1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/ConvertUTF.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===--------------------------------------------------------------------===//
35 //                        Miscellaneous Helper Methods
36 //===--------------------------------------------------------------------===//
37 
38 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
39   unsigned addressSpace =
40     cast<llvm::PointerType>(value->getType())->getAddressSpace();
41 
42   llvm::PointerType *destType = Int8PtrTy;
43   if (addressSpace)
44     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
45 
46   if (value->getType() == destType) return value;
47   return Builder.CreateBitCast(value, destType);
48 }
49 
50 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
51 /// block.
52 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
53                                                     const Twine &Name) {
54   if (!Builder.isNamePreserving())
55     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
56   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
57 }
58 
59 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
60                                      llvm::Value *Init) {
61   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
62   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
63   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
64 }
65 
66 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
67                                                 const Twine &Name) {
68   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
69   // FIXME: Should we prefer the preferred type alignment here?
70   CharUnits Align = getContext().getTypeAlignInChars(Ty);
71   Alloc->setAlignment(Align.getQuantity());
72   return Alloc;
73 }
74 
75 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
76                                                  const Twine &Name) {
77   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
78   // FIXME: Should we prefer the preferred type alignment here?
79   CharUnits Align = getContext().getTypeAlignInChars(Ty);
80   Alloc->setAlignment(Align.getQuantity());
81   return Alloc;
82 }
83 
84 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
85 /// expression and compare the result against zero, returning an Int1Ty value.
86 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
87   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
88     llvm::Value *MemPtr = EmitScalarExpr(E);
89     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
90   }
91 
92   QualType BoolTy = getContext().BoolTy;
93   if (!E->getType()->isAnyComplexType())
94     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
95 
96   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
97 }
98 
99 /// EmitIgnoredExpr - Emit code to compute the specified expression,
100 /// ignoring the result.
101 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
102   if (E->isRValue())
103     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
104 
105   // Just emit it as an l-value and drop the result.
106   EmitLValue(E);
107 }
108 
109 /// EmitAnyExpr - Emit code to compute the specified expression which
110 /// can have any type.  The result is returned as an RValue struct.
111 /// If this is an aggregate expression, AggSlot indicates where the
112 /// result should be returned.
113 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
114                                     AggValueSlot aggSlot,
115                                     bool ignoreResult) {
116   if (!hasAggregateLLVMType(E->getType()))
117     return RValue::get(EmitScalarExpr(E, ignoreResult));
118   else if (E->getType()->isAnyComplexType())
119     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
120 
121   if (!ignoreResult && aggSlot.isIgnored())
122     aggSlot = CreateAggTemp(E->getType(), "agg-temp");
123   EmitAggExpr(E, aggSlot);
124   return aggSlot.asRValue();
125 }
126 
127 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
128 /// always be accessible even if no aggregate location is provided.
129 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
130   AggValueSlot AggSlot = AggValueSlot::ignored();
131 
132   if (hasAggregateLLVMType(E->getType()) &&
133       !E->getType()->isAnyComplexType())
134     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
135   return EmitAnyExpr(E, AggSlot);
136 }
137 
138 /// EmitAnyExprToMem - Evaluate an expression into a given memory
139 /// location.
140 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
141                                        llvm::Value *Location,
142                                        Qualifiers Quals,
143                                        bool IsInit) {
144   // FIXME: This function should take an LValue as an argument.
145   if (E->getType()->isAnyComplexType()) {
146     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
147   } else if (hasAggregateLLVMType(E->getType())) {
148     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
149     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
150                                          AggValueSlot::IsDestructed_t(IsInit),
151                                          AggValueSlot::DoesNotNeedGCBarriers,
152                                          AggValueSlot::IsAliased_t(!IsInit)));
153   } else {
154     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
155     LValue LV = MakeAddrLValue(Location, E->getType());
156     EmitStoreThroughLValue(RV, LV);
157   }
158 }
159 
160 static llvm::Value *
161 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
162                          const NamedDecl *InitializedDecl) {
163   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
164     if (VD->hasGlobalStorage()) {
165       SmallString<256> Name;
166       llvm::raw_svector_ostream Out(Name);
167       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
168       Out.flush();
169 
170       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
171 
172       // Create the reference temporary.
173       llvm::GlobalValue *RefTemp =
174         new llvm::GlobalVariable(CGF.CGM.getModule(),
175                                  RefTempTy, /*isConstant=*/false,
176                                  llvm::GlobalValue::InternalLinkage,
177                                  llvm::Constant::getNullValue(RefTempTy),
178                                  Name.str());
179       return RefTemp;
180     }
181   }
182 
183   return CGF.CreateMemTemp(Type, "ref.tmp");
184 }
185 
186 static llvm::Value *
187 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
188                             llvm::Value *&ReferenceTemporary,
189                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
190                             QualType &ObjCARCReferenceLifetimeType,
191                             const NamedDecl *InitializedDecl) {
192   const MaterializeTemporaryExpr *M = NULL;
193   E = E->findMaterializedTemporary(M);
194   // Objective-C++ ARC:
195   //   If we are binding a reference to a temporary that has ownership, we
196   //   need to perform retain/release operations on the temporary.
197   if (M && CGF.getLangOpts().ObjCAutoRefCount &&
198       M->getType()->isObjCLifetimeType() &&
199       (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
200        M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
201        M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
202     ObjCARCReferenceLifetimeType = M->getType();
203 
204   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
205     CGF.enterFullExpression(EWC);
206     CodeGenFunction::RunCleanupsScope Scope(CGF);
207 
208     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
209                                        ReferenceTemporary,
210                                        ReferenceTemporaryDtor,
211                                        ObjCARCReferenceLifetimeType,
212                                        InitializedDecl);
213   }
214 
215   RValue RV;
216   if (E->isGLValue()) {
217     // Emit the expression as an lvalue.
218     LValue LV = CGF.EmitLValue(E);
219 
220     if (LV.isSimple())
221       return LV.getAddress();
222 
223     // We have to load the lvalue.
224     RV = CGF.EmitLoadOfLValue(LV);
225   } else {
226     if (!ObjCARCReferenceLifetimeType.isNull()) {
227       ReferenceTemporary = CreateReferenceTemporary(CGF,
228                                                   ObjCARCReferenceLifetimeType,
229                                                     InitializedDecl);
230 
231 
232       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
233                                              ObjCARCReferenceLifetimeType);
234 
235       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
236                          RefTempDst, false);
237 
238       bool ExtendsLifeOfTemporary = false;
239       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
240         if (Var->extendsLifetimeOfTemporary())
241           ExtendsLifeOfTemporary = true;
242       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
243         ExtendsLifeOfTemporary = true;
244       }
245 
246       if (!ExtendsLifeOfTemporary) {
247         // Since the lifetime of this temporary isn't going to be extended,
248         // we need to clean it up ourselves at the end of the full expression.
249         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
250         case Qualifiers::OCL_None:
251         case Qualifiers::OCL_ExplicitNone:
252         case Qualifiers::OCL_Autoreleasing:
253           break;
254 
255         case Qualifiers::OCL_Strong: {
256           assert(!ObjCARCReferenceLifetimeType->isArrayType());
257           CleanupKind cleanupKind = CGF.getARCCleanupKind();
258           CGF.pushDestroy(cleanupKind,
259                           ReferenceTemporary,
260                           ObjCARCReferenceLifetimeType,
261                           CodeGenFunction::destroyARCStrongImprecise,
262                           cleanupKind & EHCleanup);
263           break;
264         }
265 
266         case Qualifiers::OCL_Weak:
267           assert(!ObjCARCReferenceLifetimeType->isArrayType());
268           CGF.pushDestroy(NormalAndEHCleanup,
269                           ReferenceTemporary,
270                           ObjCARCReferenceLifetimeType,
271                           CodeGenFunction::destroyARCWeak,
272                           /*useEHCleanupForArray*/ true);
273           break;
274         }
275 
276         ObjCARCReferenceLifetimeType = QualType();
277       }
278 
279       return ReferenceTemporary;
280     }
281 
282     SmallVector<SubobjectAdjustment, 2> Adjustments;
283     E = E->skipRValueSubobjectAdjustments(Adjustments);
284     if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
285       if (opaque->getType()->isRecordType())
286         return CGF.EmitOpaqueValueLValue(opaque).getAddress();
287 
288     // Create a reference temporary if necessary.
289     AggValueSlot AggSlot = AggValueSlot::ignored();
290     if (CGF.hasAggregateLLVMType(E->getType()) &&
291         !E->getType()->isAnyComplexType()) {
292       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
293                                                     InitializedDecl);
294       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
295       AggValueSlot::IsDestructed_t isDestructed
296         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
297       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
298                                       Qualifiers(), isDestructed,
299                                       AggValueSlot::DoesNotNeedGCBarriers,
300                                       AggValueSlot::IsNotAliased);
301     }
302 
303     if (InitializedDecl) {
304       // Get the destructor for the reference temporary.
305       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
306         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
307         if (!ClassDecl->hasTrivialDestructor())
308           ReferenceTemporaryDtor = ClassDecl->getDestructor();
309       }
310     }
311 
312     RV = CGF.EmitAnyExpr(E, AggSlot);
313 
314     // Check if need to perform derived-to-base casts and/or field accesses, to
315     // get from the temporary object we created (and, potentially, for which we
316     // extended the lifetime) to the subobject we're binding the reference to.
317     if (!Adjustments.empty()) {
318       llvm::Value *Object = RV.getAggregateAddr();
319       for (unsigned I = Adjustments.size(); I != 0; --I) {
320         SubobjectAdjustment &Adjustment = Adjustments[I-1];
321         switch (Adjustment.Kind) {
322         case SubobjectAdjustment::DerivedToBaseAdjustment:
323           Object =
324               CGF.GetAddressOfBaseClass(Object,
325                                         Adjustment.DerivedToBase.DerivedClass,
326                               Adjustment.DerivedToBase.BasePath->path_begin(),
327                               Adjustment.DerivedToBase.BasePath->path_end(),
328                                         /*NullCheckValue=*/false);
329           break;
330 
331         case SubobjectAdjustment::FieldAdjustment: {
332           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
333           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
334           if (LV.isSimple()) {
335             Object = LV.getAddress();
336             break;
337           }
338 
339           // For non-simple lvalues, we actually have to create a copy of
340           // the object we're binding to.
341           QualType T = Adjustment.Field->getType().getNonReferenceType()
342                                                   .getUnqualifiedType();
343           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
344           LValue TempLV = CGF.MakeAddrLValue(Object,
345                                              Adjustment.Field->getType());
346           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
347           break;
348         }
349 
350         case SubobjectAdjustment::MemberPointerAdjustment: {
351           llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
352           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
353                         CGF, Object, Ptr, Adjustment.Ptr.MPT);
354           break;
355         }
356         }
357       }
358 
359       return Object;
360     }
361   }
362 
363   if (RV.isAggregate())
364     return RV.getAggregateAddr();
365 
366   // Create a temporary variable that we can bind the reference to.
367   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
368                                                 InitializedDecl);
369 
370 
371   unsigned Alignment =
372     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
373   if (RV.isScalar())
374     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
375                           /*Volatile=*/false, Alignment, E->getType());
376   else
377     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
378                            /*Volatile=*/false);
379   return ReferenceTemporary;
380 }
381 
382 RValue
383 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
384                                             const NamedDecl *InitializedDecl) {
385   llvm::Value *ReferenceTemporary = 0;
386   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
387   QualType ObjCARCReferenceLifetimeType;
388   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
389                                                    ReferenceTemporaryDtor,
390                                                    ObjCARCReferenceLifetimeType,
391                                                    InitializedDecl);
392   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
393     // C++11 [dcl.ref]p5 (as amended by core issue 453):
394     //   If a glvalue to which a reference is directly bound designates neither
395     //   an existing object or function of an appropriate type nor a region of
396     //   storage of suitable size and alignment to contain an object of the
397     //   reference's type, the behavior is undefined.
398     QualType Ty = E->getType();
399     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
400   }
401   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
402     return RValue::get(Value);
403 
404   // Make sure to call the destructor for the reference temporary.
405   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
406   if (VD && VD->hasGlobalStorage()) {
407     if (ReferenceTemporaryDtor) {
408       llvm::Constant *DtorFn =
409         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
410       CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
411                                     cast<llvm::Constant>(ReferenceTemporary));
412     } else {
413       assert(!ObjCARCReferenceLifetimeType.isNull());
414       // Note: We intentionally do not register a global "destructor" to
415       // release the object.
416     }
417 
418     return RValue::get(Value);
419   }
420 
421   if (ReferenceTemporaryDtor)
422     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
423   else {
424     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
425     case Qualifiers::OCL_None:
426       llvm_unreachable(
427                       "Not a reference temporary that needs to be deallocated");
428     case Qualifiers::OCL_ExplicitNone:
429     case Qualifiers::OCL_Autoreleasing:
430       // Nothing to do.
431       break;
432 
433     case Qualifiers::OCL_Strong: {
434       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
435       CleanupKind cleanupKind = getARCCleanupKind();
436       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
437                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
438                   cleanupKind & EHCleanup);
439       break;
440     }
441 
442     case Qualifiers::OCL_Weak: {
443       // __weak objects always get EH cleanups; otherwise, exceptions
444       // could cause really nasty crashes instead of mere leaks.
445       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
446                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
447       break;
448     }
449     }
450   }
451 
452   return RValue::get(Value);
453 }
454 
455 
456 /// getAccessedFieldNo - Given an encoded value and a result number, return the
457 /// input field number being accessed.
458 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
459                                              const llvm::Constant *Elts) {
460   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
461       ->getZExtValue();
462 }
463 
464 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
465 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
466                                     llvm::Value *High) {
467   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
468   llvm::Value *K47 = Builder.getInt64(47);
469   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
470   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
471   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
472   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
473   return Builder.CreateMul(B1, KMul);
474 }
475 
476 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
477                                     llvm::Value *Address,
478                                     QualType Ty, CharUnits Alignment) {
479   if (!SanitizePerformTypeCheck)
480     return;
481 
482   // Don't check pointers outside the default address space. The null check
483   // isn't correct, the object-size check isn't supported by LLVM, and we can't
484   // communicate the addresses to the runtime handler for the vptr check.
485   if (Address->getType()->getPointerAddressSpace())
486     return;
487 
488   llvm::Value *Cond = 0;
489 
490   if (SanOpts->Null) {
491     // The glvalue must not be an empty glvalue.
492     Cond = Builder.CreateICmpNE(
493         Address, llvm::Constant::getNullValue(Address->getType()));
494   }
495 
496   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
497     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
498 
499     // The glvalue must refer to a large enough storage region.
500     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
501     //        to check this.
502     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
503     llvm::Value *Min = Builder.getFalse();
504     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
505     llvm::Value *LargeEnough =
506         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
507                               llvm::ConstantInt::get(IntPtrTy, Size));
508     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
509   }
510 
511   uint64_t AlignVal = 0;
512 
513   if (SanOpts->Alignment) {
514     AlignVal = Alignment.getQuantity();
515     if (!Ty->isIncompleteType() && !AlignVal)
516       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
517 
518     // The glvalue must be suitably aligned.
519     if (AlignVal) {
520       llvm::Value *Align =
521           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
522                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
523       llvm::Value *Aligned =
524         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
525       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
526     }
527   }
528 
529   if (Cond) {
530     llvm::Constant *StaticData[] = {
531       EmitCheckSourceLocation(Loc),
532       EmitCheckTypeDescriptor(Ty),
533       llvm::ConstantInt::get(SizeTy, AlignVal),
534       llvm::ConstantInt::get(Int8Ty, TCK)
535     };
536     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
537   }
538 
539   // If possible, check that the vptr indicates that there is a subobject of
540   // type Ty at offset zero within this object.
541   //
542   // C++11 [basic.life]p5,6:
543   //   [For storage which does not refer to an object within its lifetime]
544   //   The program has undefined behavior if:
545   //    -- the [pointer or glvalue] is used to access a non-static data member
546   //       or call a non-static member function
547   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
548   if (SanOpts->Vptr &&
549       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall) &&
550       RD && RD->hasDefinition() && RD->isDynamicClass()) {
551     // Compute a hash of the mangled name of the type.
552     //
553     // FIXME: This is not guaranteed to be deterministic! Move to a
554     //        fingerprinting mechanism once LLVM provides one. For the time
555     //        being the implementation happens to be deterministic.
556     SmallString<64> MangledName;
557     llvm::raw_svector_ostream Out(MangledName);
558     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
559                                                      Out);
560     llvm::hash_code TypeHash = hash_value(Out.str());
561 
562     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
563     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
564     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
565     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
566     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
567     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
568 
569     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
570     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
571 
572     // Look the hash up in our cache.
573     const int CacheSize = 128;
574     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
575     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
576                                                    "__ubsan_vptr_type_cache");
577     llvm::Value *Slot = Builder.CreateAnd(Hash,
578                                           llvm::ConstantInt::get(IntPtrTy,
579                                                                  CacheSize-1));
580     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
581     llvm::Value *CacheVal =
582       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
583 
584     // If the hash isn't in the cache, call a runtime handler to perform the
585     // hard work of checking whether the vptr is for an object of the right
586     // type. This will either fill in the cache and return, or produce a
587     // diagnostic.
588     llvm::Constant *StaticData[] = {
589       EmitCheckSourceLocation(Loc),
590       EmitCheckTypeDescriptor(Ty),
591       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
592       llvm::ConstantInt::get(Int8Ty, TCK)
593     };
594     llvm::Value *DynamicData[] = { Address, Hash };
595     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
596               "dynamic_type_cache_miss", StaticData, DynamicData,
597               CRK_AlwaysRecoverable);
598   }
599 }
600 
601 
602 CodeGenFunction::ComplexPairTy CodeGenFunction::
603 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
604                          bool isInc, bool isPre) {
605   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
606                                             LV.isVolatileQualified());
607 
608   llvm::Value *NextVal;
609   if (isa<llvm::IntegerType>(InVal.first->getType())) {
610     uint64_t AmountVal = isInc ? 1 : -1;
611     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
612 
613     // Add the inc/dec to the real part.
614     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
615   } else {
616     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
617     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
618     if (!isInc)
619       FVal.changeSign();
620     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
621 
622     // Add the inc/dec to the real part.
623     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
624   }
625 
626   ComplexPairTy IncVal(NextVal, InVal.second);
627 
628   // Store the updated result through the lvalue.
629   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
630 
631   // If this is a postinc, return the value read from memory, otherwise use the
632   // updated value.
633   return isPre ? IncVal : InVal;
634 }
635 
636 
637 //===----------------------------------------------------------------------===//
638 //                         LValue Expression Emission
639 //===----------------------------------------------------------------------===//
640 
641 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
642   if (Ty->isVoidType())
643     return RValue::get(0);
644 
645   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
646     llvm::Type *EltTy = ConvertType(CTy->getElementType());
647     llvm::Value *U = llvm::UndefValue::get(EltTy);
648     return RValue::getComplex(std::make_pair(U, U));
649   }
650 
651   // If this is a use of an undefined aggregate type, the aggregate must have an
652   // identifiable address.  Just because the contents of the value are undefined
653   // doesn't mean that the address can't be taken and compared.
654   if (hasAggregateLLVMType(Ty)) {
655     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
656     return RValue::getAggregate(DestPtr);
657   }
658 
659   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
660 }
661 
662 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
663                                               const char *Name) {
664   ErrorUnsupported(E, Name);
665   return GetUndefRValue(E->getType());
666 }
667 
668 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
669                                               const char *Name) {
670   ErrorUnsupported(E, Name);
671   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
672   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
673 }
674 
675 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
676   LValue LV = EmitLValue(E);
677   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
678     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
679                   E->getType(), LV.getAlignment());
680   return LV;
681 }
682 
683 /// EmitLValue - Emit code to compute a designator that specifies the location
684 /// of the expression.
685 ///
686 /// This can return one of two things: a simple address or a bitfield reference.
687 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
688 /// an LLVM pointer type.
689 ///
690 /// If this returns a bitfield reference, nothing about the pointee type of the
691 /// LLVM value is known: For example, it may not be a pointer to an integer.
692 ///
693 /// If this returns a normal address, and if the lvalue's C type is fixed size,
694 /// this method guarantees that the returned pointer type will point to an LLVM
695 /// type of the same size of the lvalue's type.  If the lvalue has a variable
696 /// length type, this is not possible.
697 ///
698 LValue CodeGenFunction::EmitLValue(const Expr *E) {
699   switch (E->getStmtClass()) {
700   default: return EmitUnsupportedLValue(E, "l-value expression");
701 
702   case Expr::ObjCPropertyRefExprClass:
703     llvm_unreachable("cannot emit a property reference directly");
704 
705   case Expr::ObjCSelectorExprClass:
706     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
707   case Expr::ObjCIsaExprClass:
708     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
709   case Expr::BinaryOperatorClass:
710     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
711   case Expr::CompoundAssignOperatorClass:
712     if (!E->getType()->isAnyComplexType())
713       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
714     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
715   case Expr::CallExprClass:
716   case Expr::CXXMemberCallExprClass:
717   case Expr::CXXOperatorCallExprClass:
718   case Expr::UserDefinedLiteralClass:
719     return EmitCallExprLValue(cast<CallExpr>(E));
720   case Expr::VAArgExprClass:
721     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
722   case Expr::DeclRefExprClass:
723     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
724   case Expr::ParenExprClass:
725     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
726   case Expr::GenericSelectionExprClass:
727     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
728   case Expr::PredefinedExprClass:
729     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
730   case Expr::StringLiteralClass:
731     return EmitStringLiteralLValue(cast<StringLiteral>(E));
732   case Expr::ObjCEncodeExprClass:
733     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
734   case Expr::PseudoObjectExprClass:
735     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
736   case Expr::InitListExprClass:
737     return EmitInitListLValue(cast<InitListExpr>(E));
738   case Expr::CXXTemporaryObjectExprClass:
739   case Expr::CXXConstructExprClass:
740     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
741   case Expr::CXXBindTemporaryExprClass:
742     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
743   case Expr::CXXUuidofExprClass:
744     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
745   case Expr::LambdaExprClass:
746     return EmitLambdaLValue(cast<LambdaExpr>(E));
747 
748   case Expr::ExprWithCleanupsClass: {
749     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
750     enterFullExpression(cleanups);
751     RunCleanupsScope Scope(*this);
752     return EmitLValue(cleanups->getSubExpr());
753   }
754 
755   case Expr::CXXScalarValueInitExprClass:
756     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
757   case Expr::CXXDefaultArgExprClass:
758     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
759   case Expr::CXXTypeidExprClass:
760     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
761 
762   case Expr::ObjCMessageExprClass:
763     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
764   case Expr::ObjCIvarRefExprClass:
765     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
766   case Expr::StmtExprClass:
767     return EmitStmtExprLValue(cast<StmtExpr>(E));
768   case Expr::UnaryOperatorClass:
769     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
770   case Expr::ArraySubscriptExprClass:
771     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
772   case Expr::ExtVectorElementExprClass:
773     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
774   case Expr::MemberExprClass:
775     return EmitMemberExpr(cast<MemberExpr>(E));
776   case Expr::CompoundLiteralExprClass:
777     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
778   case Expr::ConditionalOperatorClass:
779     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
780   case Expr::BinaryConditionalOperatorClass:
781     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
782   case Expr::ChooseExprClass:
783     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
784   case Expr::OpaqueValueExprClass:
785     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
786   case Expr::SubstNonTypeTemplateParmExprClass:
787     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
788   case Expr::ImplicitCastExprClass:
789   case Expr::CStyleCastExprClass:
790   case Expr::CXXFunctionalCastExprClass:
791   case Expr::CXXStaticCastExprClass:
792   case Expr::CXXDynamicCastExprClass:
793   case Expr::CXXReinterpretCastExprClass:
794   case Expr::CXXConstCastExprClass:
795   case Expr::ObjCBridgedCastExprClass:
796     return EmitCastLValue(cast<CastExpr>(E));
797 
798   case Expr::MaterializeTemporaryExprClass:
799     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
800   }
801 }
802 
803 /// Given an object of the given canonical type, can we safely copy a
804 /// value out of it based on its initializer?
805 static bool isConstantEmittableObjectType(QualType type) {
806   assert(type.isCanonical());
807   assert(!type->isReferenceType());
808 
809   // Must be const-qualified but non-volatile.
810   Qualifiers qs = type.getLocalQualifiers();
811   if (!qs.hasConst() || qs.hasVolatile()) return false;
812 
813   // Otherwise, all object types satisfy this except C++ classes with
814   // mutable subobjects or non-trivial copy/destroy behavior.
815   if (const RecordType *RT = dyn_cast<RecordType>(type))
816     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
817       if (RD->hasMutableFields() || !RD->isTrivial())
818         return false;
819 
820   return true;
821 }
822 
823 /// Can we constant-emit a load of a reference to a variable of the
824 /// given type?  This is different from predicates like
825 /// Decl::isUsableInConstantExpressions because we do want it to apply
826 /// in situations that don't necessarily satisfy the language's rules
827 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
828 /// to do this with const float variables even if those variables
829 /// aren't marked 'constexpr'.
830 enum ConstantEmissionKind {
831   CEK_None,
832   CEK_AsReferenceOnly,
833   CEK_AsValueOrReference,
834   CEK_AsValueOnly
835 };
836 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
837   type = type.getCanonicalType();
838   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
839     if (isConstantEmittableObjectType(ref->getPointeeType()))
840       return CEK_AsValueOrReference;
841     return CEK_AsReferenceOnly;
842   }
843   if (isConstantEmittableObjectType(type))
844     return CEK_AsValueOnly;
845   return CEK_None;
846 }
847 
848 /// Try to emit a reference to the given value without producing it as
849 /// an l-value.  This is actually more than an optimization: we can't
850 /// produce an l-value for variables that we never actually captured
851 /// in a block or lambda, which means const int variables or constexpr
852 /// literals or similar.
853 CodeGenFunction::ConstantEmission
854 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
855   ValueDecl *value = refExpr->getDecl();
856 
857   // The value needs to be an enum constant or a constant variable.
858   ConstantEmissionKind CEK;
859   if (isa<ParmVarDecl>(value)) {
860     CEK = CEK_None;
861   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
862     CEK = checkVarTypeForConstantEmission(var->getType());
863   } else if (isa<EnumConstantDecl>(value)) {
864     CEK = CEK_AsValueOnly;
865   } else {
866     CEK = CEK_None;
867   }
868   if (CEK == CEK_None) return ConstantEmission();
869 
870   Expr::EvalResult result;
871   bool resultIsReference;
872   QualType resultType;
873 
874   // It's best to evaluate all the way as an r-value if that's permitted.
875   if (CEK != CEK_AsReferenceOnly &&
876       refExpr->EvaluateAsRValue(result, getContext())) {
877     resultIsReference = false;
878     resultType = refExpr->getType();
879 
880   // Otherwise, try to evaluate as an l-value.
881   } else if (CEK != CEK_AsValueOnly &&
882              refExpr->EvaluateAsLValue(result, getContext())) {
883     resultIsReference = true;
884     resultType = value->getType();
885 
886   // Failure.
887   } else {
888     return ConstantEmission();
889   }
890 
891   // In any case, if the initializer has side-effects, abandon ship.
892   if (result.HasSideEffects)
893     return ConstantEmission();
894 
895   // Emit as a constant.
896   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
897 
898   // Make sure we emit a debug reference to the global variable.
899   // This should probably fire even for
900   if (isa<VarDecl>(value)) {
901     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
902       EmitDeclRefExprDbgValue(refExpr, C);
903   } else {
904     assert(isa<EnumConstantDecl>(value));
905     EmitDeclRefExprDbgValue(refExpr, C);
906   }
907 
908   // If we emitted a reference constant, we need to dereference that.
909   if (resultIsReference)
910     return ConstantEmission::forReference(C);
911 
912   return ConstantEmission::forValue(C);
913 }
914 
915 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
916   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
917                           lvalue.getAlignment().getQuantity(),
918                           lvalue.getType(), lvalue.getTBAAInfo());
919 }
920 
921 static bool hasBooleanRepresentation(QualType Ty) {
922   if (Ty->isBooleanType())
923     return true;
924 
925   if (const EnumType *ET = Ty->getAs<EnumType>())
926     return ET->getDecl()->getIntegerType()->isBooleanType();
927 
928   if (const AtomicType *AT = Ty->getAs<AtomicType>())
929     return hasBooleanRepresentation(AT->getValueType());
930 
931   return false;
932 }
933 
934 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
935                             llvm::APInt &Min, llvm::APInt &End,
936                             bool StrictEnums) {
937   const EnumType *ET = Ty->getAs<EnumType>();
938   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
939                                 ET && !ET->getDecl()->isFixed();
940   bool IsBool = hasBooleanRepresentation(Ty);
941   if (!IsBool && !IsRegularCPlusPlusEnum)
942     return false;
943 
944   if (IsBool) {
945     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
946     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
947   } else {
948     const EnumDecl *ED = ET->getDecl();
949     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
950     unsigned Bitwidth = LTy->getScalarSizeInBits();
951     unsigned NumNegativeBits = ED->getNumNegativeBits();
952     unsigned NumPositiveBits = ED->getNumPositiveBits();
953 
954     if (NumNegativeBits) {
955       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
956       assert(NumBits <= Bitwidth);
957       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
958       Min = -End;
959     } else {
960       assert(NumPositiveBits <= Bitwidth);
961       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
962       Min = llvm::APInt(Bitwidth, 0);
963     }
964   }
965   return true;
966 }
967 
968 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
969   llvm::APInt Min, End;
970   if (!getRangeForType(*this, Ty, Min, End,
971                        CGM.getCodeGenOpts().StrictEnums))
972     return 0;
973 
974   llvm::MDBuilder MDHelper(getLLVMContext());
975   return MDHelper.createRange(Min, End);
976 }
977 
978 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
979                                               unsigned Alignment, QualType Ty,
980                                               llvm::MDNode *TBAAInfo) {
981 
982   // For better performance, handle vector loads differently.
983   if (Ty->isVectorType()) {
984     llvm::Value *V;
985     const llvm::Type *EltTy =
986     cast<llvm::PointerType>(Addr->getType())->getElementType();
987 
988     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
989 
990     // Handle vectors of size 3, like size 4 for better performance.
991     if (VTy->getNumElements() == 3) {
992 
993       // Bitcast to vec4 type.
994       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
995                                                          4);
996       llvm::PointerType *ptVec4Ty =
997       llvm::PointerType::get(vec4Ty,
998                              (cast<llvm::PointerType>(
999                                       Addr->getType()))->getAddressSpace());
1000       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1001                                                 "castToVec4");
1002       // Now load value.
1003       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1004 
1005       // Shuffle vector to get vec3.
1006       llvm::Constant *Mask[] = {
1007         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1008         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1009         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1010       };
1011 
1012       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1013       V = Builder.CreateShuffleVector(LoadVal,
1014                                       llvm::UndefValue::get(vec4Ty),
1015                                       MaskV, "extractVec");
1016       return EmitFromMemory(V, Ty);
1017     }
1018   }
1019 
1020   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1021   if (Volatile)
1022     Load->setVolatile(true);
1023   if (Alignment)
1024     Load->setAlignment(Alignment);
1025   if (TBAAInfo)
1026     CGM.DecorateInstruction(Load, TBAAInfo);
1027   // If this is an atomic type, all normal reads must be atomic
1028   if (Ty->isAtomicType())
1029     Load->setAtomic(llvm::SequentiallyConsistent);
1030 
1031   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1032       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1033     llvm::APInt Min, End;
1034     if (getRangeForType(*this, Ty, Min, End, true)) {
1035       --End;
1036       llvm::Value *Check;
1037       if (!Min)
1038         Check = Builder.CreateICmpULE(
1039           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1040       else {
1041         llvm::Value *Upper = Builder.CreateICmpSLE(
1042           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1043         llvm::Value *Lower = Builder.CreateICmpSGE(
1044           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1045         Check = Builder.CreateAnd(Upper, Lower);
1046       }
1047       // FIXME: Provide a SourceLocation.
1048       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1049                 EmitCheckValue(Load), CRK_Recoverable);
1050     }
1051   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1052     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1053       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1054 
1055   return EmitFromMemory(Load, Ty);
1056 }
1057 
1058 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1059   // Bool has a different representation in memory than in registers.
1060   if (hasBooleanRepresentation(Ty)) {
1061     // This should really always be an i1, but sometimes it's already
1062     // an i8, and it's awkward to track those cases down.
1063     if (Value->getType()->isIntegerTy(1))
1064       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1065     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1066            "wrong value rep of bool");
1067   }
1068 
1069   return Value;
1070 }
1071 
1072 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1073   // Bool has a different representation in memory than in registers.
1074   if (hasBooleanRepresentation(Ty)) {
1075     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1076            "wrong value rep of bool");
1077     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1078   }
1079 
1080   return Value;
1081 }
1082 
1083 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1084                                         bool Volatile, unsigned Alignment,
1085                                         QualType Ty,
1086                                         llvm::MDNode *TBAAInfo,
1087                                         bool isInit) {
1088 
1089   // Handle vectors differently to get better performance.
1090   if (Ty->isVectorType()) {
1091     llvm::Type *SrcTy = Value->getType();
1092     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1093     // Handle vec3 special.
1094     if (VecTy->getNumElements() == 3) {
1095       llvm::LLVMContext &VMContext = getLLVMContext();
1096 
1097       // Our source is a vec3, do a shuffle vector to make it a vec4.
1098       SmallVector<llvm::Constant*, 4> Mask;
1099       Mask.push_back(llvm::ConstantInt::get(
1100                                             llvm::Type::getInt32Ty(VMContext),
1101                                             0));
1102       Mask.push_back(llvm::ConstantInt::get(
1103                                             llvm::Type::getInt32Ty(VMContext),
1104                                             1));
1105       Mask.push_back(llvm::ConstantInt::get(
1106                                             llvm::Type::getInt32Ty(VMContext),
1107                                             2));
1108       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1109 
1110       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1111       Value = Builder.CreateShuffleVector(Value,
1112                                           llvm::UndefValue::get(VecTy),
1113                                           MaskV, "extractVec");
1114       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1115     }
1116     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1117     if (DstPtr->getElementType() != SrcTy) {
1118       llvm::Type *MemTy =
1119       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1120       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1121     }
1122   }
1123 
1124   Value = EmitToMemory(Value, Ty);
1125 
1126   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1127   if (Alignment)
1128     Store->setAlignment(Alignment);
1129   if (TBAAInfo)
1130     CGM.DecorateInstruction(Store, TBAAInfo);
1131   if (!isInit && Ty->isAtomicType())
1132     Store->setAtomic(llvm::SequentiallyConsistent);
1133 }
1134 
1135 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1136     bool isInit) {
1137   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1138                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1139                     lvalue.getTBAAInfo(), isInit);
1140 }
1141 
1142 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1143 /// method emits the address of the lvalue, then loads the result as an rvalue,
1144 /// returning the rvalue.
1145 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1146   if (LV.isObjCWeak()) {
1147     // load of a __weak object.
1148     llvm::Value *AddrWeakObj = LV.getAddress();
1149     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1150                                                              AddrWeakObj));
1151   }
1152   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1153     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1154     Object = EmitObjCConsumeObject(LV.getType(), Object);
1155     return RValue::get(Object);
1156   }
1157 
1158   if (LV.isSimple()) {
1159     assert(!LV.getType()->isFunctionType());
1160 
1161     // Everything needs a load.
1162     return RValue::get(EmitLoadOfScalar(LV));
1163   }
1164 
1165   if (LV.isVectorElt()) {
1166     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1167                                               LV.isVolatileQualified());
1168     Load->setAlignment(LV.getAlignment().getQuantity());
1169     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1170                                                     "vecext"));
1171   }
1172 
1173   // If this is a reference to a subset of the elements of a vector, either
1174   // shuffle the input or extract/insert them as appropriate.
1175   if (LV.isExtVectorElt())
1176     return EmitLoadOfExtVectorElementLValue(LV);
1177 
1178   assert(LV.isBitField() && "Unknown LValue type!");
1179   return EmitLoadOfBitfieldLValue(LV);
1180 }
1181 
1182 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1183   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1184 
1185   // Get the output type.
1186   llvm::Type *ResLTy = ConvertType(LV.getType());
1187 
1188   llvm::Value *Ptr = LV.getBitFieldAddr();
1189   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1190                                         "bf.load");
1191   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1192 
1193   if (Info.IsSigned) {
1194     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1195     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1196     if (HighBits)
1197       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1198     if (Info.Offset + HighBits)
1199       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1200   } else {
1201     if (Info.Offset)
1202       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1203     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1204       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1205                                                               Info.Size),
1206                               "bf.clear");
1207   }
1208   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1209 
1210   return RValue::get(Val);
1211 }
1212 
1213 // If this is a reference to a subset of the elements of a vector, create an
1214 // appropriate shufflevector.
1215 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1216   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1217                                             LV.isVolatileQualified());
1218   Load->setAlignment(LV.getAlignment().getQuantity());
1219   llvm::Value *Vec = Load;
1220 
1221   const llvm::Constant *Elts = LV.getExtVectorElts();
1222 
1223   // If the result of the expression is a non-vector type, we must be extracting
1224   // a single element.  Just codegen as an extractelement.
1225   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1226   if (!ExprVT) {
1227     unsigned InIdx = getAccessedFieldNo(0, Elts);
1228     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1229     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1230   }
1231 
1232   // Always use shuffle vector to try to retain the original program structure
1233   unsigned NumResultElts = ExprVT->getNumElements();
1234 
1235   SmallVector<llvm::Constant*, 4> Mask;
1236   for (unsigned i = 0; i != NumResultElts; ++i)
1237     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1238 
1239   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1240   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1241                                     MaskV);
1242   return RValue::get(Vec);
1243 }
1244 
1245 
1246 
1247 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1248 /// lvalue, where both are guaranteed to the have the same type, and that type
1249 /// is 'Ty'.
1250 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1251   if (!Dst.isSimple()) {
1252     if (Dst.isVectorElt()) {
1253       // Read/modify/write the vector, inserting the new element.
1254       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1255                                                 Dst.isVolatileQualified());
1256       Load->setAlignment(Dst.getAlignment().getQuantity());
1257       llvm::Value *Vec = Load;
1258       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1259                                         Dst.getVectorIdx(), "vecins");
1260       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1261                                                    Dst.isVolatileQualified());
1262       Store->setAlignment(Dst.getAlignment().getQuantity());
1263       return;
1264     }
1265 
1266     // If this is an update of extended vector elements, insert them as
1267     // appropriate.
1268     if (Dst.isExtVectorElt())
1269       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1270 
1271     assert(Dst.isBitField() && "Unknown LValue type");
1272     return EmitStoreThroughBitfieldLValue(Src, Dst);
1273   }
1274 
1275   // There's special magic for assigning into an ARC-qualified l-value.
1276   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1277     switch (Lifetime) {
1278     case Qualifiers::OCL_None:
1279       llvm_unreachable("present but none");
1280 
1281     case Qualifiers::OCL_ExplicitNone:
1282       // nothing special
1283       break;
1284 
1285     case Qualifiers::OCL_Strong:
1286       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1287       return;
1288 
1289     case Qualifiers::OCL_Weak:
1290       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1291       return;
1292 
1293     case Qualifiers::OCL_Autoreleasing:
1294       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1295                                                      Src.getScalarVal()));
1296       // fall into the normal path
1297       break;
1298     }
1299   }
1300 
1301   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1302     // load of a __weak object.
1303     llvm::Value *LvalueDst = Dst.getAddress();
1304     llvm::Value *src = Src.getScalarVal();
1305      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1306     return;
1307   }
1308 
1309   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1310     // load of a __strong object.
1311     llvm::Value *LvalueDst = Dst.getAddress();
1312     llvm::Value *src = Src.getScalarVal();
1313     if (Dst.isObjCIvar()) {
1314       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1315       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1316       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1317       llvm::Value *dst = RHS;
1318       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1319       llvm::Value *LHS =
1320         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1321       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1322       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1323                                               BytesBetween);
1324     } else if (Dst.isGlobalObjCRef()) {
1325       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1326                                                 Dst.isThreadLocalRef());
1327     }
1328     else
1329       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1330     return;
1331   }
1332 
1333   assert(Src.isScalar() && "Can't emit an agg store with this method");
1334   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1335 }
1336 
1337 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1338                                                      llvm::Value **Result) {
1339   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1340   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1341   llvm::Value *Ptr = Dst.getBitFieldAddr();
1342 
1343   // Get the source value, truncated to the width of the bit-field.
1344   llvm::Value *SrcVal = Src.getScalarVal();
1345 
1346   // Cast the source to the storage type and shift it into place.
1347   SrcVal = Builder.CreateIntCast(SrcVal,
1348                                  Ptr->getType()->getPointerElementType(),
1349                                  /*IsSigned=*/false);
1350   llvm::Value *MaskedVal = SrcVal;
1351 
1352   // See if there are other bits in the bitfield's storage we'll need to load
1353   // and mask together with source before storing.
1354   if (Info.StorageSize != Info.Size) {
1355     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1356     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1357                                           "bf.load");
1358     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1359 
1360     // Mask the source value as needed.
1361     if (!hasBooleanRepresentation(Dst.getType()))
1362       SrcVal = Builder.CreateAnd(SrcVal,
1363                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1364                                                             Info.Size),
1365                                  "bf.value");
1366     MaskedVal = SrcVal;
1367     if (Info.Offset)
1368       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1369 
1370     // Mask out the original value.
1371     Val = Builder.CreateAnd(Val,
1372                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1373                                                      Info.Offset,
1374                                                      Info.Offset + Info.Size),
1375                             "bf.clear");
1376 
1377     // Or together the unchanged values and the source value.
1378     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1379   } else {
1380     assert(Info.Offset == 0);
1381   }
1382 
1383   // Write the new value back out.
1384   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1385                                                Dst.isVolatileQualified());
1386   Store->setAlignment(Info.StorageAlignment);
1387 
1388   // Return the new value of the bit-field, if requested.
1389   if (Result) {
1390     llvm::Value *ResultVal = MaskedVal;
1391 
1392     // Sign extend the value if needed.
1393     if (Info.IsSigned) {
1394       assert(Info.Size <= Info.StorageSize);
1395       unsigned HighBits = Info.StorageSize - Info.Size;
1396       if (HighBits) {
1397         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1398         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1399       }
1400     }
1401 
1402     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1403                                       "bf.result.cast");
1404     *Result = EmitFromMemory(ResultVal, Dst.getType());
1405   }
1406 }
1407 
1408 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1409                                                                LValue Dst) {
1410   // This access turns into a read/modify/write of the vector.  Load the input
1411   // value now.
1412   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1413                                             Dst.isVolatileQualified());
1414   Load->setAlignment(Dst.getAlignment().getQuantity());
1415   llvm::Value *Vec = Load;
1416   const llvm::Constant *Elts = Dst.getExtVectorElts();
1417 
1418   llvm::Value *SrcVal = Src.getScalarVal();
1419 
1420   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1421     unsigned NumSrcElts = VTy->getNumElements();
1422     unsigned NumDstElts =
1423        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1424     if (NumDstElts == NumSrcElts) {
1425       // Use shuffle vector is the src and destination are the same number of
1426       // elements and restore the vector mask since it is on the side it will be
1427       // stored.
1428       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1429       for (unsigned i = 0; i != NumSrcElts; ++i)
1430         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1431 
1432       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1433       Vec = Builder.CreateShuffleVector(SrcVal,
1434                                         llvm::UndefValue::get(Vec->getType()),
1435                                         MaskV);
1436     } else if (NumDstElts > NumSrcElts) {
1437       // Extended the source vector to the same length and then shuffle it
1438       // into the destination.
1439       // FIXME: since we're shuffling with undef, can we just use the indices
1440       //        into that?  This could be simpler.
1441       SmallVector<llvm::Constant*, 4> ExtMask;
1442       for (unsigned i = 0; i != NumSrcElts; ++i)
1443         ExtMask.push_back(Builder.getInt32(i));
1444       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1445       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1446       llvm::Value *ExtSrcVal =
1447         Builder.CreateShuffleVector(SrcVal,
1448                                     llvm::UndefValue::get(SrcVal->getType()),
1449                                     ExtMaskV);
1450       // build identity
1451       SmallVector<llvm::Constant*, 4> Mask;
1452       for (unsigned i = 0; i != NumDstElts; ++i)
1453         Mask.push_back(Builder.getInt32(i));
1454 
1455       // modify when what gets shuffled in
1456       for (unsigned i = 0; i != NumSrcElts; ++i)
1457         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1458       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1459       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1460     } else {
1461       // We should never shorten the vector
1462       llvm_unreachable("unexpected shorten vector length");
1463     }
1464   } else {
1465     // If the Src is a scalar (not a vector) it must be updating one element.
1466     unsigned InIdx = getAccessedFieldNo(0, Elts);
1467     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1468     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1469   }
1470 
1471   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1472                                                Dst.isVolatileQualified());
1473   Store->setAlignment(Dst.getAlignment().getQuantity());
1474 }
1475 
1476 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1477 // generating write-barries API. It is currently a global, ivar,
1478 // or neither.
1479 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1480                                  LValue &LV,
1481                                  bool IsMemberAccess=false) {
1482   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1483     return;
1484 
1485   if (isa<ObjCIvarRefExpr>(E)) {
1486     QualType ExpTy = E->getType();
1487     if (IsMemberAccess && ExpTy->isPointerType()) {
1488       // If ivar is a structure pointer, assigning to field of
1489       // this struct follows gcc's behavior and makes it a non-ivar
1490       // writer-barrier conservatively.
1491       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1492       if (ExpTy->isRecordType()) {
1493         LV.setObjCIvar(false);
1494         return;
1495       }
1496     }
1497     LV.setObjCIvar(true);
1498     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1499     LV.setBaseIvarExp(Exp->getBase());
1500     LV.setObjCArray(E->getType()->isArrayType());
1501     return;
1502   }
1503 
1504   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1505     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1506       if (VD->hasGlobalStorage()) {
1507         LV.setGlobalObjCRef(true);
1508         LV.setThreadLocalRef(VD->isThreadSpecified());
1509       }
1510     }
1511     LV.setObjCArray(E->getType()->isArrayType());
1512     return;
1513   }
1514 
1515   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1516     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1517     return;
1518   }
1519 
1520   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1521     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1522     if (LV.isObjCIvar()) {
1523       // If cast is to a structure pointer, follow gcc's behavior and make it
1524       // a non-ivar write-barrier.
1525       QualType ExpTy = E->getType();
1526       if (ExpTy->isPointerType())
1527         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1528       if (ExpTy->isRecordType())
1529         LV.setObjCIvar(false);
1530     }
1531     return;
1532   }
1533 
1534   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1535     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1536     return;
1537   }
1538 
1539   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1540     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1541     return;
1542   }
1543 
1544   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1545     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1546     return;
1547   }
1548 
1549   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1550     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1551     return;
1552   }
1553 
1554   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1555     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1556     if (LV.isObjCIvar() && !LV.isObjCArray())
1557       // Using array syntax to assigning to what an ivar points to is not
1558       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1559       LV.setObjCIvar(false);
1560     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1561       // Using array syntax to assigning to what global points to is not
1562       // same as assigning to the global itself. {id *G;} G[i] = 0;
1563       LV.setGlobalObjCRef(false);
1564     return;
1565   }
1566 
1567   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1568     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1569     // We don't know if member is an 'ivar', but this flag is looked at
1570     // only in the context of LV.isObjCIvar().
1571     LV.setObjCArray(E->getType()->isArrayType());
1572     return;
1573   }
1574 }
1575 
1576 static llvm::Value *
1577 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1578                                 llvm::Value *V, llvm::Type *IRType,
1579                                 StringRef Name = StringRef()) {
1580   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1581   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1582 }
1583 
1584 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1585                                       const Expr *E, const VarDecl *VD) {
1586   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1587   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1588   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1589   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1590   QualType T = E->getType();
1591   LValue LV;
1592   if (VD->getType()->isReferenceType()) {
1593     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1594     LI->setAlignment(Alignment.getQuantity());
1595     V = LI;
1596     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1597   } else {
1598     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1599   }
1600   setObjCGCLValueClass(CGF.getContext(), E, LV);
1601   return LV;
1602 }
1603 
1604 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1605                                      const Expr *E, const FunctionDecl *FD) {
1606   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1607   if (!FD->hasPrototype()) {
1608     if (const FunctionProtoType *Proto =
1609             FD->getType()->getAs<FunctionProtoType>()) {
1610       // Ugly case: for a K&R-style definition, the type of the definition
1611       // isn't the same as the type of a use.  Correct for this with a
1612       // bitcast.
1613       QualType NoProtoType =
1614           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1615       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1616       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1617     }
1618   }
1619   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1620   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1621 }
1622 
1623 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1624   const NamedDecl *ND = E->getDecl();
1625   CharUnits Alignment = getContext().getDeclAlign(ND);
1626   QualType T = E->getType();
1627 
1628   // A DeclRefExpr for a reference initialized by a constant expression can
1629   // appear without being odr-used. Directly emit the constant initializer.
1630   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1631     const Expr *Init = VD->getAnyInitializer(VD);
1632     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1633         VD->isUsableInConstantExpressions(getContext()) &&
1634         VD->checkInitIsICE()) {
1635       llvm::Constant *Val =
1636         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1637       assert(Val && "failed to emit reference constant expression");
1638       // FIXME: Eventually we will want to emit vector element references.
1639       return MakeAddrLValue(Val, T, Alignment);
1640     }
1641   }
1642 
1643   // FIXME: We should be able to assert this for FunctionDecls as well!
1644   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1645   // those with a valid source location.
1646   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1647           !E->getLocation().isValid()) &&
1648          "Should not use decl without marking it used!");
1649 
1650   if (ND->hasAttr<WeakRefAttr>()) {
1651     const ValueDecl *VD = cast<ValueDecl>(ND);
1652     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1653     return MakeAddrLValue(Aliasee, T, Alignment);
1654   }
1655 
1656   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1657     // Check if this is a global variable.
1658     if (VD->hasLinkage() || VD->isStaticDataMember())
1659       return EmitGlobalVarDeclLValue(*this, E, VD);
1660 
1661     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1662 
1663     bool NonGCable = VD->hasLocalStorage() &&
1664                      !VD->getType()->isReferenceType() &&
1665                      !isBlockVariable;
1666 
1667     llvm::Value *V = LocalDeclMap.lookup(VD);
1668     if (!V && VD->isStaticLocal())
1669       V = CGM.getStaticLocalDeclAddress(VD);
1670 
1671     // Use special handling for lambdas.
1672     if (!V) {
1673       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1674         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1675         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1676                                                      LambdaTagType);
1677         return EmitLValueForField(LambdaLV, FD);
1678       }
1679 
1680       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1681       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1682                             T, Alignment);
1683     }
1684 
1685     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1686 
1687     if (isBlockVariable)
1688       V = BuildBlockByrefAddress(V, VD);
1689 
1690     LValue LV;
1691     if (VD->getType()->isReferenceType()) {
1692       llvm::LoadInst *LI = Builder.CreateLoad(V);
1693       LI->setAlignment(Alignment.getQuantity());
1694       V = LI;
1695       LV = MakeNaturalAlignAddrLValue(V, T);
1696     } else {
1697       LV = MakeAddrLValue(V, T, Alignment);
1698     }
1699 
1700     if (NonGCable) {
1701       LV.getQuals().removeObjCGCAttr();
1702       LV.setNonGC(true);
1703     }
1704     setObjCGCLValueClass(getContext(), E, LV);
1705     return LV;
1706   }
1707 
1708   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1709     return EmitFunctionDeclLValue(*this, E, fn);
1710 
1711   llvm_unreachable("Unhandled DeclRefExpr");
1712 }
1713 
1714 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1715   // __extension__ doesn't affect lvalue-ness.
1716   if (E->getOpcode() == UO_Extension)
1717     return EmitLValue(E->getSubExpr());
1718 
1719   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1720   switch (E->getOpcode()) {
1721   default: llvm_unreachable("Unknown unary operator lvalue!");
1722   case UO_Deref: {
1723     QualType T = E->getSubExpr()->getType()->getPointeeType();
1724     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1725 
1726     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1727     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1728 
1729     // We should not generate __weak write barrier on indirect reference
1730     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1731     // But, we continue to generate __strong write barrier on indirect write
1732     // into a pointer to object.
1733     if (getLangOpts().ObjC1 &&
1734         getLangOpts().getGC() != LangOptions::NonGC &&
1735         LV.isObjCWeak())
1736       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1737     return LV;
1738   }
1739   case UO_Real:
1740   case UO_Imag: {
1741     LValue LV = EmitLValue(E->getSubExpr());
1742     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1743     llvm::Value *Addr = LV.getAddress();
1744 
1745     // __real is valid on scalars.  This is a faster way of testing that.
1746     // __imag can only produce an rvalue on scalars.
1747     if (E->getOpcode() == UO_Real &&
1748         !cast<llvm::PointerType>(Addr->getType())
1749            ->getElementType()->isStructTy()) {
1750       assert(E->getSubExpr()->getType()->isArithmeticType());
1751       return LV;
1752     }
1753 
1754     assert(E->getSubExpr()->getType()->isAnyComplexType());
1755 
1756     unsigned Idx = E->getOpcode() == UO_Imag;
1757     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1758                                                   Idx, "idx"),
1759                           ExprTy);
1760   }
1761   case UO_PreInc:
1762   case UO_PreDec: {
1763     LValue LV = EmitLValue(E->getSubExpr());
1764     bool isInc = E->getOpcode() == UO_PreInc;
1765 
1766     if (E->getType()->isAnyComplexType())
1767       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1768     else
1769       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1770     return LV;
1771   }
1772   }
1773 }
1774 
1775 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1776   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1777                         E->getType());
1778 }
1779 
1780 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1781   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1782                         E->getType());
1783 }
1784 
1785 static llvm::Constant*
1786 GetAddrOfConstantWideString(StringRef Str,
1787                             const char *GlobalName,
1788                             ASTContext &Context,
1789                             QualType Ty, SourceLocation Loc,
1790                             CodeGenModule &CGM) {
1791 
1792   StringLiteral *SL = StringLiteral::Create(Context,
1793                                             Str,
1794                                             StringLiteral::Wide,
1795                                             /*Pascal = */false,
1796                                             Ty, Loc);
1797   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1798   llvm::GlobalVariable *GV =
1799     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1800                              !CGM.getLangOpts().WritableStrings,
1801                              llvm::GlobalValue::PrivateLinkage,
1802                              C, GlobalName);
1803   const unsigned WideAlignment =
1804     Context.getTypeAlignInChars(Ty).getQuantity();
1805   GV->setAlignment(WideAlignment);
1806   return GV;
1807 }
1808 
1809 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1810                                     SmallString<32>& Target) {
1811   Target.resize(CharByteWidth * (Source.size() + 1));
1812   char *ResultPtr = &Target[0];
1813   const UTF8 *ErrorPtr;
1814   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1815   (void)success;
1816   assert(success);
1817   Target.resize(ResultPtr - &Target[0]);
1818 }
1819 
1820 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1821   switch (E->getIdentType()) {
1822   default:
1823     return EmitUnsupportedLValue(E, "predefined expression");
1824 
1825   case PredefinedExpr::Func:
1826   case PredefinedExpr::Function:
1827   case PredefinedExpr::LFunction:
1828   case PredefinedExpr::PrettyFunction: {
1829     unsigned IdentType = E->getIdentType();
1830     std::string GlobalVarName;
1831 
1832     switch (IdentType) {
1833     default: llvm_unreachable("Invalid type");
1834     case PredefinedExpr::Func:
1835       GlobalVarName = "__func__.";
1836       break;
1837     case PredefinedExpr::Function:
1838       GlobalVarName = "__FUNCTION__.";
1839       break;
1840     case PredefinedExpr::LFunction:
1841       GlobalVarName = "L__FUNCTION__.";
1842       break;
1843     case PredefinedExpr::PrettyFunction:
1844       GlobalVarName = "__PRETTY_FUNCTION__.";
1845       break;
1846     }
1847 
1848     StringRef FnName = CurFn->getName();
1849     if (FnName.startswith("\01"))
1850       FnName = FnName.substr(1);
1851     GlobalVarName += FnName;
1852 
1853     const Decl *CurDecl = CurCodeDecl;
1854     if (CurDecl == 0)
1855       CurDecl = getContext().getTranslationUnitDecl();
1856 
1857     std::string FunctionName =
1858         (isa<BlockDecl>(CurDecl)
1859          ? FnName.str()
1860          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1861                                        CurDecl));
1862 
1863     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1864     llvm::Constant *C;
1865     if (ElemType->isWideCharType()) {
1866       SmallString<32> RawChars;
1867       ConvertUTF8ToWideString(
1868           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1869           FunctionName, RawChars);
1870       C = GetAddrOfConstantWideString(RawChars,
1871                                       GlobalVarName.c_str(),
1872                                       getContext(),
1873                                       E->getType(),
1874                                       E->getLocation(),
1875                                       CGM);
1876     } else {
1877       C = CGM.GetAddrOfConstantCString(FunctionName,
1878                                        GlobalVarName.c_str(),
1879                                        1);
1880     }
1881     return MakeAddrLValue(C, E->getType());
1882   }
1883   }
1884 }
1885 
1886 /// Emit a type description suitable for use by a runtime sanitizer library. The
1887 /// format of a type descriptor is
1888 ///
1889 /// \code
1890 ///   { i16 TypeKind, i16 TypeInfo }
1891 /// \endcode
1892 ///
1893 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
1894 /// integer, 1 for a floating point value, and -1 for anything else.
1895 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
1896   // FIXME: Only emit each type's descriptor once.
1897   uint16_t TypeKind = -1;
1898   uint16_t TypeInfo = 0;
1899 
1900   if (T->isIntegerType()) {
1901     TypeKind = 0;
1902     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
1903                (T->isSignedIntegerType() ? 1 : 0);
1904   } else if (T->isFloatingType()) {
1905     TypeKind = 1;
1906     TypeInfo = getContext().getTypeSize(T);
1907   }
1908 
1909   // Format the type name as if for a diagnostic, including quotes and
1910   // optionally an 'aka'.
1911   SmallString<32> Buffer;
1912   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
1913                                     (intptr_t)T.getAsOpaquePtr(),
1914                                     0, 0, 0, 0, 0, 0, Buffer,
1915                                     ArrayRef<intptr_t>());
1916 
1917   llvm::Constant *Components[] = {
1918     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
1919     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
1920   };
1921   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
1922 
1923   llvm::GlobalVariable *GV =
1924     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
1925                              /*isConstant=*/true,
1926                              llvm::GlobalVariable::PrivateLinkage,
1927                              Descriptor);
1928   GV->setUnnamedAddr(true);
1929   return GV;
1930 }
1931 
1932 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
1933   llvm::Type *TargetTy = IntPtrTy;
1934 
1935   // Integers which fit in intptr_t are zero-extended and passed directly.
1936   if (V->getType()->isIntegerTy() &&
1937       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
1938     return Builder.CreateZExt(V, TargetTy);
1939 
1940   // Pointers are passed directly, everything else is passed by address.
1941   if (!V->getType()->isPointerTy()) {
1942     llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
1943     Builder.CreateStore(V, Ptr);
1944     V = Ptr;
1945   }
1946   return Builder.CreatePtrToInt(V, TargetTy);
1947 }
1948 
1949 /// \brief Emit a representation of a SourceLocation for passing to a handler
1950 /// in a sanitizer runtime library. The format for this data is:
1951 /// \code
1952 ///   struct SourceLocation {
1953 ///     const char *Filename;
1954 ///     int32_t Line, Column;
1955 ///   };
1956 /// \endcode
1957 /// For an invalid SourceLocation, the Filename pointer is null.
1958 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
1959   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
1960 
1961   llvm::Constant *Data[] = {
1962     // FIXME: Only emit each file name once.
1963     PLoc.isValid() ? cast<llvm::Constant>(
1964                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
1965                    : llvm::Constant::getNullValue(Int8PtrTy),
1966     Builder.getInt32(PLoc.getLine()),
1967     Builder.getInt32(PLoc.getColumn())
1968   };
1969 
1970   return llvm::ConstantStruct::getAnon(Data);
1971 }
1972 
1973 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
1974                                 ArrayRef<llvm::Constant *> StaticArgs,
1975                                 ArrayRef<llvm::Value *> DynamicArgs,
1976                                 CheckRecoverableKind RecoverKind) {
1977   assert(SanOpts != &SanitizerOptions::Disabled);
1978   llvm::BasicBlock *Cont = createBasicBlock("cont");
1979 
1980   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
1981 
1982   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
1983 
1984   // Give hint that we very much don't expect to execute the handler
1985   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
1986   llvm::MDBuilder MDHelper(getLLVMContext());
1987   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
1988   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
1989 
1990   EmitBlock(Handler);
1991 
1992   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
1993   llvm::GlobalValue *InfoPtr =
1994       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
1995                                llvm::GlobalVariable::PrivateLinkage, Info);
1996   InfoPtr->setUnnamedAddr(true);
1997 
1998   SmallVector<llvm::Value *, 4> Args;
1999   SmallVector<llvm::Type *, 4> ArgTypes;
2000   Args.reserve(DynamicArgs.size() + 1);
2001   ArgTypes.reserve(DynamicArgs.size() + 1);
2002 
2003   // Handler functions take an i8* pointing to the (handler-specific) static
2004   // information block, followed by a sequence of intptr_t arguments
2005   // representing operand values.
2006   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2007   ArgTypes.push_back(Int8PtrTy);
2008   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2009     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2010     ArgTypes.push_back(IntPtrTy);
2011   }
2012 
2013   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2014                  ((RecoverKind == CRK_Recoverable) &&
2015                    CGM.getCodeGenOpts().SanitizeRecover);
2016 
2017   llvm::FunctionType *FnType =
2018     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2019   llvm::AttrBuilder B;
2020   if (!Recover) {
2021     B.addAttribute(llvm::Attribute::NoReturn)
2022      .addAttribute(llvm::Attribute::NoUnwind);
2023   }
2024   B.addAttribute(llvm::Attribute::UWTable);
2025 
2026   // Checks that have two variants use a suffix to differentiate them
2027   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2028                            !CGM.getCodeGenOpts().SanitizeRecover;
2029   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2030                               (NeedsAbortSuffix? "_abort" : "")).str();
2031   llvm::Value *Fn =
2032     CGM.CreateRuntimeFunction(FnType, FunctionName,
2033                               llvm::Attribute::get(getLLVMContext(), B));
2034   llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args);
2035   if (Recover) {
2036     Builder.CreateBr(Cont);
2037   } else {
2038     HandlerCall->setDoesNotReturn();
2039     HandlerCall->setDoesNotThrow();
2040     Builder.CreateUnreachable();
2041   }
2042 
2043   EmitBlock(Cont);
2044 }
2045 
2046 void CodeGenFunction::EmitTrapvCheck(llvm::Value *Checked) {
2047   llvm::BasicBlock *Cont = createBasicBlock("cont");
2048 
2049   // If we're optimizing, collapse all calls to trap down to just one per
2050   // function to save on code size.
2051   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2052     TrapBB = createBasicBlock("trap");
2053     Builder.CreateCondBr(Checked, Cont, TrapBB);
2054     EmitBlock(TrapBB);
2055     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2056     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2057     TrapCall->setDoesNotReturn();
2058     TrapCall->setDoesNotThrow();
2059     Builder.CreateUnreachable();
2060   } else {
2061     Builder.CreateCondBr(Checked, Cont, TrapBB);
2062   }
2063 
2064   EmitBlock(Cont);
2065 }
2066 
2067 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2068 /// array to pointer, return the array subexpression.
2069 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2070   // If this isn't just an array->pointer decay, bail out.
2071   const CastExpr *CE = dyn_cast<CastExpr>(E);
2072   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2073     return 0;
2074 
2075   // If this is a decay from variable width array, bail out.
2076   const Expr *SubExpr = CE->getSubExpr();
2077   if (SubExpr->getType()->isVariableArrayType())
2078     return 0;
2079 
2080   return SubExpr;
2081 }
2082 
2083 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2084   // The index must always be an integer, which is not an aggregate.  Emit it.
2085   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2086   QualType IdxTy  = E->getIdx()->getType();
2087   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2088 
2089   // If the base is a vector type, then we are forming a vector element lvalue
2090   // with this subscript.
2091   if (E->getBase()->getType()->isVectorType()) {
2092     // Emit the vector as an lvalue to get its address.
2093     LValue LHS = EmitLValue(E->getBase());
2094     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2095     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2096     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2097                                  E->getBase()->getType(), LHS.getAlignment());
2098   }
2099 
2100   // Extend or truncate the index type to 32 or 64-bits.
2101   if (Idx->getType() != IntPtrTy)
2102     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2103 
2104   // We know that the pointer points to a type of the correct size, unless the
2105   // size is a VLA or Objective-C interface.
2106   llvm::Value *Address = 0;
2107   CharUnits ArrayAlignment;
2108   if (const VariableArrayType *vla =
2109         getContext().getAsVariableArrayType(E->getType())) {
2110     // The base must be a pointer, which is not an aggregate.  Emit
2111     // it.  It needs to be emitted first in case it's what captures
2112     // the VLA bounds.
2113     Address = EmitScalarExpr(E->getBase());
2114 
2115     // The element count here is the total number of non-VLA elements.
2116     llvm::Value *numElements = getVLASize(vla).first;
2117 
2118     // Effectively, the multiply by the VLA size is part of the GEP.
2119     // GEP indexes are signed, and scaling an index isn't permitted to
2120     // signed-overflow, so we use the same semantics for our explicit
2121     // multiply.  We suppress this if overflow is not undefined behavior.
2122     if (getLangOpts().isSignedOverflowDefined()) {
2123       Idx = Builder.CreateMul(Idx, numElements);
2124       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2125     } else {
2126       Idx = Builder.CreateNSWMul(Idx, numElements);
2127       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2128     }
2129   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2130     // Indexing over an interface, as in "NSString *P; P[4];"
2131     llvm::Value *InterfaceSize =
2132       llvm::ConstantInt::get(Idx->getType(),
2133           getContext().getTypeSizeInChars(OIT).getQuantity());
2134 
2135     Idx = Builder.CreateMul(Idx, InterfaceSize);
2136 
2137     // The base must be a pointer, which is not an aggregate.  Emit it.
2138     llvm::Value *Base = EmitScalarExpr(E->getBase());
2139     Address = EmitCastToVoidPtr(Base);
2140     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2141     Address = Builder.CreateBitCast(Address, Base->getType());
2142   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2143     // If this is A[i] where A is an array, the frontend will have decayed the
2144     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2145     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2146     // "gep x, i" here.  Emit one "gep A, 0, i".
2147     assert(Array->getType()->isArrayType() &&
2148            "Array to pointer decay must have array source type!");
2149     LValue ArrayLV = EmitLValue(Array);
2150     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2151     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2152     llvm::Value *Args[] = { Zero, Idx };
2153 
2154     // Propagate the alignment from the array itself to the result.
2155     ArrayAlignment = ArrayLV.getAlignment();
2156 
2157     if (getLangOpts().isSignedOverflowDefined())
2158       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2159     else
2160       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2161   } else {
2162     // The base must be a pointer, which is not an aggregate.  Emit it.
2163     llvm::Value *Base = EmitScalarExpr(E->getBase());
2164     if (getLangOpts().isSignedOverflowDefined())
2165       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2166     else
2167       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2168   }
2169 
2170   QualType T = E->getBase()->getType()->getPointeeType();
2171   assert(!T.isNull() &&
2172          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2173 
2174 
2175   // Limit the alignment to that of the result type.
2176   LValue LV;
2177   if (!ArrayAlignment.isZero()) {
2178     CharUnits Align = getContext().getTypeAlignInChars(T);
2179     ArrayAlignment = std::min(Align, ArrayAlignment);
2180     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2181   } else {
2182     LV = MakeNaturalAlignAddrLValue(Address, T);
2183   }
2184 
2185   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2186 
2187   if (getLangOpts().ObjC1 &&
2188       getLangOpts().getGC() != LangOptions::NonGC) {
2189     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2190     setObjCGCLValueClass(getContext(), E, LV);
2191   }
2192   return LV;
2193 }
2194 
2195 static
2196 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2197                                        SmallVector<unsigned, 4> &Elts) {
2198   SmallVector<llvm::Constant*, 4> CElts;
2199   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2200     CElts.push_back(Builder.getInt32(Elts[i]));
2201 
2202   return llvm::ConstantVector::get(CElts);
2203 }
2204 
2205 LValue CodeGenFunction::
2206 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2207   // Emit the base vector as an l-value.
2208   LValue Base;
2209 
2210   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2211   if (E->isArrow()) {
2212     // If it is a pointer to a vector, emit the address and form an lvalue with
2213     // it.
2214     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2215     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2216     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2217     Base.getQuals().removeObjCGCAttr();
2218   } else if (E->getBase()->isGLValue()) {
2219     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2220     // emit the base as an lvalue.
2221     assert(E->getBase()->getType()->isVectorType());
2222     Base = EmitLValue(E->getBase());
2223   } else {
2224     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2225     assert(E->getBase()->getType()->isVectorType() &&
2226            "Result must be a vector");
2227     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2228 
2229     // Store the vector to memory (because LValue wants an address).
2230     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2231     Builder.CreateStore(Vec, VecMem);
2232     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2233   }
2234 
2235   QualType type =
2236     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2237 
2238   // Encode the element access list into a vector of unsigned indices.
2239   SmallVector<unsigned, 4> Indices;
2240   E->getEncodedElementAccess(Indices);
2241 
2242   if (Base.isSimple()) {
2243     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2244     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2245                                     Base.getAlignment());
2246   }
2247   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2248 
2249   llvm::Constant *BaseElts = Base.getExtVectorElts();
2250   SmallVector<llvm::Constant *, 4> CElts;
2251 
2252   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2253     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2254   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2255   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2256                                   Base.getAlignment());
2257 }
2258 
2259 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2260   Expr *BaseExpr = E->getBase();
2261 
2262   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2263   LValue BaseLV;
2264   if (E->isArrow()) {
2265     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2266     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2267     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2268     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2269   } else
2270     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2271 
2272   NamedDecl *ND = E->getMemberDecl();
2273   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2274     LValue LV = EmitLValueForField(BaseLV, Field);
2275     setObjCGCLValueClass(getContext(), E, LV);
2276     return LV;
2277   }
2278 
2279   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2280     return EmitGlobalVarDeclLValue(*this, E, VD);
2281 
2282   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2283     return EmitFunctionDeclLValue(*this, E, FD);
2284 
2285   llvm_unreachable("Unhandled member declaration!");
2286 }
2287 
2288 LValue CodeGenFunction::EmitLValueForField(LValue base,
2289                                            const FieldDecl *field) {
2290   if (field->isBitField()) {
2291     const CGRecordLayout &RL =
2292       CGM.getTypes().getCGRecordLayout(field->getParent());
2293     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2294     llvm::Value *Addr = base.getAddress();
2295     unsigned Idx = RL.getLLVMFieldNo(field);
2296     if (Idx != 0)
2297       // For structs, we GEP to the field that the record layout suggests.
2298       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2299     // Get the access type.
2300     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2301       getLLVMContext(), Info.StorageSize,
2302       CGM.getContext().getTargetAddressSpace(base.getType()));
2303     if (Addr->getType() != PtrTy)
2304       Addr = Builder.CreateBitCast(Addr, PtrTy);
2305 
2306     QualType fieldType =
2307       field->getType().withCVRQualifiers(base.getVRQualifiers());
2308     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2309   }
2310 
2311   const RecordDecl *rec = field->getParent();
2312   QualType type = field->getType();
2313   CharUnits alignment = getContext().getDeclAlign(field);
2314 
2315   // FIXME: It should be impossible to have an LValue without alignment for a
2316   // complete type.
2317   if (!base.getAlignment().isZero())
2318     alignment = std::min(alignment, base.getAlignment());
2319 
2320   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2321 
2322   llvm::Value *addr = base.getAddress();
2323   unsigned cvr = base.getVRQualifiers();
2324   if (rec->isUnion()) {
2325     // For unions, there is no pointer adjustment.
2326     assert(!type->isReferenceType() && "union has reference member");
2327   } else {
2328     // For structs, we GEP to the field that the record layout suggests.
2329     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2330     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2331 
2332     // If this is a reference field, load the reference right now.
2333     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2334       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2335       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2336       load->setAlignment(alignment.getQuantity());
2337 
2338       if (CGM.shouldUseTBAA()) {
2339         llvm::MDNode *tbaa;
2340         if (mayAlias)
2341           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2342         else
2343           tbaa = CGM.getTBAAInfo(type);
2344         CGM.DecorateInstruction(load, tbaa);
2345       }
2346 
2347       addr = load;
2348       mayAlias = false;
2349       type = refType->getPointeeType();
2350       if (type->isIncompleteType())
2351         alignment = CharUnits();
2352       else
2353         alignment = getContext().getTypeAlignInChars(type);
2354       cvr = 0; // qualifiers don't recursively apply to referencee
2355     }
2356   }
2357 
2358   // Make sure that the address is pointing to the right type.  This is critical
2359   // for both unions and structs.  A union needs a bitcast, a struct element
2360   // will need a bitcast if the LLVM type laid out doesn't match the desired
2361   // type.
2362   addr = EmitBitCastOfLValueToProperType(*this, addr,
2363                                          CGM.getTypes().ConvertTypeForMem(type),
2364                                          field->getName());
2365 
2366   if (field->hasAttr<AnnotateAttr>())
2367     addr = EmitFieldAnnotations(field, addr);
2368 
2369   LValue LV = MakeAddrLValue(addr, type, alignment);
2370   LV.getQuals().addCVRQualifiers(cvr);
2371 
2372   // __weak attribute on a field is ignored.
2373   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2374     LV.getQuals().removeObjCGCAttr();
2375 
2376   // Fields of may_alias structs act like 'char' for TBAA purposes.
2377   // FIXME: this should get propagated down through anonymous structs
2378   // and unions.
2379   if (mayAlias && LV.getTBAAInfo())
2380     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2381 
2382   return LV;
2383 }
2384 
2385 LValue
2386 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2387                                                   const FieldDecl *Field) {
2388   QualType FieldType = Field->getType();
2389 
2390   if (!FieldType->isReferenceType())
2391     return EmitLValueForField(Base, Field);
2392 
2393   const CGRecordLayout &RL =
2394     CGM.getTypes().getCGRecordLayout(Field->getParent());
2395   unsigned idx = RL.getLLVMFieldNo(Field);
2396   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2397   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2398 
2399   // Make sure that the address is pointing to the right type.  This is critical
2400   // for both unions and structs.  A union needs a bitcast, a struct element
2401   // will need a bitcast if the LLVM type laid out doesn't match the desired
2402   // type.
2403   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2404   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2405 
2406   CharUnits Alignment = getContext().getDeclAlign(Field);
2407 
2408   // FIXME: It should be impossible to have an LValue without alignment for a
2409   // complete type.
2410   if (!Base.getAlignment().isZero())
2411     Alignment = std::min(Alignment, Base.getAlignment());
2412 
2413   return MakeAddrLValue(V, FieldType, Alignment);
2414 }
2415 
2416 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2417   if (E->isFileScope()) {
2418     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2419     return MakeAddrLValue(GlobalPtr, E->getType());
2420   }
2421   if (E->getType()->isVariablyModifiedType())
2422     // make sure to emit the VLA size.
2423     EmitVariablyModifiedType(E->getType());
2424 
2425   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2426   const Expr *InitExpr = E->getInitializer();
2427   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2428 
2429   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2430                    /*Init*/ true);
2431 
2432   return Result;
2433 }
2434 
2435 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2436   if (!E->isGLValue())
2437     // Initializing an aggregate temporary in C++11: T{...}.
2438     return EmitAggExprToLValue(E);
2439 
2440   // An lvalue initializer list must be initializing a reference.
2441   assert(E->getNumInits() == 1 && "reference init with multiple values");
2442   return EmitLValue(E->getInit(0));
2443 }
2444 
2445 LValue CodeGenFunction::
2446 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2447   if (!expr->isGLValue()) {
2448     // ?: here should be an aggregate.
2449     assert((hasAggregateLLVMType(expr->getType()) &&
2450             !expr->getType()->isAnyComplexType()) &&
2451            "Unexpected conditional operator!");
2452     return EmitAggExprToLValue(expr);
2453   }
2454 
2455   OpaqueValueMapping binding(*this, expr);
2456 
2457   const Expr *condExpr = expr->getCond();
2458   bool CondExprBool;
2459   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2460     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2461     if (!CondExprBool) std::swap(live, dead);
2462 
2463     if (!ContainsLabel(dead))
2464       return EmitLValue(live);
2465   }
2466 
2467   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2468   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2469   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2470 
2471   ConditionalEvaluation eval(*this);
2472   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2473 
2474   // Any temporaries created here are conditional.
2475   EmitBlock(lhsBlock);
2476   eval.begin(*this);
2477   LValue lhs = EmitLValue(expr->getTrueExpr());
2478   eval.end(*this);
2479 
2480   if (!lhs.isSimple())
2481     return EmitUnsupportedLValue(expr, "conditional operator");
2482 
2483   lhsBlock = Builder.GetInsertBlock();
2484   Builder.CreateBr(contBlock);
2485 
2486   // Any temporaries created here are conditional.
2487   EmitBlock(rhsBlock);
2488   eval.begin(*this);
2489   LValue rhs = EmitLValue(expr->getFalseExpr());
2490   eval.end(*this);
2491   if (!rhs.isSimple())
2492     return EmitUnsupportedLValue(expr, "conditional operator");
2493   rhsBlock = Builder.GetInsertBlock();
2494 
2495   EmitBlock(contBlock);
2496 
2497   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2498                                          "cond-lvalue");
2499   phi->addIncoming(lhs.getAddress(), lhsBlock);
2500   phi->addIncoming(rhs.getAddress(), rhsBlock);
2501   return MakeAddrLValue(phi, expr->getType());
2502 }
2503 
2504 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2505 /// type. If the cast is to a reference, we can have the usual lvalue result,
2506 /// otherwise if a cast is needed by the code generator in an lvalue context,
2507 /// then it must mean that we need the address of an aggregate in order to
2508 /// access one of its members.  This can happen for all the reasons that casts
2509 /// are permitted with aggregate result, including noop aggregate casts, and
2510 /// cast from scalar to union.
2511 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2512   switch (E->getCastKind()) {
2513   case CK_ToVoid:
2514     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2515 
2516   case CK_Dependent:
2517     llvm_unreachable("dependent cast kind in IR gen!");
2518 
2519   case CK_BuiltinFnToFnPtr:
2520     llvm_unreachable("builtin functions are handled elsewhere");
2521 
2522   // These two casts are currently treated as no-ops, although they could
2523   // potentially be real operations depending on the target's ABI.
2524   case CK_NonAtomicToAtomic:
2525   case CK_AtomicToNonAtomic:
2526 
2527   case CK_NoOp:
2528   case CK_LValueToRValue:
2529     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2530         || E->getType()->isRecordType())
2531       return EmitLValue(E->getSubExpr());
2532     // Fall through to synthesize a temporary.
2533 
2534   case CK_BitCast:
2535   case CK_ArrayToPointerDecay:
2536   case CK_FunctionToPointerDecay:
2537   case CK_NullToMemberPointer:
2538   case CK_NullToPointer:
2539   case CK_IntegralToPointer:
2540   case CK_PointerToIntegral:
2541   case CK_PointerToBoolean:
2542   case CK_VectorSplat:
2543   case CK_IntegralCast:
2544   case CK_IntegralToBoolean:
2545   case CK_IntegralToFloating:
2546   case CK_FloatingToIntegral:
2547   case CK_FloatingToBoolean:
2548   case CK_FloatingCast:
2549   case CK_FloatingRealToComplex:
2550   case CK_FloatingComplexToReal:
2551   case CK_FloatingComplexToBoolean:
2552   case CK_FloatingComplexCast:
2553   case CK_FloatingComplexToIntegralComplex:
2554   case CK_IntegralRealToComplex:
2555   case CK_IntegralComplexToReal:
2556   case CK_IntegralComplexToBoolean:
2557   case CK_IntegralComplexCast:
2558   case CK_IntegralComplexToFloatingComplex:
2559   case CK_DerivedToBaseMemberPointer:
2560   case CK_BaseToDerivedMemberPointer:
2561   case CK_MemberPointerToBoolean:
2562   case CK_ReinterpretMemberPointer:
2563   case CK_AnyPointerToBlockPointerCast:
2564   case CK_ARCProduceObject:
2565   case CK_ARCConsumeObject:
2566   case CK_ARCReclaimReturnedObject:
2567   case CK_ARCExtendBlockObject:
2568   case CK_CopyAndAutoreleaseBlockObject: {
2569     // These casts only produce lvalues when we're binding a reference to a
2570     // temporary realized from a (converted) pure rvalue. Emit the expression
2571     // as a value, copy it into a temporary, and return an lvalue referring to
2572     // that temporary.
2573     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2574     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2575     return MakeAddrLValue(V, E->getType());
2576   }
2577 
2578   case CK_Dynamic: {
2579     LValue LV = EmitLValue(E->getSubExpr());
2580     llvm::Value *V = LV.getAddress();
2581     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2582     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2583   }
2584 
2585   case CK_ConstructorConversion:
2586   case CK_UserDefinedConversion:
2587   case CK_CPointerToObjCPointerCast:
2588   case CK_BlockPointerToObjCPointerCast:
2589     return EmitLValue(E->getSubExpr());
2590 
2591   case CK_UncheckedDerivedToBase:
2592   case CK_DerivedToBase: {
2593     const RecordType *DerivedClassTy =
2594       E->getSubExpr()->getType()->getAs<RecordType>();
2595     CXXRecordDecl *DerivedClassDecl =
2596       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2597 
2598     LValue LV = EmitLValue(E->getSubExpr());
2599     llvm::Value *This = LV.getAddress();
2600 
2601     // Perform the derived-to-base conversion
2602     llvm::Value *Base =
2603       GetAddressOfBaseClass(This, DerivedClassDecl,
2604                             E->path_begin(), E->path_end(),
2605                             /*NullCheckValue=*/false);
2606 
2607     return MakeAddrLValue(Base, E->getType());
2608   }
2609   case CK_ToUnion:
2610     return EmitAggExprToLValue(E);
2611   case CK_BaseToDerived: {
2612     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2613     CXXRecordDecl *DerivedClassDecl =
2614       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2615 
2616     LValue LV = EmitLValue(E->getSubExpr());
2617 
2618     // Perform the base-to-derived conversion
2619     llvm::Value *Derived =
2620       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2621                                E->path_begin(), E->path_end(),
2622                                /*NullCheckValue=*/false);
2623 
2624     return MakeAddrLValue(Derived, E->getType());
2625   }
2626   case CK_LValueBitCast: {
2627     // This must be a reinterpret_cast (or c-style equivalent).
2628     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2629 
2630     LValue LV = EmitLValue(E->getSubExpr());
2631     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2632                                            ConvertType(CE->getTypeAsWritten()));
2633     return MakeAddrLValue(V, E->getType());
2634   }
2635   case CK_ObjCObjectLValueCast: {
2636     LValue LV = EmitLValue(E->getSubExpr());
2637     QualType ToType = getContext().getLValueReferenceType(E->getType());
2638     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2639                                            ConvertType(ToType));
2640     return MakeAddrLValue(V, E->getType());
2641   }
2642   case CK_ZeroToOCLEvent:
2643     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2644   }
2645 
2646   llvm_unreachable("Unhandled lvalue cast kind?");
2647 }
2648 
2649 LValue CodeGenFunction::EmitNullInitializationLValue(
2650                                               const CXXScalarValueInitExpr *E) {
2651   QualType Ty = E->getType();
2652   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2653   EmitNullInitialization(LV.getAddress(), Ty);
2654   return LV;
2655 }
2656 
2657 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2658   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2659   return getOpaqueLValueMapping(e);
2660 }
2661 
2662 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2663                                            const MaterializeTemporaryExpr *E) {
2664   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2665   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2666 }
2667 
2668 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2669                                            const FieldDecl *FD) {
2670   QualType FT = FD->getType();
2671   LValue FieldLV = EmitLValueForField(LV, FD);
2672   if (FT->isAnyComplexType())
2673     return RValue::getComplex(
2674         LoadComplexFromAddr(FieldLV.getAddress(),
2675                             FieldLV.isVolatileQualified()));
2676   else if (CodeGenFunction::hasAggregateLLVMType(FT))
2677     return FieldLV.asAggregateRValue();
2678 
2679   return EmitLoadOfLValue(FieldLV);
2680 }
2681 
2682 //===--------------------------------------------------------------------===//
2683 //                             Expression Emission
2684 //===--------------------------------------------------------------------===//
2685 
2686 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2687                                      ReturnValueSlot ReturnValue) {
2688   if (CGDebugInfo *DI = getDebugInfo())
2689     DI->EmitLocation(Builder, E->getLocStart());
2690 
2691   // Builtins never have block type.
2692   if (E->getCallee()->getType()->isBlockPointerType())
2693     return EmitBlockCallExpr(E, ReturnValue);
2694 
2695   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2696     return EmitCXXMemberCallExpr(CE, ReturnValue);
2697 
2698   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2699     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2700 
2701   const Decl *TargetDecl = E->getCalleeDecl();
2702   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2703     if (unsigned builtinID = FD->getBuiltinID())
2704       return EmitBuiltinExpr(FD, builtinID, E);
2705   }
2706 
2707   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2708     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2709       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2710 
2711   if (const CXXPseudoDestructorExpr *PseudoDtor
2712           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2713     QualType DestroyedType = PseudoDtor->getDestroyedType();
2714     if (getLangOpts().ObjCAutoRefCount &&
2715         DestroyedType->isObjCLifetimeType() &&
2716         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2717          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2718       // Automatic Reference Counting:
2719       //   If the pseudo-expression names a retainable object with weak or
2720       //   strong lifetime, the object shall be released.
2721       Expr *BaseExpr = PseudoDtor->getBase();
2722       llvm::Value *BaseValue = NULL;
2723       Qualifiers BaseQuals;
2724 
2725       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2726       if (PseudoDtor->isArrow()) {
2727         BaseValue = EmitScalarExpr(BaseExpr);
2728         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2729         BaseQuals = PTy->getPointeeType().getQualifiers();
2730       } else {
2731         LValue BaseLV = EmitLValue(BaseExpr);
2732         BaseValue = BaseLV.getAddress();
2733         QualType BaseTy = BaseExpr->getType();
2734         BaseQuals = BaseTy.getQualifiers();
2735       }
2736 
2737       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2738       case Qualifiers::OCL_None:
2739       case Qualifiers::OCL_ExplicitNone:
2740       case Qualifiers::OCL_Autoreleasing:
2741         break;
2742 
2743       case Qualifiers::OCL_Strong:
2744         EmitARCRelease(Builder.CreateLoad(BaseValue,
2745                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2746                        /*precise*/ true);
2747         break;
2748 
2749       case Qualifiers::OCL_Weak:
2750         EmitARCDestroyWeak(BaseValue);
2751         break;
2752       }
2753     } else {
2754       // C++ [expr.pseudo]p1:
2755       //   The result shall only be used as the operand for the function call
2756       //   operator (), and the result of such a call has type void. The only
2757       //   effect is the evaluation of the postfix-expression before the dot or
2758       //   arrow.
2759       EmitScalarExpr(E->getCallee());
2760     }
2761 
2762     return RValue::get(0);
2763   }
2764 
2765   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2766   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2767                   E->arg_begin(), E->arg_end(), TargetDecl);
2768 }
2769 
2770 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2771   // Comma expressions just emit their LHS then their RHS as an l-value.
2772   if (E->getOpcode() == BO_Comma) {
2773     EmitIgnoredExpr(E->getLHS());
2774     EnsureInsertPoint();
2775     return EmitLValue(E->getRHS());
2776   }
2777 
2778   if (E->getOpcode() == BO_PtrMemD ||
2779       E->getOpcode() == BO_PtrMemI)
2780     return EmitPointerToDataMemberBinaryExpr(E);
2781 
2782   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2783 
2784   // Note that in all of these cases, __block variables need the RHS
2785   // evaluated first just in case the variable gets moved by the RHS.
2786 
2787   if (!hasAggregateLLVMType(E->getType())) {
2788     switch (E->getLHS()->getType().getObjCLifetime()) {
2789     case Qualifiers::OCL_Strong:
2790       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2791 
2792     case Qualifiers::OCL_Autoreleasing:
2793       return EmitARCStoreAutoreleasing(E).first;
2794 
2795     // No reason to do any of these differently.
2796     case Qualifiers::OCL_None:
2797     case Qualifiers::OCL_ExplicitNone:
2798     case Qualifiers::OCL_Weak:
2799       break;
2800     }
2801 
2802     RValue RV = EmitAnyExpr(E->getRHS());
2803     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2804     EmitStoreThroughLValue(RV, LV);
2805     return LV;
2806   }
2807 
2808   if (E->getType()->isAnyComplexType())
2809     return EmitComplexAssignmentLValue(E);
2810 
2811   return EmitAggExprToLValue(E);
2812 }
2813 
2814 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2815   RValue RV = EmitCallExpr(E);
2816 
2817   if (!RV.isScalar())
2818     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2819 
2820   assert(E->getCallReturnType()->isReferenceType() &&
2821          "Can't have a scalar return unless the return type is a "
2822          "reference type!");
2823 
2824   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2825 }
2826 
2827 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2828   // FIXME: This shouldn't require another copy.
2829   return EmitAggExprToLValue(E);
2830 }
2831 
2832 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2833   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2834          && "binding l-value to type which needs a temporary");
2835   AggValueSlot Slot = CreateAggTemp(E->getType());
2836   EmitCXXConstructExpr(E, Slot);
2837   return MakeAddrLValue(Slot.getAddr(), E->getType());
2838 }
2839 
2840 LValue
2841 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2842   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2843 }
2844 
2845 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2846   return CGM.GetAddrOfUuidDescriptor(E);
2847 }
2848 
2849 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
2850   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
2851 }
2852 
2853 LValue
2854 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2855   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2856   Slot.setExternallyDestructed();
2857   EmitAggExpr(E->getSubExpr(), Slot);
2858   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2859   return MakeAddrLValue(Slot.getAddr(), E->getType());
2860 }
2861 
2862 LValue
2863 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2864   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2865   EmitLambdaExpr(E, Slot);
2866   return MakeAddrLValue(Slot.getAddr(), E->getType());
2867 }
2868 
2869 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2870   RValue RV = EmitObjCMessageExpr(E);
2871 
2872   if (!RV.isScalar())
2873     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2874 
2875   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2876          "Can't have a scalar return unless the return type is a "
2877          "reference type!");
2878 
2879   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2880 }
2881 
2882 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2883   llvm::Value *V =
2884     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2885   return MakeAddrLValue(V, E->getType());
2886 }
2887 
2888 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2889                                              const ObjCIvarDecl *Ivar) {
2890   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2891 }
2892 
2893 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2894                                           llvm::Value *BaseValue,
2895                                           const ObjCIvarDecl *Ivar,
2896                                           unsigned CVRQualifiers) {
2897   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2898                                                    Ivar, CVRQualifiers);
2899 }
2900 
2901 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2902   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2903   llvm::Value *BaseValue = 0;
2904   const Expr *BaseExpr = E->getBase();
2905   Qualifiers BaseQuals;
2906   QualType ObjectTy;
2907   if (E->isArrow()) {
2908     BaseValue = EmitScalarExpr(BaseExpr);
2909     ObjectTy = BaseExpr->getType()->getPointeeType();
2910     BaseQuals = ObjectTy.getQualifiers();
2911   } else {
2912     LValue BaseLV = EmitLValue(BaseExpr);
2913     // FIXME: this isn't right for bitfields.
2914     BaseValue = BaseLV.getAddress();
2915     ObjectTy = BaseExpr->getType();
2916     BaseQuals = ObjectTy.getQualifiers();
2917   }
2918 
2919   LValue LV =
2920     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2921                       BaseQuals.getCVRQualifiers());
2922   setObjCGCLValueClass(getContext(), E, LV);
2923   return LV;
2924 }
2925 
2926 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2927   // Can only get l-value for message expression returning aggregate type
2928   RValue RV = EmitAnyExprToTemp(E);
2929   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2930 }
2931 
2932 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2933                                  ReturnValueSlot ReturnValue,
2934                                  CallExpr::const_arg_iterator ArgBeg,
2935                                  CallExpr::const_arg_iterator ArgEnd,
2936                                  const Decl *TargetDecl) {
2937   // Get the actual function type. The callee type will always be a pointer to
2938   // function type or a block pointer type.
2939   assert(CalleeType->isFunctionPointerType() &&
2940          "Call must have function pointer type!");
2941 
2942   CalleeType = getContext().getCanonicalType(CalleeType);
2943 
2944   const FunctionType *FnType
2945     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2946 
2947   CallArgList Args;
2948   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2949 
2950   const CGFunctionInfo &FnInfo =
2951     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2952 
2953   // C99 6.5.2.2p6:
2954   //   If the expression that denotes the called function has a type
2955   //   that does not include a prototype, [the default argument
2956   //   promotions are performed]. If the number of arguments does not
2957   //   equal the number of parameters, the behavior is undefined. If
2958   //   the function is defined with a type that includes a prototype,
2959   //   and either the prototype ends with an ellipsis (, ...) or the
2960   //   types of the arguments after promotion are not compatible with
2961   //   the types of the parameters, the behavior is undefined. If the
2962   //   function is defined with a type that does not include a
2963   //   prototype, and the types of the arguments after promotion are
2964   //   not compatible with those of the parameters after promotion,
2965   //   the behavior is undefined [except in some trivial cases].
2966   // That is, in the general case, we should assume that a call
2967   // through an unprototyped function type works like a *non-variadic*
2968   // call.  The way we make this work is to cast to the exact type
2969   // of the promoted arguments.
2970   if (isa<FunctionNoProtoType>(FnType)) {
2971     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2972     CalleeTy = CalleeTy->getPointerTo();
2973     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2974   }
2975 
2976   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2977 }
2978 
2979 LValue CodeGenFunction::
2980 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2981   llvm::Value *BaseV;
2982   if (E->getOpcode() == BO_PtrMemI)
2983     BaseV = EmitScalarExpr(E->getLHS());
2984   else
2985     BaseV = EmitLValue(E->getLHS()).getAddress();
2986 
2987   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2988 
2989   const MemberPointerType *MPT
2990     = E->getRHS()->getType()->getAs<MemberPointerType>();
2991 
2992   llvm::Value *AddV =
2993     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2994 
2995   return MakeAddrLValue(AddV, MPT->getPointeeType());
2996 }
2997 
2998 static void
2999 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
3000              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
3001              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
3002   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
3003   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
3004 
3005   switch (E->getOp()) {
3006   case AtomicExpr::AO__c11_atomic_init:
3007     llvm_unreachable("Already handled!");
3008 
3009   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3010   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3011   case AtomicExpr::AO__atomic_compare_exchange:
3012   case AtomicExpr::AO__atomic_compare_exchange_n: {
3013     // Note that cmpxchg only supports specifying one ordering and
3014     // doesn't support weak cmpxchg, at least at the moment.
3015     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3016     LoadVal1->setAlignment(Align);
3017     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
3018     LoadVal2->setAlignment(Align);
3019     llvm::AtomicCmpXchgInst *CXI =
3020         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
3021     CXI->setVolatile(E->isVolatile());
3022     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
3023     StoreVal1->setAlignment(Align);
3024     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
3025     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
3026     return;
3027   }
3028 
3029   case AtomicExpr::AO__c11_atomic_load:
3030   case AtomicExpr::AO__atomic_load_n:
3031   case AtomicExpr::AO__atomic_load: {
3032     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
3033     Load->setAtomic(Order);
3034     Load->setAlignment(Size);
3035     Load->setVolatile(E->isVolatile());
3036     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
3037     StoreDest->setAlignment(Align);
3038     return;
3039   }
3040 
3041   case AtomicExpr::AO__c11_atomic_store:
3042   case AtomicExpr::AO__atomic_store:
3043   case AtomicExpr::AO__atomic_store_n: {
3044     assert(!Dest && "Store does not return a value");
3045     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3046     LoadVal1->setAlignment(Align);
3047     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
3048     Store->setAtomic(Order);
3049     Store->setAlignment(Size);
3050     Store->setVolatile(E->isVolatile());
3051     return;
3052   }
3053 
3054   case AtomicExpr::AO__c11_atomic_exchange:
3055   case AtomicExpr::AO__atomic_exchange_n:
3056   case AtomicExpr::AO__atomic_exchange:
3057     Op = llvm::AtomicRMWInst::Xchg;
3058     break;
3059 
3060   case AtomicExpr::AO__atomic_add_fetch:
3061     PostOp = llvm::Instruction::Add;
3062     // Fall through.
3063   case AtomicExpr::AO__c11_atomic_fetch_add:
3064   case AtomicExpr::AO__atomic_fetch_add:
3065     Op = llvm::AtomicRMWInst::Add;
3066     break;
3067 
3068   case AtomicExpr::AO__atomic_sub_fetch:
3069     PostOp = llvm::Instruction::Sub;
3070     // Fall through.
3071   case AtomicExpr::AO__c11_atomic_fetch_sub:
3072   case AtomicExpr::AO__atomic_fetch_sub:
3073     Op = llvm::AtomicRMWInst::Sub;
3074     break;
3075 
3076   case AtomicExpr::AO__atomic_and_fetch:
3077     PostOp = llvm::Instruction::And;
3078     // Fall through.
3079   case AtomicExpr::AO__c11_atomic_fetch_and:
3080   case AtomicExpr::AO__atomic_fetch_and:
3081     Op = llvm::AtomicRMWInst::And;
3082     break;
3083 
3084   case AtomicExpr::AO__atomic_or_fetch:
3085     PostOp = llvm::Instruction::Or;
3086     // Fall through.
3087   case AtomicExpr::AO__c11_atomic_fetch_or:
3088   case AtomicExpr::AO__atomic_fetch_or:
3089     Op = llvm::AtomicRMWInst::Or;
3090     break;
3091 
3092   case AtomicExpr::AO__atomic_xor_fetch:
3093     PostOp = llvm::Instruction::Xor;
3094     // Fall through.
3095   case AtomicExpr::AO__c11_atomic_fetch_xor:
3096   case AtomicExpr::AO__atomic_fetch_xor:
3097     Op = llvm::AtomicRMWInst::Xor;
3098     break;
3099 
3100   case AtomicExpr::AO__atomic_nand_fetch:
3101     PostOp = llvm::Instruction::And;
3102     // Fall through.
3103   case AtomicExpr::AO__atomic_fetch_nand:
3104     Op = llvm::AtomicRMWInst::Nand;
3105     break;
3106   }
3107 
3108   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3109   LoadVal1->setAlignment(Align);
3110   llvm::AtomicRMWInst *RMWI =
3111       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
3112   RMWI->setVolatile(E->isVolatile());
3113 
3114   // For __atomic_*_fetch operations, perform the operation again to
3115   // determine the value which was written.
3116   llvm::Value *Result = RMWI;
3117   if (PostOp)
3118     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
3119   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
3120     Result = CGF.Builder.CreateNot(Result);
3121   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
3122   StoreDest->setAlignment(Align);
3123 }
3124 
3125 // This function emits any expression (scalar, complex, or aggregate)
3126 // into a temporary alloca.
3127 static llvm::Value *
3128 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
3129   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
3130   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3131                        /*Init*/ true);
3132   return DeclPtr;
3133 }
3134 
3135 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3136                                   llvm::Value *Dest) {
3137   if (Ty->isAnyComplexType())
3138     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3139   if (CGF.hasAggregateLLVMType(Ty))
3140     return RValue::getAggregate(Dest);
3141   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3142 }
3143 
3144 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3145   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3146   QualType MemTy = AtomicTy;
3147   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3148     MemTy = AT->getValueType();
3149   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3150   uint64_t Size = sizeChars.getQuantity();
3151   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3152   unsigned Align = alignChars.getQuantity();
3153   unsigned MaxInlineWidthInBits =
3154     getContext().getTargetInfo().getMaxAtomicInlineWidth();
3155   bool UseLibcall = (Size != Align ||
3156                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
3157 
3158   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3159   Ptr = EmitScalarExpr(E->getPtr());
3160 
3161   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3162     assert(!Dest && "Init does not return a value");
3163     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3164       QualType PointeeType
3165         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3166       EmitScalarInit(EmitScalarExpr(E->getVal1()),
3167                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
3168                                       getContext()));
3169     } else if (E->getType()->isAnyComplexType()) {
3170       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3171     } else {
3172       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3173                                         AtomicTy.getQualifiers(),
3174                                         AggValueSlot::IsNotDestructed,
3175                                         AggValueSlot::DoesNotNeedGCBarriers,
3176                                         AggValueSlot::IsNotAliased);
3177       EmitAggExpr(E->getVal1(), Slot);
3178     }
3179     return RValue::get(0);
3180   }
3181 
3182   Order = EmitScalarExpr(E->getOrder());
3183 
3184   switch (E->getOp()) {
3185   case AtomicExpr::AO__c11_atomic_init:
3186     llvm_unreachable("Already handled!");
3187 
3188   case AtomicExpr::AO__c11_atomic_load:
3189   case AtomicExpr::AO__atomic_load_n:
3190     break;
3191 
3192   case AtomicExpr::AO__atomic_load:
3193     Dest = EmitScalarExpr(E->getVal1());
3194     break;
3195 
3196   case AtomicExpr::AO__atomic_store:
3197     Val1 = EmitScalarExpr(E->getVal1());
3198     break;
3199 
3200   case AtomicExpr::AO__atomic_exchange:
3201     Val1 = EmitScalarExpr(E->getVal1());
3202     Dest = EmitScalarExpr(E->getVal2());
3203     break;
3204 
3205   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3206   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3207   case AtomicExpr::AO__atomic_compare_exchange_n:
3208   case AtomicExpr::AO__atomic_compare_exchange:
3209     Val1 = EmitScalarExpr(E->getVal1());
3210     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3211       Val2 = EmitScalarExpr(E->getVal2());
3212     else
3213       Val2 = EmitValToTemp(*this, E->getVal2());
3214     OrderFail = EmitScalarExpr(E->getOrderFail());
3215     // Evaluate and discard the 'weak' argument.
3216     if (E->getNumSubExprs() == 6)
3217       EmitScalarExpr(E->getWeak());
3218     break;
3219 
3220   case AtomicExpr::AO__c11_atomic_fetch_add:
3221   case AtomicExpr::AO__c11_atomic_fetch_sub:
3222     if (MemTy->isPointerType()) {
3223       // For pointer arithmetic, we're required to do a bit of math:
3224       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3225       // ... but only for the C11 builtins. The GNU builtins expect the
3226       // user to multiply by sizeof(T).
3227       QualType Val1Ty = E->getVal1()->getType();
3228       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3229       CharUnits PointeeIncAmt =
3230           getContext().getTypeSizeInChars(MemTy->getPointeeType());
3231       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3232       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3233       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3234       break;
3235     }
3236     // Fall through.
3237   case AtomicExpr::AO__atomic_fetch_add:
3238   case AtomicExpr::AO__atomic_fetch_sub:
3239   case AtomicExpr::AO__atomic_add_fetch:
3240   case AtomicExpr::AO__atomic_sub_fetch:
3241   case AtomicExpr::AO__c11_atomic_store:
3242   case AtomicExpr::AO__c11_atomic_exchange:
3243   case AtomicExpr::AO__atomic_store_n:
3244   case AtomicExpr::AO__atomic_exchange_n:
3245   case AtomicExpr::AO__c11_atomic_fetch_and:
3246   case AtomicExpr::AO__c11_atomic_fetch_or:
3247   case AtomicExpr::AO__c11_atomic_fetch_xor:
3248   case AtomicExpr::AO__atomic_fetch_and:
3249   case AtomicExpr::AO__atomic_fetch_or:
3250   case AtomicExpr::AO__atomic_fetch_xor:
3251   case AtomicExpr::AO__atomic_fetch_nand:
3252   case AtomicExpr::AO__atomic_and_fetch:
3253   case AtomicExpr::AO__atomic_or_fetch:
3254   case AtomicExpr::AO__atomic_xor_fetch:
3255   case AtomicExpr::AO__atomic_nand_fetch:
3256     Val1 = EmitValToTemp(*this, E->getVal1());
3257     break;
3258   }
3259 
3260   if (!E->getType()->isVoidType() && !Dest)
3261     Dest = CreateMemTemp(E->getType(), ".atomicdst");
3262 
3263   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3264   if (UseLibcall) {
3265 
3266     SmallVector<QualType, 5> Params;
3267     CallArgList Args;
3268     // Size is always the first parameter
3269     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3270              getContext().getSizeType());
3271     // Atomic address is always the second parameter
3272     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3273              getContext().VoidPtrTy);
3274 
3275     const char* LibCallName;
3276     QualType RetTy = getContext().VoidTy;
3277     switch (E->getOp()) {
3278     // There is only one libcall for compare an exchange, because there is no
3279     // optimisation benefit possible from a libcall version of a weak compare
3280     // and exchange.
3281     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3282     //                                void *desired, int success, int failure)
3283     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3284     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3285     case AtomicExpr::AO__atomic_compare_exchange:
3286     case AtomicExpr::AO__atomic_compare_exchange_n:
3287       LibCallName = "__atomic_compare_exchange";
3288       RetTy = getContext().BoolTy;
3289       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3290                getContext().VoidPtrTy);
3291       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3292                getContext().VoidPtrTy);
3293       Args.add(RValue::get(Order),
3294                getContext().IntTy);
3295       Order = OrderFail;
3296       break;
3297     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3298     //                        int order)
3299     case AtomicExpr::AO__c11_atomic_exchange:
3300     case AtomicExpr::AO__atomic_exchange_n:
3301     case AtomicExpr::AO__atomic_exchange:
3302       LibCallName = "__atomic_exchange";
3303       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3304                getContext().VoidPtrTy);
3305       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3306                getContext().VoidPtrTy);
3307       break;
3308     // void __atomic_store(size_t size, void *mem, void *val, int order)
3309     case AtomicExpr::AO__c11_atomic_store:
3310     case AtomicExpr::AO__atomic_store:
3311     case AtomicExpr::AO__atomic_store_n:
3312       LibCallName = "__atomic_store";
3313       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3314                getContext().VoidPtrTy);
3315       break;
3316     // void __atomic_load(size_t size, void *mem, void *return, int order)
3317     case AtomicExpr::AO__c11_atomic_load:
3318     case AtomicExpr::AO__atomic_load:
3319     case AtomicExpr::AO__atomic_load_n:
3320       LibCallName = "__atomic_load";
3321       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3322                getContext().VoidPtrTy);
3323       break;
3324 #if 0
3325     // These are only defined for 1-16 byte integers.  It is not clear what
3326     // their semantics would be on anything else...
3327     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3328     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3329     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3330     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3331     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3332 #endif
3333     default: return EmitUnsupportedRValue(E, "atomic library call");
3334     }
3335     // order is always the last parameter
3336     Args.add(RValue::get(Order),
3337              getContext().IntTy);
3338 
3339     const CGFunctionInfo &FuncInfo =
3340         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3341             FunctionType::ExtInfo(), RequiredArgs::All);
3342     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3343     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3344     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3345     if (E->isCmpXChg())
3346       return Res;
3347     if (E->getType()->isVoidType())
3348       return RValue::get(0);
3349     return ConvertTempToRValue(*this, E->getType(), Dest);
3350   }
3351 
3352   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3353                  E->getOp() == AtomicExpr::AO__atomic_store ||
3354                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3355   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3356                 E->getOp() == AtomicExpr::AO__atomic_load ||
3357                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3358 
3359   llvm::Type *IPtrTy =
3360       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3361   llvm::Value *OrigDest = Dest;
3362   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3363   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3364   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3365   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3366 
3367   if (isa<llvm::ConstantInt>(Order)) {
3368     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3369     switch (ord) {
3370     case 0:  // memory_order_relaxed
3371       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3372                    llvm::Monotonic);
3373       break;
3374     case 1:  // memory_order_consume
3375     case 2:  // memory_order_acquire
3376       if (IsStore)
3377         break; // Avoid crashing on code with undefined behavior
3378       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3379                    llvm::Acquire);
3380       break;
3381     case 3:  // memory_order_release
3382       if (IsLoad)
3383         break; // Avoid crashing on code with undefined behavior
3384       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3385                    llvm::Release);
3386       break;
3387     case 4:  // memory_order_acq_rel
3388       if (IsLoad || IsStore)
3389         break; // Avoid crashing on code with undefined behavior
3390       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3391                    llvm::AcquireRelease);
3392       break;
3393     case 5:  // memory_order_seq_cst
3394       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3395                    llvm::SequentiallyConsistent);
3396       break;
3397     default: // invalid order
3398       // We should not ever get here normally, but it's hard to
3399       // enforce that in general.
3400       break;
3401     }
3402     if (E->getType()->isVoidType())
3403       return RValue::get(0);
3404     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3405   }
3406 
3407   // Long case, when Order isn't obviously constant.
3408 
3409   // Create all the relevant BB's
3410   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3411                    *AcqRelBB = 0, *SeqCstBB = 0;
3412   MonotonicBB = createBasicBlock("monotonic", CurFn);
3413   if (!IsStore)
3414     AcquireBB = createBasicBlock("acquire", CurFn);
3415   if (!IsLoad)
3416     ReleaseBB = createBasicBlock("release", CurFn);
3417   if (!IsLoad && !IsStore)
3418     AcqRelBB = createBasicBlock("acqrel", CurFn);
3419   SeqCstBB = createBasicBlock("seqcst", CurFn);
3420   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3421 
3422   // Create the switch for the split
3423   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3424   // doesn't matter unless someone is crazy enough to use something that
3425   // doesn't fold to a constant for the ordering.
3426   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3427   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3428 
3429   // Emit all the different atomics
3430   Builder.SetInsertPoint(MonotonicBB);
3431   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3432                llvm::Monotonic);
3433   Builder.CreateBr(ContBB);
3434   if (!IsStore) {
3435     Builder.SetInsertPoint(AcquireBB);
3436     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3437                  llvm::Acquire);
3438     Builder.CreateBr(ContBB);
3439     SI->addCase(Builder.getInt32(1), AcquireBB);
3440     SI->addCase(Builder.getInt32(2), AcquireBB);
3441   }
3442   if (!IsLoad) {
3443     Builder.SetInsertPoint(ReleaseBB);
3444     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3445                  llvm::Release);
3446     Builder.CreateBr(ContBB);
3447     SI->addCase(Builder.getInt32(3), ReleaseBB);
3448   }
3449   if (!IsLoad && !IsStore) {
3450     Builder.SetInsertPoint(AcqRelBB);
3451     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3452                  llvm::AcquireRelease);
3453     Builder.CreateBr(ContBB);
3454     SI->addCase(Builder.getInt32(4), AcqRelBB);
3455   }
3456   Builder.SetInsertPoint(SeqCstBB);
3457   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3458                llvm::SequentiallyConsistent);
3459   Builder.CreateBr(ContBB);
3460   SI->addCase(Builder.getInt32(5), SeqCstBB);
3461 
3462   // Cleanup and return
3463   Builder.SetInsertPoint(ContBB);
3464   if (E->getType()->isVoidType())
3465     return RValue::get(0);
3466   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3467 }
3468 
3469 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3470   assert(Val->getType()->isFPOrFPVectorTy());
3471   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3472     return;
3473 
3474   llvm::MDBuilder MDHelper(getLLVMContext());
3475   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3476 
3477   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3478 }
3479 
3480 namespace {
3481   struct LValueOrRValue {
3482     LValue LV;
3483     RValue RV;
3484   };
3485 }
3486 
3487 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3488                                            const PseudoObjectExpr *E,
3489                                            bool forLValue,
3490                                            AggValueSlot slot) {
3491   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3492 
3493   // Find the result expression, if any.
3494   const Expr *resultExpr = E->getResultExpr();
3495   LValueOrRValue result;
3496 
3497   for (PseudoObjectExpr::const_semantics_iterator
3498          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3499     const Expr *semantic = *i;
3500 
3501     // If this semantic expression is an opaque value, bind it
3502     // to the result of its source expression.
3503     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3504 
3505       // If this is the result expression, we may need to evaluate
3506       // directly into the slot.
3507       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3508       OVMA opaqueData;
3509       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3510           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3511           !ov->getType()->isAnyComplexType()) {
3512         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3513 
3514         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3515         opaqueData = OVMA::bind(CGF, ov, LV);
3516         result.RV = slot.asRValue();
3517 
3518       // Otherwise, emit as normal.
3519       } else {
3520         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3521 
3522         // If this is the result, also evaluate the result now.
3523         if (ov == resultExpr) {
3524           if (forLValue)
3525             result.LV = CGF.EmitLValue(ov);
3526           else
3527             result.RV = CGF.EmitAnyExpr(ov, slot);
3528         }
3529       }
3530 
3531       opaques.push_back(opaqueData);
3532 
3533     // Otherwise, if the expression is the result, evaluate it
3534     // and remember the result.
3535     } else if (semantic == resultExpr) {
3536       if (forLValue)
3537         result.LV = CGF.EmitLValue(semantic);
3538       else
3539         result.RV = CGF.EmitAnyExpr(semantic, slot);
3540 
3541     // Otherwise, evaluate the expression in an ignored context.
3542     } else {
3543       CGF.EmitIgnoredExpr(semantic);
3544     }
3545   }
3546 
3547   // Unbind all the opaques now.
3548   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3549     opaques[i].unbind(CGF);
3550 
3551   return result;
3552 }
3553 
3554 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3555                                                AggValueSlot slot) {
3556   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3557 }
3558 
3559 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3560   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3561 }
3562