1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
491                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
492                   cleanupKind & EHCleanup);
493       break;
494     }
495 
496     case Qualifiers::OCL_Weak: {
497       // __weak objects always get EH cleanups; otherwise, exceptions
498       // could cause really nasty crashes instead of mere leaks.
499       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
500                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
501       break;
502     }
503     }
504   }
505 
506   return RValue::get(Value);
507 }
508 
509 
510 /// getAccessedFieldNo - Given an encoded value and a result number, return the
511 /// input field number being accessed.
512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
513                                              const llvm::Constant *Elts) {
514   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
515       ->getZExtValue();
516 }
517 
518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
519   if (!CatchUndefined)
520     return;
521 
522   // This needs to be to the standard address space.
523   Address = Builder.CreateBitCast(Address, Int8PtrTy);
524 
525   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
526 
527   // In time, people may want to control this and use a 1 here.
528   llvm::Value *Arg = Builder.getFalse();
529   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
530   llvm::BasicBlock *Cont = createBasicBlock();
531   llvm::BasicBlock *Check = createBasicBlock();
532   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
533   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
534 
535   EmitBlock(Check);
536   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
537                                         llvm::ConstantInt::get(IntPtrTy, Size)),
538                        Cont, getTrapBB());
539   EmitBlock(Cont);
540 }
541 
542 
543 CodeGenFunction::ComplexPairTy CodeGenFunction::
544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
545                          bool isInc, bool isPre) {
546   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
547                                             LV.isVolatileQualified());
548 
549   llvm::Value *NextVal;
550   if (isa<llvm::IntegerType>(InVal.first->getType())) {
551     uint64_t AmountVal = isInc ? 1 : -1;
552     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
553 
554     // Add the inc/dec to the real part.
555     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
556   } else {
557     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
558     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
559     if (!isInc)
560       FVal.changeSign();
561     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
562 
563     // Add the inc/dec to the real part.
564     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
565   }
566 
567   ComplexPairTy IncVal(NextVal, InVal.second);
568 
569   // Store the updated result through the lvalue.
570   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
571 
572   // If this is a postinc, return the value read from memory, otherwise use the
573   // updated value.
574   return isPre ? IncVal : InVal;
575 }
576 
577 
578 //===----------------------------------------------------------------------===//
579 //                         LValue Expression Emission
580 //===----------------------------------------------------------------------===//
581 
582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
583   if (Ty->isVoidType())
584     return RValue::get(0);
585 
586   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
587     llvm::Type *EltTy = ConvertType(CTy->getElementType());
588     llvm::Value *U = llvm::UndefValue::get(EltTy);
589     return RValue::getComplex(std::make_pair(U, U));
590   }
591 
592   // If this is a use of an undefined aggregate type, the aggregate must have an
593   // identifiable address.  Just because the contents of the value are undefined
594   // doesn't mean that the address can't be taken and compared.
595   if (hasAggregateLLVMType(Ty)) {
596     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
597     return RValue::getAggregate(DestPtr);
598   }
599 
600   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
601 }
602 
603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
604                                               const char *Name) {
605   ErrorUnsupported(E, Name);
606   return GetUndefRValue(E->getType());
607 }
608 
609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
613   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
614 }
615 
616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
617   LValue LV = EmitLValue(E);
618   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
619     EmitCheck(LV.getAddress(),
620               getContext().getTypeSizeInChars(E->getType()).getQuantity());
621   return LV;
622 }
623 
624 /// EmitLValue - Emit code to compute a designator that specifies the location
625 /// of the expression.
626 ///
627 /// This can return one of two things: a simple address or a bitfield reference.
628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
629 /// an LLVM pointer type.
630 ///
631 /// If this returns a bitfield reference, nothing about the pointee type of the
632 /// LLVM value is known: For example, it may not be a pointer to an integer.
633 ///
634 /// If this returns a normal address, and if the lvalue's C type is fixed size,
635 /// this method guarantees that the returned pointer type will point to an LLVM
636 /// type of the same size of the lvalue's type.  If the lvalue has a variable
637 /// length type, this is not possible.
638 ///
639 LValue CodeGenFunction::EmitLValue(const Expr *E) {
640   switch (E->getStmtClass()) {
641   default: return EmitUnsupportedLValue(E, "l-value expression");
642 
643   case Expr::ObjCPropertyRefExprClass:
644     llvm_unreachable("cannot emit a property reference directly");
645 
646   case Expr::ObjCSelectorExprClass:
647   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
648   case Expr::ObjCIsaExprClass:
649     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
650   case Expr::BinaryOperatorClass:
651     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
652   case Expr::CompoundAssignOperatorClass:
653     if (!E->getType()->isAnyComplexType())
654       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
655     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
656   case Expr::CallExprClass:
657   case Expr::CXXMemberCallExprClass:
658   case Expr::CXXOperatorCallExprClass:
659     return EmitCallExprLValue(cast<CallExpr>(E));
660   case Expr::VAArgExprClass:
661     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
662   case Expr::DeclRefExprClass:
663     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
664   case Expr::ParenExprClass:
665     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
666   case Expr::GenericSelectionExprClass:
667     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
668   case Expr::PredefinedExprClass:
669     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
670   case Expr::StringLiteralClass:
671     return EmitStringLiteralLValue(cast<StringLiteral>(E));
672   case Expr::ObjCEncodeExprClass:
673     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
674   case Expr::PseudoObjectExprClass:
675     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
676   case Expr::InitListExprClass:
677     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
678            "Only single-element init list can be lvalue.");
679     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
680 
681   case Expr::BlockDeclRefExprClass:
682     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
683 
684   case Expr::CXXTemporaryObjectExprClass:
685   case Expr::CXXConstructExprClass:
686     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
687   case Expr::CXXBindTemporaryExprClass:
688     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
689   case Expr::LambdaExprClass:
690     return EmitLambdaLValue(cast<LambdaExpr>(E));
691 
692   case Expr::ExprWithCleanupsClass: {
693     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
694     enterFullExpression(cleanups);
695     RunCleanupsScope Scope(*this);
696     return EmitLValue(cleanups->getSubExpr());
697   }
698 
699   case Expr::CXXScalarValueInitExprClass:
700     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
701   case Expr::CXXDefaultArgExprClass:
702     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
703   case Expr::CXXTypeidExprClass:
704     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
705 
706   case Expr::ObjCMessageExprClass:
707     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
708   case Expr::ObjCIvarRefExprClass:
709     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
710   case Expr::StmtExprClass:
711     return EmitStmtExprLValue(cast<StmtExpr>(E));
712   case Expr::UnaryOperatorClass:
713     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
714   case Expr::ArraySubscriptExprClass:
715     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
716   case Expr::ExtVectorElementExprClass:
717     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
718   case Expr::MemberExprClass:
719     return EmitMemberExpr(cast<MemberExpr>(E));
720   case Expr::CompoundLiteralExprClass:
721     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
722   case Expr::ConditionalOperatorClass:
723     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
724   case Expr::BinaryConditionalOperatorClass:
725     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
726   case Expr::ChooseExprClass:
727     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
728   case Expr::OpaqueValueExprClass:
729     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
730   case Expr::SubstNonTypeTemplateParmExprClass:
731     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
732   case Expr::ImplicitCastExprClass:
733   case Expr::CStyleCastExprClass:
734   case Expr::CXXFunctionalCastExprClass:
735   case Expr::CXXStaticCastExprClass:
736   case Expr::CXXDynamicCastExprClass:
737   case Expr::CXXReinterpretCastExprClass:
738   case Expr::CXXConstCastExprClass:
739   case Expr::ObjCBridgedCastExprClass:
740     return EmitCastLValue(cast<CastExpr>(E));
741 
742   case Expr::MaterializeTemporaryExprClass:
743     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
744   }
745 }
746 
747 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
748   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
749                           lvalue.getAlignment().getQuantity(),
750                           lvalue.getType(), lvalue.getTBAAInfo());
751 }
752 
753 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
754                                               unsigned Alignment, QualType Ty,
755                                               llvm::MDNode *TBAAInfo) {
756   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
757   if (Volatile)
758     Load->setVolatile(true);
759   if (Alignment)
760     Load->setAlignment(Alignment);
761   if (TBAAInfo)
762     CGM.DecorateInstruction(Load, TBAAInfo);
763   // If this is an atomic type, all normal reads must be atomic
764   if (Ty->isAtomicType())
765     Load->setAtomic(llvm::SequentiallyConsistent);
766 
767   return EmitFromMemory(Load, Ty);
768 }
769 
770 static bool isBooleanUnderlyingType(QualType Ty) {
771   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
772     return ET->getDecl()->getIntegerType()->isBooleanType();
773   return false;
774 }
775 
776 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
777   // Bool has a different representation in memory than in registers.
778   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
779     // This should really always be an i1, but sometimes it's already
780     // an i8, and it's awkward to track those cases down.
781     if (Value->getType()->isIntegerTy(1))
782       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
783     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
784   }
785 
786   return Value;
787 }
788 
789 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
790   // Bool has a different representation in memory than in registers.
791   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
792     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
793     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
794   }
795 
796   return Value;
797 }
798 
799 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
800                                         bool Volatile, unsigned Alignment,
801                                         QualType Ty,
802                                         llvm::MDNode *TBAAInfo,
803                                         bool isInit) {
804   Value = EmitToMemory(Value, Ty);
805 
806   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
807   if (Alignment)
808     Store->setAlignment(Alignment);
809   if (TBAAInfo)
810     CGM.DecorateInstruction(Store, TBAAInfo);
811   if (!isInit && Ty->isAtomicType())
812     Store->setAtomic(llvm::SequentiallyConsistent);
813 }
814 
815 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
816     bool isInit) {
817   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
818                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
819                     lvalue.getTBAAInfo(), isInit);
820 }
821 
822 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
823 /// method emits the address of the lvalue, then loads the result as an rvalue,
824 /// returning the rvalue.
825 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
826   if (LV.isObjCWeak()) {
827     // load of a __weak object.
828     llvm::Value *AddrWeakObj = LV.getAddress();
829     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
830                                                              AddrWeakObj));
831   }
832   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
833     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
834 
835   if (LV.isSimple()) {
836     assert(!LV.getType()->isFunctionType());
837 
838     // Everything needs a load.
839     return RValue::get(EmitLoadOfScalar(LV));
840   }
841 
842   if (LV.isVectorElt()) {
843     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
844                                           LV.isVolatileQualified());
845     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
846                                                     "vecext"));
847   }
848 
849   // If this is a reference to a subset of the elements of a vector, either
850   // shuffle the input or extract/insert them as appropriate.
851   if (LV.isExtVectorElt())
852     return EmitLoadOfExtVectorElementLValue(LV);
853 
854   assert(LV.isBitField() && "Unknown LValue type!");
855   return EmitLoadOfBitfieldLValue(LV);
856 }
857 
858 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
859   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
860 
861   // Get the output type.
862   llvm::Type *ResLTy = ConvertType(LV.getType());
863   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
864 
865   // Compute the result as an OR of all of the individual component accesses.
866   llvm::Value *Res = 0;
867   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
868     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
869 
870     // Get the field pointer.
871     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
872 
873     // Only offset by the field index if used, so that incoming values are not
874     // required to be structures.
875     if (AI.FieldIndex)
876       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
877 
878     // Offset by the byte offset, if used.
879     if (!AI.FieldByteOffset.isZero()) {
880       Ptr = EmitCastToVoidPtr(Ptr);
881       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
882                                        "bf.field.offs");
883     }
884 
885     // Cast to the access type.
886     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
887                        CGM.getContext().getTargetAddressSpace(LV.getType()));
888     Ptr = Builder.CreateBitCast(Ptr, PTy);
889 
890     // Perform the load.
891     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
892     if (!AI.AccessAlignment.isZero())
893       Load->setAlignment(AI.AccessAlignment.getQuantity());
894 
895     // Shift out unused low bits and mask out unused high bits.
896     llvm::Value *Val = Load;
897     if (AI.FieldBitStart)
898       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
899     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
900                                                             AI.TargetBitWidth),
901                             "bf.clear");
902 
903     // Extend or truncate to the target size.
904     if (AI.AccessWidth < ResSizeInBits)
905       Val = Builder.CreateZExt(Val, ResLTy);
906     else if (AI.AccessWidth > ResSizeInBits)
907       Val = Builder.CreateTrunc(Val, ResLTy);
908 
909     // Shift into place, and OR into the result.
910     if (AI.TargetBitOffset)
911       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
912     Res = Res ? Builder.CreateOr(Res, Val) : Val;
913   }
914 
915   // If the bit-field is signed, perform the sign-extension.
916   //
917   // FIXME: This can easily be folded into the load of the high bits, which
918   // could also eliminate the mask of high bits in some situations.
919   if (Info.isSigned()) {
920     unsigned ExtraBits = ResSizeInBits - Info.getSize();
921     if (ExtraBits)
922       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
923                                ExtraBits, "bf.val.sext");
924   }
925 
926   return RValue::get(Res);
927 }
928 
929 // If this is a reference to a subset of the elements of a vector, create an
930 // appropriate shufflevector.
931 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
932   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
933                                         LV.isVolatileQualified());
934 
935   const llvm::Constant *Elts = LV.getExtVectorElts();
936 
937   // If the result of the expression is a non-vector type, we must be extracting
938   // a single element.  Just codegen as an extractelement.
939   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
940   if (!ExprVT) {
941     unsigned InIdx = getAccessedFieldNo(0, Elts);
942     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
943     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
944   }
945 
946   // Always use shuffle vector to try to retain the original program structure
947   unsigned NumResultElts = ExprVT->getNumElements();
948 
949   SmallVector<llvm::Constant*, 4> Mask;
950   for (unsigned i = 0; i != NumResultElts; ++i)
951     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
952 
953   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
954   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
955                                     MaskV);
956   return RValue::get(Vec);
957 }
958 
959 
960 
961 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
962 /// lvalue, where both are guaranteed to the have the same type, and that type
963 /// is 'Ty'.
964 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
965   if (!Dst.isSimple()) {
966     if (Dst.isVectorElt()) {
967       // Read/modify/write the vector, inserting the new element.
968       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
969                                             Dst.isVolatileQualified());
970       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
971                                         Dst.getVectorIdx(), "vecins");
972       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
973       return;
974     }
975 
976     // If this is an update of extended vector elements, insert them as
977     // appropriate.
978     if (Dst.isExtVectorElt())
979       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
980 
981     assert(Dst.isBitField() && "Unknown LValue type");
982     return EmitStoreThroughBitfieldLValue(Src, Dst);
983   }
984 
985   // There's special magic for assigning into an ARC-qualified l-value.
986   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
987     switch (Lifetime) {
988     case Qualifiers::OCL_None:
989       llvm_unreachable("present but none");
990 
991     case Qualifiers::OCL_ExplicitNone:
992       // nothing special
993       break;
994 
995     case Qualifiers::OCL_Strong:
996       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
997       return;
998 
999     case Qualifiers::OCL_Weak:
1000       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1001       return;
1002 
1003     case Qualifiers::OCL_Autoreleasing:
1004       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1005                                                      Src.getScalarVal()));
1006       // fall into the normal path
1007       break;
1008     }
1009   }
1010 
1011   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1012     // load of a __weak object.
1013     llvm::Value *LvalueDst = Dst.getAddress();
1014     llvm::Value *src = Src.getScalarVal();
1015      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1016     return;
1017   }
1018 
1019   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1020     // load of a __strong object.
1021     llvm::Value *LvalueDst = Dst.getAddress();
1022     llvm::Value *src = Src.getScalarVal();
1023     if (Dst.isObjCIvar()) {
1024       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1025       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1026       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1027       llvm::Value *dst = RHS;
1028       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1029       llvm::Value *LHS =
1030         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1031       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1032       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1033                                               BytesBetween);
1034     } else if (Dst.isGlobalObjCRef()) {
1035       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1036                                                 Dst.isThreadLocalRef());
1037     }
1038     else
1039       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1040     return;
1041   }
1042 
1043   assert(Src.isScalar() && "Can't emit an agg store with this method");
1044   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1045 }
1046 
1047 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1048                                                      llvm::Value **Result) {
1049   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1050 
1051   // Get the output type.
1052   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1053   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1054 
1055   // Get the source value, truncated to the width of the bit-field.
1056   llvm::Value *SrcVal = Src.getScalarVal();
1057 
1058   if (Dst.getType()->isBooleanType())
1059     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1060 
1061   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1062                                                                 Info.getSize()),
1063                              "bf.value");
1064 
1065   // Return the new value of the bit-field, if requested.
1066   if (Result) {
1067     // Cast back to the proper type for result.
1068     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1069     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1070                                                    "bf.reload.val");
1071 
1072     // Sign extend if necessary.
1073     if (Info.isSigned()) {
1074       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1075       if (ExtraBits)
1076         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1077                                        ExtraBits, "bf.reload.sext");
1078     }
1079 
1080     *Result = ReloadVal;
1081   }
1082 
1083   // Iterate over the components, writing each piece to memory.
1084   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1085     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1086 
1087     // Get the field pointer.
1088     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1089     unsigned addressSpace =
1090       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1091 
1092     // Only offset by the field index if used, so that incoming values are not
1093     // required to be structures.
1094     if (AI.FieldIndex)
1095       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1096 
1097     // Offset by the byte offset, if used.
1098     if (!AI.FieldByteOffset.isZero()) {
1099       Ptr = EmitCastToVoidPtr(Ptr);
1100       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1101                                        "bf.field.offs");
1102     }
1103 
1104     // Cast to the access type.
1105     llvm::Type *AccessLTy =
1106       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1107 
1108     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1109     Ptr = Builder.CreateBitCast(Ptr, PTy);
1110 
1111     // Extract the piece of the bit-field value to write in this access, limited
1112     // to the values that are part of this access.
1113     llvm::Value *Val = SrcVal;
1114     if (AI.TargetBitOffset)
1115       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1116     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1117                                                             AI.TargetBitWidth));
1118 
1119     // Extend or truncate to the access size.
1120     if (ResSizeInBits < AI.AccessWidth)
1121       Val = Builder.CreateZExt(Val, AccessLTy);
1122     else if (ResSizeInBits > AI.AccessWidth)
1123       Val = Builder.CreateTrunc(Val, AccessLTy);
1124 
1125     // Shift into the position in memory.
1126     if (AI.FieldBitStart)
1127       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1128 
1129     // If necessary, load and OR in bits that are outside of the bit-field.
1130     if (AI.TargetBitWidth != AI.AccessWidth) {
1131       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1132       if (!AI.AccessAlignment.isZero())
1133         Load->setAlignment(AI.AccessAlignment.getQuantity());
1134 
1135       // Compute the mask for zeroing the bits that are part of the bit-field.
1136       llvm::APInt InvMask =
1137         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1138                                  AI.FieldBitStart + AI.TargetBitWidth);
1139 
1140       // Apply the mask and OR in to the value to write.
1141       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1142     }
1143 
1144     // Write the value.
1145     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1146                                                  Dst.isVolatileQualified());
1147     if (!AI.AccessAlignment.isZero())
1148       Store->setAlignment(AI.AccessAlignment.getQuantity());
1149   }
1150 }
1151 
1152 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1153                                                                LValue Dst) {
1154   // This access turns into a read/modify/write of the vector.  Load the input
1155   // value now.
1156   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1157                                         Dst.isVolatileQualified());
1158   const llvm::Constant *Elts = Dst.getExtVectorElts();
1159 
1160   llvm::Value *SrcVal = Src.getScalarVal();
1161 
1162   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1163     unsigned NumSrcElts = VTy->getNumElements();
1164     unsigned NumDstElts =
1165        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1166     if (NumDstElts == NumSrcElts) {
1167       // Use shuffle vector is the src and destination are the same number of
1168       // elements and restore the vector mask since it is on the side it will be
1169       // stored.
1170       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1171       for (unsigned i = 0; i != NumSrcElts; ++i)
1172         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1173 
1174       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1175       Vec = Builder.CreateShuffleVector(SrcVal,
1176                                         llvm::UndefValue::get(Vec->getType()),
1177                                         MaskV);
1178     } else if (NumDstElts > NumSrcElts) {
1179       // Extended the source vector to the same length and then shuffle it
1180       // into the destination.
1181       // FIXME: since we're shuffling with undef, can we just use the indices
1182       //        into that?  This could be simpler.
1183       SmallVector<llvm::Constant*, 4> ExtMask;
1184       for (unsigned i = 0; i != NumSrcElts; ++i)
1185         ExtMask.push_back(Builder.getInt32(i));
1186       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1187       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1188       llvm::Value *ExtSrcVal =
1189         Builder.CreateShuffleVector(SrcVal,
1190                                     llvm::UndefValue::get(SrcVal->getType()),
1191                                     ExtMaskV);
1192       // build identity
1193       SmallVector<llvm::Constant*, 4> Mask;
1194       for (unsigned i = 0; i != NumDstElts; ++i)
1195         Mask.push_back(Builder.getInt32(i));
1196 
1197       // modify when what gets shuffled in
1198       for (unsigned i = 0; i != NumSrcElts; ++i)
1199         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1200       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1201       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1202     } else {
1203       // We should never shorten the vector
1204       llvm_unreachable("unexpected shorten vector length");
1205     }
1206   } else {
1207     // If the Src is a scalar (not a vector) it must be updating one element.
1208     unsigned InIdx = getAccessedFieldNo(0, Elts);
1209     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1210     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1211   }
1212 
1213   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1214 }
1215 
1216 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1217 // generating write-barries API. It is currently a global, ivar,
1218 // or neither.
1219 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1220                                  LValue &LV,
1221                                  bool IsMemberAccess=false) {
1222   if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1223     return;
1224 
1225   if (isa<ObjCIvarRefExpr>(E)) {
1226     QualType ExpTy = E->getType();
1227     if (IsMemberAccess && ExpTy->isPointerType()) {
1228       // If ivar is a structure pointer, assigning to field of
1229       // this struct follows gcc's behavior and makes it a non-ivar
1230       // writer-barrier conservatively.
1231       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1232       if (ExpTy->isRecordType()) {
1233         LV.setObjCIvar(false);
1234         return;
1235       }
1236     }
1237     LV.setObjCIvar(true);
1238     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1239     LV.setBaseIvarExp(Exp->getBase());
1240     LV.setObjCArray(E->getType()->isArrayType());
1241     return;
1242   }
1243 
1244   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1245     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1246       if (VD->hasGlobalStorage()) {
1247         LV.setGlobalObjCRef(true);
1248         LV.setThreadLocalRef(VD->isThreadSpecified());
1249       }
1250     }
1251     LV.setObjCArray(E->getType()->isArrayType());
1252     return;
1253   }
1254 
1255   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1256     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1257     return;
1258   }
1259 
1260   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1261     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1262     if (LV.isObjCIvar()) {
1263       // If cast is to a structure pointer, follow gcc's behavior and make it
1264       // a non-ivar write-barrier.
1265       QualType ExpTy = E->getType();
1266       if (ExpTy->isPointerType())
1267         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1268       if (ExpTy->isRecordType())
1269         LV.setObjCIvar(false);
1270     }
1271     return;
1272   }
1273 
1274   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1275     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1276     return;
1277   }
1278 
1279   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1280     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1281     return;
1282   }
1283 
1284   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1285     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1286     return;
1287   }
1288 
1289   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1290     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1291     return;
1292   }
1293 
1294   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1295     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1296     if (LV.isObjCIvar() && !LV.isObjCArray())
1297       // Using array syntax to assigning to what an ivar points to is not
1298       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1299       LV.setObjCIvar(false);
1300     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1301       // Using array syntax to assigning to what global points to is not
1302       // same as assigning to the global itself. {id *G;} G[i] = 0;
1303       LV.setGlobalObjCRef(false);
1304     return;
1305   }
1306 
1307   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1308     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1309     // We don't know if member is an 'ivar', but this flag is looked at
1310     // only in the context of LV.isObjCIvar().
1311     LV.setObjCArray(E->getType()->isArrayType());
1312     return;
1313   }
1314 }
1315 
1316 static llvm::Value *
1317 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1318                                 llvm::Value *V, llvm::Type *IRType,
1319                                 StringRef Name = StringRef()) {
1320   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1321   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1322 }
1323 
1324 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1325                                       const Expr *E, const VarDecl *VD) {
1326   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1327          "Var decl must have external storage or be a file var decl!");
1328 
1329   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1330   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1331   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1332   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1333   QualType T = E->getType();
1334   LValue LV;
1335   if (VD->getType()->isReferenceType()) {
1336     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1337     LI->setAlignment(Alignment.getQuantity());
1338     V = LI;
1339     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1340   } else {
1341     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1342   }
1343   setObjCGCLValueClass(CGF.getContext(), E, LV);
1344   return LV;
1345 }
1346 
1347 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1348                                      const Expr *E, const FunctionDecl *FD) {
1349   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1350   if (!FD->hasPrototype()) {
1351     if (const FunctionProtoType *Proto =
1352             FD->getType()->getAs<FunctionProtoType>()) {
1353       // Ugly case: for a K&R-style definition, the type of the definition
1354       // isn't the same as the type of a use.  Correct for this with a
1355       // bitcast.
1356       QualType NoProtoType =
1357           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1358       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1359       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1360     }
1361   }
1362   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1363   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1364 }
1365 
1366 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1367   const NamedDecl *ND = E->getDecl();
1368   CharUnits Alignment = getContext().getDeclAlign(ND);
1369   QualType T = E->getType();
1370 
1371   // FIXME: We should be able to assert this for FunctionDecls as well!
1372   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1373   // those with a valid source location.
1374   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1375           !E->getLocation().isValid()) &&
1376          "Should not use decl without marking it used!");
1377 
1378   if (ND->hasAttr<WeakRefAttr>()) {
1379     const ValueDecl *VD = cast<ValueDecl>(ND);
1380     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1381     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1382   }
1383 
1384   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1385 
1386     // Check if this is a global variable.
1387     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1388       return EmitGlobalVarDeclLValue(*this, E, VD);
1389 
1390     bool NonGCable = VD->hasLocalStorage() &&
1391                      !VD->getType()->isReferenceType() &&
1392                      !VD->hasAttr<BlocksAttr>();
1393 
1394     llvm::Value *V = LocalDeclMap[VD];
1395     if (!V && VD->isStaticLocal())
1396       V = CGM.getStaticLocalDeclAddress(VD);
1397 
1398     // Use special handling for lambdas.
1399     if (!V)
1400       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD))
1401         return EmitLValueForField(CXXABIThisValue, FD, 0);
1402 
1403     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1404 
1405     if (VD->hasAttr<BlocksAttr>())
1406       V = BuildBlockByrefAddress(V, VD);
1407 
1408     LValue LV;
1409     if (VD->getType()->isReferenceType()) {
1410       llvm::LoadInst *LI = Builder.CreateLoad(V);
1411       LI->setAlignment(Alignment.getQuantity());
1412       V = LI;
1413       LV = MakeNaturalAlignAddrLValue(V, T);
1414     } else {
1415       LV = MakeAddrLValue(V, T, Alignment);
1416     }
1417 
1418     if (NonGCable) {
1419       LV.getQuals().removeObjCGCAttr();
1420       LV.setNonGC(true);
1421     }
1422     setObjCGCLValueClass(getContext(), E, LV);
1423     return LV;
1424   }
1425 
1426   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1427     return EmitFunctionDeclLValue(*this, E, fn);
1428 
1429   llvm_unreachable("Unhandled DeclRefExpr");
1430 }
1431 
1432 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1433   CharUnits Alignment = getContext().getDeclAlign(E->getDecl());
1434   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1435 }
1436 
1437 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1438   // __extension__ doesn't affect lvalue-ness.
1439   if (E->getOpcode() == UO_Extension)
1440     return EmitLValue(E->getSubExpr());
1441 
1442   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1443   switch (E->getOpcode()) {
1444   default: llvm_unreachable("Unknown unary operator lvalue!");
1445   case UO_Deref: {
1446     QualType T = E->getSubExpr()->getType()->getPointeeType();
1447     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1448 
1449     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1450     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1451 
1452     // We should not generate __weak write barrier on indirect reference
1453     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1454     // But, we continue to generate __strong write barrier on indirect write
1455     // into a pointer to object.
1456     if (getContext().getLangOptions().ObjC1 &&
1457         getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1458         LV.isObjCWeak())
1459       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1460     return LV;
1461   }
1462   case UO_Real:
1463   case UO_Imag: {
1464     LValue LV = EmitLValue(E->getSubExpr());
1465     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1466     llvm::Value *Addr = LV.getAddress();
1467 
1468     // real and imag are valid on scalars.  This is a faster way of
1469     // testing that.
1470     if (!cast<llvm::PointerType>(Addr->getType())
1471            ->getElementType()->isStructTy()) {
1472       assert(E->getSubExpr()->getType()->isArithmeticType());
1473       return LV;
1474     }
1475 
1476     assert(E->getSubExpr()->getType()->isAnyComplexType());
1477 
1478     unsigned Idx = E->getOpcode() == UO_Imag;
1479     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1480                                                   Idx, "idx"),
1481                           ExprTy);
1482   }
1483   case UO_PreInc:
1484   case UO_PreDec: {
1485     LValue LV = EmitLValue(E->getSubExpr());
1486     bool isInc = E->getOpcode() == UO_PreInc;
1487 
1488     if (E->getType()->isAnyComplexType())
1489       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1490     else
1491       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1492     return LV;
1493   }
1494   }
1495 }
1496 
1497 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1498   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1499                         E->getType());
1500 }
1501 
1502 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1503   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1504                         E->getType());
1505 }
1506 
1507 
1508 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1509   switch (E->getIdentType()) {
1510   default:
1511     return EmitUnsupportedLValue(E, "predefined expression");
1512 
1513   case PredefinedExpr::Func:
1514   case PredefinedExpr::Function:
1515   case PredefinedExpr::PrettyFunction: {
1516     unsigned Type = E->getIdentType();
1517     std::string GlobalVarName;
1518 
1519     switch (Type) {
1520     default: llvm_unreachable("Invalid type");
1521     case PredefinedExpr::Func:
1522       GlobalVarName = "__func__.";
1523       break;
1524     case PredefinedExpr::Function:
1525       GlobalVarName = "__FUNCTION__.";
1526       break;
1527     case PredefinedExpr::PrettyFunction:
1528       GlobalVarName = "__PRETTY_FUNCTION__.";
1529       break;
1530     }
1531 
1532     StringRef FnName = CurFn->getName();
1533     if (FnName.startswith("\01"))
1534       FnName = FnName.substr(1);
1535     GlobalVarName += FnName;
1536 
1537     const Decl *CurDecl = CurCodeDecl;
1538     if (CurDecl == 0)
1539       CurDecl = getContext().getTranslationUnitDecl();
1540 
1541     std::string FunctionName =
1542         (isa<BlockDecl>(CurDecl)
1543          ? FnName.str()
1544          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1545 
1546     llvm::Constant *C =
1547       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1548     return MakeAddrLValue(C, E->getType());
1549   }
1550   }
1551 }
1552 
1553 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1554   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1555 
1556   // If we are not optimzing, don't collapse all calls to trap in the function
1557   // to the same call, that way, in the debugger they can see which operation
1558   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1559   // to just one per function to save on codesize.
1560   if (GCO.OptimizationLevel && TrapBB)
1561     return TrapBB;
1562 
1563   llvm::BasicBlock *Cont = 0;
1564   if (HaveInsertPoint()) {
1565     Cont = createBasicBlock("cont");
1566     EmitBranch(Cont);
1567   }
1568   TrapBB = createBasicBlock("trap");
1569   EmitBlock(TrapBB);
1570 
1571   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1572   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1573   TrapCall->setDoesNotReturn();
1574   TrapCall->setDoesNotThrow();
1575   Builder.CreateUnreachable();
1576 
1577   if (Cont)
1578     EmitBlock(Cont);
1579   return TrapBB;
1580 }
1581 
1582 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1583 /// array to pointer, return the array subexpression.
1584 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1585   // If this isn't just an array->pointer decay, bail out.
1586   const CastExpr *CE = dyn_cast<CastExpr>(E);
1587   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1588     return 0;
1589 
1590   // If this is a decay from variable width array, bail out.
1591   const Expr *SubExpr = CE->getSubExpr();
1592   if (SubExpr->getType()->isVariableArrayType())
1593     return 0;
1594 
1595   return SubExpr;
1596 }
1597 
1598 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1599   // The index must always be an integer, which is not an aggregate.  Emit it.
1600   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1601   QualType IdxTy  = E->getIdx()->getType();
1602   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1603 
1604   // If the base is a vector type, then we are forming a vector element lvalue
1605   // with this subscript.
1606   if (E->getBase()->getType()->isVectorType()) {
1607     // Emit the vector as an lvalue to get its address.
1608     LValue LHS = EmitLValue(E->getBase());
1609     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1610     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1611     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1612                                  E->getBase()->getType());
1613   }
1614 
1615   // Extend or truncate the index type to 32 or 64-bits.
1616   if (Idx->getType() != IntPtrTy)
1617     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1618 
1619   // FIXME: As llvm implements the object size checking, this can come out.
1620   if (CatchUndefined) {
1621     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1622       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1623         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1624           if (const ConstantArrayType *CAT
1625               = getContext().getAsConstantArrayType(DRE->getType())) {
1626             llvm::APInt Size = CAT->getSize();
1627             llvm::BasicBlock *Cont = createBasicBlock("cont");
1628             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1629                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1630                                  Cont, getTrapBB());
1631             EmitBlock(Cont);
1632           }
1633         }
1634       }
1635     }
1636   }
1637 
1638   // We know that the pointer points to a type of the correct size, unless the
1639   // size is a VLA or Objective-C interface.
1640   llvm::Value *Address = 0;
1641   CharUnits ArrayAlignment;
1642   if (const VariableArrayType *vla =
1643         getContext().getAsVariableArrayType(E->getType())) {
1644     // The base must be a pointer, which is not an aggregate.  Emit
1645     // it.  It needs to be emitted first in case it's what captures
1646     // the VLA bounds.
1647     Address = EmitScalarExpr(E->getBase());
1648 
1649     // The element count here is the total number of non-VLA elements.
1650     llvm::Value *numElements = getVLASize(vla).first;
1651 
1652     // Effectively, the multiply by the VLA size is part of the GEP.
1653     // GEP indexes are signed, and scaling an index isn't permitted to
1654     // signed-overflow, so we use the same semantics for our explicit
1655     // multiply.  We suppress this if overflow is not undefined behavior.
1656     if (getLangOptions().isSignedOverflowDefined()) {
1657       Idx = Builder.CreateMul(Idx, numElements);
1658       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1659     } else {
1660       Idx = Builder.CreateNSWMul(Idx, numElements);
1661       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1662     }
1663   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1664     // Indexing over an interface, as in "NSString *P; P[4];"
1665     llvm::Value *InterfaceSize =
1666       llvm::ConstantInt::get(Idx->getType(),
1667           getContext().getTypeSizeInChars(OIT).getQuantity());
1668 
1669     Idx = Builder.CreateMul(Idx, InterfaceSize);
1670 
1671     // The base must be a pointer, which is not an aggregate.  Emit it.
1672     llvm::Value *Base = EmitScalarExpr(E->getBase());
1673     Address = EmitCastToVoidPtr(Base);
1674     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1675     Address = Builder.CreateBitCast(Address, Base->getType());
1676   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1677     // If this is A[i] where A is an array, the frontend will have decayed the
1678     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1679     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1680     // "gep x, i" here.  Emit one "gep A, 0, i".
1681     assert(Array->getType()->isArrayType() &&
1682            "Array to pointer decay must have array source type!");
1683     LValue ArrayLV = EmitLValue(Array);
1684     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1685     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1686     llvm::Value *Args[] = { Zero, Idx };
1687 
1688     // Propagate the alignment from the array itself to the result.
1689     ArrayAlignment = ArrayLV.getAlignment();
1690 
1691     if (getContext().getLangOptions().isSignedOverflowDefined())
1692       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1693     else
1694       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1695   } else {
1696     // The base must be a pointer, which is not an aggregate.  Emit it.
1697     llvm::Value *Base = EmitScalarExpr(E->getBase());
1698     if (getContext().getLangOptions().isSignedOverflowDefined())
1699       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1700     else
1701       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1702   }
1703 
1704   QualType T = E->getBase()->getType()->getPointeeType();
1705   assert(!T.isNull() &&
1706          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1707 
1708 
1709   // Limit the alignment to that of the result type.
1710   LValue LV;
1711   if (!ArrayAlignment.isZero()) {
1712     CharUnits Align = getContext().getTypeAlignInChars(T);
1713     ArrayAlignment = std::min(Align, ArrayAlignment);
1714     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1715   } else {
1716     LV = MakeNaturalAlignAddrLValue(Address, T);
1717   }
1718 
1719   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1720 
1721   if (getContext().getLangOptions().ObjC1 &&
1722       getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1723     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1724     setObjCGCLValueClass(getContext(), E, LV);
1725   }
1726   return LV;
1727 }
1728 
1729 static
1730 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1731                                        SmallVector<unsigned, 4> &Elts) {
1732   SmallVector<llvm::Constant*, 4> CElts;
1733   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1734     CElts.push_back(Builder.getInt32(Elts[i]));
1735 
1736   return llvm::ConstantVector::get(CElts);
1737 }
1738 
1739 LValue CodeGenFunction::
1740 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1741   // Emit the base vector as an l-value.
1742   LValue Base;
1743 
1744   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1745   if (E->isArrow()) {
1746     // If it is a pointer to a vector, emit the address and form an lvalue with
1747     // it.
1748     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1749     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1750     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1751     Base.getQuals().removeObjCGCAttr();
1752   } else if (E->getBase()->isGLValue()) {
1753     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1754     // emit the base as an lvalue.
1755     assert(E->getBase()->getType()->isVectorType());
1756     Base = EmitLValue(E->getBase());
1757   } else {
1758     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1759     assert(E->getBase()->getType()->isVectorType() &&
1760            "Result must be a vector");
1761     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1762 
1763     // Store the vector to memory (because LValue wants an address).
1764     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1765     Builder.CreateStore(Vec, VecMem);
1766     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1767   }
1768 
1769   QualType type =
1770     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1771 
1772   // Encode the element access list into a vector of unsigned indices.
1773   SmallVector<unsigned, 4> Indices;
1774   E->getEncodedElementAccess(Indices);
1775 
1776   if (Base.isSimple()) {
1777     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1778     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1779   }
1780   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1781 
1782   llvm::Constant *BaseElts = Base.getExtVectorElts();
1783   SmallVector<llvm::Constant *, 4> CElts;
1784 
1785   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1786     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1787   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1788   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1789 }
1790 
1791 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1792   bool isNonGC = false;
1793   Expr *BaseExpr = E->getBase();
1794   llvm::Value *BaseValue = NULL;
1795   Qualifiers BaseQuals;
1796 
1797   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1798   if (E->isArrow()) {
1799     BaseValue = EmitScalarExpr(BaseExpr);
1800     const PointerType *PTy =
1801       BaseExpr->getType()->getAs<PointerType>();
1802     BaseQuals = PTy->getPointeeType().getQualifiers();
1803   } else {
1804     LValue BaseLV = EmitLValue(BaseExpr);
1805     if (BaseLV.isNonGC())
1806       isNonGC = true;
1807     // FIXME: this isn't right for bitfields.
1808     BaseValue = BaseLV.getAddress();
1809     QualType BaseTy = BaseExpr->getType();
1810     BaseQuals = BaseTy.getQualifiers();
1811   }
1812 
1813   NamedDecl *ND = E->getMemberDecl();
1814   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1815     LValue LV = EmitLValueForField(BaseValue, Field,
1816                                    BaseQuals.getCVRQualifiers());
1817     LV.setNonGC(isNonGC);
1818     setObjCGCLValueClass(getContext(), E, LV);
1819     return LV;
1820   }
1821 
1822   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1823     return EmitGlobalVarDeclLValue(*this, E, VD);
1824 
1825   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1826     return EmitFunctionDeclLValue(*this, E, FD);
1827 
1828   llvm_unreachable("Unhandled member declaration!");
1829 }
1830 
1831 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1832                                               const FieldDecl *Field,
1833                                               unsigned CVRQualifiers) {
1834   const CGRecordLayout &RL =
1835     CGM.getTypes().getCGRecordLayout(Field->getParent());
1836   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1837   return LValue::MakeBitfield(BaseValue, Info,
1838                           Field->getType().withCVRQualifiers(CVRQualifiers));
1839 }
1840 
1841 /// EmitLValueForAnonRecordField - Given that the field is a member of
1842 /// an anonymous struct or union buried inside a record, and given
1843 /// that the base value is a pointer to the enclosing record, derive
1844 /// an lvalue for the ultimate field.
1845 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1846                                              const IndirectFieldDecl *Field,
1847                                                      unsigned CVRQualifiers) {
1848   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1849     IEnd = Field->chain_end();
1850   while (true) {
1851     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1852                                    CVRQualifiers);
1853     if (++I == IEnd) return LV;
1854 
1855     assert(LV.isSimple());
1856     BaseValue = LV.getAddress();
1857     CVRQualifiers |= LV.getVRQualifiers();
1858   }
1859 }
1860 
1861 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1862                                            const FieldDecl *field,
1863                                            unsigned cvr) {
1864   if (field->isBitField())
1865     return EmitLValueForBitfield(baseAddr, field, cvr);
1866 
1867   const RecordDecl *rec = field->getParent();
1868   QualType type = field->getType();
1869   CharUnits alignment = getContext().getDeclAlign(field);
1870 
1871   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1872 
1873   llvm::Value *addr = baseAddr;
1874   if (rec->isUnion()) {
1875     // For unions, there is no pointer adjustment.
1876     assert(!type->isReferenceType() && "union has reference member");
1877   } else {
1878     // For structs, we GEP to the field that the record layout suggests.
1879     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1880     addr = Builder.CreateStructGEP(addr, idx, field->getName());
1881 
1882     // If this is a reference field, load the reference right now.
1883     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1884       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1885       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1886       load->setAlignment(alignment.getQuantity());
1887 
1888       if (CGM.shouldUseTBAA()) {
1889         llvm::MDNode *tbaa;
1890         if (mayAlias)
1891           tbaa = CGM.getTBAAInfo(getContext().CharTy);
1892         else
1893           tbaa = CGM.getTBAAInfo(type);
1894         CGM.DecorateInstruction(load, tbaa);
1895       }
1896 
1897       addr = load;
1898       mayAlias = false;
1899       type = refType->getPointeeType();
1900       if (type->isIncompleteType())
1901         alignment = CharUnits();
1902       else
1903         alignment = getContext().getTypeAlignInChars(type);
1904       cvr = 0; // qualifiers don't recursively apply to referencee
1905     }
1906   }
1907 
1908   // Make sure that the address is pointing to the right type.  This is critical
1909   // for both unions and structs.  A union needs a bitcast, a struct element
1910   // will need a bitcast if the LLVM type laid out doesn't match the desired
1911   // type.
1912   addr = EmitBitCastOfLValueToProperType(*this, addr,
1913                                          CGM.getTypes().ConvertTypeForMem(type),
1914                                          field->getName());
1915 
1916   if (field->hasAttr<AnnotateAttr>())
1917     addr = EmitFieldAnnotations(field, addr);
1918 
1919   LValue LV = MakeAddrLValue(addr, type, alignment);
1920   LV.getQuals().addCVRQualifiers(cvr);
1921 
1922   // __weak attribute on a field is ignored.
1923   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1924     LV.getQuals().removeObjCGCAttr();
1925 
1926   // Fields of may_alias structs act like 'char' for TBAA purposes.
1927   // FIXME: this should get propagated down through anonymous structs
1928   // and unions.
1929   if (mayAlias && LV.getTBAAInfo())
1930     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1931 
1932   return LV;
1933 }
1934 
1935 LValue
1936 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1937                                                   const FieldDecl *Field,
1938                                                   unsigned CVRQualifiers) {
1939   QualType FieldType = Field->getType();
1940 
1941   if (!FieldType->isReferenceType())
1942     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1943 
1944   const CGRecordLayout &RL =
1945     CGM.getTypes().getCGRecordLayout(Field->getParent());
1946   unsigned idx = RL.getLLVMFieldNo(Field);
1947   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1948   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1949 
1950 
1951   // Make sure that the address is pointing to the right type.  This is critical
1952   // for both unions and structs.  A union needs a bitcast, a struct element
1953   // will need a bitcast if the LLVM type laid out doesn't match the desired
1954   // type.
1955   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1956   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1957   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1958 
1959   CharUnits Alignment = getContext().getDeclAlign(Field);
1960   return MakeAddrLValue(V, FieldType, Alignment);
1961 }
1962 
1963 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1964   if (E->isFileScope()) {
1965     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
1966     return MakeAddrLValue(GlobalPtr, E->getType());
1967   }
1968 
1969   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1970   const Expr *InitExpr = E->getInitializer();
1971   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1972 
1973   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1974                    /*Init*/ true);
1975 
1976   return Result;
1977 }
1978 
1979 LValue CodeGenFunction::
1980 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1981   if (!expr->isGLValue()) {
1982     // ?: here should be an aggregate.
1983     assert((hasAggregateLLVMType(expr->getType()) &&
1984             !expr->getType()->isAnyComplexType()) &&
1985            "Unexpected conditional operator!");
1986     return EmitAggExprToLValue(expr);
1987   }
1988 
1989   OpaqueValueMapping binding(*this, expr);
1990 
1991   const Expr *condExpr = expr->getCond();
1992   bool CondExprBool;
1993   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1994     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1995     if (!CondExprBool) std::swap(live, dead);
1996 
1997     if (!ContainsLabel(dead))
1998       return EmitLValue(live);
1999   }
2000 
2001   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2002   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2003   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2004 
2005   ConditionalEvaluation eval(*this);
2006   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2007 
2008   // Any temporaries created here are conditional.
2009   EmitBlock(lhsBlock);
2010   eval.begin(*this);
2011   LValue lhs = EmitLValue(expr->getTrueExpr());
2012   eval.end(*this);
2013 
2014   if (!lhs.isSimple())
2015     return EmitUnsupportedLValue(expr, "conditional operator");
2016 
2017   lhsBlock = Builder.GetInsertBlock();
2018   Builder.CreateBr(contBlock);
2019 
2020   // Any temporaries created here are conditional.
2021   EmitBlock(rhsBlock);
2022   eval.begin(*this);
2023   LValue rhs = EmitLValue(expr->getFalseExpr());
2024   eval.end(*this);
2025   if (!rhs.isSimple())
2026     return EmitUnsupportedLValue(expr, "conditional operator");
2027   rhsBlock = Builder.GetInsertBlock();
2028 
2029   EmitBlock(contBlock);
2030 
2031   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2032                                          "cond-lvalue");
2033   phi->addIncoming(lhs.getAddress(), lhsBlock);
2034   phi->addIncoming(rhs.getAddress(), rhsBlock);
2035   return MakeAddrLValue(phi, expr->getType());
2036 }
2037 
2038 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2039 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2040 /// otherwise if a cast is needed by the code generator in an lvalue context,
2041 /// then it must mean that we need the address of an aggregate in order to
2042 /// access one of its fields.  This can happen for all the reasons that casts
2043 /// are permitted with aggregate result, including noop aggregate casts, and
2044 /// cast from scalar to union.
2045 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2046   switch (E->getCastKind()) {
2047   case CK_ToVoid:
2048     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2049 
2050   case CK_Dependent:
2051     llvm_unreachable("dependent cast kind in IR gen!");
2052 
2053   // These two casts are currently treated as no-ops, although they could
2054   // potentially be real operations depending on the target's ABI.
2055   case CK_NonAtomicToAtomic:
2056   case CK_AtomicToNonAtomic:
2057 
2058   case CK_NoOp:
2059   case CK_LValueToRValue:
2060     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2061         || E->getType()->isRecordType())
2062       return EmitLValue(E->getSubExpr());
2063     // Fall through to synthesize a temporary.
2064 
2065   case CK_BitCast:
2066   case CK_ArrayToPointerDecay:
2067   case CK_FunctionToPointerDecay:
2068   case CK_NullToMemberPointer:
2069   case CK_NullToPointer:
2070   case CK_IntegralToPointer:
2071   case CK_PointerToIntegral:
2072   case CK_PointerToBoolean:
2073   case CK_VectorSplat:
2074   case CK_IntegralCast:
2075   case CK_IntegralToBoolean:
2076   case CK_IntegralToFloating:
2077   case CK_FloatingToIntegral:
2078   case CK_FloatingToBoolean:
2079   case CK_FloatingCast:
2080   case CK_FloatingRealToComplex:
2081   case CK_FloatingComplexToReal:
2082   case CK_FloatingComplexToBoolean:
2083   case CK_FloatingComplexCast:
2084   case CK_FloatingComplexToIntegralComplex:
2085   case CK_IntegralRealToComplex:
2086   case CK_IntegralComplexToReal:
2087   case CK_IntegralComplexToBoolean:
2088   case CK_IntegralComplexCast:
2089   case CK_IntegralComplexToFloatingComplex:
2090   case CK_DerivedToBaseMemberPointer:
2091   case CK_BaseToDerivedMemberPointer:
2092   case CK_MemberPointerToBoolean:
2093   case CK_ReinterpretMemberPointer:
2094   case CK_AnyPointerToBlockPointerCast:
2095   case CK_ARCProduceObject:
2096   case CK_ARCConsumeObject:
2097   case CK_ARCReclaimReturnedObject:
2098   case CK_ARCExtendBlockObject: {
2099     // These casts only produce lvalues when we're binding a reference to a
2100     // temporary realized from a (converted) pure rvalue. Emit the expression
2101     // as a value, copy it into a temporary, and return an lvalue referring to
2102     // that temporary.
2103     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2104     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2105     return MakeAddrLValue(V, E->getType());
2106   }
2107 
2108   case CK_Dynamic: {
2109     LValue LV = EmitLValue(E->getSubExpr());
2110     llvm::Value *V = LV.getAddress();
2111     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2112     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2113   }
2114 
2115   case CK_ConstructorConversion:
2116   case CK_UserDefinedConversion:
2117   case CK_CPointerToObjCPointerCast:
2118   case CK_BlockPointerToObjCPointerCast:
2119     return EmitLValue(E->getSubExpr());
2120 
2121   case CK_UncheckedDerivedToBase:
2122   case CK_DerivedToBase: {
2123     const RecordType *DerivedClassTy =
2124       E->getSubExpr()->getType()->getAs<RecordType>();
2125     CXXRecordDecl *DerivedClassDecl =
2126       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2127 
2128     LValue LV = EmitLValue(E->getSubExpr());
2129     llvm::Value *This = LV.getAddress();
2130 
2131     // Perform the derived-to-base conversion
2132     llvm::Value *Base =
2133       GetAddressOfBaseClass(This, DerivedClassDecl,
2134                             E->path_begin(), E->path_end(),
2135                             /*NullCheckValue=*/false);
2136 
2137     return MakeAddrLValue(Base, E->getType());
2138   }
2139   case CK_ToUnion:
2140     return EmitAggExprToLValue(E);
2141   case CK_BaseToDerived: {
2142     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2143     CXXRecordDecl *DerivedClassDecl =
2144       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2145 
2146     LValue LV = EmitLValue(E->getSubExpr());
2147 
2148     // Perform the base-to-derived conversion
2149     llvm::Value *Derived =
2150       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2151                                E->path_begin(), E->path_end(),
2152                                /*NullCheckValue=*/false);
2153 
2154     return MakeAddrLValue(Derived, E->getType());
2155   }
2156   case CK_LValueBitCast: {
2157     // This must be a reinterpret_cast (or c-style equivalent).
2158     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2159 
2160     LValue LV = EmitLValue(E->getSubExpr());
2161     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2162                                            ConvertType(CE->getTypeAsWritten()));
2163     return MakeAddrLValue(V, E->getType());
2164   }
2165   case CK_ObjCObjectLValueCast: {
2166     LValue LV = EmitLValue(E->getSubExpr());
2167     QualType ToType = getContext().getLValueReferenceType(E->getType());
2168     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2169                                            ConvertType(ToType));
2170     return MakeAddrLValue(V, E->getType());
2171   }
2172   }
2173 
2174   llvm_unreachable("Unhandled lvalue cast kind?");
2175 }
2176 
2177 LValue CodeGenFunction::EmitNullInitializationLValue(
2178                                               const CXXScalarValueInitExpr *E) {
2179   QualType Ty = E->getType();
2180   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2181   EmitNullInitialization(LV.getAddress(), Ty);
2182   return LV;
2183 }
2184 
2185 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2186   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2187   return getOpaqueLValueMapping(e);
2188 }
2189 
2190 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2191                                            const MaterializeTemporaryExpr *E) {
2192   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2193   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2194 }
2195 
2196 
2197 //===--------------------------------------------------------------------===//
2198 //                             Expression Emission
2199 //===--------------------------------------------------------------------===//
2200 
2201 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2202                                      ReturnValueSlot ReturnValue) {
2203   if (CGDebugInfo *DI = getDebugInfo())
2204     DI->EmitLocation(Builder, E->getLocStart());
2205 
2206   // Builtins never have block type.
2207   if (E->getCallee()->getType()->isBlockPointerType())
2208     return EmitBlockCallExpr(E, ReturnValue);
2209 
2210   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2211     return EmitCXXMemberCallExpr(CE, ReturnValue);
2212 
2213   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2214     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2215 
2216   const Decl *TargetDecl = E->getCalleeDecl();
2217   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2218     if (unsigned builtinID = FD->getBuiltinID())
2219       return EmitBuiltinExpr(FD, builtinID, E);
2220   }
2221 
2222   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2223     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2224       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2225 
2226   if (const CXXPseudoDestructorExpr *PseudoDtor
2227           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2228     QualType DestroyedType = PseudoDtor->getDestroyedType();
2229     if (getContext().getLangOptions().ObjCAutoRefCount &&
2230         DestroyedType->isObjCLifetimeType() &&
2231         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2232          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2233       // Automatic Reference Counting:
2234       //   If the pseudo-expression names a retainable object with weak or
2235       //   strong lifetime, the object shall be released.
2236       Expr *BaseExpr = PseudoDtor->getBase();
2237       llvm::Value *BaseValue = NULL;
2238       Qualifiers BaseQuals;
2239 
2240       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2241       if (PseudoDtor->isArrow()) {
2242         BaseValue = EmitScalarExpr(BaseExpr);
2243         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2244         BaseQuals = PTy->getPointeeType().getQualifiers();
2245       } else {
2246         LValue BaseLV = EmitLValue(BaseExpr);
2247         BaseValue = BaseLV.getAddress();
2248         QualType BaseTy = BaseExpr->getType();
2249         BaseQuals = BaseTy.getQualifiers();
2250       }
2251 
2252       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2253       case Qualifiers::OCL_None:
2254       case Qualifiers::OCL_ExplicitNone:
2255       case Qualifiers::OCL_Autoreleasing:
2256         break;
2257 
2258       case Qualifiers::OCL_Strong:
2259         EmitARCRelease(Builder.CreateLoad(BaseValue,
2260                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2261                        /*precise*/ true);
2262         break;
2263 
2264       case Qualifiers::OCL_Weak:
2265         EmitARCDestroyWeak(BaseValue);
2266         break;
2267       }
2268     } else {
2269       // C++ [expr.pseudo]p1:
2270       //   The result shall only be used as the operand for the function call
2271       //   operator (), and the result of such a call has type void. The only
2272       //   effect is the evaluation of the postfix-expression before the dot or
2273       //   arrow.
2274       EmitScalarExpr(E->getCallee());
2275     }
2276 
2277     return RValue::get(0);
2278   }
2279 
2280   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2281   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2282                   E->arg_begin(), E->arg_end(), TargetDecl);
2283 }
2284 
2285 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2286   // Comma expressions just emit their LHS then their RHS as an l-value.
2287   if (E->getOpcode() == BO_Comma) {
2288     EmitIgnoredExpr(E->getLHS());
2289     EnsureInsertPoint();
2290     return EmitLValue(E->getRHS());
2291   }
2292 
2293   if (E->getOpcode() == BO_PtrMemD ||
2294       E->getOpcode() == BO_PtrMemI)
2295     return EmitPointerToDataMemberBinaryExpr(E);
2296 
2297   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2298 
2299   // Note that in all of these cases, __block variables need the RHS
2300   // evaluated first just in case the variable gets moved by the RHS.
2301 
2302   if (!hasAggregateLLVMType(E->getType())) {
2303     switch (E->getLHS()->getType().getObjCLifetime()) {
2304     case Qualifiers::OCL_Strong:
2305       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2306 
2307     case Qualifiers::OCL_Autoreleasing:
2308       return EmitARCStoreAutoreleasing(E).first;
2309 
2310     // No reason to do any of these differently.
2311     case Qualifiers::OCL_None:
2312     case Qualifiers::OCL_ExplicitNone:
2313     case Qualifiers::OCL_Weak:
2314       break;
2315     }
2316 
2317     RValue RV = EmitAnyExpr(E->getRHS());
2318     LValue LV = EmitLValue(E->getLHS());
2319     EmitStoreThroughLValue(RV, LV);
2320     return LV;
2321   }
2322 
2323   if (E->getType()->isAnyComplexType())
2324     return EmitComplexAssignmentLValue(E);
2325 
2326   return EmitAggExprToLValue(E);
2327 }
2328 
2329 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2330   RValue RV = EmitCallExpr(E);
2331 
2332   if (!RV.isScalar())
2333     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2334 
2335   assert(E->getCallReturnType()->isReferenceType() &&
2336          "Can't have a scalar return unless the return type is a "
2337          "reference type!");
2338 
2339   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2340 }
2341 
2342 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2343   // FIXME: This shouldn't require another copy.
2344   return EmitAggExprToLValue(E);
2345 }
2346 
2347 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2348   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2349          && "binding l-value to type which needs a temporary");
2350   AggValueSlot Slot = CreateAggTemp(E->getType());
2351   EmitCXXConstructExpr(E, Slot);
2352   return MakeAddrLValue(Slot.getAddr(), E->getType());
2353 }
2354 
2355 LValue
2356 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2357   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2358 }
2359 
2360 LValue
2361 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2362   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2363   Slot.setExternallyDestructed();
2364   EmitAggExpr(E->getSubExpr(), Slot);
2365   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2366   return MakeAddrLValue(Slot.getAddr(), E->getType());
2367 }
2368 
2369 LValue
2370 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2371   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2372   EmitLambdaExpr(E, Slot);
2373   return MakeAddrLValue(Slot.getAddr(), E->getType());
2374 }
2375 
2376 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2377   RValue RV = EmitObjCMessageExpr(E);
2378 
2379   if (!RV.isScalar())
2380     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2381 
2382   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2383          "Can't have a scalar return unless the return type is a "
2384          "reference type!");
2385 
2386   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2387 }
2388 
2389 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2390   llvm::Value *V =
2391     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2392   return MakeAddrLValue(V, E->getType());
2393 }
2394 
2395 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2396                                              const ObjCIvarDecl *Ivar) {
2397   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2398 }
2399 
2400 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2401                                           llvm::Value *BaseValue,
2402                                           const ObjCIvarDecl *Ivar,
2403                                           unsigned CVRQualifiers) {
2404   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2405                                                    Ivar, CVRQualifiers);
2406 }
2407 
2408 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2409   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2410   llvm::Value *BaseValue = 0;
2411   const Expr *BaseExpr = E->getBase();
2412   Qualifiers BaseQuals;
2413   QualType ObjectTy;
2414   if (E->isArrow()) {
2415     BaseValue = EmitScalarExpr(BaseExpr);
2416     ObjectTy = BaseExpr->getType()->getPointeeType();
2417     BaseQuals = ObjectTy.getQualifiers();
2418   } else {
2419     LValue BaseLV = EmitLValue(BaseExpr);
2420     // FIXME: this isn't right for bitfields.
2421     BaseValue = BaseLV.getAddress();
2422     ObjectTy = BaseExpr->getType();
2423     BaseQuals = ObjectTy.getQualifiers();
2424   }
2425 
2426   LValue LV =
2427     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2428                       BaseQuals.getCVRQualifiers());
2429   setObjCGCLValueClass(getContext(), E, LV);
2430   return LV;
2431 }
2432 
2433 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2434   // Can only get l-value for message expression returning aggregate type
2435   RValue RV = EmitAnyExprToTemp(E);
2436   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2437 }
2438 
2439 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2440                                  ReturnValueSlot ReturnValue,
2441                                  CallExpr::const_arg_iterator ArgBeg,
2442                                  CallExpr::const_arg_iterator ArgEnd,
2443                                  const Decl *TargetDecl) {
2444   // Get the actual function type. The callee type will always be a pointer to
2445   // function type or a block pointer type.
2446   assert(CalleeType->isFunctionPointerType() &&
2447          "Call must have function pointer type!");
2448 
2449   CalleeType = getContext().getCanonicalType(CalleeType);
2450 
2451   const FunctionType *FnType
2452     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2453 
2454   CallArgList Args;
2455   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2456 
2457   const CGFunctionInfo &FnInfo =
2458     CGM.getTypes().arrangeFunctionCall(Args, FnType);
2459 
2460   // C99 6.5.2.2p6:
2461   //   If the expression that denotes the called function has a type
2462   //   that does not include a prototype, [the default argument
2463   //   promotions are performed]. If the number of arguments does not
2464   //   equal the number of parameters, the behavior is undefined. If
2465   //   the function is defined with a type that includes a prototype,
2466   //   and either the prototype ends with an ellipsis (, ...) or the
2467   //   types of the arguments after promotion are not compatible with
2468   //   the types of the parameters, the behavior is undefined. If the
2469   //   function is defined with a type that does not include a
2470   //   prototype, and the types of the arguments after promotion are
2471   //   not compatible with those of the parameters after promotion,
2472   //   the behavior is undefined [except in some trivial cases].
2473   // That is, in the general case, we should assume that a call
2474   // through an unprototyped function type works like a *non-variadic*
2475   // call.  The way we make this work is to cast to the exact type
2476   // of the promoted arguments.
2477   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2478     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2479     CalleeTy = CalleeTy->getPointerTo();
2480     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2481   }
2482 
2483   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2484 }
2485 
2486 LValue CodeGenFunction::
2487 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2488   llvm::Value *BaseV;
2489   if (E->getOpcode() == BO_PtrMemI)
2490     BaseV = EmitScalarExpr(E->getLHS());
2491   else
2492     BaseV = EmitLValue(E->getLHS()).getAddress();
2493 
2494   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2495 
2496   const MemberPointerType *MPT
2497     = E->getRHS()->getType()->getAs<MemberPointerType>();
2498 
2499   llvm::Value *AddV =
2500     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2501 
2502   return MakeAddrLValue(AddV, MPT->getPointeeType());
2503 }
2504 
2505 static void
2506 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2507              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2508              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2509   if (E->isCmpXChg()) {
2510     // Note that cmpxchg only supports specifying one ordering and
2511     // doesn't support weak cmpxchg, at least at the moment.
2512     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2513     LoadVal1->setAlignment(Align);
2514     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2515     LoadVal2->setAlignment(Align);
2516     llvm::AtomicCmpXchgInst *CXI =
2517         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2518     CXI->setVolatile(E->isVolatile());
2519     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2520     StoreVal1->setAlignment(Align);
2521     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2522     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2523     return;
2524   }
2525 
2526   if (E->getOp() == AtomicExpr::Load) {
2527     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2528     Load->setAtomic(Order);
2529     Load->setAlignment(Size);
2530     Load->setVolatile(E->isVolatile());
2531     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2532     StoreDest->setAlignment(Align);
2533     return;
2534   }
2535 
2536   if (E->getOp() == AtomicExpr::Store) {
2537     assert(!Dest && "Store does not return a value");
2538     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2539     LoadVal1->setAlignment(Align);
2540     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2541     Store->setAtomic(Order);
2542     Store->setAlignment(Size);
2543     Store->setVolatile(E->isVolatile());
2544     return;
2545   }
2546 
2547   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2548   switch (E->getOp()) {
2549     case AtomicExpr::CmpXchgWeak:
2550     case AtomicExpr::CmpXchgStrong:
2551     case AtomicExpr::Store:
2552     case AtomicExpr::Init:
2553     case AtomicExpr::Load:  assert(0 && "Already handled!");
2554     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2555     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2556     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2557     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2558     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2559     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2560   }
2561   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2562   LoadVal1->setAlignment(Align);
2563   llvm::AtomicRMWInst *RMWI =
2564       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2565   RMWI->setVolatile(E->isVolatile());
2566   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2567   StoreDest->setAlignment(Align);
2568 }
2569 
2570 // This function emits any expression (scalar, complex, or aggregate)
2571 // into a temporary alloca.
2572 static llvm::Value *
2573 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2574   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2575   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2576                        /*Init*/ true);
2577   return DeclPtr;
2578 }
2579 
2580 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2581                                   llvm::Value *Dest) {
2582   if (Ty->isAnyComplexType())
2583     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2584   if (CGF.hasAggregateLLVMType(Ty))
2585     return RValue::getAggregate(Dest);
2586   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2587 }
2588 
2589 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2590   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2591   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2592   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2593   uint64_t Size = sizeChars.getQuantity();
2594   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2595   unsigned Align = alignChars.getQuantity();
2596   unsigned MaxInlineWidth =
2597       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2598   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2599 
2600 
2601 
2602   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2603   Ptr = EmitScalarExpr(E->getPtr());
2604 
2605   if (E->getOp() == AtomicExpr::Init) {
2606     assert(!Dest && "Init does not return a value");
2607     Val1 = EmitScalarExpr(E->getVal1());
2608     llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr);
2609     Store->setAlignment(Size);
2610     Store->setVolatile(E->isVolatile());
2611     return RValue::get(0);
2612   }
2613 
2614   Order = EmitScalarExpr(E->getOrder());
2615   if (E->isCmpXChg()) {
2616     Val1 = EmitScalarExpr(E->getVal1());
2617     Val2 = EmitValToTemp(*this, E->getVal2());
2618     OrderFail = EmitScalarExpr(E->getOrderFail());
2619     (void)OrderFail; // OrderFail is unused at the moment
2620   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2621              MemTy->isPointerType()) {
2622     // For pointers, we're required to do a bit of math: adding 1 to an int*
2623     // is not the same as adding 1 to a uintptr_t.
2624     QualType Val1Ty = E->getVal1()->getType();
2625     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2626     CharUnits PointeeIncAmt =
2627         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2628     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2629     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2630     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2631   } else if (E->getOp() != AtomicExpr::Load) {
2632     Val1 = EmitValToTemp(*this, E->getVal1());
2633   }
2634 
2635   if (E->getOp() != AtomicExpr::Store && !Dest)
2636     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2637 
2638   if (UseLibcall) {
2639     // FIXME: Finalize what the libcalls are actually supposed to look like.
2640     // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2641     return EmitUnsupportedRValue(E, "atomic library call");
2642   }
2643 #if 0
2644   if (UseLibcall) {
2645     const char* LibCallName;
2646     switch (E->getOp()) {
2647     case AtomicExpr::CmpXchgWeak:
2648       LibCallName = "__atomic_compare_exchange_generic"; break;
2649     case AtomicExpr::CmpXchgStrong:
2650       LibCallName = "__atomic_compare_exchange_generic"; break;
2651     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2652     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2653     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2654     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2655     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2656     case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2657     case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2658     case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2659     }
2660     llvm::SmallVector<QualType, 4> Params;
2661     CallArgList Args;
2662     QualType RetTy = getContext().VoidTy;
2663     if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2664       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2665                getContext().VoidPtrTy);
2666     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2667              getContext().VoidPtrTy);
2668     if (E->getOp() != AtomicExpr::Load)
2669       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2670                getContext().VoidPtrTy);
2671     if (E->isCmpXChg()) {
2672       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2673                getContext().VoidPtrTy);
2674       RetTy = getContext().IntTy;
2675     }
2676     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2677              getContext().getSizeType());
2678     const CGFunctionInfo &FuncInfo =
2679         CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(),
2680                                            /*variadic*/ false);
2681     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2682     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2683     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2684     if (E->isCmpXChg())
2685       return Res;
2686     if (E->getOp() == AtomicExpr::Store)
2687       return RValue::get(0);
2688     return ConvertTempToRValue(*this, E->getType(), Dest);
2689   }
2690 #endif
2691   llvm::Type *IPtrTy =
2692       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2693   llvm::Value *OrigDest = Dest;
2694   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2695   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2696   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2697   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2698 
2699   if (isa<llvm::ConstantInt>(Order)) {
2700     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2701     switch (ord) {
2702     case 0:  // memory_order_relaxed
2703       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2704                    llvm::Monotonic);
2705       break;
2706     case 1:  // memory_order_consume
2707     case 2:  // memory_order_acquire
2708       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2709                    llvm::Acquire);
2710       break;
2711     case 3:  // memory_order_release
2712       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2713                    llvm::Release);
2714       break;
2715     case 4:  // memory_order_acq_rel
2716       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2717                    llvm::AcquireRelease);
2718       break;
2719     case 5:  // memory_order_seq_cst
2720       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2721                    llvm::SequentiallyConsistent);
2722       break;
2723     default: // invalid order
2724       // We should not ever get here normally, but it's hard to
2725       // enforce that in general.
2726       break;
2727     }
2728     if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init)
2729       return RValue::get(0);
2730     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2731   }
2732 
2733   // Long case, when Order isn't obviously constant.
2734 
2735   // Create all the relevant BB's
2736   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2737                    *AcqRelBB = 0, *SeqCstBB = 0;
2738   MonotonicBB = createBasicBlock("monotonic", CurFn);
2739   if (E->getOp() != AtomicExpr::Store)
2740     AcquireBB = createBasicBlock("acquire", CurFn);
2741   if (E->getOp() != AtomicExpr::Load)
2742     ReleaseBB = createBasicBlock("release", CurFn);
2743   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2744     AcqRelBB = createBasicBlock("acqrel", CurFn);
2745   SeqCstBB = createBasicBlock("seqcst", CurFn);
2746   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2747 
2748   // Create the switch for the split
2749   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2750   // doesn't matter unless someone is crazy enough to use something that
2751   // doesn't fold to a constant for the ordering.
2752   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2753   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2754 
2755   // Emit all the different atomics
2756   Builder.SetInsertPoint(MonotonicBB);
2757   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2758                llvm::Monotonic);
2759   Builder.CreateBr(ContBB);
2760   if (E->getOp() != AtomicExpr::Store) {
2761     Builder.SetInsertPoint(AcquireBB);
2762     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2763                  llvm::Acquire);
2764     Builder.CreateBr(ContBB);
2765     SI->addCase(Builder.getInt32(1), AcquireBB);
2766     SI->addCase(Builder.getInt32(2), AcquireBB);
2767   }
2768   if (E->getOp() != AtomicExpr::Load) {
2769     Builder.SetInsertPoint(ReleaseBB);
2770     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2771                  llvm::Release);
2772     Builder.CreateBr(ContBB);
2773     SI->addCase(Builder.getInt32(3), ReleaseBB);
2774   }
2775   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2776     Builder.SetInsertPoint(AcqRelBB);
2777     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2778                  llvm::AcquireRelease);
2779     Builder.CreateBr(ContBB);
2780     SI->addCase(Builder.getInt32(4), AcqRelBB);
2781   }
2782   Builder.SetInsertPoint(SeqCstBB);
2783   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2784                llvm::SequentiallyConsistent);
2785   Builder.CreateBr(ContBB);
2786   SI->addCase(Builder.getInt32(5), SeqCstBB);
2787 
2788   // Cleanup and return
2789   Builder.SetInsertPoint(ContBB);
2790   if (E->getOp() == AtomicExpr::Store)
2791     return RValue::get(0);
2792   return ConvertTempToRValue(*this, E->getType(), OrigDest);
2793 }
2794 
2795 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2796                                     unsigned AccuracyD) {
2797   assert(Val->getType()->isFPOrFPVectorTy());
2798   if (!AccuracyN || !isa<llvm::Instruction>(Val))
2799     return;
2800 
2801   llvm::Value *Vals[2];
2802   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2803   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2804   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2805 
2806   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2807                                             Node);
2808 }
2809 
2810 namespace {
2811   struct LValueOrRValue {
2812     LValue LV;
2813     RValue RV;
2814   };
2815 }
2816 
2817 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2818                                            const PseudoObjectExpr *E,
2819                                            bool forLValue,
2820                                            AggValueSlot slot) {
2821   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2822 
2823   // Find the result expression, if any.
2824   const Expr *resultExpr = E->getResultExpr();
2825   LValueOrRValue result;
2826 
2827   for (PseudoObjectExpr::const_semantics_iterator
2828          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2829     const Expr *semantic = *i;
2830 
2831     // If this semantic expression is an opaque value, bind it
2832     // to the result of its source expression.
2833     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2834 
2835       // If this is the result expression, we may need to evaluate
2836       // directly into the slot.
2837       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2838       OVMA opaqueData;
2839       if (ov == resultExpr && ov->isRValue() && !forLValue &&
2840           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2841           !ov->getType()->isAnyComplexType()) {
2842         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2843 
2844         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2845         opaqueData = OVMA::bind(CGF, ov, LV);
2846         result.RV = slot.asRValue();
2847 
2848       // Otherwise, emit as normal.
2849       } else {
2850         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2851 
2852         // If this is the result, also evaluate the result now.
2853         if (ov == resultExpr) {
2854           if (forLValue)
2855             result.LV = CGF.EmitLValue(ov);
2856           else
2857             result.RV = CGF.EmitAnyExpr(ov, slot);
2858         }
2859       }
2860 
2861       opaques.push_back(opaqueData);
2862 
2863     // Otherwise, if the expression is the result, evaluate it
2864     // and remember the result.
2865     } else if (semantic == resultExpr) {
2866       if (forLValue)
2867         result.LV = CGF.EmitLValue(semantic);
2868       else
2869         result.RV = CGF.EmitAnyExpr(semantic, slot);
2870 
2871     // Otherwise, evaluate the expression in an ignored context.
2872     } else {
2873       CGF.EmitIgnoredExpr(semantic);
2874     }
2875   }
2876 
2877   // Unbind all the opaques now.
2878   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2879     opaques[i].unbind(CGF);
2880 
2881   return result;
2882 }
2883 
2884 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2885                                                AggValueSlot slot) {
2886   return emitPseudoObjectExpr(*this, E, false, slot).RV;
2887 }
2888 
2889 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2890   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2891 }
2892