1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===--------------------------------------------------------------------===// 32 // Miscellaneous Helper Methods 33 //===--------------------------------------------------------------------===// 34 35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45 } 46 47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 48 /// block. 49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54 } 55 56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61 } 62 63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70 } 71 72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79 } 80 81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82 /// expression and compare the result against zero, returning an Int1Ty value. 83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94 } 95 96 /// EmitIgnoredExpr - Emit code to compute the specified expression, 97 /// ignoring the result. 98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104 } 105 106 /// EmitAnyExpr - Emit code to compute the specified expression which 107 /// can have any type. The result is returned as an RValue struct. 108 /// If this is an aggregate expression, AggSlot indicates where the 109 /// result should be returned. 110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119 } 120 121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122 /// always be accessible even if no aggregate location is provided. 123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130 } 131 132 /// EmitAnyExprToMem - Evaluate an expression into a given memory 133 /// location. 134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152 } 153 154 namespace { 155 /// \brief An adjustment to be made to the temporary created when emitting a 156 /// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181 } 182 183 static llvm::Value * 184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207 } 208 209 static llvm::Value * 210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOptions().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443 } 444 445 RValue 446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 491 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 492 cleanupKind & EHCleanup); 493 break; 494 } 495 496 case Qualifiers::OCL_Weak: { 497 // __weak objects always get EH cleanups; otherwise, exceptions 498 // could cause really nasty crashes instead of mere leaks. 499 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 500 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 501 break; 502 } 503 } 504 } 505 506 return RValue::get(Value); 507 } 508 509 510 /// getAccessedFieldNo - Given an encoded value and a result number, return the 511 /// input field number being accessed. 512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 513 const llvm::Constant *Elts) { 514 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 515 ->getZExtValue(); 516 } 517 518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 519 if (!CatchUndefined) 520 return; 521 522 // This needs to be to the standard address space. 523 Address = Builder.CreateBitCast(Address, Int8PtrTy); 524 525 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 526 527 // In time, people may want to control this and use a 1 here. 528 llvm::Value *Arg = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 llvm::BasicBlock *Check = createBasicBlock(); 532 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 533 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 534 535 EmitBlock(Check); 536 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 537 llvm::ConstantInt::get(IntPtrTy, Size)), 538 Cont, getTrapBB()); 539 EmitBlock(Cont); 540 } 541 542 543 CodeGenFunction::ComplexPairTy CodeGenFunction:: 544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 545 bool isInc, bool isPre) { 546 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 547 LV.isVolatileQualified()); 548 549 llvm::Value *NextVal; 550 if (isa<llvm::IntegerType>(InVal.first->getType())) { 551 uint64_t AmountVal = isInc ? 1 : -1; 552 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 553 554 // Add the inc/dec to the real part. 555 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 556 } else { 557 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 558 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 559 if (!isInc) 560 FVal.changeSign(); 561 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 562 563 // Add the inc/dec to the real part. 564 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 565 } 566 567 ComplexPairTy IncVal(NextVal, InVal.second); 568 569 // Store the updated result through the lvalue. 570 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 571 572 // If this is a postinc, return the value read from memory, otherwise use the 573 // updated value. 574 return isPre ? IncVal : InVal; 575 } 576 577 578 //===----------------------------------------------------------------------===// 579 // LValue Expression Emission 580 //===----------------------------------------------------------------------===// 581 582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 583 if (Ty->isVoidType()) 584 return RValue::get(0); 585 586 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 587 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 588 llvm::Value *U = llvm::UndefValue::get(EltTy); 589 return RValue::getComplex(std::make_pair(U, U)); 590 } 591 592 // If this is a use of an undefined aggregate type, the aggregate must have an 593 // identifiable address. Just because the contents of the value are undefined 594 // doesn't mean that the address can't be taken and compared. 595 if (hasAggregateLLVMType(Ty)) { 596 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 597 return RValue::getAggregate(DestPtr); 598 } 599 600 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 601 } 602 603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 return GetUndefRValue(E->getType()); 607 } 608 609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 613 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 614 } 615 616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 617 LValue LV = EmitLValue(E); 618 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 619 EmitCheck(LV.getAddress(), 620 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 621 return LV; 622 } 623 624 /// EmitLValue - Emit code to compute a designator that specifies the location 625 /// of the expression. 626 /// 627 /// This can return one of two things: a simple address or a bitfield reference. 628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 629 /// an LLVM pointer type. 630 /// 631 /// If this returns a bitfield reference, nothing about the pointee type of the 632 /// LLVM value is known: For example, it may not be a pointer to an integer. 633 /// 634 /// If this returns a normal address, and if the lvalue's C type is fixed size, 635 /// this method guarantees that the returned pointer type will point to an LLVM 636 /// type of the same size of the lvalue's type. If the lvalue has a variable 637 /// length type, this is not possible. 638 /// 639 LValue CodeGenFunction::EmitLValue(const Expr *E) { 640 switch (E->getStmtClass()) { 641 default: return EmitUnsupportedLValue(E, "l-value expression"); 642 643 case Expr::ObjCPropertyRefExprClass: 644 llvm_unreachable("cannot emit a property reference directly"); 645 646 case Expr::ObjCSelectorExprClass: 647 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 648 case Expr::ObjCIsaExprClass: 649 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 650 case Expr::BinaryOperatorClass: 651 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 652 case Expr::CompoundAssignOperatorClass: 653 if (!E->getType()->isAnyComplexType()) 654 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 655 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 case Expr::CallExprClass: 657 case Expr::CXXMemberCallExprClass: 658 case Expr::CXXOperatorCallExprClass: 659 return EmitCallExprLValue(cast<CallExpr>(E)); 660 case Expr::VAArgExprClass: 661 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 662 case Expr::DeclRefExprClass: 663 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 664 case Expr::ParenExprClass: 665 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 666 case Expr::GenericSelectionExprClass: 667 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 668 case Expr::PredefinedExprClass: 669 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 670 case Expr::StringLiteralClass: 671 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 672 case Expr::ObjCEncodeExprClass: 673 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 674 case Expr::PseudoObjectExprClass: 675 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 676 case Expr::InitListExprClass: 677 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 678 "Only single-element init list can be lvalue."); 679 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 680 681 case Expr::BlockDeclRefExprClass: 682 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 683 684 case Expr::CXXTemporaryObjectExprClass: 685 case Expr::CXXConstructExprClass: 686 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 687 case Expr::CXXBindTemporaryExprClass: 688 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 689 case Expr::LambdaExprClass: 690 return EmitLambdaLValue(cast<LambdaExpr>(E)); 691 692 case Expr::ExprWithCleanupsClass: { 693 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 694 enterFullExpression(cleanups); 695 RunCleanupsScope Scope(*this); 696 return EmitLValue(cleanups->getSubExpr()); 697 } 698 699 case Expr::CXXScalarValueInitExprClass: 700 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 701 case Expr::CXXDefaultArgExprClass: 702 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 703 case Expr::CXXTypeidExprClass: 704 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 705 706 case Expr::ObjCMessageExprClass: 707 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 708 case Expr::ObjCIvarRefExprClass: 709 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 710 case Expr::StmtExprClass: 711 return EmitStmtExprLValue(cast<StmtExpr>(E)); 712 case Expr::UnaryOperatorClass: 713 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 714 case Expr::ArraySubscriptExprClass: 715 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 716 case Expr::ExtVectorElementExprClass: 717 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 718 case Expr::MemberExprClass: 719 return EmitMemberExpr(cast<MemberExpr>(E)); 720 case Expr::CompoundLiteralExprClass: 721 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 722 case Expr::ConditionalOperatorClass: 723 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 724 case Expr::BinaryConditionalOperatorClass: 725 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 726 case Expr::ChooseExprClass: 727 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 728 case Expr::OpaqueValueExprClass: 729 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 730 case Expr::SubstNonTypeTemplateParmExprClass: 731 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 732 case Expr::ImplicitCastExprClass: 733 case Expr::CStyleCastExprClass: 734 case Expr::CXXFunctionalCastExprClass: 735 case Expr::CXXStaticCastExprClass: 736 case Expr::CXXDynamicCastExprClass: 737 case Expr::CXXReinterpretCastExprClass: 738 case Expr::CXXConstCastExprClass: 739 case Expr::ObjCBridgedCastExprClass: 740 return EmitCastLValue(cast<CastExpr>(E)); 741 742 case Expr::MaterializeTemporaryExprClass: 743 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 744 } 745 } 746 747 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 748 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 749 lvalue.getAlignment().getQuantity(), 750 lvalue.getType(), lvalue.getTBAAInfo()); 751 } 752 753 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 754 unsigned Alignment, QualType Ty, 755 llvm::MDNode *TBAAInfo) { 756 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 757 if (Volatile) 758 Load->setVolatile(true); 759 if (Alignment) 760 Load->setAlignment(Alignment); 761 if (TBAAInfo) 762 CGM.DecorateInstruction(Load, TBAAInfo); 763 // If this is an atomic type, all normal reads must be atomic 764 if (Ty->isAtomicType()) 765 Load->setAtomic(llvm::SequentiallyConsistent); 766 767 return EmitFromMemory(Load, Ty); 768 } 769 770 static bool isBooleanUnderlyingType(QualType Ty) { 771 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 772 return ET->getDecl()->getIntegerType()->isBooleanType(); 773 return false; 774 } 775 776 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 777 // Bool has a different representation in memory than in registers. 778 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 779 // This should really always be an i1, but sometimes it's already 780 // an i8, and it's awkward to track those cases down. 781 if (Value->getType()->isIntegerTy(1)) 782 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 783 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 784 } 785 786 return Value; 787 } 788 789 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 790 // Bool has a different representation in memory than in registers. 791 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 792 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 793 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 794 } 795 796 return Value; 797 } 798 799 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 800 bool Volatile, unsigned Alignment, 801 QualType Ty, 802 llvm::MDNode *TBAAInfo, 803 bool isInit) { 804 Value = EmitToMemory(Value, Ty); 805 806 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 807 if (Alignment) 808 Store->setAlignment(Alignment); 809 if (TBAAInfo) 810 CGM.DecorateInstruction(Store, TBAAInfo); 811 if (!isInit && Ty->isAtomicType()) 812 Store->setAtomic(llvm::SequentiallyConsistent); 813 } 814 815 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 816 bool isInit) { 817 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 818 lvalue.getAlignment().getQuantity(), lvalue.getType(), 819 lvalue.getTBAAInfo(), isInit); 820 } 821 822 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 823 /// method emits the address of the lvalue, then loads the result as an rvalue, 824 /// returning the rvalue. 825 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 826 if (LV.isObjCWeak()) { 827 // load of a __weak object. 828 llvm::Value *AddrWeakObj = LV.getAddress(); 829 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 830 AddrWeakObj)); 831 } 832 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 833 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 834 835 if (LV.isSimple()) { 836 assert(!LV.getType()->isFunctionType()); 837 838 // Everything needs a load. 839 return RValue::get(EmitLoadOfScalar(LV)); 840 } 841 842 if (LV.isVectorElt()) { 843 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 844 LV.isVolatileQualified()); 845 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 846 "vecext")); 847 } 848 849 // If this is a reference to a subset of the elements of a vector, either 850 // shuffle the input or extract/insert them as appropriate. 851 if (LV.isExtVectorElt()) 852 return EmitLoadOfExtVectorElementLValue(LV); 853 854 assert(LV.isBitField() && "Unknown LValue type!"); 855 return EmitLoadOfBitfieldLValue(LV); 856 } 857 858 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 859 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 860 861 // Get the output type. 862 llvm::Type *ResLTy = ConvertType(LV.getType()); 863 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 864 865 // Compute the result as an OR of all of the individual component accesses. 866 llvm::Value *Res = 0; 867 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 868 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 869 870 // Get the field pointer. 871 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 872 873 // Only offset by the field index if used, so that incoming values are not 874 // required to be structures. 875 if (AI.FieldIndex) 876 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 877 878 // Offset by the byte offset, if used. 879 if (!AI.FieldByteOffset.isZero()) { 880 Ptr = EmitCastToVoidPtr(Ptr); 881 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 882 "bf.field.offs"); 883 } 884 885 // Cast to the access type. 886 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 887 CGM.getContext().getTargetAddressSpace(LV.getType())); 888 Ptr = Builder.CreateBitCast(Ptr, PTy); 889 890 // Perform the load. 891 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 892 if (!AI.AccessAlignment.isZero()) 893 Load->setAlignment(AI.AccessAlignment.getQuantity()); 894 895 // Shift out unused low bits and mask out unused high bits. 896 llvm::Value *Val = Load; 897 if (AI.FieldBitStart) 898 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 899 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 900 AI.TargetBitWidth), 901 "bf.clear"); 902 903 // Extend or truncate to the target size. 904 if (AI.AccessWidth < ResSizeInBits) 905 Val = Builder.CreateZExt(Val, ResLTy); 906 else if (AI.AccessWidth > ResSizeInBits) 907 Val = Builder.CreateTrunc(Val, ResLTy); 908 909 // Shift into place, and OR into the result. 910 if (AI.TargetBitOffset) 911 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 912 Res = Res ? Builder.CreateOr(Res, Val) : Val; 913 } 914 915 // If the bit-field is signed, perform the sign-extension. 916 // 917 // FIXME: This can easily be folded into the load of the high bits, which 918 // could also eliminate the mask of high bits in some situations. 919 if (Info.isSigned()) { 920 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 921 if (ExtraBits) 922 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 923 ExtraBits, "bf.val.sext"); 924 } 925 926 return RValue::get(Res); 927 } 928 929 // If this is a reference to a subset of the elements of a vector, create an 930 // appropriate shufflevector. 931 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 932 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 933 LV.isVolatileQualified()); 934 935 const llvm::Constant *Elts = LV.getExtVectorElts(); 936 937 // If the result of the expression is a non-vector type, we must be extracting 938 // a single element. Just codegen as an extractelement. 939 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 940 if (!ExprVT) { 941 unsigned InIdx = getAccessedFieldNo(0, Elts); 942 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 943 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 944 } 945 946 // Always use shuffle vector to try to retain the original program structure 947 unsigned NumResultElts = ExprVT->getNumElements(); 948 949 SmallVector<llvm::Constant*, 4> Mask; 950 for (unsigned i = 0; i != NumResultElts; ++i) 951 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 952 953 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 954 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 955 MaskV); 956 return RValue::get(Vec); 957 } 958 959 960 961 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 962 /// lvalue, where both are guaranteed to the have the same type, and that type 963 /// is 'Ty'. 964 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 965 if (!Dst.isSimple()) { 966 if (Dst.isVectorElt()) { 967 // Read/modify/write the vector, inserting the new element. 968 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 969 Dst.isVolatileQualified()); 970 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 971 Dst.getVectorIdx(), "vecins"); 972 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 973 return; 974 } 975 976 // If this is an update of extended vector elements, insert them as 977 // appropriate. 978 if (Dst.isExtVectorElt()) 979 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 980 981 assert(Dst.isBitField() && "Unknown LValue type"); 982 return EmitStoreThroughBitfieldLValue(Src, Dst); 983 } 984 985 // There's special magic for assigning into an ARC-qualified l-value. 986 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 987 switch (Lifetime) { 988 case Qualifiers::OCL_None: 989 llvm_unreachable("present but none"); 990 991 case Qualifiers::OCL_ExplicitNone: 992 // nothing special 993 break; 994 995 case Qualifiers::OCL_Strong: 996 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 997 return; 998 999 case Qualifiers::OCL_Weak: 1000 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1001 return; 1002 1003 case Qualifiers::OCL_Autoreleasing: 1004 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1005 Src.getScalarVal())); 1006 // fall into the normal path 1007 break; 1008 } 1009 } 1010 1011 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1012 // load of a __weak object. 1013 llvm::Value *LvalueDst = Dst.getAddress(); 1014 llvm::Value *src = Src.getScalarVal(); 1015 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1016 return; 1017 } 1018 1019 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1020 // load of a __strong object. 1021 llvm::Value *LvalueDst = Dst.getAddress(); 1022 llvm::Value *src = Src.getScalarVal(); 1023 if (Dst.isObjCIvar()) { 1024 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1025 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1026 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1027 llvm::Value *dst = RHS; 1028 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1029 llvm::Value *LHS = 1030 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1031 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1032 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1033 BytesBetween); 1034 } else if (Dst.isGlobalObjCRef()) { 1035 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1036 Dst.isThreadLocalRef()); 1037 } 1038 else 1039 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1040 return; 1041 } 1042 1043 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1044 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1045 } 1046 1047 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1048 llvm::Value **Result) { 1049 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1050 1051 // Get the output type. 1052 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1053 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1054 1055 // Get the source value, truncated to the width of the bit-field. 1056 llvm::Value *SrcVal = Src.getScalarVal(); 1057 1058 if (Dst.getType()->isBooleanType()) 1059 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1060 1061 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1062 Info.getSize()), 1063 "bf.value"); 1064 1065 // Return the new value of the bit-field, if requested. 1066 if (Result) { 1067 // Cast back to the proper type for result. 1068 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1069 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1070 "bf.reload.val"); 1071 1072 // Sign extend if necessary. 1073 if (Info.isSigned()) { 1074 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1075 if (ExtraBits) 1076 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1077 ExtraBits, "bf.reload.sext"); 1078 } 1079 1080 *Result = ReloadVal; 1081 } 1082 1083 // Iterate over the components, writing each piece to memory. 1084 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1085 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1086 1087 // Get the field pointer. 1088 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1089 unsigned addressSpace = 1090 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1091 1092 // Only offset by the field index if used, so that incoming values are not 1093 // required to be structures. 1094 if (AI.FieldIndex) 1095 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1096 1097 // Offset by the byte offset, if used. 1098 if (!AI.FieldByteOffset.isZero()) { 1099 Ptr = EmitCastToVoidPtr(Ptr); 1100 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1101 "bf.field.offs"); 1102 } 1103 1104 // Cast to the access type. 1105 llvm::Type *AccessLTy = 1106 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1107 1108 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1109 Ptr = Builder.CreateBitCast(Ptr, PTy); 1110 1111 // Extract the piece of the bit-field value to write in this access, limited 1112 // to the values that are part of this access. 1113 llvm::Value *Val = SrcVal; 1114 if (AI.TargetBitOffset) 1115 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1116 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1117 AI.TargetBitWidth)); 1118 1119 // Extend or truncate to the access size. 1120 if (ResSizeInBits < AI.AccessWidth) 1121 Val = Builder.CreateZExt(Val, AccessLTy); 1122 else if (ResSizeInBits > AI.AccessWidth) 1123 Val = Builder.CreateTrunc(Val, AccessLTy); 1124 1125 // Shift into the position in memory. 1126 if (AI.FieldBitStart) 1127 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1128 1129 // If necessary, load and OR in bits that are outside of the bit-field. 1130 if (AI.TargetBitWidth != AI.AccessWidth) { 1131 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1132 if (!AI.AccessAlignment.isZero()) 1133 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1134 1135 // Compute the mask for zeroing the bits that are part of the bit-field. 1136 llvm::APInt InvMask = 1137 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1138 AI.FieldBitStart + AI.TargetBitWidth); 1139 1140 // Apply the mask and OR in to the value to write. 1141 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1142 } 1143 1144 // Write the value. 1145 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1146 Dst.isVolatileQualified()); 1147 if (!AI.AccessAlignment.isZero()) 1148 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1149 } 1150 } 1151 1152 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1153 LValue Dst) { 1154 // This access turns into a read/modify/write of the vector. Load the input 1155 // value now. 1156 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1157 Dst.isVolatileQualified()); 1158 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1159 1160 llvm::Value *SrcVal = Src.getScalarVal(); 1161 1162 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1163 unsigned NumSrcElts = VTy->getNumElements(); 1164 unsigned NumDstElts = 1165 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1166 if (NumDstElts == NumSrcElts) { 1167 // Use shuffle vector is the src and destination are the same number of 1168 // elements and restore the vector mask since it is on the side it will be 1169 // stored. 1170 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1171 for (unsigned i = 0; i != NumSrcElts; ++i) 1172 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1173 1174 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1175 Vec = Builder.CreateShuffleVector(SrcVal, 1176 llvm::UndefValue::get(Vec->getType()), 1177 MaskV); 1178 } else if (NumDstElts > NumSrcElts) { 1179 // Extended the source vector to the same length and then shuffle it 1180 // into the destination. 1181 // FIXME: since we're shuffling with undef, can we just use the indices 1182 // into that? This could be simpler. 1183 SmallVector<llvm::Constant*, 4> ExtMask; 1184 for (unsigned i = 0; i != NumSrcElts; ++i) 1185 ExtMask.push_back(Builder.getInt32(i)); 1186 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1187 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1188 llvm::Value *ExtSrcVal = 1189 Builder.CreateShuffleVector(SrcVal, 1190 llvm::UndefValue::get(SrcVal->getType()), 1191 ExtMaskV); 1192 // build identity 1193 SmallVector<llvm::Constant*, 4> Mask; 1194 for (unsigned i = 0; i != NumDstElts; ++i) 1195 Mask.push_back(Builder.getInt32(i)); 1196 1197 // modify when what gets shuffled in 1198 for (unsigned i = 0; i != NumSrcElts; ++i) 1199 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1200 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1201 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1202 } else { 1203 // We should never shorten the vector 1204 llvm_unreachable("unexpected shorten vector length"); 1205 } 1206 } else { 1207 // If the Src is a scalar (not a vector) it must be updating one element. 1208 unsigned InIdx = getAccessedFieldNo(0, Elts); 1209 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1210 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1211 } 1212 1213 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1214 } 1215 1216 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1217 // generating write-barries API. It is currently a global, ivar, 1218 // or neither. 1219 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1220 LValue &LV, 1221 bool IsMemberAccess=false) { 1222 if (Ctx.getLangOptions().getGC() == LangOptions::NonGC) 1223 return; 1224 1225 if (isa<ObjCIvarRefExpr>(E)) { 1226 QualType ExpTy = E->getType(); 1227 if (IsMemberAccess && ExpTy->isPointerType()) { 1228 // If ivar is a structure pointer, assigning to field of 1229 // this struct follows gcc's behavior and makes it a non-ivar 1230 // writer-barrier conservatively. 1231 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1232 if (ExpTy->isRecordType()) { 1233 LV.setObjCIvar(false); 1234 return; 1235 } 1236 } 1237 LV.setObjCIvar(true); 1238 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1239 LV.setBaseIvarExp(Exp->getBase()); 1240 LV.setObjCArray(E->getType()->isArrayType()); 1241 return; 1242 } 1243 1244 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1245 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1246 if (VD->hasGlobalStorage()) { 1247 LV.setGlobalObjCRef(true); 1248 LV.setThreadLocalRef(VD->isThreadSpecified()); 1249 } 1250 } 1251 LV.setObjCArray(E->getType()->isArrayType()); 1252 return; 1253 } 1254 1255 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1256 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1257 return; 1258 } 1259 1260 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1261 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1262 if (LV.isObjCIvar()) { 1263 // If cast is to a structure pointer, follow gcc's behavior and make it 1264 // a non-ivar write-barrier. 1265 QualType ExpTy = E->getType(); 1266 if (ExpTy->isPointerType()) 1267 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1268 if (ExpTy->isRecordType()) 1269 LV.setObjCIvar(false); 1270 } 1271 return; 1272 } 1273 1274 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1275 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1276 return; 1277 } 1278 1279 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1280 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1281 return; 1282 } 1283 1284 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1285 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1286 return; 1287 } 1288 1289 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1290 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1291 return; 1292 } 1293 1294 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1295 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1296 if (LV.isObjCIvar() && !LV.isObjCArray()) 1297 // Using array syntax to assigning to what an ivar points to is not 1298 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1299 LV.setObjCIvar(false); 1300 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1301 // Using array syntax to assigning to what global points to is not 1302 // same as assigning to the global itself. {id *G;} G[i] = 0; 1303 LV.setGlobalObjCRef(false); 1304 return; 1305 } 1306 1307 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1308 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1309 // We don't know if member is an 'ivar', but this flag is looked at 1310 // only in the context of LV.isObjCIvar(). 1311 LV.setObjCArray(E->getType()->isArrayType()); 1312 return; 1313 } 1314 } 1315 1316 static llvm::Value * 1317 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1318 llvm::Value *V, llvm::Type *IRType, 1319 StringRef Name = StringRef()) { 1320 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1321 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1322 } 1323 1324 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1325 const Expr *E, const VarDecl *VD) { 1326 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1327 "Var decl must have external storage or be a file var decl!"); 1328 1329 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1330 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1331 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1332 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1333 QualType T = E->getType(); 1334 LValue LV; 1335 if (VD->getType()->isReferenceType()) { 1336 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1337 LI->setAlignment(Alignment.getQuantity()); 1338 V = LI; 1339 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1340 } else { 1341 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1342 } 1343 setObjCGCLValueClass(CGF.getContext(), E, LV); 1344 return LV; 1345 } 1346 1347 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1348 const Expr *E, const FunctionDecl *FD) { 1349 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1350 if (!FD->hasPrototype()) { 1351 if (const FunctionProtoType *Proto = 1352 FD->getType()->getAs<FunctionProtoType>()) { 1353 // Ugly case: for a K&R-style definition, the type of the definition 1354 // isn't the same as the type of a use. Correct for this with a 1355 // bitcast. 1356 QualType NoProtoType = 1357 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1358 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1359 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1360 } 1361 } 1362 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1363 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1364 } 1365 1366 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1367 const NamedDecl *ND = E->getDecl(); 1368 CharUnits Alignment = getContext().getDeclAlign(ND); 1369 QualType T = E->getType(); 1370 1371 // FIXME: We should be able to assert this for FunctionDecls as well! 1372 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1373 // those with a valid source location. 1374 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1375 !E->getLocation().isValid()) && 1376 "Should not use decl without marking it used!"); 1377 1378 if (ND->hasAttr<WeakRefAttr>()) { 1379 const ValueDecl *VD = cast<ValueDecl>(ND); 1380 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1381 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1382 } 1383 1384 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1385 1386 // Check if this is a global variable. 1387 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1388 return EmitGlobalVarDeclLValue(*this, E, VD); 1389 1390 bool NonGCable = VD->hasLocalStorage() && 1391 !VD->getType()->isReferenceType() && 1392 !VD->hasAttr<BlocksAttr>(); 1393 1394 llvm::Value *V = LocalDeclMap[VD]; 1395 if (!V && VD->isStaticLocal()) 1396 V = CGM.getStaticLocalDeclAddress(VD); 1397 1398 // Use special handling for lambdas. 1399 if (!V) 1400 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1401 return EmitLValueForField(CXXABIThisValue, FD, 0); 1402 1403 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1404 1405 if (VD->hasAttr<BlocksAttr>()) 1406 V = BuildBlockByrefAddress(V, VD); 1407 1408 LValue LV; 1409 if (VD->getType()->isReferenceType()) { 1410 llvm::LoadInst *LI = Builder.CreateLoad(V); 1411 LI->setAlignment(Alignment.getQuantity()); 1412 V = LI; 1413 LV = MakeNaturalAlignAddrLValue(V, T); 1414 } else { 1415 LV = MakeAddrLValue(V, T, Alignment); 1416 } 1417 1418 if (NonGCable) { 1419 LV.getQuals().removeObjCGCAttr(); 1420 LV.setNonGC(true); 1421 } 1422 setObjCGCLValueClass(getContext(), E, LV); 1423 return LV; 1424 } 1425 1426 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1427 return EmitFunctionDeclLValue(*this, E, fn); 1428 1429 llvm_unreachable("Unhandled DeclRefExpr"); 1430 } 1431 1432 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1433 CharUnits Alignment = getContext().getDeclAlign(E->getDecl()); 1434 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1435 } 1436 1437 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1438 // __extension__ doesn't affect lvalue-ness. 1439 if (E->getOpcode() == UO_Extension) 1440 return EmitLValue(E->getSubExpr()); 1441 1442 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1443 switch (E->getOpcode()) { 1444 default: llvm_unreachable("Unknown unary operator lvalue!"); 1445 case UO_Deref: { 1446 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1447 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1448 1449 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1450 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1451 1452 // We should not generate __weak write barrier on indirect reference 1453 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1454 // But, we continue to generate __strong write barrier on indirect write 1455 // into a pointer to object. 1456 if (getContext().getLangOptions().ObjC1 && 1457 getContext().getLangOptions().getGC() != LangOptions::NonGC && 1458 LV.isObjCWeak()) 1459 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1460 return LV; 1461 } 1462 case UO_Real: 1463 case UO_Imag: { 1464 LValue LV = EmitLValue(E->getSubExpr()); 1465 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1466 llvm::Value *Addr = LV.getAddress(); 1467 1468 // real and imag are valid on scalars. This is a faster way of 1469 // testing that. 1470 if (!cast<llvm::PointerType>(Addr->getType()) 1471 ->getElementType()->isStructTy()) { 1472 assert(E->getSubExpr()->getType()->isArithmeticType()); 1473 return LV; 1474 } 1475 1476 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1477 1478 unsigned Idx = E->getOpcode() == UO_Imag; 1479 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1480 Idx, "idx"), 1481 ExprTy); 1482 } 1483 case UO_PreInc: 1484 case UO_PreDec: { 1485 LValue LV = EmitLValue(E->getSubExpr()); 1486 bool isInc = E->getOpcode() == UO_PreInc; 1487 1488 if (E->getType()->isAnyComplexType()) 1489 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1490 else 1491 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1492 return LV; 1493 } 1494 } 1495 } 1496 1497 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1498 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1499 E->getType()); 1500 } 1501 1502 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1503 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1504 E->getType()); 1505 } 1506 1507 1508 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1509 switch (E->getIdentType()) { 1510 default: 1511 return EmitUnsupportedLValue(E, "predefined expression"); 1512 1513 case PredefinedExpr::Func: 1514 case PredefinedExpr::Function: 1515 case PredefinedExpr::PrettyFunction: { 1516 unsigned Type = E->getIdentType(); 1517 std::string GlobalVarName; 1518 1519 switch (Type) { 1520 default: llvm_unreachable("Invalid type"); 1521 case PredefinedExpr::Func: 1522 GlobalVarName = "__func__."; 1523 break; 1524 case PredefinedExpr::Function: 1525 GlobalVarName = "__FUNCTION__."; 1526 break; 1527 case PredefinedExpr::PrettyFunction: 1528 GlobalVarName = "__PRETTY_FUNCTION__."; 1529 break; 1530 } 1531 1532 StringRef FnName = CurFn->getName(); 1533 if (FnName.startswith("\01")) 1534 FnName = FnName.substr(1); 1535 GlobalVarName += FnName; 1536 1537 const Decl *CurDecl = CurCodeDecl; 1538 if (CurDecl == 0) 1539 CurDecl = getContext().getTranslationUnitDecl(); 1540 1541 std::string FunctionName = 1542 (isa<BlockDecl>(CurDecl) 1543 ? FnName.str() 1544 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1545 1546 llvm::Constant *C = 1547 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1548 return MakeAddrLValue(C, E->getType()); 1549 } 1550 } 1551 } 1552 1553 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1554 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1555 1556 // If we are not optimzing, don't collapse all calls to trap in the function 1557 // to the same call, that way, in the debugger they can see which operation 1558 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1559 // to just one per function to save on codesize. 1560 if (GCO.OptimizationLevel && TrapBB) 1561 return TrapBB; 1562 1563 llvm::BasicBlock *Cont = 0; 1564 if (HaveInsertPoint()) { 1565 Cont = createBasicBlock("cont"); 1566 EmitBranch(Cont); 1567 } 1568 TrapBB = createBasicBlock("trap"); 1569 EmitBlock(TrapBB); 1570 1571 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1572 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1573 TrapCall->setDoesNotReturn(); 1574 TrapCall->setDoesNotThrow(); 1575 Builder.CreateUnreachable(); 1576 1577 if (Cont) 1578 EmitBlock(Cont); 1579 return TrapBB; 1580 } 1581 1582 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1583 /// array to pointer, return the array subexpression. 1584 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1585 // If this isn't just an array->pointer decay, bail out. 1586 const CastExpr *CE = dyn_cast<CastExpr>(E); 1587 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1588 return 0; 1589 1590 // If this is a decay from variable width array, bail out. 1591 const Expr *SubExpr = CE->getSubExpr(); 1592 if (SubExpr->getType()->isVariableArrayType()) 1593 return 0; 1594 1595 return SubExpr; 1596 } 1597 1598 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1599 // The index must always be an integer, which is not an aggregate. Emit it. 1600 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1601 QualType IdxTy = E->getIdx()->getType(); 1602 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1603 1604 // If the base is a vector type, then we are forming a vector element lvalue 1605 // with this subscript. 1606 if (E->getBase()->getType()->isVectorType()) { 1607 // Emit the vector as an lvalue to get its address. 1608 LValue LHS = EmitLValue(E->getBase()); 1609 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1610 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1611 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1612 E->getBase()->getType()); 1613 } 1614 1615 // Extend or truncate the index type to 32 or 64-bits. 1616 if (Idx->getType() != IntPtrTy) 1617 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1618 1619 // FIXME: As llvm implements the object size checking, this can come out. 1620 if (CatchUndefined) { 1621 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1622 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1623 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1624 if (const ConstantArrayType *CAT 1625 = getContext().getAsConstantArrayType(DRE->getType())) { 1626 llvm::APInt Size = CAT->getSize(); 1627 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1628 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1629 llvm::ConstantInt::get(Idx->getType(), Size)), 1630 Cont, getTrapBB()); 1631 EmitBlock(Cont); 1632 } 1633 } 1634 } 1635 } 1636 } 1637 1638 // We know that the pointer points to a type of the correct size, unless the 1639 // size is a VLA or Objective-C interface. 1640 llvm::Value *Address = 0; 1641 CharUnits ArrayAlignment; 1642 if (const VariableArrayType *vla = 1643 getContext().getAsVariableArrayType(E->getType())) { 1644 // The base must be a pointer, which is not an aggregate. Emit 1645 // it. It needs to be emitted first in case it's what captures 1646 // the VLA bounds. 1647 Address = EmitScalarExpr(E->getBase()); 1648 1649 // The element count here is the total number of non-VLA elements. 1650 llvm::Value *numElements = getVLASize(vla).first; 1651 1652 // Effectively, the multiply by the VLA size is part of the GEP. 1653 // GEP indexes are signed, and scaling an index isn't permitted to 1654 // signed-overflow, so we use the same semantics for our explicit 1655 // multiply. We suppress this if overflow is not undefined behavior. 1656 if (getLangOptions().isSignedOverflowDefined()) { 1657 Idx = Builder.CreateMul(Idx, numElements); 1658 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1659 } else { 1660 Idx = Builder.CreateNSWMul(Idx, numElements); 1661 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1662 } 1663 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1664 // Indexing over an interface, as in "NSString *P; P[4];" 1665 llvm::Value *InterfaceSize = 1666 llvm::ConstantInt::get(Idx->getType(), 1667 getContext().getTypeSizeInChars(OIT).getQuantity()); 1668 1669 Idx = Builder.CreateMul(Idx, InterfaceSize); 1670 1671 // The base must be a pointer, which is not an aggregate. Emit it. 1672 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1673 Address = EmitCastToVoidPtr(Base); 1674 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1675 Address = Builder.CreateBitCast(Address, Base->getType()); 1676 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1677 // If this is A[i] where A is an array, the frontend will have decayed the 1678 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1679 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1680 // "gep x, i" here. Emit one "gep A, 0, i". 1681 assert(Array->getType()->isArrayType() && 1682 "Array to pointer decay must have array source type!"); 1683 LValue ArrayLV = EmitLValue(Array); 1684 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1685 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1686 llvm::Value *Args[] = { Zero, Idx }; 1687 1688 // Propagate the alignment from the array itself to the result. 1689 ArrayAlignment = ArrayLV.getAlignment(); 1690 1691 if (getContext().getLangOptions().isSignedOverflowDefined()) 1692 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1693 else 1694 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1695 } else { 1696 // The base must be a pointer, which is not an aggregate. Emit it. 1697 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1698 if (getContext().getLangOptions().isSignedOverflowDefined()) 1699 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1700 else 1701 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1702 } 1703 1704 QualType T = E->getBase()->getType()->getPointeeType(); 1705 assert(!T.isNull() && 1706 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1707 1708 1709 // Limit the alignment to that of the result type. 1710 LValue LV; 1711 if (!ArrayAlignment.isZero()) { 1712 CharUnits Align = getContext().getTypeAlignInChars(T); 1713 ArrayAlignment = std::min(Align, ArrayAlignment); 1714 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1715 } else { 1716 LV = MakeNaturalAlignAddrLValue(Address, T); 1717 } 1718 1719 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1720 1721 if (getContext().getLangOptions().ObjC1 && 1722 getContext().getLangOptions().getGC() != LangOptions::NonGC) { 1723 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1724 setObjCGCLValueClass(getContext(), E, LV); 1725 } 1726 return LV; 1727 } 1728 1729 static 1730 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1731 SmallVector<unsigned, 4> &Elts) { 1732 SmallVector<llvm::Constant*, 4> CElts; 1733 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1734 CElts.push_back(Builder.getInt32(Elts[i])); 1735 1736 return llvm::ConstantVector::get(CElts); 1737 } 1738 1739 LValue CodeGenFunction:: 1740 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1741 // Emit the base vector as an l-value. 1742 LValue Base; 1743 1744 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1745 if (E->isArrow()) { 1746 // If it is a pointer to a vector, emit the address and form an lvalue with 1747 // it. 1748 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1749 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1750 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1751 Base.getQuals().removeObjCGCAttr(); 1752 } else if (E->getBase()->isGLValue()) { 1753 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1754 // emit the base as an lvalue. 1755 assert(E->getBase()->getType()->isVectorType()); 1756 Base = EmitLValue(E->getBase()); 1757 } else { 1758 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1759 assert(E->getBase()->getType()->isVectorType() && 1760 "Result must be a vector"); 1761 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1762 1763 // Store the vector to memory (because LValue wants an address). 1764 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1765 Builder.CreateStore(Vec, VecMem); 1766 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1767 } 1768 1769 QualType type = 1770 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1771 1772 // Encode the element access list into a vector of unsigned indices. 1773 SmallVector<unsigned, 4> Indices; 1774 E->getEncodedElementAccess(Indices); 1775 1776 if (Base.isSimple()) { 1777 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1778 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1779 } 1780 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1781 1782 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1783 SmallVector<llvm::Constant *, 4> CElts; 1784 1785 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1786 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1787 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1788 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1789 } 1790 1791 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1792 bool isNonGC = false; 1793 Expr *BaseExpr = E->getBase(); 1794 llvm::Value *BaseValue = NULL; 1795 Qualifiers BaseQuals; 1796 1797 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1798 if (E->isArrow()) { 1799 BaseValue = EmitScalarExpr(BaseExpr); 1800 const PointerType *PTy = 1801 BaseExpr->getType()->getAs<PointerType>(); 1802 BaseQuals = PTy->getPointeeType().getQualifiers(); 1803 } else { 1804 LValue BaseLV = EmitLValue(BaseExpr); 1805 if (BaseLV.isNonGC()) 1806 isNonGC = true; 1807 // FIXME: this isn't right for bitfields. 1808 BaseValue = BaseLV.getAddress(); 1809 QualType BaseTy = BaseExpr->getType(); 1810 BaseQuals = BaseTy.getQualifiers(); 1811 } 1812 1813 NamedDecl *ND = E->getMemberDecl(); 1814 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1815 LValue LV = EmitLValueForField(BaseValue, Field, 1816 BaseQuals.getCVRQualifiers()); 1817 LV.setNonGC(isNonGC); 1818 setObjCGCLValueClass(getContext(), E, LV); 1819 return LV; 1820 } 1821 1822 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1823 return EmitGlobalVarDeclLValue(*this, E, VD); 1824 1825 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1826 return EmitFunctionDeclLValue(*this, E, FD); 1827 1828 llvm_unreachable("Unhandled member declaration!"); 1829 } 1830 1831 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1832 const FieldDecl *Field, 1833 unsigned CVRQualifiers) { 1834 const CGRecordLayout &RL = 1835 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1836 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1837 return LValue::MakeBitfield(BaseValue, Info, 1838 Field->getType().withCVRQualifiers(CVRQualifiers)); 1839 } 1840 1841 /// EmitLValueForAnonRecordField - Given that the field is a member of 1842 /// an anonymous struct or union buried inside a record, and given 1843 /// that the base value is a pointer to the enclosing record, derive 1844 /// an lvalue for the ultimate field. 1845 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1846 const IndirectFieldDecl *Field, 1847 unsigned CVRQualifiers) { 1848 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1849 IEnd = Field->chain_end(); 1850 while (true) { 1851 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1852 CVRQualifiers); 1853 if (++I == IEnd) return LV; 1854 1855 assert(LV.isSimple()); 1856 BaseValue = LV.getAddress(); 1857 CVRQualifiers |= LV.getVRQualifiers(); 1858 } 1859 } 1860 1861 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1862 const FieldDecl *field, 1863 unsigned cvr) { 1864 if (field->isBitField()) 1865 return EmitLValueForBitfield(baseAddr, field, cvr); 1866 1867 const RecordDecl *rec = field->getParent(); 1868 QualType type = field->getType(); 1869 CharUnits alignment = getContext().getDeclAlign(field); 1870 1871 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1872 1873 llvm::Value *addr = baseAddr; 1874 if (rec->isUnion()) { 1875 // For unions, there is no pointer adjustment. 1876 assert(!type->isReferenceType() && "union has reference member"); 1877 } else { 1878 // For structs, we GEP to the field that the record layout suggests. 1879 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1880 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 1881 1882 // If this is a reference field, load the reference right now. 1883 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1884 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1885 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1886 load->setAlignment(alignment.getQuantity()); 1887 1888 if (CGM.shouldUseTBAA()) { 1889 llvm::MDNode *tbaa; 1890 if (mayAlias) 1891 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1892 else 1893 tbaa = CGM.getTBAAInfo(type); 1894 CGM.DecorateInstruction(load, tbaa); 1895 } 1896 1897 addr = load; 1898 mayAlias = false; 1899 type = refType->getPointeeType(); 1900 if (type->isIncompleteType()) 1901 alignment = CharUnits(); 1902 else 1903 alignment = getContext().getTypeAlignInChars(type); 1904 cvr = 0; // qualifiers don't recursively apply to referencee 1905 } 1906 } 1907 1908 // Make sure that the address is pointing to the right type. This is critical 1909 // for both unions and structs. A union needs a bitcast, a struct element 1910 // will need a bitcast if the LLVM type laid out doesn't match the desired 1911 // type. 1912 addr = EmitBitCastOfLValueToProperType(*this, addr, 1913 CGM.getTypes().ConvertTypeForMem(type), 1914 field->getName()); 1915 1916 if (field->hasAttr<AnnotateAttr>()) 1917 addr = EmitFieldAnnotations(field, addr); 1918 1919 LValue LV = MakeAddrLValue(addr, type, alignment); 1920 LV.getQuals().addCVRQualifiers(cvr); 1921 1922 // __weak attribute on a field is ignored. 1923 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1924 LV.getQuals().removeObjCGCAttr(); 1925 1926 // Fields of may_alias structs act like 'char' for TBAA purposes. 1927 // FIXME: this should get propagated down through anonymous structs 1928 // and unions. 1929 if (mayAlias && LV.getTBAAInfo()) 1930 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1931 1932 return LV; 1933 } 1934 1935 LValue 1936 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1937 const FieldDecl *Field, 1938 unsigned CVRQualifiers) { 1939 QualType FieldType = Field->getType(); 1940 1941 if (!FieldType->isReferenceType()) 1942 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1943 1944 const CGRecordLayout &RL = 1945 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1946 unsigned idx = RL.getLLVMFieldNo(Field); 1947 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 1948 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1949 1950 1951 // Make sure that the address is pointing to the right type. This is critical 1952 // for both unions and structs. A union needs a bitcast, a struct element 1953 // will need a bitcast if the LLVM type laid out doesn't match the desired 1954 // type. 1955 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 1956 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1957 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 1958 1959 CharUnits Alignment = getContext().getDeclAlign(Field); 1960 return MakeAddrLValue(V, FieldType, Alignment); 1961 } 1962 1963 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1964 if (E->isFileScope()) { 1965 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 1966 return MakeAddrLValue(GlobalPtr, E->getType()); 1967 } 1968 1969 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1970 const Expr *InitExpr = E->getInitializer(); 1971 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1972 1973 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 1974 /*Init*/ true); 1975 1976 return Result; 1977 } 1978 1979 LValue CodeGenFunction:: 1980 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1981 if (!expr->isGLValue()) { 1982 // ?: here should be an aggregate. 1983 assert((hasAggregateLLVMType(expr->getType()) && 1984 !expr->getType()->isAnyComplexType()) && 1985 "Unexpected conditional operator!"); 1986 return EmitAggExprToLValue(expr); 1987 } 1988 1989 OpaqueValueMapping binding(*this, expr); 1990 1991 const Expr *condExpr = expr->getCond(); 1992 bool CondExprBool; 1993 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1994 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1995 if (!CondExprBool) std::swap(live, dead); 1996 1997 if (!ContainsLabel(dead)) 1998 return EmitLValue(live); 1999 } 2000 2001 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2002 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2003 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2004 2005 ConditionalEvaluation eval(*this); 2006 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2007 2008 // Any temporaries created here are conditional. 2009 EmitBlock(lhsBlock); 2010 eval.begin(*this); 2011 LValue lhs = EmitLValue(expr->getTrueExpr()); 2012 eval.end(*this); 2013 2014 if (!lhs.isSimple()) 2015 return EmitUnsupportedLValue(expr, "conditional operator"); 2016 2017 lhsBlock = Builder.GetInsertBlock(); 2018 Builder.CreateBr(contBlock); 2019 2020 // Any temporaries created here are conditional. 2021 EmitBlock(rhsBlock); 2022 eval.begin(*this); 2023 LValue rhs = EmitLValue(expr->getFalseExpr()); 2024 eval.end(*this); 2025 if (!rhs.isSimple()) 2026 return EmitUnsupportedLValue(expr, "conditional operator"); 2027 rhsBlock = Builder.GetInsertBlock(); 2028 2029 EmitBlock(contBlock); 2030 2031 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2032 "cond-lvalue"); 2033 phi->addIncoming(lhs.getAddress(), lhsBlock); 2034 phi->addIncoming(rhs.getAddress(), rhsBlock); 2035 return MakeAddrLValue(phi, expr->getType()); 2036 } 2037 2038 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2039 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 2040 /// otherwise if a cast is needed by the code generator in an lvalue context, 2041 /// then it must mean that we need the address of an aggregate in order to 2042 /// access one of its fields. This can happen for all the reasons that casts 2043 /// are permitted with aggregate result, including noop aggregate casts, and 2044 /// cast from scalar to union. 2045 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2046 switch (E->getCastKind()) { 2047 case CK_ToVoid: 2048 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2049 2050 case CK_Dependent: 2051 llvm_unreachable("dependent cast kind in IR gen!"); 2052 2053 // These two casts are currently treated as no-ops, although they could 2054 // potentially be real operations depending on the target's ABI. 2055 case CK_NonAtomicToAtomic: 2056 case CK_AtomicToNonAtomic: 2057 2058 case CK_NoOp: 2059 case CK_LValueToRValue: 2060 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2061 || E->getType()->isRecordType()) 2062 return EmitLValue(E->getSubExpr()); 2063 // Fall through to synthesize a temporary. 2064 2065 case CK_BitCast: 2066 case CK_ArrayToPointerDecay: 2067 case CK_FunctionToPointerDecay: 2068 case CK_NullToMemberPointer: 2069 case CK_NullToPointer: 2070 case CK_IntegralToPointer: 2071 case CK_PointerToIntegral: 2072 case CK_PointerToBoolean: 2073 case CK_VectorSplat: 2074 case CK_IntegralCast: 2075 case CK_IntegralToBoolean: 2076 case CK_IntegralToFloating: 2077 case CK_FloatingToIntegral: 2078 case CK_FloatingToBoolean: 2079 case CK_FloatingCast: 2080 case CK_FloatingRealToComplex: 2081 case CK_FloatingComplexToReal: 2082 case CK_FloatingComplexToBoolean: 2083 case CK_FloatingComplexCast: 2084 case CK_FloatingComplexToIntegralComplex: 2085 case CK_IntegralRealToComplex: 2086 case CK_IntegralComplexToReal: 2087 case CK_IntegralComplexToBoolean: 2088 case CK_IntegralComplexCast: 2089 case CK_IntegralComplexToFloatingComplex: 2090 case CK_DerivedToBaseMemberPointer: 2091 case CK_BaseToDerivedMemberPointer: 2092 case CK_MemberPointerToBoolean: 2093 case CK_ReinterpretMemberPointer: 2094 case CK_AnyPointerToBlockPointerCast: 2095 case CK_ARCProduceObject: 2096 case CK_ARCConsumeObject: 2097 case CK_ARCReclaimReturnedObject: 2098 case CK_ARCExtendBlockObject: { 2099 // These casts only produce lvalues when we're binding a reference to a 2100 // temporary realized from a (converted) pure rvalue. Emit the expression 2101 // as a value, copy it into a temporary, and return an lvalue referring to 2102 // that temporary. 2103 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2104 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2105 return MakeAddrLValue(V, E->getType()); 2106 } 2107 2108 case CK_Dynamic: { 2109 LValue LV = EmitLValue(E->getSubExpr()); 2110 llvm::Value *V = LV.getAddress(); 2111 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2112 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2113 } 2114 2115 case CK_ConstructorConversion: 2116 case CK_UserDefinedConversion: 2117 case CK_CPointerToObjCPointerCast: 2118 case CK_BlockPointerToObjCPointerCast: 2119 return EmitLValue(E->getSubExpr()); 2120 2121 case CK_UncheckedDerivedToBase: 2122 case CK_DerivedToBase: { 2123 const RecordType *DerivedClassTy = 2124 E->getSubExpr()->getType()->getAs<RecordType>(); 2125 CXXRecordDecl *DerivedClassDecl = 2126 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2127 2128 LValue LV = EmitLValue(E->getSubExpr()); 2129 llvm::Value *This = LV.getAddress(); 2130 2131 // Perform the derived-to-base conversion 2132 llvm::Value *Base = 2133 GetAddressOfBaseClass(This, DerivedClassDecl, 2134 E->path_begin(), E->path_end(), 2135 /*NullCheckValue=*/false); 2136 2137 return MakeAddrLValue(Base, E->getType()); 2138 } 2139 case CK_ToUnion: 2140 return EmitAggExprToLValue(E); 2141 case CK_BaseToDerived: { 2142 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2143 CXXRecordDecl *DerivedClassDecl = 2144 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2145 2146 LValue LV = EmitLValue(E->getSubExpr()); 2147 2148 // Perform the base-to-derived conversion 2149 llvm::Value *Derived = 2150 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2151 E->path_begin(), E->path_end(), 2152 /*NullCheckValue=*/false); 2153 2154 return MakeAddrLValue(Derived, E->getType()); 2155 } 2156 case CK_LValueBitCast: { 2157 // This must be a reinterpret_cast (or c-style equivalent). 2158 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2159 2160 LValue LV = EmitLValue(E->getSubExpr()); 2161 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2162 ConvertType(CE->getTypeAsWritten())); 2163 return MakeAddrLValue(V, E->getType()); 2164 } 2165 case CK_ObjCObjectLValueCast: { 2166 LValue LV = EmitLValue(E->getSubExpr()); 2167 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2168 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2169 ConvertType(ToType)); 2170 return MakeAddrLValue(V, E->getType()); 2171 } 2172 } 2173 2174 llvm_unreachable("Unhandled lvalue cast kind?"); 2175 } 2176 2177 LValue CodeGenFunction::EmitNullInitializationLValue( 2178 const CXXScalarValueInitExpr *E) { 2179 QualType Ty = E->getType(); 2180 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2181 EmitNullInitialization(LV.getAddress(), Ty); 2182 return LV; 2183 } 2184 2185 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2186 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2187 return getOpaqueLValueMapping(e); 2188 } 2189 2190 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2191 const MaterializeTemporaryExpr *E) { 2192 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2193 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2194 } 2195 2196 2197 //===--------------------------------------------------------------------===// 2198 // Expression Emission 2199 //===--------------------------------------------------------------------===// 2200 2201 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2202 ReturnValueSlot ReturnValue) { 2203 if (CGDebugInfo *DI = getDebugInfo()) 2204 DI->EmitLocation(Builder, E->getLocStart()); 2205 2206 // Builtins never have block type. 2207 if (E->getCallee()->getType()->isBlockPointerType()) 2208 return EmitBlockCallExpr(E, ReturnValue); 2209 2210 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2211 return EmitCXXMemberCallExpr(CE, ReturnValue); 2212 2213 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2214 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2215 2216 const Decl *TargetDecl = E->getCalleeDecl(); 2217 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2218 if (unsigned builtinID = FD->getBuiltinID()) 2219 return EmitBuiltinExpr(FD, builtinID, E); 2220 } 2221 2222 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2223 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2224 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2225 2226 if (const CXXPseudoDestructorExpr *PseudoDtor 2227 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2228 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2229 if (getContext().getLangOptions().ObjCAutoRefCount && 2230 DestroyedType->isObjCLifetimeType() && 2231 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2232 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2233 // Automatic Reference Counting: 2234 // If the pseudo-expression names a retainable object with weak or 2235 // strong lifetime, the object shall be released. 2236 Expr *BaseExpr = PseudoDtor->getBase(); 2237 llvm::Value *BaseValue = NULL; 2238 Qualifiers BaseQuals; 2239 2240 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2241 if (PseudoDtor->isArrow()) { 2242 BaseValue = EmitScalarExpr(BaseExpr); 2243 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2244 BaseQuals = PTy->getPointeeType().getQualifiers(); 2245 } else { 2246 LValue BaseLV = EmitLValue(BaseExpr); 2247 BaseValue = BaseLV.getAddress(); 2248 QualType BaseTy = BaseExpr->getType(); 2249 BaseQuals = BaseTy.getQualifiers(); 2250 } 2251 2252 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2253 case Qualifiers::OCL_None: 2254 case Qualifiers::OCL_ExplicitNone: 2255 case Qualifiers::OCL_Autoreleasing: 2256 break; 2257 2258 case Qualifiers::OCL_Strong: 2259 EmitARCRelease(Builder.CreateLoad(BaseValue, 2260 PseudoDtor->getDestroyedType().isVolatileQualified()), 2261 /*precise*/ true); 2262 break; 2263 2264 case Qualifiers::OCL_Weak: 2265 EmitARCDestroyWeak(BaseValue); 2266 break; 2267 } 2268 } else { 2269 // C++ [expr.pseudo]p1: 2270 // The result shall only be used as the operand for the function call 2271 // operator (), and the result of such a call has type void. The only 2272 // effect is the evaluation of the postfix-expression before the dot or 2273 // arrow. 2274 EmitScalarExpr(E->getCallee()); 2275 } 2276 2277 return RValue::get(0); 2278 } 2279 2280 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2281 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2282 E->arg_begin(), E->arg_end(), TargetDecl); 2283 } 2284 2285 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2286 // Comma expressions just emit their LHS then their RHS as an l-value. 2287 if (E->getOpcode() == BO_Comma) { 2288 EmitIgnoredExpr(E->getLHS()); 2289 EnsureInsertPoint(); 2290 return EmitLValue(E->getRHS()); 2291 } 2292 2293 if (E->getOpcode() == BO_PtrMemD || 2294 E->getOpcode() == BO_PtrMemI) 2295 return EmitPointerToDataMemberBinaryExpr(E); 2296 2297 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2298 2299 // Note that in all of these cases, __block variables need the RHS 2300 // evaluated first just in case the variable gets moved by the RHS. 2301 2302 if (!hasAggregateLLVMType(E->getType())) { 2303 switch (E->getLHS()->getType().getObjCLifetime()) { 2304 case Qualifiers::OCL_Strong: 2305 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2306 2307 case Qualifiers::OCL_Autoreleasing: 2308 return EmitARCStoreAutoreleasing(E).first; 2309 2310 // No reason to do any of these differently. 2311 case Qualifiers::OCL_None: 2312 case Qualifiers::OCL_ExplicitNone: 2313 case Qualifiers::OCL_Weak: 2314 break; 2315 } 2316 2317 RValue RV = EmitAnyExpr(E->getRHS()); 2318 LValue LV = EmitLValue(E->getLHS()); 2319 EmitStoreThroughLValue(RV, LV); 2320 return LV; 2321 } 2322 2323 if (E->getType()->isAnyComplexType()) 2324 return EmitComplexAssignmentLValue(E); 2325 2326 return EmitAggExprToLValue(E); 2327 } 2328 2329 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2330 RValue RV = EmitCallExpr(E); 2331 2332 if (!RV.isScalar()) 2333 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2334 2335 assert(E->getCallReturnType()->isReferenceType() && 2336 "Can't have a scalar return unless the return type is a " 2337 "reference type!"); 2338 2339 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2340 } 2341 2342 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2343 // FIXME: This shouldn't require another copy. 2344 return EmitAggExprToLValue(E); 2345 } 2346 2347 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2348 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2349 && "binding l-value to type which needs a temporary"); 2350 AggValueSlot Slot = CreateAggTemp(E->getType()); 2351 EmitCXXConstructExpr(E, Slot); 2352 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2353 } 2354 2355 LValue 2356 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2357 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2358 } 2359 2360 LValue 2361 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2362 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2363 Slot.setExternallyDestructed(); 2364 EmitAggExpr(E->getSubExpr(), Slot); 2365 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2366 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2367 } 2368 2369 LValue 2370 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2371 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2372 EmitLambdaExpr(E, Slot); 2373 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2374 } 2375 2376 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2377 RValue RV = EmitObjCMessageExpr(E); 2378 2379 if (!RV.isScalar()) 2380 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2381 2382 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2383 "Can't have a scalar return unless the return type is a " 2384 "reference type!"); 2385 2386 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2387 } 2388 2389 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2390 llvm::Value *V = 2391 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2392 return MakeAddrLValue(V, E->getType()); 2393 } 2394 2395 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2396 const ObjCIvarDecl *Ivar) { 2397 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2398 } 2399 2400 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2401 llvm::Value *BaseValue, 2402 const ObjCIvarDecl *Ivar, 2403 unsigned CVRQualifiers) { 2404 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2405 Ivar, CVRQualifiers); 2406 } 2407 2408 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2409 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2410 llvm::Value *BaseValue = 0; 2411 const Expr *BaseExpr = E->getBase(); 2412 Qualifiers BaseQuals; 2413 QualType ObjectTy; 2414 if (E->isArrow()) { 2415 BaseValue = EmitScalarExpr(BaseExpr); 2416 ObjectTy = BaseExpr->getType()->getPointeeType(); 2417 BaseQuals = ObjectTy.getQualifiers(); 2418 } else { 2419 LValue BaseLV = EmitLValue(BaseExpr); 2420 // FIXME: this isn't right for bitfields. 2421 BaseValue = BaseLV.getAddress(); 2422 ObjectTy = BaseExpr->getType(); 2423 BaseQuals = ObjectTy.getQualifiers(); 2424 } 2425 2426 LValue LV = 2427 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2428 BaseQuals.getCVRQualifiers()); 2429 setObjCGCLValueClass(getContext(), E, LV); 2430 return LV; 2431 } 2432 2433 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2434 // Can only get l-value for message expression returning aggregate type 2435 RValue RV = EmitAnyExprToTemp(E); 2436 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2437 } 2438 2439 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2440 ReturnValueSlot ReturnValue, 2441 CallExpr::const_arg_iterator ArgBeg, 2442 CallExpr::const_arg_iterator ArgEnd, 2443 const Decl *TargetDecl) { 2444 // Get the actual function type. The callee type will always be a pointer to 2445 // function type or a block pointer type. 2446 assert(CalleeType->isFunctionPointerType() && 2447 "Call must have function pointer type!"); 2448 2449 CalleeType = getContext().getCanonicalType(CalleeType); 2450 2451 const FunctionType *FnType 2452 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2453 2454 CallArgList Args; 2455 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2456 2457 const CGFunctionInfo &FnInfo = 2458 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2459 2460 // C99 6.5.2.2p6: 2461 // If the expression that denotes the called function has a type 2462 // that does not include a prototype, [the default argument 2463 // promotions are performed]. If the number of arguments does not 2464 // equal the number of parameters, the behavior is undefined. If 2465 // the function is defined with a type that includes a prototype, 2466 // and either the prototype ends with an ellipsis (, ...) or the 2467 // types of the arguments after promotion are not compatible with 2468 // the types of the parameters, the behavior is undefined. If the 2469 // function is defined with a type that does not include a 2470 // prototype, and the types of the arguments after promotion are 2471 // not compatible with those of the parameters after promotion, 2472 // the behavior is undefined [except in some trivial cases]. 2473 // That is, in the general case, we should assume that a call 2474 // through an unprototyped function type works like a *non-variadic* 2475 // call. The way we make this work is to cast to the exact type 2476 // of the promoted arguments. 2477 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2478 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2479 CalleeTy = CalleeTy->getPointerTo(); 2480 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2481 } 2482 2483 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2484 } 2485 2486 LValue CodeGenFunction:: 2487 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2488 llvm::Value *BaseV; 2489 if (E->getOpcode() == BO_PtrMemI) 2490 BaseV = EmitScalarExpr(E->getLHS()); 2491 else 2492 BaseV = EmitLValue(E->getLHS()).getAddress(); 2493 2494 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2495 2496 const MemberPointerType *MPT 2497 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2498 2499 llvm::Value *AddV = 2500 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2501 2502 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2503 } 2504 2505 static void 2506 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2507 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2508 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2509 if (E->isCmpXChg()) { 2510 // Note that cmpxchg only supports specifying one ordering and 2511 // doesn't support weak cmpxchg, at least at the moment. 2512 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2513 LoadVal1->setAlignment(Align); 2514 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2515 LoadVal2->setAlignment(Align); 2516 llvm::AtomicCmpXchgInst *CXI = 2517 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2518 CXI->setVolatile(E->isVolatile()); 2519 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2520 StoreVal1->setAlignment(Align); 2521 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2522 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2523 return; 2524 } 2525 2526 if (E->getOp() == AtomicExpr::Load) { 2527 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2528 Load->setAtomic(Order); 2529 Load->setAlignment(Size); 2530 Load->setVolatile(E->isVolatile()); 2531 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2532 StoreDest->setAlignment(Align); 2533 return; 2534 } 2535 2536 if (E->getOp() == AtomicExpr::Store) { 2537 assert(!Dest && "Store does not return a value"); 2538 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2539 LoadVal1->setAlignment(Align); 2540 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2541 Store->setAtomic(Order); 2542 Store->setAlignment(Size); 2543 Store->setVolatile(E->isVolatile()); 2544 return; 2545 } 2546 2547 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2548 switch (E->getOp()) { 2549 case AtomicExpr::CmpXchgWeak: 2550 case AtomicExpr::CmpXchgStrong: 2551 case AtomicExpr::Store: 2552 case AtomicExpr::Init: 2553 case AtomicExpr::Load: assert(0 && "Already handled!"); 2554 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2555 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2556 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2557 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2558 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2559 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2560 } 2561 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2562 LoadVal1->setAlignment(Align); 2563 llvm::AtomicRMWInst *RMWI = 2564 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2565 RMWI->setVolatile(E->isVolatile()); 2566 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2567 StoreDest->setAlignment(Align); 2568 } 2569 2570 // This function emits any expression (scalar, complex, or aggregate) 2571 // into a temporary alloca. 2572 static llvm::Value * 2573 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2574 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2575 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2576 /*Init*/ true); 2577 return DeclPtr; 2578 } 2579 2580 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2581 llvm::Value *Dest) { 2582 if (Ty->isAnyComplexType()) 2583 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2584 if (CGF.hasAggregateLLVMType(Ty)) 2585 return RValue::getAggregate(Dest); 2586 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2587 } 2588 2589 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2590 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2591 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2592 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2593 uint64_t Size = sizeChars.getQuantity(); 2594 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2595 unsigned Align = alignChars.getQuantity(); 2596 unsigned MaxInlineWidth = 2597 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2598 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2599 2600 2601 2602 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2603 Ptr = EmitScalarExpr(E->getPtr()); 2604 2605 if (E->getOp() == AtomicExpr::Init) { 2606 assert(!Dest && "Init does not return a value"); 2607 Val1 = EmitScalarExpr(E->getVal1()); 2608 llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr); 2609 Store->setAlignment(Size); 2610 Store->setVolatile(E->isVolatile()); 2611 return RValue::get(0); 2612 } 2613 2614 Order = EmitScalarExpr(E->getOrder()); 2615 if (E->isCmpXChg()) { 2616 Val1 = EmitScalarExpr(E->getVal1()); 2617 Val2 = EmitValToTemp(*this, E->getVal2()); 2618 OrderFail = EmitScalarExpr(E->getOrderFail()); 2619 (void)OrderFail; // OrderFail is unused at the moment 2620 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2621 MemTy->isPointerType()) { 2622 // For pointers, we're required to do a bit of math: adding 1 to an int* 2623 // is not the same as adding 1 to a uintptr_t. 2624 QualType Val1Ty = E->getVal1()->getType(); 2625 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2626 CharUnits PointeeIncAmt = 2627 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2628 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2629 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2630 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2631 } else if (E->getOp() != AtomicExpr::Load) { 2632 Val1 = EmitValToTemp(*this, E->getVal1()); 2633 } 2634 2635 if (E->getOp() != AtomicExpr::Store && !Dest) 2636 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2637 2638 if (UseLibcall) { 2639 // FIXME: Finalize what the libcalls are actually supposed to look like. 2640 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2641 return EmitUnsupportedRValue(E, "atomic library call"); 2642 } 2643 #if 0 2644 if (UseLibcall) { 2645 const char* LibCallName; 2646 switch (E->getOp()) { 2647 case AtomicExpr::CmpXchgWeak: 2648 LibCallName = "__atomic_compare_exchange_generic"; break; 2649 case AtomicExpr::CmpXchgStrong: 2650 LibCallName = "__atomic_compare_exchange_generic"; break; 2651 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2652 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2653 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2654 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2655 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2656 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2657 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2658 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2659 } 2660 llvm::SmallVector<QualType, 4> Params; 2661 CallArgList Args; 2662 QualType RetTy = getContext().VoidTy; 2663 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2664 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2665 getContext().VoidPtrTy); 2666 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2667 getContext().VoidPtrTy); 2668 if (E->getOp() != AtomicExpr::Load) 2669 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2670 getContext().VoidPtrTy); 2671 if (E->isCmpXChg()) { 2672 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2673 getContext().VoidPtrTy); 2674 RetTy = getContext().IntTy; 2675 } 2676 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2677 getContext().getSizeType()); 2678 const CGFunctionInfo &FuncInfo = 2679 CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(), 2680 /*variadic*/ false); 2681 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2682 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2683 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2684 if (E->isCmpXChg()) 2685 return Res; 2686 if (E->getOp() == AtomicExpr::Store) 2687 return RValue::get(0); 2688 return ConvertTempToRValue(*this, E->getType(), Dest); 2689 } 2690 #endif 2691 llvm::Type *IPtrTy = 2692 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2693 llvm::Value *OrigDest = Dest; 2694 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2695 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2696 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2697 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2698 2699 if (isa<llvm::ConstantInt>(Order)) { 2700 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2701 switch (ord) { 2702 case 0: // memory_order_relaxed 2703 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2704 llvm::Monotonic); 2705 break; 2706 case 1: // memory_order_consume 2707 case 2: // memory_order_acquire 2708 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2709 llvm::Acquire); 2710 break; 2711 case 3: // memory_order_release 2712 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2713 llvm::Release); 2714 break; 2715 case 4: // memory_order_acq_rel 2716 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2717 llvm::AcquireRelease); 2718 break; 2719 case 5: // memory_order_seq_cst 2720 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2721 llvm::SequentiallyConsistent); 2722 break; 2723 default: // invalid order 2724 // We should not ever get here normally, but it's hard to 2725 // enforce that in general. 2726 break; 2727 } 2728 if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init) 2729 return RValue::get(0); 2730 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2731 } 2732 2733 // Long case, when Order isn't obviously constant. 2734 2735 // Create all the relevant BB's 2736 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2737 *AcqRelBB = 0, *SeqCstBB = 0; 2738 MonotonicBB = createBasicBlock("monotonic", CurFn); 2739 if (E->getOp() != AtomicExpr::Store) 2740 AcquireBB = createBasicBlock("acquire", CurFn); 2741 if (E->getOp() != AtomicExpr::Load) 2742 ReleaseBB = createBasicBlock("release", CurFn); 2743 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2744 AcqRelBB = createBasicBlock("acqrel", CurFn); 2745 SeqCstBB = createBasicBlock("seqcst", CurFn); 2746 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2747 2748 // Create the switch for the split 2749 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2750 // doesn't matter unless someone is crazy enough to use something that 2751 // doesn't fold to a constant for the ordering. 2752 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2753 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2754 2755 // Emit all the different atomics 2756 Builder.SetInsertPoint(MonotonicBB); 2757 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2758 llvm::Monotonic); 2759 Builder.CreateBr(ContBB); 2760 if (E->getOp() != AtomicExpr::Store) { 2761 Builder.SetInsertPoint(AcquireBB); 2762 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2763 llvm::Acquire); 2764 Builder.CreateBr(ContBB); 2765 SI->addCase(Builder.getInt32(1), AcquireBB); 2766 SI->addCase(Builder.getInt32(2), AcquireBB); 2767 } 2768 if (E->getOp() != AtomicExpr::Load) { 2769 Builder.SetInsertPoint(ReleaseBB); 2770 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2771 llvm::Release); 2772 Builder.CreateBr(ContBB); 2773 SI->addCase(Builder.getInt32(3), ReleaseBB); 2774 } 2775 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2776 Builder.SetInsertPoint(AcqRelBB); 2777 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2778 llvm::AcquireRelease); 2779 Builder.CreateBr(ContBB); 2780 SI->addCase(Builder.getInt32(4), AcqRelBB); 2781 } 2782 Builder.SetInsertPoint(SeqCstBB); 2783 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2784 llvm::SequentiallyConsistent); 2785 Builder.CreateBr(ContBB); 2786 SI->addCase(Builder.getInt32(5), SeqCstBB); 2787 2788 // Cleanup and return 2789 Builder.SetInsertPoint(ContBB); 2790 if (E->getOp() == AtomicExpr::Store) 2791 return RValue::get(0); 2792 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2793 } 2794 2795 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2796 unsigned AccuracyD) { 2797 assert(Val->getType()->isFPOrFPVectorTy()); 2798 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2799 return; 2800 2801 llvm::Value *Vals[2]; 2802 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2803 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2804 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2805 2806 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2807 Node); 2808 } 2809 2810 namespace { 2811 struct LValueOrRValue { 2812 LValue LV; 2813 RValue RV; 2814 }; 2815 } 2816 2817 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 2818 const PseudoObjectExpr *E, 2819 bool forLValue, 2820 AggValueSlot slot) { 2821 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2822 2823 // Find the result expression, if any. 2824 const Expr *resultExpr = E->getResultExpr(); 2825 LValueOrRValue result; 2826 2827 for (PseudoObjectExpr::const_semantics_iterator 2828 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2829 const Expr *semantic = *i; 2830 2831 // If this semantic expression is an opaque value, bind it 2832 // to the result of its source expression. 2833 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2834 2835 // If this is the result expression, we may need to evaluate 2836 // directly into the slot. 2837 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2838 OVMA opaqueData; 2839 if (ov == resultExpr && ov->isRValue() && !forLValue && 2840 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 2841 !ov->getType()->isAnyComplexType()) { 2842 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 2843 2844 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 2845 opaqueData = OVMA::bind(CGF, ov, LV); 2846 result.RV = slot.asRValue(); 2847 2848 // Otherwise, emit as normal. 2849 } else { 2850 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2851 2852 // If this is the result, also evaluate the result now. 2853 if (ov == resultExpr) { 2854 if (forLValue) 2855 result.LV = CGF.EmitLValue(ov); 2856 else 2857 result.RV = CGF.EmitAnyExpr(ov, slot); 2858 } 2859 } 2860 2861 opaques.push_back(opaqueData); 2862 2863 // Otherwise, if the expression is the result, evaluate it 2864 // and remember the result. 2865 } else if (semantic == resultExpr) { 2866 if (forLValue) 2867 result.LV = CGF.EmitLValue(semantic); 2868 else 2869 result.RV = CGF.EmitAnyExpr(semantic, slot); 2870 2871 // Otherwise, evaluate the expression in an ignored context. 2872 } else { 2873 CGF.EmitIgnoredExpr(semantic); 2874 } 2875 } 2876 2877 // Unbind all the opaques now. 2878 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2879 opaques[i].unbind(CGF); 2880 2881 return result; 2882 } 2883 2884 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 2885 AggValueSlot slot) { 2886 return emitPseudoObjectExpr(*this, E, false, slot).RV; 2887 } 2888 2889 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 2890 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 2891 } 2892