotNeedGCBarriers, 383 AggValueSlot::IsNotAliased)); 384 break; 385 } 386 } 387 388 pushTemporaryCleanup(*this, M, E, Object); 389 return RefTempDst; 390 } 391 392 SmallVector<const Expr *, 2> CommaLHSs; 393 SmallVector<SubobjectAdjustment, 2> Adjustments; 394 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 395 396 for (const auto &Ignored : CommaLHSs) 397 EmitIgnoredExpr(Ignored); 398 399 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 400 if (opaque->getType()->isRecordType()) { 401 assert(Adjustments.empty()); 402 return EmitOpaqueValueLValue(opaque); 403 } 404 } 405 406 // Create and initialize the reference temporary. 407 Address Object = createReferenceTemporary(*this, M, E); 408 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 409 Object = Address(llvm::ConstantExpr::getBitCast( 410 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 411 Object.getAlignment()); 412 // If the temporary is a global and has a constant initializer or is a 413 // constant temporary that we promoted to a global, we may have already 414 // initialized it. 415 if (!Var->hasInitializer()) { 416 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 417 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 418 } 419 } else { 420 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 421 } 422 pushTemporaryCleanup(*this, M, E, Object); 423 424 // Perform derived-to-base casts and/or field accesses, to get from the 425 // temporary object we created (and, potentially, for which we extended 426 // the lifetime) to the subobject we're binding the reference to. 427 for (unsigned I = Adjustments.size(); I != 0; --I) { 428 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 429 switch (Adjustment.Kind) { 430 case SubobjectAdjustment::DerivedToBaseAdjustment: 431 Object = 432 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 433 Adjustment.DerivedToBase.BasePath->path_begin(), 434 Adjustment.DerivedToBase.BasePath->path_end(), 435 /*NullCheckValue=*/ false, E->getExprLoc()); 436 break; 437 438 case SubobjectAdjustment::FieldAdjustment: { 439 LValue LV = MakeAddrLValue(Object, E->getType(), 440 AlignmentSource::Decl); 441 LV = EmitLValueForField(LV, Adjustment.Field); 442 assert(LV.isSimple() && 443 "materialized temporary field is not a simple lvalue"); 444 Object = LV.getAddress(); 445 break; 446 } 447 448 case SubobjectAdjustment::MemberPointerAdjustment: { 449 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 450 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 451 Adjustment.Ptr.MPT); 452 break; 453 } 454 } 455 } 456 457 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 458 } 459 460 RValue 461 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 462 // Emit the expression as an lvalue. 463 LValue LV = EmitLValue(E); 464 assert(LV.isSimple()); 465 llvm::Value *Value = LV.getPointer(); 466 467 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 468 // C++11 [dcl.ref]p5 (as amended by core issue 453): 469 // If a glvalue to which a reference is directly bound designates neither 470 // an existing object or function of an appropriate type nor a region of 471 // storage of suitable size and alignment to contain an object of the 472 // reference's type, the behavior is undefined. 473 QualType Ty = E->getType(); 474 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 475 } 476 477 return RValue::get(Value); 478 } 479 480 481 /// getAccessedFieldNo - Given an encoded value and a result number, return the 482 /// input field number being accessed. 483 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 484 const llvm::Constant *Elts) { 485 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 486 ->getZExtValue(); 487 } 488 489 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 490 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 491 llvm::Value *High) { 492 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 493 llvm::Value *K47 = Builder.getInt64(47); 494 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 495 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 496 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 497 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 498 return Builder.CreateMul(B1, KMul); 499 } 500 501 bool CodeGenFunction::sanitizePerformTypeCheck() const { 502 return SanOpts.has(SanitizerKind::Null) | 503 SanOpts.has(SanitizerKind::Alignment) | 504 SanOpts.has(SanitizerKind::ObjectSize) | 505 SanOpts.has(SanitizerKind::Vptr); 506 } 507 508 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 509 llvm::Value *Ptr, QualType Ty, 510 CharUnits Alignment, bool SkipNullCheck) { 511 if (!sanitizePerformTypeCheck()) 512 return; 513 514 // Don't check pointers outside the default address space. The null check 515 // isn't correct, the object-size check isn't supported by LLVM, and we can't 516 // communicate the addresses to the runtime handler for the vptr check. 517 if (Ptr->getType()->getPointerAddressSpace()) 518 return; 519 520 SanitizerScope SanScope(this); 521 522 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 523 llvm::BasicBlock *Done = nullptr; 524 525 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 526 TCK == TCK_UpcastToVirtualBase; 527 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 528 !SkipNullCheck) { 529 // The glvalue must not be an empty glvalue. 530 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 531 532 if (AllowNullPointers) { 533 // When performing pointer casts, it's OK if the value is null. 534 // Skip the remaining checks in that case. 535 Done = createBasicBlock("null"); 536 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 537 Builder.CreateCondBr(IsNonNull, Rest, Done); 538 EmitBlock(Rest); 539 } else { 540 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 541 } 542 } 543 544 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 545 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 546 547 // The glvalue must refer to a large enough storage region. 548 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 549 // to check this. 550 // FIXME: Get object address space 551 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 552 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 553 llvm::Value *Min = Builder.getFalse(); 554 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 555 llvm::Value *LargeEnough = 556 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 557 llvm::ConstantInt::get(IntPtrTy, Size)); 558 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 559 } 560 561 uint64_t AlignVal = 0; 562 563 if (SanOpts.has(SanitizerKind::Alignment)) { 564 AlignVal = Alignment.getQuantity(); 565 if (!Ty->isIncompleteType() && !AlignVal) 566 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 567 568 // The glvalue must be suitably aligned. 569 if (AlignVal) { 570 llvm::Value *Align = 571 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 572 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 573 llvm::Value *Aligned = 574 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 575 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 576 } 577 } 578 579 if (Checks.size() > 0) { 580 llvm::Constant *StaticData[] = { 581 EmitCheckSourceLocation(Loc), 582 EmitCheckTypeDescriptor(Ty), 583 llvm::ConstantInt::get(SizeTy, AlignVal), 584 llvm::ConstantInt::get(Int8Ty, TCK) 585 }; 586 EmitCheck(Checks, "type_mismatch", StaticData, Ptr); 587 } 588 589 // If possible, check that the vptr indicates that there is a subobject of 590 // type Ty at offset zero within this object. 591 // 592 // C++11 [basic.life]p5,6: 593 // [For storage which does not refer to an object within its lifetime] 594 // The program has undefined behavior if: 595 // -- the [pointer or glvalue] is used to access a non-static data member 596 // or call a non-static member function 597 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 598 if (SanOpts.has(SanitizerKind::Vptr) && 599 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 600 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 601 TCK == TCK_UpcastToVirtualBase) && 602 RD && RD->hasDefinition() && RD->isDynamicClass()) { 603 // Compute a hash of the mangled name of the type. 604 // 605 // FIXME: This is not guaranteed to be deterministic! Move to a 606 // fingerprinting mechanism once LLVM provides one. For the time 607 // being the implementation happens to be deterministic. 608 SmallString<64> MangledName; 609 llvm::raw_svector_ostream Out(MangledName); 610 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 611 Out); 612 613 // Blacklist based on the mangled type. 614 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 615 Out.str())) { 616 llvm::hash_code TypeHash = hash_value(Out.str()); 617 618 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 619 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 620 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 621 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 622 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 623 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 624 625 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 626 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 627 628 // Look the hash up in our cache. 629 const int CacheSize = 128; 630 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 631 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 632 "__ubsan_vptr_type_cache"); 633 llvm::Value *Slot = Builder.CreateAnd(Hash, 634 llvm::ConstantInt::get(IntPtrTy, 635 CacheSize-1)); 636 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 637 llvm::Value *CacheVal = 638 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 639 getPointerAlign()); 640 641 // If the hash isn't in the cache, call a runtime handler to perform the 642 // hard work of checking whether the vptr is for an object of the right 643 // type. This will either fill in the cache and return, or produce a 644 // diagnostic. 645 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 646 llvm::Constant *StaticData[] = { 647 EmitCheckSourceLocation(Loc), 648 EmitCheckTypeDescriptor(Ty), 649 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 650 llvm::ConstantInt::get(Int8Ty, TCK) 651 }; 652 llvm::Value *DynamicData[] = { Ptr, Hash }; 653 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 654 "dynamic_type_cache_miss", StaticData, DynamicData); 655 } 656 } 657 658 if (Done) { 659 Builder.CreateBr(Done); 660 EmitBlock(Done); 661 } 662 } 663 664 /// Determine whether this expression refers to a flexible array member in a 665 /// struct. We disable array bounds checks for such members. 666 static bool isFlexibleArrayMemberExpr(const Expr *E) { 667 // For compatibility with existing code, we treat arrays of length 0 or 668 // 1 as flexible array members. 669 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 670 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 671 if (CAT->getSize().ugt(1)) 672 return false; 673 } else if (!isa<IncompleteArrayType>(AT)) 674 return false; 675 676 E = E->IgnoreParens(); 677 678 // A flexible array member must be the last member in the class. 679 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 680 // FIXME: If the base type of the member expr is not FD->getParent(), 681 // this should not be treated as a flexible array member access. 682 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 683 RecordDecl::field_iterator FI( 684 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 685 return ++FI == FD->getParent()->field_end(); 686 } 687 } 688 689 return false; 690 } 691 692 /// If Base is known to point to the start of an array, return the length of 693 /// that array. Return 0 if the length cannot be determined. 694 static llvm::Value *getArrayIndexingBound( 695 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 696 // For the vector indexing extension, the bound is the number of elements. 697 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 698 IndexedType = Base->getType(); 699 return CGF.Builder.getInt32(VT->getNumElements()); 700 } 701 702 Base = Base->IgnoreParens(); 703 704 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 705 if (CE->getCastKind() == CK_ArrayToPointerDecay && 706 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 707 IndexedType = CE->getSubExpr()->getType(); 708 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 709 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 710 return CGF.Builder.getInt(CAT->getSize()); 711 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 712 return CGF.getVLASize(VAT).first; 713 } 714 } 715 716 return nullptr; 717 } 718 719 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 720 llvm::Value *Index, QualType IndexType, 721 bool Accessed) { 722 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 723 "should not be called unless adding bounds checks"); 724 SanitizerScope SanScope(this); 725 726 QualType IndexedType; 727 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 728 if (!Bound) 729 return; 730 731 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 732 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 733 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 734 735 llvm::Constant *StaticData[] = { 736 EmitCheckSourceLocation(E->getExprLoc()), 737 EmitCheckTypeDescriptor(IndexedType), 738 EmitCheckTypeDescriptor(IndexType) 739 }; 740 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 741 : Builder.CreateICmpULE(IndexVal, BoundVal); 742 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 743 StaticData, Index); 744 } 745 746 747 CodeGenFunction::ComplexPairTy CodeGenFunction:: 748 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 749 bool isInc, bool isPre) { 750 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 751 752 llvm::Value *NextVal; 753 if (isa<llvm::IntegerType>(InVal.first->getType())) { 754 uint64_t AmountVal = isInc ? 1 : -1; 755 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 756 757 // Add the inc/dec to the real part. 758 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 759 } else { 760 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 761 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 762 if (!isInc) 763 FVal.changeSign(); 764 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 765 766 // Add the inc/dec to the real part. 767 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 768 } 769 770 ComplexPairTy IncVal(NextVal, InVal.second); 771 772 // Store the updated result through the lvalue. 773 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 774 775 // If this is a postinc, return the value read from memory, otherwise use the 776 // updated value. 777 return isPre ? IncVal : InVal; 778 } 779 780 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 781 CodeGenFunction *CGF) { 782 // Bind VLAs in the cast type. 783 if (CGF && E->getType()->isVariablyModifiedType()) 784 CGF->EmitVariablyModifiedType(E->getType()); 785 786 if (CGDebugInfo *DI = getModuleDebugInfo()) 787 DI->EmitExplicitCastType(E->getType()); 788 } 789 790 //===----------------------------------------------------------------------===// 791 // LValue Expression Emission 792 //===----------------------------------------------------------------------===// 793 794 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 795 /// derive a more accurate bound on the alignment of the pointer. 796 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 797 AlignmentSource *Source) { 798 // We allow this with ObjC object pointers because of fragile ABIs. 799 assert(E->getType()->isPointerType() || 800 E->getType()->isObjCObjectPointerType()); 801 E = E->IgnoreParens(); 802 803 // Casts: 804 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 805 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 806 CGM.EmitExplicitCastExprType(ECE, this); 807 808 switch (CE->getCastKind()) { 809 // Non-converting casts (but not C's implicit conversion from void*). 810 case CK_BitCast: 811 case CK_NoOp: 812 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 813 if (PtrTy->getPointeeType()->isVoidType()) 814 break; 815 816 AlignmentSource InnerSource; 817 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 818 if (Source) *Source = InnerSource; 819 820 // If this is an explicit bitcast, and the source l-value is 821 // opaque, honor the alignment of the casted-to type. 822 if (isa<ExplicitCastExpr>(CE) && 823 InnerSource != AlignmentSource::Decl) { 824 Addr = Address(Addr.getPointer(), 825 getNaturalPointeeTypeAlignment(E->getType(), Source)); 826 } 827 828 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 829 CE->getCastKind() == CK_BitCast) { 830 if (auto PT = E->getType()->getAs<PointerType>()) 831 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 832 /*MayBeNull=*/true, 833 CodeGenFunction::CFITCK_UnrelatedCast, 834 CE->getLocStart()); 835 } 836 837 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 838 } 839 break; 840 841 // Array-to-pointer decay. 842 case CK_ArrayToPointerDecay: 843 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 844 845 // Derived-to-base conversions. 846 case CK_UncheckedDerivedToBase: 847 case CK_DerivedToBase: { 848 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 849 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 850 return GetAddressOfBaseClass(Addr, Derived, 851 CE->path_begin(), CE->path_end(), 852 ShouldNullCheckClassCastValue(CE), 853 CE->getExprLoc()); 854 } 855 856 // TODO: Is there any reason to treat base-to-derived conversions 857 // specially? 858 default: 859 break; 860 } 861 } 862 863 // Unary &. 864 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 865 if (UO->getOpcode() == UO_AddrOf) { 866 LValue LV = EmitLValue(UO->getSubExpr()); 867 if (Source) *Source = LV.getAlignmentSource(); 868 return LV.getAddress(); 869 } 870 } 871 872 // TODO: conditional operators, comma. 873 874 // Otherwise, use the alignment of the type. 875 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 876 return Address(EmitScalarExpr(E), Align); 877 } 878 879 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 880 if (Ty->isVoidType()) 881 return RValue::get(nullptr); 882 883 switch (getEvaluationKind(Ty)) { 884 case TEK_Complex: { 885 llvm::Type *EltTy = 886 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 887 llvm::Value *U = llvm::UndefValue::get(EltTy); 888 return RValue::getComplex(std::make_pair(U, U)); 889 } 890 891 // If this is a use of an undefined aggregate type, the aggregate must have an 892 // identifiable address. Just because the contents of the value are undefined 893 // doesn't mean that the address can't be taken and compared. 894 case TEK_Aggregate: { 895 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 896 return RValue::getAggregate(DestPtr); 897 } 898 899 case TEK_Scalar: 900 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 901 } 902 llvm_unreachable("bad evaluation kind"); 903 } 904 905 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 906 const char *Name) { 907 ErrorUnsupported(E, Name); 908 return GetUndefRValue(E->getType()); 909 } 910 911 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 912 const char *Name) { 913 ErrorUnsupported(E, Name); 914 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 915 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 916 E->getType()); 917 } 918 919 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 920 LValue LV; 921 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 922 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 923 else 924 LV = EmitLValue(E); 925 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 926 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 927 E->getType(), LV.getAlignment()); 928 return LV; 929 } 930 931 /// EmitLValue - Emit code to compute a designator that specifies the location 932 /// of the expression. 933 /// 934 /// This can return one of two things: a simple address or a bitfield reference. 935 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 936 /// an LLVM pointer type. 937 /// 938 /// If this returns a bitfield reference, nothing about the pointee type of the 939 /// LLVM value is known: For example, it may not be a pointer to an integer. 940 /// 941 /// If this returns a normal address, and if the lvalue's C type is fixed size, 942 /// this method guarantees that the returned pointer type will point to an LLVM 943 /// type of the same size of the lvalue's type. If the lvalue has a variable 944 /// length type, this is not possible. 945 /// 946 LValue CodeGenFunction::EmitLValue(const Expr *E) { 947 ApplyDebugLocation DL(*this, E); 948 switch (E->getStmtClass()) { 949 default: return EmitUnsupportedLValue(E, "l-value expression"); 950 951 case Expr::ObjCPropertyRefExprClass: 952 llvm_unreachable("cannot emit a property reference directly"); 953 954 case Expr::ObjCSelectorExprClass: 955 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 956 case Expr::ObjCIsaExprClass: 957 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 958 case Expr::BinaryOperatorClass: 959 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 960 case Expr::CompoundAssignOperatorClass: { 961 QualType Ty = E->getType(); 962 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 963 Ty = AT->getValueType(); 964 if (!Ty->isAnyComplexType()) 965 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 966 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 967 } 968 case Expr::CallExprClass: 969 case Expr::CXXMemberCallExprClass: 970 case Expr::CXXOperatorCallExprClass: 971 case Expr::UserDefinedLiteralClass: 972 return EmitCallExprLValue(cast<CallExpr>(E)); 973 case Expr::VAArgExprClass: 974 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 975 case Expr::DeclRefExprClass: 976 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 977 case Expr::ParenExprClass: 978 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 979 case Expr::GenericSelectionExprClass: 980 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 981 case Expr::PredefinedExprClass: 982 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 983 case Expr::StringLiteralClass: 984 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 985 case Expr::ObjCEncodeExprClass: 986 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 987 case Expr::PseudoObjectExprClass: 988 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 989 case Expr::InitListExprClass: 990 return EmitInitListLValue(cast<InitListExpr>(E)); 991 case Expr::CXXTemporaryObjectExprClass: 992 case Expr::CXXConstructExprClass: 993 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 994 case Expr::CXXBindTemporaryExprClass: 995 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 996 case Expr::CXXUuidofExprClass: 997 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 998 case Expr::LambdaExprClass: 999 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1000 1001 case Expr::ExprWithCleanupsClass: { 1002 const auto *cleanups = cast<ExprWithCleanups>(E); 1003 enterFullExpression(cleanups); 1004 RunCleanupsScope Scope(*this); 1005 return EmitLValue(cleanups->getSubExpr()); 1006 } 1007 1008 case Expr::CXXDefaultArgExprClass: 1009 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1010 case Expr::CXXDefaultInitExprClass: { 1011 CXXDefaultInitExprScope Scope(*this); 1012 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1013 } 1014 case Expr::CXXTypeidExprClass: 1015 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1016 1017 case Expr::ObjCMessageExprClass: 1018 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1019 case Expr::ObjCIvarRefExprClass: 1020 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1021 case Expr::StmtExprClass: 1022 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1023 case Expr::UnaryOperatorClass: 1024 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1025 case Expr::ArraySubscriptExprClass: 1026 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1027 case Expr::OMPArraySectionExprClass: 1028 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1029 case Expr::ExtVectorElementExprClass: 1030 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1031 case Expr::MemberExprClass: 1032 return EmitMemberExpr(cast<MemberExpr>(E)); 1033 case Expr::CompoundLiteralExprClass: 1034 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1035 case Expr::ConditionalOperatorClass: 1036 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1037 case Expr::BinaryConditionalOperatorClass: 1038 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1039 case Expr::ChooseExprClass: 1040 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1041 case Expr::OpaqueValueExprClass: 1042 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1043 case Expr::SubstNonTypeTemplateParmExprClass: 1044 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1045 case Expr::ImplicitCastExprClass: 1046 case Expr::CStyleCastExprClass: 1047 case Expr::CXXFunctionalCastExprClass: 1048 case Expr::CXXStaticCastExprClass: 1049 case Expr::CXXDynamicCastExprClass: 1050 case Expr::CXXReinterpretCastExprClass: 1051 case Expr::CXXConstCastExprClass: 1052 case Expr::ObjCBridgedCastExprClass: 1053 return EmitCastLValue(cast<CastExpr>(E)); 1054 1055 case Expr::MaterializeTemporaryExprClass: 1056 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1057 } 1058 } 1059 1060 /// Given an object of the given canonical type, can we safely copy a 1061 /// value out of it based on its initializer? 1062 static bool isConstantEmittableObjectType(QualType type) { 1063 assert(type.isCanonical()); 1064 assert(!type->isReferenceType()); 1065 1066 // Must be const-qualified but non-volatile. 1067 Qualifiers qs = type.getLocalQualifiers(); 1068 if (!qs.hasConst() || qs.hasVolatile()) return false; 1069 1070 // Otherwise, all object types satisfy this except C++ classes with 1071 // mutable subobjects or non-trivial copy/destroy behavior. 1072 if (const auto *RT = dyn_cast<RecordType>(type)) 1073 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1074 if (RD->hasMutableFields() || !RD->isTrivial()) 1075 return false; 1076 1077 return true; 1078 } 1079 1080 /// Can we constant-emit a load of a reference to a variable of the 1081 /// given type? This is different from predicates like 1082 /// Decl::isUsableInConstantExpressions because we do want it to apply 1083 /// in situations that don't necessarily satisfy the language's rules 1084 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1085 /// to do this with const float variables even if those variables 1086 /// aren't marked 'constexpr'. 1087 enum ConstantEmissionKind { 1088 CEK_None, 1089 CEK_AsReferenceOnly, 1090 CEK_AsValueOrReference, 1091 CEK_AsValueOnly 1092 }; 1093 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1094 type = type.getCanonicalType(); 1095 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1096 if (isConstantEmittableObjectType(ref->getPointeeType())) 1097 return CEK_AsValueOrReference; 1098 return CEK_AsReferenceOnly; 1099 } 1100 if (isConstantEmittableObjectType(type)) 1101 return CEK_AsValueOnly; 1102 return CEK_None; 1103 } 1104 1105 /// Try to emit a reference to the given value without producing it as 1106 /// an l-value. This is actually more than an optimization: we can't 1107 /// produce an l-value for variables that we never actually captured 1108 /// in a block or lambda, which means const int variables or constexpr 1109 /// literals or similar. 1110 CodeGenFunction::ConstantEmission 1111 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1112 ValueDecl *value = refExpr->getDecl(); 1113 1114 // The value needs to be an enum constant or a constant variable. 1115 ConstantEmissionKind CEK; 1116 if (isa<ParmVarDecl>(value)) { 1117 CEK = CEK_None; 1118 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1119 CEK = checkVarTypeForConstantEmission(var->getType()); 1120 } else if (isa<EnumConstantDecl>(value)) { 1121 CEK = CEK_AsValueOnly; 1122 } else { 1123 CEK = CEK_None; 1124 } 1125 if (CEK == CEK_None) return ConstantEmission(); 1126 1127 Expr::EvalResult result; 1128 bool resultIsReference; 1129 QualType resultType; 1130 1131 // It's best to evaluate all the way as an r-value if that's permitted. 1132 if (CEK != CEK_AsReferenceOnly && 1133 refExpr->EvaluateAsRValue(result, getContext())) { 1134 resultIsReference = false; 1135 resultType = refExpr->getType(); 1136 1137 // Otherwise, try to evaluate as an l-value. 1138 } else if (CEK != CEK_AsValueOnly && 1139 refExpr->EvaluateAsLValue(result, getContext())) { 1140 resultIsReference = true; 1141 resultType = value->getType(); 1142 1143 // Failure. 1144 } else { 1145 return ConstantEmission(); 1146 } 1147 1148 // In any case, if the initializer has side-effects, abandon ship. 1149 if (result.HasSideEffects) 1150 return ConstantEmission(); 1151 1152 // Emit as a constant. 1153 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1154 1155 // Make sure we emit a debug reference to the global variable. 1156 // This should probably fire even for 1157 if (isa<VarDecl>(value)) { 1158 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1159 EmitDeclRefExprDbgValue(refExpr, C); 1160 } else { 1161 assert(isa<EnumConstantDecl>(value)); 1162 EmitDeclRefExprDbgValue(refExpr, C); 1163 } 1164 1165 // If we emitted a reference constant, we need to dereference that. 1166 if (resultIsReference) 1167 return ConstantEmission::forReference(C); 1168 1169 return ConstantEmission::forValue(C); 1170 } 1171 1172 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1173 SourceLocation Loc) { 1174 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1175 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1176 lvalue.getTBAAInfo(), 1177 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1178 lvalue.isNontemporal()); 1179 } 1180 1181 static bool hasBooleanRepresentation(QualType Ty) { 1182 if (Ty->isBooleanType()) 1183 return true; 1184 1185 if (const EnumType *ET = Ty->getAs<EnumType>()) 1186 return ET->getDecl()->getIntegerType()->isBooleanType(); 1187 1188 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1189 return hasBooleanRepresentation(AT->getValueType()); 1190 1191 return false; 1192 } 1193 1194 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1195 llvm::APInt &Min, llvm::APInt &End, 1196 bool StrictEnums) { 1197 const EnumType *ET = Ty->getAs<EnumType>(); 1198 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1199 ET && !ET->getDecl()->isFixed(); 1200 bool IsBool = hasBooleanRepresentation(Ty); 1201 if (!IsBool && !IsRegularCPlusPlusEnum) 1202 return false; 1203 1204 if (IsBool) { 1205 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1206 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1207 } else { 1208 const EnumDecl *ED = ET->getDecl(); 1209 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1210 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1211 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1212 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1213 1214 if (NumNegativeBits) { 1215 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1216 assert(NumBits <= Bitwidth); 1217 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1218 Min = -End; 1219 } else { 1220 assert(NumPositiveBits <= Bitwidth); 1221 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1222 Min = llvm::APInt(Bitwidth, 0); 1223 } 1224 } 1225 return true; 1226 } 1227 1228 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1229 llvm::APInt Min, End; 1230 if (!getRangeForType(*this, Ty, Min, End, 1231 CGM.getCodeGenOpts().StrictEnums)) 1232 return nullptr; 1233 1234 llvm::MDBuilder MDHelper(getLLVMContext()); 1235 return MDHelper.createRange(Min, End); 1236 } 1237 1238 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1239 QualType Ty, 1240 SourceLocation Loc, 1241 AlignmentSource AlignSource, 1242 llvm::MDNode *TBAAInfo, 1243 QualType TBAABaseType, 1244 uint64_t TBAAOffset, 1245 bool isNontemporal) { 1246 // For better performance, handle vector loads differently. 1247 if (Ty->isVectorType()) { 1248 const llvm::Type *EltTy = Addr.getElementType(); 1249 1250 const auto *VTy = cast<llvm::VectorType>(EltTy); 1251 1252 // Handle vectors of size 3 like size 4 for better performance. 1253 if (VTy->getNumElements() == 3) { 1254 1255 // Bitcast to vec4 type. 1256 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1257 4); 1258 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1259 // Now load value. 1260 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1261 1262 // Shuffle vector to get vec3. 1263 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1264 {0, 1, 2}, "extractVec"); 1265 return EmitFromMemory(V, Ty); 1266 } 1267 } 1268 1269 // Atomic operations have to be done on integral types. 1270 if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) { 1271 LValue lvalue = 1272 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1273 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1274 } 1275 1276 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1277 if (isNontemporal) { 1278 llvm::MDNode *Node = llvm::MDNode::get( 1279 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1280 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1281 } 1282 if (TBAAInfo) { 1283 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1284 TBAAOffset); 1285 if (TBAAPath) 1286 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1287 false /*ConvertTypeToTag*/); 1288 } 1289 1290 bool NeedsBoolCheck = 1291 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1292 bool NeedsEnumCheck = 1293 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1294 if (NeedsBoolCheck || NeedsEnumCheck) { 1295 SanitizerScope SanScope(this); 1296 llvm::APInt Min, End; 1297 if (getRangeForType(*this, Ty, Min, End, true)) { 1298 --End; 1299 llvm::Value *Check; 1300 if (!Min) 1301 Check = Builder.CreateICmpULE( 1302 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1303 else { 1304 llvm::Value *Upper = Builder.CreateICmpSLE( 1305 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1306 llvm::Value *Lower = Builder.CreateICmpSGE( 1307 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1308 Check = Builder.CreateAnd(Upper, Lower); 1309 } 1310 llvm::Constant *StaticArgs[] = { 1311 EmitCheckSourceLocation(Loc), 1312 EmitCheckTypeDescriptor(Ty) 1313 }; 1314 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1315 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1316 EmitCheckValue(Load)); 1317 } 1318 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1319 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1320 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1321 1322 return EmitFromMemory(Load, Ty); 1323 } 1324 1325 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1326 // Bool has a different representation in memory than in registers. 1327 if (hasBooleanRepresentation(Ty)) { 1328 // This should really always be an i1, but sometimes it's already 1329 // an i8, and it's awkward to track those cases down. 1330 if (Value->getType()->isIntegerTy(1)) 1331 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1332 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1333 "wrong value rep of bool"); 1334 } 1335 1336 return Value; 1337 } 1338 1339 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1340 // Bool has a different representation in memory than in registers. 1341 if (hasBooleanRepresentation(Ty)) { 1342 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1343 "wrong value rep of bool"); 1344 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1345 } 1346 1347 return Value; 1348 } 1349 1350 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1351 bool Volatile, QualType Ty, 1352 AlignmentSource AlignSource, 1353 llvm::MDNode *TBAAInfo, 1354 bool isInit, QualType TBAABaseType, 1355 uint64_t TBAAOffset, 1356 bool isNontemporal) { 1357 1358 // Handle vectors differently to get better performance. 1359 if (Ty->isVectorType()) { 1360 llvm::Type *SrcTy = Value->getType(); 1361 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1362 // Handle vec3 special. 1363 if (VecTy->getNumElements() == 3) { 1364 // Our source is a vec3, do a shuffle vector to make it a vec4. 1365 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1366 Builder.getInt32(2), 1367 llvm::UndefValue::get(Builder.getInt32Ty())}; 1368 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1369 Value = Builder.CreateShuffleVector(Value, 1370 llvm::UndefValue::get(VecTy), 1371 MaskV, "extractVec"); 1372 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1373 } 1374 if (Addr.getElementType() != SrcTy) { 1375 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1376 } 1377 } 1378 1379 Value = EmitToMemory(Value, Ty); 1380 1381 if (Ty->isAtomicType() || 1382 (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) { 1383 EmitAtomicStore(RValue::get(Value), 1384 LValue::MakeAddr(Addr, Ty, getContext(), 1385 AlignSource, TBAAInfo), 1386 isInit); 1387 return; 1388 } 1389 1390 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1391 if (isNontemporal) { 1392 llvm::MDNode *Node = 1393 llvm::MDNode::get(Store->getContext(), 1394 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1395 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1396 } 1397 if (TBAAInfo) { 1398 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1399 TBAAOffset); 1400 if (TBAAPath) 1401 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1402 false /*ConvertTypeToTag*/); 1403 } 1404 } 1405 1406 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1407 bool isInit) { 1408 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1409 lvalue.getType(), lvalue.getAlignmentSource(), 1410 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1411 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1412 } 1413 1414 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1415 /// method emits the address of the lvalue, then loads the result as an rvalue, 1416 /// returning the rvalue. 1417 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1418 if (LV.isObjCWeak()) { 1419 // load of a __weak object. 1420 Address AddrWeakObj = LV.getAddress(); 1421 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1422 AddrWeakObj)); 1423 } 1424 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1425 // In MRC mode, we do a load+autorelease. 1426 if (!getLangOpts().ObjCAutoRefCount) { 1427 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1428 } 1429 1430 // In ARC mode, we load retained and then consume the value. 1431 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1432 Object = EmitObjCConsumeObject(LV.getType(), Object); 1433 return RValue::get(Object); 1434 } 1435 1436 if (LV.isSimple()) { 1437 assert(!LV.getType()->isFunctionType()); 1438 1439 // Everything needs a load. 1440 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1441 } 1442 1443 if (LV.isVectorElt()) { 1444 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1445 LV.isVolatileQualified()); 1446 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1447 "vecext")); 1448 } 1449 1450 // If this is a reference to a subset of the elements of a vector, either 1451 // shuffle the input or extract/insert them as appropriate. 1452 if (LV.isExtVectorElt()) 1453 return EmitLoadOfExtVectorElementLValue(LV); 1454 1455 // Global Register variables always invoke intrinsics 1456 if (LV.isGlobalReg()) 1457 return EmitLoadOfGlobalRegLValue(LV); 1458 1459 assert(LV.isBitField() && "Unknown LValue type!"); 1460 return EmitLoadOfBitfieldLValue(LV); 1461 } 1462 1463 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1464 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1465 1466 // Get the output type. 1467 llvm::Type *ResLTy = ConvertType(LV.getType()); 1468 1469 Address Ptr = LV.getBitFieldAddress(); 1470 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1471 1472 if (Info.IsSigned) { 1473 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1474 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1475 if (HighBits) 1476 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1477 if (Info.Offset + HighBits) 1478 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1479 } else { 1480 if (Info.Offset) 1481 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1482 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1483 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1484 Info.Size), 1485 "bf.clear"); 1486 } 1487 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1488 1489 return RValue::get(Val); 1490 } 1491 1492 // If this is a reference to a subset of the elements of a vector, create an 1493 // appropriate shufflevector. 1494 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1495 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1496 LV.isVolatileQualified()); 1497 1498 const llvm::Constant *Elts = LV.getExtVectorElts(); 1499 1500 // If the result of the expression is a non-vector type, we must be extracting 1501 // a single element. Just codegen as an extractelement. 1502 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1503 if (!ExprVT) { 1504 unsigned InIdx = getAccessedFieldNo(0, Elts); 1505 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1506 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1507 } 1508 1509 // Always use shuffle vector to try to retain the original program structure 1510 unsigned NumResultElts = ExprVT->getNumElements(); 1511 1512 SmallVector<llvm::Constant*, 4> Mask; 1513 for (unsigned i = 0; i != NumResultElts; ++i) 1514 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1515 1516 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1517 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1518 MaskV); 1519 return RValue::get(Vec); 1520 } 1521 1522 /// @brief Generates lvalue for partial ext_vector access. 1523 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1524 Address VectorAddress = LV.getExtVectorAddress(); 1525 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1526 QualType EQT = ExprVT->getElementType(); 1527 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1528 1529 Address CastToPointerElement = 1530 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1531 "conv.ptr.element"); 1532 1533 const llvm::Constant *Elts = LV.getExtVectorElts(); 1534 unsigned ix = getAccessedFieldNo(0, Elts); 1535 1536 Address VectorBasePtrPlusIx = 1537 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1538 getContext().getTypeSizeInChars(EQT), 1539 "vector.elt"); 1540 1541 return VectorBasePtrPlusIx; 1542 } 1543 1544 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1545 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1546 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1547 "Bad type for register variable"); 1548 llvm::MDNode *RegName = cast<llvm::MDNode>( 1549 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1550 1551 // We accept integer and pointer types only 1552 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1553 llvm::Type *Ty = OrigTy; 1554 if (OrigTy->isPointerTy()) 1555 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1556 llvm::Type *Types[] = { Ty }; 1557 1558 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1559 llvm::Value *Call = Builder.CreateCall( 1560 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1561 if (OrigTy->isPointerTy()) 1562 Call = Builder.CreateIntToPtr(Call, OrigTy); 1563 return RValue::get(Call); 1564 } 1565 1566 1567 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1568 /// lvalue, where both are guaranteed to the have the same type, and that type 1569 /// is 'Ty'. 1570 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1571 bool isInit) { 1572 if (!Dst.isSimple()) { 1573 if (Dst.isVectorElt()) { 1574 // Read/modify/write the vector, inserting the new element. 1575 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1576 Dst.isVolatileQualified()); 1577 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1578 Dst.getVectorIdx(), "vecins"); 1579 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1580 Dst.isVolatileQualified()); 1581 return; 1582 } 1583 1584 // If this is an update of extended vector elements, insert them as 1585 // appropriate. 1586 if (Dst.isExtVectorElt()) 1587 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1588 1589 if (Dst.isGlobalReg()) 1590 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1591 1592 assert(Dst.isBitField() && "Unknown LValue type"); 1593 return EmitStoreThroughBitfieldLValue(Src, Dst); 1594 } 1595 1596 // There's special magic for assigning into an ARC-qualified l-value. 1597 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1598 switch (Lifetime) { 1599 case Qualifiers::OCL_None: 1600 llvm_unreachable("present but none"); 1601 1602 case Qualifiers::OCL_ExplicitNone: 1603 // nothing special 1604 break; 1605 1606 case Qualifiers::OCL_Strong: 1607 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1608 return; 1609 1610 case Qualifiers::OCL_Weak: 1611 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1612 return; 1613 1614 case Qualifiers::OCL_Autoreleasing: 1615 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1616 Src.getScalarVal())); 1617 // fall into the normal path 1618 break; 1619 } 1620 } 1621 1622 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1623 // load of a __weak object. 1624 Address LvalueDst = Dst.getAddress(); 1625 llvm::Value *src = Src.getScalarVal(); 1626 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1627 return; 1628 } 1629 1630 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1631 // load of a __strong object. 1632 Address LvalueDst = Dst.getAddress(); 1633 llvm::Value *src = Src.getScalarVal(); 1634 if (Dst.isObjCIvar()) { 1635 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1636 llvm::Type *ResultType = IntPtrTy; 1637 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1638 llvm::Value *RHS = dst.getPointer(); 1639 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1640 llvm::Value *LHS = 1641 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1642 "sub.ptr.lhs.cast"); 1643 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1644 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1645 BytesBetween); 1646 } else if (Dst.isGlobalObjCRef()) { 1647 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1648 Dst.isThreadLocalRef()); 1649 } 1650 else 1651 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1652 return; 1653 } 1654 1655 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1656 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1657 } 1658 1659 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1660 llvm::Value **Result) { 1661 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1662 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1663 Address Ptr = Dst.getBitFieldAddress(); 1664 1665 // Get the source value, truncated to the width of the bit-field. 1666 llvm::Value *SrcVal = Src.getScalarVal(); 1667 1668 // Cast the source to the storage type and shift it into place. 1669 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1670 /*IsSigned=*/false); 1671 llvm::Value *MaskedVal = SrcVal; 1672 1673 // See if there are other bits in the bitfield's storage we'll need to load 1674 // and mask together with source before storing. 1675 if (Info.StorageSize != Info.Size) { 1676 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1677 llvm::Value *Val = 1678 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1679 1680 // Mask the source value as needed. 1681 if (!hasBooleanRepresentation(Dst.getType())) 1682 SrcVal = Builder.CreateAnd(SrcVal, 1683 llvm::APInt::getLowBitsSet(Info.StorageSize, 1684 Info.Size), 1685 "bf.value"); 1686 MaskedVal = SrcVal; 1687 if (Info.Offset) 1688 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1689 1690 // Mask out the original value. 1691 Val = Builder.CreateAnd(Val, 1692 ~llvm::APInt::getBitsSet(Info.StorageSize, 1693 Info.Offset, 1694 Info.Offset + Info.Size), 1695 "bf.clear"); 1696 1697 // Or together the unchanged values and the source value. 1698 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1699 } else { 1700 assert(Info.Offset == 0); 1701 } 1702 1703 // Write the new value back out. 1704 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1705 1706 // Return the new value of the bit-field, if requested. 1707 if (Result) { 1708 llvm::Value *ResultVal = MaskedVal; 1709 1710 // Sign extend the value if needed. 1711 if (Info.IsSigned) { 1712 assert(Info.Size <= Info.StorageSize); 1713 unsigned HighBits = Info.StorageSize - Info.Size; 1714 if (HighBits) { 1715 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1716 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1717 } 1718 } 1719 1720 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1721 "bf.result.cast"); 1722 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1723 } 1724 } 1725 1726 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1727 LValue Dst) { 1728 // This access turns into a read/modify/write of the vector. Load the input 1729 // value now. 1730 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1731 Dst.isVolatileQualified()); 1732 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1733 1734 llvm::Value *SrcVal = Src.getScalarVal(); 1735 1736 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1737 unsigned NumSrcElts = VTy->getNumElements(); 1738 unsigned NumDstElts = 1739 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1740 if (NumDstElts == NumSrcElts) { 1741 // Use shuffle vector is the src and destination are the same number of 1742 // elements and restore the vector mask since it is on the side it will be 1743 // stored. 1744 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1745 for (unsigned i = 0; i != NumSrcElts; ++i) 1746 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1747 1748 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1749 Vec = Builder.CreateShuffleVector(SrcVal, 1750 llvm::UndefValue::get(Vec->getType()), 1751 MaskV); 1752 } else if (NumDstElts > NumSrcElts) { 1753 // Extended the source vector to the same length and then shuffle it 1754 // into the destination. 1755 // FIXME: since we're shuffling with undef, can we just use the indices 1756 // into that? This could be simpler. 1757 SmallVector<llvm::Constant*, 4> ExtMask; 1758 for (unsigned i = 0; i != NumSrcElts; ++i) 1759 ExtMask.push_back(Builder.getInt32(i)); 1760 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1761 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1762 llvm::Value *ExtSrcVal = 1763 Builder.CreateShuffleVector(SrcVal, 1764 llvm::UndefValue::get(SrcVal->getType()), 1765 ExtMaskV); 1766 // build identity 1767 SmallVector<llvm::Constant*, 4> Mask; 1768 for (unsigned i = 0; i != NumDstElts; ++i) 1769 Mask.push_back(Builder.getInt32(i)); 1770 1771 // When the vector size is odd and .odd or .hi is used, the last element 1772 // of the Elts constant array will be one past the size of the vector. 1773 // Ignore the last element here, if it is greater than the mask size. 1774 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1775 NumSrcElts--; 1776 1777 // modify when what gets shuffled in 1778 for (unsigned i = 0; i != NumSrcElts; ++i) 1779 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1780 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1781 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1782 } else { 1783 // We should never shorten the vector 1784 llvm_unreachable("unexpected shorten vector length"); 1785 } 1786 } else { 1787 // If the Src is a scalar (not a vector) it must be updating one element. 1788 unsigned InIdx = getAccessedFieldNo(0, Elts); 1789 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1790 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1791 } 1792 1793 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1794 Dst.isVolatileQualified()); 1795 } 1796 1797 /// @brief Store of global named registers are always calls to intrinsics. 1798 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1799 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1800 "Bad type for register variable"); 1801 llvm::MDNode *RegName = cast<llvm::MDNode>( 1802 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1803 assert(RegName && "Register LValue is not metadata"); 1804 1805 // We accept integer and pointer types only 1806 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1807 llvm::Type *Ty = OrigTy; 1808 if (OrigTy->isPointerTy()) 1809 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1810 llvm::Type *Types[] = { Ty }; 1811 1812 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1813 llvm::Value *Value = Src.getScalarVal(); 1814 if (OrigTy->isPointerTy()) 1815 Value = Builder.CreatePtrToInt(Value, Ty); 1816 Builder.CreateCall( 1817 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1818 } 1819 1820 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1821 // generating write-barries API. It is currently a global, ivar, 1822 // or neither. 1823 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1824 LValue &LV, 1825 bool IsMemberAccess=false) { 1826 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1827 return; 1828 1829 if (isa<ObjCIvarRefExpr>(E)) { 1830 QualType ExpTy = E->getType(); 1831 if (IsMemberAccess && ExpTy->isPointerType()) { 1832 // If ivar is a structure pointer, assigning to field of 1833 // this struct follows gcc's behavior and makes it a non-ivar 1834 // writer-barrier conservatively. 1835 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1836 if (ExpTy->isRecordType()) { 1837 LV.setObjCIvar(false); 1838 return; 1839 } 1840 } 1841 LV.setObjCIvar(true); 1842 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1843 LV.setBaseIvarExp(Exp->getBase()); 1844 LV.setObjCArray(E->getType()->isArrayType()); 1845 return; 1846 } 1847 1848 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1849 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1850 if (VD->hasGlobalStorage()) { 1851 LV.setGlobalObjCRef(true); 1852 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1853 } 1854 } 1855 LV.setObjCArray(E->getType()->isArrayType()); 1856 return; 1857 } 1858 1859 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1860 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1861 return; 1862 } 1863 1864 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1865 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1866 if (LV.isObjCIvar()) { 1867 // If cast is to a structure pointer, follow gcc's behavior and make it 1868 // a non-ivar write-barrier. 1869 QualType ExpTy = E->getType(); 1870 if (ExpTy->isPointerType()) 1871 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1872 if (ExpTy->isRecordType()) 1873 LV.setObjCIvar(false); 1874 } 1875 return; 1876 } 1877 1878 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1879 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1880 return; 1881 } 1882 1883 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1884 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1885 return; 1886 } 1887 1888 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1889 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1890 return; 1891 } 1892 1893 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1894 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1895 return; 1896 } 1897 1898 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1899 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1900 if (LV.isObjCIvar() && !LV.isObjCArray()) 1901 // Using array syntax to assigning to what an ivar points to is not 1902 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1903 LV.setObjCIvar(false); 1904 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1905 // Using array syntax to assigning to what global points to is not 1906 // same as assigning to the global itself. {id *G;} G[i] = 0; 1907 LV.setGlobalObjCRef(false); 1908 return; 1909 } 1910 1911 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1912 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1913 // We don't know if member is an 'ivar', but this flag is looked at 1914 // only in the context of LV.isObjCIvar(). 1915 LV.setObjCArray(E->getType()->isArrayType()); 1916 return; 1917 } 1918 } 1919 1920 static llvm::Value * 1921 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1922 llvm::Value *V, llvm::Type *IRType, 1923 StringRef Name = StringRef()) { 1924 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1925 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1926 } 1927 1928 static LValue EmitThreadPrivateVarDeclLValue( 1929 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 1930 llvm::Type *RealVarTy, SourceLocation Loc) { 1931 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 1932 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 1933 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 1934 } 1935 1936 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 1937 const ReferenceType *RefTy, 1938 AlignmentSource *Source) { 1939 llvm::Value *Ptr = Builder.CreateLoad(Addr); 1940 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 1941 Source, /*forPointee*/ true)); 1942 1943 } 1944 1945 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 1946 const ReferenceType *RefTy) { 1947 AlignmentSource Source; 1948 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 1949 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 1950 } 1951 1952 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1953 const Expr *E, const VarDecl *VD) { 1954 QualType T = E->getType(); 1955 1956 // If it's thread_local, emit a call to its wrapper function instead. 1957 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1958 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1959 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1960 1961 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1962 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1963 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1964 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1965 Address Addr(V, Alignment); 1966 LValue LV; 1967 // Emit reference to the private copy of the variable if it is an OpenMP 1968 // threadprivate variable. 1969 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1970 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 1971 E->getExprLoc()); 1972 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 1973 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 1974 } else { 1975 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 1976 } 1977 setObjCGCLValueClass(CGF.getContext(), E, LV); 1978 return LV; 1979 } 1980 1981 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1982 const Expr *E, const FunctionDecl *FD) { 1983 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1984 if (!FD->hasPrototype()) { 1985 if (const FunctionProtoType *Proto = 1986 FD->getType()->getAs<FunctionProtoType>()) { 1987 // Ugly case: for a K&R-style definition, the type of the definition 1988 // isn't the same as the type of a use. Correct for this with a 1989 // bitcast. 1990 QualType NoProtoType = 1991 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1992 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1993 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1994 } 1995 } 1996 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1997 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 1998 } 1999 2000 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2001 llvm::Value *ThisValue) { 2002 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2003 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2004 return CGF.EmitLValueForField(LV, FD); 2005 } 2006 2007 /// Named Registers are named metadata pointing to the register name 2008 /// which will be read from/written to as an argument to the intrinsic 2009 /// @llvm.read/write_register. 2010 /// So far, only the name is being passed down, but other options such as 2011 /// register type, allocation type or even optimization options could be 2012 /// passed down via the metadata node. 2013 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2014 SmallString<64> Name("llvm.named.register."); 2015 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2016 assert(Asm->getLabel().size() < 64-Name.size() && 2017 "Register name too big"); 2018 Name.append(Asm->getLabel()); 2019 llvm::NamedMDNode *M = 2020 CGM.getModule().getOrInsertNamedMetadata(Name); 2021 if (M->getNumOperands() == 0) { 2022 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2023 Asm->getLabel()); 2024 llvm::Metadata *Ops[] = {Str}; 2025 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2026 } 2027 2028 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2029 2030 llvm::Value *Ptr = 2031 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2032 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2033 } 2034 2035 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2036 const NamedDecl *ND = E->getDecl(); 2037 QualType T = E->getType(); 2038 2039 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2040 // Global Named registers access via intrinsics only 2041 if (VD->getStorageClass() == SC_Register && 2042 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2043 return EmitGlobalNamedRegister(VD, CGM); 2044 2045 // A DeclRefExpr for a reference initialized by a constant expression can 2046 // appear without being odr-used. Directly emit the constant initializer. 2047 const Expr *Init = VD->getAnyInitializer(VD); 2048 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2049 VD->isUsableInConstantExpressions(getContext()) && 2050 VD->checkInitIsICE() && 2051 // Do not emit if it is private OpenMP variable. 2052 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2053 LocalDeclMap.count(VD))) { 2054 llvm::Constant *Val = 2055 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2056 assert(Val && "failed to emit reference constant expression"); 2057 // FIXME: Eventually we will want to emit vector element references. 2058 2059 // Should we be using the alignment of the constant pointer we emitted? 2060 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2061 /*pointee*/ true); 2062 2063 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2064 } 2065 2066 // Check for captured variables. 2067 if (E->refersToEnclosingVariableOrCapture()) { 2068 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2069 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2070 else if (CapturedStmtInfo) { 2071 auto it = LocalDeclMap.find(VD); 2072 if (it != LocalDeclMap.end()) { 2073 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2074 return EmitLoadOfReferenceLValue(it->second, RefTy); 2075 } 2076 return MakeAddrLValue(it->second, T); 2077 } 2078 LValue CapLVal = 2079 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2080 CapturedStmtInfo->getContextValue()); 2081 return MakeAddrLValue( 2082 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2083 CapLVal.getType(), AlignmentSource::Decl); 2084 } 2085 2086 assert(isa<BlockDecl>(CurCodeDecl)); 2087 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2088 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2089 } 2090 } 2091 2092 // FIXME: We should be able to assert this for FunctionDecls as well! 2093 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2094 // those with a valid source location. 2095 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2096 !E->getLocation().isValid()) && 2097 "Should not use decl without marking it used!"); 2098 2099 if (ND->hasAttr<WeakRefAttr>()) { 2100 const auto *VD = cast<ValueDecl>(ND); 2101 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2102 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2103 } 2104 2105 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2106 // Check if this is a global variable. 2107 if (VD->hasLinkage() || VD->isStaticDataMember()) 2108 return EmitGlobalVarDeclLValue(*this, E, VD); 2109 2110 Address addr = Address::invalid(); 2111 2112 // The variable should generally be present in the local decl map. 2113 auto iter = LocalDeclMap.find(VD); 2114 if (iter != LocalDeclMap.end()) { 2115 addr = iter->second; 2116 2117 // Otherwise, it might be static local we haven't emitted yet for 2118 // some reason; most likely, because it's in an outer function. 2119 } else if (VD->isStaticLocal()) { 2120 addr = Address(CGM.getOrCreateStaticVarDecl( 2121 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2122 getContext().getDeclAlign(VD)); 2123 2124 // No other cases for now. 2125 } else { 2126 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2127 } 2128 2129 2130 // Check for OpenMP threadprivate variables. 2131 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2132 return EmitThreadPrivateVarDeclLValue( 2133 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2134 E->getExprLoc()); 2135 } 2136 2137 // Drill into block byref variables. 2138 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2139 if (isBlockByref) { 2140 addr = emitBlockByrefAddress(addr, VD); 2141 } 2142 2143 // Drill into reference types. 2144 LValue LV; 2145 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2146 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2147 } else { 2148 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2149 } 2150 2151 bool isLocalStorage = VD->hasLocalStorage(); 2152 2153 bool NonGCable = isLocalStorage && 2154 !VD->getType()->isReferenceType() && 2155 !isBlockByref; 2156 if (NonGCable) { 2157 LV.getQuals().removeObjCGCAttr(); 2158 LV.setNonGC(true); 2159 } 2160 2161 bool isImpreciseLifetime = 2162 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2163 if (isImpreciseLifetime) 2164 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2165 setObjCGCLValueClass(getContext(), E, LV); 2166 return LV; 2167 } 2168 2169 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2170 return EmitFunctionDeclLValue(*this, E, FD); 2171 2172 llvm_unreachable("Unhandled DeclRefExpr"); 2173 } 2174 2175 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2176 // __extension__ doesn't affect lvalue-ness. 2177 if (E->getOpcode() == UO_Extension) 2178 return EmitLValue(E->getSubExpr()); 2179 2180 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2181 switch (E->getOpcode()) { 2182 default: llvm_unreachable("Unknown unary operator lvalue!"); 2183 case UO_Deref: { 2184 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2185 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2186 2187 AlignmentSource AlignSource; 2188 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2189 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2190 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2191 2192 // We should not generate __weak write barrier on indirect reference 2193 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2194 // But, we continue to generate __strong write barrier on indirect write 2195 // into a pointer to object. 2196 if (getLangOpts().ObjC1 && 2197 getLangOpts().getGC() != LangOptions::NonGC && 2198 LV.isObjCWeak()) 2199 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2200 return LV; 2201 } 2202 case UO_Real: 2203 case UO_Imag: { 2204 LValue LV = EmitLValue(E->getSubExpr()); 2205 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2206 2207 // __real is valid on scalars. This is a faster way of testing that. 2208 // __imag can only produce an rvalue on scalars. 2209 if (E->getOpcode() == UO_Real && 2210 !LV.getAddress().getElementType()->isStructTy()) { 2211 assert(E->getSubExpr()->getType()->isArithmeticType()); 2212 return LV; 2213 } 2214 2215 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2216 2217 Address Component = 2218 (E->getOpcode() == UO_Real 2219 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2220 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2221 return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource()); 2222 } 2223 case UO_PreInc: 2224 case UO_PreDec: { 2225 LValue LV = EmitLValue(E->getSubExpr()); 2226 bool isInc = E->getOpcode() == UO_PreInc; 2227 2228 if (E->getType()->isAnyComplexType()) 2229 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2230 else 2231 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2232 return LV; 2233 } 2234 } 2235 } 2236 2237 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2238 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2239 E->getType(), AlignmentSource::Decl); 2240 } 2241 2242 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2243 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2244 E->getType(), AlignmentSource::Decl); 2245 } 2246 2247 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2248 auto SL = E->getFunctionName(); 2249 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2250 StringRef FnName = CurFn->getName(); 2251 if (FnName.startswith("\01")) 2252 FnName = FnName.substr(1); 2253 StringRef NameItems[] = { 2254 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2255 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2256 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2257 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2258 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2259 } 2260 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2261 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2262 } 2263 2264 /// Emit a type description suitable for use by a runtime sanitizer library. The 2265 /// format of a type descriptor is 2266 /// 2267 /// \code 2268 /// { i16 TypeKind, i16 TypeInfo } 2269 /// \endcode 2270 /// 2271 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2272 /// integer, 1 for a floating point value, and -1 for anything else. 2273 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2274 // Only emit each type's descriptor once. 2275 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2276 return C; 2277 2278 uint16_t TypeKind = -1; 2279 uint16_t TypeInfo = 0; 2280 2281 if (T->isIntegerType()) { 2282 TypeKind = 0; 2283 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2284 (T->isSignedIntegerType() ? 1 : 0); 2285 } else if (T->isFloatingType()) { 2286 TypeKind = 1; 2287 TypeInfo = getContext().getTypeSize(T); 2288 } 2289 2290 // Format the type name as if for a diagnostic, including quotes and 2291 // optionally an 'aka'. 2292 SmallString<32> Buffer; 2293 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2294 (intptr_t)T.getAsOpaquePtr(), 2295 StringRef(), StringRef(), None, Buffer, 2296 None); 2297 2298 llvm::Constant *Components[] = { 2299 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2300 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2301 }; 2302 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2303 2304 auto *GV = new llvm::GlobalVariable( 2305 CGM.getModule(), Descriptor->getType(), 2306 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2307 GV->setUnnamedAddr(true); 2308 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2309 2310 // Remember the descriptor for this type. 2311 CGM.setTypeDescriptorInMap(T, GV); 2312 2313 return GV; 2314 } 2315 2316 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2317 llvm::Type *TargetTy = IntPtrTy; 2318 2319 // Floating-point types which fit into intptr_t are bitcast to integers 2320 // and then passed directly (after zero-extension, if necessary). 2321 if (V->getType()->isFloatingPointTy()) { 2322 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2323 if (Bits <= TargetTy->getIntegerBitWidth()) 2324 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2325 Bits)); 2326 } 2327 2328 // Integers which fit in intptr_t are zero-extended and passed directly. 2329 if (V->getType()->isIntegerTy() && 2330 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2331 return Builder.CreateZExt(V, TargetTy); 2332 2333 // Pointers are passed directly, everything else is passed by address. 2334 if (!V->getType()->isPointerTy()) { 2335 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2336 Builder.CreateStore(V, Ptr); 2337 V = Ptr.getPointer(); 2338 } 2339 return Builder.CreatePtrToInt(V, TargetTy); 2340 } 2341 2342 /// \brief Emit a representation of a SourceLocation for passing to a handler 2343 /// in a sanitizer runtime library. The format for this data is: 2344 /// \code 2345 /// struct SourceLocation { 2346 /// const char *Filename; 2347 /// int32_t Line, Column; 2348 /// }; 2349 /// \endcode 2350 /// For an invalid SourceLocation, the Filename pointer is null. 2351 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2352 llvm::Constant *Filename; 2353 int Line, Column; 2354 2355 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2356 if (PLoc.isValid()) { 2357 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2358 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2359 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2360 Filename = FilenameGV.getPointer(); 2361 Line = PLoc.getLine(); 2362 Column = PLoc.getColumn(); 2363 } else { 2364 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2365 Line = Column = 0; 2366 } 2367 2368 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2369 Builder.getInt32(Column)}; 2370 2371 return llvm::ConstantStruct::getAnon(Data); 2372 } 2373 2374 namespace { 2375 /// \brief Specify under what conditions this check can be recovered 2376 enum class CheckRecoverableKind { 2377 /// Always terminate program execution if this check fails. 2378 Unrecoverable, 2379 /// Check supports recovering, runtime has both fatal (noreturn) and 2380 /// non-fatal handlers for this check. 2381 Recoverable, 2382 /// Runtime conditionally aborts, always need to support recovery. 2383 AlwaysRecoverable 2384 }; 2385 } 2386 2387 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2388 assert(llvm::countPopulation(Kind) == 1); 2389 switch (Kind) { 2390 case SanitizerKind::Vptr: 2391 return CheckRecoverableKind::AlwaysRecoverable; 2392 case SanitizerKind::Return: 2393 case SanitizerKind::Unreachable: 2394 return CheckRecoverableKind::Unrecoverable; 2395 default: 2396 return CheckRecoverableKind::Recoverable; 2397 } 2398 } 2399 2400 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2401 llvm::FunctionType *FnType, 2402 ArrayRef<llvm::Value *> FnArgs, 2403 StringRef CheckName, 2404 CheckRecoverableKind RecoverKind, bool IsFatal, 2405 llvm::BasicBlock *ContBB) { 2406 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2407 bool NeedsAbortSuffix = 2408 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2409 std::string FnName = ("__ubsan_handle_" + CheckName + 2410 (NeedsAbortSuffix ? "_abort" : "")).str(); 2411 bool MayReturn = 2412 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2413 2414 llvm::AttrBuilder B; 2415 if (!MayReturn) { 2416 B.addAttribute(llvm::Attribute::NoReturn) 2417 .addAttribute(llvm::Attribute::NoUnwind); 2418 } 2419 B.addAttribute(llvm::Attribute::UWTable); 2420 2421 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2422 FnType, FnName, 2423 llvm::AttributeSet::get(CGF.getLLVMContext(), 2424 llvm::AttributeSet::FunctionIndex, B)); 2425 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2426 if (!MayReturn) { 2427 HandlerCall->setDoesNotReturn(); 2428 CGF.Builder.CreateUnreachable(); 2429 } else { 2430 CGF.Builder.CreateBr(ContBB); 2431 } 2432 } 2433 2434 void CodeGenFunction::EmitCheck( 2435 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2436 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2437 ArrayRef<llvm::Value *> DynamicArgs) { 2438 assert(IsSanitizerScope); 2439 assert(Checked.size() > 0); 2440 2441 llvm::Value *FatalCond = nullptr; 2442 llvm::Value *RecoverableCond = nullptr; 2443 llvm::Value *TrapCond = nullptr; 2444 for (int i = 0, n = Checked.size(); i < n; ++i) { 2445 llvm::Value *Check = Checked[i].first; 2446 // -fsanitize-trap= overrides -fsanitize-recover=. 2447 llvm::Value *&Cond = 2448 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2449 ? TrapCond 2450 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2451 ? RecoverableCond 2452 : FatalCond; 2453 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2454 } 2455 2456 if (TrapCond) 2457 EmitTrapCheck(TrapCond); 2458 if (!FatalCond && !RecoverableCond) 2459 return; 2460 2461 llvm::Value *JointCond; 2462 if (FatalCond && RecoverableCond) 2463 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2464 else 2465 JointCond = FatalCond ? FatalCond : RecoverableCond; 2466 assert(JointCond); 2467 2468 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2469 // In cross-DSO CFI mode this code is used to generate __cfi_check_fail, which 2470 // includes all checks, even those that are not in SanOpts. 2471 assert(CGM.getCodeGenOpts().SanitizeCfiCrossDso || 2472 SanOpts.has(Checked[0].second)); 2473 #ifndef NDEBUG 2474 for (int i = 1, n = Checked.size(); i < n; ++i) { 2475 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2476 "All recoverable kinds in a single check must be same!"); 2477 assert(CGM.getCodeGenOpts().SanitizeCfiCrossDso || 2478 SanOpts.has(Checked[i].second)); 2479 } 2480 #endif 2481 2482 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2483 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2484 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2485 // Give hint that we very much don't expect to execute the handler 2486 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2487 llvm::MDBuilder MDHelper(getLLVMContext()); 2488 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2489 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2490 EmitBlock(Handlers); 2491 2492 // Handler functions take an i8* pointing to the (handler-specific) static 2493 // information block, followed by a sequence of intptr_t arguments 2494 // representing operand values. 2495 SmallVector<llvm::Value *, 4> Args; 2496 SmallVector<llvm::Type *, 4> ArgTypes; 2497 Args.reserve(DynamicArgs.size() + 1); 2498 ArgTypes.reserve(DynamicArgs.size() + 1); 2499 2500 // Emit handler arguments and create handler function type. 2501 if (!StaticArgs.empty()) { 2502 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2503 auto *InfoPtr = 2504 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2505 llvm::GlobalVariable::PrivateLinkage, Info); 2506 InfoPtr->setUnnamedAddr(true); 2507 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2508 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2509 ArgTypes.push_back(Int8PtrTy); 2510 } 2511 2512 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2513 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2514 ArgTypes.push_back(IntPtrTy); 2515 } 2516 2517 llvm::FunctionType *FnType = 2518 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2519 2520 if (!FatalCond || !RecoverableCond) { 2521 // Simple case: we need to generate a single handler call, either 2522 // fatal, or non-fatal. 2523 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2524 (FatalCond != nullptr), Cont); 2525 } else { 2526 // Emit two handler calls: first one for set of unrecoverable checks, 2527 // another one for recoverable. 2528 llvm::BasicBlock *NonFatalHandlerBB = 2529 createBasicBlock("non_fatal." + CheckName); 2530 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2531 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2532 EmitBlock(FatalHandlerBB); 2533 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2534 NonFatalHandlerBB); 2535 EmitBlock(NonFatalHandlerBB); 2536 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2537 Cont); 2538 } 2539 2540 EmitBlock(Cont); 2541 } 2542 2543 void CodeGenFunction::EmitCfiSlowPathCheck( 2544 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2545 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2546 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2547 2548 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2549 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2550 2551 llvm::MDBuilder MDHelper(getLLVMContext()); 2552 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2553 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2554 2555 EmitBlock(CheckBB); 2556 2557 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2558 2559 llvm::CallInst *CheckCall; 2560 if (WithDiag) { 2561 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2562 auto *InfoPtr = 2563 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2564 llvm::GlobalVariable::PrivateLinkage, Info); 2565 InfoPtr->setUnnamedAddr(true); 2566 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2567 2568 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2569 "__cfi_slowpath_diag", 2570 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2571 false)); 2572 CheckCall = Builder.CreateCall( 2573 SlowPathDiagFn, 2574 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2575 } else { 2576 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2577 "__cfi_slowpath", 2578 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2579 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2580 } 2581 2582 CheckCall->setDoesNotThrow(); 2583 2584 EmitBlock(Cont); 2585 } 2586 2587 // This function is basically a switch over the CFI failure kind, which is 2588 // extracted from CFICheckFailData (1st function argument). Each case is either 2589 // llvm.trap or a call to one of the two runtime handlers, based on 2590 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2591 // failure kind) traps, but this should really never happen. CFICheckFailData 2592 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2593 // check kind; in this case __cfi_check_fail traps as well. 2594 void CodeGenFunction::EmitCfiCheckFail() { 2595 SanitizerScope SanScope(this); 2596 FunctionArgList Args; 2597 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2598 getContext().VoidPtrTy); 2599 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2600 getContext().VoidPtrTy); 2601 Args.push_back(&ArgData); 2602 Args.push_back(&ArgAddr); 2603 2604 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2605 getContext().VoidTy, Args, FunctionType::ExtInfo(), /*variadic=*/false); 2606 2607 llvm::Function *F = llvm::Function::Create( 2608 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2609 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2610 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2611 2612 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2613 SourceLocation()); 2614 2615 llvm::Value *Data = 2616 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2617 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2618 llvm::Value *Addr = 2619 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2620 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2621 2622 // Data == nullptr means the calling module has trap behaviour for this check. 2623 llvm::Value *DataIsNotNullPtr = 2624 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2625 EmitTrapCheck(DataIsNotNullPtr); 2626 2627 llvm::StructType *SourceLocationTy = 2628 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2629 llvm::StructType *CfiCheckFailDataTy = 2630 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2631 2632 llvm::Value *V = Builder.CreateConstGEP2_32( 2633 CfiCheckFailDataTy, 2634 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2635 0); 2636 Address CheckKindAddr(V, getIntAlign()); 2637 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2638 2639 const std::pair<int, SanitizerMask> CheckKinds[] = { 2640 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2641 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2642 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2643 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2644 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2645 2646 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2647 for (auto CheckKindMaskPair : CheckKinds) { 2648 int Kind = CheckKindMaskPair.first; 2649 SanitizerMask Mask = CheckKindMaskPair.second; 2650 llvm::Value *Cond = 2651 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2652 EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {}, {Data, Addr}); 2653 } 2654 2655 FinishFunction(); 2656 // The only reference to this function will be created during LTO link. 2657 // Make sure it survives until then. 2658 CGM.addUsedGlobal(F); 2659 } 2660 2661 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2662 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2663 2664 // If we're optimizing, collapse all calls to trap down to just one per 2665 // function to save on code size. 2666 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2667 TrapBB = createBasicBlock("trap"); 2668 Builder.CreateCondBr(Checked, Cont, TrapBB); 2669 EmitBlock(TrapBB); 2670 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2671 TrapCall->setDoesNotReturn(); 2672 TrapCall->setDoesNotThrow(); 2673 Builder.CreateUnreachable(); 2674 } else { 2675 Builder.CreateCondBr(Checked, Cont, TrapBB); 2676 } 2677 2678 EmitBlock(Cont); 2679 } 2680 2681 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2682 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2683 2684 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) 2685 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, 2686 "trap-func-name", 2687 CGM.getCodeGenOpts().TrapFuncName); 2688 2689 return TrapCall; 2690 } 2691 2692 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2693 AlignmentSource *AlignSource) { 2694 assert(E->getType()->isArrayType() && 2695 "Array to pointer decay must have array source type!"); 2696 2697 // Expressions of array type can't be bitfields or vector elements. 2698 LValue LV = EmitLValue(E); 2699 Address Addr = LV.getAddress(); 2700 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2701 2702 // If the array type was an incomplete type, we need to make sure 2703 // the decay ends up being the right type. 2704 llvm::Type *NewTy = ConvertType(E->getType()); 2705 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2706 2707 // Note that VLA pointers are always decayed, so we don't need to do 2708 // anything here. 2709 if (!E->getType()->isVariableArrayType()) { 2710 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2711 "Expected pointer to array"); 2712 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2713 } 2714 2715 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2716 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2717 } 2718 2719 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2720 /// array to pointer, return the array subexpression. 2721 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2722 // If this isn't just an array->pointer decay, bail out. 2723 const auto *CE = dyn_cast<CastExpr>(E); 2724 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2725 return nullptr; 2726 2727 // If this is a decay from variable width array, bail out. 2728 const Expr *SubExpr = CE->getSubExpr(); 2729 if (SubExpr->getType()->isVariableArrayType()) 2730 return nullptr; 2731 2732 return SubExpr; 2733 } 2734 2735 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2736 llvm::Value *ptr, 2737 ArrayRef<llvm::Value*> indices, 2738 bool inbounds, 2739 const llvm::Twine &name = "arrayidx") { 2740 if (inbounds) { 2741 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2742 } else { 2743 return CGF.Builder.CreateGEP(ptr, indices, name); 2744 } 2745 } 2746 2747 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2748 llvm::Value *idx, 2749 CharUnits eltSize) { 2750 // If we have a constant index, we can use the exact offset of the 2751 // element we're accessing. 2752 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2753 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2754 return arrayAlign.alignmentAtOffset(offset); 2755 2756 // Otherwise, use the worst-case alignment for any element. 2757 } else { 2758 return arrayAlign.alignmentOfArrayElement(eltSize); 2759 } 2760 } 2761 2762 static QualType getFixedSizeElementType(const ASTContext &ctx, 2763 const VariableArrayType *vla) { 2764 QualType eltType; 2765 do { 2766 eltType = vla->getElementType(); 2767 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2768 return eltType; 2769 } 2770 2771 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 2772 ArrayRef<llvm::Value*> indices, 2773 QualType eltType, bool inbounds, 2774 const llvm::Twine &name = "arrayidx") { 2775 // All the indices except that last must be zero. 2776 #ifndef NDEBUG 2777 for (auto idx : indices.drop_back()) 2778 assert(isa<llvm::ConstantInt>(idx) && 2779 cast<llvm::ConstantInt>(idx)->isZero()); 2780 #endif 2781 2782 // Determine the element size of the statically-sized base. This is 2783 // the thing that the indices are expressed in terms of. 2784 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 2785 eltType = getFixedSizeElementType(CGF.getContext(), vla); 2786 } 2787 2788 // We can use that to compute the best alignment of the element. 2789 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2790 CharUnits eltAlign = 2791 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 2792 2793 llvm::Value *eltPtr = 2794 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 2795 return Address(eltPtr, eltAlign); 2796 } 2797 2798 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2799 bool Accessed) { 2800 // The index must always be an integer, which is not an aggregate. Emit it. 2801 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2802 QualType IdxTy = E->getIdx()->getType(); 2803 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2804 2805 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2806 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2807 2808 // If the base is a vector type, then we are forming a vector element lvalue 2809 // with this subscript. 2810 if (E->getBase()->getType()->isVectorType() && 2811 !isa<ExtVectorElementExpr>(E->getBase())) { 2812 // Emit the vector as an lvalue to get its address. 2813 LValue LHS = EmitLValue(E->getBase()); 2814 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2815 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2816 E->getBase()->getType(), 2817 LHS.getAlignmentSource()); 2818 } 2819 2820 // All the other cases basically behave like simple offsetting. 2821 2822 // Extend or truncate the index type to 32 or 64-bits. 2823 if (Idx->getType() != IntPtrTy) 2824 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2825 2826 // Handle the extvector case we ignored above. 2827 if (isa<ExtVectorElementExpr>(E->getBase())) { 2828 LValue LV = EmitLValue(E->getBase()); 2829 Address Addr = EmitExtVectorElementLValue(LV); 2830 2831 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 2832 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 2833 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 2834 } 2835 2836 AlignmentSource AlignSource; 2837 Address Addr = Address::invalid(); 2838 if (const VariableArrayType *vla = 2839 getContext().getAsVariableArrayType(E->getType())) { 2840 // The base must be a pointer, which is not an aggregate. Emit 2841 // it. It needs to be emitted first in case it's what captures 2842 // the VLA bounds. 2843 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2844 2845 // The element count here is the total number of non-VLA elements. 2846 llvm::Value *numElements = getVLASize(vla).first; 2847 2848 // Effectively, the multiply by the VLA size is part of the GEP. 2849 // GEP indexes are signed, and scaling an index isn't permitted to 2850 // signed-overflow, so we use the same semantics for our explicit 2851 // multiply. We suppress this if overflow is not undefined behavior. 2852 if (getLangOpts().isSignedOverflowDefined()) { 2853 Idx = Builder.CreateMul(Idx, numElements); 2854 } else { 2855 Idx = Builder.CreateNSWMul(Idx, numElements); 2856 } 2857 2858 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 2859 !getLangOpts().isSignedOverflowDefined()); 2860 2861 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2862 // Indexing over an interface, as in "NSString *P; P[4];" 2863 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 2864 llvm::Value *InterfaceSizeVal = 2865 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());; 2866 2867 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 2868 2869 // Emit the base pointer. 2870 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2871 2872 // We don't necessarily build correct LLVM struct types for ObjC 2873 // interfaces, so we can't rely on GEP to do this scaling 2874 // correctly, so we need to cast to i8*. FIXME: is this actually 2875 // true? A lot of other things in the fragile ABI would break... 2876 llvm::Type *OrigBaseTy = Addr.getType(); 2877 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 2878 2879 // Do the GEP. 2880 CharUnits EltAlign = 2881 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 2882 llvm::Value *EltPtr = 2883 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 2884 Addr = Address(EltPtr, EltAlign); 2885 2886 // Cast back. 2887 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 2888 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2889 // If this is A[i] where A is an array, the frontend will have decayed the 2890 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2891 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2892 // "gep x, i" here. Emit one "gep A, 0, i". 2893 assert(Array->getType()->isArrayType() && 2894 "Array to pointer decay must have array source type!"); 2895 LValue ArrayLV; 2896 // For simple multidimensional array indexing, set the 'accessed' flag for 2897 // better bounds-checking of the base expression. 2898 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2899 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2900 else 2901 ArrayLV = EmitLValue(Array); 2902 2903 // Propagate the alignment from the array itself to the result. 2904 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 2905 {CGM.getSize(CharUnits::Zero()), Idx}, 2906 E->getType(), 2907 !getLangOpts().isSignedOverflowDefined()); 2908 AlignSource = ArrayLV.getAlignmentSource(); 2909 } else { 2910 // The base must be a pointer; emit it with an estimate of its alignment. 2911 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2912 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 2913 !getLangOpts().isSignedOverflowDefined()); 2914 } 2915 2916 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 2917 2918 // TODO: Preserve/extend path TBAA metadata? 2919 2920 if (getLangOpts().ObjC1 && 2921 getLangOpts().getGC() != LangOptions::NonGC) { 2922 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2923 setObjCGCLValueClass(getContext(), E, LV); 2924 } 2925 return LV; 2926 } 2927 2928 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2929 bool IsLowerBound) { 2930 LValue Base; 2931 if (auto *ASE = 2932 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 2933 Base = EmitOMPArraySectionExpr(ASE, IsLowerBound); 2934 else 2935 Base = EmitLValue(E->getBase()); 2936 QualType BaseTy = Base.getType(); 2937 llvm::Value *Idx = nullptr; 2938 QualType ResultExprTy; 2939 if (auto *AT = getContext().getAsArrayType(BaseTy)) 2940 ResultExprTy = AT->getElementType(); 2941 else 2942 ResultExprTy = BaseTy->getPointeeType(); 2943 if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) { 2944 // Requesting lower bound or upper bound, but without provided length and 2945 // without ':' symbol for the default length -> length = 1. 2946 // Idx = LowerBound ?: 0; 2947 if (auto *LowerBound = E->getLowerBound()) { 2948 Idx = Builder.CreateIntCast( 2949 EmitScalarExpr(LowerBound), IntPtrTy, 2950 LowerBound->getType()->hasSignedIntegerRepresentation()); 2951 } else 2952 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 2953 } else { 2954 // Try to emit length or lower bound as constant. If this is possible, 1 is 2955 // subtracted from constant length or lower bound. Otherwise, emit LLVM IR 2956 // (LB + Len) - 1. 2957 auto &C = CGM.getContext(); 2958 auto *Length = E->getLength(); 2959 llvm::APSInt ConstLength; 2960 if (Length) { 2961 // Idx = LowerBound + Length - 1; 2962 if (Length->isIntegerConstantExpr(ConstLength, C)) { 2963 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 2964 Length = nullptr; 2965 } 2966 auto *LowerBound = E->getLowerBound(); 2967 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 2968 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 2969 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 2970 LowerBound = nullptr; 2971 } 2972 if (!Length) 2973 --ConstLength; 2974 else if (!LowerBound) 2975 --ConstLowerBound; 2976 2977 if (Length || LowerBound) { 2978 auto *LowerBoundVal = 2979 LowerBound 2980 ? Builder.CreateIntCast( 2981 EmitScalarExpr(LowerBound), IntPtrTy, 2982 LowerBound->getType()->hasSignedIntegerRepresentation()) 2983 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 2984 auto *LengthVal = 2985 Length 2986 ? Builder.CreateIntCast( 2987 EmitScalarExpr(Length), IntPtrTy, 2988 Length->getType()->hasSignedIntegerRepresentation()) 2989 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 2990 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 2991 /*HasNUW=*/false, 2992 !getLangOpts().isSignedOverflowDefined()); 2993 if (Length && LowerBound) { 2994 Idx = Builder.CreateSub( 2995 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 2996 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 2997 } 2998 } else 2999 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3000 } else { 3001 // Idx = ArraySize - 1; 3002 if (auto *VAT = C.getAsVariableArrayType(BaseTy)) { 3003 Length = VAT->getSizeExpr(); 3004 if (Length->isIntegerConstantExpr(ConstLength, C)) 3005 Length = nullptr; 3006 } else { 3007 auto *CAT = C.getAsConstantArrayType(BaseTy); 3008 ConstLength = CAT->getSize(); 3009 } 3010 if (Length) { 3011 auto *LengthVal = Builder.CreateIntCast( 3012 EmitScalarExpr(Length), IntPtrTy, 3013 Length->getType()->hasSignedIntegerRepresentation()); 3014 Idx = Builder.CreateSub( 3015 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3016 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3017 } else { 3018 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3019 --ConstLength; 3020 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3021 } 3022 } 3023 } 3024 assert(Idx); 3025 3026 llvm::Value *EltPtr; 3027 QualType FixedSizeEltType = ResultExprTy; 3028 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3029 // The element count here is the total number of non-VLA elements. 3030 llvm::Value *numElements = getVLASize(VLA).first; 3031 FixedSizeEltType = getFixedSizeElementType(getContext(), VLA); 3032 3033 // Effectively, the multiply by the VLA size is part of the GEP. 3034 // GEP indexes are signed, and scaling an index isn't permitted to 3035 // signed-overflow, so we use the same semantics for our explicit 3036 // multiply. We suppress this if overflow is not undefined behavior. 3037 if (getLangOpts().isSignedOverflowDefined()) { 3038 Idx = Builder.CreateMul(Idx, numElements); 3039 EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx"); 3040 } else { 3041 Idx = Builder.CreateNSWMul(Idx, numElements); 3042 EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx"); 3043 } 3044 } else if (BaseTy->isConstantArrayType()) { 3045 llvm::Value *ArrayPtr = Base.getPointer(); 3046 llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 3047 llvm::Value *Args[] = {Zero, Idx}; 3048 3049 if (getLangOpts().isSignedOverflowDefined()) 3050 EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 3051 else 3052 EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 3053 } else { 3054 // The base must be a pointer, which is not an aggregate. Emit it. 3055 if (getLangOpts().isSignedOverflowDefined()) 3056 EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx"); 3057 else 3058 EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx"); 3059 } 3060 3061 CharUnits EltAlign = 3062 Base.getAlignment().alignmentOfArrayElement( 3063 getContext().getTypeSizeInChars(FixedSizeEltType)); 3064 3065 // Limit the alignment to that of the result type. 3066 LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy, 3067 Base.getAlignmentSource()); 3068 3069 LV.getQuals().setAddressSpace(BaseTy.getAddressSpace()); 3070 3071 return LV; 3072 } 3073 3074 LValue CodeGenFunction:: 3075 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3076 // Emit the base vector as an l-value. 3077 LValue Base; 3078 3079 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3080 if (E->isArrow()) { 3081 // If it is a pointer to a vector, emit the address and form an lvalue with 3082 // it. 3083 AlignmentSource AlignSource; 3084 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3085 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3086 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3087 Base.getQuals().removeObjCGCAttr(); 3088 } else if (E->getBase()->isGLValue()) { 3089 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3090 // emit the base as an lvalue. 3091 assert(E->getBase()->getType()->isVectorType()); 3092 Base = EmitLValue(E->getBase()); 3093 } else { 3094 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3095 assert(E->getBase()->getType()->isVectorType() && 3096 "Result must be a vector"); 3097 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3098 3099 // Store the vector to memory (because LValue wants an address). 3100 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3101 Builder.CreateStore(Vec, VecMem); 3102 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3103 AlignmentSource::Decl); 3104 } 3105 3106 QualType type = 3107 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3108 3109 // Encode the element access list into a vector of unsigned indices. 3110 SmallVector<uint32_t, 4> Indices; 3111 E->getEncodedElementAccess(Indices); 3112 3113 if (Base.isSimple()) { 3114 llvm::Constant *CV = 3115 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3116 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3117 Base.getAlignmentSource()); 3118 } 3119 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3120 3121 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3122 SmallVector<llvm::Constant *, 4> CElts; 3123 3124 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3125 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3126 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3127 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3128 Base.getAlignmentSource()); 3129 } 3130 3131 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3132 Expr *BaseExpr = E->getBase(); 3133 3134 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3135 LValue BaseLV; 3136 if (E->isArrow()) { 3137 AlignmentSource AlignSource; 3138 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3139 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3140 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy); 3141 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3142 } else 3143 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3144 3145 NamedDecl *ND = E->getMemberDecl(); 3146 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3147 LValue LV = EmitLValueForField(BaseLV, Field); 3148 setObjCGCLValueClass(getContext(), E, LV); 3149 return LV; 3150 } 3151 3152 if (auto *VD = dyn_cast<VarDecl>(ND)) 3153 return EmitGlobalVarDeclLValue(*this, E, VD); 3154 3155 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3156 return EmitFunctionDeclLValue(*this, E, FD); 3157 3158 llvm_unreachable("Unhandled member declaration!"); 3159 } 3160 3161 /// Given that we are currently emitting a lambda, emit an l-value for 3162 /// one of its members. 3163 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3164 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3165 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3166 QualType LambdaTagType = 3167 getContext().getTagDeclType(Field->getParent()); 3168 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3169 return EmitLValueForField(LambdaLV, Field); 3170 } 3171 3172 /// Drill down to the storage of a field without walking into 3173 /// reference types. 3174 /// 3175 /// The resulting address doesn't necessarily have the right type. 3176 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3177 const FieldDecl *field) { 3178 const RecordDecl *rec = field->getParent(); 3179 3180 unsigned idx = 3181 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3182 3183 CharUnits offset; 3184 // Adjust the alignment down to the given offset. 3185 // As a special case, if the LLVM field index is 0, we know that this 3186 // is zero. 3187 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3188 .getFieldOffset(field->getFieldIndex()) == 0) && 3189 "LLVM field at index zero had non-zero offset?"); 3190 if (idx != 0) { 3191 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3192 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3193 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3194 } 3195 3196 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3197 } 3198 3199 LValue CodeGenFunction::EmitLValueForField(LValue base, 3200 const FieldDecl *field) { 3201 AlignmentSource fieldAlignSource = 3202 getFieldAlignmentSource(base.getAlignmentSource()); 3203 3204 if (field->isBitField()) { 3205 const CGRecordLayout &RL = 3206 CGM.getTypes().getCGRecordLayout(field->getParent()); 3207 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3208 Address Addr = base.getAddress(); 3209 unsigned Idx = RL.getLLVMFieldNo(field); 3210 if (Idx != 0) 3211 // For structs, we GEP to the field that the record layout suggests. 3212 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3213 field->getName()); 3214 // Get the access type. 3215 llvm::Type *FieldIntTy = 3216 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3217 if (Addr.getElementType() != FieldIntTy) 3218 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3219 3220 QualType fieldType = 3221 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3222 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3223 } 3224 3225 const RecordDecl *rec = field->getParent(); 3226 QualType type = field->getType(); 3227 3228 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3229 3230 Address addr = base.getAddress(); 3231 unsigned cvr = base.getVRQualifiers(); 3232 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3233 if (rec->isUnion()) { 3234 // For unions, there is no pointer adjustment. 3235 assert(!type->isReferenceType() && "union has reference member"); 3236 // TODO: handle path-aware TBAA for union. 3237 TBAAPath = false; 3238 } else { 3239 // For structs, we GEP to the field that the record layout suggests. 3240 addr = emitAddrOfFieldStorage(*this, addr, field); 3241 3242 // If this is a reference field, load the reference right now. 3243 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3244 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3245 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3246 3247 // Loading the reference will disable path-aware TBAA. 3248 TBAAPath = false; 3249 if (CGM.shouldUseTBAA()) { 3250 llvm::MDNode *tbaa; 3251 if (mayAlias) 3252 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3253 else 3254 tbaa = CGM.getTBAAInfo(type); 3255 if (tbaa) 3256 CGM.DecorateInstructionWithTBAA(load, tbaa); 3257 } 3258 3259 mayAlias = false; 3260 type = refType->getPointeeType(); 3261 3262 CharUnits alignment = 3263 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3264 addr = Address(load, alignment); 3265 3266 // Qualifiers on the struct don't apply to the referencee, and 3267 // we'll pick up CVR from the actual type later, so reset these 3268 // additional qualifiers now. 3269 cvr = 0; 3270 } 3271 } 3272 3273 // Make sure that the address is pointing to the right type. This is critical 3274 // for both unions and structs. A union needs a bitcast, a struct element 3275 // will need a bitcast if the LLVM type laid out doesn't match the desired 3276 // type. 3277 addr = Builder.CreateElementBitCast(addr, 3278 CGM.getTypes().ConvertTypeForMem(type), 3279 field->getName()); 3280 3281 if (field->hasAttr<AnnotateAttr>()) 3282 addr = EmitFieldAnnotations(field, addr); 3283 3284 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3285 LV.getQuals().addCVRQualifiers(cvr); 3286 if (TBAAPath) { 3287 const ASTRecordLayout &Layout = 3288 getContext().getASTRecordLayout(field->getParent()); 3289 // Set the base type to be the base type of the base LValue and 3290 // update offset to be relative to the base type. 3291 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3292 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3293 Layout.getFieldOffset(field->getFieldIndex()) / 3294 getContext().getCharWidth()); 3295 } 3296 3297 // __weak attribute on a field is ignored. 3298 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3299 LV.getQuals().removeObjCGCAttr(); 3300 3301 // Fields of may_alias structs act like 'char' for TBAA purposes. 3302 // FIXME: this should get propagated down through anonymous structs 3303 // and unions. 3304 if (mayAlias && LV.getTBAAInfo()) 3305 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3306 3307 return LV; 3308 } 3309 3310 LValue 3311 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3312 const FieldDecl *Field) { 3313 QualType FieldType = Field->getType(); 3314 3315 if (!FieldType->isReferenceType()) 3316 return EmitLValueForField(Base, Field); 3317 3318 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3319 3320 // Make sure that the address is pointing to the right type. 3321 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3322 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3323 3324 // TODO: access-path TBAA? 3325 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3326 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3327 } 3328 3329 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3330 if (E->isFileScope()) { 3331 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3332 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3333 } 3334 if (E->getType()->isVariablyModifiedType()) 3335 // make sure to emit the VLA size. 3336 EmitVariablyModifiedType(E->getType()); 3337 3338 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3339 const Expr *InitExpr = E->getInitializer(); 3340 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3341 3342 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3343 /*Init*/ true); 3344 3345 return Result; 3346 } 3347 3348 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3349 if (!E->isGLValue()) 3350 // Initializing an aggregate temporary in C++11: T{...}. 3351 return EmitAggExprToLValue(E); 3352 3353 // An lvalue initializer list must be initializing a reference. 3354 assert(E->getNumInits() == 1 && "reference init with multiple values"); 3355 return EmitLValue(E->getInit(0)); 3356 } 3357 3358 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3359 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3360 /// LValue is returned and the current block has been terminated. 3361 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3362 const Expr *Operand) { 3363 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3364 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3365 return None; 3366 } 3367 3368 return CGF.EmitLValue(Operand); 3369 } 3370 3371 LValue CodeGenFunction:: 3372 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3373 if (!expr->isGLValue()) { 3374 // ?: here should be an aggregate. 3375 assert(hasAggregateEvaluationKind(expr->getType()) && 3376 "Unexpected conditional operator!"); 3377 return EmitAggExprToLValue(expr); 3378 } 3379 3380 OpaqueValueMapping binding(*this, expr); 3381 3382 const Expr *condExpr = expr->getCond(); 3383 bool CondExprBool; 3384 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3385 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3386 if (!CondExprBool) std::swap(live, dead); 3387 3388 if (!ContainsLabel(dead)) { 3389 // If the true case is live, we need to track its region. 3390 if (CondExprBool) 3391 incrementProfileCounter(expr); 3392 return EmitLValue(live); 3393 } 3394 } 3395 3396 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3397 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3398 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3399 3400 ConditionalEvaluation eval(*this); 3401 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3402 3403 // Any temporaries created here are conditional. 3404 EmitBlock(lhsBlock); 3405 incrementProfileCounter(expr); 3406 eval.begin(*this); 3407 Optional<LValue> lhs = 3408 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3409 eval.end(*this); 3410 3411 if (lhs && !lhs->isSimple()) 3412 return EmitUnsupportedLValue(expr, "conditional operator"); 3413 3414 lhsBlock = Builder.GetInsertBlock(); 3415 if (lhs) 3416 Builder.CreateBr(contBlock); 3417 3418 // Any temporaries created here are conditional. 3419 EmitBlock(rhsBlock); 3420 eval.begin(*this); 3421 Optional<LValue> rhs = 3422 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3423 eval.end(*this); 3424 if (rhs && !rhs->isSimple()) 3425 return EmitUnsupportedLValue(expr, "conditional operator"); 3426 rhsBlock = Builder.GetInsertBlock(); 3427 3428 EmitBlock(contBlock); 3429 3430 if (lhs && rhs) { 3431 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3432 2, "cond-lvalue"); 3433 phi->addIncoming(lhs->getPointer(), lhsBlock); 3434 phi->addIncoming(rhs->getPointer(), rhsBlock); 3435 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3436 AlignmentSource alignSource = 3437 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3438 return MakeAddrLValue(result, expr->getType(), alignSource); 3439 } else { 3440 assert((lhs || rhs) && 3441 "both operands of glvalue conditional are throw-expressions?"); 3442 return lhs ? *lhs : *rhs; 3443 } 3444 } 3445 3446 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3447 /// type. If the cast is to a reference, we can have the usual lvalue result, 3448 /// otherwise if a cast is needed by the code generator in an lvalue context, 3449 /// then it must mean that we need the address of an aggregate in order to 3450 /// access one of its members. This can happen for all the reasons that casts 3451 /// are permitted with aggregate result, including noop aggregate casts, and 3452 /// cast from scalar to union. 3453 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3454 switch (E->getCastKind()) { 3455 case CK_ToVoid: 3456 case CK_BitCast: 3457 case CK_ArrayToPointerDecay: 3458 case CK_FunctionToPointerDecay: 3459 case CK_NullToMemberPointer: 3460 case CK_NullToPointer: 3461 case CK_IntegralToPointer: 3462 case CK_PointerToIntegral: 3463 case CK_PointerToBoolean: 3464 case CK_VectorSplat: 3465 case CK_IntegralCast: 3466 case CK_BooleanToSignedIntegral: 3467 case CK_IntegralToBoolean: 3468 case CK_IntegralToFloating: 3469 case CK_FloatingToIntegral: 3470 case CK_FloatingToBoolean: 3471 case CK_FloatingCast: 3472 case CK_FloatingRealToComplex: 3473 case CK_FloatingComplexToReal: 3474 case CK_FloatingComplexToBoolean: 3475 case CK_FloatingComplexCast: 3476 case CK_FloatingComplexToIntegralComplex: 3477 case CK_IntegralRealToComplex: 3478 case CK_IntegralComplexToReal: 3479 case CK_IntegralComplexToBoolean: 3480 case CK_IntegralComplexCast: 3481 case CK_IntegralComplexToFloatingComplex: 3482 case CK_DerivedToBaseMemberPointer: 3483 case CK_BaseToDerivedMemberPointer: 3484 case CK_MemberPointerToBoolean: 3485 case CK_ReinterpretMemberPointer: 3486 case CK_AnyPointerToBlockPointerCast: 3487 case CK_ARCProduceObject: 3488 case CK_ARCConsumeObject: 3489 case CK_ARCReclaimReturnedObject: 3490 case CK_ARCExtendBlockObject: 3491 case CK_CopyAndAutoreleaseBlockObject: 3492 case CK_AddressSpaceConversion: 3493 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3494 3495 case CK_Dependent: 3496 llvm_unreachable("dependent cast kind in IR gen!"); 3497 3498 case CK_BuiltinFnToFnPtr: 3499 llvm_unreachable("builtin functions are handled elsewhere"); 3500 3501 // These are never l-values; just use the aggregate emission code. 3502 case CK_NonAtomicToAtomic: 3503 case CK_AtomicToNonAtomic: 3504 return EmitAggExprToLValue(E); 3505 3506 case CK_Dynamic: { 3507 LValue LV = EmitLValue(E->getSubExpr()); 3508 Address V = LV.getAddress(); 3509 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3510 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3511 } 3512 3513 case CK_ConstructorConversion: 3514 case CK_UserDefinedConversion: 3515 case CK_CPointerToObjCPointerCast: 3516 case CK_BlockPointerToObjCPointerCast: 3517 case CK_NoOp: 3518 case CK_LValueToRValue: 3519 return EmitLValue(E->getSubExpr()); 3520 3521 case CK_UncheckedDerivedToBase: 3522 case CK_DerivedToBase: { 3523 const RecordType *DerivedClassTy = 3524 E->getSubExpr()->getType()->getAs<RecordType>(); 3525 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3526 3527 LValue LV = EmitLValue(E->getSubExpr()); 3528 Address This = LV.getAddress(); 3529 3530 // Perform the derived-to-base conversion 3531 Address Base = GetAddressOfBaseClass( 3532 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3533 /*NullCheckValue=*/false, E->getExprLoc()); 3534 3535 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3536 } 3537 case CK_ToUnion: 3538 return EmitAggExprToLValue(E); 3539 case CK_BaseToDerived: { 3540 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3541 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3542 3543 LValue LV = EmitLValue(E->getSubExpr()); 3544 3545 // Perform the base-to-derived conversion 3546 Address Derived = 3547 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3548 E->path_begin(), E->path_end(), 3549 /*NullCheckValue=*/false); 3550 3551 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3552 // performed and the object is not of the derived type. 3553 if (sanitizePerformTypeCheck()) 3554 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3555 Derived.getPointer(), E->getType()); 3556 3557 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3558 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3559 /*MayBeNull=*/false, 3560 CFITCK_DerivedCast, E->getLocStart()); 3561 3562 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3563 } 3564 case CK_LValueBitCast: { 3565 // This must be a reinterpret_cast (or c-style equivalent). 3566 const auto *CE = cast<ExplicitCastExpr>(E); 3567 3568 CGM.EmitExplicitCastExprType(CE, this); 3569 LValue LV = EmitLValue(E->getSubExpr()); 3570 Address V = Builder.CreateBitCast(LV.getAddress(), 3571 ConvertType(CE->getTypeAsWritten())); 3572 3573 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3574 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3575 /*MayBeNull=*/false, 3576 CFITCK_UnrelatedCast, E->getLocStart()); 3577 3578 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3579 } 3580 case CK_ObjCObjectLValueCast: { 3581 LValue LV = EmitLValue(E->getSubExpr()); 3582 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3583 ConvertType(E->getType())); 3584 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3585 } 3586 case CK_ZeroToOCLEvent: 3587 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3588 } 3589 3590 llvm_unreachable("Unhandled lvalue cast kind?"); 3591 } 3592 3593 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3594 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3595 return getOpaqueLValueMapping(e); 3596 } 3597 3598 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3599 const FieldDecl *FD, 3600 SourceLocation Loc) { 3601 QualType FT = FD->getType(); 3602 LValue FieldLV = EmitLValueForField(LV, FD); 3603 switch (getEvaluationKind(FT)) { 3604 case TEK_Complex: 3605 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3606 case TEK_Aggregate: 3607 return FieldLV.asAggregateRValue(); 3608 case TEK_Scalar: 3609 return EmitLoadOfLValue(FieldLV, Loc); 3610 } 3611 llvm_unreachable("bad evaluation kind"); 3612 } 3613 3614 //===--------------------------------------------------------------------===// 3615 // Expression Emission 3616 //===--------------------------------------------------------------------===// 3617 3618 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3619 ReturnValueSlot ReturnValue) { 3620 // Builtins never have block type. 3621 if (E->getCallee()->getType()->isBlockPointerType()) 3622 return EmitBlockCallExpr(E, ReturnValue); 3623 3624 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3625 return EmitCXXMemberCallExpr(CE, ReturnValue); 3626 3627 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3628 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3629 3630 const Decl *TargetDecl = E->getCalleeDecl(); 3631 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3632 if (unsigned builtinID = FD->getBuiltinID()) 3633 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3634 } 3635 3636 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3637 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3638 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3639 3640 if (const auto *PseudoDtor = 3641 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3642 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3643 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 3644 // Automatic Reference Counting: 3645 // If the pseudo-expression names a retainable object with weak or 3646 // strong lifetime, the object shall be released. 3647 Expr *BaseExpr = PseudoDtor->getBase(); 3648 Address BaseValue = Address::invalid(); 3649 Qualifiers BaseQuals; 3650 3651 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3652 if (PseudoDtor->isArrow()) { 3653 BaseValue = EmitPointerWithAlignment(BaseExpr); 3654 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3655 BaseQuals = PTy->getPointeeType().getQualifiers(); 3656 } else { 3657 LValue BaseLV = EmitLValue(BaseExpr); 3658 BaseValue = BaseLV.getAddress(); 3659 QualType BaseTy = BaseExpr->getType(); 3660 BaseQuals = BaseTy.getQualifiers(); 3661 } 3662 3663 switch (DestroyedType.getObjCLifetime()) { 3664 case Qualifiers::OCL_None: 3665 case Qualifiers::OCL_ExplicitNone: 3666 case Qualifiers::OCL_Autoreleasing: 3667 break; 3668 3669 case Qualifiers::OCL_Strong: 3670 EmitARCRelease(Builder.CreateLoad(BaseValue, 3671 PseudoDtor->getDestroyedType().isVolatileQualified()), 3672 ARCPreciseLifetime); 3673 break; 3674 3675 case Qualifiers::OCL_Weak: 3676 EmitARCDestroyWeak(BaseValue); 3677 break; 3678 } 3679 } else { 3680 // C++ [expr.pseudo]p1: 3681 // The result shall only be used as the operand for the function call 3682 // operator (), and the result of such a call has type void. The only 3683 // effect is the evaluation of the postfix-expression before the dot or 3684 // arrow. 3685 EmitScalarExpr(E->getCallee()); 3686 } 3687 3688 return RValue::get(nullptr); 3689 } 3690 3691 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3692 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3693 TargetDecl); 3694 } 3695 3696 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3697 // Comma expressions just emit their LHS then their RHS as an l-value. 3698 if (E->getOpcode() == BO_Comma) { 3699 EmitIgnoredExpr(E->getLHS()); 3700 EnsureInsertPoint(); 3701 return EmitLValue(E->getRHS()); 3702 } 3703 3704 if (E->getOpcode() == BO_PtrMemD || 3705 E->getOpcode() == BO_PtrMemI) 3706 return EmitPointerToDataMemberBinaryExpr(E); 3707 3708 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3709 3710 // Note that in all of these cases, __block variables need the RHS 3711 // evaluated first just in case the variable gets moved by the RHS. 3712 3713 switch (getEvaluationKind(E->getType())) { 3714 case TEK_Scalar: { 3715 switch (E->getLHS()->getType().getObjCLifetime()) { 3716 case Qualifiers::OCL_Strong: 3717 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3718 3719 case Qualifiers::OCL_Autoreleasing: 3720 return EmitARCStoreAutoreleasing(E).first; 3721 3722 // No reason to do any of these differently. 3723 case Qualifiers::OCL_None: 3724 case Qualifiers::OCL_ExplicitNone: 3725 case Qualifiers::OCL_Weak: 3726 break; 3727 } 3728 3729 RValue RV = EmitAnyExpr(E->getRHS()); 3730 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3731 EmitStoreThroughLValue(RV, LV); 3732 return LV; 3733 } 3734 3735 case TEK_Complex: 3736 return EmitComplexAssignmentLValue(E); 3737 3738 case TEK_Aggregate: 3739 return EmitAggExprToLValue(E); 3740 } 3741 llvm_unreachable("bad evaluation kind"); 3742 } 3743 3744 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3745 RValue RV = EmitCallExpr(E); 3746 3747 if (!RV.isScalar()) 3748 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3749 AlignmentSource::Decl); 3750 3751 assert(E->getCallReturnType(getContext())->isReferenceType() && 3752 "Can't have a scalar return unless the return type is a " 3753 "reference type!"); 3754 3755 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3756 } 3757 3758 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3759 // FIXME: This shouldn't require another copy. 3760 return EmitAggExprToLValue(E); 3761 } 3762 3763 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3764 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3765 && "binding l-value to type which needs a temporary"); 3766 AggValueSlot Slot = CreateAggTemp(E->getType()); 3767 EmitCXXConstructExpr(E, Slot); 3768 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3769 AlignmentSource::Decl); 3770 } 3771 3772 LValue 3773 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3774 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3775 } 3776 3777 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3778 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 3779 ConvertType(E->getType())); 3780 } 3781 3782 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3783 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 3784 AlignmentSource::Decl); 3785 } 3786 3787 LValue 3788 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3789 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3790 Slot.setExternallyDestructed(); 3791 EmitAggExpr(E->getSubExpr(), Slot); 3792 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 3793 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3794 AlignmentSource::Decl); 3795 } 3796 3797 LValue 3798 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3799 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3800 EmitLambdaExpr(E, Slot); 3801 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3802 AlignmentSource::Decl); 3803 } 3804 3805 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3806 RValue RV = EmitObjCMessageExpr(E); 3807 3808 if (!RV.isScalar()) 3809 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3810 AlignmentSource::Decl); 3811 3812 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3813 "Can't have a scalar return unless the return type is a " 3814 "reference type!"); 3815 3816 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3817 } 3818 3819 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3820 Address V = 3821 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 3822 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 3823 } 3824 3825 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3826 const ObjCIvarDecl *Ivar) { 3827 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3828 } 3829 3830 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3831 llvm::Value *BaseValue, 3832 const ObjCIvarDecl *Ivar, 3833 unsigned CVRQualifiers) { 3834 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3835 Ivar, CVRQualifiers); 3836 } 3837 3838 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3839 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3840 llvm::Value *BaseValue = nullptr; 3841 const Expr *BaseExpr = E->getBase(); 3842 Qualifiers BaseQuals; 3843 QualType ObjectTy; 3844 if (E->isArrow()) { 3845 BaseValue = EmitScalarExpr(BaseExpr); 3846 ObjectTy = BaseExpr->getType()->getPointeeType(); 3847 BaseQuals = ObjectTy.getQualifiers(); 3848 } else { 3849 LValue BaseLV = EmitLValue(BaseExpr); 3850 BaseValue = BaseLV.getPointer(); 3851 ObjectTy = BaseExpr->getType(); 3852 BaseQuals = ObjectTy.getQualifiers(); 3853 } 3854 3855 LValue LV = 3856 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3857 BaseQuals.getCVRQualifiers()); 3858 setObjCGCLValueClass(getContext(), E, LV); 3859 return LV; 3860 } 3861 3862 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3863 // Can only get l-value for message expression returning aggregate type 3864 RValue RV = EmitAnyExprToTemp(E); 3865 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3866 AlignmentSource::Decl); 3867 } 3868 3869 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3870 const CallExpr *E, ReturnValueSlot ReturnValue, 3871 CGCalleeInfo CalleeInfo, llvm::Value *Chain) { 3872 // Get the actual function type. The callee type will always be a pointer to 3873 // function type or a block pointer type. 3874 assert(CalleeType->isFunctionPointerType() && 3875 "Call must have function pointer type!"); 3876 3877 // Preserve the non-canonical function type because things like exception 3878 // specifications disappear in the canonical type. That information is useful 3879 // to drive the generation of more accurate code for this call later on. 3880 const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>() 3881 ->getPointeeType() 3882 ->getAs<FunctionProtoType>(); 3883 3884 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3885 3886 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 3887 // We can only guarantee that a function is called from the correct 3888 // context/function based on the appropriate target attributes, 3889 // so only check in the case where we have both always_inline and target 3890 // since otherwise we could be making a conditional call after a check for 3891 // the proper cpu features (and it won't cause code generation issues due to 3892 // function based code generation). 3893 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 3894 TargetDecl->hasAttr<TargetAttr>()) 3895 checkTargetFeatures(E, FD); 3896 3897 CalleeType = getContext().getCanonicalType(CalleeType); 3898 3899 const auto *FnType = 3900 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3901 3902 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 3903 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3904 if (llvm::Constant *PrefixSig = 3905 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3906 SanitizerScope SanScope(this); 3907 llvm::Constant *FTRTTIConst = 3908 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3909 llvm::Type *PrefixStructTyElems[] = { 3910 PrefixSig->getType(), 3911 FTRTTIConst->getType() 3912 }; 3913 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3914 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3915 3916 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3917 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3918 llvm::Value *CalleeSigPtr = 3919 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 3920 llvm::Value *CalleeSig = 3921 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 3922 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3923 3924 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3925 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3926 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3927 3928 EmitBlock(TypeCheck); 3929 llvm::Value *CalleeRTTIPtr = 3930 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 3931 llvm::Value *CalleeRTTI = 3932 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 3933 llvm::Value *CalleeRTTIMatch = 3934 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3935 llvm::Constant *StaticData[] = { 3936 EmitCheckSourceLocation(E->getLocStart()), 3937 EmitCheckTypeDescriptor(CalleeType) 3938 }; 3939 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 3940 "function_type_mismatch", StaticData, Callee); 3941 3942 Builder.CreateBr(Cont); 3943 EmitBlock(Cont); 3944 } 3945 } 3946 3947 // If we are checking indirect calls and this call is indirect, check that the 3948 // function pointer is a member of the bit set for the function type. 3949 if (SanOpts.has(SanitizerKind::CFIICall) && 3950 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3951 SanitizerScope SanScope(this); 3952 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 3953 3954 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 3955 llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD); 3956 3957 llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy); 3958 llvm::Value *BitSetTest = 3959 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test), 3960 {CastedCallee, BitSetName}); 3961 3962 auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD); 3963 llvm::Constant *StaticData[] = { 3964 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 3965 EmitCheckSourceLocation(E->getLocStart()), 3966 EmitCheckTypeDescriptor(QualType(FnType, 0)), 3967 }; 3968 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && TypeId) { 3969 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, BitSetTest, TypeId, 3970 CastedCallee, StaticData); 3971 } else { 3972 EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall), 3973 "cfi_check_fail", StaticData, CastedCallee); 3974 } 3975 } 3976 3977 CallArgList Args; 3978 if (Chain) 3979 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 3980 CGM.getContext().VoidPtrTy); 3981 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 3982 E->getDirectCallee(), /*ParamsToSkip*/ 0); 3983 3984 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 3985 Args, FnType, /*isChainCall=*/Chain); 3986 3987 // C99 6.5.2.2p6: 3988 // If the expression that denotes the called function has a type 3989 // that does not include a prototype, [the default argument 3990 // promotions are performed]. If the number of arguments does not 3991 // equal the number of parameters, the behavior is undefined. If 3992 // the function is defined with a type that includes a prototype, 3993 // and either the prototype ends with an ellipsis (, ...) or the 3994 // types of the arguments after promotion are not compatible with 3995 // the types of the parameters, the behavior is undefined. If the 3996 // function is defined with a type that does not include a 3997 // prototype, and the types of the arguments after promotion are 3998 // not compatible with those of the parameters after promotion, 3999 // the behavior is undefined [except in some trivial cases]. 4000 // That is, in the general case, we should assume that a call 4001 // through an unprototyped function type works like a *non-variadic* 4002 // call. The way we make this work is to cast to the exact type 4003 // of the promoted arguments. 4004 // 4005 // Chain calls use this same code path to add the invisible chain parameter 4006 // to the function type. 4007 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4008 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4009 CalleeTy = CalleeTy->getPointerTo(); 4010 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 4011 } 4012 4013 return EmitCall(FnInfo, Callee, ReturnValue, Args, 4014 CGCalleeInfo(NonCanonicalFTP, TargetDecl)); 4015 } 4016 4017 LValue CodeGenFunction:: 4018 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4019 Address BaseAddr = Address::invalid(); 4020 if (E->getOpcode() == BO_PtrMemI) { 4021 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4022 } else { 4023 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4024 } 4025 4026 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4027 4028 const MemberPointerType *MPT 4029 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4030 4031 AlignmentSource AlignSource; 4032 Address MemberAddr = 4033 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4034 &AlignSource); 4035 4036 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4037 } 4038 4039 /// Given the address of a temporary variable, produce an r-value of 4040 /// its type. 4041 RValue CodeGenFunction::convertTempToRValue(Address addr, 4042 QualType type, 4043 SourceLocation loc) { 4044 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4045 switch (getEvaluationKind(type)) { 4046 case TEK_Complex: 4047 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4048 case TEK_Aggregate: 4049 return lvalue.asAggregateRValue(); 4050 case TEK_Scalar: 4051 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4052 } 4053 llvm_unreachable("bad evaluation kind"); 4054 } 4055 4056 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4057 assert(Val->getType()->isFPOrFPVectorTy()); 4058 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4059 return; 4060 4061 llvm::MDBuilder MDHelper(getLLVMContext()); 4062 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4063 4064 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4065 } 4066 4067 namespace { 4068 struct LValueOrRValue { 4069 LValue LV; 4070 RValue RV; 4071 }; 4072 } 4073 4074 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4075 const PseudoObjectExpr *E, 4076 bool forLValue, 4077 AggValueSlot slot) { 4078 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4079 4080 // Find the result expression, if any. 4081 const Expr *resultExpr = E->getResultExpr(); 4082 LValueOrRValue result; 4083 4084 for (PseudoObjectExpr::const_semantics_iterator 4085 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4086 const Expr *semantic = *i; 4087 4088 // If this semantic expression is an opaque value, bind it 4089 // to the result of its source expression. 4090 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4091 4092 // If this is the result expression, we may need to evaluate 4093 // directly into the slot. 4094 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4095 OVMA opaqueData; 4096 if (ov == resultExpr && ov->isRValue() && !forLValue && 4097 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4098 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4099 4100 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4101 AlignmentSource::Decl); 4102 opaqueData = OVMA::bind(CGF, ov, LV); 4103 result.RV = slot.asRValue(); 4104 4105 // Otherwise, emit as normal. 4106 } else { 4107 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4108 4109 // If this is the result, also evaluate the result now. 4110 if (ov == resultExpr) { 4111 if (forLValue) 4112 result.LV = CGF.EmitLValue(ov); 4113 else 4114 result.RV = CGF.EmitAnyExpr(ov, slot); 4115 } 4116 } 4117 4118 opaques.push_back(opaqueData); 4119 4120 // Otherwise, if the expression is the result, evaluate it 4121 // and remember the result. 4122 } else if (semantic == resultExpr) { 4123 if (forLValue) 4124 result.LV = CGF.EmitLValue(semantic); 4125 else 4126 result.RV = CGF.EmitAnyExpr(semantic, slot); 4127 4128 // Otherwise, evaluate the expression in an ignored context. 4129 } else { 4130 CGF.EmitIgnoredExpr(semantic); 4131 } 4132 } 4133 4134 // Unbind all the opaques now. 4135 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4136 opaques[i].unbind(CGF); 4137 4138 return result; 4139 } 4140 4141 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4142 AggValueSlot slot) { 4143 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4144 } 4145 4146 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4147 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4148 } 4149