1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getQuantity()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::Constant *CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 344 StructorType::Complete); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getQuantity()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->GetTemporaryExpr(); 421 422 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 423 // as that will cause the lifetime adjustment to be lost for ARC 424 auto ownership = M->getType().getObjCLifetime(); 425 if (ownership != Qualifiers::OCL_None && 426 ownership != Qualifiers::OCL_ExplicitNone) { 427 Address Object = createReferenceTemporary(*this, M, E); 428 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 429 Object = Address(llvm::ConstantExpr::getBitCast(Var, 430 ConvertTypeForMem(E->getType()) 431 ->getPointerTo(Object.getAddressSpace())), 432 Object.getAlignment()); 433 434 // createReferenceTemporary will promote the temporary to a global with a 435 // constant initializer if it can. It can only do this to a value of 436 // ARC-manageable type if the value is global and therefore "immune" to 437 // ref-counting operations. Therefore we have no need to emit either a 438 // dynamic initialization or a cleanup and we can just return the address 439 // of the temporary. 440 if (Var->hasInitializer()) 441 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 442 443 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 444 } 445 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 446 AlignmentSource::Decl); 447 448 switch (getEvaluationKind(E->getType())) { 449 default: llvm_unreachable("expected scalar or aggregate expression"); 450 case TEK_Scalar: 451 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 452 break; 453 case TEK_Aggregate: { 454 EmitAggExpr(E, AggValueSlot::forAddr(Object, 455 E->getType().getQualifiers(), 456 AggValueSlot::IsDestructed, 457 AggValueSlot::DoesNotNeedGCBarriers, 458 AggValueSlot::IsNotAliased, 459 AggValueSlot::DoesNotOverlap)); 460 break; 461 } 462 } 463 464 pushTemporaryCleanup(*this, M, E, Object); 465 return RefTempDst; 466 } 467 468 SmallVector<const Expr *, 2> CommaLHSs; 469 SmallVector<SubobjectAdjustment, 2> Adjustments; 470 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 471 472 for (const auto &Ignored : CommaLHSs) 473 EmitIgnoredExpr(Ignored); 474 475 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 476 if (opaque->getType()->isRecordType()) { 477 assert(Adjustments.empty()); 478 return EmitOpaqueValueLValue(opaque); 479 } 480 } 481 482 // Create and initialize the reference temporary. 483 Address Alloca = Address::invalid(); 484 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 485 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 486 Object.getPointer()->stripPointerCasts())) { 487 Object = Address(llvm::ConstantExpr::getBitCast( 488 cast<llvm::Constant>(Object.getPointer()), 489 ConvertTypeForMem(E->getType())->getPointerTo()), 490 Object.getAlignment()); 491 // If the temporary is a global and has a constant initializer or is a 492 // constant temporary that we promoted to a global, we may have already 493 // initialized it. 494 if (!Var->hasInitializer()) { 495 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 496 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 497 } 498 } else { 499 switch (M->getStorageDuration()) { 500 case SD_Automatic: 501 if (auto *Size = EmitLifetimeStart( 502 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 503 Alloca.getPointer())) { 504 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 505 Alloca, Size); 506 } 507 break; 508 509 case SD_FullExpression: { 510 if (!ShouldEmitLifetimeMarkers) 511 break; 512 513 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 514 // marker. Instead, start the lifetime of a conditional temporary earlier 515 // so that it's unconditional. Don't do this in ASan's use-after-scope 516 // mode so that it gets the more precise lifetime marks. If the type has 517 // a non-trivial destructor, we'll have a cleanup block for it anyway, 518 // so this typically doesn't help; skip it in that case. 519 ConditionalEvaluation *OldConditional = nullptr; 520 CGBuilderTy::InsertPoint OldIP; 521 if (isInConditionalBranch() && !E->getType().isDestructedType() && 522 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 523 OldConditional = OutermostConditional; 524 OutermostConditional = nullptr; 525 526 OldIP = Builder.saveIP(); 527 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 528 Builder.restoreIP(CGBuilderTy::InsertPoint( 529 Block, llvm::BasicBlock::iterator(Block->back()))); 530 } 531 532 if (auto *Size = EmitLifetimeStart( 533 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 534 Alloca.getPointer())) { 535 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 536 Size); 537 } 538 539 if (OldConditional) { 540 OutermostConditional = OldConditional; 541 Builder.restoreIP(OldIP); 542 } 543 break; 544 } 545 546 default: 547 break; 548 } 549 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 550 } 551 pushTemporaryCleanup(*this, M, E, Object); 552 553 // Perform derived-to-base casts and/or field accesses, to get from the 554 // temporary object we created (and, potentially, for which we extended 555 // the lifetime) to the subobject we're binding the reference to. 556 for (unsigned I = Adjustments.size(); I != 0; --I) { 557 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 558 switch (Adjustment.Kind) { 559 case SubobjectAdjustment::DerivedToBaseAdjustment: 560 Object = 561 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 562 Adjustment.DerivedToBase.BasePath->path_begin(), 563 Adjustment.DerivedToBase.BasePath->path_end(), 564 /*NullCheckValue=*/ false, E->getExprLoc()); 565 break; 566 567 case SubobjectAdjustment::FieldAdjustment: { 568 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 569 LV = EmitLValueForField(LV, Adjustment.Field); 570 assert(LV.isSimple() && 571 "materialized temporary field is not a simple lvalue"); 572 Object = LV.getAddress(); 573 break; 574 } 575 576 case SubobjectAdjustment::MemberPointerAdjustment: { 577 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 578 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 579 Adjustment.Ptr.MPT); 580 break; 581 } 582 } 583 } 584 585 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 586 } 587 588 RValue 589 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 590 // Emit the expression as an lvalue. 591 LValue LV = EmitLValue(E); 592 assert(LV.isSimple()); 593 llvm::Value *Value = LV.getPointer(); 594 595 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 596 // C++11 [dcl.ref]p5 (as amended by core issue 453): 597 // If a glvalue to which a reference is directly bound designates neither 598 // an existing object or function of an appropriate type nor a region of 599 // storage of suitable size and alignment to contain an object of the 600 // reference's type, the behavior is undefined. 601 QualType Ty = E->getType(); 602 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 603 } 604 605 return RValue::get(Value); 606 } 607 608 609 /// getAccessedFieldNo - Given an encoded value and a result number, return the 610 /// input field number being accessed. 611 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 612 const llvm::Constant *Elts) { 613 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 614 ->getZExtValue(); 615 } 616 617 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 618 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 619 llvm::Value *High) { 620 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 621 llvm::Value *K47 = Builder.getInt64(47); 622 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 623 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 624 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 625 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 626 return Builder.CreateMul(B1, KMul); 627 } 628 629 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 630 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 631 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 632 } 633 634 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 635 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 636 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 637 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 638 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 639 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 640 } 641 642 bool CodeGenFunction::sanitizePerformTypeCheck() const { 643 return SanOpts.has(SanitizerKind::Null) | 644 SanOpts.has(SanitizerKind::Alignment) | 645 SanOpts.has(SanitizerKind::ObjectSize) | 646 SanOpts.has(SanitizerKind::Vptr); 647 } 648 649 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 650 llvm::Value *Ptr, QualType Ty, 651 CharUnits Alignment, 652 SanitizerSet SkippedChecks) { 653 if (!sanitizePerformTypeCheck()) 654 return; 655 656 // Don't check pointers outside the default address space. The null check 657 // isn't correct, the object-size check isn't supported by LLVM, and we can't 658 // communicate the addresses to the runtime handler for the vptr check. 659 if (Ptr->getType()->getPointerAddressSpace()) 660 return; 661 662 // Don't check pointers to volatile data. The behavior here is implementation- 663 // defined. 664 if (Ty.isVolatileQualified()) 665 return; 666 667 SanitizerScope SanScope(this); 668 669 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 670 llvm::BasicBlock *Done = nullptr; 671 672 // Quickly determine whether we have a pointer to an alloca. It's possible 673 // to skip null checks, and some alignment checks, for these pointers. This 674 // can reduce compile-time significantly. 675 auto PtrToAlloca = 676 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 677 678 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 679 llvm::Value *IsNonNull = nullptr; 680 bool IsGuaranteedNonNull = 681 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 682 bool AllowNullPointers = isNullPointerAllowed(TCK); 683 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 684 !IsGuaranteedNonNull) { 685 // The glvalue must not be an empty glvalue. 686 IsNonNull = Builder.CreateIsNotNull(Ptr); 687 688 // The IR builder can constant-fold the null check if the pointer points to 689 // a constant. 690 IsGuaranteedNonNull = IsNonNull == True; 691 692 // Skip the null check if the pointer is known to be non-null. 693 if (!IsGuaranteedNonNull) { 694 if (AllowNullPointers) { 695 // When performing pointer casts, it's OK if the value is null. 696 // Skip the remaining checks in that case. 697 Done = createBasicBlock("null"); 698 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 699 Builder.CreateCondBr(IsNonNull, Rest, Done); 700 EmitBlock(Rest); 701 } else { 702 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 703 } 704 } 705 } 706 707 if (SanOpts.has(SanitizerKind::ObjectSize) && 708 !SkippedChecks.has(SanitizerKind::ObjectSize) && 709 !Ty->isIncompleteType()) { 710 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 711 712 // The glvalue must refer to a large enough storage region. 713 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 714 // to check this. 715 // FIXME: Get object address space 716 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 717 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 718 llvm::Value *Min = Builder.getFalse(); 719 llvm::Value *NullIsUnknown = Builder.getFalse(); 720 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 721 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 722 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 723 llvm::ConstantInt::get(IntPtrTy, Size)); 724 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 725 } 726 727 uint64_t AlignVal = 0; 728 llvm::Value *PtrAsInt = nullptr; 729 730 if (SanOpts.has(SanitizerKind::Alignment) && 731 !SkippedChecks.has(SanitizerKind::Alignment)) { 732 AlignVal = Alignment.getQuantity(); 733 if (!Ty->isIncompleteType() && !AlignVal) 734 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 735 736 // The glvalue must be suitably aligned. 737 if (AlignVal > 1 && 738 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 739 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 740 llvm::Value *Align = Builder.CreateAnd( 741 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 742 llvm::Value *Aligned = 743 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 744 if (Aligned != True) 745 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 746 } 747 } 748 749 if (Checks.size() > 0) { 750 // Make sure we're not losing information. Alignment needs to be a power of 751 // 2 752 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 753 llvm::Constant *StaticData[] = { 754 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 755 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 756 llvm::ConstantInt::get(Int8Ty, TCK)}; 757 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 758 PtrAsInt ? PtrAsInt : Ptr); 759 } 760 761 // If possible, check that the vptr indicates that there is a subobject of 762 // type Ty at offset zero within this object. 763 // 764 // C++11 [basic.life]p5,6: 765 // [For storage which does not refer to an object within its lifetime] 766 // The program has undefined behavior if: 767 // -- the [pointer or glvalue] is used to access a non-static data member 768 // or call a non-static member function 769 if (SanOpts.has(SanitizerKind::Vptr) && 770 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 771 // Ensure that the pointer is non-null before loading it. If there is no 772 // compile-time guarantee, reuse the run-time null check or emit a new one. 773 if (!IsGuaranteedNonNull) { 774 if (!IsNonNull) 775 IsNonNull = Builder.CreateIsNotNull(Ptr); 776 if (!Done) 777 Done = createBasicBlock("vptr.null"); 778 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 779 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 780 EmitBlock(VptrNotNull); 781 } 782 783 // Compute a hash of the mangled name of the type. 784 // 785 // FIXME: This is not guaranteed to be deterministic! Move to a 786 // fingerprinting mechanism once LLVM provides one. For the time 787 // being the implementation happens to be deterministic. 788 SmallString<64> MangledName; 789 llvm::raw_svector_ostream Out(MangledName); 790 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 791 Out); 792 793 // Blacklist based on the mangled type. 794 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 795 SanitizerKind::Vptr, Out.str())) { 796 llvm::hash_code TypeHash = hash_value(Out.str()); 797 798 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 799 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 800 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 801 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 802 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 803 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 804 805 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 806 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 807 808 // Look the hash up in our cache. 809 const int CacheSize = 128; 810 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 811 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 812 "__ubsan_vptr_type_cache"); 813 llvm::Value *Slot = Builder.CreateAnd(Hash, 814 llvm::ConstantInt::get(IntPtrTy, 815 CacheSize-1)); 816 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 817 llvm::Value *CacheVal = 818 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 819 getPointerAlign()); 820 821 // If the hash isn't in the cache, call a runtime handler to perform the 822 // hard work of checking whether the vptr is for an object of the right 823 // type. This will either fill in the cache and return, or produce a 824 // diagnostic. 825 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 826 llvm::Constant *StaticData[] = { 827 EmitCheckSourceLocation(Loc), 828 EmitCheckTypeDescriptor(Ty), 829 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 830 llvm::ConstantInt::get(Int8Ty, TCK) 831 }; 832 llvm::Value *DynamicData[] = { Ptr, Hash }; 833 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 834 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 835 DynamicData); 836 } 837 } 838 839 if (Done) { 840 Builder.CreateBr(Done); 841 EmitBlock(Done); 842 } 843 } 844 845 /// Determine whether this expression refers to a flexible array member in a 846 /// struct. We disable array bounds checks for such members. 847 static bool isFlexibleArrayMemberExpr(const Expr *E) { 848 // For compatibility with existing code, we treat arrays of length 0 or 849 // 1 as flexible array members. 850 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 851 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 852 if (CAT->getSize().ugt(1)) 853 return false; 854 } else if (!isa<IncompleteArrayType>(AT)) 855 return false; 856 857 E = E->IgnoreParens(); 858 859 // A flexible array member must be the last member in the class. 860 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 861 // FIXME: If the base type of the member expr is not FD->getParent(), 862 // this should not be treated as a flexible array member access. 863 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 864 RecordDecl::field_iterator FI( 865 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 866 return ++FI == FD->getParent()->field_end(); 867 } 868 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 869 return IRE->getDecl()->getNextIvar() == nullptr; 870 } 871 872 return false; 873 } 874 875 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 876 QualType EltTy) { 877 ASTContext &C = getContext(); 878 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 879 if (!EltSize) 880 return nullptr; 881 882 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 883 if (!ArrayDeclRef) 884 return nullptr; 885 886 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 887 if (!ParamDecl) 888 return nullptr; 889 890 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 891 if (!POSAttr) 892 return nullptr; 893 894 // Don't load the size if it's a lower bound. 895 int POSType = POSAttr->getType(); 896 if (POSType != 0 && POSType != 1) 897 return nullptr; 898 899 // Find the implicit size parameter. 900 auto PassedSizeIt = SizeArguments.find(ParamDecl); 901 if (PassedSizeIt == SizeArguments.end()) 902 return nullptr; 903 904 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 905 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 906 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 907 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 908 C.getSizeType(), E->getExprLoc()); 909 llvm::Value *SizeOfElement = 910 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 911 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 912 } 913 914 /// If Base is known to point to the start of an array, return the length of 915 /// that array. Return 0 if the length cannot be determined. 916 static llvm::Value *getArrayIndexingBound( 917 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 918 // For the vector indexing extension, the bound is the number of elements. 919 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 920 IndexedType = Base->getType(); 921 return CGF.Builder.getInt32(VT->getNumElements()); 922 } 923 924 Base = Base->IgnoreParens(); 925 926 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 927 if (CE->getCastKind() == CK_ArrayToPointerDecay && 928 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 929 IndexedType = CE->getSubExpr()->getType(); 930 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 931 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 932 return CGF.Builder.getInt(CAT->getSize()); 933 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 934 return CGF.getVLASize(VAT).NumElts; 935 // Ignore pass_object_size here. It's not applicable on decayed pointers. 936 } 937 } 938 939 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 940 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 941 IndexedType = Base->getType(); 942 return POS; 943 } 944 945 return nullptr; 946 } 947 948 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 949 llvm::Value *Index, QualType IndexType, 950 bool Accessed) { 951 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 952 "should not be called unless adding bounds checks"); 953 SanitizerScope SanScope(this); 954 955 QualType IndexedType; 956 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 957 if (!Bound) 958 return; 959 960 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 961 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 962 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 963 964 llvm::Constant *StaticData[] = { 965 EmitCheckSourceLocation(E->getExprLoc()), 966 EmitCheckTypeDescriptor(IndexedType), 967 EmitCheckTypeDescriptor(IndexType) 968 }; 969 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 970 : Builder.CreateICmpULE(IndexVal, BoundVal); 971 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 972 SanitizerHandler::OutOfBounds, StaticData, Index); 973 } 974 975 976 CodeGenFunction::ComplexPairTy CodeGenFunction:: 977 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 978 bool isInc, bool isPre) { 979 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 980 981 llvm::Value *NextVal; 982 if (isa<llvm::IntegerType>(InVal.first->getType())) { 983 uint64_t AmountVal = isInc ? 1 : -1; 984 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 985 986 // Add the inc/dec to the real part. 987 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 988 } else { 989 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 990 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 991 if (!isInc) 992 FVal.changeSign(); 993 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 994 995 // Add the inc/dec to the real part. 996 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 997 } 998 999 ComplexPairTy IncVal(NextVal, InVal.second); 1000 1001 // Store the updated result through the lvalue. 1002 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1003 1004 // If this is a postinc, return the value read from memory, otherwise use the 1005 // updated value. 1006 return isPre ? IncVal : InVal; 1007 } 1008 1009 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1010 CodeGenFunction *CGF) { 1011 // Bind VLAs in the cast type. 1012 if (CGF && E->getType()->isVariablyModifiedType()) 1013 CGF->EmitVariablyModifiedType(E->getType()); 1014 1015 if (CGDebugInfo *DI = getModuleDebugInfo()) 1016 DI->EmitExplicitCastType(E->getType()); 1017 } 1018 1019 //===----------------------------------------------------------------------===// 1020 // LValue Expression Emission 1021 //===----------------------------------------------------------------------===// 1022 1023 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1024 /// derive a more accurate bound on the alignment of the pointer. 1025 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1026 LValueBaseInfo *BaseInfo, 1027 TBAAAccessInfo *TBAAInfo) { 1028 // We allow this with ObjC object pointers because of fragile ABIs. 1029 assert(E->getType()->isPointerType() || 1030 E->getType()->isObjCObjectPointerType()); 1031 E = E->IgnoreParens(); 1032 1033 // Casts: 1034 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1035 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1036 CGM.EmitExplicitCastExprType(ECE, this); 1037 1038 switch (CE->getCastKind()) { 1039 // Non-converting casts (but not C's implicit conversion from void*). 1040 case CK_BitCast: 1041 case CK_NoOp: 1042 case CK_AddressSpaceConversion: 1043 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1044 if (PtrTy->getPointeeType()->isVoidType()) 1045 break; 1046 1047 LValueBaseInfo InnerBaseInfo; 1048 TBAAAccessInfo InnerTBAAInfo; 1049 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1050 &InnerBaseInfo, 1051 &InnerTBAAInfo); 1052 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1053 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1054 1055 if (isa<ExplicitCastExpr>(CE)) { 1056 LValueBaseInfo TargetTypeBaseInfo; 1057 TBAAAccessInfo TargetTypeTBAAInfo; 1058 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1059 &TargetTypeBaseInfo, 1060 &TargetTypeTBAAInfo); 1061 if (TBAAInfo) 1062 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1063 TargetTypeTBAAInfo); 1064 // If the source l-value is opaque, honor the alignment of the 1065 // casted-to type. 1066 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1067 if (BaseInfo) 1068 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1069 Addr = Address(Addr.getPointer(), Align); 1070 } 1071 } 1072 1073 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1074 CE->getCastKind() == CK_BitCast) { 1075 if (auto PT = E->getType()->getAs<PointerType>()) 1076 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1077 /*MayBeNull=*/true, 1078 CodeGenFunction::CFITCK_UnrelatedCast, 1079 CE->getBeginLoc()); 1080 } 1081 return CE->getCastKind() != CK_AddressSpaceConversion 1082 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1083 : Builder.CreateAddrSpaceCast(Addr, 1084 ConvertType(E->getType())); 1085 } 1086 break; 1087 1088 // Array-to-pointer decay. 1089 case CK_ArrayToPointerDecay: 1090 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1091 1092 // Derived-to-base conversions. 1093 case CK_UncheckedDerivedToBase: 1094 case CK_DerivedToBase: { 1095 // TODO: Support accesses to members of base classes in TBAA. For now, we 1096 // conservatively pretend that the complete object is of the base class 1097 // type. 1098 if (TBAAInfo) 1099 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1100 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1101 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1102 return GetAddressOfBaseClass(Addr, Derived, 1103 CE->path_begin(), CE->path_end(), 1104 ShouldNullCheckClassCastValue(CE), 1105 CE->getExprLoc()); 1106 } 1107 1108 // TODO: Is there any reason to treat base-to-derived conversions 1109 // specially? 1110 default: 1111 break; 1112 } 1113 } 1114 1115 // Unary &. 1116 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1117 if (UO->getOpcode() == UO_AddrOf) { 1118 LValue LV = EmitLValue(UO->getSubExpr()); 1119 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1120 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1121 return LV.getAddress(); 1122 } 1123 } 1124 1125 // TODO: conditional operators, comma. 1126 1127 // Otherwise, use the alignment of the type. 1128 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1129 TBAAInfo); 1130 return Address(EmitScalarExpr(E), Align); 1131 } 1132 1133 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1134 if (Ty->isVoidType()) 1135 return RValue::get(nullptr); 1136 1137 switch (getEvaluationKind(Ty)) { 1138 case TEK_Complex: { 1139 llvm::Type *EltTy = 1140 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1141 llvm::Value *U = llvm::UndefValue::get(EltTy); 1142 return RValue::getComplex(std::make_pair(U, U)); 1143 } 1144 1145 // If this is a use of an undefined aggregate type, the aggregate must have an 1146 // identifiable address. Just because the contents of the value are undefined 1147 // doesn't mean that the address can't be taken and compared. 1148 case TEK_Aggregate: { 1149 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1150 return RValue::getAggregate(DestPtr); 1151 } 1152 1153 case TEK_Scalar: 1154 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1155 } 1156 llvm_unreachable("bad evaluation kind"); 1157 } 1158 1159 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1160 const char *Name) { 1161 ErrorUnsupported(E, Name); 1162 return GetUndefRValue(E->getType()); 1163 } 1164 1165 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1166 const char *Name) { 1167 ErrorUnsupported(E, Name); 1168 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1169 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1170 E->getType()); 1171 } 1172 1173 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1174 const Expr *Base = Obj; 1175 while (!isa<CXXThisExpr>(Base)) { 1176 // The result of a dynamic_cast can be null. 1177 if (isa<CXXDynamicCastExpr>(Base)) 1178 return false; 1179 1180 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1181 Base = CE->getSubExpr(); 1182 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1183 Base = PE->getSubExpr(); 1184 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1185 if (UO->getOpcode() == UO_Extension) 1186 Base = UO->getSubExpr(); 1187 else 1188 return false; 1189 } else { 1190 return false; 1191 } 1192 } 1193 return true; 1194 } 1195 1196 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1197 LValue LV; 1198 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1199 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1200 else 1201 LV = EmitLValue(E); 1202 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1203 SanitizerSet SkippedChecks; 1204 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1205 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1206 if (IsBaseCXXThis) 1207 SkippedChecks.set(SanitizerKind::Alignment, true); 1208 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1209 SkippedChecks.set(SanitizerKind::Null, true); 1210 } 1211 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1212 E->getType(), LV.getAlignment(), SkippedChecks); 1213 } 1214 return LV; 1215 } 1216 1217 /// EmitLValue - Emit code to compute a designator that specifies the location 1218 /// of the expression. 1219 /// 1220 /// This can return one of two things: a simple address or a bitfield reference. 1221 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1222 /// an LLVM pointer type. 1223 /// 1224 /// If this returns a bitfield reference, nothing about the pointee type of the 1225 /// LLVM value is known: For example, it may not be a pointer to an integer. 1226 /// 1227 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1228 /// this method guarantees that the returned pointer type will point to an LLVM 1229 /// type of the same size of the lvalue's type. If the lvalue has a variable 1230 /// length type, this is not possible. 1231 /// 1232 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1233 ApplyDebugLocation DL(*this, E); 1234 switch (E->getStmtClass()) { 1235 default: return EmitUnsupportedLValue(E, "l-value expression"); 1236 1237 case Expr::ObjCPropertyRefExprClass: 1238 llvm_unreachable("cannot emit a property reference directly"); 1239 1240 case Expr::ObjCSelectorExprClass: 1241 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1242 case Expr::ObjCIsaExprClass: 1243 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1244 case Expr::BinaryOperatorClass: 1245 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1246 case Expr::CompoundAssignOperatorClass: { 1247 QualType Ty = E->getType(); 1248 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1249 Ty = AT->getValueType(); 1250 if (!Ty->isAnyComplexType()) 1251 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1252 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1253 } 1254 case Expr::CallExprClass: 1255 case Expr::CXXMemberCallExprClass: 1256 case Expr::CXXOperatorCallExprClass: 1257 case Expr::UserDefinedLiteralClass: 1258 return EmitCallExprLValue(cast<CallExpr>(E)); 1259 case Expr::VAArgExprClass: 1260 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1261 case Expr::DeclRefExprClass: 1262 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1263 case Expr::ParenExprClass: 1264 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1265 case Expr::GenericSelectionExprClass: 1266 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1267 case Expr::PredefinedExprClass: 1268 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1269 case Expr::StringLiteralClass: 1270 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1271 case Expr::ObjCEncodeExprClass: 1272 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1273 case Expr::PseudoObjectExprClass: 1274 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1275 case Expr::InitListExprClass: 1276 return EmitInitListLValue(cast<InitListExpr>(E)); 1277 case Expr::CXXTemporaryObjectExprClass: 1278 case Expr::CXXConstructExprClass: 1279 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1280 case Expr::CXXBindTemporaryExprClass: 1281 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1282 case Expr::CXXUuidofExprClass: 1283 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1284 case Expr::LambdaExprClass: 1285 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1286 1287 case Expr::ExprWithCleanupsClass: { 1288 const auto *cleanups = cast<ExprWithCleanups>(E); 1289 enterFullExpression(cleanups); 1290 RunCleanupsScope Scope(*this); 1291 LValue LV = EmitLValue(cleanups->getSubExpr()); 1292 if (LV.isSimple()) { 1293 // Defend against branches out of gnu statement expressions surrounded by 1294 // cleanups. 1295 llvm::Value *V = LV.getPointer(); 1296 Scope.ForceCleanup({&V}); 1297 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1298 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1299 } 1300 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1301 // bitfield lvalue or some other non-simple lvalue? 1302 return LV; 1303 } 1304 1305 case Expr::CXXDefaultArgExprClass: 1306 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1307 case Expr::CXXDefaultInitExprClass: { 1308 CXXDefaultInitExprScope Scope(*this); 1309 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1310 } 1311 case Expr::CXXTypeidExprClass: 1312 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1313 1314 case Expr::ObjCMessageExprClass: 1315 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1316 case Expr::ObjCIvarRefExprClass: 1317 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1318 case Expr::StmtExprClass: 1319 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1320 case Expr::UnaryOperatorClass: 1321 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1322 case Expr::ArraySubscriptExprClass: 1323 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1324 case Expr::OMPArraySectionExprClass: 1325 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1326 case Expr::ExtVectorElementExprClass: 1327 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1328 case Expr::MemberExprClass: 1329 return EmitMemberExpr(cast<MemberExpr>(E)); 1330 case Expr::CompoundLiteralExprClass: 1331 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1332 case Expr::ConditionalOperatorClass: 1333 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1334 case Expr::BinaryConditionalOperatorClass: 1335 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1336 case Expr::ChooseExprClass: 1337 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1338 case Expr::OpaqueValueExprClass: 1339 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1340 case Expr::SubstNonTypeTemplateParmExprClass: 1341 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1342 case Expr::ImplicitCastExprClass: 1343 case Expr::CStyleCastExprClass: 1344 case Expr::CXXFunctionalCastExprClass: 1345 case Expr::CXXStaticCastExprClass: 1346 case Expr::CXXDynamicCastExprClass: 1347 case Expr::CXXReinterpretCastExprClass: 1348 case Expr::CXXConstCastExprClass: 1349 case Expr::ObjCBridgedCastExprClass: 1350 return EmitCastLValue(cast<CastExpr>(E)); 1351 1352 case Expr::MaterializeTemporaryExprClass: 1353 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1354 1355 case Expr::CoawaitExprClass: 1356 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1357 case Expr::CoyieldExprClass: 1358 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1359 } 1360 } 1361 1362 /// Given an object of the given canonical type, can we safely copy a 1363 /// value out of it based on its initializer? 1364 static bool isConstantEmittableObjectType(QualType type) { 1365 assert(type.isCanonical()); 1366 assert(!type->isReferenceType()); 1367 1368 // Must be const-qualified but non-volatile. 1369 Qualifiers qs = type.getLocalQualifiers(); 1370 if (!qs.hasConst() || qs.hasVolatile()) return false; 1371 1372 // Otherwise, all object types satisfy this except C++ classes with 1373 // mutable subobjects or non-trivial copy/destroy behavior. 1374 if (const auto *RT = dyn_cast<RecordType>(type)) 1375 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1376 if (RD->hasMutableFields() || !RD->isTrivial()) 1377 return false; 1378 1379 return true; 1380 } 1381 1382 /// Can we constant-emit a load of a reference to a variable of the 1383 /// given type? This is different from predicates like 1384 /// Decl::isUsableInConstantExpressions because we do want it to apply 1385 /// in situations that don't necessarily satisfy the language's rules 1386 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1387 /// to do this with const float variables even if those variables 1388 /// aren't marked 'constexpr'. 1389 enum ConstantEmissionKind { 1390 CEK_None, 1391 CEK_AsReferenceOnly, 1392 CEK_AsValueOrReference, 1393 CEK_AsValueOnly 1394 }; 1395 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1396 type = type.getCanonicalType(); 1397 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1398 if (isConstantEmittableObjectType(ref->getPointeeType())) 1399 return CEK_AsValueOrReference; 1400 return CEK_AsReferenceOnly; 1401 } 1402 if (isConstantEmittableObjectType(type)) 1403 return CEK_AsValueOnly; 1404 return CEK_None; 1405 } 1406 1407 /// Try to emit a reference to the given value without producing it as 1408 /// an l-value. This is actually more than an optimization: we can't 1409 /// produce an l-value for variables that we never actually captured 1410 /// in a block or lambda, which means const int variables or constexpr 1411 /// literals or similar. 1412 CodeGenFunction::ConstantEmission 1413 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1414 ValueDecl *value = refExpr->getDecl(); 1415 1416 // The value needs to be an enum constant or a constant variable. 1417 ConstantEmissionKind CEK; 1418 if (isa<ParmVarDecl>(value)) { 1419 CEK = CEK_None; 1420 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1421 CEK = checkVarTypeForConstantEmission(var->getType()); 1422 } else if (isa<EnumConstantDecl>(value)) { 1423 CEK = CEK_AsValueOnly; 1424 } else { 1425 CEK = CEK_None; 1426 } 1427 if (CEK == CEK_None) return ConstantEmission(); 1428 1429 Expr::EvalResult result; 1430 bool resultIsReference; 1431 QualType resultType; 1432 1433 // It's best to evaluate all the way as an r-value if that's permitted. 1434 if (CEK != CEK_AsReferenceOnly && 1435 refExpr->EvaluateAsRValue(result, getContext())) { 1436 resultIsReference = false; 1437 resultType = refExpr->getType(); 1438 1439 // Otherwise, try to evaluate as an l-value. 1440 } else if (CEK != CEK_AsValueOnly && 1441 refExpr->EvaluateAsLValue(result, getContext())) { 1442 resultIsReference = true; 1443 resultType = value->getType(); 1444 1445 // Failure. 1446 } else { 1447 return ConstantEmission(); 1448 } 1449 1450 // In any case, if the initializer has side-effects, abandon ship. 1451 if (result.HasSideEffects) 1452 return ConstantEmission(); 1453 1454 // Emit as a constant. 1455 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1456 result.Val, resultType); 1457 1458 // Make sure we emit a debug reference to the global variable. 1459 // This should probably fire even for 1460 if (isa<VarDecl>(value)) { 1461 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1462 EmitDeclRefExprDbgValue(refExpr, result.Val); 1463 } else { 1464 assert(isa<EnumConstantDecl>(value)); 1465 EmitDeclRefExprDbgValue(refExpr, result.Val); 1466 } 1467 1468 // If we emitted a reference constant, we need to dereference that. 1469 if (resultIsReference) 1470 return ConstantEmission::forReference(C); 1471 1472 return ConstantEmission::forValue(C); 1473 } 1474 1475 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1476 const MemberExpr *ME) { 1477 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1478 // Try to emit static variable member expressions as DREs. 1479 return DeclRefExpr::Create( 1480 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1481 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1482 ME->getType(), ME->getValueKind()); 1483 } 1484 return nullptr; 1485 } 1486 1487 CodeGenFunction::ConstantEmission 1488 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1489 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1490 return tryEmitAsConstant(DRE); 1491 return ConstantEmission(); 1492 } 1493 1494 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1495 SourceLocation Loc) { 1496 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1497 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1498 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1499 } 1500 1501 static bool hasBooleanRepresentation(QualType Ty) { 1502 if (Ty->isBooleanType()) 1503 return true; 1504 1505 if (const EnumType *ET = Ty->getAs<EnumType>()) 1506 return ET->getDecl()->getIntegerType()->isBooleanType(); 1507 1508 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1509 return hasBooleanRepresentation(AT->getValueType()); 1510 1511 return false; 1512 } 1513 1514 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1515 llvm::APInt &Min, llvm::APInt &End, 1516 bool StrictEnums, bool IsBool) { 1517 const EnumType *ET = Ty->getAs<EnumType>(); 1518 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1519 ET && !ET->getDecl()->isFixed(); 1520 if (!IsBool && !IsRegularCPlusPlusEnum) 1521 return false; 1522 1523 if (IsBool) { 1524 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1525 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1526 } else { 1527 const EnumDecl *ED = ET->getDecl(); 1528 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1529 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1530 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1531 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1532 1533 if (NumNegativeBits) { 1534 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1535 assert(NumBits <= Bitwidth); 1536 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1537 Min = -End; 1538 } else { 1539 assert(NumPositiveBits <= Bitwidth); 1540 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1541 Min = llvm::APInt(Bitwidth, 0); 1542 } 1543 } 1544 return true; 1545 } 1546 1547 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1548 llvm::APInt Min, End; 1549 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1550 hasBooleanRepresentation(Ty))) 1551 return nullptr; 1552 1553 llvm::MDBuilder MDHelper(getLLVMContext()); 1554 return MDHelper.createRange(Min, End); 1555 } 1556 1557 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1558 SourceLocation Loc) { 1559 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1560 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1561 if (!HasBoolCheck && !HasEnumCheck) 1562 return false; 1563 1564 bool IsBool = hasBooleanRepresentation(Ty) || 1565 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1566 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1567 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1568 if (!NeedsBoolCheck && !NeedsEnumCheck) 1569 return false; 1570 1571 // Single-bit booleans don't need to be checked. Special-case this to avoid 1572 // a bit width mismatch when handling bitfield values. This is handled by 1573 // EmitFromMemory for the non-bitfield case. 1574 if (IsBool && 1575 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1576 return false; 1577 1578 llvm::APInt Min, End; 1579 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1580 return true; 1581 1582 auto &Ctx = getLLVMContext(); 1583 SanitizerScope SanScope(this); 1584 llvm::Value *Check; 1585 --End; 1586 if (!Min) { 1587 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1588 } else { 1589 llvm::Value *Upper = 1590 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1591 llvm::Value *Lower = 1592 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1593 Check = Builder.CreateAnd(Upper, Lower); 1594 } 1595 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1596 EmitCheckTypeDescriptor(Ty)}; 1597 SanitizerMask Kind = 1598 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1599 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1600 StaticArgs, EmitCheckValue(Value)); 1601 return true; 1602 } 1603 1604 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1605 QualType Ty, 1606 SourceLocation Loc, 1607 LValueBaseInfo BaseInfo, 1608 TBAAAccessInfo TBAAInfo, 1609 bool isNontemporal) { 1610 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1611 // For better performance, handle vector loads differently. 1612 if (Ty->isVectorType()) { 1613 const llvm::Type *EltTy = Addr.getElementType(); 1614 1615 const auto *VTy = cast<llvm::VectorType>(EltTy); 1616 1617 // Handle vectors of size 3 like size 4 for better performance. 1618 if (VTy->getNumElements() == 3) { 1619 1620 // Bitcast to vec4 type. 1621 llvm::VectorType *vec4Ty = 1622 llvm::VectorType::get(VTy->getElementType(), 4); 1623 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1624 // Now load value. 1625 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1626 1627 // Shuffle vector to get vec3. 1628 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1629 {0, 1, 2}, "extractVec"); 1630 return EmitFromMemory(V, Ty); 1631 } 1632 } 1633 } 1634 1635 // Atomic operations have to be done on integral types. 1636 LValue AtomicLValue = 1637 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1638 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1639 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1640 } 1641 1642 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1643 if (isNontemporal) { 1644 llvm::MDNode *Node = llvm::MDNode::get( 1645 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1646 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1647 } 1648 1649 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1650 1651 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1652 // In order to prevent the optimizer from throwing away the check, don't 1653 // attach range metadata to the load. 1654 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1655 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1656 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1657 1658 return EmitFromMemory(Load, Ty); 1659 } 1660 1661 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1662 // Bool has a different representation in memory than in registers. 1663 if (hasBooleanRepresentation(Ty)) { 1664 // This should really always be an i1, but sometimes it's already 1665 // an i8, and it's awkward to track those cases down. 1666 if (Value->getType()->isIntegerTy(1)) 1667 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1668 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1669 "wrong value rep of bool"); 1670 } 1671 1672 return Value; 1673 } 1674 1675 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1676 // Bool has a different representation in memory than in registers. 1677 if (hasBooleanRepresentation(Ty)) { 1678 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1679 "wrong value rep of bool"); 1680 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1681 } 1682 1683 return Value; 1684 } 1685 1686 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1687 bool Volatile, QualType Ty, 1688 LValueBaseInfo BaseInfo, 1689 TBAAAccessInfo TBAAInfo, 1690 bool isInit, bool isNontemporal) { 1691 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1692 // Handle vectors differently to get better performance. 1693 if (Ty->isVectorType()) { 1694 llvm::Type *SrcTy = Value->getType(); 1695 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1696 // Handle vec3 special. 1697 if (VecTy && VecTy->getNumElements() == 3) { 1698 // Our source is a vec3, do a shuffle vector to make it a vec4. 1699 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1700 Builder.getInt32(2), 1701 llvm::UndefValue::get(Builder.getInt32Ty())}; 1702 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1703 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1704 MaskV, "extractVec"); 1705 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1706 } 1707 if (Addr.getElementType() != SrcTy) { 1708 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1709 } 1710 } 1711 } 1712 1713 Value = EmitToMemory(Value, Ty); 1714 1715 LValue AtomicLValue = 1716 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1717 if (Ty->isAtomicType() || 1718 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1719 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1720 return; 1721 } 1722 1723 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1724 if (isNontemporal) { 1725 llvm::MDNode *Node = 1726 llvm::MDNode::get(Store->getContext(), 1727 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1728 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1729 } 1730 1731 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1732 } 1733 1734 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1735 bool isInit) { 1736 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1737 lvalue.getType(), lvalue.getBaseInfo(), 1738 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1739 } 1740 1741 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1742 /// method emits the address of the lvalue, then loads the result as an rvalue, 1743 /// returning the rvalue. 1744 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1745 if (LV.isObjCWeak()) { 1746 // load of a __weak object. 1747 Address AddrWeakObj = LV.getAddress(); 1748 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1749 AddrWeakObj)); 1750 } 1751 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1752 // In MRC mode, we do a load+autorelease. 1753 if (!getLangOpts().ObjCAutoRefCount) { 1754 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1755 } 1756 1757 // In ARC mode, we load retained and then consume the value. 1758 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1759 Object = EmitObjCConsumeObject(LV.getType(), Object); 1760 return RValue::get(Object); 1761 } 1762 1763 if (LV.isSimple()) { 1764 assert(!LV.getType()->isFunctionType()); 1765 1766 // Everything needs a load. 1767 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1768 } 1769 1770 if (LV.isVectorElt()) { 1771 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1772 LV.isVolatileQualified()); 1773 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1774 "vecext")); 1775 } 1776 1777 // If this is a reference to a subset of the elements of a vector, either 1778 // shuffle the input or extract/insert them as appropriate. 1779 if (LV.isExtVectorElt()) 1780 return EmitLoadOfExtVectorElementLValue(LV); 1781 1782 // Global Register variables always invoke intrinsics 1783 if (LV.isGlobalReg()) 1784 return EmitLoadOfGlobalRegLValue(LV); 1785 1786 assert(LV.isBitField() && "Unknown LValue type!"); 1787 return EmitLoadOfBitfieldLValue(LV, Loc); 1788 } 1789 1790 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1791 SourceLocation Loc) { 1792 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1793 1794 // Get the output type. 1795 llvm::Type *ResLTy = ConvertType(LV.getType()); 1796 1797 Address Ptr = LV.getBitFieldAddress(); 1798 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1799 1800 if (Info.IsSigned) { 1801 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1802 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1803 if (HighBits) 1804 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1805 if (Info.Offset + HighBits) 1806 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1807 } else { 1808 if (Info.Offset) 1809 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1810 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1811 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1812 Info.Size), 1813 "bf.clear"); 1814 } 1815 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1816 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1817 return RValue::get(Val); 1818 } 1819 1820 // If this is a reference to a subset of the elements of a vector, create an 1821 // appropriate shufflevector. 1822 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1823 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1824 LV.isVolatileQualified()); 1825 1826 const llvm::Constant *Elts = LV.getExtVectorElts(); 1827 1828 // If the result of the expression is a non-vector type, we must be extracting 1829 // a single element. Just codegen as an extractelement. 1830 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1831 if (!ExprVT) { 1832 unsigned InIdx = getAccessedFieldNo(0, Elts); 1833 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1834 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1835 } 1836 1837 // Always use shuffle vector to try to retain the original program structure 1838 unsigned NumResultElts = ExprVT->getNumElements(); 1839 1840 SmallVector<llvm::Constant*, 4> Mask; 1841 for (unsigned i = 0; i != NumResultElts; ++i) 1842 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1843 1844 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1845 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1846 MaskV); 1847 return RValue::get(Vec); 1848 } 1849 1850 /// Generates lvalue for partial ext_vector access. 1851 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1852 Address VectorAddress = LV.getExtVectorAddress(); 1853 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1854 QualType EQT = ExprVT->getElementType(); 1855 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1856 1857 Address CastToPointerElement = 1858 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1859 "conv.ptr.element"); 1860 1861 const llvm::Constant *Elts = LV.getExtVectorElts(); 1862 unsigned ix = getAccessedFieldNo(0, Elts); 1863 1864 Address VectorBasePtrPlusIx = 1865 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1866 getContext().getTypeSizeInChars(EQT), 1867 "vector.elt"); 1868 1869 return VectorBasePtrPlusIx; 1870 } 1871 1872 /// Load of global gamed gegisters are always calls to intrinsics. 1873 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1874 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1875 "Bad type for register variable"); 1876 llvm::MDNode *RegName = cast<llvm::MDNode>( 1877 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1878 1879 // We accept integer and pointer types only 1880 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1881 llvm::Type *Ty = OrigTy; 1882 if (OrigTy->isPointerTy()) 1883 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1884 llvm::Type *Types[] = { Ty }; 1885 1886 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1887 llvm::Value *Call = Builder.CreateCall( 1888 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1889 if (OrigTy->isPointerTy()) 1890 Call = Builder.CreateIntToPtr(Call, OrigTy); 1891 return RValue::get(Call); 1892 } 1893 1894 1895 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1896 /// lvalue, where both are guaranteed to the have the same type, and that type 1897 /// is 'Ty'. 1898 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1899 bool isInit) { 1900 if (!Dst.isSimple()) { 1901 if (Dst.isVectorElt()) { 1902 // Read/modify/write the vector, inserting the new element. 1903 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1904 Dst.isVolatileQualified()); 1905 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1906 Dst.getVectorIdx(), "vecins"); 1907 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1908 Dst.isVolatileQualified()); 1909 return; 1910 } 1911 1912 // If this is an update of extended vector elements, insert them as 1913 // appropriate. 1914 if (Dst.isExtVectorElt()) 1915 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1916 1917 if (Dst.isGlobalReg()) 1918 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1919 1920 assert(Dst.isBitField() && "Unknown LValue type"); 1921 return EmitStoreThroughBitfieldLValue(Src, Dst); 1922 } 1923 1924 // There's special magic for assigning into an ARC-qualified l-value. 1925 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1926 switch (Lifetime) { 1927 case Qualifiers::OCL_None: 1928 llvm_unreachable("present but none"); 1929 1930 case Qualifiers::OCL_ExplicitNone: 1931 // nothing special 1932 break; 1933 1934 case Qualifiers::OCL_Strong: 1935 if (isInit) { 1936 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1937 break; 1938 } 1939 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1940 return; 1941 1942 case Qualifiers::OCL_Weak: 1943 if (isInit) 1944 // Initialize and then skip the primitive store. 1945 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1946 else 1947 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1948 return; 1949 1950 case Qualifiers::OCL_Autoreleasing: 1951 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1952 Src.getScalarVal())); 1953 // fall into the normal path 1954 break; 1955 } 1956 } 1957 1958 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1959 // load of a __weak object. 1960 Address LvalueDst = Dst.getAddress(); 1961 llvm::Value *src = Src.getScalarVal(); 1962 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1963 return; 1964 } 1965 1966 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1967 // load of a __strong object. 1968 Address LvalueDst = Dst.getAddress(); 1969 llvm::Value *src = Src.getScalarVal(); 1970 if (Dst.isObjCIvar()) { 1971 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1972 llvm::Type *ResultType = IntPtrTy; 1973 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1974 llvm::Value *RHS = dst.getPointer(); 1975 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1976 llvm::Value *LHS = 1977 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1978 "sub.ptr.lhs.cast"); 1979 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1980 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1981 BytesBetween); 1982 } else if (Dst.isGlobalObjCRef()) { 1983 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1984 Dst.isThreadLocalRef()); 1985 } 1986 else 1987 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1988 return; 1989 } 1990 1991 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1992 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1993 } 1994 1995 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1996 llvm::Value **Result) { 1997 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1998 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1999 Address Ptr = Dst.getBitFieldAddress(); 2000 2001 // Get the source value, truncated to the width of the bit-field. 2002 llvm::Value *SrcVal = Src.getScalarVal(); 2003 2004 // Cast the source to the storage type and shift it into place. 2005 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2006 /*IsSigned=*/false); 2007 llvm::Value *MaskedVal = SrcVal; 2008 2009 // See if there are other bits in the bitfield's storage we'll need to load 2010 // and mask together with source before storing. 2011 if (Info.StorageSize != Info.Size) { 2012 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2013 llvm::Value *Val = 2014 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2015 2016 // Mask the source value as needed. 2017 if (!hasBooleanRepresentation(Dst.getType())) 2018 SrcVal = Builder.CreateAnd(SrcVal, 2019 llvm::APInt::getLowBitsSet(Info.StorageSize, 2020 Info.Size), 2021 "bf.value"); 2022 MaskedVal = SrcVal; 2023 if (Info.Offset) 2024 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2025 2026 // Mask out the original value. 2027 Val = Builder.CreateAnd(Val, 2028 ~llvm::APInt::getBitsSet(Info.StorageSize, 2029 Info.Offset, 2030 Info.Offset + Info.Size), 2031 "bf.clear"); 2032 2033 // Or together the unchanged values and the source value. 2034 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2035 } else { 2036 assert(Info.Offset == 0); 2037 } 2038 2039 // Write the new value back out. 2040 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2041 2042 // Return the new value of the bit-field, if requested. 2043 if (Result) { 2044 llvm::Value *ResultVal = MaskedVal; 2045 2046 // Sign extend the value if needed. 2047 if (Info.IsSigned) { 2048 assert(Info.Size <= Info.StorageSize); 2049 unsigned HighBits = Info.StorageSize - Info.Size; 2050 if (HighBits) { 2051 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2052 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2053 } 2054 } 2055 2056 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2057 "bf.result.cast"); 2058 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2059 } 2060 } 2061 2062 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2063 LValue Dst) { 2064 // This access turns into a read/modify/write of the vector. Load the input 2065 // value now. 2066 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2067 Dst.isVolatileQualified()); 2068 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2069 2070 llvm::Value *SrcVal = Src.getScalarVal(); 2071 2072 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2073 unsigned NumSrcElts = VTy->getNumElements(); 2074 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2075 if (NumDstElts == NumSrcElts) { 2076 // Use shuffle vector is the src and destination are the same number of 2077 // elements and restore the vector mask since it is on the side it will be 2078 // stored. 2079 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2080 for (unsigned i = 0; i != NumSrcElts; ++i) 2081 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2082 2083 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2084 Vec = Builder.CreateShuffleVector(SrcVal, 2085 llvm::UndefValue::get(Vec->getType()), 2086 MaskV); 2087 } else if (NumDstElts > NumSrcElts) { 2088 // Extended the source vector to the same length and then shuffle it 2089 // into the destination. 2090 // FIXME: since we're shuffling with undef, can we just use the indices 2091 // into that? This could be simpler. 2092 SmallVector<llvm::Constant*, 4> ExtMask; 2093 for (unsigned i = 0; i != NumSrcElts; ++i) 2094 ExtMask.push_back(Builder.getInt32(i)); 2095 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2096 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2097 llvm::Value *ExtSrcVal = 2098 Builder.CreateShuffleVector(SrcVal, 2099 llvm::UndefValue::get(SrcVal->getType()), 2100 ExtMaskV); 2101 // build identity 2102 SmallVector<llvm::Constant*, 4> Mask; 2103 for (unsigned i = 0; i != NumDstElts; ++i) 2104 Mask.push_back(Builder.getInt32(i)); 2105 2106 // When the vector size is odd and .odd or .hi is used, the last element 2107 // of the Elts constant array will be one past the size of the vector. 2108 // Ignore the last element here, if it is greater than the mask size. 2109 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2110 NumSrcElts--; 2111 2112 // modify when what gets shuffled in 2113 for (unsigned i = 0; i != NumSrcElts; ++i) 2114 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2115 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2116 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2117 } else { 2118 // We should never shorten the vector 2119 llvm_unreachable("unexpected shorten vector length"); 2120 } 2121 } else { 2122 // If the Src is a scalar (not a vector) it must be updating one element. 2123 unsigned InIdx = getAccessedFieldNo(0, Elts); 2124 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2125 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2126 } 2127 2128 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2129 Dst.isVolatileQualified()); 2130 } 2131 2132 /// Store of global named registers are always calls to intrinsics. 2133 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2134 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2135 "Bad type for register variable"); 2136 llvm::MDNode *RegName = cast<llvm::MDNode>( 2137 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2138 assert(RegName && "Register LValue is not metadata"); 2139 2140 // We accept integer and pointer types only 2141 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2142 llvm::Type *Ty = OrigTy; 2143 if (OrigTy->isPointerTy()) 2144 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2145 llvm::Type *Types[] = { Ty }; 2146 2147 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2148 llvm::Value *Value = Src.getScalarVal(); 2149 if (OrigTy->isPointerTy()) 2150 Value = Builder.CreatePtrToInt(Value, Ty); 2151 Builder.CreateCall( 2152 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2153 } 2154 2155 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2156 // generating write-barries API. It is currently a global, ivar, 2157 // or neither. 2158 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2159 LValue &LV, 2160 bool IsMemberAccess=false) { 2161 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2162 return; 2163 2164 if (isa<ObjCIvarRefExpr>(E)) { 2165 QualType ExpTy = E->getType(); 2166 if (IsMemberAccess && ExpTy->isPointerType()) { 2167 // If ivar is a structure pointer, assigning to field of 2168 // this struct follows gcc's behavior and makes it a non-ivar 2169 // writer-barrier conservatively. 2170 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2171 if (ExpTy->isRecordType()) { 2172 LV.setObjCIvar(false); 2173 return; 2174 } 2175 } 2176 LV.setObjCIvar(true); 2177 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2178 LV.setBaseIvarExp(Exp->getBase()); 2179 LV.setObjCArray(E->getType()->isArrayType()); 2180 return; 2181 } 2182 2183 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2184 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2185 if (VD->hasGlobalStorage()) { 2186 LV.setGlobalObjCRef(true); 2187 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2188 } 2189 } 2190 LV.setObjCArray(E->getType()->isArrayType()); 2191 return; 2192 } 2193 2194 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2195 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2196 return; 2197 } 2198 2199 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2200 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2201 if (LV.isObjCIvar()) { 2202 // If cast is to a structure pointer, follow gcc's behavior and make it 2203 // a non-ivar write-barrier. 2204 QualType ExpTy = E->getType(); 2205 if (ExpTy->isPointerType()) 2206 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2207 if (ExpTy->isRecordType()) 2208 LV.setObjCIvar(false); 2209 } 2210 return; 2211 } 2212 2213 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2214 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2215 return; 2216 } 2217 2218 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2219 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2220 return; 2221 } 2222 2223 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2224 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2225 return; 2226 } 2227 2228 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2229 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2230 return; 2231 } 2232 2233 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2234 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2235 if (LV.isObjCIvar() && !LV.isObjCArray()) 2236 // Using array syntax to assigning to what an ivar points to is not 2237 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2238 LV.setObjCIvar(false); 2239 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2240 // Using array syntax to assigning to what global points to is not 2241 // same as assigning to the global itself. {id *G;} G[i] = 0; 2242 LV.setGlobalObjCRef(false); 2243 return; 2244 } 2245 2246 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2247 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2248 // We don't know if member is an 'ivar', but this flag is looked at 2249 // only in the context of LV.isObjCIvar(). 2250 LV.setObjCArray(E->getType()->isArrayType()); 2251 return; 2252 } 2253 } 2254 2255 static llvm::Value * 2256 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2257 llvm::Value *V, llvm::Type *IRType, 2258 StringRef Name = StringRef()) { 2259 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2260 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2261 } 2262 2263 static LValue EmitThreadPrivateVarDeclLValue( 2264 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2265 llvm::Type *RealVarTy, SourceLocation Loc) { 2266 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2267 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2268 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2269 } 2270 2271 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2272 const VarDecl *VD, QualType T) { 2273 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2274 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2275 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2276 return Address::invalid(); 2277 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2278 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2279 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2280 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2281 } 2282 2283 Address 2284 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2285 LValueBaseInfo *PointeeBaseInfo, 2286 TBAAAccessInfo *PointeeTBAAInfo) { 2287 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2288 RefLVal.isVolatile()); 2289 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2290 2291 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2292 PointeeBaseInfo, PointeeTBAAInfo, 2293 /* forPointeeType= */ true); 2294 return Address(Load, Align); 2295 } 2296 2297 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2298 LValueBaseInfo PointeeBaseInfo; 2299 TBAAAccessInfo PointeeTBAAInfo; 2300 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2301 &PointeeTBAAInfo); 2302 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2303 PointeeBaseInfo, PointeeTBAAInfo); 2304 } 2305 2306 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2307 const PointerType *PtrTy, 2308 LValueBaseInfo *BaseInfo, 2309 TBAAAccessInfo *TBAAInfo) { 2310 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2311 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2312 BaseInfo, TBAAInfo, 2313 /*forPointeeType=*/true)); 2314 } 2315 2316 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2317 const PointerType *PtrTy) { 2318 LValueBaseInfo BaseInfo; 2319 TBAAAccessInfo TBAAInfo; 2320 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2321 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2322 } 2323 2324 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2325 const Expr *E, const VarDecl *VD) { 2326 QualType T = E->getType(); 2327 2328 // If it's thread_local, emit a call to its wrapper function instead. 2329 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2330 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2331 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2332 // Check if the variable is marked as declare target with link clause in 2333 // device codegen. 2334 if (CGF.getLangOpts().OpenMPIsDevice) { 2335 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2336 if (Addr.isValid()) 2337 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2338 } 2339 2340 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2341 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2342 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2343 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2344 Address Addr(V, Alignment); 2345 // Emit reference to the private copy of the variable if it is an OpenMP 2346 // threadprivate variable. 2347 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2348 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2349 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2350 E->getExprLoc()); 2351 } 2352 LValue LV = VD->getType()->isReferenceType() ? 2353 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2354 AlignmentSource::Decl) : 2355 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2356 setObjCGCLValueClass(CGF.getContext(), E, LV); 2357 return LV; 2358 } 2359 2360 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2361 const FunctionDecl *FD) { 2362 if (FD->hasAttr<WeakRefAttr>()) { 2363 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2364 return aliasee.getPointer(); 2365 } 2366 2367 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2368 if (!FD->hasPrototype()) { 2369 if (const FunctionProtoType *Proto = 2370 FD->getType()->getAs<FunctionProtoType>()) { 2371 // Ugly case: for a K&R-style definition, the type of the definition 2372 // isn't the same as the type of a use. Correct for this with a 2373 // bitcast. 2374 QualType NoProtoType = 2375 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2376 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2377 V = llvm::ConstantExpr::getBitCast(V, 2378 CGM.getTypes().ConvertType(NoProtoType)); 2379 } 2380 } 2381 return V; 2382 } 2383 2384 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2385 const Expr *E, const FunctionDecl *FD) { 2386 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2387 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2388 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2389 AlignmentSource::Decl); 2390 } 2391 2392 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2393 llvm::Value *ThisValue) { 2394 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2395 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2396 return CGF.EmitLValueForField(LV, FD); 2397 } 2398 2399 /// Named Registers are named metadata pointing to the register name 2400 /// which will be read from/written to as an argument to the intrinsic 2401 /// @llvm.read/write_register. 2402 /// So far, only the name is being passed down, but other options such as 2403 /// register type, allocation type or even optimization options could be 2404 /// passed down via the metadata node. 2405 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2406 SmallString<64> Name("llvm.named.register."); 2407 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2408 assert(Asm->getLabel().size() < 64-Name.size() && 2409 "Register name too big"); 2410 Name.append(Asm->getLabel()); 2411 llvm::NamedMDNode *M = 2412 CGM.getModule().getOrInsertNamedMetadata(Name); 2413 if (M->getNumOperands() == 0) { 2414 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2415 Asm->getLabel()); 2416 llvm::Metadata *Ops[] = {Str}; 2417 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2418 } 2419 2420 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2421 2422 llvm::Value *Ptr = 2423 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2424 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2425 } 2426 2427 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2428 const NamedDecl *ND = E->getDecl(); 2429 QualType T = E->getType(); 2430 2431 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2432 // Global Named registers access via intrinsics only 2433 if (VD->getStorageClass() == SC_Register && 2434 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2435 return EmitGlobalNamedRegister(VD, CGM); 2436 2437 // A DeclRefExpr for a reference initialized by a constant expression can 2438 // appear without being odr-used. Directly emit the constant initializer. 2439 const Expr *Init = VD->getAnyInitializer(VD); 2440 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2441 VD->isUsableInConstantExpressions(getContext()) && 2442 VD->checkInitIsICE() && 2443 // Do not emit if it is private OpenMP variable. 2444 !(E->refersToEnclosingVariableOrCapture() && 2445 ((CapturedStmtInfo && 2446 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2447 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2448 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2449 isa<BlockDecl>(CurCodeDecl)))) { 2450 llvm::Constant *Val = 2451 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2452 *VD->evaluateValue(), 2453 VD->getType()); 2454 assert(Val && "failed to emit reference constant expression"); 2455 // FIXME: Eventually we will want to emit vector element references. 2456 2457 // Should we be using the alignment of the constant pointer we emitted? 2458 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2459 /* BaseInfo= */ nullptr, 2460 /* TBAAInfo= */ nullptr, 2461 /* forPointeeType= */ true); 2462 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2463 } 2464 2465 // Check for captured variables. 2466 if (E->refersToEnclosingVariableOrCapture()) { 2467 VD = VD->getCanonicalDecl(); 2468 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2469 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2470 else if (CapturedStmtInfo) { 2471 auto I = LocalDeclMap.find(VD); 2472 if (I != LocalDeclMap.end()) { 2473 if (VD->getType()->isReferenceType()) 2474 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2475 AlignmentSource::Decl); 2476 return MakeAddrLValue(I->second, T); 2477 } 2478 LValue CapLVal = 2479 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2480 CapturedStmtInfo->getContextValue()); 2481 return MakeAddrLValue( 2482 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2483 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2484 CapLVal.getTBAAInfo()); 2485 } 2486 2487 assert(isa<BlockDecl>(CurCodeDecl)); 2488 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2489 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2490 } 2491 } 2492 2493 // FIXME: We should be able to assert this for FunctionDecls as well! 2494 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2495 // those with a valid source location. 2496 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2497 !E->getLocation().isValid()) && 2498 "Should not use decl without marking it used!"); 2499 2500 if (ND->hasAttr<WeakRefAttr>()) { 2501 const auto *VD = cast<ValueDecl>(ND); 2502 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2503 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2504 } 2505 2506 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2507 // Check if this is a global variable. 2508 if (VD->hasLinkage() || VD->isStaticDataMember()) 2509 return EmitGlobalVarDeclLValue(*this, E, VD); 2510 2511 Address addr = Address::invalid(); 2512 2513 // The variable should generally be present in the local decl map. 2514 auto iter = LocalDeclMap.find(VD); 2515 if (iter != LocalDeclMap.end()) { 2516 addr = iter->second; 2517 2518 // Otherwise, it might be static local we haven't emitted yet for 2519 // some reason; most likely, because it's in an outer function. 2520 } else if (VD->isStaticLocal()) { 2521 addr = Address(CGM.getOrCreateStaticVarDecl( 2522 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2523 getContext().getDeclAlign(VD)); 2524 2525 // No other cases for now. 2526 } else { 2527 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2528 } 2529 2530 2531 // Check for OpenMP threadprivate variables. 2532 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2533 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2534 return EmitThreadPrivateVarDeclLValue( 2535 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2536 E->getExprLoc()); 2537 } 2538 2539 // Drill into block byref variables. 2540 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2541 if (isBlockByref) { 2542 addr = emitBlockByrefAddress(addr, VD); 2543 } 2544 2545 // Drill into reference types. 2546 LValue LV = VD->getType()->isReferenceType() ? 2547 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2548 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2549 2550 bool isLocalStorage = VD->hasLocalStorage(); 2551 2552 bool NonGCable = isLocalStorage && 2553 !VD->getType()->isReferenceType() && 2554 !isBlockByref; 2555 if (NonGCable) { 2556 LV.getQuals().removeObjCGCAttr(); 2557 LV.setNonGC(true); 2558 } 2559 2560 bool isImpreciseLifetime = 2561 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2562 if (isImpreciseLifetime) 2563 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2564 setObjCGCLValueClass(getContext(), E, LV); 2565 return LV; 2566 } 2567 2568 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2569 return EmitFunctionDeclLValue(*this, E, FD); 2570 2571 // FIXME: While we're emitting a binding from an enclosing scope, all other 2572 // DeclRefExprs we see should be implicitly treated as if they also refer to 2573 // an enclosing scope. 2574 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2575 return EmitLValue(BD->getBinding()); 2576 2577 llvm_unreachable("Unhandled DeclRefExpr"); 2578 } 2579 2580 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2581 // __extension__ doesn't affect lvalue-ness. 2582 if (E->getOpcode() == UO_Extension) 2583 return EmitLValue(E->getSubExpr()); 2584 2585 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2586 switch (E->getOpcode()) { 2587 default: llvm_unreachable("Unknown unary operator lvalue!"); 2588 case UO_Deref: { 2589 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2590 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2591 2592 LValueBaseInfo BaseInfo; 2593 TBAAAccessInfo TBAAInfo; 2594 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2595 &TBAAInfo); 2596 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2597 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2598 2599 // We should not generate __weak write barrier on indirect reference 2600 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2601 // But, we continue to generate __strong write barrier on indirect write 2602 // into a pointer to object. 2603 if (getLangOpts().ObjC1 && 2604 getLangOpts().getGC() != LangOptions::NonGC && 2605 LV.isObjCWeak()) 2606 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2607 return LV; 2608 } 2609 case UO_Real: 2610 case UO_Imag: { 2611 LValue LV = EmitLValue(E->getSubExpr()); 2612 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2613 2614 // __real is valid on scalars. This is a faster way of testing that. 2615 // __imag can only produce an rvalue on scalars. 2616 if (E->getOpcode() == UO_Real && 2617 !LV.getAddress().getElementType()->isStructTy()) { 2618 assert(E->getSubExpr()->getType()->isArithmeticType()); 2619 return LV; 2620 } 2621 2622 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2623 2624 Address Component = 2625 (E->getOpcode() == UO_Real 2626 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2627 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2628 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2629 CGM.getTBAAInfoForSubobject(LV, T)); 2630 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2631 return ElemLV; 2632 } 2633 case UO_PreInc: 2634 case UO_PreDec: { 2635 LValue LV = EmitLValue(E->getSubExpr()); 2636 bool isInc = E->getOpcode() == UO_PreInc; 2637 2638 if (E->getType()->isAnyComplexType()) 2639 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2640 else 2641 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2642 return LV; 2643 } 2644 } 2645 } 2646 2647 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2648 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2649 E->getType(), AlignmentSource::Decl); 2650 } 2651 2652 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2653 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2654 E->getType(), AlignmentSource::Decl); 2655 } 2656 2657 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2658 auto SL = E->getFunctionName(); 2659 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2660 StringRef FnName = CurFn->getName(); 2661 if (FnName.startswith("\01")) 2662 FnName = FnName.substr(1); 2663 StringRef NameItems[] = { 2664 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2665 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2666 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2667 std::string Name = SL->getString(); 2668 if (!Name.empty()) { 2669 unsigned Discriminator = 2670 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2671 if (Discriminator) 2672 Name += "_" + Twine(Discriminator + 1).str(); 2673 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2674 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2675 } else { 2676 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2677 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2678 } 2679 } 2680 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2681 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2682 } 2683 2684 /// Emit a type description suitable for use by a runtime sanitizer library. The 2685 /// format of a type descriptor is 2686 /// 2687 /// \code 2688 /// { i16 TypeKind, i16 TypeInfo } 2689 /// \endcode 2690 /// 2691 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2692 /// integer, 1 for a floating point value, and -1 for anything else. 2693 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2694 // Only emit each type's descriptor once. 2695 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2696 return C; 2697 2698 uint16_t TypeKind = -1; 2699 uint16_t TypeInfo = 0; 2700 2701 if (T->isIntegerType()) { 2702 TypeKind = 0; 2703 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2704 (T->isSignedIntegerType() ? 1 : 0); 2705 } else if (T->isFloatingType()) { 2706 TypeKind = 1; 2707 TypeInfo = getContext().getTypeSize(T); 2708 } 2709 2710 // Format the type name as if for a diagnostic, including quotes and 2711 // optionally an 'aka'. 2712 SmallString<32> Buffer; 2713 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2714 (intptr_t)T.getAsOpaquePtr(), 2715 StringRef(), StringRef(), None, Buffer, 2716 None); 2717 2718 llvm::Constant *Components[] = { 2719 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2720 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2721 }; 2722 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2723 2724 auto *GV = new llvm::GlobalVariable( 2725 CGM.getModule(), Descriptor->getType(), 2726 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2727 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2728 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2729 2730 // Remember the descriptor for this type. 2731 CGM.setTypeDescriptorInMap(T, GV); 2732 2733 return GV; 2734 } 2735 2736 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2737 llvm::Type *TargetTy = IntPtrTy; 2738 2739 if (V->getType() == TargetTy) 2740 return V; 2741 2742 // Floating-point types which fit into intptr_t are bitcast to integers 2743 // and then passed directly (after zero-extension, if necessary). 2744 if (V->getType()->isFloatingPointTy()) { 2745 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2746 if (Bits <= TargetTy->getIntegerBitWidth()) 2747 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2748 Bits)); 2749 } 2750 2751 // Integers which fit in intptr_t are zero-extended and passed directly. 2752 if (V->getType()->isIntegerTy() && 2753 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2754 return Builder.CreateZExt(V, TargetTy); 2755 2756 // Pointers are passed directly, everything else is passed by address. 2757 if (!V->getType()->isPointerTy()) { 2758 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2759 Builder.CreateStore(V, Ptr); 2760 V = Ptr.getPointer(); 2761 } 2762 return Builder.CreatePtrToInt(V, TargetTy); 2763 } 2764 2765 /// Emit a representation of a SourceLocation for passing to a handler 2766 /// in a sanitizer runtime library. The format for this data is: 2767 /// \code 2768 /// struct SourceLocation { 2769 /// const char *Filename; 2770 /// int32_t Line, Column; 2771 /// }; 2772 /// \endcode 2773 /// For an invalid SourceLocation, the Filename pointer is null. 2774 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2775 llvm::Constant *Filename; 2776 int Line, Column; 2777 2778 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2779 if (PLoc.isValid()) { 2780 StringRef FilenameString = PLoc.getFilename(); 2781 2782 int PathComponentsToStrip = 2783 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2784 if (PathComponentsToStrip < 0) { 2785 assert(PathComponentsToStrip != INT_MIN); 2786 int PathComponentsToKeep = -PathComponentsToStrip; 2787 auto I = llvm::sys::path::rbegin(FilenameString); 2788 auto E = llvm::sys::path::rend(FilenameString); 2789 while (I != E && --PathComponentsToKeep) 2790 ++I; 2791 2792 FilenameString = FilenameString.substr(I - E); 2793 } else if (PathComponentsToStrip > 0) { 2794 auto I = llvm::sys::path::begin(FilenameString); 2795 auto E = llvm::sys::path::end(FilenameString); 2796 while (I != E && PathComponentsToStrip--) 2797 ++I; 2798 2799 if (I != E) 2800 FilenameString = 2801 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2802 else 2803 FilenameString = llvm::sys::path::filename(FilenameString); 2804 } 2805 2806 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2807 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2808 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2809 Filename = FilenameGV.getPointer(); 2810 Line = PLoc.getLine(); 2811 Column = PLoc.getColumn(); 2812 } else { 2813 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2814 Line = Column = 0; 2815 } 2816 2817 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2818 Builder.getInt32(Column)}; 2819 2820 return llvm::ConstantStruct::getAnon(Data); 2821 } 2822 2823 namespace { 2824 /// Specify under what conditions this check can be recovered 2825 enum class CheckRecoverableKind { 2826 /// Always terminate program execution if this check fails. 2827 Unrecoverable, 2828 /// Check supports recovering, runtime has both fatal (noreturn) and 2829 /// non-fatal handlers for this check. 2830 Recoverable, 2831 /// Runtime conditionally aborts, always need to support recovery. 2832 AlwaysRecoverable 2833 }; 2834 } 2835 2836 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2837 assert(llvm::countPopulation(Kind) == 1); 2838 switch (Kind) { 2839 case SanitizerKind::Vptr: 2840 return CheckRecoverableKind::AlwaysRecoverable; 2841 case SanitizerKind::Return: 2842 case SanitizerKind::Unreachable: 2843 return CheckRecoverableKind::Unrecoverable; 2844 default: 2845 return CheckRecoverableKind::Recoverable; 2846 } 2847 } 2848 2849 namespace { 2850 struct SanitizerHandlerInfo { 2851 char const *const Name; 2852 unsigned Version; 2853 }; 2854 } 2855 2856 const SanitizerHandlerInfo SanitizerHandlers[] = { 2857 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2858 LIST_SANITIZER_CHECKS 2859 #undef SANITIZER_CHECK 2860 }; 2861 2862 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2863 llvm::FunctionType *FnType, 2864 ArrayRef<llvm::Value *> FnArgs, 2865 SanitizerHandler CheckHandler, 2866 CheckRecoverableKind RecoverKind, bool IsFatal, 2867 llvm::BasicBlock *ContBB) { 2868 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2869 bool NeedsAbortSuffix = 2870 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2871 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2872 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2873 const StringRef CheckName = CheckInfo.Name; 2874 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2875 if (CheckInfo.Version && !MinimalRuntime) 2876 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2877 if (MinimalRuntime) 2878 FnName += "_minimal"; 2879 if (NeedsAbortSuffix) 2880 FnName += "_abort"; 2881 bool MayReturn = 2882 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2883 2884 llvm::AttrBuilder B; 2885 if (!MayReturn) { 2886 B.addAttribute(llvm::Attribute::NoReturn) 2887 .addAttribute(llvm::Attribute::NoUnwind); 2888 } 2889 B.addAttribute(llvm::Attribute::UWTable); 2890 2891 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2892 FnType, FnName, 2893 llvm::AttributeList::get(CGF.getLLVMContext(), 2894 llvm::AttributeList::FunctionIndex, B), 2895 /*Local=*/true); 2896 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2897 if (!MayReturn) { 2898 HandlerCall->setDoesNotReturn(); 2899 CGF.Builder.CreateUnreachable(); 2900 } else { 2901 CGF.Builder.CreateBr(ContBB); 2902 } 2903 } 2904 2905 void CodeGenFunction::EmitCheck( 2906 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2907 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2908 ArrayRef<llvm::Value *> DynamicArgs) { 2909 assert(IsSanitizerScope); 2910 assert(Checked.size() > 0); 2911 assert(CheckHandler >= 0 && 2912 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2913 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2914 2915 llvm::Value *FatalCond = nullptr; 2916 llvm::Value *RecoverableCond = nullptr; 2917 llvm::Value *TrapCond = nullptr; 2918 for (int i = 0, n = Checked.size(); i < n; ++i) { 2919 llvm::Value *Check = Checked[i].first; 2920 // -fsanitize-trap= overrides -fsanitize-recover=. 2921 llvm::Value *&Cond = 2922 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2923 ? TrapCond 2924 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2925 ? RecoverableCond 2926 : FatalCond; 2927 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2928 } 2929 2930 if (TrapCond) 2931 EmitTrapCheck(TrapCond); 2932 if (!FatalCond && !RecoverableCond) 2933 return; 2934 2935 llvm::Value *JointCond; 2936 if (FatalCond && RecoverableCond) 2937 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2938 else 2939 JointCond = FatalCond ? FatalCond : RecoverableCond; 2940 assert(JointCond); 2941 2942 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2943 assert(SanOpts.has(Checked[0].second)); 2944 #ifndef NDEBUG 2945 for (int i = 1, n = Checked.size(); i < n; ++i) { 2946 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2947 "All recoverable kinds in a single check must be same!"); 2948 assert(SanOpts.has(Checked[i].second)); 2949 } 2950 #endif 2951 2952 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2953 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2954 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2955 // Give hint that we very much don't expect to execute the handler 2956 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2957 llvm::MDBuilder MDHelper(getLLVMContext()); 2958 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2959 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2960 EmitBlock(Handlers); 2961 2962 // Handler functions take an i8* pointing to the (handler-specific) static 2963 // information block, followed by a sequence of intptr_t arguments 2964 // representing operand values. 2965 SmallVector<llvm::Value *, 4> Args; 2966 SmallVector<llvm::Type *, 4> ArgTypes; 2967 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2968 Args.reserve(DynamicArgs.size() + 1); 2969 ArgTypes.reserve(DynamicArgs.size() + 1); 2970 2971 // Emit handler arguments and create handler function type. 2972 if (!StaticArgs.empty()) { 2973 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2974 auto *InfoPtr = 2975 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2976 llvm::GlobalVariable::PrivateLinkage, Info); 2977 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2978 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2979 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2980 ArgTypes.push_back(Int8PtrTy); 2981 } 2982 2983 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2984 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2985 ArgTypes.push_back(IntPtrTy); 2986 } 2987 } 2988 2989 llvm::FunctionType *FnType = 2990 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2991 2992 if (!FatalCond || !RecoverableCond) { 2993 // Simple case: we need to generate a single handler call, either 2994 // fatal, or non-fatal. 2995 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2996 (FatalCond != nullptr), Cont); 2997 } else { 2998 // Emit two handler calls: first one for set of unrecoverable checks, 2999 // another one for recoverable. 3000 llvm::BasicBlock *NonFatalHandlerBB = 3001 createBasicBlock("non_fatal." + CheckName); 3002 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3003 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3004 EmitBlock(FatalHandlerBB); 3005 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3006 NonFatalHandlerBB); 3007 EmitBlock(NonFatalHandlerBB); 3008 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3009 Cont); 3010 } 3011 3012 EmitBlock(Cont); 3013 } 3014 3015 void CodeGenFunction::EmitCfiSlowPathCheck( 3016 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3017 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3018 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3019 3020 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3021 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3022 3023 llvm::MDBuilder MDHelper(getLLVMContext()); 3024 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3025 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3026 3027 EmitBlock(CheckBB); 3028 3029 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3030 3031 llvm::CallInst *CheckCall; 3032 llvm::Constant *SlowPathFn; 3033 if (WithDiag) { 3034 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3035 auto *InfoPtr = 3036 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3037 llvm::GlobalVariable::PrivateLinkage, Info); 3038 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3039 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3040 3041 SlowPathFn = CGM.getModule().getOrInsertFunction( 3042 "__cfi_slowpath_diag", 3043 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3044 false)); 3045 CheckCall = Builder.CreateCall( 3046 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3047 } else { 3048 SlowPathFn = CGM.getModule().getOrInsertFunction( 3049 "__cfi_slowpath", 3050 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3051 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3052 } 3053 3054 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3055 CheckCall->setDoesNotThrow(); 3056 3057 EmitBlock(Cont); 3058 } 3059 3060 // Emit a stub for __cfi_check function so that the linker knows about this 3061 // symbol in LTO mode. 3062 void CodeGenFunction::EmitCfiCheckStub() { 3063 llvm::Module *M = &CGM.getModule(); 3064 auto &Ctx = M->getContext(); 3065 llvm::Function *F = llvm::Function::Create( 3066 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3067 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3068 CGM.setDSOLocal(F); 3069 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3070 // FIXME: consider emitting an intrinsic call like 3071 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3072 // which can be lowered in CrossDSOCFI pass to the actual contents of 3073 // __cfi_check. This would allow inlining of __cfi_check calls. 3074 llvm::CallInst::Create( 3075 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3076 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3077 } 3078 3079 // This function is basically a switch over the CFI failure kind, which is 3080 // extracted from CFICheckFailData (1st function argument). Each case is either 3081 // llvm.trap or a call to one of the two runtime handlers, based on 3082 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3083 // failure kind) traps, but this should really never happen. CFICheckFailData 3084 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3085 // check kind; in this case __cfi_check_fail traps as well. 3086 void CodeGenFunction::EmitCfiCheckFail() { 3087 SanitizerScope SanScope(this); 3088 FunctionArgList Args; 3089 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3090 ImplicitParamDecl::Other); 3091 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3092 ImplicitParamDecl::Other); 3093 Args.push_back(&ArgData); 3094 Args.push_back(&ArgAddr); 3095 3096 const CGFunctionInfo &FI = 3097 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3098 3099 llvm::Function *F = llvm::Function::Create( 3100 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3101 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3102 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3103 3104 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3105 SourceLocation()); 3106 3107 // This function should not be affected by blacklist. This function does 3108 // not have a source location, but "src:*" would still apply. Revert any 3109 // changes to SanOpts made in StartFunction. 3110 SanOpts = CGM.getLangOpts().Sanitize; 3111 3112 llvm::Value *Data = 3113 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3114 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3115 llvm::Value *Addr = 3116 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3117 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3118 3119 // Data == nullptr means the calling module has trap behaviour for this check. 3120 llvm::Value *DataIsNotNullPtr = 3121 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3122 EmitTrapCheck(DataIsNotNullPtr); 3123 3124 llvm::StructType *SourceLocationTy = 3125 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3126 llvm::StructType *CfiCheckFailDataTy = 3127 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3128 3129 llvm::Value *V = Builder.CreateConstGEP2_32( 3130 CfiCheckFailDataTy, 3131 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3132 0); 3133 Address CheckKindAddr(V, getIntAlign()); 3134 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3135 3136 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3137 CGM.getLLVMContext(), 3138 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3139 llvm::Value *ValidVtable = Builder.CreateZExt( 3140 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3141 {Addr, AllVtables}), 3142 IntPtrTy); 3143 3144 const std::pair<int, SanitizerMask> CheckKinds[] = { 3145 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3146 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3147 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3148 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3149 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3150 3151 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3152 for (auto CheckKindMaskPair : CheckKinds) { 3153 int Kind = CheckKindMaskPair.first; 3154 SanitizerMask Mask = CheckKindMaskPair.second; 3155 llvm::Value *Cond = 3156 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3157 if (CGM.getLangOpts().Sanitize.has(Mask)) 3158 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3159 {Data, Addr, ValidVtable}); 3160 else 3161 EmitTrapCheck(Cond); 3162 } 3163 3164 FinishFunction(); 3165 // The only reference to this function will be created during LTO link. 3166 // Make sure it survives until then. 3167 CGM.addUsedGlobal(F); 3168 } 3169 3170 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3171 if (SanOpts.has(SanitizerKind::Unreachable)) { 3172 SanitizerScope SanScope(this); 3173 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3174 SanitizerKind::Unreachable), 3175 SanitizerHandler::BuiltinUnreachable, 3176 EmitCheckSourceLocation(Loc), None); 3177 } 3178 Builder.CreateUnreachable(); 3179 } 3180 3181 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3182 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3183 3184 // If we're optimizing, collapse all calls to trap down to just one per 3185 // function to save on code size. 3186 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3187 TrapBB = createBasicBlock("trap"); 3188 Builder.CreateCondBr(Checked, Cont, TrapBB); 3189 EmitBlock(TrapBB); 3190 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3191 TrapCall->setDoesNotReturn(); 3192 TrapCall->setDoesNotThrow(); 3193 Builder.CreateUnreachable(); 3194 } else { 3195 Builder.CreateCondBr(Checked, Cont, TrapBB); 3196 } 3197 3198 EmitBlock(Cont); 3199 } 3200 3201 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3202 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3203 3204 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3205 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3206 CGM.getCodeGenOpts().TrapFuncName); 3207 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3208 } 3209 3210 return TrapCall; 3211 } 3212 3213 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3214 LValueBaseInfo *BaseInfo, 3215 TBAAAccessInfo *TBAAInfo) { 3216 assert(E->getType()->isArrayType() && 3217 "Array to pointer decay must have array source type!"); 3218 3219 // Expressions of array type can't be bitfields or vector elements. 3220 LValue LV = EmitLValue(E); 3221 Address Addr = LV.getAddress(); 3222 3223 // If the array type was an incomplete type, we need to make sure 3224 // the decay ends up being the right type. 3225 llvm::Type *NewTy = ConvertType(E->getType()); 3226 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3227 3228 // Note that VLA pointers are always decayed, so we don't need to do 3229 // anything here. 3230 if (!E->getType()->isVariableArrayType()) { 3231 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3232 "Expected pointer to array"); 3233 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3234 } 3235 3236 // The result of this decay conversion points to an array element within the 3237 // base lvalue. However, since TBAA currently does not support representing 3238 // accesses to elements of member arrays, we conservatively represent accesses 3239 // to the pointee object as if it had no any base lvalue specified. 3240 // TODO: Support TBAA for member arrays. 3241 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3242 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3243 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3244 3245 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3246 } 3247 3248 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3249 /// array to pointer, return the array subexpression. 3250 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3251 // If this isn't just an array->pointer decay, bail out. 3252 const auto *CE = dyn_cast<CastExpr>(E); 3253 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3254 return nullptr; 3255 3256 // If this is a decay from variable width array, bail out. 3257 const Expr *SubExpr = CE->getSubExpr(); 3258 if (SubExpr->getType()->isVariableArrayType()) 3259 return nullptr; 3260 3261 return SubExpr; 3262 } 3263 3264 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3265 llvm::Value *ptr, 3266 ArrayRef<llvm::Value*> indices, 3267 bool inbounds, 3268 bool signedIndices, 3269 SourceLocation loc, 3270 const llvm::Twine &name = "arrayidx") { 3271 if (inbounds) { 3272 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3273 CodeGenFunction::NotSubtraction, loc, 3274 name); 3275 } else { 3276 return CGF.Builder.CreateGEP(ptr, indices, name); 3277 } 3278 } 3279 3280 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3281 llvm::Value *idx, 3282 CharUnits eltSize) { 3283 // If we have a constant index, we can use the exact offset of the 3284 // element we're accessing. 3285 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3286 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3287 return arrayAlign.alignmentAtOffset(offset); 3288 3289 // Otherwise, use the worst-case alignment for any element. 3290 } else { 3291 return arrayAlign.alignmentOfArrayElement(eltSize); 3292 } 3293 } 3294 3295 static QualType getFixedSizeElementType(const ASTContext &ctx, 3296 const VariableArrayType *vla) { 3297 QualType eltType; 3298 do { 3299 eltType = vla->getElementType(); 3300 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3301 return eltType; 3302 } 3303 3304 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3305 ArrayRef<llvm::Value *> indices, 3306 QualType eltType, bool inbounds, 3307 bool signedIndices, SourceLocation loc, 3308 const llvm::Twine &name = "arrayidx") { 3309 // All the indices except that last must be zero. 3310 #ifndef NDEBUG 3311 for (auto idx : indices.drop_back()) 3312 assert(isa<llvm::ConstantInt>(idx) && 3313 cast<llvm::ConstantInt>(idx)->isZero()); 3314 #endif 3315 3316 // Determine the element size of the statically-sized base. This is 3317 // the thing that the indices are expressed in terms of. 3318 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3319 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3320 } 3321 3322 // We can use that to compute the best alignment of the element. 3323 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3324 CharUnits eltAlign = 3325 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3326 3327 llvm::Value *eltPtr = emitArraySubscriptGEP( 3328 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3329 return Address(eltPtr, eltAlign); 3330 } 3331 3332 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3333 bool Accessed) { 3334 // The index must always be an integer, which is not an aggregate. Emit it 3335 // in lexical order (this complexity is, sadly, required by C++17). 3336 llvm::Value *IdxPre = 3337 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3338 bool SignedIndices = false; 3339 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3340 auto *Idx = IdxPre; 3341 if (E->getLHS() != E->getIdx()) { 3342 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3343 Idx = EmitScalarExpr(E->getIdx()); 3344 } 3345 3346 QualType IdxTy = E->getIdx()->getType(); 3347 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3348 SignedIndices |= IdxSigned; 3349 3350 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3351 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3352 3353 // Extend or truncate the index type to 32 or 64-bits. 3354 if (Promote && Idx->getType() != IntPtrTy) 3355 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3356 3357 return Idx; 3358 }; 3359 IdxPre = nullptr; 3360 3361 // If the base is a vector type, then we are forming a vector element lvalue 3362 // with this subscript. 3363 if (E->getBase()->getType()->isVectorType() && 3364 !isa<ExtVectorElementExpr>(E->getBase())) { 3365 // Emit the vector as an lvalue to get its address. 3366 LValue LHS = EmitLValue(E->getBase()); 3367 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3368 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3369 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3370 LHS.getBaseInfo(), TBAAAccessInfo()); 3371 } 3372 3373 // All the other cases basically behave like simple offsetting. 3374 3375 // Handle the extvector case we ignored above. 3376 if (isa<ExtVectorElementExpr>(E->getBase())) { 3377 LValue LV = EmitLValue(E->getBase()); 3378 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3379 Address Addr = EmitExtVectorElementLValue(LV); 3380 3381 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3382 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3383 SignedIndices, E->getExprLoc()); 3384 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3385 CGM.getTBAAInfoForSubobject(LV, EltType)); 3386 } 3387 3388 LValueBaseInfo EltBaseInfo; 3389 TBAAAccessInfo EltTBAAInfo; 3390 Address Addr = Address::invalid(); 3391 if (const VariableArrayType *vla = 3392 getContext().getAsVariableArrayType(E->getType())) { 3393 // The base must be a pointer, which is not an aggregate. Emit 3394 // it. It needs to be emitted first in case it's what captures 3395 // the VLA bounds. 3396 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3397 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3398 3399 // The element count here is the total number of non-VLA elements. 3400 llvm::Value *numElements = getVLASize(vla).NumElts; 3401 3402 // Effectively, the multiply by the VLA size is part of the GEP. 3403 // GEP indexes are signed, and scaling an index isn't permitted to 3404 // signed-overflow, so we use the same semantics for our explicit 3405 // multiply. We suppress this if overflow is not undefined behavior. 3406 if (getLangOpts().isSignedOverflowDefined()) { 3407 Idx = Builder.CreateMul(Idx, numElements); 3408 } else { 3409 Idx = Builder.CreateNSWMul(Idx, numElements); 3410 } 3411 3412 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3413 !getLangOpts().isSignedOverflowDefined(), 3414 SignedIndices, E->getExprLoc()); 3415 3416 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3417 // Indexing over an interface, as in "NSString *P; P[4];" 3418 3419 // Emit the base pointer. 3420 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3421 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3422 3423 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3424 llvm::Value *InterfaceSizeVal = 3425 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3426 3427 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3428 3429 // We don't necessarily build correct LLVM struct types for ObjC 3430 // interfaces, so we can't rely on GEP to do this scaling 3431 // correctly, so we need to cast to i8*. FIXME: is this actually 3432 // true? A lot of other things in the fragile ABI would break... 3433 llvm::Type *OrigBaseTy = Addr.getType(); 3434 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3435 3436 // Do the GEP. 3437 CharUnits EltAlign = 3438 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3439 llvm::Value *EltPtr = 3440 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3441 SignedIndices, E->getExprLoc()); 3442 Addr = Address(EltPtr, EltAlign); 3443 3444 // Cast back. 3445 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3446 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3447 // If this is A[i] where A is an array, the frontend will have decayed the 3448 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3449 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3450 // "gep x, i" here. Emit one "gep A, 0, i". 3451 assert(Array->getType()->isArrayType() && 3452 "Array to pointer decay must have array source type!"); 3453 LValue ArrayLV; 3454 // For simple multidimensional array indexing, set the 'accessed' flag for 3455 // better bounds-checking of the base expression. 3456 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3457 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3458 else 3459 ArrayLV = EmitLValue(Array); 3460 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3461 3462 // Propagate the alignment from the array itself to the result. 3463 Addr = emitArraySubscriptGEP( 3464 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3465 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3466 E->getExprLoc()); 3467 EltBaseInfo = ArrayLV.getBaseInfo(); 3468 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3469 } else { 3470 // The base must be a pointer; emit it with an estimate of its alignment. 3471 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3472 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3473 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3474 !getLangOpts().isSignedOverflowDefined(), 3475 SignedIndices, E->getExprLoc()); 3476 } 3477 3478 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3479 3480 if (getLangOpts().ObjC1 && 3481 getLangOpts().getGC() != LangOptions::NonGC) { 3482 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3483 setObjCGCLValueClass(getContext(), E, LV); 3484 } 3485 return LV; 3486 } 3487 3488 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3489 LValueBaseInfo &BaseInfo, 3490 TBAAAccessInfo &TBAAInfo, 3491 QualType BaseTy, QualType ElTy, 3492 bool IsLowerBound) { 3493 LValue BaseLVal; 3494 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3495 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3496 if (BaseTy->isArrayType()) { 3497 Address Addr = BaseLVal.getAddress(); 3498 BaseInfo = BaseLVal.getBaseInfo(); 3499 3500 // If the array type was an incomplete type, we need to make sure 3501 // the decay ends up being the right type. 3502 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3503 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3504 3505 // Note that VLA pointers are always decayed, so we don't need to do 3506 // anything here. 3507 if (!BaseTy->isVariableArrayType()) { 3508 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3509 "Expected pointer to array"); 3510 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3511 "arraydecay"); 3512 } 3513 3514 return CGF.Builder.CreateElementBitCast(Addr, 3515 CGF.ConvertTypeForMem(ElTy)); 3516 } 3517 LValueBaseInfo TypeBaseInfo; 3518 TBAAAccessInfo TypeTBAAInfo; 3519 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3520 &TypeTBAAInfo); 3521 BaseInfo.mergeForCast(TypeBaseInfo); 3522 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3523 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3524 } 3525 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3526 } 3527 3528 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3529 bool IsLowerBound) { 3530 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3531 QualType ResultExprTy; 3532 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3533 ResultExprTy = AT->getElementType(); 3534 else 3535 ResultExprTy = BaseTy->getPointeeType(); 3536 llvm::Value *Idx = nullptr; 3537 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3538 // Requesting lower bound or upper bound, but without provided length and 3539 // without ':' symbol for the default length -> length = 1. 3540 // Idx = LowerBound ?: 0; 3541 if (auto *LowerBound = E->getLowerBound()) { 3542 Idx = Builder.CreateIntCast( 3543 EmitScalarExpr(LowerBound), IntPtrTy, 3544 LowerBound->getType()->hasSignedIntegerRepresentation()); 3545 } else 3546 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3547 } else { 3548 // Try to emit length or lower bound as constant. If this is possible, 1 3549 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3550 // IR (LB + Len) - 1. 3551 auto &C = CGM.getContext(); 3552 auto *Length = E->getLength(); 3553 llvm::APSInt ConstLength; 3554 if (Length) { 3555 // Idx = LowerBound + Length - 1; 3556 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3557 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3558 Length = nullptr; 3559 } 3560 auto *LowerBound = E->getLowerBound(); 3561 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3562 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3563 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3564 LowerBound = nullptr; 3565 } 3566 if (!Length) 3567 --ConstLength; 3568 else if (!LowerBound) 3569 --ConstLowerBound; 3570 3571 if (Length || LowerBound) { 3572 auto *LowerBoundVal = 3573 LowerBound 3574 ? Builder.CreateIntCast( 3575 EmitScalarExpr(LowerBound), IntPtrTy, 3576 LowerBound->getType()->hasSignedIntegerRepresentation()) 3577 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3578 auto *LengthVal = 3579 Length 3580 ? Builder.CreateIntCast( 3581 EmitScalarExpr(Length), IntPtrTy, 3582 Length->getType()->hasSignedIntegerRepresentation()) 3583 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3584 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3585 /*HasNUW=*/false, 3586 !getLangOpts().isSignedOverflowDefined()); 3587 if (Length && LowerBound) { 3588 Idx = Builder.CreateSub( 3589 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3590 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3591 } 3592 } else 3593 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3594 } else { 3595 // Idx = ArraySize - 1; 3596 QualType ArrayTy = BaseTy->isPointerType() 3597 ? E->getBase()->IgnoreParenImpCasts()->getType() 3598 : BaseTy; 3599 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3600 Length = VAT->getSizeExpr(); 3601 if (Length->isIntegerConstantExpr(ConstLength, C)) 3602 Length = nullptr; 3603 } else { 3604 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3605 ConstLength = CAT->getSize(); 3606 } 3607 if (Length) { 3608 auto *LengthVal = Builder.CreateIntCast( 3609 EmitScalarExpr(Length), IntPtrTy, 3610 Length->getType()->hasSignedIntegerRepresentation()); 3611 Idx = Builder.CreateSub( 3612 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3613 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3614 } else { 3615 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3616 --ConstLength; 3617 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3618 } 3619 } 3620 } 3621 assert(Idx); 3622 3623 Address EltPtr = Address::invalid(); 3624 LValueBaseInfo BaseInfo; 3625 TBAAAccessInfo TBAAInfo; 3626 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3627 // The base must be a pointer, which is not an aggregate. Emit 3628 // it. It needs to be emitted first in case it's what captures 3629 // the VLA bounds. 3630 Address Base = 3631 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3632 BaseTy, VLA->getElementType(), IsLowerBound); 3633 // The element count here is the total number of non-VLA elements. 3634 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3635 3636 // Effectively, the multiply by the VLA size is part of the GEP. 3637 // GEP indexes are signed, and scaling an index isn't permitted to 3638 // signed-overflow, so we use the same semantics for our explicit 3639 // multiply. We suppress this if overflow is not undefined behavior. 3640 if (getLangOpts().isSignedOverflowDefined()) 3641 Idx = Builder.CreateMul(Idx, NumElements); 3642 else 3643 Idx = Builder.CreateNSWMul(Idx, NumElements); 3644 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3645 !getLangOpts().isSignedOverflowDefined(), 3646 /*SignedIndices=*/false, E->getExprLoc()); 3647 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3648 // If this is A[i] where A is an array, the frontend will have decayed the 3649 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3650 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3651 // "gep x, i" here. Emit one "gep A, 0, i". 3652 assert(Array->getType()->isArrayType() && 3653 "Array to pointer decay must have array source type!"); 3654 LValue ArrayLV; 3655 // For simple multidimensional array indexing, set the 'accessed' flag for 3656 // better bounds-checking of the base expression. 3657 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3658 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3659 else 3660 ArrayLV = EmitLValue(Array); 3661 3662 // Propagate the alignment from the array itself to the result. 3663 EltPtr = emitArraySubscriptGEP( 3664 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3665 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3666 /*SignedIndices=*/false, E->getExprLoc()); 3667 BaseInfo = ArrayLV.getBaseInfo(); 3668 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3669 } else { 3670 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3671 TBAAInfo, BaseTy, ResultExprTy, 3672 IsLowerBound); 3673 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3674 !getLangOpts().isSignedOverflowDefined(), 3675 /*SignedIndices=*/false, E->getExprLoc()); 3676 } 3677 3678 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3679 } 3680 3681 LValue CodeGenFunction:: 3682 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3683 // Emit the base vector as an l-value. 3684 LValue Base; 3685 3686 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3687 if (E->isArrow()) { 3688 // If it is a pointer to a vector, emit the address and form an lvalue with 3689 // it. 3690 LValueBaseInfo BaseInfo; 3691 TBAAAccessInfo TBAAInfo; 3692 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3693 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3694 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3695 Base.getQuals().removeObjCGCAttr(); 3696 } else if (E->getBase()->isGLValue()) { 3697 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3698 // emit the base as an lvalue. 3699 assert(E->getBase()->getType()->isVectorType()); 3700 Base = EmitLValue(E->getBase()); 3701 } else { 3702 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3703 assert(E->getBase()->getType()->isVectorType() && 3704 "Result must be a vector"); 3705 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3706 3707 // Store the vector to memory (because LValue wants an address). 3708 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3709 Builder.CreateStore(Vec, VecMem); 3710 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3711 AlignmentSource::Decl); 3712 } 3713 3714 QualType type = 3715 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3716 3717 // Encode the element access list into a vector of unsigned indices. 3718 SmallVector<uint32_t, 4> Indices; 3719 E->getEncodedElementAccess(Indices); 3720 3721 if (Base.isSimple()) { 3722 llvm::Constant *CV = 3723 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3724 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3725 Base.getBaseInfo(), TBAAAccessInfo()); 3726 } 3727 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3728 3729 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3730 SmallVector<llvm::Constant *, 4> CElts; 3731 3732 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3733 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3734 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3735 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3736 Base.getBaseInfo(), TBAAAccessInfo()); 3737 } 3738 3739 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3740 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3741 EmitIgnoredExpr(E->getBase()); 3742 return EmitDeclRefLValue(DRE); 3743 } 3744 3745 Expr *BaseExpr = E->getBase(); 3746 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3747 LValue BaseLV; 3748 if (E->isArrow()) { 3749 LValueBaseInfo BaseInfo; 3750 TBAAAccessInfo TBAAInfo; 3751 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3752 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3753 SanitizerSet SkippedChecks; 3754 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3755 if (IsBaseCXXThis) 3756 SkippedChecks.set(SanitizerKind::Alignment, true); 3757 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3758 SkippedChecks.set(SanitizerKind::Null, true); 3759 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3760 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3761 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3762 } else 3763 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3764 3765 NamedDecl *ND = E->getMemberDecl(); 3766 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3767 LValue LV = EmitLValueForField(BaseLV, Field); 3768 setObjCGCLValueClass(getContext(), E, LV); 3769 return LV; 3770 } 3771 3772 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3773 return EmitFunctionDeclLValue(*this, E, FD); 3774 3775 llvm_unreachable("Unhandled member declaration!"); 3776 } 3777 3778 /// Given that we are currently emitting a lambda, emit an l-value for 3779 /// one of its members. 3780 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3781 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3782 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3783 QualType LambdaTagType = 3784 getContext().getTagDeclType(Field->getParent()); 3785 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3786 return EmitLValueForField(LambdaLV, Field); 3787 } 3788 3789 /// Drill down to the storage of a field without walking into 3790 /// reference types. 3791 /// 3792 /// The resulting address doesn't necessarily have the right type. 3793 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3794 const FieldDecl *field) { 3795 const RecordDecl *rec = field->getParent(); 3796 3797 unsigned idx = 3798 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3799 3800 CharUnits offset; 3801 // Adjust the alignment down to the given offset. 3802 // As a special case, if the LLVM field index is 0, we know that this 3803 // is zero. 3804 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3805 .getFieldOffset(field->getFieldIndex()) == 0) && 3806 "LLVM field at index zero had non-zero offset?"); 3807 if (idx != 0) { 3808 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3809 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3810 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3811 } 3812 3813 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3814 } 3815 3816 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3817 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3818 if (!RD) 3819 return false; 3820 3821 if (RD->isDynamicClass()) 3822 return true; 3823 3824 for (const auto &Base : RD->bases()) 3825 if (hasAnyVptr(Base.getType(), Context)) 3826 return true; 3827 3828 for (const FieldDecl *Field : RD->fields()) 3829 if (hasAnyVptr(Field->getType(), Context)) 3830 return true; 3831 3832 return false; 3833 } 3834 3835 LValue CodeGenFunction::EmitLValueForField(LValue base, 3836 const FieldDecl *field) { 3837 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3838 3839 if (field->isBitField()) { 3840 const CGRecordLayout &RL = 3841 CGM.getTypes().getCGRecordLayout(field->getParent()); 3842 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3843 Address Addr = base.getAddress(); 3844 unsigned Idx = RL.getLLVMFieldNo(field); 3845 if (Idx != 0) 3846 // For structs, we GEP to the field that the record layout suggests. 3847 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3848 field->getName()); 3849 // Get the access type. 3850 llvm::Type *FieldIntTy = 3851 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3852 if (Addr.getElementType() != FieldIntTy) 3853 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3854 3855 QualType fieldType = 3856 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3857 // TODO: Support TBAA for bit fields. 3858 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3859 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3860 TBAAAccessInfo()); 3861 } 3862 3863 // Fields of may-alias structures are may-alias themselves. 3864 // FIXME: this should get propagated down through anonymous structs 3865 // and unions. 3866 QualType FieldType = field->getType(); 3867 const RecordDecl *rec = field->getParent(); 3868 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3869 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3870 TBAAAccessInfo FieldTBAAInfo; 3871 if (base.getTBAAInfo().isMayAlias() || 3872 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3873 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3874 } else if (rec->isUnion()) { 3875 // TODO: Support TBAA for unions. 3876 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3877 } else { 3878 // If no base type been assigned for the base access, then try to generate 3879 // one for this base lvalue. 3880 FieldTBAAInfo = base.getTBAAInfo(); 3881 if (!FieldTBAAInfo.BaseType) { 3882 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3883 assert(!FieldTBAAInfo.Offset && 3884 "Nonzero offset for an access with no base type!"); 3885 } 3886 3887 // Adjust offset to be relative to the base type. 3888 const ASTRecordLayout &Layout = 3889 getContext().getASTRecordLayout(field->getParent()); 3890 unsigned CharWidth = getContext().getCharWidth(); 3891 if (FieldTBAAInfo.BaseType) 3892 FieldTBAAInfo.Offset += 3893 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3894 3895 // Update the final access type and size. 3896 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3897 FieldTBAAInfo.Size = 3898 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3899 } 3900 3901 Address addr = base.getAddress(); 3902 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3903 if (CGM.getCodeGenOpts().StrictVTablePointers && 3904 ClassDef->isDynamicClass()) { 3905 // Getting to any field of dynamic object requires stripping dynamic 3906 // information provided by invariant.group. This is because accessing 3907 // fields may leak the real address of dynamic object, which could result 3908 // in miscompilation when leaked pointer would be compared. 3909 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3910 addr = Address(stripped, addr.getAlignment()); 3911 } 3912 } 3913 3914 unsigned RecordCVR = base.getVRQualifiers(); 3915 if (rec->isUnion()) { 3916 // For unions, there is no pointer adjustment. 3917 assert(!FieldType->isReferenceType() && "union has reference member"); 3918 if (CGM.getCodeGenOpts().StrictVTablePointers && 3919 hasAnyVptr(FieldType, getContext())) 3920 // Because unions can easily skip invariant.barriers, we need to add 3921 // a barrier every time CXXRecord field with vptr is referenced. 3922 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3923 addr.getAlignment()); 3924 } else { 3925 // For structs, we GEP to the field that the record layout suggests. 3926 addr = emitAddrOfFieldStorage(*this, addr, field); 3927 3928 // If this is a reference field, load the reference right now. 3929 if (FieldType->isReferenceType()) { 3930 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3931 FieldTBAAInfo); 3932 if (RecordCVR & Qualifiers::Volatile) 3933 RefLVal.getQuals().setVolatile(true); 3934 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3935 3936 // Qualifiers on the struct don't apply to the referencee. 3937 RecordCVR = 0; 3938 FieldType = FieldType->getPointeeType(); 3939 } 3940 } 3941 3942 // Make sure that the address is pointing to the right type. This is critical 3943 // for both unions and structs. A union needs a bitcast, a struct element 3944 // will need a bitcast if the LLVM type laid out doesn't match the desired 3945 // type. 3946 addr = Builder.CreateElementBitCast( 3947 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3948 3949 if (field->hasAttr<AnnotateAttr>()) 3950 addr = EmitFieldAnnotations(field, addr); 3951 3952 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3953 LV.getQuals().addCVRQualifiers(RecordCVR); 3954 3955 // __weak attribute on a field is ignored. 3956 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3957 LV.getQuals().removeObjCGCAttr(); 3958 3959 return LV; 3960 } 3961 3962 LValue 3963 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3964 const FieldDecl *Field) { 3965 QualType FieldType = Field->getType(); 3966 3967 if (!FieldType->isReferenceType()) 3968 return EmitLValueForField(Base, Field); 3969 3970 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3971 3972 // Make sure that the address is pointing to the right type. 3973 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3974 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3975 3976 // TODO: Generate TBAA information that describes this access as a structure 3977 // member access and not just an access to an object of the field's type. This 3978 // should be similar to what we do in EmitLValueForField(). 3979 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3980 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3981 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3982 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3983 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3984 } 3985 3986 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3987 if (E->isFileScope()) { 3988 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3989 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3990 } 3991 if (E->getType()->isVariablyModifiedType()) 3992 // make sure to emit the VLA size. 3993 EmitVariablyModifiedType(E->getType()); 3994 3995 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3996 const Expr *InitExpr = E->getInitializer(); 3997 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3998 3999 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4000 /*Init*/ true); 4001 4002 return Result; 4003 } 4004 4005 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4006 if (!E->isGLValue()) 4007 // Initializing an aggregate temporary in C++11: T{...}. 4008 return EmitAggExprToLValue(E); 4009 4010 // An lvalue initializer list must be initializing a reference. 4011 assert(E->isTransparent() && "non-transparent glvalue init list"); 4012 return EmitLValue(E->getInit(0)); 4013 } 4014 4015 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4016 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4017 /// LValue is returned and the current block has been terminated. 4018 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4019 const Expr *Operand) { 4020 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4021 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4022 return None; 4023 } 4024 4025 return CGF.EmitLValue(Operand); 4026 } 4027 4028 LValue CodeGenFunction:: 4029 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4030 if (!expr->isGLValue()) { 4031 // ?: here should be an aggregate. 4032 assert(hasAggregateEvaluationKind(expr->getType()) && 4033 "Unexpected conditional operator!"); 4034 return EmitAggExprToLValue(expr); 4035 } 4036 4037 OpaqueValueMapping binding(*this, expr); 4038 4039 const Expr *condExpr = expr->getCond(); 4040 bool CondExprBool; 4041 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4042 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4043 if (!CondExprBool) std::swap(live, dead); 4044 4045 if (!ContainsLabel(dead)) { 4046 // If the true case is live, we need to track its region. 4047 if (CondExprBool) 4048 incrementProfileCounter(expr); 4049 return EmitLValue(live); 4050 } 4051 } 4052 4053 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4054 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4055 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4056 4057 ConditionalEvaluation eval(*this); 4058 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4059 4060 // Any temporaries created here are conditional. 4061 EmitBlock(lhsBlock); 4062 incrementProfileCounter(expr); 4063 eval.begin(*this); 4064 Optional<LValue> lhs = 4065 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4066 eval.end(*this); 4067 4068 if (lhs && !lhs->isSimple()) 4069 return EmitUnsupportedLValue(expr, "conditional operator"); 4070 4071 lhsBlock = Builder.GetInsertBlock(); 4072 if (lhs) 4073 Builder.CreateBr(contBlock); 4074 4075 // Any temporaries created here are conditional. 4076 EmitBlock(rhsBlock); 4077 eval.begin(*this); 4078 Optional<LValue> rhs = 4079 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4080 eval.end(*this); 4081 if (rhs && !rhs->isSimple()) 4082 return EmitUnsupportedLValue(expr, "conditional operator"); 4083 rhsBlock = Builder.GetInsertBlock(); 4084 4085 EmitBlock(contBlock); 4086 4087 if (lhs && rhs) { 4088 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4089 2, "cond-lvalue"); 4090 phi->addIncoming(lhs->getPointer(), lhsBlock); 4091 phi->addIncoming(rhs->getPointer(), rhsBlock); 4092 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4093 AlignmentSource alignSource = 4094 std::max(lhs->getBaseInfo().getAlignmentSource(), 4095 rhs->getBaseInfo().getAlignmentSource()); 4096 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4097 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4098 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4099 TBAAInfo); 4100 } else { 4101 assert((lhs || rhs) && 4102 "both operands of glvalue conditional are throw-expressions?"); 4103 return lhs ? *lhs : *rhs; 4104 } 4105 } 4106 4107 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4108 /// type. If the cast is to a reference, we can have the usual lvalue result, 4109 /// otherwise if a cast is needed by the code generator in an lvalue context, 4110 /// then it must mean that we need the address of an aggregate in order to 4111 /// access one of its members. This can happen for all the reasons that casts 4112 /// are permitted with aggregate result, including noop aggregate casts, and 4113 /// cast from scalar to union. 4114 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4115 switch (E->getCastKind()) { 4116 case CK_ToVoid: 4117 case CK_BitCast: 4118 case CK_ArrayToPointerDecay: 4119 case CK_FunctionToPointerDecay: 4120 case CK_NullToMemberPointer: 4121 case CK_NullToPointer: 4122 case CK_IntegralToPointer: 4123 case CK_PointerToIntegral: 4124 case CK_PointerToBoolean: 4125 case CK_VectorSplat: 4126 case CK_IntegralCast: 4127 case CK_BooleanToSignedIntegral: 4128 case CK_IntegralToBoolean: 4129 case CK_IntegralToFloating: 4130 case CK_FloatingToIntegral: 4131 case CK_FloatingToBoolean: 4132 case CK_FloatingCast: 4133 case CK_FloatingRealToComplex: 4134 case CK_FloatingComplexToReal: 4135 case CK_FloatingComplexToBoolean: 4136 case CK_FloatingComplexCast: 4137 case CK_FloatingComplexToIntegralComplex: 4138 case CK_IntegralRealToComplex: 4139 case CK_IntegralComplexToReal: 4140 case CK_IntegralComplexToBoolean: 4141 case CK_IntegralComplexCast: 4142 case CK_IntegralComplexToFloatingComplex: 4143 case CK_DerivedToBaseMemberPointer: 4144 case CK_BaseToDerivedMemberPointer: 4145 case CK_MemberPointerToBoolean: 4146 case CK_ReinterpretMemberPointer: 4147 case CK_AnyPointerToBlockPointerCast: 4148 case CK_ARCProduceObject: 4149 case CK_ARCConsumeObject: 4150 case CK_ARCReclaimReturnedObject: 4151 case CK_ARCExtendBlockObject: 4152 case CK_CopyAndAutoreleaseBlockObject: 4153 case CK_AddressSpaceConversion: 4154 case CK_IntToOCLSampler: 4155 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4156 4157 case CK_Dependent: 4158 llvm_unreachable("dependent cast kind in IR gen!"); 4159 4160 case CK_BuiltinFnToFnPtr: 4161 llvm_unreachable("builtin functions are handled elsewhere"); 4162 4163 // These are never l-values; just use the aggregate emission code. 4164 case CK_NonAtomicToAtomic: 4165 case CK_AtomicToNonAtomic: 4166 return EmitAggExprToLValue(E); 4167 4168 case CK_Dynamic: { 4169 LValue LV = EmitLValue(E->getSubExpr()); 4170 Address V = LV.getAddress(); 4171 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4172 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4173 } 4174 4175 case CK_ConstructorConversion: 4176 case CK_UserDefinedConversion: 4177 case CK_CPointerToObjCPointerCast: 4178 case CK_BlockPointerToObjCPointerCast: 4179 case CK_NoOp: 4180 case CK_LValueToRValue: 4181 return EmitLValue(E->getSubExpr()); 4182 4183 case CK_UncheckedDerivedToBase: 4184 case CK_DerivedToBase: { 4185 const RecordType *DerivedClassTy = 4186 E->getSubExpr()->getType()->getAs<RecordType>(); 4187 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4188 4189 LValue LV = EmitLValue(E->getSubExpr()); 4190 Address This = LV.getAddress(); 4191 4192 // Perform the derived-to-base conversion 4193 Address Base = GetAddressOfBaseClass( 4194 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4195 /*NullCheckValue=*/false, E->getExprLoc()); 4196 4197 // TODO: Support accesses to members of base classes in TBAA. For now, we 4198 // conservatively pretend that the complete object is of the base class 4199 // type. 4200 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4201 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4202 } 4203 case CK_ToUnion: 4204 return EmitAggExprToLValue(E); 4205 case CK_BaseToDerived: { 4206 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4207 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4208 4209 LValue LV = EmitLValue(E->getSubExpr()); 4210 4211 // Perform the base-to-derived conversion 4212 Address Derived = 4213 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4214 E->path_begin(), E->path_end(), 4215 /*NullCheckValue=*/false); 4216 4217 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4218 // performed and the object is not of the derived type. 4219 if (sanitizePerformTypeCheck()) 4220 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4221 Derived.getPointer(), E->getType()); 4222 4223 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4224 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4225 /*MayBeNull=*/false, CFITCK_DerivedCast, 4226 E->getBeginLoc()); 4227 4228 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4229 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4230 } 4231 case CK_LValueBitCast: { 4232 // This must be a reinterpret_cast (or c-style equivalent). 4233 const auto *CE = cast<ExplicitCastExpr>(E); 4234 4235 CGM.EmitExplicitCastExprType(CE, this); 4236 LValue LV = EmitLValue(E->getSubExpr()); 4237 Address V = Builder.CreateBitCast(LV.getAddress(), 4238 ConvertType(CE->getTypeAsWritten())); 4239 4240 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4241 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4242 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4243 E->getBeginLoc()); 4244 4245 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4246 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4247 } 4248 case CK_ObjCObjectLValueCast: { 4249 LValue LV = EmitLValue(E->getSubExpr()); 4250 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4251 ConvertType(E->getType())); 4252 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4253 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4254 } 4255 case CK_ZeroToOCLQueue: 4256 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4257 case CK_ZeroToOCLEvent: 4258 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4259 } 4260 4261 llvm_unreachable("Unhandled lvalue cast kind?"); 4262 } 4263 4264 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4265 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4266 return getOrCreateOpaqueLValueMapping(e); 4267 } 4268 4269 LValue 4270 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4271 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4272 4273 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4274 it = OpaqueLValues.find(e); 4275 4276 if (it != OpaqueLValues.end()) 4277 return it->second; 4278 4279 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4280 return EmitLValue(e->getSourceExpr()); 4281 } 4282 4283 RValue 4284 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4285 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4286 4287 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4288 it = OpaqueRValues.find(e); 4289 4290 if (it != OpaqueRValues.end()) 4291 return it->second; 4292 4293 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4294 return EmitAnyExpr(e->getSourceExpr()); 4295 } 4296 4297 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4298 const FieldDecl *FD, 4299 SourceLocation Loc) { 4300 QualType FT = FD->getType(); 4301 LValue FieldLV = EmitLValueForField(LV, FD); 4302 switch (getEvaluationKind(FT)) { 4303 case TEK_Complex: 4304 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4305 case TEK_Aggregate: 4306 return FieldLV.asAggregateRValue(); 4307 case TEK_Scalar: 4308 // This routine is used to load fields one-by-one to perform a copy, so 4309 // don't load reference fields. 4310 if (FD->getType()->isReferenceType()) 4311 return RValue::get(FieldLV.getPointer()); 4312 return EmitLoadOfLValue(FieldLV, Loc); 4313 } 4314 llvm_unreachable("bad evaluation kind"); 4315 } 4316 4317 //===--------------------------------------------------------------------===// 4318 // Expression Emission 4319 //===--------------------------------------------------------------------===// 4320 4321 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4322 ReturnValueSlot ReturnValue) { 4323 // Builtins never have block type. 4324 if (E->getCallee()->getType()->isBlockPointerType()) 4325 return EmitBlockCallExpr(E, ReturnValue); 4326 4327 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4328 return EmitCXXMemberCallExpr(CE, ReturnValue); 4329 4330 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4331 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4332 4333 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4334 if (const CXXMethodDecl *MD = 4335 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4336 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4337 4338 CGCallee callee = EmitCallee(E->getCallee()); 4339 4340 if (callee.isBuiltin()) { 4341 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4342 E, ReturnValue); 4343 } 4344 4345 if (callee.isPseudoDestructor()) { 4346 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4347 } 4348 4349 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4350 } 4351 4352 /// Emit a CallExpr without considering whether it might be a subclass. 4353 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4354 ReturnValueSlot ReturnValue) { 4355 CGCallee Callee = EmitCallee(E->getCallee()); 4356 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4357 } 4358 4359 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4360 if (auto builtinID = FD->getBuiltinID()) { 4361 return CGCallee::forBuiltin(builtinID, FD); 4362 } 4363 4364 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4365 return CGCallee::forDirect(calleePtr, FD); 4366 } 4367 4368 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4369 E = E->IgnoreParens(); 4370 4371 // Look through function-to-pointer decay. 4372 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4373 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4374 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4375 return EmitCallee(ICE->getSubExpr()); 4376 } 4377 4378 // Resolve direct calls. 4379 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4380 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4381 return EmitDirectCallee(*this, FD); 4382 } 4383 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4384 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4385 EmitIgnoredExpr(ME->getBase()); 4386 return EmitDirectCallee(*this, FD); 4387 } 4388 4389 // Look through template substitutions. 4390 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4391 return EmitCallee(NTTP->getReplacement()); 4392 4393 // Treat pseudo-destructor calls differently. 4394 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4395 return CGCallee::forPseudoDestructor(PDE); 4396 } 4397 4398 // Otherwise, we have an indirect reference. 4399 llvm::Value *calleePtr; 4400 QualType functionType; 4401 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4402 calleePtr = EmitScalarExpr(E); 4403 functionType = ptrType->getPointeeType(); 4404 } else { 4405 functionType = E->getType(); 4406 calleePtr = EmitLValue(E).getPointer(); 4407 } 4408 assert(functionType->isFunctionType()); 4409 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4410 E->getReferencedDeclOfCallee()); 4411 CGCallee callee(calleeInfo, calleePtr); 4412 return callee; 4413 } 4414 4415 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4416 // Comma expressions just emit their LHS then their RHS as an l-value. 4417 if (E->getOpcode() == BO_Comma) { 4418 EmitIgnoredExpr(E->getLHS()); 4419 EnsureInsertPoint(); 4420 return EmitLValue(E->getRHS()); 4421 } 4422 4423 if (E->getOpcode() == BO_PtrMemD || 4424 E->getOpcode() == BO_PtrMemI) 4425 return EmitPointerToDataMemberBinaryExpr(E); 4426 4427 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4428 4429 // Note that in all of these cases, __block variables need the RHS 4430 // evaluated first just in case the variable gets moved by the RHS. 4431 4432 switch (getEvaluationKind(E->getType())) { 4433 case TEK_Scalar: { 4434 switch (E->getLHS()->getType().getObjCLifetime()) { 4435 case Qualifiers::OCL_Strong: 4436 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4437 4438 case Qualifiers::OCL_Autoreleasing: 4439 return EmitARCStoreAutoreleasing(E).first; 4440 4441 // No reason to do any of these differently. 4442 case Qualifiers::OCL_None: 4443 case Qualifiers::OCL_ExplicitNone: 4444 case Qualifiers::OCL_Weak: 4445 break; 4446 } 4447 4448 RValue RV = EmitAnyExpr(E->getRHS()); 4449 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4450 if (RV.isScalar()) 4451 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4452 EmitStoreThroughLValue(RV, LV); 4453 return LV; 4454 } 4455 4456 case TEK_Complex: 4457 return EmitComplexAssignmentLValue(E); 4458 4459 case TEK_Aggregate: 4460 return EmitAggExprToLValue(E); 4461 } 4462 llvm_unreachable("bad evaluation kind"); 4463 } 4464 4465 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4466 RValue RV = EmitCallExpr(E); 4467 4468 if (!RV.isScalar()) 4469 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4470 AlignmentSource::Decl); 4471 4472 assert(E->getCallReturnType(getContext())->isReferenceType() && 4473 "Can't have a scalar return unless the return type is a " 4474 "reference type!"); 4475 4476 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4477 } 4478 4479 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4480 // FIXME: This shouldn't require another copy. 4481 return EmitAggExprToLValue(E); 4482 } 4483 4484 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4485 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4486 && "binding l-value to type which needs a temporary"); 4487 AggValueSlot Slot = CreateAggTemp(E->getType()); 4488 EmitCXXConstructExpr(E, Slot); 4489 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4490 } 4491 4492 LValue 4493 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4494 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4495 } 4496 4497 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4498 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4499 ConvertType(E->getType())); 4500 } 4501 4502 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4503 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4504 AlignmentSource::Decl); 4505 } 4506 4507 LValue 4508 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4509 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4510 Slot.setExternallyDestructed(); 4511 EmitAggExpr(E->getSubExpr(), Slot); 4512 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4513 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4514 } 4515 4516 LValue 4517 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4518 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4519 EmitLambdaExpr(E, Slot); 4520 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4521 } 4522 4523 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4524 RValue RV = EmitObjCMessageExpr(E); 4525 4526 if (!RV.isScalar()) 4527 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4528 AlignmentSource::Decl); 4529 4530 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4531 "Can't have a scalar return unless the return type is a " 4532 "reference type!"); 4533 4534 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4535 } 4536 4537 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4538 Address V = 4539 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4540 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4541 } 4542 4543 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4544 const ObjCIvarDecl *Ivar) { 4545 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4546 } 4547 4548 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4549 llvm::Value *BaseValue, 4550 const ObjCIvarDecl *Ivar, 4551 unsigned CVRQualifiers) { 4552 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4553 Ivar, CVRQualifiers); 4554 } 4555 4556 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4557 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4558 llvm::Value *BaseValue = nullptr; 4559 const Expr *BaseExpr = E->getBase(); 4560 Qualifiers BaseQuals; 4561 QualType ObjectTy; 4562 if (E->isArrow()) { 4563 BaseValue = EmitScalarExpr(BaseExpr); 4564 ObjectTy = BaseExpr->getType()->getPointeeType(); 4565 BaseQuals = ObjectTy.getQualifiers(); 4566 } else { 4567 LValue BaseLV = EmitLValue(BaseExpr); 4568 BaseValue = BaseLV.getPointer(); 4569 ObjectTy = BaseExpr->getType(); 4570 BaseQuals = ObjectTy.getQualifiers(); 4571 } 4572 4573 LValue LV = 4574 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4575 BaseQuals.getCVRQualifiers()); 4576 setObjCGCLValueClass(getContext(), E, LV); 4577 return LV; 4578 } 4579 4580 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4581 // Can only get l-value for message expression returning aggregate type 4582 RValue RV = EmitAnyExprToTemp(E); 4583 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4584 AlignmentSource::Decl); 4585 } 4586 4587 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4588 const CallExpr *E, ReturnValueSlot ReturnValue, 4589 llvm::Value *Chain) { 4590 // Get the actual function type. The callee type will always be a pointer to 4591 // function type or a block pointer type. 4592 assert(CalleeType->isFunctionPointerType() && 4593 "Call must have function pointer type!"); 4594 4595 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4596 4597 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4598 // We can only guarantee that a function is called from the correct 4599 // context/function based on the appropriate target attributes, 4600 // so only check in the case where we have both always_inline and target 4601 // since otherwise we could be making a conditional call after a check for 4602 // the proper cpu features (and it won't cause code generation issues due to 4603 // function based code generation). 4604 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4605 TargetDecl->hasAttr<TargetAttr>()) 4606 checkTargetFeatures(E, FD); 4607 4608 CalleeType = getContext().getCanonicalType(CalleeType); 4609 4610 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4611 4612 CGCallee Callee = OrigCallee; 4613 4614 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4615 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4616 if (llvm::Constant *PrefixSig = 4617 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4618 SanitizerScope SanScope(this); 4619 // Remove any (C++17) exception specifications, to allow calling e.g. a 4620 // noexcept function through a non-noexcept pointer. 4621 auto ProtoTy = 4622 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4623 llvm::Constant *FTRTTIConst = 4624 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4625 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4626 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4627 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4628 4629 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4630 4631 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4632 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4633 llvm::Value *CalleeSigPtr = 4634 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4635 llvm::Value *CalleeSig = 4636 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4637 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4638 4639 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4640 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4641 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4642 4643 EmitBlock(TypeCheck); 4644 llvm::Value *CalleeRTTIPtr = 4645 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4646 llvm::Value *CalleeRTTIEncoded = 4647 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4648 llvm::Value *CalleeRTTI = 4649 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4650 llvm::Value *CalleeRTTIMatch = 4651 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4652 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4653 EmitCheckTypeDescriptor(CalleeType)}; 4654 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4655 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4656 4657 Builder.CreateBr(Cont); 4658 EmitBlock(Cont); 4659 } 4660 } 4661 4662 const auto *FnType = cast<FunctionType>(PointeeType); 4663 4664 // If we are checking indirect calls and this call is indirect, check that the 4665 // function pointer is a member of the bit set for the function type. 4666 if (SanOpts.has(SanitizerKind::CFIICall) && 4667 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4668 SanitizerScope SanScope(this); 4669 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4670 4671 llvm::Metadata *MD; 4672 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4673 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4674 else 4675 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4676 4677 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4678 4679 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4680 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4681 llvm::Value *TypeTest = Builder.CreateCall( 4682 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4683 4684 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4685 llvm::Constant *StaticData[] = { 4686 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4687 EmitCheckSourceLocation(E->getBeginLoc()), 4688 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4689 }; 4690 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4691 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4692 CastedCallee, StaticData); 4693 } else { 4694 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4695 SanitizerHandler::CFICheckFail, StaticData, 4696 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4697 } 4698 } 4699 4700 CallArgList Args; 4701 if (Chain) 4702 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4703 CGM.getContext().VoidPtrTy); 4704 4705 // C++17 requires that we evaluate arguments to a call using assignment syntax 4706 // right-to-left, and that we evaluate arguments to certain other operators 4707 // left-to-right. Note that we allow this to override the order dictated by 4708 // the calling convention on the MS ABI, which means that parameter 4709 // destruction order is not necessarily reverse construction order. 4710 // FIXME: Revisit this based on C++ committee response to unimplementability. 4711 EvaluationOrder Order = EvaluationOrder::Default; 4712 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4713 if (OCE->isAssignmentOp()) 4714 Order = EvaluationOrder::ForceRightToLeft; 4715 else { 4716 switch (OCE->getOperator()) { 4717 case OO_LessLess: 4718 case OO_GreaterGreater: 4719 case OO_AmpAmp: 4720 case OO_PipePipe: 4721 case OO_Comma: 4722 case OO_ArrowStar: 4723 Order = EvaluationOrder::ForceLeftToRight; 4724 break; 4725 default: 4726 break; 4727 } 4728 } 4729 } 4730 4731 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4732 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4733 4734 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4735 Args, FnType, /*isChainCall=*/Chain); 4736 4737 // C99 6.5.2.2p6: 4738 // If the expression that denotes the called function has a type 4739 // that does not include a prototype, [the default argument 4740 // promotions are performed]. If the number of arguments does not 4741 // equal the number of parameters, the behavior is undefined. If 4742 // the function is defined with a type that includes a prototype, 4743 // and either the prototype ends with an ellipsis (, ...) or the 4744 // types of the arguments after promotion are not compatible with 4745 // the types of the parameters, the behavior is undefined. If the 4746 // function is defined with a type that does not include a 4747 // prototype, and the types of the arguments after promotion are 4748 // not compatible with those of the parameters after promotion, 4749 // the behavior is undefined [except in some trivial cases]. 4750 // That is, in the general case, we should assume that a call 4751 // through an unprototyped function type works like a *non-variadic* 4752 // call. The way we make this work is to cast to the exact type 4753 // of the promoted arguments. 4754 // 4755 // Chain calls use this same code path to add the invisible chain parameter 4756 // to the function type. 4757 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4758 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4759 CalleeTy = CalleeTy->getPointerTo(); 4760 4761 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4762 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4763 Callee.setFunctionPointer(CalleePtr); 4764 } 4765 4766 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4767 } 4768 4769 LValue CodeGenFunction:: 4770 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4771 Address BaseAddr = Address::invalid(); 4772 if (E->getOpcode() == BO_PtrMemI) { 4773 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4774 } else { 4775 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4776 } 4777 4778 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4779 4780 const MemberPointerType *MPT 4781 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4782 4783 LValueBaseInfo BaseInfo; 4784 TBAAAccessInfo TBAAInfo; 4785 Address MemberAddr = 4786 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4787 &TBAAInfo); 4788 4789 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4790 } 4791 4792 /// Given the address of a temporary variable, produce an r-value of 4793 /// its type. 4794 RValue CodeGenFunction::convertTempToRValue(Address addr, 4795 QualType type, 4796 SourceLocation loc) { 4797 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4798 switch (getEvaluationKind(type)) { 4799 case TEK_Complex: 4800 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4801 case TEK_Aggregate: 4802 return lvalue.asAggregateRValue(); 4803 case TEK_Scalar: 4804 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4805 } 4806 llvm_unreachable("bad evaluation kind"); 4807 } 4808 4809 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4810 assert(Val->getType()->isFPOrFPVectorTy()); 4811 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4812 return; 4813 4814 llvm::MDBuilder MDHelper(getLLVMContext()); 4815 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4816 4817 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4818 } 4819 4820 namespace { 4821 struct LValueOrRValue { 4822 LValue LV; 4823 RValue RV; 4824 }; 4825 } 4826 4827 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4828 const PseudoObjectExpr *E, 4829 bool forLValue, 4830 AggValueSlot slot) { 4831 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4832 4833 // Find the result expression, if any. 4834 const Expr *resultExpr = E->getResultExpr(); 4835 LValueOrRValue result; 4836 4837 for (PseudoObjectExpr::const_semantics_iterator 4838 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4839 const Expr *semantic = *i; 4840 4841 // If this semantic expression is an opaque value, bind it 4842 // to the result of its source expression. 4843 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4844 // Skip unique OVEs. 4845 if (ov->isUnique()) { 4846 assert(ov != resultExpr && 4847 "A unique OVE cannot be used as the result expression"); 4848 continue; 4849 } 4850 4851 // If this is the result expression, we may need to evaluate 4852 // directly into the slot. 4853 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4854 OVMA opaqueData; 4855 if (ov == resultExpr && ov->isRValue() && !forLValue && 4856 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4857 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4858 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4859 AlignmentSource::Decl); 4860 opaqueData = OVMA::bind(CGF, ov, LV); 4861 result.RV = slot.asRValue(); 4862 4863 // Otherwise, emit as normal. 4864 } else { 4865 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4866 4867 // If this is the result, also evaluate the result now. 4868 if (ov == resultExpr) { 4869 if (forLValue) 4870 result.LV = CGF.EmitLValue(ov); 4871 else 4872 result.RV = CGF.EmitAnyExpr(ov, slot); 4873 } 4874 } 4875 4876 opaques.push_back(opaqueData); 4877 4878 // Otherwise, if the expression is the result, evaluate it 4879 // and remember the result. 4880 } else if (semantic == resultExpr) { 4881 if (forLValue) 4882 result.LV = CGF.EmitLValue(semantic); 4883 else 4884 result.RV = CGF.EmitAnyExpr(semantic, slot); 4885 4886 // Otherwise, evaluate the expression in an ignored context. 4887 } else { 4888 CGF.EmitIgnoredExpr(semantic); 4889 } 4890 } 4891 4892 // Unbind all the opaques now. 4893 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4894 opaques[i].unbind(CGF); 4895 4896 return result; 4897 } 4898 4899 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4900 AggValueSlot slot) { 4901 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4902 } 4903 4904 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4905 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4906 } 4907