1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/ConvertUTF.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/LLVMContext.h" 28 #include "llvm/MDBuilder.h" 29 #include "llvm/DataLayout.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===--------------------------------------------------------------------===// 34 // Miscellaneous Helper Methods 35 //===--------------------------------------------------------------------===// 36 37 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 38 unsigned addressSpace = 39 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 40 41 llvm::PointerType *destType = Int8PtrTy; 42 if (addressSpace) 43 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 44 45 if (value->getType() == destType) return value; 46 return Builder.CreateBitCast(value, destType); 47 } 48 49 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 50 /// block. 51 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 52 const Twine &Name) { 53 if (!Builder.isNamePreserving()) 54 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 55 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 56 } 57 58 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 59 llvm::Value *Init) { 60 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 61 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 62 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 63 } 64 65 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 66 const Twine &Name) { 67 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 68 // FIXME: Should we prefer the preferred type alignment here? 69 CharUnits Align = getContext().getTypeAlignInChars(Ty); 70 Alloc->setAlignment(Align.getQuantity()); 71 return Alloc; 72 } 73 74 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 75 const Twine &Name) { 76 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 77 // FIXME: Should we prefer the preferred type alignment here? 78 CharUnits Align = getContext().getTypeAlignInChars(Ty); 79 Alloc->setAlignment(Align.getQuantity()); 80 return Alloc; 81 } 82 83 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 84 /// expression and compare the result against zero, returning an Int1Ty value. 85 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 86 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 87 llvm::Value *MemPtr = EmitScalarExpr(E); 88 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 89 } 90 91 QualType BoolTy = getContext().BoolTy; 92 if (!E->getType()->isAnyComplexType()) 93 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 94 95 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 96 } 97 98 /// EmitIgnoredExpr - Emit code to compute the specified expression, 99 /// ignoring the result. 100 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 101 if (E->isRValue()) 102 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 103 104 // Just emit it as an l-value and drop the result. 105 EmitLValue(E); 106 } 107 108 /// EmitAnyExpr - Emit code to compute the specified expression which 109 /// can have any type. The result is returned as an RValue struct. 110 /// If this is an aggregate expression, AggSlot indicates where the 111 /// result should be returned. 112 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 113 AggValueSlot aggSlot, 114 bool ignoreResult) { 115 if (!hasAggregateLLVMType(E->getType())) 116 return RValue::get(EmitScalarExpr(E, ignoreResult)); 117 else if (E->getType()->isAnyComplexType()) 118 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 119 120 if (!ignoreResult && aggSlot.isIgnored()) 121 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 122 EmitAggExpr(E, aggSlot); 123 return aggSlot.asRValue(); 124 } 125 126 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 127 /// always be accessible even if no aggregate location is provided. 128 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 129 AggValueSlot AggSlot = AggValueSlot::ignored(); 130 131 if (hasAggregateLLVMType(E->getType()) && 132 !E->getType()->isAnyComplexType()) 133 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 134 return EmitAnyExpr(E, AggSlot); 135 } 136 137 /// EmitAnyExprToMem - Evaluate an expression into a given memory 138 /// location. 139 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 140 llvm::Value *Location, 141 Qualifiers Quals, 142 bool IsInit) { 143 // FIXME: This function should take an LValue as an argument. 144 if (E->getType()->isAnyComplexType()) { 145 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 146 } else if (hasAggregateLLVMType(E->getType())) { 147 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 148 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 149 AggValueSlot::IsDestructed_t(IsInit), 150 AggValueSlot::DoesNotNeedGCBarriers, 151 AggValueSlot::IsAliased_t(!IsInit))); 152 } else { 153 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 154 LValue LV = MakeAddrLValue(Location, E->getType()); 155 EmitStoreThroughLValue(RV, LV); 156 } 157 } 158 159 namespace { 160 /// \brief An adjustment to be made to the temporary created when emitting a 161 /// reference binding, which accesses a particular subobject of that temporary. 162 struct SubobjectAdjustment { 163 enum { 164 DerivedToBaseAdjustment, 165 FieldAdjustment, 166 MemberPointerAdjustment 167 } Kind; 168 169 union { 170 struct { 171 const CastExpr *BasePath; 172 const CXXRecordDecl *DerivedClass; 173 } DerivedToBase; 174 175 FieldDecl *Field; 176 177 struct { 178 const MemberPointerType *MPT; 179 llvm::Value *Ptr; 180 } Ptr; 181 }; 182 183 SubobjectAdjustment(const CastExpr *BasePath, 184 const CXXRecordDecl *DerivedClass) 185 : Kind(DerivedToBaseAdjustment) { 186 DerivedToBase.BasePath = BasePath; 187 DerivedToBase.DerivedClass = DerivedClass; 188 } 189 190 SubobjectAdjustment(FieldDecl *Field) 191 : Kind(FieldAdjustment) { 192 this->Field = Field; 193 } 194 195 SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr) 196 : Kind(MemberPointerAdjustment) { 197 this->Ptr.MPT = MPT; 198 this->Ptr.Ptr = Ptr; 199 } 200 }; 201 } 202 203 static llvm::Value * 204 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 205 const NamedDecl *InitializedDecl) { 206 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 207 if (VD->hasGlobalStorage()) { 208 SmallString<256> Name; 209 llvm::raw_svector_ostream Out(Name); 210 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 211 Out.flush(); 212 213 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 214 215 // Create the reference temporary. 216 llvm::GlobalValue *RefTemp = 217 new llvm::GlobalVariable(CGF.CGM.getModule(), 218 RefTempTy, /*isConstant=*/false, 219 llvm::GlobalValue::InternalLinkage, 220 llvm::Constant::getNullValue(RefTempTy), 221 Name.str()); 222 return RefTemp; 223 } 224 } 225 226 return CGF.CreateMemTemp(Type, "ref.tmp"); 227 } 228 229 static llvm::Value * 230 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 231 llvm::Value *&ReferenceTemporary, 232 const CXXDestructorDecl *&ReferenceTemporaryDtor, 233 QualType &ObjCARCReferenceLifetimeType, 234 const NamedDecl *InitializedDecl) { 235 // Look through single-element init lists that claim to be lvalues. They're 236 // just syntactic wrappers in this case. 237 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 238 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 239 E = ILE->getInit(0); 240 } 241 242 // Look through expressions for materialized temporaries (for now). 243 if (const MaterializeTemporaryExpr *M 244 = dyn_cast<MaterializeTemporaryExpr>(E)) { 245 // Objective-C++ ARC: 246 // If we are binding a reference to a temporary that has ownership, we 247 // need to perform retain/release operations on the temporary. 248 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 249 E->getType()->isObjCLifetimeType() && 250 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 251 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 252 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 253 ObjCARCReferenceLifetimeType = E->getType(); 254 255 E = M->GetTemporaryExpr(); 256 } 257 258 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 259 E = DAE->getExpr(); 260 261 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 262 CGF.enterFullExpression(EWC); 263 CodeGenFunction::RunCleanupsScope Scope(CGF); 264 265 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 266 ReferenceTemporary, 267 ReferenceTemporaryDtor, 268 ObjCARCReferenceLifetimeType, 269 InitializedDecl); 270 } 271 272 RValue RV; 273 if (E->isGLValue()) { 274 // Emit the expression as an lvalue. 275 LValue LV = CGF.EmitLValue(E); 276 277 if (LV.isSimple()) 278 return LV.getAddress(); 279 280 // We have to load the lvalue. 281 RV = CGF.EmitLoadOfLValue(LV); 282 } else { 283 if (!ObjCARCReferenceLifetimeType.isNull()) { 284 ReferenceTemporary = CreateReferenceTemporary(CGF, 285 ObjCARCReferenceLifetimeType, 286 InitializedDecl); 287 288 289 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 290 ObjCARCReferenceLifetimeType); 291 292 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 293 RefTempDst, false); 294 295 bool ExtendsLifeOfTemporary = false; 296 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 297 if (Var->extendsLifetimeOfTemporary()) 298 ExtendsLifeOfTemporary = true; 299 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 300 ExtendsLifeOfTemporary = true; 301 } 302 303 if (!ExtendsLifeOfTemporary) { 304 // Since the lifetime of this temporary isn't going to be extended, 305 // we need to clean it up ourselves at the end of the full expression. 306 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 307 case Qualifiers::OCL_None: 308 case Qualifiers::OCL_ExplicitNone: 309 case Qualifiers::OCL_Autoreleasing: 310 break; 311 312 case Qualifiers::OCL_Strong: { 313 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 314 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 315 CGF.pushDestroy(cleanupKind, 316 ReferenceTemporary, 317 ObjCARCReferenceLifetimeType, 318 CodeGenFunction::destroyARCStrongImprecise, 319 cleanupKind & EHCleanup); 320 break; 321 } 322 323 case Qualifiers::OCL_Weak: 324 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 325 CGF.pushDestroy(NormalAndEHCleanup, 326 ReferenceTemporary, 327 ObjCARCReferenceLifetimeType, 328 CodeGenFunction::destroyARCWeak, 329 /*useEHCleanupForArray*/ true); 330 break; 331 } 332 333 ObjCARCReferenceLifetimeType = QualType(); 334 } 335 336 return ReferenceTemporary; 337 } 338 339 SmallVector<SubobjectAdjustment, 2> Adjustments; 340 while (true) { 341 E = E->IgnoreParens(); 342 343 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 344 if ((CE->getCastKind() == CK_DerivedToBase || 345 CE->getCastKind() == CK_UncheckedDerivedToBase) && 346 E->getType()->isRecordType()) { 347 E = CE->getSubExpr(); 348 CXXRecordDecl *Derived 349 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 350 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 351 continue; 352 } 353 354 if (CE->getCastKind() == CK_NoOp) { 355 E = CE->getSubExpr(); 356 continue; 357 } 358 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 359 if (!ME->isArrow() && ME->getBase()->isRValue()) { 360 assert(ME->getBase()->getType()->isRecordType()); 361 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 362 E = ME->getBase(); 363 Adjustments.push_back(SubobjectAdjustment(Field)); 364 continue; 365 } 366 } 367 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 368 if (BO->isPtrMemOp()) { 369 assert(BO->getLHS()->isRValue()); 370 E = BO->getLHS(); 371 const MemberPointerType *MPT = 372 BO->getRHS()->getType()->getAs<MemberPointerType>(); 373 llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS()); 374 Adjustments.push_back(SubobjectAdjustment(MPT, Ptr)); 375 } 376 } 377 378 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 379 if (opaque->getType()->isRecordType()) 380 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 381 382 // Nothing changed. 383 break; 384 } 385 386 // Create a reference temporary if necessary. 387 AggValueSlot AggSlot = AggValueSlot::ignored(); 388 if (CGF.hasAggregateLLVMType(E->getType()) && 389 !E->getType()->isAnyComplexType()) { 390 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 391 InitializedDecl); 392 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 393 AggValueSlot::IsDestructed_t isDestructed 394 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 395 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 396 Qualifiers(), isDestructed, 397 AggValueSlot::DoesNotNeedGCBarriers, 398 AggValueSlot::IsNotAliased); 399 } 400 401 if (InitializedDecl) { 402 // Get the destructor for the reference temporary. 403 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 404 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 405 if (!ClassDecl->hasTrivialDestructor()) 406 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 407 } 408 } 409 410 RV = CGF.EmitAnyExpr(E, AggSlot); 411 412 // Check if need to perform derived-to-base casts and/or field accesses, to 413 // get from the temporary object we created (and, potentially, for which we 414 // extended the lifetime) to the subobject we're binding the reference to. 415 if (!Adjustments.empty()) { 416 llvm::Value *Object = RV.getAggregateAddr(); 417 for (unsigned I = Adjustments.size(); I != 0; --I) { 418 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 419 switch (Adjustment.Kind) { 420 case SubobjectAdjustment::DerivedToBaseAdjustment: 421 Object = 422 CGF.GetAddressOfBaseClass(Object, 423 Adjustment.DerivedToBase.DerivedClass, 424 Adjustment.DerivedToBase.BasePath->path_begin(), 425 Adjustment.DerivedToBase.BasePath->path_end(), 426 /*NullCheckValue=*/false); 427 break; 428 429 case SubobjectAdjustment::FieldAdjustment: { 430 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 431 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 432 if (LV.isSimple()) { 433 Object = LV.getAddress(); 434 break; 435 } 436 437 // For non-simple lvalues, we actually have to create a copy of 438 // the object we're binding to. 439 QualType T = Adjustment.Field->getType().getNonReferenceType() 440 .getUnqualifiedType(); 441 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 442 LValue TempLV = CGF.MakeAddrLValue(Object, 443 Adjustment.Field->getType()); 444 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 445 break; 446 } 447 448 case SubobjectAdjustment::MemberPointerAdjustment: { 449 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 450 CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT); 451 break; 452 } 453 } 454 } 455 456 return Object; 457 } 458 } 459 460 if (RV.isAggregate()) 461 return RV.getAggregateAddr(); 462 463 // Create a temporary variable that we can bind the reference to. 464 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 465 InitializedDecl); 466 467 468 unsigned Alignment = 469 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 470 if (RV.isScalar()) 471 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 472 /*Volatile=*/false, Alignment, E->getType()); 473 else 474 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 475 /*Volatile=*/false); 476 return ReferenceTemporary; 477 } 478 479 RValue 480 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 481 const NamedDecl *InitializedDecl) { 482 llvm::Value *ReferenceTemporary = 0; 483 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 484 QualType ObjCARCReferenceLifetimeType; 485 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 486 ReferenceTemporaryDtor, 487 ObjCARCReferenceLifetimeType, 488 InitializedDecl); 489 if (CatchUndefined && !E->getType()->isFunctionType()) { 490 // C++11 [dcl.ref]p5 (as amended by core issue 453): 491 // If a glvalue to which a reference is directly bound designates neither 492 // an existing object or function of an appropriate type nor a region of 493 // storage of suitable size and alignment to contain an object of the 494 // reference's type, the behavior is undefined. 495 QualType Ty = E->getType(); 496 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 497 } 498 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 499 return RValue::get(Value); 500 501 // Make sure to call the destructor for the reference temporary. 502 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 503 if (VD && VD->hasGlobalStorage()) { 504 if (ReferenceTemporaryDtor) { 505 llvm::Constant *DtorFn = 506 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 507 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 508 cast<llvm::Constant>(ReferenceTemporary)); 509 } else { 510 assert(!ObjCARCReferenceLifetimeType.isNull()); 511 // Note: We intentionally do not register a global "destructor" to 512 // release the object. 513 } 514 515 return RValue::get(Value); 516 } 517 518 if (ReferenceTemporaryDtor) 519 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 520 else { 521 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 522 case Qualifiers::OCL_None: 523 llvm_unreachable( 524 "Not a reference temporary that needs to be deallocated"); 525 case Qualifiers::OCL_ExplicitNone: 526 case Qualifiers::OCL_Autoreleasing: 527 // Nothing to do. 528 break; 529 530 case Qualifiers::OCL_Strong: { 531 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 532 CleanupKind cleanupKind = getARCCleanupKind(); 533 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 534 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 535 cleanupKind & EHCleanup); 536 break; 537 } 538 539 case Qualifiers::OCL_Weak: { 540 // __weak objects always get EH cleanups; otherwise, exceptions 541 // could cause really nasty crashes instead of mere leaks. 542 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 543 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 544 break; 545 } 546 } 547 } 548 549 return RValue::get(Value); 550 } 551 552 553 /// getAccessedFieldNo - Given an encoded value and a result number, return the 554 /// input field number being accessed. 555 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 556 const llvm::Constant *Elts) { 557 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 558 ->getZExtValue(); 559 } 560 561 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 562 llvm::Value *Address, 563 QualType Ty, CharUnits Alignment) { 564 if (!CatchUndefined) 565 return; 566 567 llvm::Value *Cond = 0; 568 569 if (TCK != TCK_Load && TCK != TCK_Store) { 570 // The glvalue must not be an empty glvalue. Don't bother checking this for 571 // loads and stores, because we will get a segfault anyway (if the operation 572 // isn't optimized out). 573 Cond = Builder.CreateICmpNE( 574 Address, llvm::Constant::getNullValue(Address->getType())); 575 } 576 577 uint64_t AlignVal = Alignment.getQuantity(); 578 579 if (!Ty->isIncompleteType()) { 580 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 581 if (!AlignVal) 582 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 583 584 // This needs to be to the standard address space. 585 Address = Builder.CreateBitCast(Address, Int8PtrTy); 586 587 // The glvalue must refer to a large enough storage region. 588 // FIXME: If -faddress-sanitizer is enabled, insert dynamic instrumentation 589 // to check this. 590 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 591 llvm::Value *Min = Builder.getFalse(); 592 llvm::Value *LargeEnough = 593 Builder.CreateICmpUGE(Builder.CreateCall2(F, Address, Min), 594 llvm::ConstantInt::get(IntPtrTy, Size)); 595 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 596 } 597 598 if (AlignVal) { 599 // The glvalue must be suitably aligned. 600 llvm::Value *Align = 601 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 602 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 603 Cond = Builder.CreateAnd(Cond, 604 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0))); 605 } 606 607 if (Cond) { 608 llvm::Constant *StaticData[] = { 609 EmitCheckSourceLocation(Loc), 610 EmitCheckTypeDescriptor(Ty), 611 llvm::ConstantInt::get(SizeTy, AlignVal), 612 llvm::ConstantInt::get(Int8Ty, TCK) 613 }; 614 EmitCheck(Cond, "type_mismatch", StaticData, Address); 615 } 616 } 617 618 619 CodeGenFunction::ComplexPairTy CodeGenFunction:: 620 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 621 bool isInc, bool isPre) { 622 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 623 LV.isVolatileQualified()); 624 625 llvm::Value *NextVal; 626 if (isa<llvm::IntegerType>(InVal.first->getType())) { 627 uint64_t AmountVal = isInc ? 1 : -1; 628 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 629 630 // Add the inc/dec to the real part. 631 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 632 } else { 633 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 634 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 635 if (!isInc) 636 FVal.changeSign(); 637 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 638 639 // Add the inc/dec to the real part. 640 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 641 } 642 643 ComplexPairTy IncVal(NextVal, InVal.second); 644 645 // Store the updated result through the lvalue. 646 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 647 648 // If this is a postinc, return the value read from memory, otherwise use the 649 // updated value. 650 return isPre ? IncVal : InVal; 651 } 652 653 654 //===----------------------------------------------------------------------===// 655 // LValue Expression Emission 656 //===----------------------------------------------------------------------===// 657 658 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 659 if (Ty->isVoidType()) 660 return RValue::get(0); 661 662 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 663 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 664 llvm::Value *U = llvm::UndefValue::get(EltTy); 665 return RValue::getComplex(std::make_pair(U, U)); 666 } 667 668 // If this is a use of an undefined aggregate type, the aggregate must have an 669 // identifiable address. Just because the contents of the value are undefined 670 // doesn't mean that the address can't be taken and compared. 671 if (hasAggregateLLVMType(Ty)) { 672 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 673 return RValue::getAggregate(DestPtr); 674 } 675 676 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 677 } 678 679 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 680 const char *Name) { 681 ErrorUnsupported(E, Name); 682 return GetUndefRValue(E->getType()); 683 } 684 685 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 686 const char *Name) { 687 ErrorUnsupported(E, Name); 688 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 689 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 690 } 691 692 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 693 LValue LV = EmitLValue(E); 694 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 695 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 696 E->getType(), LV.getAlignment()); 697 return LV; 698 } 699 700 /// EmitLValue - Emit code to compute a designator that specifies the location 701 /// of the expression. 702 /// 703 /// This can return one of two things: a simple address or a bitfield reference. 704 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 705 /// an LLVM pointer type. 706 /// 707 /// If this returns a bitfield reference, nothing about the pointee type of the 708 /// LLVM value is known: For example, it may not be a pointer to an integer. 709 /// 710 /// If this returns a normal address, and if the lvalue's C type is fixed size, 711 /// this method guarantees that the returned pointer type will point to an LLVM 712 /// type of the same size of the lvalue's type. If the lvalue has a variable 713 /// length type, this is not possible. 714 /// 715 LValue CodeGenFunction::EmitLValue(const Expr *E) { 716 switch (E->getStmtClass()) { 717 default: return EmitUnsupportedLValue(E, "l-value expression"); 718 719 case Expr::ObjCPropertyRefExprClass: 720 llvm_unreachable("cannot emit a property reference directly"); 721 722 case Expr::ObjCSelectorExprClass: 723 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 724 case Expr::ObjCIsaExprClass: 725 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 726 case Expr::BinaryOperatorClass: 727 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 728 case Expr::CompoundAssignOperatorClass: 729 if (!E->getType()->isAnyComplexType()) 730 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 731 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 732 case Expr::CallExprClass: 733 case Expr::CXXMemberCallExprClass: 734 case Expr::CXXOperatorCallExprClass: 735 case Expr::UserDefinedLiteralClass: 736 return EmitCallExprLValue(cast<CallExpr>(E)); 737 case Expr::VAArgExprClass: 738 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 739 case Expr::DeclRefExprClass: 740 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 741 case Expr::ParenExprClass: 742 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 743 case Expr::GenericSelectionExprClass: 744 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 745 case Expr::PredefinedExprClass: 746 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 747 case Expr::StringLiteralClass: 748 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 749 case Expr::ObjCEncodeExprClass: 750 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 751 case Expr::PseudoObjectExprClass: 752 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 753 case Expr::InitListExprClass: 754 return EmitInitListLValue(cast<InitListExpr>(E)); 755 case Expr::CXXTemporaryObjectExprClass: 756 case Expr::CXXConstructExprClass: 757 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 758 case Expr::CXXBindTemporaryExprClass: 759 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 760 case Expr::CXXUuidofExprClass: 761 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 762 case Expr::LambdaExprClass: 763 return EmitLambdaLValue(cast<LambdaExpr>(E)); 764 765 case Expr::ExprWithCleanupsClass: { 766 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 767 enterFullExpression(cleanups); 768 RunCleanupsScope Scope(*this); 769 return EmitLValue(cleanups->getSubExpr()); 770 } 771 772 case Expr::CXXScalarValueInitExprClass: 773 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 774 case Expr::CXXDefaultArgExprClass: 775 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 776 case Expr::CXXTypeidExprClass: 777 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 778 779 case Expr::ObjCMessageExprClass: 780 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 781 case Expr::ObjCIvarRefExprClass: 782 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 783 case Expr::StmtExprClass: 784 return EmitStmtExprLValue(cast<StmtExpr>(E)); 785 case Expr::UnaryOperatorClass: 786 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 787 case Expr::ArraySubscriptExprClass: 788 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 789 case Expr::ExtVectorElementExprClass: 790 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 791 case Expr::MemberExprClass: 792 return EmitMemberExpr(cast<MemberExpr>(E)); 793 case Expr::CompoundLiteralExprClass: 794 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 795 case Expr::ConditionalOperatorClass: 796 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 797 case Expr::BinaryConditionalOperatorClass: 798 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 799 case Expr::ChooseExprClass: 800 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 801 case Expr::OpaqueValueExprClass: 802 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 803 case Expr::SubstNonTypeTemplateParmExprClass: 804 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 805 case Expr::ImplicitCastExprClass: 806 case Expr::CStyleCastExprClass: 807 case Expr::CXXFunctionalCastExprClass: 808 case Expr::CXXStaticCastExprClass: 809 case Expr::CXXDynamicCastExprClass: 810 case Expr::CXXReinterpretCastExprClass: 811 case Expr::CXXConstCastExprClass: 812 case Expr::ObjCBridgedCastExprClass: 813 return EmitCastLValue(cast<CastExpr>(E)); 814 815 case Expr::MaterializeTemporaryExprClass: 816 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 817 } 818 } 819 820 /// Given an object of the given canonical type, can we safely copy a 821 /// value out of it based on its initializer? 822 static bool isConstantEmittableObjectType(QualType type) { 823 assert(type.isCanonical()); 824 assert(!type->isReferenceType()); 825 826 // Must be const-qualified but non-volatile. 827 Qualifiers qs = type.getLocalQualifiers(); 828 if (!qs.hasConst() || qs.hasVolatile()) return false; 829 830 // Otherwise, all object types satisfy this except C++ classes with 831 // mutable subobjects or non-trivial copy/destroy behavior. 832 if (const RecordType *RT = dyn_cast<RecordType>(type)) 833 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 834 if (RD->hasMutableFields() || !RD->isTrivial()) 835 return false; 836 837 return true; 838 } 839 840 /// Can we constant-emit a load of a reference to a variable of the 841 /// given type? This is different from predicates like 842 /// Decl::isUsableInConstantExpressions because we do want it to apply 843 /// in situations that don't necessarily satisfy the language's rules 844 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 845 /// to do this with const float variables even if those variables 846 /// aren't marked 'constexpr'. 847 enum ConstantEmissionKind { 848 CEK_None, 849 CEK_AsReferenceOnly, 850 CEK_AsValueOrReference, 851 CEK_AsValueOnly 852 }; 853 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 854 type = type.getCanonicalType(); 855 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 856 if (isConstantEmittableObjectType(ref->getPointeeType())) 857 return CEK_AsValueOrReference; 858 return CEK_AsReferenceOnly; 859 } 860 if (isConstantEmittableObjectType(type)) 861 return CEK_AsValueOnly; 862 return CEK_None; 863 } 864 865 /// Try to emit a reference to the given value without producing it as 866 /// an l-value. This is actually more than an optimization: we can't 867 /// produce an l-value for variables that we never actually captured 868 /// in a block or lambda, which means const int variables or constexpr 869 /// literals or similar. 870 CodeGenFunction::ConstantEmission 871 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 872 ValueDecl *value = refExpr->getDecl(); 873 874 // The value needs to be an enum constant or a constant variable. 875 ConstantEmissionKind CEK; 876 if (isa<ParmVarDecl>(value)) { 877 CEK = CEK_None; 878 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 879 CEK = checkVarTypeForConstantEmission(var->getType()); 880 } else if (isa<EnumConstantDecl>(value)) { 881 CEK = CEK_AsValueOnly; 882 } else { 883 CEK = CEK_None; 884 } 885 if (CEK == CEK_None) return ConstantEmission(); 886 887 Expr::EvalResult result; 888 bool resultIsReference; 889 QualType resultType; 890 891 // It's best to evaluate all the way as an r-value if that's permitted. 892 if (CEK != CEK_AsReferenceOnly && 893 refExpr->EvaluateAsRValue(result, getContext())) { 894 resultIsReference = false; 895 resultType = refExpr->getType(); 896 897 // Otherwise, try to evaluate as an l-value. 898 } else if (CEK != CEK_AsValueOnly && 899 refExpr->EvaluateAsLValue(result, getContext())) { 900 resultIsReference = true; 901 resultType = value->getType(); 902 903 // Failure. 904 } else { 905 return ConstantEmission(); 906 } 907 908 // In any case, if the initializer has side-effects, abandon ship. 909 if (result.HasSideEffects) 910 return ConstantEmission(); 911 912 // Emit as a constant. 913 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 914 915 // Make sure we emit a debug reference to the global variable. 916 // This should probably fire even for 917 if (isa<VarDecl>(value)) { 918 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 919 EmitDeclRefExprDbgValue(refExpr, C); 920 } else { 921 assert(isa<EnumConstantDecl>(value)); 922 EmitDeclRefExprDbgValue(refExpr, C); 923 } 924 925 // If we emitted a reference constant, we need to dereference that. 926 if (resultIsReference) 927 return ConstantEmission::forReference(C); 928 929 return ConstantEmission::forValue(C); 930 } 931 932 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 933 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 934 lvalue.getAlignment().getQuantity(), 935 lvalue.getType(), lvalue.getTBAAInfo()); 936 } 937 938 static bool hasBooleanRepresentation(QualType Ty) { 939 if (Ty->isBooleanType()) 940 return true; 941 942 if (const EnumType *ET = Ty->getAs<EnumType>()) 943 return ET->getDecl()->getIntegerType()->isBooleanType(); 944 945 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 946 return hasBooleanRepresentation(AT->getValueType()); 947 948 return false; 949 } 950 951 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 952 const EnumType *ET = Ty->getAs<EnumType>(); 953 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 954 CGM.getCodeGenOpts().StrictEnums && 955 !ET->getDecl()->isFixed()); 956 bool IsBool = hasBooleanRepresentation(Ty); 957 if (!IsBool && !IsRegularCPlusPlusEnum) 958 return NULL; 959 960 llvm::APInt Min; 961 llvm::APInt End; 962 if (IsBool) { 963 Min = llvm::APInt(8, 0); 964 End = llvm::APInt(8, 2); 965 } else { 966 const EnumDecl *ED = ET->getDecl(); 967 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 968 unsigned Bitwidth = LTy->getScalarSizeInBits(); 969 unsigned NumNegativeBits = ED->getNumNegativeBits(); 970 unsigned NumPositiveBits = ED->getNumPositiveBits(); 971 972 if (NumNegativeBits) { 973 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 974 assert(NumBits <= Bitwidth); 975 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 976 Min = -End; 977 } else { 978 assert(NumPositiveBits <= Bitwidth); 979 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 980 Min = llvm::APInt(Bitwidth, 0); 981 } 982 } 983 984 llvm::MDBuilder MDHelper(getLLVMContext()); 985 return MDHelper.createRange(Min, End); 986 } 987 988 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 989 unsigned Alignment, QualType Ty, 990 llvm::MDNode *TBAAInfo) { 991 992 // For better performance, handle vector loads differently. 993 if (Ty->isVectorType()) { 994 llvm::Value *V; 995 const llvm::Type *EltTy = 996 cast<llvm::PointerType>(Addr->getType())->getElementType(); 997 998 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 999 1000 // Handle vectors of size 3, like size 4 for better performance. 1001 if (VTy->getNumElements() == 3) { 1002 1003 // Bitcast to vec4 type. 1004 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1005 4); 1006 llvm::PointerType *ptVec4Ty = 1007 llvm::PointerType::get(vec4Ty, 1008 (cast<llvm::PointerType>( 1009 Addr->getType()))->getAddressSpace()); 1010 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1011 "castToVec4"); 1012 // Now load value. 1013 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1014 1015 // Shuffle vector to get vec3. 1016 llvm::SmallVector<llvm::Constant*, 3> Mask; 1017 Mask.push_back(llvm::ConstantInt::get( 1018 llvm::Type::getInt32Ty(getLLVMContext()), 1019 0)); 1020 Mask.push_back(llvm::ConstantInt::get( 1021 llvm::Type::getInt32Ty(getLLVMContext()), 1022 1)); 1023 Mask.push_back(llvm::ConstantInt::get( 1024 llvm::Type::getInt32Ty(getLLVMContext()), 1025 2)); 1026 1027 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1028 V = Builder.CreateShuffleVector(LoadVal, 1029 llvm::UndefValue::get(vec4Ty), 1030 MaskV, "extractVec"); 1031 return EmitFromMemory(V, Ty); 1032 } 1033 } 1034 1035 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1036 if (Volatile) 1037 Load->setVolatile(true); 1038 if (Alignment) 1039 Load->setAlignment(Alignment); 1040 if (TBAAInfo) 1041 CGM.DecorateInstruction(Load, TBAAInfo); 1042 // If this is an atomic type, all normal reads must be atomic 1043 if (Ty->isAtomicType()) 1044 Load->setAtomic(llvm::SequentiallyConsistent); 1045 1046 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1047 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1048 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1049 1050 return EmitFromMemory(Load, Ty); 1051 } 1052 1053 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1054 // Bool has a different representation in memory than in registers. 1055 if (hasBooleanRepresentation(Ty)) { 1056 // This should really always be an i1, but sometimes it's already 1057 // an i8, and it's awkward to track those cases down. 1058 if (Value->getType()->isIntegerTy(1)) 1059 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 1060 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 1061 } 1062 1063 return Value; 1064 } 1065 1066 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1067 // Bool has a different representation in memory than in registers. 1068 if (hasBooleanRepresentation(Ty)) { 1069 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 1070 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1071 } 1072 1073 return Value; 1074 } 1075 1076 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1077 bool Volatile, unsigned Alignment, 1078 QualType Ty, 1079 llvm::MDNode *TBAAInfo, 1080 bool isInit) { 1081 1082 // Handle vectors differently to get better performance. 1083 if (Ty->isVectorType()) { 1084 llvm::Type *SrcTy = Value->getType(); 1085 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1086 // Handle vec3 special. 1087 if (VecTy->getNumElements() == 3) { 1088 llvm::LLVMContext &VMContext = getLLVMContext(); 1089 1090 // Our source is a vec3, do a shuffle vector to make it a vec4. 1091 llvm::SmallVector<llvm::Constant*, 4> Mask; 1092 Mask.push_back(llvm::ConstantInt::get( 1093 llvm::Type::getInt32Ty(VMContext), 1094 0)); 1095 Mask.push_back(llvm::ConstantInt::get( 1096 llvm::Type::getInt32Ty(VMContext), 1097 1)); 1098 Mask.push_back(llvm::ConstantInt::get( 1099 llvm::Type::getInt32Ty(VMContext), 1100 2)); 1101 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1102 1103 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1104 Value = Builder.CreateShuffleVector(Value, 1105 llvm::UndefValue::get(VecTy), 1106 MaskV, "extractVec"); 1107 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1108 } 1109 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1110 if (DstPtr->getElementType() != SrcTy) { 1111 llvm::Type *MemTy = 1112 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1113 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1114 } 1115 } 1116 1117 Value = EmitToMemory(Value, Ty); 1118 1119 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1120 if (Alignment) 1121 Store->setAlignment(Alignment); 1122 if (TBAAInfo) 1123 CGM.DecorateInstruction(Store, TBAAInfo); 1124 if (!isInit && Ty->isAtomicType()) 1125 Store->setAtomic(llvm::SequentiallyConsistent); 1126 } 1127 1128 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1129 bool isInit) { 1130 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1131 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1132 lvalue.getTBAAInfo(), isInit); 1133 } 1134 1135 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1136 /// method emits the address of the lvalue, then loads the result as an rvalue, 1137 /// returning the rvalue. 1138 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1139 if (LV.isObjCWeak()) { 1140 // load of a __weak object. 1141 llvm::Value *AddrWeakObj = LV.getAddress(); 1142 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1143 AddrWeakObj)); 1144 } 1145 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 1146 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1147 1148 if (LV.isSimple()) { 1149 assert(!LV.getType()->isFunctionType()); 1150 1151 // Everything needs a load. 1152 return RValue::get(EmitLoadOfScalar(LV)); 1153 } 1154 1155 if (LV.isVectorElt()) { 1156 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1157 LV.isVolatileQualified()); 1158 Load->setAlignment(LV.getAlignment().getQuantity()); 1159 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1160 "vecext")); 1161 } 1162 1163 // If this is a reference to a subset of the elements of a vector, either 1164 // shuffle the input or extract/insert them as appropriate. 1165 if (LV.isExtVectorElt()) 1166 return EmitLoadOfExtVectorElementLValue(LV); 1167 1168 assert(LV.isBitField() && "Unknown LValue type!"); 1169 return EmitLoadOfBitfieldLValue(LV); 1170 } 1171 1172 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1173 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1174 1175 // Get the output type. 1176 llvm::Type *ResLTy = ConvertType(LV.getType()); 1177 unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy); 1178 1179 // Compute the result as an OR of all of the individual component accesses. 1180 llvm::Value *Res = 0; 1181 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1182 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1183 CharUnits AccessAlignment = AI.AccessAlignment; 1184 if (!LV.getAlignment().isZero()) 1185 AccessAlignment = std::min(AccessAlignment, LV.getAlignment()); 1186 1187 // Get the field pointer. 1188 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1189 1190 // Only offset by the field index if used, so that incoming values are not 1191 // required to be structures. 1192 if (AI.FieldIndex) 1193 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1194 1195 // Offset by the byte offset, if used. 1196 if (!AI.FieldByteOffset.isZero()) { 1197 Ptr = EmitCastToVoidPtr(Ptr); 1198 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1199 "bf.field.offs"); 1200 } 1201 1202 // Cast to the access type. 1203 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1204 CGM.getContext().getTargetAddressSpace(LV.getType())); 1205 Ptr = Builder.CreateBitCast(Ptr, PTy); 1206 1207 // Perform the load. 1208 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1209 Load->setAlignment(AccessAlignment.getQuantity()); 1210 1211 // Shift out unused low bits and mask out unused high bits. 1212 llvm::Value *Val = Load; 1213 if (AI.FieldBitStart) 1214 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1215 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1216 AI.TargetBitWidth), 1217 "bf.clear"); 1218 1219 // Extend or truncate to the target size. 1220 if (AI.AccessWidth < ResSizeInBits) 1221 Val = Builder.CreateZExt(Val, ResLTy); 1222 else if (AI.AccessWidth > ResSizeInBits) 1223 Val = Builder.CreateTrunc(Val, ResLTy); 1224 1225 // Shift into place, and OR into the result. 1226 if (AI.TargetBitOffset) 1227 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1228 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1229 } 1230 1231 // If the bit-field is signed, perform the sign-extension. 1232 // 1233 // FIXME: This can easily be folded into the load of the high bits, which 1234 // could also eliminate the mask of high bits in some situations. 1235 if (Info.isSigned()) { 1236 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1237 if (ExtraBits) 1238 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1239 ExtraBits, "bf.val.sext"); 1240 } 1241 1242 return RValue::get(Res); 1243 } 1244 1245 // If this is a reference to a subset of the elements of a vector, create an 1246 // appropriate shufflevector. 1247 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1248 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1249 LV.isVolatileQualified()); 1250 Load->setAlignment(LV.getAlignment().getQuantity()); 1251 llvm::Value *Vec = Load; 1252 1253 const llvm::Constant *Elts = LV.getExtVectorElts(); 1254 1255 // If the result of the expression is a non-vector type, we must be extracting 1256 // a single element. Just codegen as an extractelement. 1257 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1258 if (!ExprVT) { 1259 unsigned InIdx = getAccessedFieldNo(0, Elts); 1260 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1261 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1262 } 1263 1264 // Always use shuffle vector to try to retain the original program structure 1265 unsigned NumResultElts = ExprVT->getNumElements(); 1266 1267 SmallVector<llvm::Constant*, 4> Mask; 1268 for (unsigned i = 0; i != NumResultElts; ++i) 1269 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1270 1271 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1272 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1273 MaskV); 1274 return RValue::get(Vec); 1275 } 1276 1277 1278 1279 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1280 /// lvalue, where both are guaranteed to the have the same type, and that type 1281 /// is 'Ty'. 1282 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1283 if (!Dst.isSimple()) { 1284 if (Dst.isVectorElt()) { 1285 // Read/modify/write the vector, inserting the new element. 1286 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1287 Dst.isVolatileQualified()); 1288 Load->setAlignment(Dst.getAlignment().getQuantity()); 1289 llvm::Value *Vec = Load; 1290 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1291 Dst.getVectorIdx(), "vecins"); 1292 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1293 Dst.isVolatileQualified()); 1294 Store->setAlignment(Dst.getAlignment().getQuantity()); 1295 return; 1296 } 1297 1298 // If this is an update of extended vector elements, insert them as 1299 // appropriate. 1300 if (Dst.isExtVectorElt()) 1301 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1302 1303 assert(Dst.isBitField() && "Unknown LValue type"); 1304 return EmitStoreThroughBitfieldLValue(Src, Dst); 1305 } 1306 1307 // There's special magic for assigning into an ARC-qualified l-value. 1308 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1309 switch (Lifetime) { 1310 case Qualifiers::OCL_None: 1311 llvm_unreachable("present but none"); 1312 1313 case Qualifiers::OCL_ExplicitNone: 1314 // nothing special 1315 break; 1316 1317 case Qualifiers::OCL_Strong: 1318 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1319 return; 1320 1321 case Qualifiers::OCL_Weak: 1322 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1323 return; 1324 1325 case Qualifiers::OCL_Autoreleasing: 1326 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1327 Src.getScalarVal())); 1328 // fall into the normal path 1329 break; 1330 } 1331 } 1332 1333 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1334 // load of a __weak object. 1335 llvm::Value *LvalueDst = Dst.getAddress(); 1336 llvm::Value *src = Src.getScalarVal(); 1337 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1338 return; 1339 } 1340 1341 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1342 // load of a __strong object. 1343 llvm::Value *LvalueDst = Dst.getAddress(); 1344 llvm::Value *src = Src.getScalarVal(); 1345 if (Dst.isObjCIvar()) { 1346 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1347 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1348 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1349 llvm::Value *dst = RHS; 1350 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1351 llvm::Value *LHS = 1352 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1353 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1354 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1355 BytesBetween); 1356 } else if (Dst.isGlobalObjCRef()) { 1357 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1358 Dst.isThreadLocalRef()); 1359 } 1360 else 1361 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1362 return; 1363 } 1364 1365 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1366 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1367 } 1368 1369 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1370 llvm::Value **Result) { 1371 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1372 1373 // Get the output type. 1374 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1375 unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy); 1376 1377 // Get the source value, truncated to the width of the bit-field. 1378 llvm::Value *SrcVal = Src.getScalarVal(); 1379 1380 if (hasBooleanRepresentation(Dst.getType())) 1381 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1382 1383 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1384 Info.getSize()), 1385 "bf.value"); 1386 1387 // Return the new value of the bit-field, if requested. 1388 if (Result) { 1389 // Cast back to the proper type for result. 1390 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1391 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1392 "bf.reload.val"); 1393 1394 // Sign extend if necessary. 1395 if (Info.isSigned()) { 1396 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1397 if (ExtraBits) 1398 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1399 ExtraBits, "bf.reload.sext"); 1400 } 1401 1402 *Result = ReloadVal; 1403 } 1404 1405 // Iterate over the components, writing each piece to memory. 1406 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1407 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1408 CharUnits AccessAlignment = AI.AccessAlignment; 1409 if (!Dst.getAlignment().isZero()) 1410 AccessAlignment = std::min(AccessAlignment, Dst.getAlignment()); 1411 1412 // Get the field pointer. 1413 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1414 unsigned addressSpace = 1415 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1416 1417 // Only offset by the field index if used, so that incoming values are not 1418 // required to be structures. 1419 if (AI.FieldIndex) 1420 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1421 1422 // Offset by the byte offset, if used. 1423 if (!AI.FieldByteOffset.isZero()) { 1424 Ptr = EmitCastToVoidPtr(Ptr); 1425 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1426 "bf.field.offs"); 1427 } 1428 1429 // Cast to the access type. 1430 llvm::Type *AccessLTy = 1431 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1432 1433 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1434 Ptr = Builder.CreateBitCast(Ptr, PTy); 1435 1436 // Extract the piece of the bit-field value to write in this access, limited 1437 // to the values that are part of this access. 1438 llvm::Value *Val = SrcVal; 1439 if (AI.TargetBitOffset) 1440 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1441 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1442 AI.TargetBitWidth)); 1443 1444 // Extend or truncate to the access size. 1445 if (ResSizeInBits < AI.AccessWidth) 1446 Val = Builder.CreateZExt(Val, AccessLTy); 1447 else if (ResSizeInBits > AI.AccessWidth) 1448 Val = Builder.CreateTrunc(Val, AccessLTy); 1449 1450 // Shift into the position in memory. 1451 if (AI.FieldBitStart) 1452 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1453 1454 // If necessary, load and OR in bits that are outside of the bit-field. 1455 if (AI.TargetBitWidth != AI.AccessWidth) { 1456 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1457 Load->setAlignment(AccessAlignment.getQuantity()); 1458 1459 // Compute the mask for zeroing the bits that are part of the bit-field. 1460 llvm::APInt InvMask = 1461 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1462 AI.FieldBitStart + AI.TargetBitWidth); 1463 1464 // Apply the mask and OR in to the value to write. 1465 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1466 } 1467 1468 // Write the value. 1469 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1470 Dst.isVolatileQualified()); 1471 Store->setAlignment(AccessAlignment.getQuantity()); 1472 } 1473 } 1474 1475 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1476 LValue Dst) { 1477 // This access turns into a read/modify/write of the vector. Load the input 1478 // value now. 1479 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1480 Dst.isVolatileQualified()); 1481 Load->setAlignment(Dst.getAlignment().getQuantity()); 1482 llvm::Value *Vec = Load; 1483 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1484 1485 llvm::Value *SrcVal = Src.getScalarVal(); 1486 1487 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1488 unsigned NumSrcElts = VTy->getNumElements(); 1489 unsigned NumDstElts = 1490 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1491 if (NumDstElts == NumSrcElts) { 1492 // Use shuffle vector is the src and destination are the same number of 1493 // elements and restore the vector mask since it is on the side it will be 1494 // stored. 1495 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1496 for (unsigned i = 0; i != NumSrcElts; ++i) 1497 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1498 1499 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1500 Vec = Builder.CreateShuffleVector(SrcVal, 1501 llvm::UndefValue::get(Vec->getType()), 1502 MaskV); 1503 } else if (NumDstElts > NumSrcElts) { 1504 // Extended the source vector to the same length and then shuffle it 1505 // into the destination. 1506 // FIXME: since we're shuffling with undef, can we just use the indices 1507 // into that? This could be simpler. 1508 SmallVector<llvm::Constant*, 4> ExtMask; 1509 for (unsigned i = 0; i != NumSrcElts; ++i) 1510 ExtMask.push_back(Builder.getInt32(i)); 1511 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1512 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1513 llvm::Value *ExtSrcVal = 1514 Builder.CreateShuffleVector(SrcVal, 1515 llvm::UndefValue::get(SrcVal->getType()), 1516 ExtMaskV); 1517 // build identity 1518 SmallVector<llvm::Constant*, 4> Mask; 1519 for (unsigned i = 0; i != NumDstElts; ++i) 1520 Mask.push_back(Builder.getInt32(i)); 1521 1522 // modify when what gets shuffled in 1523 for (unsigned i = 0; i != NumSrcElts; ++i) 1524 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1525 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1526 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1527 } else { 1528 // We should never shorten the vector 1529 llvm_unreachable("unexpected shorten vector length"); 1530 } 1531 } else { 1532 // If the Src is a scalar (not a vector) it must be updating one element. 1533 unsigned InIdx = getAccessedFieldNo(0, Elts); 1534 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1535 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1536 } 1537 1538 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1539 Dst.isVolatileQualified()); 1540 Store->setAlignment(Dst.getAlignment().getQuantity()); 1541 } 1542 1543 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1544 // generating write-barries API. It is currently a global, ivar, 1545 // or neither. 1546 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1547 LValue &LV, 1548 bool IsMemberAccess=false) { 1549 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1550 return; 1551 1552 if (isa<ObjCIvarRefExpr>(E)) { 1553 QualType ExpTy = E->getType(); 1554 if (IsMemberAccess && ExpTy->isPointerType()) { 1555 // If ivar is a structure pointer, assigning to field of 1556 // this struct follows gcc's behavior and makes it a non-ivar 1557 // writer-barrier conservatively. 1558 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1559 if (ExpTy->isRecordType()) { 1560 LV.setObjCIvar(false); 1561 return; 1562 } 1563 } 1564 LV.setObjCIvar(true); 1565 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1566 LV.setBaseIvarExp(Exp->getBase()); 1567 LV.setObjCArray(E->getType()->isArrayType()); 1568 return; 1569 } 1570 1571 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1572 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1573 if (VD->hasGlobalStorage()) { 1574 LV.setGlobalObjCRef(true); 1575 LV.setThreadLocalRef(VD->isThreadSpecified()); 1576 } 1577 } 1578 LV.setObjCArray(E->getType()->isArrayType()); 1579 return; 1580 } 1581 1582 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1583 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1584 return; 1585 } 1586 1587 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1588 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1589 if (LV.isObjCIvar()) { 1590 // If cast is to a structure pointer, follow gcc's behavior and make it 1591 // a non-ivar write-barrier. 1592 QualType ExpTy = E->getType(); 1593 if (ExpTy->isPointerType()) 1594 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1595 if (ExpTy->isRecordType()) 1596 LV.setObjCIvar(false); 1597 } 1598 return; 1599 } 1600 1601 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1602 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1603 return; 1604 } 1605 1606 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1607 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1608 return; 1609 } 1610 1611 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1612 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1613 return; 1614 } 1615 1616 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1617 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1618 return; 1619 } 1620 1621 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1622 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1623 if (LV.isObjCIvar() && !LV.isObjCArray()) 1624 // Using array syntax to assigning to what an ivar points to is not 1625 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1626 LV.setObjCIvar(false); 1627 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1628 // Using array syntax to assigning to what global points to is not 1629 // same as assigning to the global itself. {id *G;} G[i] = 0; 1630 LV.setGlobalObjCRef(false); 1631 return; 1632 } 1633 1634 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1635 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1636 // We don't know if member is an 'ivar', but this flag is looked at 1637 // only in the context of LV.isObjCIvar(). 1638 LV.setObjCArray(E->getType()->isArrayType()); 1639 return; 1640 } 1641 } 1642 1643 static llvm::Value * 1644 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1645 llvm::Value *V, llvm::Type *IRType, 1646 StringRef Name = StringRef()) { 1647 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1648 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1649 } 1650 1651 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1652 const Expr *E, const VarDecl *VD) { 1653 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1654 "Var decl must have external storage or be a file var decl!"); 1655 1656 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1657 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1658 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1659 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1660 QualType T = E->getType(); 1661 LValue LV; 1662 if (VD->getType()->isReferenceType()) { 1663 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1664 LI->setAlignment(Alignment.getQuantity()); 1665 V = LI; 1666 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1667 } else { 1668 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1669 } 1670 setObjCGCLValueClass(CGF.getContext(), E, LV); 1671 return LV; 1672 } 1673 1674 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1675 const Expr *E, const FunctionDecl *FD) { 1676 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1677 if (!FD->hasPrototype()) { 1678 if (const FunctionProtoType *Proto = 1679 FD->getType()->getAs<FunctionProtoType>()) { 1680 // Ugly case: for a K&R-style definition, the type of the definition 1681 // isn't the same as the type of a use. Correct for this with a 1682 // bitcast. 1683 QualType NoProtoType = 1684 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1685 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1686 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1687 } 1688 } 1689 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1690 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1691 } 1692 1693 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1694 const NamedDecl *ND = E->getDecl(); 1695 CharUnits Alignment = getContext().getDeclAlign(ND); 1696 QualType T = E->getType(); 1697 1698 // A DeclRefExpr for a reference initialized by a constant expression can 1699 // appear without being odr-used. Directly emit the constant initializer. 1700 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1701 const Expr *Init = VD->getAnyInitializer(VD); 1702 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1703 VD->isUsableInConstantExpressions(getContext()) && 1704 VD->checkInitIsICE()) { 1705 llvm::Constant *Val = 1706 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1707 assert(Val && "failed to emit reference constant expression"); 1708 // FIXME: Eventually we will want to emit vector element references. 1709 return MakeAddrLValue(Val, T, Alignment); 1710 } 1711 } 1712 1713 // FIXME: We should be able to assert this for FunctionDecls as well! 1714 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1715 // those with a valid source location. 1716 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1717 !E->getLocation().isValid()) && 1718 "Should not use decl without marking it used!"); 1719 1720 if (ND->hasAttr<WeakRefAttr>()) { 1721 const ValueDecl *VD = cast<ValueDecl>(ND); 1722 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1723 return MakeAddrLValue(Aliasee, T, Alignment); 1724 } 1725 1726 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1727 // Check if this is a global variable. 1728 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1729 return EmitGlobalVarDeclLValue(*this, E, VD); 1730 1731 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1732 1733 bool NonGCable = VD->hasLocalStorage() && 1734 !VD->getType()->isReferenceType() && 1735 !isBlockVariable; 1736 1737 llvm::Value *V = LocalDeclMap[VD]; 1738 if (!V && VD->isStaticLocal()) 1739 V = CGM.getStaticLocalDeclAddress(VD); 1740 1741 // Use special handling for lambdas. 1742 if (!V) { 1743 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1744 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1745 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1746 LambdaTagType); 1747 return EmitLValueForField(LambdaLV, FD); 1748 } 1749 1750 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1751 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1752 T, Alignment); 1753 } 1754 1755 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1756 1757 if (isBlockVariable) 1758 V = BuildBlockByrefAddress(V, VD); 1759 1760 LValue LV; 1761 if (VD->getType()->isReferenceType()) { 1762 llvm::LoadInst *LI = Builder.CreateLoad(V); 1763 LI->setAlignment(Alignment.getQuantity()); 1764 V = LI; 1765 LV = MakeNaturalAlignAddrLValue(V, T); 1766 } else { 1767 LV = MakeAddrLValue(V, T, Alignment); 1768 } 1769 1770 if (NonGCable) { 1771 LV.getQuals().removeObjCGCAttr(); 1772 LV.setNonGC(true); 1773 } 1774 setObjCGCLValueClass(getContext(), E, LV); 1775 return LV; 1776 } 1777 1778 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1779 return EmitFunctionDeclLValue(*this, E, fn); 1780 1781 llvm_unreachable("Unhandled DeclRefExpr"); 1782 } 1783 1784 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1785 // __extension__ doesn't affect lvalue-ness. 1786 if (E->getOpcode() == UO_Extension) 1787 return EmitLValue(E->getSubExpr()); 1788 1789 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1790 switch (E->getOpcode()) { 1791 default: llvm_unreachable("Unknown unary operator lvalue!"); 1792 case UO_Deref: { 1793 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1794 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1795 1796 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1797 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1798 1799 // We should not generate __weak write barrier on indirect reference 1800 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1801 // But, we continue to generate __strong write barrier on indirect write 1802 // into a pointer to object. 1803 if (getContext().getLangOpts().ObjC1 && 1804 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1805 LV.isObjCWeak()) 1806 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1807 return LV; 1808 } 1809 case UO_Real: 1810 case UO_Imag: { 1811 LValue LV = EmitLValue(E->getSubExpr()); 1812 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1813 llvm::Value *Addr = LV.getAddress(); 1814 1815 // __real is valid on scalars. This is a faster way of testing that. 1816 // __imag can only produce an rvalue on scalars. 1817 if (E->getOpcode() == UO_Real && 1818 !cast<llvm::PointerType>(Addr->getType()) 1819 ->getElementType()->isStructTy()) { 1820 assert(E->getSubExpr()->getType()->isArithmeticType()); 1821 return LV; 1822 } 1823 1824 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1825 1826 unsigned Idx = E->getOpcode() == UO_Imag; 1827 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1828 Idx, "idx"), 1829 ExprTy); 1830 } 1831 case UO_PreInc: 1832 case UO_PreDec: { 1833 LValue LV = EmitLValue(E->getSubExpr()); 1834 bool isInc = E->getOpcode() == UO_PreInc; 1835 1836 if (E->getType()->isAnyComplexType()) 1837 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1838 else 1839 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1840 return LV; 1841 } 1842 } 1843 } 1844 1845 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1846 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1847 E->getType()); 1848 } 1849 1850 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1851 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1852 E->getType()); 1853 } 1854 1855 static llvm::Constant* 1856 GetAddrOfConstantWideString(StringRef Str, 1857 const char *GlobalName, 1858 ASTContext &Context, 1859 QualType Ty, SourceLocation Loc, 1860 CodeGenModule &CGM) { 1861 1862 StringLiteral *SL = StringLiteral::Create(Context, 1863 Str, 1864 StringLiteral::Wide, 1865 /*Pascal = */false, 1866 Ty, Loc); 1867 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1868 llvm::GlobalVariable *GV = 1869 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1870 !CGM.getLangOpts().WritableStrings, 1871 llvm::GlobalValue::PrivateLinkage, 1872 C, GlobalName); 1873 const unsigned WideAlignment = 1874 Context.getTypeAlignInChars(Ty).getQuantity(); 1875 GV->setAlignment(WideAlignment); 1876 return GV; 1877 } 1878 1879 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1880 SmallString<32>& Target) { 1881 Target.resize(CharByteWidth * (Source.size() + 1)); 1882 char *ResultPtr = &Target[0]; 1883 const UTF8 *ErrorPtr; 1884 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1885 (void)success; 1886 assert(success); 1887 Target.resize(ResultPtr - &Target[0]); 1888 } 1889 1890 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1891 switch (E->getIdentType()) { 1892 default: 1893 return EmitUnsupportedLValue(E, "predefined expression"); 1894 1895 case PredefinedExpr::Func: 1896 case PredefinedExpr::Function: 1897 case PredefinedExpr::LFunction: 1898 case PredefinedExpr::PrettyFunction: { 1899 unsigned IdentType = E->getIdentType(); 1900 std::string GlobalVarName; 1901 1902 switch (IdentType) { 1903 default: llvm_unreachable("Invalid type"); 1904 case PredefinedExpr::Func: 1905 GlobalVarName = "__func__."; 1906 break; 1907 case PredefinedExpr::Function: 1908 GlobalVarName = "__FUNCTION__."; 1909 break; 1910 case PredefinedExpr::LFunction: 1911 GlobalVarName = "L__FUNCTION__."; 1912 break; 1913 case PredefinedExpr::PrettyFunction: 1914 GlobalVarName = "__PRETTY_FUNCTION__."; 1915 break; 1916 } 1917 1918 StringRef FnName = CurFn->getName(); 1919 if (FnName.startswith("\01")) 1920 FnName = FnName.substr(1); 1921 GlobalVarName += FnName; 1922 1923 const Decl *CurDecl = CurCodeDecl; 1924 if (CurDecl == 0) 1925 CurDecl = getContext().getTranslationUnitDecl(); 1926 1927 std::string FunctionName = 1928 (isa<BlockDecl>(CurDecl) 1929 ? FnName.str() 1930 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1931 CurDecl)); 1932 1933 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1934 llvm::Constant *C; 1935 if (ElemType->isWideCharType()) { 1936 SmallString<32> RawChars; 1937 ConvertUTF8ToWideString( 1938 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1939 FunctionName, RawChars); 1940 C = GetAddrOfConstantWideString(RawChars, 1941 GlobalVarName.c_str(), 1942 getContext(), 1943 E->getType(), 1944 E->getLocation(), 1945 CGM); 1946 } else { 1947 C = CGM.GetAddrOfConstantCString(FunctionName, 1948 GlobalVarName.c_str(), 1949 1); 1950 } 1951 return MakeAddrLValue(C, E->getType()); 1952 } 1953 } 1954 } 1955 1956 /// Emit a type description suitable for use by a runtime sanitizer library. The 1957 /// format of a type descriptor is 1958 /// 1959 /// \code 1960 /// { i16 TypeKind, i16 TypeInfo } 1961 /// \endcode 1962 /// 1963 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 1964 /// integer, 1 for a floating point value, and -1 for anything else. 1965 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 1966 // FIXME: Only emit each type's descriptor once. 1967 uint16_t TypeKind = -1; 1968 uint16_t TypeInfo = 0; 1969 1970 if (T->isIntegerType()) { 1971 TypeKind = 0; 1972 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 1973 T->isSignedIntegerType(); 1974 } else if (T->isFloatingType()) { 1975 TypeKind = 1; 1976 TypeInfo = getContext().getTypeSize(T); 1977 } 1978 1979 // Format the type name as if for a diagnostic, including quotes and 1980 // optionally an 'aka'. 1981 llvm::SmallString<32> Buffer; 1982 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 1983 (intptr_t)T.getAsOpaquePtr(), 1984 0, 0, 0, 0, 0, 0, Buffer, 1985 ArrayRef<intptr_t>()); 1986 1987 llvm::Constant *Components[] = { 1988 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 1989 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 1990 }; 1991 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 1992 1993 llvm::GlobalVariable *GV = 1994 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 1995 /*isConstant=*/true, 1996 llvm::GlobalVariable::PrivateLinkage, 1997 Descriptor); 1998 GV->setUnnamedAddr(true); 1999 return GV; 2000 } 2001 2002 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2003 llvm::Type *TargetTy = IntPtrTy; 2004 2005 // Integers which fit in intptr_t are zero-extended and passed directly. 2006 if (V->getType()->isIntegerTy() && 2007 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2008 return Builder.CreateZExt(V, TargetTy); 2009 2010 // Pointers are passed directly, everything else is passed by address. 2011 if (!V->getType()->isPointerTy()) { 2012 llvm::Value *Ptr = Builder.CreateAlloca(V->getType()); 2013 Builder.CreateStore(V, Ptr); 2014 V = Ptr; 2015 } 2016 return Builder.CreatePtrToInt(V, TargetTy); 2017 } 2018 2019 /// \brief Emit a representation of a SourceLocation for passing to a handler 2020 /// in a sanitizer runtime library. The format for this data is: 2021 /// \code 2022 /// struct SourceLocation { 2023 /// const char *Filename; 2024 /// int32_t Line, Column; 2025 /// }; 2026 /// \endcode 2027 /// For an invalid SourceLocation, the Filename pointer is null. 2028 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2029 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2030 2031 llvm::Constant *Data[] = { 2032 // FIXME: Only emit each file name once. 2033 PLoc.isValid() ? cast<llvm::Constant>( 2034 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2035 : llvm::Constant::getNullValue(Int8PtrTy), 2036 Builder.getInt32(PLoc.getLine()), 2037 Builder.getInt32(PLoc.getColumn()) 2038 }; 2039 2040 return llvm::ConstantStruct::getAnon(Data); 2041 } 2042 2043 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2044 llvm::ArrayRef<llvm::Constant *> StaticArgs, 2045 llvm::ArrayRef<llvm::Value *> DynamicArgs) { 2046 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2047 2048 // If -fcatch-undefined-behavior is not enabled, just emit a trap. This 2049 // happens when using -ftrapv. 2050 // FIXME: Should -ftrapv require the ubsan runtime library? 2051 if (!CatchUndefined) { 2052 // If we're optimizing, collapse all calls to trap down to just one per 2053 // function to save on code size. 2054 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2055 TrapBB = createBasicBlock("trap"); 2056 Builder.CreateCondBr(Checked, Cont, TrapBB); 2057 EmitBlock(TrapBB); 2058 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2059 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2060 TrapCall->setDoesNotReturn(); 2061 TrapCall->setDoesNotThrow(); 2062 Builder.CreateUnreachable(); 2063 } else { 2064 Builder.CreateCondBr(Checked, Cont, TrapBB); 2065 } 2066 2067 EmitBlock(Cont); 2068 return; 2069 } 2070 2071 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2072 Builder.CreateCondBr(Checked, Cont, Handler); 2073 EmitBlock(Handler); 2074 2075 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2076 llvm::GlobalValue *InfoPtr = 2077 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true, 2078 llvm::GlobalVariable::PrivateLinkage, Info); 2079 InfoPtr->setUnnamedAddr(true); 2080 2081 llvm::SmallVector<llvm::Value *, 4> Args; 2082 llvm::SmallVector<llvm::Type *, 4> ArgTypes; 2083 Args.reserve(DynamicArgs.size() + 1); 2084 ArgTypes.reserve(DynamicArgs.size() + 1); 2085 2086 // Handler functions take an i8* pointing to the (handler-specific) static 2087 // information block, followed by a sequence of intptr_t arguments 2088 // representing operand values. 2089 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2090 ArgTypes.push_back(Int8PtrTy); 2091 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2092 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2093 ArgTypes.push_back(IntPtrTy); 2094 } 2095 2096 llvm::FunctionType *FnType = 2097 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2098 llvm::AttrBuilder B; 2099 B.addAttribute(llvm::Attributes::NoReturn) 2100 .addAttribute(llvm::Attributes::NoUnwind) 2101 .addAttribute(llvm::Attributes::UWTable); 2102 llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType, 2103 ("__ubsan_handle_" + CheckName).str(), 2104 llvm::Attributes::get(getLLVMContext(), 2105 B)); 2106 llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args); 2107 HandlerCall->setDoesNotReturn(); 2108 HandlerCall->setDoesNotThrow(); 2109 Builder.CreateUnreachable(); 2110 2111 EmitBlock(Cont); 2112 } 2113 2114 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2115 /// array to pointer, return the array subexpression. 2116 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2117 // If this isn't just an array->pointer decay, bail out. 2118 const CastExpr *CE = dyn_cast<CastExpr>(E); 2119 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2120 return 0; 2121 2122 // If this is a decay from variable width array, bail out. 2123 const Expr *SubExpr = CE->getSubExpr(); 2124 if (SubExpr->getType()->isVariableArrayType()) 2125 return 0; 2126 2127 return SubExpr; 2128 } 2129 2130 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 2131 // The index must always be an integer, which is not an aggregate. Emit it. 2132 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2133 QualType IdxTy = E->getIdx()->getType(); 2134 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2135 2136 // If the base is a vector type, then we are forming a vector element lvalue 2137 // with this subscript. 2138 if (E->getBase()->getType()->isVectorType()) { 2139 // Emit the vector as an lvalue to get its address. 2140 LValue LHS = EmitLValue(E->getBase()); 2141 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2142 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2143 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2144 E->getBase()->getType(), LHS.getAlignment()); 2145 } 2146 2147 // Extend or truncate the index type to 32 or 64-bits. 2148 if (Idx->getType() != IntPtrTy) 2149 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2150 2151 // We know that the pointer points to a type of the correct size, unless the 2152 // size is a VLA or Objective-C interface. 2153 llvm::Value *Address = 0; 2154 CharUnits ArrayAlignment; 2155 if (const VariableArrayType *vla = 2156 getContext().getAsVariableArrayType(E->getType())) { 2157 // The base must be a pointer, which is not an aggregate. Emit 2158 // it. It needs to be emitted first in case it's what captures 2159 // the VLA bounds. 2160 Address = EmitScalarExpr(E->getBase()); 2161 2162 // The element count here is the total number of non-VLA elements. 2163 llvm::Value *numElements = getVLASize(vla).first; 2164 2165 // Effectively, the multiply by the VLA size is part of the GEP. 2166 // GEP indexes are signed, and scaling an index isn't permitted to 2167 // signed-overflow, so we use the same semantics for our explicit 2168 // multiply. We suppress this if overflow is not undefined behavior. 2169 if (getLangOpts().isSignedOverflowDefined()) { 2170 Idx = Builder.CreateMul(Idx, numElements); 2171 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2172 } else { 2173 Idx = Builder.CreateNSWMul(Idx, numElements); 2174 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2175 } 2176 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2177 // Indexing over an interface, as in "NSString *P; P[4];" 2178 llvm::Value *InterfaceSize = 2179 llvm::ConstantInt::get(Idx->getType(), 2180 getContext().getTypeSizeInChars(OIT).getQuantity()); 2181 2182 Idx = Builder.CreateMul(Idx, InterfaceSize); 2183 2184 // The base must be a pointer, which is not an aggregate. Emit it. 2185 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2186 Address = EmitCastToVoidPtr(Base); 2187 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2188 Address = Builder.CreateBitCast(Address, Base->getType()); 2189 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2190 // If this is A[i] where A is an array, the frontend will have decayed the 2191 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2192 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2193 // "gep x, i" here. Emit one "gep A, 0, i". 2194 assert(Array->getType()->isArrayType() && 2195 "Array to pointer decay must have array source type!"); 2196 LValue ArrayLV = EmitLValue(Array); 2197 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2198 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2199 llvm::Value *Args[] = { Zero, Idx }; 2200 2201 // Propagate the alignment from the array itself to the result. 2202 ArrayAlignment = ArrayLV.getAlignment(); 2203 2204 if (getContext().getLangOpts().isSignedOverflowDefined()) 2205 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2206 else 2207 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2208 } else { 2209 // The base must be a pointer, which is not an aggregate. Emit it. 2210 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2211 if (getContext().getLangOpts().isSignedOverflowDefined()) 2212 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2213 else 2214 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2215 } 2216 2217 QualType T = E->getBase()->getType()->getPointeeType(); 2218 assert(!T.isNull() && 2219 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2220 2221 2222 // Limit the alignment to that of the result type. 2223 LValue LV; 2224 if (!ArrayAlignment.isZero()) { 2225 CharUnits Align = getContext().getTypeAlignInChars(T); 2226 ArrayAlignment = std::min(Align, ArrayAlignment); 2227 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2228 } else { 2229 LV = MakeNaturalAlignAddrLValue(Address, T); 2230 } 2231 2232 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2233 2234 if (getContext().getLangOpts().ObjC1 && 2235 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 2236 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2237 setObjCGCLValueClass(getContext(), E, LV); 2238 } 2239 return LV; 2240 } 2241 2242 static 2243 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2244 SmallVector<unsigned, 4> &Elts) { 2245 SmallVector<llvm::Constant*, 4> CElts; 2246 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2247 CElts.push_back(Builder.getInt32(Elts[i])); 2248 2249 return llvm::ConstantVector::get(CElts); 2250 } 2251 2252 LValue CodeGenFunction:: 2253 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2254 // Emit the base vector as an l-value. 2255 LValue Base; 2256 2257 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2258 if (E->isArrow()) { 2259 // If it is a pointer to a vector, emit the address and form an lvalue with 2260 // it. 2261 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2262 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2263 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2264 Base.getQuals().removeObjCGCAttr(); 2265 } else if (E->getBase()->isGLValue()) { 2266 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2267 // emit the base as an lvalue. 2268 assert(E->getBase()->getType()->isVectorType()); 2269 Base = EmitLValue(E->getBase()); 2270 } else { 2271 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2272 assert(E->getBase()->getType()->isVectorType() && 2273 "Result must be a vector"); 2274 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2275 2276 // Store the vector to memory (because LValue wants an address). 2277 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2278 Builder.CreateStore(Vec, VecMem); 2279 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2280 } 2281 2282 QualType type = 2283 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2284 2285 // Encode the element access list into a vector of unsigned indices. 2286 SmallVector<unsigned, 4> Indices; 2287 E->getEncodedElementAccess(Indices); 2288 2289 if (Base.isSimple()) { 2290 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2291 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2292 Base.getAlignment()); 2293 } 2294 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2295 2296 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2297 SmallVector<llvm::Constant *, 4> CElts; 2298 2299 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2300 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2301 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2302 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2303 Base.getAlignment()); 2304 } 2305 2306 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2307 Expr *BaseExpr = E->getBase(); 2308 2309 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2310 LValue BaseLV; 2311 if (E->isArrow()) { 2312 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2313 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2314 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2315 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2316 } else 2317 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2318 2319 NamedDecl *ND = E->getMemberDecl(); 2320 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2321 LValue LV = EmitLValueForField(BaseLV, Field); 2322 setObjCGCLValueClass(getContext(), E, LV); 2323 return LV; 2324 } 2325 2326 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2327 return EmitGlobalVarDeclLValue(*this, E, VD); 2328 2329 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2330 return EmitFunctionDeclLValue(*this, E, FD); 2331 2332 llvm_unreachable("Unhandled member declaration!"); 2333 } 2334 2335 LValue CodeGenFunction::EmitLValueForField(LValue base, 2336 const FieldDecl *field) { 2337 if (field->isBitField()) { 2338 const CGRecordLayout &RL = 2339 CGM.getTypes().getCGRecordLayout(field->getParent()); 2340 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2341 QualType fieldType = 2342 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2343 return LValue::MakeBitfield(base.getAddress(), Info, fieldType, 2344 base.getAlignment()); 2345 } 2346 2347 const RecordDecl *rec = field->getParent(); 2348 QualType type = field->getType(); 2349 CharUnits alignment = getContext().getDeclAlign(field); 2350 2351 // FIXME: It should be impossible to have an LValue without alignment for a 2352 // complete type. 2353 if (!base.getAlignment().isZero()) 2354 alignment = std::min(alignment, base.getAlignment()); 2355 2356 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2357 2358 llvm::Value *addr = base.getAddress(); 2359 unsigned cvr = base.getVRQualifiers(); 2360 if (rec->isUnion()) { 2361 // For unions, there is no pointer adjustment. 2362 assert(!type->isReferenceType() && "union has reference member"); 2363 } else { 2364 // For structs, we GEP to the field that the record layout suggests. 2365 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2366 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2367 2368 // If this is a reference field, load the reference right now. 2369 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2370 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2371 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2372 load->setAlignment(alignment.getQuantity()); 2373 2374 if (CGM.shouldUseTBAA()) { 2375 llvm::MDNode *tbaa; 2376 if (mayAlias) 2377 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2378 else 2379 tbaa = CGM.getTBAAInfo(type); 2380 CGM.DecorateInstruction(load, tbaa); 2381 } 2382 2383 addr = load; 2384 mayAlias = false; 2385 type = refType->getPointeeType(); 2386 if (type->isIncompleteType()) 2387 alignment = CharUnits(); 2388 else 2389 alignment = getContext().getTypeAlignInChars(type); 2390 cvr = 0; // qualifiers don't recursively apply to referencee 2391 } 2392 } 2393 2394 // Make sure that the address is pointing to the right type. This is critical 2395 // for both unions and structs. A union needs a bitcast, a struct element 2396 // will need a bitcast if the LLVM type laid out doesn't match the desired 2397 // type. 2398 addr = EmitBitCastOfLValueToProperType(*this, addr, 2399 CGM.getTypes().ConvertTypeForMem(type), 2400 field->getName()); 2401 2402 if (field->hasAttr<AnnotateAttr>()) 2403 addr = EmitFieldAnnotations(field, addr); 2404 2405 LValue LV = MakeAddrLValue(addr, type, alignment); 2406 LV.getQuals().addCVRQualifiers(cvr); 2407 2408 // __weak attribute on a field is ignored. 2409 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2410 LV.getQuals().removeObjCGCAttr(); 2411 2412 // Fields of may_alias structs act like 'char' for TBAA purposes. 2413 // FIXME: this should get propagated down through anonymous structs 2414 // and unions. 2415 if (mayAlias && LV.getTBAAInfo()) 2416 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2417 2418 return LV; 2419 } 2420 2421 LValue 2422 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2423 const FieldDecl *Field) { 2424 QualType FieldType = Field->getType(); 2425 2426 if (!FieldType->isReferenceType()) 2427 return EmitLValueForField(Base, Field); 2428 2429 const CGRecordLayout &RL = 2430 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2431 unsigned idx = RL.getLLVMFieldNo(Field); 2432 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2433 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2434 2435 // Make sure that the address is pointing to the right type. This is critical 2436 // for both unions and structs. A union needs a bitcast, a struct element 2437 // will need a bitcast if the LLVM type laid out doesn't match the desired 2438 // type. 2439 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2440 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2441 2442 CharUnits Alignment = getContext().getDeclAlign(Field); 2443 2444 // FIXME: It should be impossible to have an LValue without alignment for a 2445 // complete type. 2446 if (!Base.getAlignment().isZero()) 2447 Alignment = std::min(Alignment, Base.getAlignment()); 2448 2449 return MakeAddrLValue(V, FieldType, Alignment); 2450 } 2451 2452 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2453 if (E->isFileScope()) { 2454 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2455 return MakeAddrLValue(GlobalPtr, E->getType()); 2456 } 2457 if (E->getType()->isVariablyModifiedType()) 2458 // make sure to emit the VLA size. 2459 EmitVariablyModifiedType(E->getType()); 2460 2461 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2462 const Expr *InitExpr = E->getInitializer(); 2463 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2464 2465 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2466 /*Init*/ true); 2467 2468 return Result; 2469 } 2470 2471 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2472 if (!E->isGLValue()) 2473 // Initializing an aggregate temporary in C++11: T{...}. 2474 return EmitAggExprToLValue(E); 2475 2476 // An lvalue initializer list must be initializing a reference. 2477 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2478 return EmitLValue(E->getInit(0)); 2479 } 2480 2481 LValue CodeGenFunction:: 2482 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2483 if (!expr->isGLValue()) { 2484 // ?: here should be an aggregate. 2485 assert((hasAggregateLLVMType(expr->getType()) && 2486 !expr->getType()->isAnyComplexType()) && 2487 "Unexpected conditional operator!"); 2488 return EmitAggExprToLValue(expr); 2489 } 2490 2491 OpaqueValueMapping binding(*this, expr); 2492 2493 const Expr *condExpr = expr->getCond(); 2494 bool CondExprBool; 2495 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2496 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2497 if (!CondExprBool) std::swap(live, dead); 2498 2499 if (!ContainsLabel(dead)) 2500 return EmitLValue(live); 2501 } 2502 2503 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2504 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2505 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2506 2507 ConditionalEvaluation eval(*this); 2508 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2509 2510 // Any temporaries created here are conditional. 2511 EmitBlock(lhsBlock); 2512 eval.begin(*this); 2513 LValue lhs = EmitLValue(expr->getTrueExpr()); 2514 eval.end(*this); 2515 2516 if (!lhs.isSimple()) 2517 return EmitUnsupportedLValue(expr, "conditional operator"); 2518 2519 lhsBlock = Builder.GetInsertBlock(); 2520 Builder.CreateBr(contBlock); 2521 2522 // Any temporaries created here are conditional. 2523 EmitBlock(rhsBlock); 2524 eval.begin(*this); 2525 LValue rhs = EmitLValue(expr->getFalseExpr()); 2526 eval.end(*this); 2527 if (!rhs.isSimple()) 2528 return EmitUnsupportedLValue(expr, "conditional operator"); 2529 rhsBlock = Builder.GetInsertBlock(); 2530 2531 EmitBlock(contBlock); 2532 2533 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2534 "cond-lvalue"); 2535 phi->addIncoming(lhs.getAddress(), lhsBlock); 2536 phi->addIncoming(rhs.getAddress(), rhsBlock); 2537 return MakeAddrLValue(phi, expr->getType()); 2538 } 2539 2540 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2541 /// type. If the cast is to a reference, we can have the usual lvalue result, 2542 /// otherwise if a cast is needed by the code generator in an lvalue context, 2543 /// then it must mean that we need the address of an aggregate in order to 2544 /// access one of its members. This can happen for all the reasons that casts 2545 /// are permitted with aggregate result, including noop aggregate casts, and 2546 /// cast from scalar to union. 2547 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2548 switch (E->getCastKind()) { 2549 case CK_ToVoid: 2550 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2551 2552 case CK_Dependent: 2553 llvm_unreachable("dependent cast kind in IR gen!"); 2554 2555 case CK_BuiltinFnToFnPtr: 2556 llvm_unreachable("builtin functions are handled elsewhere"); 2557 2558 // These two casts are currently treated as no-ops, although they could 2559 // potentially be real operations depending on the target's ABI. 2560 case CK_NonAtomicToAtomic: 2561 case CK_AtomicToNonAtomic: 2562 2563 case CK_NoOp: 2564 case CK_LValueToRValue: 2565 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2566 || E->getType()->isRecordType()) 2567 return EmitLValue(E->getSubExpr()); 2568 // Fall through to synthesize a temporary. 2569 2570 case CK_BitCast: 2571 case CK_ArrayToPointerDecay: 2572 case CK_FunctionToPointerDecay: 2573 case CK_NullToMemberPointer: 2574 case CK_NullToPointer: 2575 case CK_IntegralToPointer: 2576 case CK_PointerToIntegral: 2577 case CK_PointerToBoolean: 2578 case CK_VectorSplat: 2579 case CK_IntegralCast: 2580 case CK_IntegralToBoolean: 2581 case CK_IntegralToFloating: 2582 case CK_FloatingToIntegral: 2583 case CK_FloatingToBoolean: 2584 case CK_FloatingCast: 2585 case CK_FloatingRealToComplex: 2586 case CK_FloatingComplexToReal: 2587 case CK_FloatingComplexToBoolean: 2588 case CK_FloatingComplexCast: 2589 case CK_FloatingComplexToIntegralComplex: 2590 case CK_IntegralRealToComplex: 2591 case CK_IntegralComplexToReal: 2592 case CK_IntegralComplexToBoolean: 2593 case CK_IntegralComplexCast: 2594 case CK_IntegralComplexToFloatingComplex: 2595 case CK_DerivedToBaseMemberPointer: 2596 case CK_BaseToDerivedMemberPointer: 2597 case CK_MemberPointerToBoolean: 2598 case CK_ReinterpretMemberPointer: 2599 case CK_AnyPointerToBlockPointerCast: 2600 case CK_ARCProduceObject: 2601 case CK_ARCConsumeObject: 2602 case CK_ARCReclaimReturnedObject: 2603 case CK_ARCExtendBlockObject: 2604 case CK_CopyAndAutoreleaseBlockObject: { 2605 // These casts only produce lvalues when we're binding a reference to a 2606 // temporary realized from a (converted) pure rvalue. Emit the expression 2607 // as a value, copy it into a temporary, and return an lvalue referring to 2608 // that temporary. 2609 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2610 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2611 return MakeAddrLValue(V, E->getType()); 2612 } 2613 2614 case CK_Dynamic: { 2615 LValue LV = EmitLValue(E->getSubExpr()); 2616 llvm::Value *V = LV.getAddress(); 2617 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2618 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2619 } 2620 2621 case CK_ConstructorConversion: 2622 case CK_UserDefinedConversion: 2623 case CK_CPointerToObjCPointerCast: 2624 case CK_BlockPointerToObjCPointerCast: 2625 return EmitLValue(E->getSubExpr()); 2626 2627 case CK_UncheckedDerivedToBase: 2628 case CK_DerivedToBase: { 2629 const RecordType *DerivedClassTy = 2630 E->getSubExpr()->getType()->getAs<RecordType>(); 2631 CXXRecordDecl *DerivedClassDecl = 2632 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2633 2634 LValue LV = EmitLValue(E->getSubExpr()); 2635 llvm::Value *This = LV.getAddress(); 2636 2637 // Perform the derived-to-base conversion 2638 llvm::Value *Base = 2639 GetAddressOfBaseClass(This, DerivedClassDecl, 2640 E->path_begin(), E->path_end(), 2641 /*NullCheckValue=*/false); 2642 2643 return MakeAddrLValue(Base, E->getType()); 2644 } 2645 case CK_ToUnion: 2646 return EmitAggExprToLValue(E); 2647 case CK_BaseToDerived: { 2648 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2649 CXXRecordDecl *DerivedClassDecl = 2650 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2651 2652 LValue LV = EmitLValue(E->getSubExpr()); 2653 2654 // Perform the base-to-derived conversion 2655 llvm::Value *Derived = 2656 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2657 E->path_begin(), E->path_end(), 2658 /*NullCheckValue=*/false); 2659 2660 return MakeAddrLValue(Derived, E->getType()); 2661 } 2662 case CK_LValueBitCast: { 2663 // This must be a reinterpret_cast (or c-style equivalent). 2664 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2665 2666 LValue LV = EmitLValue(E->getSubExpr()); 2667 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2668 ConvertType(CE->getTypeAsWritten())); 2669 return MakeAddrLValue(V, E->getType()); 2670 } 2671 case CK_ObjCObjectLValueCast: { 2672 LValue LV = EmitLValue(E->getSubExpr()); 2673 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2674 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2675 ConvertType(ToType)); 2676 return MakeAddrLValue(V, E->getType()); 2677 } 2678 } 2679 2680 llvm_unreachable("Unhandled lvalue cast kind?"); 2681 } 2682 2683 LValue CodeGenFunction::EmitNullInitializationLValue( 2684 const CXXScalarValueInitExpr *E) { 2685 QualType Ty = E->getType(); 2686 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2687 EmitNullInitialization(LV.getAddress(), Ty); 2688 return LV; 2689 } 2690 2691 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2692 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2693 return getOpaqueLValueMapping(e); 2694 } 2695 2696 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2697 const MaterializeTemporaryExpr *E) { 2698 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2699 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2700 } 2701 2702 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2703 const FieldDecl *FD) { 2704 QualType FT = FD->getType(); 2705 LValue FieldLV = EmitLValueForField(LV, FD); 2706 if (FT->isAnyComplexType()) 2707 return RValue::getComplex( 2708 LoadComplexFromAddr(FieldLV.getAddress(), 2709 FieldLV.isVolatileQualified())); 2710 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2711 return FieldLV.asAggregateRValue(); 2712 2713 return EmitLoadOfLValue(FieldLV); 2714 } 2715 2716 //===--------------------------------------------------------------------===// 2717 // Expression Emission 2718 //===--------------------------------------------------------------------===// 2719 2720 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2721 ReturnValueSlot ReturnValue) { 2722 if (CGDebugInfo *DI = getDebugInfo()) 2723 DI->EmitLocation(Builder, E->getLocStart()); 2724 2725 // Builtins never have block type. 2726 if (E->getCallee()->getType()->isBlockPointerType()) 2727 return EmitBlockCallExpr(E, ReturnValue); 2728 2729 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2730 return EmitCXXMemberCallExpr(CE, ReturnValue); 2731 2732 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2733 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2734 2735 const Decl *TargetDecl = E->getCalleeDecl(); 2736 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2737 if (unsigned builtinID = FD->getBuiltinID()) 2738 return EmitBuiltinExpr(FD, builtinID, E); 2739 } 2740 2741 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2742 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2743 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2744 2745 if (const CXXPseudoDestructorExpr *PseudoDtor 2746 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2747 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2748 if (getContext().getLangOpts().ObjCAutoRefCount && 2749 DestroyedType->isObjCLifetimeType() && 2750 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2751 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2752 // Automatic Reference Counting: 2753 // If the pseudo-expression names a retainable object with weak or 2754 // strong lifetime, the object shall be released. 2755 Expr *BaseExpr = PseudoDtor->getBase(); 2756 llvm::Value *BaseValue = NULL; 2757 Qualifiers BaseQuals; 2758 2759 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2760 if (PseudoDtor->isArrow()) { 2761 BaseValue = EmitScalarExpr(BaseExpr); 2762 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2763 BaseQuals = PTy->getPointeeType().getQualifiers(); 2764 } else { 2765 LValue BaseLV = EmitLValue(BaseExpr); 2766 BaseValue = BaseLV.getAddress(); 2767 QualType BaseTy = BaseExpr->getType(); 2768 BaseQuals = BaseTy.getQualifiers(); 2769 } 2770 2771 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2772 case Qualifiers::OCL_None: 2773 case Qualifiers::OCL_ExplicitNone: 2774 case Qualifiers::OCL_Autoreleasing: 2775 break; 2776 2777 case Qualifiers::OCL_Strong: 2778 EmitARCRelease(Builder.CreateLoad(BaseValue, 2779 PseudoDtor->getDestroyedType().isVolatileQualified()), 2780 /*precise*/ true); 2781 break; 2782 2783 case Qualifiers::OCL_Weak: 2784 EmitARCDestroyWeak(BaseValue); 2785 break; 2786 } 2787 } else { 2788 // C++ [expr.pseudo]p1: 2789 // The result shall only be used as the operand for the function call 2790 // operator (), and the result of such a call has type void. The only 2791 // effect is the evaluation of the postfix-expression before the dot or 2792 // arrow. 2793 EmitScalarExpr(E->getCallee()); 2794 } 2795 2796 return RValue::get(0); 2797 } 2798 2799 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2800 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2801 E->arg_begin(), E->arg_end(), TargetDecl); 2802 } 2803 2804 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2805 // Comma expressions just emit their LHS then their RHS as an l-value. 2806 if (E->getOpcode() == BO_Comma) { 2807 EmitIgnoredExpr(E->getLHS()); 2808 EnsureInsertPoint(); 2809 return EmitLValue(E->getRHS()); 2810 } 2811 2812 if (E->getOpcode() == BO_PtrMemD || 2813 E->getOpcode() == BO_PtrMemI) 2814 return EmitPointerToDataMemberBinaryExpr(E); 2815 2816 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2817 2818 // Note that in all of these cases, __block variables need the RHS 2819 // evaluated first just in case the variable gets moved by the RHS. 2820 2821 if (!hasAggregateLLVMType(E->getType())) { 2822 switch (E->getLHS()->getType().getObjCLifetime()) { 2823 case Qualifiers::OCL_Strong: 2824 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2825 2826 case Qualifiers::OCL_Autoreleasing: 2827 return EmitARCStoreAutoreleasing(E).first; 2828 2829 // No reason to do any of these differently. 2830 case Qualifiers::OCL_None: 2831 case Qualifiers::OCL_ExplicitNone: 2832 case Qualifiers::OCL_Weak: 2833 break; 2834 } 2835 2836 RValue RV = EmitAnyExpr(E->getRHS()); 2837 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2838 EmitStoreThroughLValue(RV, LV); 2839 return LV; 2840 } 2841 2842 if (E->getType()->isAnyComplexType()) 2843 return EmitComplexAssignmentLValue(E); 2844 2845 return EmitAggExprToLValue(E); 2846 } 2847 2848 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2849 RValue RV = EmitCallExpr(E); 2850 2851 if (!RV.isScalar()) 2852 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2853 2854 assert(E->getCallReturnType()->isReferenceType() && 2855 "Can't have a scalar return unless the return type is a " 2856 "reference type!"); 2857 2858 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2859 } 2860 2861 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2862 // FIXME: This shouldn't require another copy. 2863 return EmitAggExprToLValue(E); 2864 } 2865 2866 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2867 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2868 && "binding l-value to type which needs a temporary"); 2869 AggValueSlot Slot = CreateAggTemp(E->getType()); 2870 EmitCXXConstructExpr(E, Slot); 2871 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2872 } 2873 2874 LValue 2875 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2876 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2877 } 2878 2879 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 2880 return CGM.GetAddrOfUuidDescriptor(E); 2881 } 2882 2883 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 2884 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 2885 } 2886 2887 LValue 2888 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2889 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2890 Slot.setExternallyDestructed(); 2891 EmitAggExpr(E->getSubExpr(), Slot); 2892 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2893 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2894 } 2895 2896 LValue 2897 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2898 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2899 EmitLambdaExpr(E, Slot); 2900 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2901 } 2902 2903 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2904 RValue RV = EmitObjCMessageExpr(E); 2905 2906 if (!RV.isScalar()) 2907 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2908 2909 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2910 "Can't have a scalar return unless the return type is a " 2911 "reference type!"); 2912 2913 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2914 } 2915 2916 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2917 llvm::Value *V = 2918 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2919 return MakeAddrLValue(V, E->getType()); 2920 } 2921 2922 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2923 const ObjCIvarDecl *Ivar) { 2924 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2925 } 2926 2927 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2928 llvm::Value *BaseValue, 2929 const ObjCIvarDecl *Ivar, 2930 unsigned CVRQualifiers) { 2931 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2932 Ivar, CVRQualifiers); 2933 } 2934 2935 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2936 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2937 llvm::Value *BaseValue = 0; 2938 const Expr *BaseExpr = E->getBase(); 2939 Qualifiers BaseQuals; 2940 QualType ObjectTy; 2941 if (E->isArrow()) { 2942 BaseValue = EmitScalarExpr(BaseExpr); 2943 ObjectTy = BaseExpr->getType()->getPointeeType(); 2944 BaseQuals = ObjectTy.getQualifiers(); 2945 } else { 2946 LValue BaseLV = EmitLValue(BaseExpr); 2947 // FIXME: this isn't right for bitfields. 2948 BaseValue = BaseLV.getAddress(); 2949 ObjectTy = BaseExpr->getType(); 2950 BaseQuals = ObjectTy.getQualifiers(); 2951 } 2952 2953 LValue LV = 2954 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2955 BaseQuals.getCVRQualifiers()); 2956 setObjCGCLValueClass(getContext(), E, LV); 2957 return LV; 2958 } 2959 2960 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2961 // Can only get l-value for message expression returning aggregate type 2962 RValue RV = EmitAnyExprToTemp(E); 2963 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2964 } 2965 2966 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2967 ReturnValueSlot ReturnValue, 2968 CallExpr::const_arg_iterator ArgBeg, 2969 CallExpr::const_arg_iterator ArgEnd, 2970 const Decl *TargetDecl) { 2971 // Get the actual function type. The callee type will always be a pointer to 2972 // function type or a block pointer type. 2973 assert(CalleeType->isFunctionPointerType() && 2974 "Call must have function pointer type!"); 2975 2976 CalleeType = getContext().getCanonicalType(CalleeType); 2977 2978 const FunctionType *FnType 2979 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2980 2981 CallArgList Args; 2982 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2983 2984 const CGFunctionInfo &FnInfo = 2985 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 2986 2987 // C99 6.5.2.2p6: 2988 // If the expression that denotes the called function has a type 2989 // that does not include a prototype, [the default argument 2990 // promotions are performed]. If the number of arguments does not 2991 // equal the number of parameters, the behavior is undefined. If 2992 // the function is defined with a type that includes a prototype, 2993 // and either the prototype ends with an ellipsis (, ...) or the 2994 // types of the arguments after promotion are not compatible with 2995 // the types of the parameters, the behavior is undefined. If the 2996 // function is defined with a type that does not include a 2997 // prototype, and the types of the arguments after promotion are 2998 // not compatible with those of the parameters after promotion, 2999 // the behavior is undefined [except in some trivial cases]. 3000 // That is, in the general case, we should assume that a call 3001 // through an unprototyped function type works like a *non-variadic* 3002 // call. The way we make this work is to cast to the exact type 3003 // of the promoted arguments. 3004 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 3005 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3006 CalleeTy = CalleeTy->getPointerTo(); 3007 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3008 } 3009 3010 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3011 } 3012 3013 LValue CodeGenFunction:: 3014 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3015 llvm::Value *BaseV; 3016 if (E->getOpcode() == BO_PtrMemI) 3017 BaseV = EmitScalarExpr(E->getLHS()); 3018 else 3019 BaseV = EmitLValue(E->getLHS()).getAddress(); 3020 3021 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3022 3023 const MemberPointerType *MPT 3024 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3025 3026 llvm::Value *AddV = 3027 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3028 3029 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3030 } 3031 3032 static void 3033 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 3034 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 3035 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 3036 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 3037 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 3038 3039 switch (E->getOp()) { 3040 case AtomicExpr::AO__c11_atomic_init: 3041 llvm_unreachable("Already handled!"); 3042 3043 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3044 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3045 case AtomicExpr::AO__atomic_compare_exchange: 3046 case AtomicExpr::AO__atomic_compare_exchange_n: { 3047 // Note that cmpxchg only supports specifying one ordering and 3048 // doesn't support weak cmpxchg, at least at the moment. 3049 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3050 LoadVal1->setAlignment(Align); 3051 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 3052 LoadVal2->setAlignment(Align); 3053 llvm::AtomicCmpXchgInst *CXI = 3054 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 3055 CXI->setVolatile(E->isVolatile()); 3056 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 3057 StoreVal1->setAlignment(Align); 3058 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 3059 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 3060 return; 3061 } 3062 3063 case AtomicExpr::AO__c11_atomic_load: 3064 case AtomicExpr::AO__atomic_load_n: 3065 case AtomicExpr::AO__atomic_load: { 3066 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 3067 Load->setAtomic(Order); 3068 Load->setAlignment(Size); 3069 Load->setVolatile(E->isVolatile()); 3070 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 3071 StoreDest->setAlignment(Align); 3072 return; 3073 } 3074 3075 case AtomicExpr::AO__c11_atomic_store: 3076 case AtomicExpr::AO__atomic_store: 3077 case AtomicExpr::AO__atomic_store_n: { 3078 assert(!Dest && "Store does not return a value"); 3079 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3080 LoadVal1->setAlignment(Align); 3081 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 3082 Store->setAtomic(Order); 3083 Store->setAlignment(Size); 3084 Store->setVolatile(E->isVolatile()); 3085 return; 3086 } 3087 3088 case AtomicExpr::AO__c11_atomic_exchange: 3089 case AtomicExpr::AO__atomic_exchange_n: 3090 case AtomicExpr::AO__atomic_exchange: 3091 Op = llvm::AtomicRMWInst::Xchg; 3092 break; 3093 3094 case AtomicExpr::AO__atomic_add_fetch: 3095 PostOp = llvm::Instruction::Add; 3096 // Fall through. 3097 case AtomicExpr::AO__c11_atomic_fetch_add: 3098 case AtomicExpr::AO__atomic_fetch_add: 3099 Op = llvm::AtomicRMWInst::Add; 3100 break; 3101 3102 case AtomicExpr::AO__atomic_sub_fetch: 3103 PostOp = llvm::Instruction::Sub; 3104 // Fall through. 3105 case AtomicExpr::AO__c11_atomic_fetch_sub: 3106 case AtomicExpr::AO__atomic_fetch_sub: 3107 Op = llvm::AtomicRMWInst::Sub; 3108 break; 3109 3110 case AtomicExpr::AO__atomic_and_fetch: 3111 PostOp = llvm::Instruction::And; 3112 // Fall through. 3113 case AtomicExpr::AO__c11_atomic_fetch_and: 3114 case AtomicExpr::AO__atomic_fetch_and: 3115 Op = llvm::AtomicRMWInst::And; 3116 break; 3117 3118 case AtomicExpr::AO__atomic_or_fetch: 3119 PostOp = llvm::Instruction::Or; 3120 // Fall through. 3121 case AtomicExpr::AO__c11_atomic_fetch_or: 3122 case AtomicExpr::AO__atomic_fetch_or: 3123 Op = llvm::AtomicRMWInst::Or; 3124 break; 3125 3126 case AtomicExpr::AO__atomic_xor_fetch: 3127 PostOp = llvm::Instruction::Xor; 3128 // Fall through. 3129 case AtomicExpr::AO__c11_atomic_fetch_xor: 3130 case AtomicExpr::AO__atomic_fetch_xor: 3131 Op = llvm::AtomicRMWInst::Xor; 3132 break; 3133 3134 case AtomicExpr::AO__atomic_nand_fetch: 3135 PostOp = llvm::Instruction::And; 3136 // Fall through. 3137 case AtomicExpr::AO__atomic_fetch_nand: 3138 Op = llvm::AtomicRMWInst::Nand; 3139 break; 3140 } 3141 3142 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3143 LoadVal1->setAlignment(Align); 3144 llvm::AtomicRMWInst *RMWI = 3145 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 3146 RMWI->setVolatile(E->isVolatile()); 3147 3148 // For __atomic_*_fetch operations, perform the operation again to 3149 // determine the value which was written. 3150 llvm::Value *Result = RMWI; 3151 if (PostOp) 3152 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 3153 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 3154 Result = CGF.Builder.CreateNot(Result); 3155 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 3156 StoreDest->setAlignment(Align); 3157 } 3158 3159 // This function emits any expression (scalar, complex, or aggregate) 3160 // into a temporary alloca. 3161 static llvm::Value * 3162 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 3163 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 3164 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 3165 /*Init*/ true); 3166 return DeclPtr; 3167 } 3168 3169 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 3170 llvm::Value *Dest) { 3171 if (Ty->isAnyComplexType()) 3172 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 3173 if (CGF.hasAggregateLLVMType(Ty)) 3174 return RValue::getAggregate(Dest); 3175 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 3176 } 3177 3178 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 3179 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 3180 QualType MemTy = AtomicTy; 3181 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 3182 MemTy = AT->getValueType(); 3183 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 3184 uint64_t Size = sizeChars.getQuantity(); 3185 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 3186 unsigned Align = alignChars.getQuantity(); 3187 unsigned MaxInlineWidth = 3188 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 3189 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 3190 3191 3192 3193 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 3194 Ptr = EmitScalarExpr(E->getPtr()); 3195 3196 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 3197 assert(!Dest && "Init does not return a value"); 3198 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 3199 QualType PointeeType 3200 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 3201 EmitScalarInit(EmitScalarExpr(E->getVal1()), 3202 LValue::MakeAddr(Ptr, PointeeType, alignChars, 3203 getContext())); 3204 } else if (E->getType()->isAnyComplexType()) { 3205 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 3206 } else { 3207 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 3208 AtomicTy.getQualifiers(), 3209 AggValueSlot::IsNotDestructed, 3210 AggValueSlot::DoesNotNeedGCBarriers, 3211 AggValueSlot::IsNotAliased); 3212 EmitAggExpr(E->getVal1(), Slot); 3213 } 3214 return RValue::get(0); 3215 } 3216 3217 Order = EmitScalarExpr(E->getOrder()); 3218 3219 switch (E->getOp()) { 3220 case AtomicExpr::AO__c11_atomic_init: 3221 llvm_unreachable("Already handled!"); 3222 3223 case AtomicExpr::AO__c11_atomic_load: 3224 case AtomicExpr::AO__atomic_load_n: 3225 break; 3226 3227 case AtomicExpr::AO__atomic_load: 3228 Dest = EmitScalarExpr(E->getVal1()); 3229 break; 3230 3231 case AtomicExpr::AO__atomic_store: 3232 Val1 = EmitScalarExpr(E->getVal1()); 3233 break; 3234 3235 case AtomicExpr::AO__atomic_exchange: 3236 Val1 = EmitScalarExpr(E->getVal1()); 3237 Dest = EmitScalarExpr(E->getVal2()); 3238 break; 3239 3240 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3241 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3242 case AtomicExpr::AO__atomic_compare_exchange_n: 3243 case AtomicExpr::AO__atomic_compare_exchange: 3244 Val1 = EmitScalarExpr(E->getVal1()); 3245 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 3246 Val2 = EmitScalarExpr(E->getVal2()); 3247 else 3248 Val2 = EmitValToTemp(*this, E->getVal2()); 3249 OrderFail = EmitScalarExpr(E->getOrderFail()); 3250 // Evaluate and discard the 'weak' argument. 3251 if (E->getNumSubExprs() == 6) 3252 EmitScalarExpr(E->getWeak()); 3253 break; 3254 3255 case AtomicExpr::AO__c11_atomic_fetch_add: 3256 case AtomicExpr::AO__c11_atomic_fetch_sub: 3257 if (MemTy->isPointerType()) { 3258 // For pointer arithmetic, we're required to do a bit of math: 3259 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 3260 // ... but only for the C11 builtins. The GNU builtins expect the 3261 // user to multiply by sizeof(T). 3262 QualType Val1Ty = E->getVal1()->getType(); 3263 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 3264 CharUnits PointeeIncAmt = 3265 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 3266 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 3267 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 3268 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 3269 break; 3270 } 3271 // Fall through. 3272 case AtomicExpr::AO__atomic_fetch_add: 3273 case AtomicExpr::AO__atomic_fetch_sub: 3274 case AtomicExpr::AO__atomic_add_fetch: 3275 case AtomicExpr::AO__atomic_sub_fetch: 3276 case AtomicExpr::AO__c11_atomic_store: 3277 case AtomicExpr::AO__c11_atomic_exchange: 3278 case AtomicExpr::AO__atomic_store_n: 3279 case AtomicExpr::AO__atomic_exchange_n: 3280 case AtomicExpr::AO__c11_atomic_fetch_and: 3281 case AtomicExpr::AO__c11_atomic_fetch_or: 3282 case AtomicExpr::AO__c11_atomic_fetch_xor: 3283 case AtomicExpr::AO__atomic_fetch_and: 3284 case AtomicExpr::AO__atomic_fetch_or: 3285 case AtomicExpr::AO__atomic_fetch_xor: 3286 case AtomicExpr::AO__atomic_fetch_nand: 3287 case AtomicExpr::AO__atomic_and_fetch: 3288 case AtomicExpr::AO__atomic_or_fetch: 3289 case AtomicExpr::AO__atomic_xor_fetch: 3290 case AtomicExpr::AO__atomic_nand_fetch: 3291 Val1 = EmitValToTemp(*this, E->getVal1()); 3292 break; 3293 } 3294 3295 if (!E->getType()->isVoidType() && !Dest) 3296 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 3297 3298 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 3299 if (UseLibcall) { 3300 3301 llvm::SmallVector<QualType, 5> Params; 3302 CallArgList Args; 3303 // Size is always the first parameter 3304 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 3305 getContext().getSizeType()); 3306 // Atomic address is always the second parameter 3307 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 3308 getContext().VoidPtrTy); 3309 3310 const char* LibCallName; 3311 QualType RetTy = getContext().VoidTy; 3312 switch (E->getOp()) { 3313 // There is only one libcall for compare an exchange, because there is no 3314 // optimisation benefit possible from a libcall version of a weak compare 3315 // and exchange. 3316 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 3317 // void *desired, int success, int failure) 3318 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3319 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3320 case AtomicExpr::AO__atomic_compare_exchange: 3321 case AtomicExpr::AO__atomic_compare_exchange_n: 3322 LibCallName = "__atomic_compare_exchange"; 3323 RetTy = getContext().BoolTy; 3324 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3325 getContext().VoidPtrTy); 3326 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 3327 getContext().VoidPtrTy); 3328 Args.add(RValue::get(Order), 3329 getContext().IntTy); 3330 Order = OrderFail; 3331 break; 3332 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 3333 // int order) 3334 case AtomicExpr::AO__c11_atomic_exchange: 3335 case AtomicExpr::AO__atomic_exchange_n: 3336 case AtomicExpr::AO__atomic_exchange: 3337 LibCallName = "__atomic_exchange"; 3338 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3339 getContext().VoidPtrTy); 3340 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3341 getContext().VoidPtrTy); 3342 break; 3343 // void __atomic_store(size_t size, void *mem, void *val, int order) 3344 case AtomicExpr::AO__c11_atomic_store: 3345 case AtomicExpr::AO__atomic_store: 3346 case AtomicExpr::AO__atomic_store_n: 3347 LibCallName = "__atomic_store"; 3348 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3349 getContext().VoidPtrTy); 3350 break; 3351 // void __atomic_load(size_t size, void *mem, void *return, int order) 3352 case AtomicExpr::AO__c11_atomic_load: 3353 case AtomicExpr::AO__atomic_load: 3354 case AtomicExpr::AO__atomic_load_n: 3355 LibCallName = "__atomic_load"; 3356 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3357 getContext().VoidPtrTy); 3358 break; 3359 #if 0 3360 // These are only defined for 1-16 byte integers. It is not clear what 3361 // their semantics would be on anything else... 3362 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3363 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3364 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3365 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3366 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3367 #endif 3368 default: return EmitUnsupportedRValue(E, "atomic library call"); 3369 } 3370 // order is always the last parameter 3371 Args.add(RValue::get(Order), 3372 getContext().IntTy); 3373 3374 const CGFunctionInfo &FuncInfo = 3375 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, 3376 FunctionType::ExtInfo(), RequiredArgs::All); 3377 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3378 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3379 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3380 if (E->isCmpXChg()) 3381 return Res; 3382 if (E->getType()->isVoidType()) 3383 return RValue::get(0); 3384 return ConvertTempToRValue(*this, E->getType(), Dest); 3385 } 3386 3387 llvm::Type *IPtrTy = 3388 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3389 llvm::Value *OrigDest = Dest; 3390 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3391 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3392 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3393 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3394 3395 if (isa<llvm::ConstantInt>(Order)) { 3396 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3397 switch (ord) { 3398 case 0: // memory_order_relaxed 3399 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3400 llvm::Monotonic); 3401 break; 3402 case 1: // memory_order_consume 3403 case 2: // memory_order_acquire 3404 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3405 llvm::Acquire); 3406 break; 3407 case 3: // memory_order_release 3408 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3409 llvm::Release); 3410 break; 3411 case 4: // memory_order_acq_rel 3412 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3413 llvm::AcquireRelease); 3414 break; 3415 case 5: // memory_order_seq_cst 3416 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3417 llvm::SequentiallyConsistent); 3418 break; 3419 default: // invalid order 3420 // We should not ever get here normally, but it's hard to 3421 // enforce that in general. 3422 break; 3423 } 3424 if (E->getType()->isVoidType()) 3425 return RValue::get(0); 3426 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3427 } 3428 3429 // Long case, when Order isn't obviously constant. 3430 3431 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3432 E->getOp() == AtomicExpr::AO__atomic_store || 3433 E->getOp() == AtomicExpr::AO__atomic_store_n; 3434 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3435 E->getOp() == AtomicExpr::AO__atomic_load || 3436 E->getOp() == AtomicExpr::AO__atomic_load_n; 3437 3438 // Create all the relevant BB's 3439 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3440 *AcqRelBB = 0, *SeqCstBB = 0; 3441 MonotonicBB = createBasicBlock("monotonic", CurFn); 3442 if (!IsStore) 3443 AcquireBB = createBasicBlock("acquire", CurFn); 3444 if (!IsLoad) 3445 ReleaseBB = createBasicBlock("release", CurFn); 3446 if (!IsLoad && !IsStore) 3447 AcqRelBB = createBasicBlock("acqrel", CurFn); 3448 SeqCstBB = createBasicBlock("seqcst", CurFn); 3449 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3450 3451 // Create the switch for the split 3452 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3453 // doesn't matter unless someone is crazy enough to use something that 3454 // doesn't fold to a constant for the ordering. 3455 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3456 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3457 3458 // Emit all the different atomics 3459 Builder.SetInsertPoint(MonotonicBB); 3460 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3461 llvm::Monotonic); 3462 Builder.CreateBr(ContBB); 3463 if (!IsStore) { 3464 Builder.SetInsertPoint(AcquireBB); 3465 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3466 llvm::Acquire); 3467 Builder.CreateBr(ContBB); 3468 SI->addCase(Builder.getInt32(1), AcquireBB); 3469 SI->addCase(Builder.getInt32(2), AcquireBB); 3470 } 3471 if (!IsLoad) { 3472 Builder.SetInsertPoint(ReleaseBB); 3473 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3474 llvm::Release); 3475 Builder.CreateBr(ContBB); 3476 SI->addCase(Builder.getInt32(3), ReleaseBB); 3477 } 3478 if (!IsLoad && !IsStore) { 3479 Builder.SetInsertPoint(AcqRelBB); 3480 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3481 llvm::AcquireRelease); 3482 Builder.CreateBr(ContBB); 3483 SI->addCase(Builder.getInt32(4), AcqRelBB); 3484 } 3485 Builder.SetInsertPoint(SeqCstBB); 3486 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3487 llvm::SequentiallyConsistent); 3488 Builder.CreateBr(ContBB); 3489 SI->addCase(Builder.getInt32(5), SeqCstBB); 3490 3491 // Cleanup and return 3492 Builder.SetInsertPoint(ContBB); 3493 if (E->getType()->isVoidType()) 3494 return RValue::get(0); 3495 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3496 } 3497 3498 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3499 assert(Val->getType()->isFPOrFPVectorTy()); 3500 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3501 return; 3502 3503 llvm::MDBuilder MDHelper(getLLVMContext()); 3504 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3505 3506 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3507 } 3508 3509 namespace { 3510 struct LValueOrRValue { 3511 LValue LV; 3512 RValue RV; 3513 }; 3514 } 3515 3516 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3517 const PseudoObjectExpr *E, 3518 bool forLValue, 3519 AggValueSlot slot) { 3520 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3521 3522 // Find the result expression, if any. 3523 const Expr *resultExpr = E->getResultExpr(); 3524 LValueOrRValue result; 3525 3526 for (PseudoObjectExpr::const_semantics_iterator 3527 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3528 const Expr *semantic = *i; 3529 3530 // If this semantic expression is an opaque value, bind it 3531 // to the result of its source expression. 3532 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3533 3534 // If this is the result expression, we may need to evaluate 3535 // directly into the slot. 3536 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3537 OVMA opaqueData; 3538 if (ov == resultExpr && ov->isRValue() && !forLValue && 3539 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3540 !ov->getType()->isAnyComplexType()) { 3541 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3542 3543 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3544 opaqueData = OVMA::bind(CGF, ov, LV); 3545 result.RV = slot.asRValue(); 3546 3547 // Otherwise, emit as normal. 3548 } else { 3549 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3550 3551 // If this is the result, also evaluate the result now. 3552 if (ov == resultExpr) { 3553 if (forLValue) 3554 result.LV = CGF.EmitLValue(ov); 3555 else 3556 result.RV = CGF.EmitAnyExpr(ov, slot); 3557 } 3558 } 3559 3560 opaques.push_back(opaqueData); 3561 3562 // Otherwise, if the expression is the result, evaluate it 3563 // and remember the result. 3564 } else if (semantic == resultExpr) { 3565 if (forLValue) 3566 result.LV = CGF.EmitLValue(semantic); 3567 else 3568 result.RV = CGF.EmitAnyExpr(semantic, slot); 3569 3570 // Otherwise, evaluate the expression in an ignored context. 3571 } else { 3572 CGF.EmitIgnoredExpr(semantic); 3573 } 3574 } 3575 3576 // Unbind all the opaques now. 3577 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3578 opaques[i].unbind(CGF); 3579 3580 return result; 3581 } 3582 3583 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3584 AggValueSlot slot) { 3585 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3586 } 3587 3588 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3589 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3590 } 3591