1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Ty, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(getPostAllocaInsertPoint());
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Ty, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // Just emit it as an l-value and drop the result.
195   EmitLValue(E);
196 }
197 
198 /// EmitAnyExpr - Emit code to compute the specified expression which
199 /// can have any type.  The result is returned as an RValue struct.
200 /// If this is an aggregate expression, AggSlot indicates where the
201 /// result should be returned.
202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
203                                     AggValueSlot aggSlot,
204                                     bool ignoreResult) {
205   switch (getEvaluationKind(E->getType())) {
206   case TEK_Scalar:
207     return RValue::get(EmitScalarExpr(E, ignoreResult));
208   case TEK_Complex:
209     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
210   case TEK_Aggregate:
211     if (!ignoreResult && aggSlot.isIgnored())
212       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
213     EmitAggExpr(E, aggSlot);
214     return aggSlot.asRValue();
215   }
216   llvm_unreachable("bad evaluation kind");
217 }
218 
219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
220 /// always be accessible even if no aggregate location is provided.
221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
222   AggValueSlot AggSlot = AggValueSlot::ignored();
223 
224   if (hasAggregateEvaluationKind(E->getType()))
225     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
226   return EmitAnyExpr(E, AggSlot);
227 }
228 
229 /// EmitAnyExprToMem - Evaluate an expression into a given memory
230 /// location.
231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
232                                        Address Location,
233                                        Qualifiers Quals,
234                                        bool IsInit) {
235   // FIXME: This function should take an LValue as an argument.
236   switch (getEvaluationKind(E->getType())) {
237   case TEK_Complex:
238     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
239                               /*isInit*/ false);
240     return;
241 
242   case TEK_Aggregate: {
243     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
244                                          AggValueSlot::IsDestructed_t(IsInit),
245                                          AggValueSlot::DoesNotNeedGCBarriers,
246                                          AggValueSlot::IsAliased_t(!IsInit),
247                                          AggValueSlot::MayOverlap));
248     return;
249   }
250 
251   case TEK_Scalar: {
252     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
253     LValue LV = MakeAddrLValue(Location, E->getType());
254     EmitStoreThroughLValue(RV, LV);
255     return;
256   }
257   }
258   llvm_unreachable("bad evaluation kind");
259 }
260 
261 static void
262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
263                      const Expr *E, Address ReferenceTemporary) {
264   // Objective-C++ ARC:
265   //   If we are binding a reference to a temporary that has ownership, we
266   //   need to perform retain/release operations on the temporary.
267   //
268   // FIXME: This should be looking at E, not M.
269   if (auto Lifetime = M->getType().getObjCLifetime()) {
270     switch (Lifetime) {
271     case Qualifiers::OCL_None:
272     case Qualifiers::OCL_ExplicitNone:
273       // Carry on to normal cleanup handling.
274       break;
275 
276     case Qualifiers::OCL_Autoreleasing:
277       // Nothing to do; cleaned up by an autorelease pool.
278       return;
279 
280     case Qualifiers::OCL_Strong:
281     case Qualifiers::OCL_Weak:
282       switch (StorageDuration Duration = M->getStorageDuration()) {
283       case SD_Static:
284         // Note: we intentionally do not register a cleanup to release
285         // the object on program termination.
286         return;
287 
288       case SD_Thread:
289         // FIXME: We should probably register a cleanup in this case.
290         return;
291 
292       case SD_Automatic:
293       case SD_FullExpression:
294         CodeGenFunction::Destroyer *Destroy;
295         CleanupKind CleanupKind;
296         if (Lifetime == Qualifiers::OCL_Strong) {
297           const ValueDecl *VD = M->getExtendingDecl();
298           bool Precise =
299               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
300           CleanupKind = CGF.getARCCleanupKind();
301           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
302                             : &CodeGenFunction::destroyARCStrongImprecise;
303         } else {
304           // __weak objects always get EH cleanups; otherwise, exceptions
305           // could cause really nasty crashes instead of mere leaks.
306           CleanupKind = NormalAndEHCleanup;
307           Destroy = &CodeGenFunction::destroyARCWeak;
308         }
309         if (Duration == SD_FullExpression)
310           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
311                           M->getType(), *Destroy,
312                           CleanupKind & EHCleanup);
313         else
314           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
315                                           M->getType(),
316                                           *Destroy, CleanupKind & EHCleanup);
317         return;
318 
319       case SD_Dynamic:
320         llvm_unreachable("temporary cannot have dynamic storage duration");
321       }
322       llvm_unreachable("unknown storage duration");
323     }
324   }
325 
326   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
327   if (const RecordType *RT =
328           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
329     // Get the destructor for the reference temporary.
330     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
331     if (!ClassDecl->hasTrivialDestructor())
332       ReferenceTemporaryDtor = ClassDecl->getDestructor();
333   }
334 
335   if (!ReferenceTemporaryDtor)
336     return;
337 
338   // Call the destructor for the temporary.
339   switch (M->getStorageDuration()) {
340   case SD_Static:
341   case SD_Thread: {
342     llvm::FunctionCallee CleanupFn;
343     llvm::Constant *CleanupArg;
344     if (E->getType()->isArrayType()) {
345       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
346           ReferenceTemporary, E->getType(),
347           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
348           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
349       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
350     } else {
351       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
352           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
353       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
354     }
355     CGF.CGM.getCXXABI().registerGlobalDtor(
356         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
357     break;
358   }
359 
360   case SD_FullExpression:
361     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
362                     CodeGenFunction::destroyCXXObject,
363                     CGF.getLangOpts().Exceptions);
364     break;
365 
366   case SD_Automatic:
367     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
368                                     ReferenceTemporary, E->getType(),
369                                     CodeGenFunction::destroyCXXObject,
370                                     CGF.getLangOpts().Exceptions);
371     break;
372 
373   case SD_Dynamic:
374     llvm_unreachable("temporary cannot have dynamic storage duration");
375   }
376 }
377 
378 static Address createReferenceTemporary(CodeGenFunction &CGF,
379                                         const MaterializeTemporaryExpr *M,
380                                         const Expr *Inner,
381                                         Address *Alloca = nullptr) {
382   auto &TCG = CGF.getTargetHooks();
383   switch (M->getStorageDuration()) {
384   case SD_FullExpression:
385   case SD_Automatic: {
386     // If we have a constant temporary array or record try to promote it into a
387     // constant global under the same rules a normal constant would've been
388     // promoted. This is easier on the optimizer and generally emits fewer
389     // instructions.
390     QualType Ty = Inner->getType();
391     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
392         (Ty->isArrayType() || Ty->isRecordType()) &&
393         CGF.CGM.isTypeConstant(Ty, true))
394       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
395         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
396         auto *GV = new llvm::GlobalVariable(
397             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
398             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
399             llvm::GlobalValue::NotThreadLocal,
400             CGF.getContext().getTargetAddressSpace(AS));
401         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
402         GV->setAlignment(alignment.getAsAlign());
403         llvm::Constant *C = GV;
404         if (AS != LangAS::Default)
405           C = TCG.performAddrSpaceCast(
406               CGF.CGM, GV, AS, LangAS::Default,
407               GV->getValueType()->getPointerTo(
408                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
409         // FIXME: Should we put the new global into a COMDAT?
410         return Address(C, alignment);
411       }
412     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
413   }
414   case SD_Thread:
415   case SD_Static:
416     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
417 
418   case SD_Dynamic:
419     llvm_unreachable("temporary can't have dynamic storage duration");
420   }
421   llvm_unreachable("unknown storage duration");
422 }
423 
424 /// Helper method to check if the underlying ABI is AAPCS
425 static bool isAAPCS(const TargetInfo &TargetInfo) {
426   return TargetInfo.getABI().startswith("aapcs");
427 }
428 
429 LValue CodeGenFunction::
430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
431   const Expr *E = M->getSubExpr();
432 
433   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
434           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
435          "Reference should never be pseudo-strong!");
436 
437   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
438   // as that will cause the lifetime adjustment to be lost for ARC
439   auto ownership = M->getType().getObjCLifetime();
440   if (ownership != Qualifiers::OCL_None &&
441       ownership != Qualifiers::OCL_ExplicitNone) {
442     Address Object = createReferenceTemporary(*this, M, E);
443     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
444       Object = Address(llvm::ConstantExpr::getBitCast(Var,
445                            ConvertTypeForMem(E->getType())
446                              ->getPointerTo(Object.getAddressSpace())),
447                        Object.getAlignment());
448 
449       // createReferenceTemporary will promote the temporary to a global with a
450       // constant initializer if it can.  It can only do this to a value of
451       // ARC-manageable type if the value is global and therefore "immune" to
452       // ref-counting operations.  Therefore we have no need to emit either a
453       // dynamic initialization or a cleanup and we can just return the address
454       // of the temporary.
455       if (Var->hasInitializer())
456         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 
458       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
459     }
460     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
461                                        AlignmentSource::Decl);
462 
463     switch (getEvaluationKind(E->getType())) {
464     default: llvm_unreachable("expected scalar or aggregate expression");
465     case TEK_Scalar:
466       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
467       break;
468     case TEK_Aggregate: {
469       EmitAggExpr(E, AggValueSlot::forAddr(Object,
470                                            E->getType().getQualifiers(),
471                                            AggValueSlot::IsDestructed,
472                                            AggValueSlot::DoesNotNeedGCBarriers,
473                                            AggValueSlot::IsNotAliased,
474                                            AggValueSlot::DoesNotOverlap));
475       break;
476     }
477     }
478 
479     pushTemporaryCleanup(*this, M, E, Object);
480     return RefTempDst;
481   }
482 
483   SmallVector<const Expr *, 2> CommaLHSs;
484   SmallVector<SubobjectAdjustment, 2> Adjustments;
485   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
486 
487   for (const auto &Ignored : CommaLHSs)
488     EmitIgnoredExpr(Ignored);
489 
490   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
491     if (opaque->getType()->isRecordType()) {
492       assert(Adjustments.empty());
493       return EmitOpaqueValueLValue(opaque);
494     }
495   }
496 
497   // Create and initialize the reference temporary.
498   Address Alloca = Address::invalid();
499   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
500   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
501           Object.getPointer()->stripPointerCasts())) {
502     Object = Address(llvm::ConstantExpr::getBitCast(
503                          cast<llvm::Constant>(Object.getPointer()),
504                          ConvertTypeForMem(E->getType())->getPointerTo()),
505                      Object.getAlignment());
506     // If the temporary is a global and has a constant initializer or is a
507     // constant temporary that we promoted to a global, we may have already
508     // initialized it.
509     if (!Var->hasInitializer()) {
510       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
511       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
512     }
513   } else {
514     switch (M->getStorageDuration()) {
515     case SD_Automatic:
516       if (auto *Size = EmitLifetimeStart(
517               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
518               Alloca.getPointer())) {
519         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
520                                                   Alloca, Size);
521       }
522       break;
523 
524     case SD_FullExpression: {
525       if (!ShouldEmitLifetimeMarkers)
526         break;
527 
528       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
529       // marker. Instead, start the lifetime of a conditional temporary earlier
530       // so that it's unconditional. Don't do this with sanitizers which need
531       // more precise lifetime marks.
532       ConditionalEvaluation *OldConditional = nullptr;
533       CGBuilderTy::InsertPoint OldIP;
534       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
535           !SanOpts.has(SanitizerKind::HWAddress) &&
536           !SanOpts.has(SanitizerKind::Memory) &&
537           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
538         OldConditional = OutermostConditional;
539         OutermostConditional = nullptr;
540 
541         OldIP = Builder.saveIP();
542         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
543         Builder.restoreIP(CGBuilderTy::InsertPoint(
544             Block, llvm::BasicBlock::iterator(Block->back())));
545       }
546 
547       if (auto *Size = EmitLifetimeStart(
548               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
549               Alloca.getPointer())) {
550         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
551                                              Size);
552       }
553 
554       if (OldConditional) {
555         OutermostConditional = OldConditional;
556         Builder.restoreIP(OldIP);
557       }
558       break;
559     }
560 
561     default:
562       break;
563     }
564     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
565   }
566   pushTemporaryCleanup(*this, M, E, Object);
567 
568   // Perform derived-to-base casts and/or field accesses, to get from the
569   // temporary object we created (and, potentially, for which we extended
570   // the lifetime) to the subobject we're binding the reference to.
571   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
572     switch (Adjustment.Kind) {
573     case SubobjectAdjustment::DerivedToBaseAdjustment:
574       Object =
575           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
576                                 Adjustment.DerivedToBase.BasePath->path_begin(),
577                                 Adjustment.DerivedToBase.BasePath->path_end(),
578                                 /*NullCheckValue=*/ false, E->getExprLoc());
579       break;
580 
581     case SubobjectAdjustment::FieldAdjustment: {
582       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
583       LV = EmitLValueForField(LV, Adjustment.Field);
584       assert(LV.isSimple() &&
585              "materialized temporary field is not a simple lvalue");
586       Object = LV.getAddress(*this);
587       break;
588     }
589 
590     case SubobjectAdjustment::MemberPointerAdjustment: {
591       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
592       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
593                                                Adjustment.Ptr.MPT);
594       break;
595     }
596     }
597   }
598 
599   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
600 }
601 
602 RValue
603 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
604   // Emit the expression as an lvalue.
605   LValue LV = EmitLValue(E);
606   assert(LV.isSimple());
607   llvm::Value *Value = LV.getPointer(*this);
608 
609   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
610     // C++11 [dcl.ref]p5 (as amended by core issue 453):
611     //   If a glvalue to which a reference is directly bound designates neither
612     //   an existing object or function of an appropriate type nor a region of
613     //   storage of suitable size and alignment to contain an object of the
614     //   reference's type, the behavior is undefined.
615     QualType Ty = E->getType();
616     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
617   }
618 
619   return RValue::get(Value);
620 }
621 
622 
623 /// getAccessedFieldNo - Given an encoded value and a result number, return the
624 /// input field number being accessed.
625 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
626                                              const llvm::Constant *Elts) {
627   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
628       ->getZExtValue();
629 }
630 
631 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
632 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
633                                     llvm::Value *High) {
634   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
635   llvm::Value *K47 = Builder.getInt64(47);
636   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
637   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
638   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
639   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
640   return Builder.CreateMul(B1, KMul);
641 }
642 
643 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
644   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
645          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
646 }
647 
648 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
649   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
650   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
651          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
652           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
653           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
654 }
655 
656 bool CodeGenFunction::sanitizePerformTypeCheck() const {
657   return SanOpts.has(SanitizerKind::Null) ||
658          SanOpts.has(SanitizerKind::Alignment) ||
659          SanOpts.has(SanitizerKind::ObjectSize) ||
660          SanOpts.has(SanitizerKind::Vptr);
661 }
662 
663 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
664                                     llvm::Value *Ptr, QualType Ty,
665                                     CharUnits Alignment,
666                                     SanitizerSet SkippedChecks,
667                                     llvm::Value *ArraySize) {
668   if (!sanitizePerformTypeCheck())
669     return;
670 
671   // Don't check pointers outside the default address space. The null check
672   // isn't correct, the object-size check isn't supported by LLVM, and we can't
673   // communicate the addresses to the runtime handler for the vptr check.
674   if (Ptr->getType()->getPointerAddressSpace())
675     return;
676 
677   // Don't check pointers to volatile data. The behavior here is implementation-
678   // defined.
679   if (Ty.isVolatileQualified())
680     return;
681 
682   SanitizerScope SanScope(this);
683 
684   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
685   llvm::BasicBlock *Done = nullptr;
686 
687   // Quickly determine whether we have a pointer to an alloca. It's possible
688   // to skip null checks, and some alignment checks, for these pointers. This
689   // can reduce compile-time significantly.
690   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
691 
692   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
693   llvm::Value *IsNonNull = nullptr;
694   bool IsGuaranteedNonNull =
695       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
696   bool AllowNullPointers = isNullPointerAllowed(TCK);
697   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
698       !IsGuaranteedNonNull) {
699     // The glvalue must not be an empty glvalue.
700     IsNonNull = Builder.CreateIsNotNull(Ptr);
701 
702     // The IR builder can constant-fold the null check if the pointer points to
703     // a constant.
704     IsGuaranteedNonNull = IsNonNull == True;
705 
706     // Skip the null check if the pointer is known to be non-null.
707     if (!IsGuaranteedNonNull) {
708       if (AllowNullPointers) {
709         // When performing pointer casts, it's OK if the value is null.
710         // Skip the remaining checks in that case.
711         Done = createBasicBlock("null");
712         llvm::BasicBlock *Rest = createBasicBlock("not.null");
713         Builder.CreateCondBr(IsNonNull, Rest, Done);
714         EmitBlock(Rest);
715       } else {
716         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
717       }
718     }
719   }
720 
721   if (SanOpts.has(SanitizerKind::ObjectSize) &&
722       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
723       !Ty->isIncompleteType()) {
724     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
725     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
726     if (ArraySize)
727       Size = Builder.CreateMul(Size, ArraySize);
728 
729     // Degenerate case: new X[0] does not need an objectsize check.
730     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
731     if (!ConstantSize || !ConstantSize->isNullValue()) {
732       // The glvalue must refer to a large enough storage region.
733       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
734       //        to check this.
735       // FIXME: Get object address space
736       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
737       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
738       llvm::Value *Min = Builder.getFalse();
739       llvm::Value *NullIsUnknown = Builder.getFalse();
740       llvm::Value *Dynamic = Builder.getFalse();
741       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
742       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
743           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
744       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
745     }
746   }
747 
748   uint64_t AlignVal = 0;
749   llvm::Value *PtrAsInt = nullptr;
750 
751   if (SanOpts.has(SanitizerKind::Alignment) &&
752       !SkippedChecks.has(SanitizerKind::Alignment)) {
753     AlignVal = Alignment.getQuantity();
754     if (!Ty->isIncompleteType() && !AlignVal)
755       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
756                                              /*ForPointeeType=*/true)
757                      .getQuantity();
758 
759     // The glvalue must be suitably aligned.
760     if (AlignVal > 1 &&
761         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
762       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
763       llvm::Value *Align = Builder.CreateAnd(
764           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
765       llvm::Value *Aligned =
766           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
767       if (Aligned != True)
768         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
769     }
770   }
771 
772   if (Checks.size() > 0) {
773     // Make sure we're not losing information. Alignment needs to be a power of
774     // 2
775     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
776     llvm::Constant *StaticData[] = {
777         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
778         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
779         llvm::ConstantInt::get(Int8Ty, TCK)};
780     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
781               PtrAsInt ? PtrAsInt : Ptr);
782   }
783 
784   // If possible, check that the vptr indicates that there is a subobject of
785   // type Ty at offset zero within this object.
786   //
787   // C++11 [basic.life]p5,6:
788   //   [For storage which does not refer to an object within its lifetime]
789   //   The program has undefined behavior if:
790   //    -- the [pointer or glvalue] is used to access a non-static data member
791   //       or call a non-static member function
792   if (SanOpts.has(SanitizerKind::Vptr) &&
793       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
794     // Ensure that the pointer is non-null before loading it. If there is no
795     // compile-time guarantee, reuse the run-time null check or emit a new one.
796     if (!IsGuaranteedNonNull) {
797       if (!IsNonNull)
798         IsNonNull = Builder.CreateIsNotNull(Ptr);
799       if (!Done)
800         Done = createBasicBlock("vptr.null");
801       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
802       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
803       EmitBlock(VptrNotNull);
804     }
805 
806     // Compute a hash of the mangled name of the type.
807     //
808     // FIXME: This is not guaranteed to be deterministic! Move to a
809     //        fingerprinting mechanism once LLVM provides one. For the time
810     //        being the implementation happens to be deterministic.
811     SmallString<64> MangledName;
812     llvm::raw_svector_ostream Out(MangledName);
813     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
814                                                      Out);
815 
816     // Contained in NoSanitizeList based on the mangled type.
817     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
818                                                            Out.str())) {
819       llvm::hash_code TypeHash = hash_value(Out.str());
820 
821       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
822       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
823       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
824       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
825       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
826       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
827 
828       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
829       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
830 
831       // Look the hash up in our cache.
832       const int CacheSize = 128;
833       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
834       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
835                                                      "__ubsan_vptr_type_cache");
836       llvm::Value *Slot = Builder.CreateAnd(Hash,
837                                             llvm::ConstantInt::get(IntPtrTy,
838                                                                    CacheSize-1));
839       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
840       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
841           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
842           getPointerAlign());
843 
844       // If the hash isn't in the cache, call a runtime handler to perform the
845       // hard work of checking whether the vptr is for an object of the right
846       // type. This will either fill in the cache and return, or produce a
847       // diagnostic.
848       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
849       llvm::Constant *StaticData[] = {
850         EmitCheckSourceLocation(Loc),
851         EmitCheckTypeDescriptor(Ty),
852         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
853         llvm::ConstantInt::get(Int8Ty, TCK)
854       };
855       llvm::Value *DynamicData[] = { Ptr, Hash };
856       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
857                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
858                 DynamicData);
859     }
860   }
861 
862   if (Done) {
863     Builder.CreateBr(Done);
864     EmitBlock(Done);
865   }
866 }
867 
868 /// Determine whether this expression refers to a flexible array member in a
869 /// struct. We disable array bounds checks for such members.
870 static bool isFlexibleArrayMemberExpr(const Expr *E) {
871   // For compatibility with existing code, we treat arrays of length 0 or
872   // 1 as flexible array members.
873   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
874   // the two mechanisms.
875   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
876   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
877     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
878     // was produced by macro expansion.
879     if (CAT->getSize().ugt(1))
880       return false;
881   } else if (!isa<IncompleteArrayType>(AT))
882     return false;
883 
884   E = E->IgnoreParens();
885 
886   // A flexible array member must be the last member in the class.
887   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
888     // FIXME: If the base type of the member expr is not FD->getParent(),
889     // this should not be treated as a flexible array member access.
890     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
891       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
892       // member, only a T[0] or T[] member gets that treatment.
893       if (FD->getParent()->isUnion())
894         return true;
895       RecordDecl::field_iterator FI(
896           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
897       return ++FI == FD->getParent()->field_end();
898     }
899   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
900     return IRE->getDecl()->getNextIvar() == nullptr;
901   }
902 
903   return false;
904 }
905 
906 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
907                                                    QualType EltTy) {
908   ASTContext &C = getContext();
909   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
910   if (!EltSize)
911     return nullptr;
912 
913   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
914   if (!ArrayDeclRef)
915     return nullptr;
916 
917   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
918   if (!ParamDecl)
919     return nullptr;
920 
921   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
922   if (!POSAttr)
923     return nullptr;
924 
925   // Don't load the size if it's a lower bound.
926   int POSType = POSAttr->getType();
927   if (POSType != 0 && POSType != 1)
928     return nullptr;
929 
930   // Find the implicit size parameter.
931   auto PassedSizeIt = SizeArguments.find(ParamDecl);
932   if (PassedSizeIt == SizeArguments.end())
933     return nullptr;
934 
935   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
936   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
937   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
938   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
939                                               C.getSizeType(), E->getExprLoc());
940   llvm::Value *SizeOfElement =
941       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
942   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
943 }
944 
945 /// If Base is known to point to the start of an array, return the length of
946 /// that array. Return 0 if the length cannot be determined.
947 static llvm::Value *getArrayIndexingBound(
948     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
949   // For the vector indexing extension, the bound is the number of elements.
950   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
951     IndexedType = Base->getType();
952     return CGF.Builder.getInt32(VT->getNumElements());
953   }
954 
955   Base = Base->IgnoreParens();
956 
957   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
958     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
959         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
960       IndexedType = CE->getSubExpr()->getType();
961       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
962       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
963         return CGF.Builder.getInt(CAT->getSize());
964       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
965         return CGF.getVLASize(VAT).NumElts;
966       // Ignore pass_object_size here. It's not applicable on decayed pointers.
967     }
968   }
969 
970   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
971   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
972     IndexedType = Base->getType();
973     return POS;
974   }
975 
976   return nullptr;
977 }
978 
979 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
980                                       llvm::Value *Index, QualType IndexType,
981                                       bool Accessed) {
982   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
983          "should not be called unless adding bounds checks");
984   SanitizerScope SanScope(this);
985 
986   QualType IndexedType;
987   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
988   if (!Bound)
989     return;
990 
991   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
992   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
993   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
994 
995   llvm::Constant *StaticData[] = {
996     EmitCheckSourceLocation(E->getExprLoc()),
997     EmitCheckTypeDescriptor(IndexedType),
998     EmitCheckTypeDescriptor(IndexType)
999   };
1000   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1001                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1002   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1003             SanitizerHandler::OutOfBounds, StaticData, Index);
1004 }
1005 
1006 
1007 CodeGenFunction::ComplexPairTy CodeGenFunction::
1008 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1009                          bool isInc, bool isPre) {
1010   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1011 
1012   llvm::Value *NextVal;
1013   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1014     uint64_t AmountVal = isInc ? 1 : -1;
1015     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1016 
1017     // Add the inc/dec to the real part.
1018     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1019   } else {
1020     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1021     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1022     if (!isInc)
1023       FVal.changeSign();
1024     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1025 
1026     // Add the inc/dec to the real part.
1027     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1028   }
1029 
1030   ComplexPairTy IncVal(NextVal, InVal.second);
1031 
1032   // Store the updated result through the lvalue.
1033   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1034   if (getLangOpts().OpenMP)
1035     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1036                                                               E->getSubExpr());
1037 
1038   // If this is a postinc, return the value read from memory, otherwise use the
1039   // updated value.
1040   return isPre ? IncVal : InVal;
1041 }
1042 
1043 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1044                                              CodeGenFunction *CGF) {
1045   // Bind VLAs in the cast type.
1046   if (CGF && E->getType()->isVariablyModifiedType())
1047     CGF->EmitVariablyModifiedType(E->getType());
1048 
1049   if (CGDebugInfo *DI = getModuleDebugInfo())
1050     DI->EmitExplicitCastType(E->getType());
1051 }
1052 
1053 //===----------------------------------------------------------------------===//
1054 //                         LValue Expression Emission
1055 //===----------------------------------------------------------------------===//
1056 
1057 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1058 /// derive a more accurate bound on the alignment of the pointer.
1059 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1060                                                   LValueBaseInfo *BaseInfo,
1061                                                   TBAAAccessInfo *TBAAInfo) {
1062   // We allow this with ObjC object pointers because of fragile ABIs.
1063   assert(E->getType()->isPointerType() ||
1064          E->getType()->isObjCObjectPointerType());
1065   E = E->IgnoreParens();
1066 
1067   // Casts:
1068   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1069     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1070       CGM.EmitExplicitCastExprType(ECE, this);
1071 
1072     switch (CE->getCastKind()) {
1073     // Non-converting casts (but not C's implicit conversion from void*).
1074     case CK_BitCast:
1075     case CK_NoOp:
1076     case CK_AddressSpaceConversion:
1077       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1078         if (PtrTy->getPointeeType()->isVoidType())
1079           break;
1080 
1081         LValueBaseInfo InnerBaseInfo;
1082         TBAAAccessInfo InnerTBAAInfo;
1083         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1084                                                 &InnerBaseInfo,
1085                                                 &InnerTBAAInfo);
1086         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1087         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1088 
1089         if (isa<ExplicitCastExpr>(CE)) {
1090           LValueBaseInfo TargetTypeBaseInfo;
1091           TBAAAccessInfo TargetTypeTBAAInfo;
1092           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1093               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1094           if (TBAAInfo)
1095             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1096                                                  TargetTypeTBAAInfo);
1097           // If the source l-value is opaque, honor the alignment of the
1098           // casted-to type.
1099           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1100             if (BaseInfo)
1101               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1102             Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1103           }
1104         }
1105 
1106         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1107             CE->getCastKind() == CK_BitCast) {
1108           if (auto PT = E->getType()->getAs<PointerType>())
1109             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1110                                       /*MayBeNull=*/true,
1111                                       CodeGenFunction::CFITCK_UnrelatedCast,
1112                                       CE->getBeginLoc());
1113         }
1114 
1115         if (CE->getCastKind() == CK_AddressSpaceConversion)
1116          return Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1117 
1118         llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1119         return Builder.CreateElementBitCast(Addr, ElemTy);
1120       }
1121       break;
1122 
1123     // Array-to-pointer decay.
1124     case CK_ArrayToPointerDecay:
1125       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1126 
1127     // Derived-to-base conversions.
1128     case CK_UncheckedDerivedToBase:
1129     case CK_DerivedToBase: {
1130       // TODO: Support accesses to members of base classes in TBAA. For now, we
1131       // conservatively pretend that the complete object is of the base class
1132       // type.
1133       if (TBAAInfo)
1134         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1135       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1136       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1137       return GetAddressOfBaseClass(Addr, Derived,
1138                                    CE->path_begin(), CE->path_end(),
1139                                    ShouldNullCheckClassCastValue(CE),
1140                                    CE->getExprLoc());
1141     }
1142 
1143     // TODO: Is there any reason to treat base-to-derived conversions
1144     // specially?
1145     default:
1146       break;
1147     }
1148   }
1149 
1150   // Unary &.
1151   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1152     if (UO->getOpcode() == UO_AddrOf) {
1153       LValue LV = EmitLValue(UO->getSubExpr());
1154       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1155       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1156       return LV.getAddress(*this);
1157     }
1158   }
1159 
1160   // TODO: conditional operators, comma.
1161 
1162   // Otherwise, use the alignment of the type.
1163   CharUnits Align =
1164       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1165   llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1166   return Address(EmitScalarExpr(E), ElemTy, Align);
1167 }
1168 
1169 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1170   llvm::Value *V = RV.getScalarVal();
1171   if (auto MPT = T->getAs<MemberPointerType>())
1172     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1173   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1174 }
1175 
1176 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1177   if (Ty->isVoidType())
1178     return RValue::get(nullptr);
1179 
1180   switch (getEvaluationKind(Ty)) {
1181   case TEK_Complex: {
1182     llvm::Type *EltTy =
1183       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1184     llvm::Value *U = llvm::UndefValue::get(EltTy);
1185     return RValue::getComplex(std::make_pair(U, U));
1186   }
1187 
1188   // If this is a use of an undefined aggregate type, the aggregate must have an
1189   // identifiable address.  Just because the contents of the value are undefined
1190   // doesn't mean that the address can't be taken and compared.
1191   case TEK_Aggregate: {
1192     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1193     return RValue::getAggregate(DestPtr);
1194   }
1195 
1196   case TEK_Scalar:
1197     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1198   }
1199   llvm_unreachable("bad evaluation kind");
1200 }
1201 
1202 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1203                                               const char *Name) {
1204   ErrorUnsupported(E, Name);
1205   return GetUndefRValue(E->getType());
1206 }
1207 
1208 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1209                                               const char *Name) {
1210   ErrorUnsupported(E, Name);
1211   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1212   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1213                         E->getType());
1214 }
1215 
1216 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1217   const Expr *Base = Obj;
1218   while (!isa<CXXThisExpr>(Base)) {
1219     // The result of a dynamic_cast can be null.
1220     if (isa<CXXDynamicCastExpr>(Base))
1221       return false;
1222 
1223     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1224       Base = CE->getSubExpr();
1225     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1226       Base = PE->getSubExpr();
1227     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1228       if (UO->getOpcode() == UO_Extension)
1229         Base = UO->getSubExpr();
1230       else
1231         return false;
1232     } else {
1233       return false;
1234     }
1235   }
1236   return true;
1237 }
1238 
1239 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1240   LValue LV;
1241   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1242     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1243   else
1244     LV = EmitLValue(E);
1245   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1246     SanitizerSet SkippedChecks;
1247     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1248       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1249       if (IsBaseCXXThis)
1250         SkippedChecks.set(SanitizerKind::Alignment, true);
1251       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1252         SkippedChecks.set(SanitizerKind::Null, true);
1253     }
1254     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1255                   LV.getAlignment(), SkippedChecks);
1256   }
1257   return LV;
1258 }
1259 
1260 /// EmitLValue - Emit code to compute a designator that specifies the location
1261 /// of the expression.
1262 ///
1263 /// This can return one of two things: a simple address or a bitfield reference.
1264 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1265 /// an LLVM pointer type.
1266 ///
1267 /// If this returns a bitfield reference, nothing about the pointee type of the
1268 /// LLVM value is known: For example, it may not be a pointer to an integer.
1269 ///
1270 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1271 /// this method guarantees that the returned pointer type will point to an LLVM
1272 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1273 /// length type, this is not possible.
1274 ///
1275 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1276   ApplyDebugLocation DL(*this, E);
1277   switch (E->getStmtClass()) {
1278   default: return EmitUnsupportedLValue(E, "l-value expression");
1279 
1280   case Expr::ObjCPropertyRefExprClass:
1281     llvm_unreachable("cannot emit a property reference directly");
1282 
1283   case Expr::ObjCSelectorExprClass:
1284     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1285   case Expr::ObjCIsaExprClass:
1286     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1287   case Expr::BinaryOperatorClass:
1288     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1289   case Expr::CompoundAssignOperatorClass: {
1290     QualType Ty = E->getType();
1291     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1292       Ty = AT->getValueType();
1293     if (!Ty->isAnyComplexType())
1294       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1295     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1296   }
1297   case Expr::CallExprClass:
1298   case Expr::CXXMemberCallExprClass:
1299   case Expr::CXXOperatorCallExprClass:
1300   case Expr::UserDefinedLiteralClass:
1301     return EmitCallExprLValue(cast<CallExpr>(E));
1302   case Expr::CXXRewrittenBinaryOperatorClass:
1303     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1304   case Expr::VAArgExprClass:
1305     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1306   case Expr::DeclRefExprClass:
1307     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1308   case Expr::ConstantExprClass: {
1309     const ConstantExpr *CE = cast<ConstantExpr>(E);
1310     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1311       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1312                              ->getCallReturnType(getContext());
1313       return MakeNaturalAlignAddrLValue(Result, RetType);
1314     }
1315     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1316   }
1317   case Expr::ParenExprClass:
1318     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1319   case Expr::GenericSelectionExprClass:
1320     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1321   case Expr::PredefinedExprClass:
1322     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1323   case Expr::StringLiteralClass:
1324     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1325   case Expr::ObjCEncodeExprClass:
1326     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1327   case Expr::PseudoObjectExprClass:
1328     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1329   case Expr::InitListExprClass:
1330     return EmitInitListLValue(cast<InitListExpr>(E));
1331   case Expr::CXXTemporaryObjectExprClass:
1332   case Expr::CXXConstructExprClass:
1333     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1334   case Expr::CXXBindTemporaryExprClass:
1335     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1336   case Expr::CXXUuidofExprClass:
1337     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1338   case Expr::LambdaExprClass:
1339     return EmitAggExprToLValue(E);
1340 
1341   case Expr::ExprWithCleanupsClass: {
1342     const auto *cleanups = cast<ExprWithCleanups>(E);
1343     RunCleanupsScope Scope(*this);
1344     LValue LV = EmitLValue(cleanups->getSubExpr());
1345     if (LV.isSimple()) {
1346       // Defend against branches out of gnu statement expressions surrounded by
1347       // cleanups.
1348       llvm::Value *V = LV.getPointer(*this);
1349       Scope.ForceCleanup({&V});
1350       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1351                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1352     }
1353     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1354     // bitfield lvalue or some other non-simple lvalue?
1355     return LV;
1356   }
1357 
1358   case Expr::CXXDefaultArgExprClass: {
1359     auto *DAE = cast<CXXDefaultArgExpr>(E);
1360     CXXDefaultArgExprScope Scope(*this, DAE);
1361     return EmitLValue(DAE->getExpr());
1362   }
1363   case Expr::CXXDefaultInitExprClass: {
1364     auto *DIE = cast<CXXDefaultInitExpr>(E);
1365     CXXDefaultInitExprScope Scope(*this, DIE);
1366     return EmitLValue(DIE->getExpr());
1367   }
1368   case Expr::CXXTypeidExprClass:
1369     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1370 
1371   case Expr::ObjCMessageExprClass:
1372     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1373   case Expr::ObjCIvarRefExprClass:
1374     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1375   case Expr::StmtExprClass:
1376     return EmitStmtExprLValue(cast<StmtExpr>(E));
1377   case Expr::UnaryOperatorClass:
1378     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1379   case Expr::ArraySubscriptExprClass:
1380     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1381   case Expr::MatrixSubscriptExprClass:
1382     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1383   case Expr::OMPArraySectionExprClass:
1384     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1385   case Expr::ExtVectorElementExprClass:
1386     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1387   case Expr::MemberExprClass:
1388     return EmitMemberExpr(cast<MemberExpr>(E));
1389   case Expr::CompoundLiteralExprClass:
1390     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1391   case Expr::ConditionalOperatorClass:
1392     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1393   case Expr::BinaryConditionalOperatorClass:
1394     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1395   case Expr::ChooseExprClass:
1396     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1397   case Expr::OpaqueValueExprClass:
1398     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1399   case Expr::SubstNonTypeTemplateParmExprClass:
1400     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1401   case Expr::ImplicitCastExprClass:
1402   case Expr::CStyleCastExprClass:
1403   case Expr::CXXFunctionalCastExprClass:
1404   case Expr::CXXStaticCastExprClass:
1405   case Expr::CXXDynamicCastExprClass:
1406   case Expr::CXXReinterpretCastExprClass:
1407   case Expr::CXXConstCastExprClass:
1408   case Expr::CXXAddrspaceCastExprClass:
1409   case Expr::ObjCBridgedCastExprClass:
1410     return EmitCastLValue(cast<CastExpr>(E));
1411 
1412   case Expr::MaterializeTemporaryExprClass:
1413     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1414 
1415   case Expr::CoawaitExprClass:
1416     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1417   case Expr::CoyieldExprClass:
1418     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1419   }
1420 }
1421 
1422 /// Given an object of the given canonical type, can we safely copy a
1423 /// value out of it based on its initializer?
1424 static bool isConstantEmittableObjectType(QualType type) {
1425   assert(type.isCanonical());
1426   assert(!type->isReferenceType());
1427 
1428   // Must be const-qualified but non-volatile.
1429   Qualifiers qs = type.getLocalQualifiers();
1430   if (!qs.hasConst() || qs.hasVolatile()) return false;
1431 
1432   // Otherwise, all object types satisfy this except C++ classes with
1433   // mutable subobjects or non-trivial copy/destroy behavior.
1434   if (const auto *RT = dyn_cast<RecordType>(type))
1435     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1436       if (RD->hasMutableFields() || !RD->isTrivial())
1437         return false;
1438 
1439   return true;
1440 }
1441 
1442 /// Can we constant-emit a load of a reference to a variable of the
1443 /// given type?  This is different from predicates like
1444 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1445 /// in situations that don't necessarily satisfy the language's rules
1446 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1447 /// to do this with const float variables even if those variables
1448 /// aren't marked 'constexpr'.
1449 enum ConstantEmissionKind {
1450   CEK_None,
1451   CEK_AsReferenceOnly,
1452   CEK_AsValueOrReference,
1453   CEK_AsValueOnly
1454 };
1455 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1456   type = type.getCanonicalType();
1457   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1458     if (isConstantEmittableObjectType(ref->getPointeeType()))
1459       return CEK_AsValueOrReference;
1460     return CEK_AsReferenceOnly;
1461   }
1462   if (isConstantEmittableObjectType(type))
1463     return CEK_AsValueOnly;
1464   return CEK_None;
1465 }
1466 
1467 /// Try to emit a reference to the given value without producing it as
1468 /// an l-value.  This is just an optimization, but it avoids us needing
1469 /// to emit global copies of variables if they're named without triggering
1470 /// a formal use in a context where we can't emit a direct reference to them,
1471 /// for instance if a block or lambda or a member of a local class uses a
1472 /// const int variable or constexpr variable from an enclosing function.
1473 CodeGenFunction::ConstantEmission
1474 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1475   ValueDecl *value = refExpr->getDecl();
1476 
1477   // The value needs to be an enum constant or a constant variable.
1478   ConstantEmissionKind CEK;
1479   if (isa<ParmVarDecl>(value)) {
1480     CEK = CEK_None;
1481   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1482     CEK = checkVarTypeForConstantEmission(var->getType());
1483   } else if (isa<EnumConstantDecl>(value)) {
1484     CEK = CEK_AsValueOnly;
1485   } else {
1486     CEK = CEK_None;
1487   }
1488   if (CEK == CEK_None) return ConstantEmission();
1489 
1490   Expr::EvalResult result;
1491   bool resultIsReference;
1492   QualType resultType;
1493 
1494   // It's best to evaluate all the way as an r-value if that's permitted.
1495   if (CEK != CEK_AsReferenceOnly &&
1496       refExpr->EvaluateAsRValue(result, getContext())) {
1497     resultIsReference = false;
1498     resultType = refExpr->getType();
1499 
1500   // Otherwise, try to evaluate as an l-value.
1501   } else if (CEK != CEK_AsValueOnly &&
1502              refExpr->EvaluateAsLValue(result, getContext())) {
1503     resultIsReference = true;
1504     resultType = value->getType();
1505 
1506   // Failure.
1507   } else {
1508     return ConstantEmission();
1509   }
1510 
1511   // In any case, if the initializer has side-effects, abandon ship.
1512   if (result.HasSideEffects)
1513     return ConstantEmission();
1514 
1515   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1516   // referencing a global host variable by copy. In this case the lambda should
1517   // make a copy of the value of the global host variable. The DRE of the
1518   // captured reference variable cannot be emitted as load from the host
1519   // global variable as compile time constant, since the host variable is not
1520   // accessible on device. The DRE of the captured reference variable has to be
1521   // loaded from captures.
1522   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1523       refExpr->refersToEnclosingVariableOrCapture()) {
1524     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1525     if (MD && MD->getParent()->isLambda() &&
1526         MD->getOverloadedOperator() == OO_Call) {
1527       const APValue::LValueBase &base = result.Val.getLValueBase();
1528       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1529         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1530           if (!VD->hasAttr<CUDADeviceAttr>()) {
1531             return ConstantEmission();
1532           }
1533         }
1534       }
1535     }
1536   }
1537 
1538   // Emit as a constant.
1539   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1540                                                result.Val, resultType);
1541 
1542   // Make sure we emit a debug reference to the global variable.
1543   // This should probably fire even for
1544   if (isa<VarDecl>(value)) {
1545     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1546       EmitDeclRefExprDbgValue(refExpr, result.Val);
1547   } else {
1548     assert(isa<EnumConstantDecl>(value));
1549     EmitDeclRefExprDbgValue(refExpr, result.Val);
1550   }
1551 
1552   // If we emitted a reference constant, we need to dereference that.
1553   if (resultIsReference)
1554     return ConstantEmission::forReference(C);
1555 
1556   return ConstantEmission::forValue(C);
1557 }
1558 
1559 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1560                                                         const MemberExpr *ME) {
1561   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1562     // Try to emit static variable member expressions as DREs.
1563     return DeclRefExpr::Create(
1564         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1565         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1566         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1567   }
1568   return nullptr;
1569 }
1570 
1571 CodeGenFunction::ConstantEmission
1572 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1573   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1574     return tryEmitAsConstant(DRE);
1575   return ConstantEmission();
1576 }
1577 
1578 llvm::Value *CodeGenFunction::emitScalarConstant(
1579     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1580   assert(Constant && "not a constant");
1581   if (Constant.isReference())
1582     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1583                             E->getExprLoc())
1584         .getScalarVal();
1585   return Constant.getValue();
1586 }
1587 
1588 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1589                                                SourceLocation Loc) {
1590   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1591                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1592                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1593 }
1594 
1595 static bool hasBooleanRepresentation(QualType Ty) {
1596   if (Ty->isBooleanType())
1597     return true;
1598 
1599   if (const EnumType *ET = Ty->getAs<EnumType>())
1600     return ET->getDecl()->getIntegerType()->isBooleanType();
1601 
1602   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1603     return hasBooleanRepresentation(AT->getValueType());
1604 
1605   return false;
1606 }
1607 
1608 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1609                             llvm::APInt &Min, llvm::APInt &End,
1610                             bool StrictEnums, bool IsBool) {
1611   const EnumType *ET = Ty->getAs<EnumType>();
1612   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1613                                 ET && !ET->getDecl()->isFixed();
1614   if (!IsBool && !IsRegularCPlusPlusEnum)
1615     return false;
1616 
1617   if (IsBool) {
1618     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1619     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1620   } else {
1621     const EnumDecl *ED = ET->getDecl();
1622     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1623     unsigned Bitwidth = LTy->getScalarSizeInBits();
1624     unsigned NumNegativeBits = ED->getNumNegativeBits();
1625     unsigned NumPositiveBits = ED->getNumPositiveBits();
1626 
1627     if (NumNegativeBits) {
1628       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1629       assert(NumBits <= Bitwidth);
1630       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1631       Min = -End;
1632     } else {
1633       assert(NumPositiveBits <= Bitwidth);
1634       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1635       Min = llvm::APInt::getZero(Bitwidth);
1636     }
1637   }
1638   return true;
1639 }
1640 
1641 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1642   llvm::APInt Min, End;
1643   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1644                        hasBooleanRepresentation(Ty)))
1645     return nullptr;
1646 
1647   llvm::MDBuilder MDHelper(getLLVMContext());
1648   return MDHelper.createRange(Min, End);
1649 }
1650 
1651 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1652                                            SourceLocation Loc) {
1653   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1654   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1655   if (!HasBoolCheck && !HasEnumCheck)
1656     return false;
1657 
1658   bool IsBool = hasBooleanRepresentation(Ty) ||
1659                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1660   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1661   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1662   if (!NeedsBoolCheck && !NeedsEnumCheck)
1663     return false;
1664 
1665   // Single-bit booleans don't need to be checked. Special-case this to avoid
1666   // a bit width mismatch when handling bitfield values. This is handled by
1667   // EmitFromMemory for the non-bitfield case.
1668   if (IsBool &&
1669       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1670     return false;
1671 
1672   llvm::APInt Min, End;
1673   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1674     return true;
1675 
1676   auto &Ctx = getLLVMContext();
1677   SanitizerScope SanScope(this);
1678   llvm::Value *Check;
1679   --End;
1680   if (!Min) {
1681     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1682   } else {
1683     llvm::Value *Upper =
1684         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1685     llvm::Value *Lower =
1686         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1687     Check = Builder.CreateAnd(Upper, Lower);
1688   }
1689   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1690                                   EmitCheckTypeDescriptor(Ty)};
1691   SanitizerMask Kind =
1692       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1693   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1694             StaticArgs, EmitCheckValue(Value));
1695   return true;
1696 }
1697 
1698 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1699                                                QualType Ty,
1700                                                SourceLocation Loc,
1701                                                LValueBaseInfo BaseInfo,
1702                                                TBAAAccessInfo TBAAInfo,
1703                                                bool isNontemporal) {
1704   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1705     // For better performance, handle vector loads differently.
1706     if (Ty->isVectorType()) {
1707       const llvm::Type *EltTy = Addr.getElementType();
1708 
1709       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1710 
1711       // Handle vectors of size 3 like size 4 for better performance.
1712       if (VTy->getNumElements() == 3) {
1713 
1714         // Bitcast to vec4 type.
1715         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1716         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1717         // Now load value.
1718         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1719 
1720         // Shuffle vector to get vec3.
1721         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1722                                         "extractVec");
1723         return EmitFromMemory(V, Ty);
1724       }
1725     }
1726   }
1727 
1728   // Atomic operations have to be done on integral types.
1729   LValue AtomicLValue =
1730       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1731   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1732     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1733   }
1734 
1735   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1736   if (isNontemporal) {
1737     llvm::MDNode *Node = llvm::MDNode::get(
1738         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1739     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1740   }
1741 
1742   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1743 
1744   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1745     // In order to prevent the optimizer from throwing away the check, don't
1746     // attach range metadata to the load.
1747   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1748     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1749       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1750 
1751   return EmitFromMemory(Load, Ty);
1752 }
1753 
1754 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1755   // Bool has a different representation in memory than in registers.
1756   if (hasBooleanRepresentation(Ty)) {
1757     // This should really always be an i1, but sometimes it's already
1758     // an i8, and it's awkward to track those cases down.
1759     if (Value->getType()->isIntegerTy(1))
1760       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1761     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1762            "wrong value rep of bool");
1763   }
1764 
1765   return Value;
1766 }
1767 
1768 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1769   // Bool has a different representation in memory than in registers.
1770   if (hasBooleanRepresentation(Ty)) {
1771     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1772            "wrong value rep of bool");
1773     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1774   }
1775 
1776   return Value;
1777 }
1778 
1779 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1780 // MatrixType), if it points to a array (the memory type of MatrixType).
1781 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1782                                          bool IsVector = true) {
1783   auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1784   if (ArrayTy && IsVector) {
1785     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1786                                                 ArrayTy->getNumElements());
1787 
1788     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1789   }
1790   auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1791   if (VectorTy && !IsVector) {
1792     auto *ArrayTy = llvm::ArrayType::get(
1793         VectorTy->getElementType(),
1794         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1795 
1796     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1797   }
1798 
1799   return Addr;
1800 }
1801 
1802 // Emit a store of a matrix LValue. This may require casting the original
1803 // pointer to memory address (ArrayType) to a pointer to the value type
1804 // (VectorType).
1805 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1806                                     bool isInit, CodeGenFunction &CGF) {
1807   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1808                                            value->getType()->isVectorTy());
1809   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1810                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1811                         lvalue.isNontemporal());
1812 }
1813 
1814 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1815                                         bool Volatile, QualType Ty,
1816                                         LValueBaseInfo BaseInfo,
1817                                         TBAAAccessInfo TBAAInfo,
1818                                         bool isInit, bool isNontemporal) {
1819   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1820     // Handle vectors differently to get better performance.
1821     if (Ty->isVectorType()) {
1822       llvm::Type *SrcTy = Value->getType();
1823       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1824       // Handle vec3 special.
1825       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1826         // Our source is a vec3, do a shuffle vector to make it a vec4.
1827         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1828                                             "extractVec");
1829         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1830       }
1831       if (Addr.getElementType() != SrcTy) {
1832         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1833       }
1834     }
1835   }
1836 
1837   Value = EmitToMemory(Value, Ty);
1838 
1839   LValue AtomicLValue =
1840       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1841   if (Ty->isAtomicType() ||
1842       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1843     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1844     return;
1845   }
1846 
1847   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1848   if (isNontemporal) {
1849     llvm::MDNode *Node =
1850         llvm::MDNode::get(Store->getContext(),
1851                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1852     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1853   }
1854 
1855   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1856 }
1857 
1858 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1859                                         bool isInit) {
1860   if (lvalue.getType()->isConstantMatrixType()) {
1861     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1862     return;
1863   }
1864 
1865   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1866                     lvalue.getType(), lvalue.getBaseInfo(),
1867                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1868 }
1869 
1870 // Emit a load of a LValue of matrix type. This may require casting the pointer
1871 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1872 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1873                                      CodeGenFunction &CGF) {
1874   assert(LV.getType()->isConstantMatrixType());
1875   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1876   LV.setAddress(Addr);
1877   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1878 }
1879 
1880 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1881 /// method emits the address of the lvalue, then loads the result as an rvalue,
1882 /// returning the rvalue.
1883 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1884   if (LV.isObjCWeak()) {
1885     // load of a __weak object.
1886     Address AddrWeakObj = LV.getAddress(*this);
1887     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1888                                                              AddrWeakObj));
1889   }
1890   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1891     // In MRC mode, we do a load+autorelease.
1892     if (!getLangOpts().ObjCAutoRefCount) {
1893       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1894     }
1895 
1896     // In ARC mode, we load retained and then consume the value.
1897     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1898     Object = EmitObjCConsumeObject(LV.getType(), Object);
1899     return RValue::get(Object);
1900   }
1901 
1902   if (LV.isSimple()) {
1903     assert(!LV.getType()->isFunctionType());
1904 
1905     if (LV.getType()->isConstantMatrixType())
1906       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1907 
1908     // Everything needs a load.
1909     return RValue::get(EmitLoadOfScalar(LV, Loc));
1910   }
1911 
1912   if (LV.isVectorElt()) {
1913     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1914                                               LV.isVolatileQualified());
1915     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1916                                                     "vecext"));
1917   }
1918 
1919   // If this is a reference to a subset of the elements of a vector, either
1920   // shuffle the input or extract/insert them as appropriate.
1921   if (LV.isExtVectorElt()) {
1922     return EmitLoadOfExtVectorElementLValue(LV);
1923   }
1924 
1925   // Global Register variables always invoke intrinsics
1926   if (LV.isGlobalReg())
1927     return EmitLoadOfGlobalRegLValue(LV);
1928 
1929   if (LV.isMatrixElt()) {
1930     llvm::Value *Idx = LV.getMatrixIdx();
1931     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1932       const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>();
1933       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1934       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1935     }
1936     llvm::LoadInst *Load =
1937         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1938     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1939   }
1940 
1941   assert(LV.isBitField() && "Unknown LValue type!");
1942   return EmitLoadOfBitfieldLValue(LV, Loc);
1943 }
1944 
1945 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1946                                                  SourceLocation Loc) {
1947   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1948 
1949   // Get the output type.
1950   llvm::Type *ResLTy = ConvertType(LV.getType());
1951 
1952   Address Ptr = LV.getBitFieldAddress();
1953   llvm::Value *Val =
1954       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1955 
1956   bool UseVolatile = LV.isVolatileQualified() &&
1957                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1958   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1959   const unsigned StorageSize =
1960       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1961   if (Info.IsSigned) {
1962     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1963     unsigned HighBits = StorageSize - Offset - Info.Size;
1964     if (HighBits)
1965       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1966     if (Offset + HighBits)
1967       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1968   } else {
1969     if (Offset)
1970       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1971     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1972       Val = Builder.CreateAnd(
1973           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1974   }
1975   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1976   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1977   return RValue::get(Val);
1978 }
1979 
1980 // If this is a reference to a subset of the elements of a vector, create an
1981 // appropriate shufflevector.
1982 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1983   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1984                                         LV.isVolatileQualified());
1985 
1986   const llvm::Constant *Elts = LV.getExtVectorElts();
1987 
1988   // If the result of the expression is a non-vector type, we must be extracting
1989   // a single element.  Just codegen as an extractelement.
1990   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1991   if (!ExprVT) {
1992     unsigned InIdx = getAccessedFieldNo(0, Elts);
1993     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1994     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1995   }
1996 
1997   // Always use shuffle vector to try to retain the original program structure
1998   unsigned NumResultElts = ExprVT->getNumElements();
1999 
2000   SmallVector<int, 4> Mask;
2001   for (unsigned i = 0; i != NumResultElts; ++i)
2002     Mask.push_back(getAccessedFieldNo(i, Elts));
2003 
2004   Vec = Builder.CreateShuffleVector(Vec, Mask);
2005   return RValue::get(Vec);
2006 }
2007 
2008 /// Generates lvalue for partial ext_vector access.
2009 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2010   Address VectorAddress = LV.getExtVectorAddress();
2011   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2012   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2013 
2014   Address CastToPointerElement =
2015     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2016                                  "conv.ptr.element");
2017 
2018   const llvm::Constant *Elts = LV.getExtVectorElts();
2019   unsigned ix = getAccessedFieldNo(0, Elts);
2020 
2021   Address VectorBasePtrPlusIx =
2022     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2023                                    "vector.elt");
2024 
2025   return VectorBasePtrPlusIx;
2026 }
2027 
2028 /// Load of global gamed gegisters are always calls to intrinsics.
2029 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2030   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2031          "Bad type for register variable");
2032   llvm::MDNode *RegName = cast<llvm::MDNode>(
2033       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2034 
2035   // We accept integer and pointer types only
2036   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2037   llvm::Type *Ty = OrigTy;
2038   if (OrigTy->isPointerTy())
2039     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2040   llvm::Type *Types[] = { Ty };
2041 
2042   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2043   llvm::Value *Call = Builder.CreateCall(
2044       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2045   if (OrigTy->isPointerTy())
2046     Call = Builder.CreateIntToPtr(Call, OrigTy);
2047   return RValue::get(Call);
2048 }
2049 
2050 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2051 /// lvalue, where both are guaranteed to the have the same type, and that type
2052 /// is 'Ty'.
2053 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2054                                              bool isInit) {
2055   if (!Dst.isSimple()) {
2056     if (Dst.isVectorElt()) {
2057       // Read/modify/write the vector, inserting the new element.
2058       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2059                                             Dst.isVolatileQualified());
2060       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2061                                         Dst.getVectorIdx(), "vecins");
2062       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2063                           Dst.isVolatileQualified());
2064       return;
2065     }
2066 
2067     // If this is an update of extended vector elements, insert them as
2068     // appropriate.
2069     if (Dst.isExtVectorElt())
2070       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2071 
2072     if (Dst.isGlobalReg())
2073       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2074 
2075     if (Dst.isMatrixElt()) {
2076       llvm::Value *Idx = Dst.getMatrixIdx();
2077       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2078         const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>();
2079         llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
2080         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2081       }
2082       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2083       llvm::Value *Vec =
2084           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2085       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2086                           Dst.isVolatileQualified());
2087       return;
2088     }
2089 
2090     assert(Dst.isBitField() && "Unknown LValue type");
2091     return EmitStoreThroughBitfieldLValue(Src, Dst);
2092   }
2093 
2094   // There's special magic for assigning into an ARC-qualified l-value.
2095   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2096     switch (Lifetime) {
2097     case Qualifiers::OCL_None:
2098       llvm_unreachable("present but none");
2099 
2100     case Qualifiers::OCL_ExplicitNone:
2101       // nothing special
2102       break;
2103 
2104     case Qualifiers::OCL_Strong:
2105       if (isInit) {
2106         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2107         break;
2108       }
2109       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2110       return;
2111 
2112     case Qualifiers::OCL_Weak:
2113       if (isInit)
2114         // Initialize and then skip the primitive store.
2115         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2116       else
2117         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2118                          /*ignore*/ true);
2119       return;
2120 
2121     case Qualifiers::OCL_Autoreleasing:
2122       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2123                                                      Src.getScalarVal()));
2124       // fall into the normal path
2125       break;
2126     }
2127   }
2128 
2129   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2130     // load of a __weak object.
2131     Address LvalueDst = Dst.getAddress(*this);
2132     llvm::Value *src = Src.getScalarVal();
2133      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2134     return;
2135   }
2136 
2137   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2138     // load of a __strong object.
2139     Address LvalueDst = Dst.getAddress(*this);
2140     llvm::Value *src = Src.getScalarVal();
2141     if (Dst.isObjCIvar()) {
2142       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2143       llvm::Type *ResultType = IntPtrTy;
2144       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2145       llvm::Value *RHS = dst.getPointer();
2146       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2147       llvm::Value *LHS =
2148         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2149                                "sub.ptr.lhs.cast");
2150       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2151       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2152                                               BytesBetween);
2153     } else if (Dst.isGlobalObjCRef()) {
2154       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2155                                                 Dst.isThreadLocalRef());
2156     }
2157     else
2158       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2159     return;
2160   }
2161 
2162   assert(Src.isScalar() && "Can't emit an agg store with this method");
2163   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2164 }
2165 
2166 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2167                                                      llvm::Value **Result) {
2168   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2169   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2170   Address Ptr = Dst.getBitFieldAddress();
2171 
2172   // Get the source value, truncated to the width of the bit-field.
2173   llvm::Value *SrcVal = Src.getScalarVal();
2174 
2175   // Cast the source to the storage type and shift it into place.
2176   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2177                                  /*isSigned=*/false);
2178   llvm::Value *MaskedVal = SrcVal;
2179 
2180   const bool UseVolatile =
2181       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2182       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2183   const unsigned StorageSize =
2184       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2185   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2186   // See if there are other bits in the bitfield's storage we'll need to load
2187   // and mask together with source before storing.
2188   if (StorageSize != Info.Size) {
2189     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2190     llvm::Value *Val =
2191         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2192 
2193     // Mask the source value as needed.
2194     if (!hasBooleanRepresentation(Dst.getType()))
2195       SrcVal = Builder.CreateAnd(
2196           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2197           "bf.value");
2198     MaskedVal = SrcVal;
2199     if (Offset)
2200       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2201 
2202     // Mask out the original value.
2203     Val = Builder.CreateAnd(
2204         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2205         "bf.clear");
2206 
2207     // Or together the unchanged values and the source value.
2208     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2209   } else {
2210     assert(Offset == 0);
2211     // According to the AACPS:
2212     // When a volatile bit-field is written, and its container does not overlap
2213     // with any non-bit-field member, its container must be read exactly once
2214     // and written exactly once using the access width appropriate to the type
2215     // of the container. The two accesses are not atomic.
2216     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2217         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2218       Builder.CreateLoad(Ptr, true, "bf.load");
2219   }
2220 
2221   // Write the new value back out.
2222   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2223 
2224   // Return the new value of the bit-field, if requested.
2225   if (Result) {
2226     llvm::Value *ResultVal = MaskedVal;
2227 
2228     // Sign extend the value if needed.
2229     if (Info.IsSigned) {
2230       assert(Info.Size <= StorageSize);
2231       unsigned HighBits = StorageSize - Info.Size;
2232       if (HighBits) {
2233         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2234         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2235       }
2236     }
2237 
2238     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2239                                       "bf.result.cast");
2240     *Result = EmitFromMemory(ResultVal, Dst.getType());
2241   }
2242 }
2243 
2244 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2245                                                                LValue Dst) {
2246   // This access turns into a read/modify/write of the vector.  Load the input
2247   // value now.
2248   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2249                                         Dst.isVolatileQualified());
2250   const llvm::Constant *Elts = Dst.getExtVectorElts();
2251 
2252   llvm::Value *SrcVal = Src.getScalarVal();
2253 
2254   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2255     unsigned NumSrcElts = VTy->getNumElements();
2256     unsigned NumDstElts =
2257         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2258     if (NumDstElts == NumSrcElts) {
2259       // Use shuffle vector is the src and destination are the same number of
2260       // elements and restore the vector mask since it is on the side it will be
2261       // stored.
2262       SmallVector<int, 4> Mask(NumDstElts);
2263       for (unsigned i = 0; i != NumSrcElts; ++i)
2264         Mask[getAccessedFieldNo(i, Elts)] = i;
2265 
2266       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2267     } else if (NumDstElts > NumSrcElts) {
2268       // Extended the source vector to the same length and then shuffle it
2269       // into the destination.
2270       // FIXME: since we're shuffling with undef, can we just use the indices
2271       //        into that?  This could be simpler.
2272       SmallVector<int, 4> ExtMask;
2273       for (unsigned i = 0; i != NumSrcElts; ++i)
2274         ExtMask.push_back(i);
2275       ExtMask.resize(NumDstElts, -1);
2276       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2277       // build identity
2278       SmallVector<int, 4> Mask;
2279       for (unsigned i = 0; i != NumDstElts; ++i)
2280         Mask.push_back(i);
2281 
2282       // When the vector size is odd and .odd or .hi is used, the last element
2283       // of the Elts constant array will be one past the size of the vector.
2284       // Ignore the last element here, if it is greater than the mask size.
2285       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2286         NumSrcElts--;
2287 
2288       // modify when what gets shuffled in
2289       for (unsigned i = 0; i != NumSrcElts; ++i)
2290         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2291       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2292     } else {
2293       // We should never shorten the vector
2294       llvm_unreachable("unexpected shorten vector length");
2295     }
2296   } else {
2297     // If the Src is a scalar (not a vector) it must be updating one element.
2298     unsigned InIdx = getAccessedFieldNo(0, Elts);
2299     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2300     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2301   }
2302 
2303   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2304                       Dst.isVolatileQualified());
2305 }
2306 
2307 /// Store of global named registers are always calls to intrinsics.
2308 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2309   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2310          "Bad type for register variable");
2311   llvm::MDNode *RegName = cast<llvm::MDNode>(
2312       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2313   assert(RegName && "Register LValue is not metadata");
2314 
2315   // We accept integer and pointer types only
2316   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2317   llvm::Type *Ty = OrigTy;
2318   if (OrigTy->isPointerTy())
2319     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2320   llvm::Type *Types[] = { Ty };
2321 
2322   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2323   llvm::Value *Value = Src.getScalarVal();
2324   if (OrigTy->isPointerTy())
2325     Value = Builder.CreatePtrToInt(Value, Ty);
2326   Builder.CreateCall(
2327       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2328 }
2329 
2330 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2331 // generating write-barries API. It is currently a global, ivar,
2332 // or neither.
2333 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2334                                  LValue &LV,
2335                                  bool IsMemberAccess=false) {
2336   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2337     return;
2338 
2339   if (isa<ObjCIvarRefExpr>(E)) {
2340     QualType ExpTy = E->getType();
2341     if (IsMemberAccess && ExpTy->isPointerType()) {
2342       // If ivar is a structure pointer, assigning to field of
2343       // this struct follows gcc's behavior and makes it a non-ivar
2344       // writer-barrier conservatively.
2345       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2346       if (ExpTy->isRecordType()) {
2347         LV.setObjCIvar(false);
2348         return;
2349       }
2350     }
2351     LV.setObjCIvar(true);
2352     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2353     LV.setBaseIvarExp(Exp->getBase());
2354     LV.setObjCArray(E->getType()->isArrayType());
2355     return;
2356   }
2357 
2358   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2359     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2360       if (VD->hasGlobalStorage()) {
2361         LV.setGlobalObjCRef(true);
2362         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2363       }
2364     }
2365     LV.setObjCArray(E->getType()->isArrayType());
2366     return;
2367   }
2368 
2369   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2370     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2371     return;
2372   }
2373 
2374   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2375     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2376     if (LV.isObjCIvar()) {
2377       // If cast is to a structure pointer, follow gcc's behavior and make it
2378       // a non-ivar write-barrier.
2379       QualType ExpTy = E->getType();
2380       if (ExpTy->isPointerType())
2381         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2382       if (ExpTy->isRecordType())
2383         LV.setObjCIvar(false);
2384     }
2385     return;
2386   }
2387 
2388   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2389     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2390     return;
2391   }
2392 
2393   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2394     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2395     return;
2396   }
2397 
2398   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2399     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2400     return;
2401   }
2402 
2403   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2404     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2405     return;
2406   }
2407 
2408   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2409     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2410     if (LV.isObjCIvar() && !LV.isObjCArray())
2411       // Using array syntax to assigning to what an ivar points to is not
2412       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2413       LV.setObjCIvar(false);
2414     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2415       // Using array syntax to assigning to what global points to is not
2416       // same as assigning to the global itself. {id *G;} G[i] = 0;
2417       LV.setGlobalObjCRef(false);
2418     return;
2419   }
2420 
2421   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2422     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2423     // We don't know if member is an 'ivar', but this flag is looked at
2424     // only in the context of LV.isObjCIvar().
2425     LV.setObjCArray(E->getType()->isArrayType());
2426     return;
2427   }
2428 }
2429 
2430 static llvm::Value *
2431 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2432                                 llvm::Value *V, llvm::Type *IRType,
2433                                 StringRef Name = StringRef()) {
2434   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2435   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2436 }
2437 
2438 static LValue EmitThreadPrivateVarDeclLValue(
2439     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2440     llvm::Type *RealVarTy, SourceLocation Loc) {
2441   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2442     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2443         CGF, VD, Addr, Loc);
2444   else
2445     Addr =
2446         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2447 
2448   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2449   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2450 }
2451 
2452 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2453                                            const VarDecl *VD, QualType T) {
2454   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2455       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2456   // Return an invalid address if variable is MT_To and unified
2457   // memory is not enabled. For all other cases: MT_Link and
2458   // MT_To with unified memory, return a valid address.
2459   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2460                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2461     return Address::invalid();
2462   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2463           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2464            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2465          "Expected link clause OR to clause with unified memory enabled.");
2466   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2467   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2468   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2469 }
2470 
2471 Address
2472 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2473                                      LValueBaseInfo *PointeeBaseInfo,
2474                                      TBAAAccessInfo *PointeeTBAAInfo) {
2475   llvm::LoadInst *Load =
2476       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2477   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2478 
2479   CharUnits Align = CGM.getNaturalTypeAlignment(
2480       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2481       /* forPointeeType= */ true);
2482   return Address(Load, Align);
2483 }
2484 
2485 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2486   LValueBaseInfo PointeeBaseInfo;
2487   TBAAAccessInfo PointeeTBAAInfo;
2488   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2489                                             &PointeeTBAAInfo);
2490   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2491                         PointeeBaseInfo, PointeeTBAAInfo);
2492 }
2493 
2494 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2495                                            const PointerType *PtrTy,
2496                                            LValueBaseInfo *BaseInfo,
2497                                            TBAAAccessInfo *TBAAInfo) {
2498   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2499   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2500                                                    BaseInfo, TBAAInfo,
2501                                                    /*forPointeeType=*/true));
2502 }
2503 
2504 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2505                                                 const PointerType *PtrTy) {
2506   LValueBaseInfo BaseInfo;
2507   TBAAAccessInfo TBAAInfo;
2508   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2509   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2510 }
2511 
2512 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2513                                       const Expr *E, const VarDecl *VD) {
2514   QualType T = E->getType();
2515 
2516   // If it's thread_local, emit a call to its wrapper function instead.
2517   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2518       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2519     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2520   // Check if the variable is marked as declare target with link clause in
2521   // device codegen.
2522   if (CGF.getLangOpts().OpenMPIsDevice) {
2523     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2524     if (Addr.isValid())
2525       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2526   }
2527 
2528   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2529   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2530   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2531   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2532   Address Addr(V, RealVarTy, Alignment);
2533   // Emit reference to the private copy of the variable if it is an OpenMP
2534   // threadprivate variable.
2535   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2536       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2537     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2538                                           E->getExprLoc());
2539   }
2540   LValue LV = VD->getType()->isReferenceType() ?
2541       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2542                                     AlignmentSource::Decl) :
2543       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2544   setObjCGCLValueClass(CGF.getContext(), E, LV);
2545   return LV;
2546 }
2547 
2548 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2549                                                GlobalDecl GD) {
2550   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2551   if (FD->hasAttr<WeakRefAttr>()) {
2552     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2553     return aliasee.getPointer();
2554   }
2555 
2556   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2557   if (!FD->hasPrototype()) {
2558     if (const FunctionProtoType *Proto =
2559             FD->getType()->getAs<FunctionProtoType>()) {
2560       // Ugly case: for a K&R-style definition, the type of the definition
2561       // isn't the same as the type of a use.  Correct for this with a
2562       // bitcast.
2563       QualType NoProtoType =
2564           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2565       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2566       V = llvm::ConstantExpr::getBitCast(V,
2567                                       CGM.getTypes().ConvertType(NoProtoType));
2568     }
2569   }
2570   return V;
2571 }
2572 
2573 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2574                                      GlobalDecl GD) {
2575   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2576   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2577   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2578   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2579                             AlignmentSource::Decl);
2580 }
2581 
2582 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2583                                       llvm::Value *ThisValue) {
2584   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2585   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2586   return CGF.EmitLValueForField(LV, FD);
2587 }
2588 
2589 /// Named Registers are named metadata pointing to the register name
2590 /// which will be read from/written to as an argument to the intrinsic
2591 /// @llvm.read/write_register.
2592 /// So far, only the name is being passed down, but other options such as
2593 /// register type, allocation type or even optimization options could be
2594 /// passed down via the metadata node.
2595 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2596   SmallString<64> Name("llvm.named.register.");
2597   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2598   assert(Asm->getLabel().size() < 64-Name.size() &&
2599       "Register name too big");
2600   Name.append(Asm->getLabel());
2601   llvm::NamedMDNode *M =
2602     CGM.getModule().getOrInsertNamedMetadata(Name);
2603   if (M->getNumOperands() == 0) {
2604     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2605                                               Asm->getLabel());
2606     llvm::Metadata *Ops[] = {Str};
2607     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2608   }
2609 
2610   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2611 
2612   llvm::Value *Ptr =
2613     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2614   return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2615 }
2616 
2617 /// Determine whether we can emit a reference to \p VD from the current
2618 /// context, despite not necessarily having seen an odr-use of the variable in
2619 /// this context.
2620 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2621                                                const DeclRefExpr *E,
2622                                                const VarDecl *VD,
2623                                                bool IsConstant) {
2624   // For a variable declared in an enclosing scope, do not emit a spurious
2625   // reference even if we have a capture, as that will emit an unwarranted
2626   // reference to our capture state, and will likely generate worse code than
2627   // emitting a local copy.
2628   if (E->refersToEnclosingVariableOrCapture())
2629     return false;
2630 
2631   // For a local declaration declared in this function, we can always reference
2632   // it even if we don't have an odr-use.
2633   if (VD->hasLocalStorage()) {
2634     return VD->getDeclContext() ==
2635            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2636   }
2637 
2638   // For a global declaration, we can emit a reference to it if we know
2639   // for sure that we are able to emit a definition of it.
2640   VD = VD->getDefinition(CGF.getContext());
2641   if (!VD)
2642     return false;
2643 
2644   // Don't emit a spurious reference if it might be to a variable that only
2645   // exists on a different device / target.
2646   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2647   // cross-target reference.
2648   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2649       CGF.getLangOpts().OpenCL) {
2650     return false;
2651   }
2652 
2653   // We can emit a spurious reference only if the linkage implies that we'll
2654   // be emitting a non-interposable symbol that will be retained until link
2655   // time.
2656   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2657   case llvm::GlobalValue::ExternalLinkage:
2658   case llvm::GlobalValue::LinkOnceODRLinkage:
2659   case llvm::GlobalValue::WeakODRLinkage:
2660   case llvm::GlobalValue::InternalLinkage:
2661   case llvm::GlobalValue::PrivateLinkage:
2662     return true;
2663   default:
2664     return false;
2665   }
2666 }
2667 
2668 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2669   const NamedDecl *ND = E->getDecl();
2670   QualType T = E->getType();
2671 
2672   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2673          "should not emit an unevaluated operand");
2674 
2675   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2676     // Global Named registers access via intrinsics only
2677     if (VD->getStorageClass() == SC_Register &&
2678         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2679       return EmitGlobalNamedRegister(VD, CGM);
2680 
2681     // If this DeclRefExpr does not constitute an odr-use of the variable,
2682     // we're not permitted to emit a reference to it in general, and it might
2683     // not be captured if capture would be necessary for a use. Emit the
2684     // constant value directly instead.
2685     if (E->isNonOdrUse() == NOUR_Constant &&
2686         (VD->getType()->isReferenceType() ||
2687          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2688       VD->getAnyInitializer(VD);
2689       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2690           E->getLocation(), *VD->evaluateValue(), VD->getType());
2691       assert(Val && "failed to emit constant expression");
2692 
2693       Address Addr = Address::invalid();
2694       if (!VD->getType()->isReferenceType()) {
2695         // Spill the constant value to a global.
2696         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2697                                            getContext().getDeclAlign(VD));
2698         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2699         auto *PTy = llvm::PointerType::get(
2700             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2701         if (PTy != Addr.getType())
2702           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2703       } else {
2704         // Should we be using the alignment of the constant pointer we emitted?
2705         CharUnits Alignment =
2706             CGM.getNaturalTypeAlignment(E->getType(),
2707                                         /* BaseInfo= */ nullptr,
2708                                         /* TBAAInfo= */ nullptr,
2709                                         /* forPointeeType= */ true);
2710         Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2711       }
2712       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2713     }
2714 
2715     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2716 
2717     // Check for captured variables.
2718     if (E->refersToEnclosingVariableOrCapture()) {
2719       VD = VD->getCanonicalDecl();
2720       if (auto *FD = LambdaCaptureFields.lookup(VD))
2721         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2722       if (CapturedStmtInfo) {
2723         auto I = LocalDeclMap.find(VD);
2724         if (I != LocalDeclMap.end()) {
2725           LValue CapLVal;
2726           if (VD->getType()->isReferenceType())
2727             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2728                                                 AlignmentSource::Decl);
2729           else
2730             CapLVal = MakeAddrLValue(I->second, T);
2731           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2732           // in simd context.
2733           if (getLangOpts().OpenMP &&
2734               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2735             CapLVal.setNontemporal(/*Value=*/true);
2736           return CapLVal;
2737         }
2738         LValue CapLVal =
2739             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2740                                     CapturedStmtInfo->getContextValue());
2741         CapLVal = MakeAddrLValue(
2742             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2743             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2744             CapLVal.getTBAAInfo());
2745         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2746         // in simd context.
2747         if (getLangOpts().OpenMP &&
2748             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2749           CapLVal.setNontemporal(/*Value=*/true);
2750         return CapLVal;
2751       }
2752 
2753       assert(isa<BlockDecl>(CurCodeDecl));
2754       Address addr = GetAddrOfBlockDecl(VD);
2755       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2756     }
2757   }
2758 
2759   // FIXME: We should be able to assert this for FunctionDecls as well!
2760   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2761   // those with a valid source location.
2762   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2763           !E->getLocation().isValid()) &&
2764          "Should not use decl without marking it used!");
2765 
2766   if (ND->hasAttr<WeakRefAttr>()) {
2767     const auto *VD = cast<ValueDecl>(ND);
2768     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2769     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2770   }
2771 
2772   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2773     // Check if this is a global variable.
2774     if (VD->hasLinkage() || VD->isStaticDataMember())
2775       return EmitGlobalVarDeclLValue(*this, E, VD);
2776 
2777     Address addr = Address::invalid();
2778 
2779     // The variable should generally be present in the local decl map.
2780     auto iter = LocalDeclMap.find(VD);
2781     if (iter != LocalDeclMap.end()) {
2782       addr = iter->second;
2783 
2784     // Otherwise, it might be static local we haven't emitted yet for
2785     // some reason; most likely, because it's in an outer function.
2786     } else if (VD->isStaticLocal()) {
2787       llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2788           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2789       addr = Address(
2790           var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2791 
2792     // No other cases for now.
2793     } else {
2794       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2795     }
2796 
2797 
2798     // Check for OpenMP threadprivate variables.
2799     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2800         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2801       return EmitThreadPrivateVarDeclLValue(
2802           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2803           E->getExprLoc());
2804     }
2805 
2806     // Drill into block byref variables.
2807     bool isBlockByref = VD->isEscapingByref();
2808     if (isBlockByref) {
2809       addr = emitBlockByrefAddress(addr, VD);
2810     }
2811 
2812     // Drill into reference types.
2813     LValue LV = VD->getType()->isReferenceType() ?
2814         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2815         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2816 
2817     bool isLocalStorage = VD->hasLocalStorage();
2818 
2819     bool NonGCable = isLocalStorage &&
2820                      !VD->getType()->isReferenceType() &&
2821                      !isBlockByref;
2822     if (NonGCable) {
2823       LV.getQuals().removeObjCGCAttr();
2824       LV.setNonGC(true);
2825     }
2826 
2827     bool isImpreciseLifetime =
2828       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2829     if (isImpreciseLifetime)
2830       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2831     setObjCGCLValueClass(getContext(), E, LV);
2832     return LV;
2833   }
2834 
2835   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2836     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2837 
2838     // Emit debuginfo for the function declaration if the target wants to.
2839     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2840       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2841         auto *Fn =
2842             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2843         if (!Fn->getSubprogram())
2844           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2845       }
2846     }
2847 
2848     return LV;
2849   }
2850 
2851   // FIXME: While we're emitting a binding from an enclosing scope, all other
2852   // DeclRefExprs we see should be implicitly treated as if they also refer to
2853   // an enclosing scope.
2854   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2855     return EmitLValue(BD->getBinding());
2856 
2857   // We can form DeclRefExprs naming GUID declarations when reconstituting
2858   // non-type template parameters into expressions.
2859   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2860     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2861                           AlignmentSource::Decl);
2862 
2863   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2864     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2865                           AlignmentSource::Decl);
2866 
2867   llvm_unreachable("Unhandled DeclRefExpr");
2868 }
2869 
2870 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2871   // __extension__ doesn't affect lvalue-ness.
2872   if (E->getOpcode() == UO_Extension)
2873     return EmitLValue(E->getSubExpr());
2874 
2875   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2876   switch (E->getOpcode()) {
2877   default: llvm_unreachable("Unknown unary operator lvalue!");
2878   case UO_Deref: {
2879     QualType T = E->getSubExpr()->getType()->getPointeeType();
2880     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2881 
2882     LValueBaseInfo BaseInfo;
2883     TBAAAccessInfo TBAAInfo;
2884     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2885                                             &TBAAInfo);
2886     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2887     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2888 
2889     // We should not generate __weak write barrier on indirect reference
2890     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2891     // But, we continue to generate __strong write barrier on indirect write
2892     // into a pointer to object.
2893     if (getLangOpts().ObjC &&
2894         getLangOpts().getGC() != LangOptions::NonGC &&
2895         LV.isObjCWeak())
2896       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2897     return LV;
2898   }
2899   case UO_Real:
2900   case UO_Imag: {
2901     LValue LV = EmitLValue(E->getSubExpr());
2902     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2903 
2904     // __real is valid on scalars.  This is a faster way of testing that.
2905     // __imag can only produce an rvalue on scalars.
2906     if (E->getOpcode() == UO_Real &&
2907         !LV.getAddress(*this).getElementType()->isStructTy()) {
2908       assert(E->getSubExpr()->getType()->isArithmeticType());
2909       return LV;
2910     }
2911 
2912     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2913 
2914     Address Component =
2915         (E->getOpcode() == UO_Real
2916              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2917              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2918     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2919                                    CGM.getTBAAInfoForSubobject(LV, T));
2920     ElemLV.getQuals().addQualifiers(LV.getQuals());
2921     return ElemLV;
2922   }
2923   case UO_PreInc:
2924   case UO_PreDec: {
2925     LValue LV = EmitLValue(E->getSubExpr());
2926     bool isInc = E->getOpcode() == UO_PreInc;
2927 
2928     if (E->getType()->isAnyComplexType())
2929       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2930     else
2931       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2932     return LV;
2933   }
2934   }
2935 }
2936 
2937 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2938   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2939                         E->getType(), AlignmentSource::Decl);
2940 }
2941 
2942 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2943   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2944                         E->getType(), AlignmentSource::Decl);
2945 }
2946 
2947 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2948   auto SL = E->getFunctionName();
2949   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2950   StringRef FnName = CurFn->getName();
2951   if (FnName.startswith("\01"))
2952     FnName = FnName.substr(1);
2953   StringRef NameItems[] = {
2954       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2955   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2956   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2957     std::string Name = std::string(SL->getString());
2958     if (!Name.empty()) {
2959       unsigned Discriminator =
2960           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2961       if (Discriminator)
2962         Name += "_" + Twine(Discriminator + 1).str();
2963       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2964       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2965     } else {
2966       auto C =
2967           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2968       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2969     }
2970   }
2971   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2972   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2973 }
2974 
2975 /// Emit a type description suitable for use by a runtime sanitizer library. The
2976 /// format of a type descriptor is
2977 ///
2978 /// \code
2979 ///   { i16 TypeKind, i16 TypeInfo }
2980 /// \endcode
2981 ///
2982 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2983 /// integer, 1 for a floating point value, and -1 for anything else.
2984 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2985   // Only emit each type's descriptor once.
2986   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2987     return C;
2988 
2989   uint16_t TypeKind = -1;
2990   uint16_t TypeInfo = 0;
2991 
2992   if (T->isIntegerType()) {
2993     TypeKind = 0;
2994     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2995                (T->isSignedIntegerType() ? 1 : 0);
2996   } else if (T->isFloatingType()) {
2997     TypeKind = 1;
2998     TypeInfo = getContext().getTypeSize(T);
2999   }
3000 
3001   // Format the type name as if for a diagnostic, including quotes and
3002   // optionally an 'aka'.
3003   SmallString<32> Buffer;
3004   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3005                                     (intptr_t)T.getAsOpaquePtr(),
3006                                     StringRef(), StringRef(), None, Buffer,
3007                                     None);
3008 
3009   llvm::Constant *Components[] = {
3010     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3011     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3012   };
3013   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3014 
3015   auto *GV = new llvm::GlobalVariable(
3016       CGM.getModule(), Descriptor->getType(),
3017       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3018   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3019   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3020 
3021   // Remember the descriptor for this type.
3022   CGM.setTypeDescriptorInMap(T, GV);
3023 
3024   return GV;
3025 }
3026 
3027 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3028   llvm::Type *TargetTy = IntPtrTy;
3029 
3030   if (V->getType() == TargetTy)
3031     return V;
3032 
3033   // Floating-point types which fit into intptr_t are bitcast to integers
3034   // and then passed directly (after zero-extension, if necessary).
3035   if (V->getType()->isFloatingPointTy()) {
3036     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3037     if (Bits <= TargetTy->getIntegerBitWidth())
3038       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3039                                                          Bits));
3040   }
3041 
3042   // Integers which fit in intptr_t are zero-extended and passed directly.
3043   if (V->getType()->isIntegerTy() &&
3044       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3045     return Builder.CreateZExt(V, TargetTy);
3046 
3047   // Pointers are passed directly, everything else is passed by address.
3048   if (!V->getType()->isPointerTy()) {
3049     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3050     Builder.CreateStore(V, Ptr);
3051     V = Ptr.getPointer();
3052   }
3053   return Builder.CreatePtrToInt(V, TargetTy);
3054 }
3055 
3056 /// Emit a representation of a SourceLocation for passing to a handler
3057 /// in a sanitizer runtime library. The format for this data is:
3058 /// \code
3059 ///   struct SourceLocation {
3060 ///     const char *Filename;
3061 ///     int32_t Line, Column;
3062 ///   };
3063 /// \endcode
3064 /// For an invalid SourceLocation, the Filename pointer is null.
3065 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3066   llvm::Constant *Filename;
3067   int Line, Column;
3068 
3069   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3070   if (PLoc.isValid()) {
3071     StringRef FilenameString = PLoc.getFilename();
3072 
3073     int PathComponentsToStrip =
3074         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3075     if (PathComponentsToStrip < 0) {
3076       assert(PathComponentsToStrip != INT_MIN);
3077       int PathComponentsToKeep = -PathComponentsToStrip;
3078       auto I = llvm::sys::path::rbegin(FilenameString);
3079       auto E = llvm::sys::path::rend(FilenameString);
3080       while (I != E && --PathComponentsToKeep)
3081         ++I;
3082 
3083       FilenameString = FilenameString.substr(I - E);
3084     } else if (PathComponentsToStrip > 0) {
3085       auto I = llvm::sys::path::begin(FilenameString);
3086       auto E = llvm::sys::path::end(FilenameString);
3087       while (I != E && PathComponentsToStrip--)
3088         ++I;
3089 
3090       if (I != E)
3091         FilenameString =
3092             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3093       else
3094         FilenameString = llvm::sys::path::filename(FilenameString);
3095     }
3096 
3097     auto FilenameGV =
3098         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3099     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3100                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3101     Filename = FilenameGV.getPointer();
3102     Line = PLoc.getLine();
3103     Column = PLoc.getColumn();
3104   } else {
3105     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3106     Line = Column = 0;
3107   }
3108 
3109   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3110                             Builder.getInt32(Column)};
3111 
3112   return llvm::ConstantStruct::getAnon(Data);
3113 }
3114 
3115 namespace {
3116 /// Specify under what conditions this check can be recovered
3117 enum class CheckRecoverableKind {
3118   /// Always terminate program execution if this check fails.
3119   Unrecoverable,
3120   /// Check supports recovering, runtime has both fatal (noreturn) and
3121   /// non-fatal handlers for this check.
3122   Recoverable,
3123   /// Runtime conditionally aborts, always need to support recovery.
3124   AlwaysRecoverable
3125 };
3126 }
3127 
3128 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3129   assert(Kind.countPopulation() == 1);
3130   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3131     return CheckRecoverableKind::AlwaysRecoverable;
3132   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3133     return CheckRecoverableKind::Unrecoverable;
3134   else
3135     return CheckRecoverableKind::Recoverable;
3136 }
3137 
3138 namespace {
3139 struct SanitizerHandlerInfo {
3140   char const *const Name;
3141   unsigned Version;
3142 };
3143 }
3144 
3145 const SanitizerHandlerInfo SanitizerHandlers[] = {
3146 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3147     LIST_SANITIZER_CHECKS
3148 #undef SANITIZER_CHECK
3149 };
3150 
3151 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3152                                  llvm::FunctionType *FnType,
3153                                  ArrayRef<llvm::Value *> FnArgs,
3154                                  SanitizerHandler CheckHandler,
3155                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3156                                  llvm::BasicBlock *ContBB) {
3157   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3158   Optional<ApplyDebugLocation> DL;
3159   if (!CGF.Builder.getCurrentDebugLocation()) {
3160     // Ensure that the call has at least an artificial debug location.
3161     DL.emplace(CGF, SourceLocation());
3162   }
3163   bool NeedsAbortSuffix =
3164       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3165   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3166   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3167   const StringRef CheckName = CheckInfo.Name;
3168   std::string FnName = "__ubsan_handle_" + CheckName.str();
3169   if (CheckInfo.Version && !MinimalRuntime)
3170     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3171   if (MinimalRuntime)
3172     FnName += "_minimal";
3173   if (NeedsAbortSuffix)
3174     FnName += "_abort";
3175   bool MayReturn =
3176       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3177 
3178   llvm::AttrBuilder B;
3179   if (!MayReturn) {
3180     B.addAttribute(llvm::Attribute::NoReturn)
3181         .addAttribute(llvm::Attribute::NoUnwind);
3182   }
3183   B.addAttribute(llvm::Attribute::UWTable);
3184 
3185   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3186       FnType, FnName,
3187       llvm::AttributeList::get(CGF.getLLVMContext(),
3188                                llvm::AttributeList::FunctionIndex, B),
3189       /*Local=*/true);
3190   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3191   if (!MayReturn) {
3192     HandlerCall->setDoesNotReturn();
3193     CGF.Builder.CreateUnreachable();
3194   } else {
3195     CGF.Builder.CreateBr(ContBB);
3196   }
3197 }
3198 
3199 void CodeGenFunction::EmitCheck(
3200     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3201     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3202     ArrayRef<llvm::Value *> DynamicArgs) {
3203   assert(IsSanitizerScope);
3204   assert(Checked.size() > 0);
3205   assert(CheckHandler >= 0 &&
3206          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3207   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3208 
3209   llvm::Value *FatalCond = nullptr;
3210   llvm::Value *RecoverableCond = nullptr;
3211   llvm::Value *TrapCond = nullptr;
3212   for (int i = 0, n = Checked.size(); i < n; ++i) {
3213     llvm::Value *Check = Checked[i].first;
3214     // -fsanitize-trap= overrides -fsanitize-recover=.
3215     llvm::Value *&Cond =
3216         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3217             ? TrapCond
3218             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3219                   ? RecoverableCond
3220                   : FatalCond;
3221     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3222   }
3223 
3224   if (TrapCond)
3225     EmitTrapCheck(TrapCond, CheckHandler);
3226   if (!FatalCond && !RecoverableCond)
3227     return;
3228 
3229   llvm::Value *JointCond;
3230   if (FatalCond && RecoverableCond)
3231     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3232   else
3233     JointCond = FatalCond ? FatalCond : RecoverableCond;
3234   assert(JointCond);
3235 
3236   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3237   assert(SanOpts.has(Checked[0].second));
3238 #ifndef NDEBUG
3239   for (int i = 1, n = Checked.size(); i < n; ++i) {
3240     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3241            "All recoverable kinds in a single check must be same!");
3242     assert(SanOpts.has(Checked[i].second));
3243   }
3244 #endif
3245 
3246   llvm::BasicBlock *Cont = createBasicBlock("cont");
3247   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3248   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3249   // Give hint that we very much don't expect to execute the handler
3250   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3251   llvm::MDBuilder MDHelper(getLLVMContext());
3252   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3253   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3254   EmitBlock(Handlers);
3255 
3256   // Handler functions take an i8* pointing to the (handler-specific) static
3257   // information block, followed by a sequence of intptr_t arguments
3258   // representing operand values.
3259   SmallVector<llvm::Value *, 4> Args;
3260   SmallVector<llvm::Type *, 4> ArgTypes;
3261   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3262     Args.reserve(DynamicArgs.size() + 1);
3263     ArgTypes.reserve(DynamicArgs.size() + 1);
3264 
3265     // Emit handler arguments and create handler function type.
3266     if (!StaticArgs.empty()) {
3267       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3268       auto *InfoPtr =
3269           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3270                                    llvm::GlobalVariable::PrivateLinkage, Info);
3271       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3272       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3273       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3274       ArgTypes.push_back(Int8PtrTy);
3275     }
3276 
3277     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3278       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3279       ArgTypes.push_back(IntPtrTy);
3280     }
3281   }
3282 
3283   llvm::FunctionType *FnType =
3284     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3285 
3286   if (!FatalCond || !RecoverableCond) {
3287     // Simple case: we need to generate a single handler call, either
3288     // fatal, or non-fatal.
3289     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3290                          (FatalCond != nullptr), Cont);
3291   } else {
3292     // Emit two handler calls: first one for set of unrecoverable checks,
3293     // another one for recoverable.
3294     llvm::BasicBlock *NonFatalHandlerBB =
3295         createBasicBlock("non_fatal." + CheckName);
3296     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3297     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3298     EmitBlock(FatalHandlerBB);
3299     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3300                          NonFatalHandlerBB);
3301     EmitBlock(NonFatalHandlerBB);
3302     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3303                          Cont);
3304   }
3305 
3306   EmitBlock(Cont);
3307 }
3308 
3309 void CodeGenFunction::EmitCfiSlowPathCheck(
3310     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3311     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3312   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3313 
3314   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3315   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3316 
3317   llvm::MDBuilder MDHelper(getLLVMContext());
3318   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3319   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3320 
3321   EmitBlock(CheckBB);
3322 
3323   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3324 
3325   llvm::CallInst *CheckCall;
3326   llvm::FunctionCallee SlowPathFn;
3327   if (WithDiag) {
3328     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3329     auto *InfoPtr =
3330         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3331                                  llvm::GlobalVariable::PrivateLinkage, Info);
3332     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3333     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3334 
3335     SlowPathFn = CGM.getModule().getOrInsertFunction(
3336         "__cfi_slowpath_diag",
3337         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3338                                 false));
3339     CheckCall = Builder.CreateCall(
3340         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3341   } else {
3342     SlowPathFn = CGM.getModule().getOrInsertFunction(
3343         "__cfi_slowpath",
3344         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3345     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3346   }
3347 
3348   CGM.setDSOLocal(
3349       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3350   CheckCall->setDoesNotThrow();
3351 
3352   EmitBlock(Cont);
3353 }
3354 
3355 // Emit a stub for __cfi_check function so that the linker knows about this
3356 // symbol in LTO mode.
3357 void CodeGenFunction::EmitCfiCheckStub() {
3358   llvm::Module *M = &CGM.getModule();
3359   auto &Ctx = M->getContext();
3360   llvm::Function *F = llvm::Function::Create(
3361       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3362       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3363   CGM.setDSOLocal(F);
3364   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3365   // FIXME: consider emitting an intrinsic call like
3366   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3367   // which can be lowered in CrossDSOCFI pass to the actual contents of
3368   // __cfi_check. This would allow inlining of __cfi_check calls.
3369   llvm::CallInst::Create(
3370       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3371   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3372 }
3373 
3374 // This function is basically a switch over the CFI failure kind, which is
3375 // extracted from CFICheckFailData (1st function argument). Each case is either
3376 // llvm.trap or a call to one of the two runtime handlers, based on
3377 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3378 // failure kind) traps, but this should really never happen.  CFICheckFailData
3379 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3380 // check kind; in this case __cfi_check_fail traps as well.
3381 void CodeGenFunction::EmitCfiCheckFail() {
3382   SanitizerScope SanScope(this);
3383   FunctionArgList Args;
3384   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3385                             ImplicitParamDecl::Other);
3386   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3387                             ImplicitParamDecl::Other);
3388   Args.push_back(&ArgData);
3389   Args.push_back(&ArgAddr);
3390 
3391   const CGFunctionInfo &FI =
3392     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3393 
3394   llvm::Function *F = llvm::Function::Create(
3395       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3396       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3397 
3398   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3399   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3400   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3401 
3402   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3403                 SourceLocation());
3404 
3405   // This function is not affected by NoSanitizeList. This function does
3406   // not have a source location, but "src:*" would still apply. Revert any
3407   // changes to SanOpts made in StartFunction.
3408   SanOpts = CGM.getLangOpts().Sanitize;
3409 
3410   llvm::Value *Data =
3411       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3412                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3413   llvm::Value *Addr =
3414       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3415                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3416 
3417   // Data == nullptr means the calling module has trap behaviour for this check.
3418   llvm::Value *DataIsNotNullPtr =
3419       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3420   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3421 
3422   llvm::StructType *SourceLocationTy =
3423       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3424   llvm::StructType *CfiCheckFailDataTy =
3425       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3426 
3427   llvm::Value *V = Builder.CreateConstGEP2_32(
3428       CfiCheckFailDataTy,
3429       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3430       0);
3431   Address CheckKindAddr(V, getIntAlign());
3432   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3433 
3434   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3435       CGM.getLLVMContext(),
3436       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3437   llvm::Value *ValidVtable = Builder.CreateZExt(
3438       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3439                          {Addr, AllVtables}),
3440       IntPtrTy);
3441 
3442   const std::pair<int, SanitizerMask> CheckKinds[] = {
3443       {CFITCK_VCall, SanitizerKind::CFIVCall},
3444       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3445       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3446       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3447       {CFITCK_ICall, SanitizerKind::CFIICall}};
3448 
3449   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3450   for (auto CheckKindMaskPair : CheckKinds) {
3451     int Kind = CheckKindMaskPair.first;
3452     SanitizerMask Mask = CheckKindMaskPair.second;
3453     llvm::Value *Cond =
3454         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3455     if (CGM.getLangOpts().Sanitize.has(Mask))
3456       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3457                 {Data, Addr, ValidVtable});
3458     else
3459       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3460   }
3461 
3462   FinishFunction();
3463   // The only reference to this function will be created during LTO link.
3464   // Make sure it survives until then.
3465   CGM.addUsedGlobal(F);
3466 }
3467 
3468 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3469   if (SanOpts.has(SanitizerKind::Unreachable)) {
3470     SanitizerScope SanScope(this);
3471     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3472                              SanitizerKind::Unreachable),
3473               SanitizerHandler::BuiltinUnreachable,
3474               EmitCheckSourceLocation(Loc), None);
3475   }
3476   Builder.CreateUnreachable();
3477 }
3478 
3479 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3480                                     SanitizerHandler CheckHandlerID) {
3481   llvm::BasicBlock *Cont = createBasicBlock("cont");
3482 
3483   // If we're optimizing, collapse all calls to trap down to just one per
3484   // check-type per function to save on code size.
3485   if (TrapBBs.size() <= CheckHandlerID)
3486     TrapBBs.resize(CheckHandlerID + 1);
3487   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3488 
3489   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3490     TrapBB = createBasicBlock("trap");
3491     Builder.CreateCondBr(Checked, Cont, TrapBB);
3492     EmitBlock(TrapBB);
3493 
3494     llvm::CallInst *TrapCall =
3495         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3496                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3497 
3498     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3499       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3500                                     CGM.getCodeGenOpts().TrapFuncName);
3501       TrapCall->addFnAttr(A);
3502     }
3503     TrapCall->setDoesNotReturn();
3504     TrapCall->setDoesNotThrow();
3505     Builder.CreateUnreachable();
3506   } else {
3507     auto Call = TrapBB->begin();
3508     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3509 
3510     Call->applyMergedLocation(Call->getDebugLoc(),
3511                               Builder.getCurrentDebugLocation());
3512     Builder.CreateCondBr(Checked, Cont, TrapBB);
3513   }
3514 
3515   EmitBlock(Cont);
3516 }
3517 
3518 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3519   llvm::CallInst *TrapCall =
3520       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3521 
3522   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3523     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3524                                   CGM.getCodeGenOpts().TrapFuncName);
3525     TrapCall->addFnAttr(A);
3526   }
3527 
3528   return TrapCall;
3529 }
3530 
3531 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3532                                                  LValueBaseInfo *BaseInfo,
3533                                                  TBAAAccessInfo *TBAAInfo) {
3534   assert(E->getType()->isArrayType() &&
3535          "Array to pointer decay must have array source type!");
3536 
3537   // Expressions of array type can't be bitfields or vector elements.
3538   LValue LV = EmitLValue(E);
3539   Address Addr = LV.getAddress(*this);
3540 
3541   // If the array type was an incomplete type, we need to make sure
3542   // the decay ends up being the right type.
3543   llvm::Type *NewTy = ConvertType(E->getType());
3544   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3545 
3546   // Note that VLA pointers are always decayed, so we don't need to do
3547   // anything here.
3548   if (!E->getType()->isVariableArrayType()) {
3549     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3550            "Expected pointer to array");
3551     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3552   }
3553 
3554   // The result of this decay conversion points to an array element within the
3555   // base lvalue. However, since TBAA currently does not support representing
3556   // accesses to elements of member arrays, we conservatively represent accesses
3557   // to the pointee object as if it had no any base lvalue specified.
3558   // TODO: Support TBAA for member arrays.
3559   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3560   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3561   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3562 
3563   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3564 }
3565 
3566 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3567 /// array to pointer, return the array subexpression.
3568 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3569   // If this isn't just an array->pointer decay, bail out.
3570   const auto *CE = dyn_cast<CastExpr>(E);
3571   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3572     return nullptr;
3573 
3574   // If this is a decay from variable width array, bail out.
3575   const Expr *SubExpr = CE->getSubExpr();
3576   if (SubExpr->getType()->isVariableArrayType())
3577     return nullptr;
3578 
3579   return SubExpr;
3580 }
3581 
3582 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3583                                           llvm::Type *elemType,
3584                                           llvm::Value *ptr,
3585                                           ArrayRef<llvm::Value*> indices,
3586                                           bool inbounds,
3587                                           bool signedIndices,
3588                                           SourceLocation loc,
3589                                     const llvm::Twine &name = "arrayidx") {
3590   if (inbounds) {
3591     return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3592                                       CodeGenFunction::NotSubtraction, loc,
3593                                       name);
3594   } else {
3595     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3596   }
3597 }
3598 
3599 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3600                                       llvm::Value *idx,
3601                                       CharUnits eltSize) {
3602   // If we have a constant index, we can use the exact offset of the
3603   // element we're accessing.
3604   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3605     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3606     return arrayAlign.alignmentAtOffset(offset);
3607 
3608   // Otherwise, use the worst-case alignment for any element.
3609   } else {
3610     return arrayAlign.alignmentOfArrayElement(eltSize);
3611   }
3612 }
3613 
3614 static QualType getFixedSizeElementType(const ASTContext &ctx,
3615                                         const VariableArrayType *vla) {
3616   QualType eltType;
3617   do {
3618     eltType = vla->getElementType();
3619   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3620   return eltType;
3621 }
3622 
3623 /// Given an array base, check whether its member access belongs to a record
3624 /// with preserve_access_index attribute or not.
3625 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3626   if (!ArrayBase || !CGF.getDebugInfo())
3627     return false;
3628 
3629   // Only support base as either a MemberExpr or DeclRefExpr.
3630   // DeclRefExpr to cover cases like:
3631   //    struct s { int a; int b[10]; };
3632   //    struct s *p;
3633   //    p[1].a
3634   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3635   // p->b[5] is a MemberExpr example.
3636   const Expr *E = ArrayBase->IgnoreImpCasts();
3637   if (const auto *ME = dyn_cast<MemberExpr>(E))
3638     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3639 
3640   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3641     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3642     if (!VarDef)
3643       return false;
3644 
3645     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3646     if (!PtrT)
3647       return false;
3648 
3649     const auto *PointeeT = PtrT->getPointeeType()
3650                              ->getUnqualifiedDesugaredType();
3651     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3652       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3653     return false;
3654   }
3655 
3656   return false;
3657 }
3658 
3659 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3660                                      ArrayRef<llvm::Value *> indices,
3661                                      QualType eltType, bool inbounds,
3662                                      bool signedIndices, SourceLocation loc,
3663                                      QualType *arrayType = nullptr,
3664                                      const Expr *Base = nullptr,
3665                                      const llvm::Twine &name = "arrayidx") {
3666   // All the indices except that last must be zero.
3667 #ifndef NDEBUG
3668   for (auto idx : indices.drop_back())
3669     assert(isa<llvm::ConstantInt>(idx) &&
3670            cast<llvm::ConstantInt>(idx)->isZero());
3671 #endif
3672 
3673   // Determine the element size of the statically-sized base.  This is
3674   // the thing that the indices are expressed in terms of.
3675   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3676     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3677   }
3678 
3679   // We can use that to compute the best alignment of the element.
3680   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3681   CharUnits eltAlign =
3682     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3683 
3684   llvm::Value *eltPtr;
3685   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3686   if (!LastIndex ||
3687       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3688     eltPtr = emitArraySubscriptGEP(
3689         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3690         signedIndices, loc, name);
3691   } else {
3692     // Remember the original array subscript for bpf target
3693     unsigned idx = LastIndex->getZExtValue();
3694     llvm::DIType *DbgInfo = nullptr;
3695     if (arrayType)
3696       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3697     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3698                                                         addr.getPointer(),
3699                                                         indices.size() - 1,
3700                                                         idx, DbgInfo);
3701   }
3702 
3703   return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3704 }
3705 
3706 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3707                                                bool Accessed) {
3708   // The index must always be an integer, which is not an aggregate.  Emit it
3709   // in lexical order (this complexity is, sadly, required by C++17).
3710   llvm::Value *IdxPre =
3711       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3712   bool SignedIndices = false;
3713   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3714     auto *Idx = IdxPre;
3715     if (E->getLHS() != E->getIdx()) {
3716       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3717       Idx = EmitScalarExpr(E->getIdx());
3718     }
3719 
3720     QualType IdxTy = E->getIdx()->getType();
3721     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3722     SignedIndices |= IdxSigned;
3723 
3724     if (SanOpts.has(SanitizerKind::ArrayBounds))
3725       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3726 
3727     // Extend or truncate the index type to 32 or 64-bits.
3728     if (Promote && Idx->getType() != IntPtrTy)
3729       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3730 
3731     return Idx;
3732   };
3733   IdxPre = nullptr;
3734 
3735   // If the base is a vector type, then we are forming a vector element lvalue
3736   // with this subscript.
3737   if (E->getBase()->getType()->isVectorType() &&
3738       !isa<ExtVectorElementExpr>(E->getBase())) {
3739     // Emit the vector as an lvalue to get its address.
3740     LValue LHS = EmitLValue(E->getBase());
3741     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3742     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3743     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3744                                  E->getBase()->getType(), LHS.getBaseInfo(),
3745                                  TBAAAccessInfo());
3746   }
3747 
3748   // All the other cases basically behave like simple offsetting.
3749 
3750   // Handle the extvector case we ignored above.
3751   if (isa<ExtVectorElementExpr>(E->getBase())) {
3752     LValue LV = EmitLValue(E->getBase());
3753     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3754     Address Addr = EmitExtVectorElementLValue(LV);
3755 
3756     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3757     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3758                                  SignedIndices, E->getExprLoc());
3759     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3760                           CGM.getTBAAInfoForSubobject(LV, EltType));
3761   }
3762 
3763   LValueBaseInfo EltBaseInfo;
3764   TBAAAccessInfo EltTBAAInfo;
3765   Address Addr = Address::invalid();
3766   if (const VariableArrayType *vla =
3767            getContext().getAsVariableArrayType(E->getType())) {
3768     // The base must be a pointer, which is not an aggregate.  Emit
3769     // it.  It needs to be emitted first in case it's what captures
3770     // the VLA bounds.
3771     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3772     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3773 
3774     // The element count here is the total number of non-VLA elements.
3775     llvm::Value *numElements = getVLASize(vla).NumElts;
3776 
3777     // Effectively, the multiply by the VLA size is part of the GEP.
3778     // GEP indexes are signed, and scaling an index isn't permitted to
3779     // signed-overflow, so we use the same semantics for our explicit
3780     // multiply.  We suppress this if overflow is not undefined behavior.
3781     if (getLangOpts().isSignedOverflowDefined()) {
3782       Idx = Builder.CreateMul(Idx, numElements);
3783     } else {
3784       Idx = Builder.CreateNSWMul(Idx, numElements);
3785     }
3786 
3787     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3788                                  !getLangOpts().isSignedOverflowDefined(),
3789                                  SignedIndices, E->getExprLoc());
3790 
3791   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3792     // Indexing over an interface, as in "NSString *P; P[4];"
3793 
3794     // Emit the base pointer.
3795     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3796     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3797 
3798     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3799     llvm::Value *InterfaceSizeVal =
3800         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3801 
3802     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3803 
3804     // We don't necessarily build correct LLVM struct types for ObjC
3805     // interfaces, so we can't rely on GEP to do this scaling
3806     // correctly, so we need to cast to i8*.  FIXME: is this actually
3807     // true?  A lot of other things in the fragile ABI would break...
3808     llvm::Type *OrigBaseTy = Addr.getType();
3809     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3810 
3811     // Do the GEP.
3812     CharUnits EltAlign =
3813       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3814     llvm::Value *EltPtr =
3815         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3816                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3817     Addr = Address(EltPtr, EltAlign);
3818 
3819     // Cast back.
3820     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3821   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3822     // If this is A[i] where A is an array, the frontend will have decayed the
3823     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3824     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3825     // "gep x, i" here.  Emit one "gep A, 0, i".
3826     assert(Array->getType()->isArrayType() &&
3827            "Array to pointer decay must have array source type!");
3828     LValue ArrayLV;
3829     // For simple multidimensional array indexing, set the 'accessed' flag for
3830     // better bounds-checking of the base expression.
3831     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3832       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3833     else
3834       ArrayLV = EmitLValue(Array);
3835     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3836 
3837     // Propagate the alignment from the array itself to the result.
3838     QualType arrayType = Array->getType();
3839     Addr = emitArraySubscriptGEP(
3840         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3841         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3842         E->getExprLoc(), &arrayType, E->getBase());
3843     EltBaseInfo = ArrayLV.getBaseInfo();
3844     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3845   } else {
3846     // The base must be a pointer; emit it with an estimate of its alignment.
3847     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3848     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3849     QualType ptrType = E->getBase()->getType();
3850     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3851                                  !getLangOpts().isSignedOverflowDefined(),
3852                                  SignedIndices, E->getExprLoc(), &ptrType,
3853                                  E->getBase());
3854   }
3855 
3856   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3857 
3858   if (getLangOpts().ObjC &&
3859       getLangOpts().getGC() != LangOptions::NonGC) {
3860     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3861     setObjCGCLValueClass(getContext(), E, LV);
3862   }
3863   return LV;
3864 }
3865 
3866 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3867   assert(
3868       !E->isIncomplete() &&
3869       "incomplete matrix subscript expressions should be rejected during Sema");
3870   LValue Base = EmitLValue(E->getBase());
3871   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3872   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3873   llvm::Value *NumRows = Builder.getIntN(
3874       RowIdx->getType()->getScalarSizeInBits(),
3875       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3876   llvm::Value *FinalIdx =
3877       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3878   return LValue::MakeMatrixElt(
3879       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3880       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3881 }
3882 
3883 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3884                                        LValueBaseInfo &BaseInfo,
3885                                        TBAAAccessInfo &TBAAInfo,
3886                                        QualType BaseTy, QualType ElTy,
3887                                        bool IsLowerBound) {
3888   LValue BaseLVal;
3889   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3890     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3891     if (BaseTy->isArrayType()) {
3892       Address Addr = BaseLVal.getAddress(CGF);
3893       BaseInfo = BaseLVal.getBaseInfo();
3894 
3895       // If the array type was an incomplete type, we need to make sure
3896       // the decay ends up being the right type.
3897       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3898       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3899 
3900       // Note that VLA pointers are always decayed, so we don't need to do
3901       // anything here.
3902       if (!BaseTy->isVariableArrayType()) {
3903         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3904                "Expected pointer to array");
3905         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3906       }
3907 
3908       return CGF.Builder.CreateElementBitCast(Addr,
3909                                               CGF.ConvertTypeForMem(ElTy));
3910     }
3911     LValueBaseInfo TypeBaseInfo;
3912     TBAAAccessInfo TypeTBAAInfo;
3913     CharUnits Align =
3914         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3915     BaseInfo.mergeForCast(TypeBaseInfo);
3916     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3917     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3918   }
3919   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3920 }
3921 
3922 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3923                                                 bool IsLowerBound) {
3924   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3925   QualType ResultExprTy;
3926   if (auto *AT = getContext().getAsArrayType(BaseTy))
3927     ResultExprTy = AT->getElementType();
3928   else
3929     ResultExprTy = BaseTy->getPointeeType();
3930   llvm::Value *Idx = nullptr;
3931   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3932     // Requesting lower bound or upper bound, but without provided length and
3933     // without ':' symbol for the default length -> length = 1.
3934     // Idx = LowerBound ?: 0;
3935     if (auto *LowerBound = E->getLowerBound()) {
3936       Idx = Builder.CreateIntCast(
3937           EmitScalarExpr(LowerBound), IntPtrTy,
3938           LowerBound->getType()->hasSignedIntegerRepresentation());
3939     } else
3940       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3941   } else {
3942     // Try to emit length or lower bound as constant. If this is possible, 1
3943     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3944     // IR (LB + Len) - 1.
3945     auto &C = CGM.getContext();
3946     auto *Length = E->getLength();
3947     llvm::APSInt ConstLength;
3948     if (Length) {
3949       // Idx = LowerBound + Length - 1;
3950       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3951         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3952         Length = nullptr;
3953       }
3954       auto *LowerBound = E->getLowerBound();
3955       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3956       if (LowerBound) {
3957         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3958           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3959           LowerBound = nullptr;
3960         }
3961       }
3962       if (!Length)
3963         --ConstLength;
3964       else if (!LowerBound)
3965         --ConstLowerBound;
3966 
3967       if (Length || LowerBound) {
3968         auto *LowerBoundVal =
3969             LowerBound
3970                 ? Builder.CreateIntCast(
3971                       EmitScalarExpr(LowerBound), IntPtrTy,
3972                       LowerBound->getType()->hasSignedIntegerRepresentation())
3973                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3974         auto *LengthVal =
3975             Length
3976                 ? Builder.CreateIntCast(
3977                       EmitScalarExpr(Length), IntPtrTy,
3978                       Length->getType()->hasSignedIntegerRepresentation())
3979                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3980         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3981                                 /*HasNUW=*/false,
3982                                 !getLangOpts().isSignedOverflowDefined());
3983         if (Length && LowerBound) {
3984           Idx = Builder.CreateSub(
3985               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3986               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3987         }
3988       } else
3989         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3990     } else {
3991       // Idx = ArraySize - 1;
3992       QualType ArrayTy = BaseTy->isPointerType()
3993                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3994                              : BaseTy;
3995       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3996         Length = VAT->getSizeExpr();
3997         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3998           ConstLength = *L;
3999           Length = nullptr;
4000         }
4001       } else {
4002         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4003         ConstLength = CAT->getSize();
4004       }
4005       if (Length) {
4006         auto *LengthVal = Builder.CreateIntCast(
4007             EmitScalarExpr(Length), IntPtrTy,
4008             Length->getType()->hasSignedIntegerRepresentation());
4009         Idx = Builder.CreateSub(
4010             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4011             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4012       } else {
4013         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4014         --ConstLength;
4015         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4016       }
4017     }
4018   }
4019   assert(Idx);
4020 
4021   Address EltPtr = Address::invalid();
4022   LValueBaseInfo BaseInfo;
4023   TBAAAccessInfo TBAAInfo;
4024   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4025     // The base must be a pointer, which is not an aggregate.  Emit
4026     // it.  It needs to be emitted first in case it's what captures
4027     // the VLA bounds.
4028     Address Base =
4029         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4030                                 BaseTy, VLA->getElementType(), IsLowerBound);
4031     // The element count here is the total number of non-VLA elements.
4032     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4033 
4034     // Effectively, the multiply by the VLA size is part of the GEP.
4035     // GEP indexes are signed, and scaling an index isn't permitted to
4036     // signed-overflow, so we use the same semantics for our explicit
4037     // multiply.  We suppress this if overflow is not undefined behavior.
4038     if (getLangOpts().isSignedOverflowDefined())
4039       Idx = Builder.CreateMul(Idx, NumElements);
4040     else
4041       Idx = Builder.CreateNSWMul(Idx, NumElements);
4042     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4043                                    !getLangOpts().isSignedOverflowDefined(),
4044                                    /*signedIndices=*/false, E->getExprLoc());
4045   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4046     // If this is A[i] where A is an array, the frontend will have decayed the
4047     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4048     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4049     // "gep x, i" here.  Emit one "gep A, 0, i".
4050     assert(Array->getType()->isArrayType() &&
4051            "Array to pointer decay must have array source type!");
4052     LValue ArrayLV;
4053     // For simple multidimensional array indexing, set the 'accessed' flag for
4054     // better bounds-checking of the base expression.
4055     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4056       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4057     else
4058       ArrayLV = EmitLValue(Array);
4059 
4060     // Propagate the alignment from the array itself to the result.
4061     EltPtr = emitArraySubscriptGEP(
4062         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4063         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4064         /*signedIndices=*/false, E->getExprLoc());
4065     BaseInfo = ArrayLV.getBaseInfo();
4066     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4067   } else {
4068     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4069                                            TBAAInfo, BaseTy, ResultExprTy,
4070                                            IsLowerBound);
4071     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4072                                    !getLangOpts().isSignedOverflowDefined(),
4073                                    /*signedIndices=*/false, E->getExprLoc());
4074   }
4075 
4076   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4077 }
4078 
4079 LValue CodeGenFunction::
4080 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4081   // Emit the base vector as an l-value.
4082   LValue Base;
4083 
4084   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4085   if (E->isArrow()) {
4086     // If it is a pointer to a vector, emit the address and form an lvalue with
4087     // it.
4088     LValueBaseInfo BaseInfo;
4089     TBAAAccessInfo TBAAInfo;
4090     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4091     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4092     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4093     Base.getQuals().removeObjCGCAttr();
4094   } else if (E->getBase()->isGLValue()) {
4095     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4096     // emit the base as an lvalue.
4097     assert(E->getBase()->getType()->isVectorType());
4098     Base = EmitLValue(E->getBase());
4099   } else {
4100     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4101     assert(E->getBase()->getType()->isVectorType() &&
4102            "Result must be a vector");
4103     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4104 
4105     // Store the vector to memory (because LValue wants an address).
4106     Address VecMem = CreateMemTemp(E->getBase()->getType());
4107     Builder.CreateStore(Vec, VecMem);
4108     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4109                           AlignmentSource::Decl);
4110   }
4111 
4112   QualType type =
4113     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4114 
4115   // Encode the element access list into a vector of unsigned indices.
4116   SmallVector<uint32_t, 4> Indices;
4117   E->getEncodedElementAccess(Indices);
4118 
4119   if (Base.isSimple()) {
4120     llvm::Constant *CV =
4121         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4122     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4123                                     Base.getBaseInfo(), TBAAAccessInfo());
4124   }
4125   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4126 
4127   llvm::Constant *BaseElts = Base.getExtVectorElts();
4128   SmallVector<llvm::Constant *, 4> CElts;
4129 
4130   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4131     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4132   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4133   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4134                                   Base.getBaseInfo(), TBAAAccessInfo());
4135 }
4136 
4137 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4138   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4139     EmitIgnoredExpr(E->getBase());
4140     return EmitDeclRefLValue(DRE);
4141   }
4142 
4143   Expr *BaseExpr = E->getBase();
4144   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4145   LValue BaseLV;
4146   if (E->isArrow()) {
4147     LValueBaseInfo BaseInfo;
4148     TBAAAccessInfo TBAAInfo;
4149     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4150     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4151     SanitizerSet SkippedChecks;
4152     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4153     if (IsBaseCXXThis)
4154       SkippedChecks.set(SanitizerKind::Alignment, true);
4155     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4156       SkippedChecks.set(SanitizerKind::Null, true);
4157     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4158                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4159     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4160   } else
4161     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4162 
4163   NamedDecl *ND = E->getMemberDecl();
4164   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4165     LValue LV = EmitLValueForField(BaseLV, Field);
4166     setObjCGCLValueClass(getContext(), E, LV);
4167     if (getLangOpts().OpenMP) {
4168       // If the member was explicitly marked as nontemporal, mark it as
4169       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4170       // to children as nontemporal too.
4171       if ((IsWrappedCXXThis(BaseExpr) &&
4172            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4173           BaseLV.isNontemporal())
4174         LV.setNontemporal(/*Value=*/true);
4175     }
4176     return LV;
4177   }
4178 
4179   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4180     return EmitFunctionDeclLValue(*this, E, FD);
4181 
4182   llvm_unreachable("Unhandled member declaration!");
4183 }
4184 
4185 /// Given that we are currently emitting a lambda, emit an l-value for
4186 /// one of its members.
4187 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4188   if (CurCodeDecl) {
4189     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4190     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4191   }
4192   QualType LambdaTagType =
4193     getContext().getTagDeclType(Field->getParent());
4194   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4195   return EmitLValueForField(LambdaLV, Field);
4196 }
4197 
4198 /// Get the field index in the debug info. The debug info structure/union
4199 /// will ignore the unnamed bitfields.
4200 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4201                                              unsigned FieldIndex) {
4202   unsigned I = 0, Skipped = 0;
4203 
4204   for (auto F : Rec->getDefinition()->fields()) {
4205     if (I == FieldIndex)
4206       break;
4207     if (F->isUnnamedBitfield())
4208       Skipped++;
4209     I++;
4210   }
4211 
4212   return FieldIndex - Skipped;
4213 }
4214 
4215 /// Get the address of a zero-sized field within a record. The resulting
4216 /// address doesn't necessarily have the right type.
4217 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4218                                        const FieldDecl *Field) {
4219   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4220       CGF.getContext().getFieldOffset(Field));
4221   if (Offset.isZero())
4222     return Base;
4223   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4224   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4225 }
4226 
4227 /// Drill down to the storage of a field without walking into
4228 /// reference types.
4229 ///
4230 /// The resulting address doesn't necessarily have the right type.
4231 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4232                                       const FieldDecl *field) {
4233   if (field->isZeroSize(CGF.getContext()))
4234     return emitAddrOfZeroSizeField(CGF, base, field);
4235 
4236   const RecordDecl *rec = field->getParent();
4237 
4238   unsigned idx =
4239     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4240 
4241   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4242 }
4243 
4244 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4245                                         Address addr, const FieldDecl *field) {
4246   const RecordDecl *rec = field->getParent();
4247   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4248       base.getType(), rec->getLocation());
4249 
4250   unsigned idx =
4251       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4252 
4253   return CGF.Builder.CreatePreserveStructAccessIndex(
4254       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4255 }
4256 
4257 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4258   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4259   if (!RD)
4260     return false;
4261 
4262   if (RD->isDynamicClass())
4263     return true;
4264 
4265   for (const auto &Base : RD->bases())
4266     if (hasAnyVptr(Base.getType(), Context))
4267       return true;
4268 
4269   for (const FieldDecl *Field : RD->fields())
4270     if (hasAnyVptr(Field->getType(), Context))
4271       return true;
4272 
4273   return false;
4274 }
4275 
4276 LValue CodeGenFunction::EmitLValueForField(LValue base,
4277                                            const FieldDecl *field) {
4278   LValueBaseInfo BaseInfo = base.getBaseInfo();
4279 
4280   if (field->isBitField()) {
4281     const CGRecordLayout &RL =
4282         CGM.getTypes().getCGRecordLayout(field->getParent());
4283     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4284     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4285                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4286                              Info.VolatileStorageSize != 0 &&
4287                              field->getType()
4288                                  .withCVRQualifiers(base.getVRQualifiers())
4289                                  .isVolatileQualified();
4290     Address Addr = base.getAddress(*this);
4291     unsigned Idx = RL.getLLVMFieldNo(field);
4292     const RecordDecl *rec = field->getParent();
4293     if (!UseVolatile) {
4294       if (!IsInPreservedAIRegion &&
4295           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4296         if (Idx != 0)
4297           // For structs, we GEP to the field that the record layout suggests.
4298           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4299       } else {
4300         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4301             getContext().getRecordType(rec), rec->getLocation());
4302         Addr = Builder.CreatePreserveStructAccessIndex(
4303             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4304             DbgInfo);
4305       }
4306     }
4307     const unsigned SS =
4308         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4309     // Get the access type.
4310     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4311     if (Addr.getElementType() != FieldIntTy)
4312       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4313     if (UseVolatile) {
4314       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4315       if (VolatileOffset)
4316         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4317     }
4318 
4319     QualType fieldType =
4320         field->getType().withCVRQualifiers(base.getVRQualifiers());
4321     // TODO: Support TBAA for bit fields.
4322     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4323     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4324                                 TBAAAccessInfo());
4325   }
4326 
4327   // Fields of may-alias structures are may-alias themselves.
4328   // FIXME: this should get propagated down through anonymous structs
4329   // and unions.
4330   QualType FieldType = field->getType();
4331   const RecordDecl *rec = field->getParent();
4332   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4333   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4334   TBAAAccessInfo FieldTBAAInfo;
4335   if (base.getTBAAInfo().isMayAlias() ||
4336           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4337     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4338   } else if (rec->isUnion()) {
4339     // TODO: Support TBAA for unions.
4340     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4341   } else {
4342     // If no base type been assigned for the base access, then try to generate
4343     // one for this base lvalue.
4344     FieldTBAAInfo = base.getTBAAInfo();
4345     if (!FieldTBAAInfo.BaseType) {
4346         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4347         assert(!FieldTBAAInfo.Offset &&
4348                "Nonzero offset for an access with no base type!");
4349     }
4350 
4351     // Adjust offset to be relative to the base type.
4352     const ASTRecordLayout &Layout =
4353         getContext().getASTRecordLayout(field->getParent());
4354     unsigned CharWidth = getContext().getCharWidth();
4355     if (FieldTBAAInfo.BaseType)
4356       FieldTBAAInfo.Offset +=
4357           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4358 
4359     // Update the final access type and size.
4360     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4361     FieldTBAAInfo.Size =
4362         getContext().getTypeSizeInChars(FieldType).getQuantity();
4363   }
4364 
4365   Address addr = base.getAddress(*this);
4366   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4367     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4368         ClassDef->isDynamicClass()) {
4369       // Getting to any field of dynamic object requires stripping dynamic
4370       // information provided by invariant.group.  This is because accessing
4371       // fields may leak the real address of dynamic object, which could result
4372       // in miscompilation when leaked pointer would be compared.
4373       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4374       addr = Address(stripped, addr.getAlignment());
4375     }
4376   }
4377 
4378   unsigned RecordCVR = base.getVRQualifiers();
4379   if (rec->isUnion()) {
4380     // For unions, there is no pointer adjustment.
4381     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4382         hasAnyVptr(FieldType, getContext()))
4383       // Because unions can easily skip invariant.barriers, we need to add
4384       // a barrier every time CXXRecord field with vptr is referenced.
4385       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4386                      addr.getAlignment());
4387 
4388     if (IsInPreservedAIRegion ||
4389         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4390       // Remember the original union field index
4391       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4392           rec->getLocation());
4393       addr = Address(
4394           Builder.CreatePreserveUnionAccessIndex(
4395               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4396           addr.getAlignment());
4397     }
4398 
4399     if (FieldType->isReferenceType())
4400       addr = Builder.CreateElementBitCast(
4401           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4402   } else {
4403     if (!IsInPreservedAIRegion &&
4404         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4405       // For structs, we GEP to the field that the record layout suggests.
4406       addr = emitAddrOfFieldStorage(*this, addr, field);
4407     else
4408       // Remember the original struct field index
4409       addr = emitPreserveStructAccess(*this, base, addr, field);
4410   }
4411 
4412   // If this is a reference field, load the reference right now.
4413   if (FieldType->isReferenceType()) {
4414     LValue RefLVal =
4415         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4416     if (RecordCVR & Qualifiers::Volatile)
4417       RefLVal.getQuals().addVolatile();
4418     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4419 
4420     // Qualifiers on the struct don't apply to the referencee.
4421     RecordCVR = 0;
4422     FieldType = FieldType->getPointeeType();
4423   }
4424 
4425   // Make sure that the address is pointing to the right type.  This is critical
4426   // for both unions and structs.  A union needs a bitcast, a struct element
4427   // will need a bitcast if the LLVM type laid out doesn't match the desired
4428   // type.
4429   addr = Builder.CreateElementBitCast(
4430       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4431 
4432   if (field->hasAttr<AnnotateAttr>())
4433     addr = EmitFieldAnnotations(field, addr);
4434 
4435   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4436   LV.getQuals().addCVRQualifiers(RecordCVR);
4437 
4438   // __weak attribute on a field is ignored.
4439   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4440     LV.getQuals().removeObjCGCAttr();
4441 
4442   return LV;
4443 }
4444 
4445 LValue
4446 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4447                                                   const FieldDecl *Field) {
4448   QualType FieldType = Field->getType();
4449 
4450   if (!FieldType->isReferenceType())
4451     return EmitLValueForField(Base, Field);
4452 
4453   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4454 
4455   // Make sure that the address is pointing to the right type.
4456   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4457   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4458 
4459   // TODO: Generate TBAA information that describes this access as a structure
4460   // member access and not just an access to an object of the field's type. This
4461   // should be similar to what we do in EmitLValueForField().
4462   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4463   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4464   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4465   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4466                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4467 }
4468 
4469 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4470   if (E->isFileScope()) {
4471     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4472     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4473   }
4474   if (E->getType()->isVariablyModifiedType())
4475     // make sure to emit the VLA size.
4476     EmitVariablyModifiedType(E->getType());
4477 
4478   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4479   const Expr *InitExpr = E->getInitializer();
4480   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4481 
4482   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4483                    /*Init*/ true);
4484 
4485   // Block-scope compound literals are destroyed at the end of the enclosing
4486   // scope in C.
4487   if (!getLangOpts().CPlusPlus)
4488     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4489       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4490                                   E->getType(), getDestroyer(DtorKind),
4491                                   DtorKind & EHCleanup);
4492 
4493   return Result;
4494 }
4495 
4496 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4497   if (!E->isGLValue())
4498     // Initializing an aggregate temporary in C++11: T{...}.
4499     return EmitAggExprToLValue(E);
4500 
4501   // An lvalue initializer list must be initializing a reference.
4502   assert(E->isTransparent() && "non-transparent glvalue init list");
4503   return EmitLValue(E->getInit(0));
4504 }
4505 
4506 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4507 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4508 /// LValue is returned and the current block has been terminated.
4509 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4510                                                     const Expr *Operand) {
4511   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4512     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4513     return None;
4514   }
4515 
4516   return CGF.EmitLValue(Operand);
4517 }
4518 
4519 LValue CodeGenFunction::
4520 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4521   if (!expr->isGLValue()) {
4522     // ?: here should be an aggregate.
4523     assert(hasAggregateEvaluationKind(expr->getType()) &&
4524            "Unexpected conditional operator!");
4525     return EmitAggExprToLValue(expr);
4526   }
4527 
4528   OpaqueValueMapping binding(*this, expr);
4529 
4530   const Expr *condExpr = expr->getCond();
4531   bool CondExprBool;
4532   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4533     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4534     if (!CondExprBool) std::swap(live, dead);
4535 
4536     if (!ContainsLabel(dead)) {
4537       // If the true case is live, we need to track its region.
4538       if (CondExprBool)
4539         incrementProfileCounter(expr);
4540       // If a throw expression we emit it and return an undefined lvalue
4541       // because it can't be used.
4542       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4543         EmitCXXThrowExpr(ThrowExpr);
4544         llvm::Type *Ty =
4545             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4546         return MakeAddrLValue(
4547             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4548             dead->getType());
4549       }
4550       return EmitLValue(live);
4551     }
4552   }
4553 
4554   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4555   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4556   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4557 
4558   ConditionalEvaluation eval(*this);
4559   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4560 
4561   // Any temporaries created here are conditional.
4562   EmitBlock(lhsBlock);
4563   incrementProfileCounter(expr);
4564   eval.begin(*this);
4565   Optional<LValue> lhs =
4566       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4567   eval.end(*this);
4568 
4569   if (lhs && !lhs->isSimple())
4570     return EmitUnsupportedLValue(expr, "conditional operator");
4571 
4572   lhsBlock = Builder.GetInsertBlock();
4573   if (lhs)
4574     Builder.CreateBr(contBlock);
4575 
4576   // Any temporaries created here are conditional.
4577   EmitBlock(rhsBlock);
4578   eval.begin(*this);
4579   Optional<LValue> rhs =
4580       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4581   eval.end(*this);
4582   if (rhs && !rhs->isSimple())
4583     return EmitUnsupportedLValue(expr, "conditional operator");
4584   rhsBlock = Builder.GetInsertBlock();
4585 
4586   EmitBlock(contBlock);
4587 
4588   if (lhs && rhs) {
4589     llvm::PHINode *phi =
4590         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4591     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4592     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4593     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4594     AlignmentSource alignSource =
4595       std::max(lhs->getBaseInfo().getAlignmentSource(),
4596                rhs->getBaseInfo().getAlignmentSource());
4597     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4598         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4599     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4600                           TBAAInfo);
4601   } else {
4602     assert((lhs || rhs) &&
4603            "both operands of glvalue conditional are throw-expressions?");
4604     return lhs ? *lhs : *rhs;
4605   }
4606 }
4607 
4608 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4609 /// type. If the cast is to a reference, we can have the usual lvalue result,
4610 /// otherwise if a cast is needed by the code generator in an lvalue context,
4611 /// then it must mean that we need the address of an aggregate in order to
4612 /// access one of its members.  This can happen for all the reasons that casts
4613 /// are permitted with aggregate result, including noop aggregate casts, and
4614 /// cast from scalar to union.
4615 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4616   switch (E->getCastKind()) {
4617   case CK_ToVoid:
4618   case CK_BitCast:
4619   case CK_LValueToRValueBitCast:
4620   case CK_ArrayToPointerDecay:
4621   case CK_FunctionToPointerDecay:
4622   case CK_NullToMemberPointer:
4623   case CK_NullToPointer:
4624   case CK_IntegralToPointer:
4625   case CK_PointerToIntegral:
4626   case CK_PointerToBoolean:
4627   case CK_VectorSplat:
4628   case CK_IntegralCast:
4629   case CK_BooleanToSignedIntegral:
4630   case CK_IntegralToBoolean:
4631   case CK_IntegralToFloating:
4632   case CK_FloatingToIntegral:
4633   case CK_FloatingToBoolean:
4634   case CK_FloatingCast:
4635   case CK_FloatingRealToComplex:
4636   case CK_FloatingComplexToReal:
4637   case CK_FloatingComplexToBoolean:
4638   case CK_FloatingComplexCast:
4639   case CK_FloatingComplexToIntegralComplex:
4640   case CK_IntegralRealToComplex:
4641   case CK_IntegralComplexToReal:
4642   case CK_IntegralComplexToBoolean:
4643   case CK_IntegralComplexCast:
4644   case CK_IntegralComplexToFloatingComplex:
4645   case CK_DerivedToBaseMemberPointer:
4646   case CK_BaseToDerivedMemberPointer:
4647   case CK_MemberPointerToBoolean:
4648   case CK_ReinterpretMemberPointer:
4649   case CK_AnyPointerToBlockPointerCast:
4650   case CK_ARCProduceObject:
4651   case CK_ARCConsumeObject:
4652   case CK_ARCReclaimReturnedObject:
4653   case CK_ARCExtendBlockObject:
4654   case CK_CopyAndAutoreleaseBlockObject:
4655   case CK_IntToOCLSampler:
4656   case CK_FloatingToFixedPoint:
4657   case CK_FixedPointToFloating:
4658   case CK_FixedPointCast:
4659   case CK_FixedPointToBoolean:
4660   case CK_FixedPointToIntegral:
4661   case CK_IntegralToFixedPoint:
4662   case CK_MatrixCast:
4663     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4664 
4665   case CK_Dependent:
4666     llvm_unreachable("dependent cast kind in IR gen!");
4667 
4668   case CK_BuiltinFnToFnPtr:
4669     llvm_unreachable("builtin functions are handled elsewhere");
4670 
4671   // These are never l-values; just use the aggregate emission code.
4672   case CK_NonAtomicToAtomic:
4673   case CK_AtomicToNonAtomic:
4674     return EmitAggExprToLValue(E);
4675 
4676   case CK_Dynamic: {
4677     LValue LV = EmitLValue(E->getSubExpr());
4678     Address V = LV.getAddress(*this);
4679     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4680     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4681   }
4682 
4683   case CK_ConstructorConversion:
4684   case CK_UserDefinedConversion:
4685   case CK_CPointerToObjCPointerCast:
4686   case CK_BlockPointerToObjCPointerCast:
4687   case CK_LValueToRValue:
4688     return EmitLValue(E->getSubExpr());
4689 
4690   case CK_NoOp: {
4691     // CK_NoOp can model a qualification conversion, which can remove an array
4692     // bound and change the IR type.
4693     // FIXME: Once pointee types are removed from IR, remove this.
4694     LValue LV = EmitLValue(E->getSubExpr());
4695     if (LV.isSimple()) {
4696       Address V = LV.getAddress(*this);
4697       if (V.isValid()) {
4698         llvm::Type *T =
4699             ConvertTypeForMem(E->getType())
4700                 ->getPointerTo(
4701                     cast<llvm::PointerType>(V.getType())->getAddressSpace());
4702         if (V.getType() != T)
4703           LV.setAddress(Builder.CreateBitCast(V, T));
4704       }
4705     }
4706     return LV;
4707   }
4708 
4709   case CK_UncheckedDerivedToBase:
4710   case CK_DerivedToBase: {
4711     const auto *DerivedClassTy =
4712         E->getSubExpr()->getType()->castAs<RecordType>();
4713     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4714 
4715     LValue LV = EmitLValue(E->getSubExpr());
4716     Address This = LV.getAddress(*this);
4717 
4718     // Perform the derived-to-base conversion
4719     Address Base = GetAddressOfBaseClass(
4720         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4721         /*NullCheckValue=*/false, E->getExprLoc());
4722 
4723     // TODO: Support accesses to members of base classes in TBAA. For now, we
4724     // conservatively pretend that the complete object is of the base class
4725     // type.
4726     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4727                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4728   }
4729   case CK_ToUnion:
4730     return EmitAggExprToLValue(E);
4731   case CK_BaseToDerived: {
4732     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4733     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4734 
4735     LValue LV = EmitLValue(E->getSubExpr());
4736 
4737     // Perform the base-to-derived conversion
4738     Address Derived = GetAddressOfDerivedClass(
4739         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4740         /*NullCheckValue=*/false);
4741 
4742     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4743     // performed and the object is not of the derived type.
4744     if (sanitizePerformTypeCheck())
4745       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4746                     Derived.getPointer(), E->getType());
4747 
4748     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4749       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4750                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4751                                 E->getBeginLoc());
4752 
4753     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4754                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4755   }
4756   case CK_LValueBitCast: {
4757     // This must be a reinterpret_cast (or c-style equivalent).
4758     const auto *CE = cast<ExplicitCastExpr>(E);
4759 
4760     CGM.EmitExplicitCastExprType(CE, this);
4761     LValue LV = EmitLValue(E->getSubExpr());
4762     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4763                                       ConvertType(CE->getTypeAsWritten()));
4764 
4765     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4766       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4767                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4768                                 E->getBeginLoc());
4769 
4770     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4771                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4772   }
4773   case CK_AddressSpaceConversion: {
4774     LValue LV = EmitLValue(E->getSubExpr());
4775     QualType DestTy = getContext().getPointerType(E->getType());
4776     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4777         *this, LV.getPointer(*this),
4778         E->getSubExpr()->getType().getAddressSpace(),
4779         E->getType().getAddressSpace(), ConvertType(DestTy));
4780     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4781                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4782   }
4783   case CK_ObjCObjectLValueCast: {
4784     LValue LV = EmitLValue(E->getSubExpr());
4785     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4786                                              ConvertType(E->getType()));
4787     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4788                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4789   }
4790   case CK_ZeroToOCLOpaqueType:
4791     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4792   }
4793 
4794   llvm_unreachable("Unhandled lvalue cast kind?");
4795 }
4796 
4797 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4798   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4799   return getOrCreateOpaqueLValueMapping(e);
4800 }
4801 
4802 LValue
4803 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4804   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4805 
4806   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4807       it = OpaqueLValues.find(e);
4808 
4809   if (it != OpaqueLValues.end())
4810     return it->second;
4811 
4812   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4813   return EmitLValue(e->getSourceExpr());
4814 }
4815 
4816 RValue
4817 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4818   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4819 
4820   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4821       it = OpaqueRValues.find(e);
4822 
4823   if (it != OpaqueRValues.end())
4824     return it->second;
4825 
4826   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4827   return EmitAnyExpr(e->getSourceExpr());
4828 }
4829 
4830 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4831                                            const FieldDecl *FD,
4832                                            SourceLocation Loc) {
4833   QualType FT = FD->getType();
4834   LValue FieldLV = EmitLValueForField(LV, FD);
4835   switch (getEvaluationKind(FT)) {
4836   case TEK_Complex:
4837     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4838   case TEK_Aggregate:
4839     return FieldLV.asAggregateRValue(*this);
4840   case TEK_Scalar:
4841     // This routine is used to load fields one-by-one to perform a copy, so
4842     // don't load reference fields.
4843     if (FD->getType()->isReferenceType())
4844       return RValue::get(FieldLV.getPointer(*this));
4845     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4846     // primitive load.
4847     if (FieldLV.isBitField())
4848       return EmitLoadOfLValue(FieldLV, Loc);
4849     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4850   }
4851   llvm_unreachable("bad evaluation kind");
4852 }
4853 
4854 //===--------------------------------------------------------------------===//
4855 //                             Expression Emission
4856 //===--------------------------------------------------------------------===//
4857 
4858 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4859                                      ReturnValueSlot ReturnValue) {
4860   // Builtins never have block type.
4861   if (E->getCallee()->getType()->isBlockPointerType())
4862     return EmitBlockCallExpr(E, ReturnValue);
4863 
4864   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4865     return EmitCXXMemberCallExpr(CE, ReturnValue);
4866 
4867   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4868     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4869 
4870   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4871     if (const CXXMethodDecl *MD =
4872           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4873       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4874 
4875   CGCallee callee = EmitCallee(E->getCallee());
4876 
4877   if (callee.isBuiltin()) {
4878     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4879                            E, ReturnValue);
4880   }
4881 
4882   if (callee.isPseudoDestructor()) {
4883     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4884   }
4885 
4886   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4887 }
4888 
4889 /// Emit a CallExpr without considering whether it might be a subclass.
4890 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4891                                            ReturnValueSlot ReturnValue) {
4892   CGCallee Callee = EmitCallee(E->getCallee());
4893   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4894 }
4895 
4896 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4897   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4898 
4899   if (auto builtinID = FD->getBuiltinID()) {
4900     std::string FDInlineName = (FD->getName() + ".inline").str();
4901     // When directing calling an inline builtin, call it through it's mangled
4902     // name to make it clear it's not the actual builtin.
4903     if (FD->isInlineBuiltinDeclaration() &&
4904         CGF.CurFn->getName() != FDInlineName) {
4905       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4906       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
4907       llvm::Module *M = Fn->getParent();
4908       llvm::Function *Clone = M->getFunction(FDInlineName);
4909       if (!Clone) {
4910         Clone = llvm::Function::Create(Fn->getFunctionType(),
4911                                        llvm::GlobalValue::InternalLinkage,
4912                                        Fn->getAddressSpace(), FDInlineName, M);
4913         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
4914       }
4915       return CGCallee::forDirect(Clone, GD);
4916     }
4917 
4918     // Replaceable builtins provide their own implementation of a builtin. If we
4919     // are in an inline builtin implementation, avoid trivial infinite
4920     // recursion.
4921     else
4922       return CGCallee::forBuiltin(builtinID, FD);
4923   }
4924 
4925   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4926   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4927       FD->hasAttr<CUDAGlobalAttr>())
4928     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4929         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4930 
4931   return CGCallee::forDirect(CalleePtr, GD);
4932 }
4933 
4934 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4935   E = E->IgnoreParens();
4936 
4937   // Look through function-to-pointer decay.
4938   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4939     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4940         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4941       return EmitCallee(ICE->getSubExpr());
4942     }
4943 
4944   // Resolve direct calls.
4945   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4946     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4947       return EmitDirectCallee(*this, FD);
4948     }
4949   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4950     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4951       EmitIgnoredExpr(ME->getBase());
4952       return EmitDirectCallee(*this, FD);
4953     }
4954 
4955   // Look through template substitutions.
4956   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4957     return EmitCallee(NTTP->getReplacement());
4958 
4959   // Treat pseudo-destructor calls differently.
4960   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4961     return CGCallee::forPseudoDestructor(PDE);
4962   }
4963 
4964   // Otherwise, we have an indirect reference.
4965   llvm::Value *calleePtr;
4966   QualType functionType;
4967   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4968     calleePtr = EmitScalarExpr(E);
4969     functionType = ptrType->getPointeeType();
4970   } else {
4971     functionType = E->getType();
4972     calleePtr = EmitLValue(E).getPointer(*this);
4973   }
4974   assert(functionType->isFunctionType());
4975 
4976   GlobalDecl GD;
4977   if (const auto *VD =
4978           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4979     GD = GlobalDecl(VD);
4980 
4981   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4982   CGCallee callee(calleeInfo, calleePtr);
4983   return callee;
4984 }
4985 
4986 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4987   // Comma expressions just emit their LHS then their RHS as an l-value.
4988   if (E->getOpcode() == BO_Comma) {
4989     EmitIgnoredExpr(E->getLHS());
4990     EnsureInsertPoint();
4991     return EmitLValue(E->getRHS());
4992   }
4993 
4994   if (E->getOpcode() == BO_PtrMemD ||
4995       E->getOpcode() == BO_PtrMemI)
4996     return EmitPointerToDataMemberBinaryExpr(E);
4997 
4998   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4999 
5000   // Note that in all of these cases, __block variables need the RHS
5001   // evaluated first just in case the variable gets moved by the RHS.
5002 
5003   switch (getEvaluationKind(E->getType())) {
5004   case TEK_Scalar: {
5005     switch (E->getLHS()->getType().getObjCLifetime()) {
5006     case Qualifiers::OCL_Strong:
5007       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5008 
5009     case Qualifiers::OCL_Autoreleasing:
5010       return EmitARCStoreAutoreleasing(E).first;
5011 
5012     // No reason to do any of these differently.
5013     case Qualifiers::OCL_None:
5014     case Qualifiers::OCL_ExplicitNone:
5015     case Qualifiers::OCL_Weak:
5016       break;
5017     }
5018 
5019     RValue RV = EmitAnyExpr(E->getRHS());
5020     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5021     if (RV.isScalar())
5022       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5023     EmitStoreThroughLValue(RV, LV);
5024     if (getLangOpts().OpenMP)
5025       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5026                                                                 E->getLHS());
5027     return LV;
5028   }
5029 
5030   case TEK_Complex:
5031     return EmitComplexAssignmentLValue(E);
5032 
5033   case TEK_Aggregate:
5034     return EmitAggExprToLValue(E);
5035   }
5036   llvm_unreachable("bad evaluation kind");
5037 }
5038 
5039 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5040   RValue RV = EmitCallExpr(E);
5041 
5042   if (!RV.isScalar())
5043     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5044                           AlignmentSource::Decl);
5045 
5046   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5047          "Can't have a scalar return unless the return type is a "
5048          "reference type!");
5049 
5050   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5051 }
5052 
5053 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5054   // FIXME: This shouldn't require another copy.
5055   return EmitAggExprToLValue(E);
5056 }
5057 
5058 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5059   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5060          && "binding l-value to type which needs a temporary");
5061   AggValueSlot Slot = CreateAggTemp(E->getType());
5062   EmitCXXConstructExpr(E, Slot);
5063   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5064 }
5065 
5066 LValue
5067 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5068   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5069 }
5070 
5071 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5072   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5073                                       ConvertType(E->getType()));
5074 }
5075 
5076 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5077   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5078                         AlignmentSource::Decl);
5079 }
5080 
5081 LValue
5082 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5083   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5084   Slot.setExternallyDestructed();
5085   EmitAggExpr(E->getSubExpr(), Slot);
5086   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5087   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5088 }
5089 
5090 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5091   RValue RV = EmitObjCMessageExpr(E);
5092 
5093   if (!RV.isScalar())
5094     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5095                           AlignmentSource::Decl);
5096 
5097   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5098          "Can't have a scalar return unless the return type is a "
5099          "reference type!");
5100 
5101   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5102 }
5103 
5104 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5105   Address V =
5106     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5107   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5108 }
5109 
5110 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5111                                              const ObjCIvarDecl *Ivar) {
5112   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5113 }
5114 
5115 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5116                                           llvm::Value *BaseValue,
5117                                           const ObjCIvarDecl *Ivar,
5118                                           unsigned CVRQualifiers) {
5119   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5120                                                    Ivar, CVRQualifiers);
5121 }
5122 
5123 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5124   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5125   llvm::Value *BaseValue = nullptr;
5126   const Expr *BaseExpr = E->getBase();
5127   Qualifiers BaseQuals;
5128   QualType ObjectTy;
5129   if (E->isArrow()) {
5130     BaseValue = EmitScalarExpr(BaseExpr);
5131     ObjectTy = BaseExpr->getType()->getPointeeType();
5132     BaseQuals = ObjectTy.getQualifiers();
5133   } else {
5134     LValue BaseLV = EmitLValue(BaseExpr);
5135     BaseValue = BaseLV.getPointer(*this);
5136     ObjectTy = BaseExpr->getType();
5137     BaseQuals = ObjectTy.getQualifiers();
5138   }
5139 
5140   LValue LV =
5141     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5142                       BaseQuals.getCVRQualifiers());
5143   setObjCGCLValueClass(getContext(), E, LV);
5144   return LV;
5145 }
5146 
5147 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5148   // Can only get l-value for message expression returning aggregate type
5149   RValue RV = EmitAnyExprToTemp(E);
5150   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5151                         AlignmentSource::Decl);
5152 }
5153 
5154 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5155                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5156                                  llvm::Value *Chain) {
5157   // Get the actual function type. The callee type will always be a pointer to
5158   // function type or a block pointer type.
5159   assert(CalleeType->isFunctionPointerType() &&
5160          "Call must have function pointer type!");
5161 
5162   const Decl *TargetDecl =
5163       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5164 
5165   CalleeType = getContext().getCanonicalType(CalleeType);
5166 
5167   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5168 
5169   CGCallee Callee = OrigCallee;
5170 
5171   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5172       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5173     if (llvm::Constant *PrefixSig =
5174             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5175       SanitizerScope SanScope(this);
5176       // Remove any (C++17) exception specifications, to allow calling e.g. a
5177       // noexcept function through a non-noexcept pointer.
5178       auto ProtoTy =
5179         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5180       llvm::Constant *FTRTTIConst =
5181           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5182       llvm::Type *PrefixSigType = PrefixSig->getType();
5183       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5184           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5185 
5186       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5187 
5188       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5189           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5190       llvm::Value *CalleeSigPtr =
5191           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5192       llvm::Value *CalleeSig =
5193           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5194       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5195 
5196       llvm::BasicBlock *Cont = createBasicBlock("cont");
5197       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5198       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5199 
5200       EmitBlock(TypeCheck);
5201       llvm::Value *CalleeRTTIPtr =
5202           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5203       llvm::Value *CalleeRTTIEncoded =
5204           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5205       llvm::Value *CalleeRTTI =
5206           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5207       llvm::Value *CalleeRTTIMatch =
5208           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5209       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5210                                       EmitCheckTypeDescriptor(CalleeType)};
5211       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5212                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5213                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5214 
5215       Builder.CreateBr(Cont);
5216       EmitBlock(Cont);
5217     }
5218   }
5219 
5220   const auto *FnType = cast<FunctionType>(PointeeType);
5221 
5222   // If we are checking indirect calls and this call is indirect, check that the
5223   // function pointer is a member of the bit set for the function type.
5224   if (SanOpts.has(SanitizerKind::CFIICall) &&
5225       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5226     SanitizerScope SanScope(this);
5227     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5228 
5229     llvm::Metadata *MD;
5230     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5231       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5232     else
5233       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5234 
5235     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5236 
5237     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5238     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5239     llvm::Value *TypeTest = Builder.CreateCall(
5240         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5241 
5242     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5243     llvm::Constant *StaticData[] = {
5244         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5245         EmitCheckSourceLocation(E->getBeginLoc()),
5246         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5247     };
5248     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5249       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5250                            CastedCallee, StaticData);
5251     } else {
5252       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5253                 SanitizerHandler::CFICheckFail, StaticData,
5254                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5255     }
5256   }
5257 
5258   CallArgList Args;
5259   if (Chain)
5260     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5261              CGM.getContext().VoidPtrTy);
5262 
5263   // C++17 requires that we evaluate arguments to a call using assignment syntax
5264   // right-to-left, and that we evaluate arguments to certain other operators
5265   // left-to-right. Note that we allow this to override the order dictated by
5266   // the calling convention on the MS ABI, which means that parameter
5267   // destruction order is not necessarily reverse construction order.
5268   // FIXME: Revisit this based on C++ committee response to unimplementability.
5269   EvaluationOrder Order = EvaluationOrder::Default;
5270   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5271     if (OCE->isAssignmentOp())
5272       Order = EvaluationOrder::ForceRightToLeft;
5273     else {
5274       switch (OCE->getOperator()) {
5275       case OO_LessLess:
5276       case OO_GreaterGreater:
5277       case OO_AmpAmp:
5278       case OO_PipePipe:
5279       case OO_Comma:
5280       case OO_ArrowStar:
5281         Order = EvaluationOrder::ForceLeftToRight;
5282         break;
5283       default:
5284         break;
5285       }
5286     }
5287   }
5288 
5289   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5290                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5291 
5292   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5293       Args, FnType, /*ChainCall=*/Chain);
5294 
5295   // C99 6.5.2.2p6:
5296   //   If the expression that denotes the called function has a type
5297   //   that does not include a prototype, [the default argument
5298   //   promotions are performed]. If the number of arguments does not
5299   //   equal the number of parameters, the behavior is undefined. If
5300   //   the function is defined with a type that includes a prototype,
5301   //   and either the prototype ends with an ellipsis (, ...) or the
5302   //   types of the arguments after promotion are not compatible with
5303   //   the types of the parameters, the behavior is undefined. If the
5304   //   function is defined with a type that does not include a
5305   //   prototype, and the types of the arguments after promotion are
5306   //   not compatible with those of the parameters after promotion,
5307   //   the behavior is undefined [except in some trivial cases].
5308   // That is, in the general case, we should assume that a call
5309   // through an unprototyped function type works like a *non-variadic*
5310   // call.  The way we make this work is to cast to the exact type
5311   // of the promoted arguments.
5312   //
5313   // Chain calls use this same code path to add the invisible chain parameter
5314   // to the function type.
5315   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5316     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5317     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5318     CalleeTy = CalleeTy->getPointerTo(AS);
5319 
5320     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5321     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5322     Callee.setFunctionPointer(CalleePtr);
5323   }
5324 
5325   // HIP function pointer contains kernel handle when it is used in triple
5326   // chevron. The kernel stub needs to be loaded from kernel handle and used
5327   // as callee.
5328   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5329       isa<CUDAKernelCallExpr>(E) &&
5330       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5331     llvm::Value *Handle = Callee.getFunctionPointer();
5332     auto *Cast =
5333         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5334     auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5335     Callee.setFunctionPointer(Stub);
5336   }
5337   llvm::CallBase *CallOrInvoke = nullptr;
5338   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5339                          E == MustTailCall, E->getExprLoc());
5340 
5341   // Generate function declaration DISuprogram in order to be used
5342   // in debug info about call sites.
5343   if (CGDebugInfo *DI = getDebugInfo()) {
5344     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5345       FunctionArgList Args;
5346       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5347       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5348                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5349                                   CalleeDecl);
5350     }
5351   }
5352 
5353   return Call;
5354 }
5355 
5356 LValue CodeGenFunction::
5357 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5358   Address BaseAddr = Address::invalid();
5359   if (E->getOpcode() == BO_PtrMemI) {
5360     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5361   } else {
5362     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5363   }
5364 
5365   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5366   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5367 
5368   LValueBaseInfo BaseInfo;
5369   TBAAAccessInfo TBAAInfo;
5370   Address MemberAddr =
5371     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5372                                     &TBAAInfo);
5373 
5374   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5375 }
5376 
5377 /// Given the address of a temporary variable, produce an r-value of
5378 /// its type.
5379 RValue CodeGenFunction::convertTempToRValue(Address addr,
5380                                             QualType type,
5381                                             SourceLocation loc) {
5382   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5383   switch (getEvaluationKind(type)) {
5384   case TEK_Complex:
5385     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5386   case TEK_Aggregate:
5387     return lvalue.asAggregateRValue(*this);
5388   case TEK_Scalar:
5389     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5390   }
5391   llvm_unreachable("bad evaluation kind");
5392 }
5393 
5394 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5395   assert(Val->getType()->isFPOrFPVectorTy());
5396   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5397     return;
5398 
5399   llvm::MDBuilder MDHelper(getLLVMContext());
5400   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5401 
5402   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5403 }
5404 
5405 namespace {
5406   struct LValueOrRValue {
5407     LValue LV;
5408     RValue RV;
5409   };
5410 }
5411 
5412 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5413                                            const PseudoObjectExpr *E,
5414                                            bool forLValue,
5415                                            AggValueSlot slot) {
5416   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5417 
5418   // Find the result expression, if any.
5419   const Expr *resultExpr = E->getResultExpr();
5420   LValueOrRValue result;
5421 
5422   for (PseudoObjectExpr::const_semantics_iterator
5423          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5424     const Expr *semantic = *i;
5425 
5426     // If this semantic expression is an opaque value, bind it
5427     // to the result of its source expression.
5428     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5429       // Skip unique OVEs.
5430       if (ov->isUnique()) {
5431         assert(ov != resultExpr &&
5432                "A unique OVE cannot be used as the result expression");
5433         continue;
5434       }
5435 
5436       // If this is the result expression, we may need to evaluate
5437       // directly into the slot.
5438       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5439       OVMA opaqueData;
5440       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5441           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5442         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5443         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5444                                        AlignmentSource::Decl);
5445         opaqueData = OVMA::bind(CGF, ov, LV);
5446         result.RV = slot.asRValue();
5447 
5448       // Otherwise, emit as normal.
5449       } else {
5450         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5451 
5452         // If this is the result, also evaluate the result now.
5453         if (ov == resultExpr) {
5454           if (forLValue)
5455             result.LV = CGF.EmitLValue(ov);
5456           else
5457             result.RV = CGF.EmitAnyExpr(ov, slot);
5458         }
5459       }
5460 
5461       opaques.push_back(opaqueData);
5462 
5463     // Otherwise, if the expression is the result, evaluate it
5464     // and remember the result.
5465     } else if (semantic == resultExpr) {
5466       if (forLValue)
5467         result.LV = CGF.EmitLValue(semantic);
5468       else
5469         result.RV = CGF.EmitAnyExpr(semantic, slot);
5470 
5471     // Otherwise, evaluate the expression in an ignored context.
5472     } else {
5473       CGF.EmitIgnoredExpr(semantic);
5474     }
5475   }
5476 
5477   // Unbind all the opaques now.
5478   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5479     opaques[i].unbind(CGF);
5480 
5481   return result;
5482 }
5483 
5484 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5485                                                AggValueSlot slot) {
5486   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5487 }
5488 
5489 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5490   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5491 }
5492