1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       llvm::SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       // This local is a GCC and MSVC compiler workaround.
491       Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
492                                        &destroyARCStrongImprecise;
493       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
494                   *destroyer, cleanupKind & EHCleanup);
495       break;
496     }
497 
498     case Qualifiers::OCL_Weak: {
499       // This local is a GCC and MSVC compiler workaround.
500       Destroyer *destroyer = &destroyARCWeak;
501       // __weak objects always get EH cleanups; otherwise, exceptions
502       // could cause really nasty crashes instead of mere leaks.
503       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
504                   ObjCARCReferenceLifetimeType, *destroyer, true);
505       break;
506     }
507     }
508   }
509 
510   return RValue::get(Value);
511 }
512 
513 
514 /// getAccessedFieldNo - Given an encoded value and a result number, return the
515 /// input field number being accessed.
516 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
517                                              const llvm::Constant *Elts) {
518   if (isa<llvm::ConstantAggregateZero>(Elts))
519     return 0;
520 
521   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
522 }
523 
524 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
525   if (!CatchUndefined)
526     return;
527 
528   // This needs to be to the standard address space.
529   Address = Builder.CreateBitCast(Address, Int8PtrTy);
530 
531   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
532 
533   // In time, people may want to control this and use a 1 here.
534   llvm::Value *Arg = Builder.getFalse();
535   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
536   llvm::BasicBlock *Cont = createBasicBlock();
537   llvm::BasicBlock *Check = createBasicBlock();
538   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
539   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
540 
541   EmitBlock(Check);
542   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
543                                         llvm::ConstantInt::get(IntPtrTy, Size)),
544                        Cont, getTrapBB());
545   EmitBlock(Cont);
546 }
547 
548 
549 CodeGenFunction::ComplexPairTy CodeGenFunction::
550 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
551                          bool isInc, bool isPre) {
552   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
553                                             LV.isVolatileQualified());
554 
555   llvm::Value *NextVal;
556   if (isa<llvm::IntegerType>(InVal.first->getType())) {
557     uint64_t AmountVal = isInc ? 1 : -1;
558     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
559 
560     // Add the inc/dec to the real part.
561     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
562   } else {
563     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
564     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
565     if (!isInc)
566       FVal.changeSign();
567     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
568 
569     // Add the inc/dec to the real part.
570     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
571   }
572 
573   ComplexPairTy IncVal(NextVal, InVal.second);
574 
575   // Store the updated result through the lvalue.
576   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
577 
578   // If this is a postinc, return the value read from memory, otherwise use the
579   // updated value.
580   return isPre ? IncVal : InVal;
581 }
582 
583 
584 //===----------------------------------------------------------------------===//
585 //                         LValue Expression Emission
586 //===----------------------------------------------------------------------===//
587 
588 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
589   if (Ty->isVoidType())
590     return RValue::get(0);
591 
592   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
593     llvm::Type *EltTy = ConvertType(CTy->getElementType());
594     llvm::Value *U = llvm::UndefValue::get(EltTy);
595     return RValue::getComplex(std::make_pair(U, U));
596   }
597 
598   // If this is a use of an undefined aggregate type, the aggregate must have an
599   // identifiable address.  Just because the contents of the value are undefined
600   // doesn't mean that the address can't be taken and compared.
601   if (hasAggregateLLVMType(Ty)) {
602     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
603     return RValue::getAggregate(DestPtr);
604   }
605 
606   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
607 }
608 
609 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   return GetUndefRValue(E->getType());
613 }
614 
615 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
616                                               const char *Name) {
617   ErrorUnsupported(E, Name);
618   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
619   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
620 }
621 
622 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
623   LValue LV = EmitLValue(E);
624   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
625     EmitCheck(LV.getAddress(),
626               getContext().getTypeSizeInChars(E->getType()).getQuantity());
627   return LV;
628 }
629 
630 /// EmitLValue - Emit code to compute a designator that specifies the location
631 /// of the expression.
632 ///
633 /// This can return one of two things: a simple address or a bitfield reference.
634 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
635 /// an LLVM pointer type.
636 ///
637 /// If this returns a bitfield reference, nothing about the pointee type of the
638 /// LLVM value is known: For example, it may not be a pointer to an integer.
639 ///
640 /// If this returns a normal address, and if the lvalue's C type is fixed size,
641 /// this method guarantees that the returned pointer type will point to an LLVM
642 /// type of the same size of the lvalue's type.  If the lvalue has a variable
643 /// length type, this is not possible.
644 ///
645 LValue CodeGenFunction::EmitLValue(const Expr *E) {
646   switch (E->getStmtClass()) {
647   default: return EmitUnsupportedLValue(E, "l-value expression");
648 
649   case Expr::ObjCPropertyRefExprClass:
650     llvm_unreachable("cannot emit a property reference directly");
651 
652   case Expr::ObjCSelectorExprClass:
653   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
654   case Expr::ObjCIsaExprClass:
655     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
656   case Expr::BinaryOperatorClass:
657     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
658   case Expr::CompoundAssignOperatorClass:
659     if (!E->getType()->isAnyComplexType())
660       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
661     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
662   case Expr::CallExprClass:
663   case Expr::CXXMemberCallExprClass:
664   case Expr::CXXOperatorCallExprClass:
665     return EmitCallExprLValue(cast<CallExpr>(E));
666   case Expr::VAArgExprClass:
667     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
668   case Expr::DeclRefExprClass:
669     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
670   case Expr::ParenExprClass:
671     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
672   case Expr::GenericSelectionExprClass:
673     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
674   case Expr::PredefinedExprClass:
675     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
676   case Expr::StringLiteralClass:
677     return EmitStringLiteralLValue(cast<StringLiteral>(E));
678   case Expr::ObjCEncodeExprClass:
679     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
680   case Expr::PseudoObjectExprClass:
681     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
682   case Expr::InitListExprClass:
683     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
684            "Only single-element init list can be lvalue.");
685     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
686 
687   case Expr::BlockDeclRefExprClass:
688     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
689 
690   case Expr::CXXTemporaryObjectExprClass:
691   case Expr::CXXConstructExprClass:
692     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
693   case Expr::CXXBindTemporaryExprClass:
694     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
695 
696   case Expr::ExprWithCleanupsClass: {
697     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
698     enterFullExpression(cleanups);
699     RunCleanupsScope Scope(*this);
700     return EmitLValue(cleanups->getSubExpr());
701   }
702 
703   case Expr::CXXScalarValueInitExprClass:
704     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
705   case Expr::CXXDefaultArgExprClass:
706     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
707   case Expr::CXXTypeidExprClass:
708     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
709 
710   case Expr::ObjCMessageExprClass:
711     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
712   case Expr::ObjCIvarRefExprClass:
713     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
714   case Expr::StmtExprClass:
715     return EmitStmtExprLValue(cast<StmtExpr>(E));
716   case Expr::UnaryOperatorClass:
717     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
718   case Expr::ArraySubscriptExprClass:
719     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
720   case Expr::ExtVectorElementExprClass:
721     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
722   case Expr::MemberExprClass:
723     return EmitMemberExpr(cast<MemberExpr>(E));
724   case Expr::CompoundLiteralExprClass:
725     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
726   case Expr::ConditionalOperatorClass:
727     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
728   case Expr::BinaryConditionalOperatorClass:
729     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
730   case Expr::ChooseExprClass:
731     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
732   case Expr::OpaqueValueExprClass:
733     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
734   case Expr::SubstNonTypeTemplateParmExprClass:
735     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
736   case Expr::ImplicitCastExprClass:
737   case Expr::CStyleCastExprClass:
738   case Expr::CXXFunctionalCastExprClass:
739   case Expr::CXXStaticCastExprClass:
740   case Expr::CXXDynamicCastExprClass:
741   case Expr::CXXReinterpretCastExprClass:
742   case Expr::CXXConstCastExprClass:
743   case Expr::ObjCBridgedCastExprClass:
744     return EmitCastLValue(cast<CastExpr>(E));
745 
746   case Expr::MaterializeTemporaryExprClass:
747     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
748   }
749 }
750 
751 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
752   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
753                           lvalue.getAlignment().getQuantity(),
754                           lvalue.getType(), lvalue.getTBAAInfo());
755 }
756 
757 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
758                                               unsigned Alignment, QualType Ty,
759                                               llvm::MDNode *TBAAInfo) {
760   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
761   if (Volatile)
762     Load->setVolatile(true);
763   if (Alignment)
764     Load->setAlignment(Alignment);
765   if (TBAAInfo)
766     CGM.DecorateInstruction(Load, TBAAInfo);
767   // If this is an atomic type, all normal reads must be atomic
768   if (Ty->isAtomicType())
769     Load->setAtomic(llvm::SequentiallyConsistent);
770 
771   return EmitFromMemory(Load, Ty);
772 }
773 
774 static bool isBooleanUnderlyingType(QualType Ty) {
775   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
776     return ET->getDecl()->getIntegerType()->isBooleanType();
777   return false;
778 }
779 
780 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
781   // Bool has a different representation in memory than in registers.
782   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
783     // This should really always be an i1, but sometimes it's already
784     // an i8, and it's awkward to track those cases down.
785     if (Value->getType()->isIntegerTy(1))
786       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
787     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
788   }
789 
790   return Value;
791 }
792 
793 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
794   // Bool has a different representation in memory than in registers.
795   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
796     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
797     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
798   }
799 
800   return Value;
801 }
802 
803 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
804                                         bool Volatile, unsigned Alignment,
805                                         QualType Ty,
806                                         llvm::MDNode *TBAAInfo,
807                                         bool isInit) {
808   Value = EmitToMemory(Value, Ty);
809 
810   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
811   if (Alignment)
812     Store->setAlignment(Alignment);
813   if (TBAAInfo)
814     CGM.DecorateInstruction(Store, TBAAInfo);
815   if (!isInit && Ty->isAtomicType())
816     Store->setAtomic(llvm::SequentiallyConsistent);
817 }
818 
819 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
820     bool isInit) {
821   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
822                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
823                     lvalue.getTBAAInfo(), isInit);
824 }
825 
826 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
827 /// method emits the address of the lvalue, then loads the result as an rvalue,
828 /// returning the rvalue.
829 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
830   if (LV.isObjCWeak()) {
831     // load of a __weak object.
832     llvm::Value *AddrWeakObj = LV.getAddress();
833     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
834                                                              AddrWeakObj));
835   }
836   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
837     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
838 
839   if (LV.isSimple()) {
840     assert(!LV.getType()->isFunctionType());
841 
842     // Everything needs a load.
843     return RValue::get(EmitLoadOfScalar(LV));
844   }
845 
846   if (LV.isVectorElt()) {
847     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
848                                           LV.isVolatileQualified());
849     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
850                                                     "vecext"));
851   }
852 
853   // If this is a reference to a subset of the elements of a vector, either
854   // shuffle the input or extract/insert them as appropriate.
855   if (LV.isExtVectorElt())
856     return EmitLoadOfExtVectorElementLValue(LV);
857 
858   assert(LV.isBitField() && "Unknown LValue type!");
859   return EmitLoadOfBitfieldLValue(LV);
860 }
861 
862 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
863   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
864 
865   // Get the output type.
866   llvm::Type *ResLTy = ConvertType(LV.getType());
867   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
868 
869   // Compute the result as an OR of all of the individual component accesses.
870   llvm::Value *Res = 0;
871   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
872     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
873 
874     // Get the field pointer.
875     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
876 
877     // Only offset by the field index if used, so that incoming values are not
878     // required to be structures.
879     if (AI.FieldIndex)
880       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
881 
882     // Offset by the byte offset, if used.
883     if (!AI.FieldByteOffset.isZero()) {
884       Ptr = EmitCastToVoidPtr(Ptr);
885       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
886                                        "bf.field.offs");
887     }
888 
889     // Cast to the access type.
890     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
891                                                      AI.AccessWidth,
892                        CGM.getContext().getTargetAddressSpace(LV.getType()));
893     Ptr = Builder.CreateBitCast(Ptr, PTy);
894 
895     // Perform the load.
896     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
897     if (!AI.AccessAlignment.isZero())
898       Load->setAlignment(AI.AccessAlignment.getQuantity());
899 
900     // Shift out unused low bits and mask out unused high bits.
901     llvm::Value *Val = Load;
902     if (AI.FieldBitStart)
903       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
904     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
905                                                             AI.TargetBitWidth),
906                             "bf.clear");
907 
908     // Extend or truncate to the target size.
909     if (AI.AccessWidth < ResSizeInBits)
910       Val = Builder.CreateZExt(Val, ResLTy);
911     else if (AI.AccessWidth > ResSizeInBits)
912       Val = Builder.CreateTrunc(Val, ResLTy);
913 
914     // Shift into place, and OR into the result.
915     if (AI.TargetBitOffset)
916       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
917     Res = Res ? Builder.CreateOr(Res, Val) : Val;
918   }
919 
920   // If the bit-field is signed, perform the sign-extension.
921   //
922   // FIXME: This can easily be folded into the load of the high bits, which
923   // could also eliminate the mask of high bits in some situations.
924   if (Info.isSigned()) {
925     unsigned ExtraBits = ResSizeInBits - Info.getSize();
926     if (ExtraBits)
927       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
928                                ExtraBits, "bf.val.sext");
929   }
930 
931   return RValue::get(Res);
932 }
933 
934 // If this is a reference to a subset of the elements of a vector, create an
935 // appropriate shufflevector.
936 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
937   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
938                                         LV.isVolatileQualified());
939 
940   const llvm::Constant *Elts = LV.getExtVectorElts();
941 
942   // If the result of the expression is a non-vector type, we must be extracting
943   // a single element.  Just codegen as an extractelement.
944   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
945   if (!ExprVT) {
946     unsigned InIdx = getAccessedFieldNo(0, Elts);
947     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
948     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
949   }
950 
951   // Always use shuffle vector to try to retain the original program structure
952   unsigned NumResultElts = ExprVT->getNumElements();
953 
954   SmallVector<llvm::Constant*, 4> Mask;
955   for (unsigned i = 0; i != NumResultElts; ++i) {
956     unsigned InIdx = getAccessedFieldNo(i, Elts);
957     Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
958   }
959 
960   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
961   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
962                                     MaskV);
963   return RValue::get(Vec);
964 }
965 
966 
967 
968 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
969 /// lvalue, where both are guaranteed to the have the same type, and that type
970 /// is 'Ty'.
971 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
972   if (!Dst.isSimple()) {
973     if (Dst.isVectorElt()) {
974       // Read/modify/write the vector, inserting the new element.
975       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
976                                             Dst.isVolatileQualified());
977       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
978                                         Dst.getVectorIdx(), "vecins");
979       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
980       return;
981     }
982 
983     // If this is an update of extended vector elements, insert them as
984     // appropriate.
985     if (Dst.isExtVectorElt())
986       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
987 
988     assert(Dst.isBitField() && "Unknown LValue type");
989     return EmitStoreThroughBitfieldLValue(Src, Dst);
990   }
991 
992   // There's special magic for assigning into an ARC-qualified l-value.
993   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
994     switch (Lifetime) {
995     case Qualifiers::OCL_None:
996       llvm_unreachable("present but none");
997 
998     case Qualifiers::OCL_ExplicitNone:
999       // nothing special
1000       break;
1001 
1002     case Qualifiers::OCL_Strong:
1003       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1004       return;
1005 
1006     case Qualifiers::OCL_Weak:
1007       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1008       return;
1009 
1010     case Qualifiers::OCL_Autoreleasing:
1011       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1012                                                      Src.getScalarVal()));
1013       // fall into the normal path
1014       break;
1015     }
1016   }
1017 
1018   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1019     // load of a __weak object.
1020     llvm::Value *LvalueDst = Dst.getAddress();
1021     llvm::Value *src = Src.getScalarVal();
1022      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1023     return;
1024   }
1025 
1026   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1027     // load of a __strong object.
1028     llvm::Value *LvalueDst = Dst.getAddress();
1029     llvm::Value *src = Src.getScalarVal();
1030     if (Dst.isObjCIvar()) {
1031       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1032       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1033       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1034       llvm::Value *dst = RHS;
1035       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1036       llvm::Value *LHS =
1037         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1038       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1039       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1040                                               BytesBetween);
1041     } else if (Dst.isGlobalObjCRef()) {
1042       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1043                                                 Dst.isThreadLocalRef());
1044     }
1045     else
1046       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1047     return;
1048   }
1049 
1050   assert(Src.isScalar() && "Can't emit an agg store with this method");
1051   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1052 }
1053 
1054 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1055                                                      llvm::Value **Result) {
1056   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1057 
1058   // Get the output type.
1059   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1060   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1061 
1062   // Get the source value, truncated to the width of the bit-field.
1063   llvm::Value *SrcVal = Src.getScalarVal();
1064 
1065   if (Dst.getType()->isBooleanType())
1066     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1067 
1068   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1069                                                                 Info.getSize()),
1070                              "bf.value");
1071 
1072   // Return the new value of the bit-field, if requested.
1073   if (Result) {
1074     // Cast back to the proper type for result.
1075     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1076     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1077                                                    "bf.reload.val");
1078 
1079     // Sign extend if necessary.
1080     if (Info.isSigned()) {
1081       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1082       if (ExtraBits)
1083         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1084                                        ExtraBits, "bf.reload.sext");
1085     }
1086 
1087     *Result = ReloadVal;
1088   }
1089 
1090   // Iterate over the components, writing each piece to memory.
1091   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1092     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1093 
1094     // Get the field pointer.
1095     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1096     unsigned addressSpace =
1097       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1098 
1099     // Only offset by the field index if used, so that incoming values are not
1100     // required to be structures.
1101     if (AI.FieldIndex)
1102       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1103 
1104     // Offset by the byte offset, if used.
1105     if (!AI.FieldByteOffset.isZero()) {
1106       Ptr = EmitCastToVoidPtr(Ptr);
1107       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1108                                        "bf.field.offs");
1109     }
1110 
1111     // Cast to the access type.
1112     llvm::Type *AccessLTy =
1113       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1114 
1115     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1116     Ptr = Builder.CreateBitCast(Ptr, PTy);
1117 
1118     // Extract the piece of the bit-field value to write in this access, limited
1119     // to the values that are part of this access.
1120     llvm::Value *Val = SrcVal;
1121     if (AI.TargetBitOffset)
1122       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1123     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1124                                                             AI.TargetBitWidth));
1125 
1126     // Extend or truncate to the access size.
1127     if (ResSizeInBits < AI.AccessWidth)
1128       Val = Builder.CreateZExt(Val, AccessLTy);
1129     else if (ResSizeInBits > AI.AccessWidth)
1130       Val = Builder.CreateTrunc(Val, AccessLTy);
1131 
1132     // Shift into the position in memory.
1133     if (AI.FieldBitStart)
1134       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1135 
1136     // If necessary, load and OR in bits that are outside of the bit-field.
1137     if (AI.TargetBitWidth != AI.AccessWidth) {
1138       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1139       if (!AI.AccessAlignment.isZero())
1140         Load->setAlignment(AI.AccessAlignment.getQuantity());
1141 
1142       // Compute the mask for zeroing the bits that are part of the bit-field.
1143       llvm::APInt InvMask =
1144         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1145                                  AI.FieldBitStart + AI.TargetBitWidth);
1146 
1147       // Apply the mask and OR in to the value to write.
1148       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1149     }
1150 
1151     // Write the value.
1152     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1153                                                  Dst.isVolatileQualified());
1154     if (!AI.AccessAlignment.isZero())
1155       Store->setAlignment(AI.AccessAlignment.getQuantity());
1156   }
1157 }
1158 
1159 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1160                                                                LValue Dst) {
1161   // This access turns into a read/modify/write of the vector.  Load the input
1162   // value now.
1163   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1164                                         Dst.isVolatileQualified());
1165   const llvm::Constant *Elts = Dst.getExtVectorElts();
1166 
1167   llvm::Value *SrcVal = Src.getScalarVal();
1168 
1169   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1170     unsigned NumSrcElts = VTy->getNumElements();
1171     unsigned NumDstElts =
1172        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1173     if (NumDstElts == NumSrcElts) {
1174       // Use shuffle vector is the src and destination are the same number of
1175       // elements and restore the vector mask since it is on the side it will be
1176       // stored.
1177       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1178       for (unsigned i = 0; i != NumSrcElts; ++i) {
1179         unsigned InIdx = getAccessedFieldNo(i, Elts);
1180         Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1181       }
1182 
1183       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1184       Vec = Builder.CreateShuffleVector(SrcVal,
1185                                         llvm::UndefValue::get(Vec->getType()),
1186                                         MaskV);
1187     } else if (NumDstElts > NumSrcElts) {
1188       // Extended the source vector to the same length and then shuffle it
1189       // into the destination.
1190       // FIXME: since we're shuffling with undef, can we just use the indices
1191       //        into that?  This could be simpler.
1192       SmallVector<llvm::Constant*, 4> ExtMask;
1193       unsigned i;
1194       for (i = 0; i != NumSrcElts; ++i)
1195         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1196       for (; i != NumDstElts; ++i)
1197         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1198       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1199       llvm::Value *ExtSrcVal =
1200         Builder.CreateShuffleVector(SrcVal,
1201                                     llvm::UndefValue::get(SrcVal->getType()),
1202                                     ExtMaskV);
1203       // build identity
1204       SmallVector<llvm::Constant*, 4> Mask;
1205       for (unsigned i = 0; i != NumDstElts; ++i)
1206         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1207 
1208       // modify when what gets shuffled in
1209       for (unsigned i = 0; i != NumSrcElts; ++i) {
1210         unsigned Idx = getAccessedFieldNo(i, Elts);
1211         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1212       }
1213       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1214       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1215     } else {
1216       // We should never shorten the vector
1217       llvm_unreachable("unexpected shorten vector length");
1218     }
1219   } else {
1220     // If the Src is a scalar (not a vector) it must be updating one element.
1221     unsigned InIdx = getAccessedFieldNo(0, Elts);
1222     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1223     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1224   }
1225 
1226   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1227 }
1228 
1229 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1230 // generating write-barries API. It is currently a global, ivar,
1231 // or neither.
1232 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1233                                  LValue &LV,
1234                                  bool IsMemberAccess=false) {
1235   if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1236     return;
1237 
1238   if (isa<ObjCIvarRefExpr>(E)) {
1239     QualType ExpTy = E->getType();
1240     if (IsMemberAccess && ExpTy->isPointerType()) {
1241       // If ivar is a structure pointer, assigning to field of
1242       // this struct follows gcc's behavior and makes it a non-ivar
1243       // writer-barrier conservatively.
1244       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1245       if (ExpTy->isRecordType()) {
1246         LV.setObjCIvar(false);
1247         return;
1248       }
1249     }
1250     LV.setObjCIvar(true);
1251     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1252     LV.setBaseIvarExp(Exp->getBase());
1253     LV.setObjCArray(E->getType()->isArrayType());
1254     return;
1255   }
1256 
1257   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1258     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1259       if (VD->hasGlobalStorage()) {
1260         LV.setGlobalObjCRef(true);
1261         LV.setThreadLocalRef(VD->isThreadSpecified());
1262       }
1263     }
1264     LV.setObjCArray(E->getType()->isArrayType());
1265     return;
1266   }
1267 
1268   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1269     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1270     return;
1271   }
1272 
1273   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1274     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1275     if (LV.isObjCIvar()) {
1276       // If cast is to a structure pointer, follow gcc's behavior and make it
1277       // a non-ivar write-barrier.
1278       QualType ExpTy = E->getType();
1279       if (ExpTy->isPointerType())
1280         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1281       if (ExpTy->isRecordType())
1282         LV.setObjCIvar(false);
1283     }
1284     return;
1285   }
1286 
1287   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1288     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1289     return;
1290   }
1291 
1292   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1293     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1294     return;
1295   }
1296 
1297   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1298     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1299     return;
1300   }
1301 
1302   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1303     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1304     return;
1305   }
1306 
1307   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1308     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1309     if (LV.isObjCIvar() && !LV.isObjCArray())
1310       // Using array syntax to assigning to what an ivar points to is not
1311       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1312       LV.setObjCIvar(false);
1313     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1314       // Using array syntax to assigning to what global points to is not
1315       // same as assigning to the global itself. {id *G;} G[i] = 0;
1316       LV.setGlobalObjCRef(false);
1317     return;
1318   }
1319 
1320   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1321     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1322     // We don't know if member is an 'ivar', but this flag is looked at
1323     // only in the context of LV.isObjCIvar().
1324     LV.setObjCArray(E->getType()->isArrayType());
1325     return;
1326   }
1327 }
1328 
1329 static llvm::Value *
1330 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1331                                 llvm::Value *V, llvm::Type *IRType,
1332                                 StringRef Name = StringRef()) {
1333   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1334   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1335 }
1336 
1337 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1338                                       const Expr *E, const VarDecl *VD) {
1339   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1340          "Var decl must have external storage or be a file var decl!");
1341 
1342   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1343   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1344   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1345   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1346   QualType T = E->getType();
1347   LValue LV;
1348   if (VD->getType()->isReferenceType()) {
1349     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1350     LI->setAlignment(Alignment.getQuantity());
1351     V = LI;
1352     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1353   } else {
1354     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1355   }
1356   setObjCGCLValueClass(CGF.getContext(), E, LV);
1357   return LV;
1358 }
1359 
1360 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1361                                      const Expr *E, const FunctionDecl *FD) {
1362   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1363   if (!FD->hasPrototype()) {
1364     if (const FunctionProtoType *Proto =
1365             FD->getType()->getAs<FunctionProtoType>()) {
1366       // Ugly case: for a K&R-style definition, the type of the definition
1367       // isn't the same as the type of a use.  Correct for this with a
1368       // bitcast.
1369       QualType NoProtoType =
1370           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1371       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1372       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1373     }
1374   }
1375   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1376   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1377 }
1378 
1379 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1380   const NamedDecl *ND = E->getDecl();
1381   CharUnits Alignment = getContext().getDeclAlign(ND);
1382   QualType T = E->getType();
1383 
1384   if (ND->hasAttr<WeakRefAttr>()) {
1385     const ValueDecl *VD = cast<ValueDecl>(ND);
1386     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1387     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1388   }
1389 
1390   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1391 
1392     // Check if this is a global variable.
1393     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1394       return EmitGlobalVarDeclLValue(*this, E, VD);
1395 
1396     bool NonGCable = VD->hasLocalStorage() &&
1397                      !VD->getType()->isReferenceType() &&
1398                      !VD->hasAttr<BlocksAttr>();
1399 
1400     llvm::Value *V = LocalDeclMap[VD];
1401     if (!V && VD->isStaticLocal())
1402       V = CGM.getStaticLocalDeclAddress(VD);
1403     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1404 
1405     if (VD->hasAttr<BlocksAttr>())
1406       V = BuildBlockByrefAddress(V, VD);
1407 
1408     LValue LV;
1409     if (VD->getType()->isReferenceType()) {
1410       llvm::LoadInst *LI = Builder.CreateLoad(V);
1411       LI->setAlignment(Alignment.getQuantity());
1412       V = LI;
1413       LV = MakeNaturalAlignAddrLValue(V, T);
1414     } else {
1415       LV = MakeAddrLValue(V, T, Alignment);
1416     }
1417 
1418     if (NonGCable) {
1419       LV.getQuals().removeObjCGCAttr();
1420       LV.setNonGC(true);
1421     }
1422     setObjCGCLValueClass(getContext(), E, LV);
1423     return LV;
1424   }
1425 
1426   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1427     return EmitFunctionDeclLValue(*this, E, fn);
1428 
1429   llvm_unreachable("Unhandled DeclRefExpr");
1430 
1431   // an invalid LValue, but the assert will
1432   // ensure that this point is never reached.
1433   return LValue();
1434 }
1435 
1436 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1437   CharUnits Alignment = getContext().getDeclAlign(E->getDecl());
1438   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1439 }
1440 
1441 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1442   // __extension__ doesn't affect lvalue-ness.
1443   if (E->getOpcode() == UO_Extension)
1444     return EmitLValue(E->getSubExpr());
1445 
1446   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1447   switch (E->getOpcode()) {
1448   default: llvm_unreachable("Unknown unary operator lvalue!");
1449   case UO_Deref: {
1450     QualType T = E->getSubExpr()->getType()->getPointeeType();
1451     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1452 
1453     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1454     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1455 
1456     // We should not generate __weak write barrier on indirect reference
1457     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1458     // But, we continue to generate __strong write barrier on indirect write
1459     // into a pointer to object.
1460     if (getContext().getLangOptions().ObjC1 &&
1461         getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1462         LV.isObjCWeak())
1463       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1464     return LV;
1465   }
1466   case UO_Real:
1467   case UO_Imag: {
1468     LValue LV = EmitLValue(E->getSubExpr());
1469     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1470     llvm::Value *Addr = LV.getAddress();
1471 
1472     // real and imag are valid on scalars.  This is a faster way of
1473     // testing that.
1474     if (!cast<llvm::PointerType>(Addr->getType())
1475            ->getElementType()->isStructTy()) {
1476       assert(E->getSubExpr()->getType()->isArithmeticType());
1477       return LV;
1478     }
1479 
1480     assert(E->getSubExpr()->getType()->isAnyComplexType());
1481 
1482     unsigned Idx = E->getOpcode() == UO_Imag;
1483     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1484                                                   Idx, "idx"),
1485                           ExprTy);
1486   }
1487   case UO_PreInc:
1488   case UO_PreDec: {
1489     LValue LV = EmitLValue(E->getSubExpr());
1490     bool isInc = E->getOpcode() == UO_PreInc;
1491 
1492     if (E->getType()->isAnyComplexType())
1493       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1494     else
1495       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1496     return LV;
1497   }
1498   }
1499 }
1500 
1501 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1502   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1503                         E->getType());
1504 }
1505 
1506 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1507   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1508                         E->getType());
1509 }
1510 
1511 
1512 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1513   switch (E->getIdentType()) {
1514   default:
1515     return EmitUnsupportedLValue(E, "predefined expression");
1516 
1517   case PredefinedExpr::Func:
1518   case PredefinedExpr::Function:
1519   case PredefinedExpr::PrettyFunction: {
1520     unsigned Type = E->getIdentType();
1521     std::string GlobalVarName;
1522 
1523     switch (Type) {
1524     default: llvm_unreachable("Invalid type");
1525     case PredefinedExpr::Func:
1526       GlobalVarName = "__func__.";
1527       break;
1528     case PredefinedExpr::Function:
1529       GlobalVarName = "__FUNCTION__.";
1530       break;
1531     case PredefinedExpr::PrettyFunction:
1532       GlobalVarName = "__PRETTY_FUNCTION__.";
1533       break;
1534     }
1535 
1536     StringRef FnName = CurFn->getName();
1537     if (FnName.startswith("\01"))
1538       FnName = FnName.substr(1);
1539     GlobalVarName += FnName;
1540 
1541     const Decl *CurDecl = CurCodeDecl;
1542     if (CurDecl == 0)
1543       CurDecl = getContext().getTranslationUnitDecl();
1544 
1545     std::string FunctionName =
1546         (isa<BlockDecl>(CurDecl)
1547          ? FnName.str()
1548          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1549 
1550     llvm::Constant *C =
1551       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1552     return MakeAddrLValue(C, E->getType());
1553   }
1554   }
1555 }
1556 
1557 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1558   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1559 
1560   // If we are not optimzing, don't collapse all calls to trap in the function
1561   // to the same call, that way, in the debugger they can see which operation
1562   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1563   // to just one per function to save on codesize.
1564   if (GCO.OptimizationLevel && TrapBB)
1565     return TrapBB;
1566 
1567   llvm::BasicBlock *Cont = 0;
1568   if (HaveInsertPoint()) {
1569     Cont = createBasicBlock("cont");
1570     EmitBranch(Cont);
1571   }
1572   TrapBB = createBasicBlock("trap");
1573   EmitBlock(TrapBB);
1574 
1575   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1576   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1577   TrapCall->setDoesNotReturn();
1578   TrapCall->setDoesNotThrow();
1579   Builder.CreateUnreachable();
1580 
1581   if (Cont)
1582     EmitBlock(Cont);
1583   return TrapBB;
1584 }
1585 
1586 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1587 /// array to pointer, return the array subexpression.
1588 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1589   // If this isn't just an array->pointer decay, bail out.
1590   const CastExpr *CE = dyn_cast<CastExpr>(E);
1591   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1592     return 0;
1593 
1594   // If this is a decay from variable width array, bail out.
1595   const Expr *SubExpr = CE->getSubExpr();
1596   if (SubExpr->getType()->isVariableArrayType())
1597     return 0;
1598 
1599   return SubExpr;
1600 }
1601 
1602 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1603   // The index must always be an integer, which is not an aggregate.  Emit it.
1604   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1605   QualType IdxTy  = E->getIdx()->getType();
1606   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1607 
1608   // If the base is a vector type, then we are forming a vector element lvalue
1609   // with this subscript.
1610   if (E->getBase()->getType()->isVectorType()) {
1611     // Emit the vector as an lvalue to get its address.
1612     LValue LHS = EmitLValue(E->getBase());
1613     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1614     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1615     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1616                                  E->getBase()->getType());
1617   }
1618 
1619   // Extend or truncate the index type to 32 or 64-bits.
1620   if (Idx->getType() != IntPtrTy)
1621     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1622 
1623   // FIXME: As llvm implements the object size checking, this can come out.
1624   if (CatchUndefined) {
1625     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1626       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1627         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1628           if (const ConstantArrayType *CAT
1629               = getContext().getAsConstantArrayType(DRE->getType())) {
1630             llvm::APInt Size = CAT->getSize();
1631             llvm::BasicBlock *Cont = createBasicBlock("cont");
1632             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1633                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1634                                  Cont, getTrapBB());
1635             EmitBlock(Cont);
1636           }
1637         }
1638       }
1639     }
1640   }
1641 
1642   // We know that the pointer points to a type of the correct size, unless the
1643   // size is a VLA or Objective-C interface.
1644   llvm::Value *Address = 0;
1645   CharUnits ArrayAlignment;
1646   if (const VariableArrayType *vla =
1647         getContext().getAsVariableArrayType(E->getType())) {
1648     // The base must be a pointer, which is not an aggregate.  Emit
1649     // it.  It needs to be emitted first in case it's what captures
1650     // the VLA bounds.
1651     Address = EmitScalarExpr(E->getBase());
1652 
1653     // The element count here is the total number of non-VLA elements.
1654     llvm::Value *numElements = getVLASize(vla).first;
1655 
1656     // Effectively, the multiply by the VLA size is part of the GEP.
1657     // GEP indexes are signed, and scaling an index isn't permitted to
1658     // signed-overflow, so we use the same semantics for our explicit
1659     // multiply.  We suppress this if overflow is not undefined behavior.
1660     if (getLangOptions().isSignedOverflowDefined()) {
1661       Idx = Builder.CreateMul(Idx, numElements);
1662       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1663     } else {
1664       Idx = Builder.CreateNSWMul(Idx, numElements);
1665       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1666     }
1667   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1668     // Indexing over an interface, as in "NSString *P; P[4];"
1669     llvm::Value *InterfaceSize =
1670       llvm::ConstantInt::get(Idx->getType(),
1671           getContext().getTypeSizeInChars(OIT).getQuantity());
1672 
1673     Idx = Builder.CreateMul(Idx, InterfaceSize);
1674 
1675     // The base must be a pointer, which is not an aggregate.  Emit it.
1676     llvm::Value *Base = EmitScalarExpr(E->getBase());
1677     Address = EmitCastToVoidPtr(Base);
1678     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1679     Address = Builder.CreateBitCast(Address, Base->getType());
1680   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1681     // If this is A[i] where A is an array, the frontend will have decayed the
1682     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1683     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1684     // "gep x, i" here.  Emit one "gep A, 0, i".
1685     assert(Array->getType()->isArrayType() &&
1686            "Array to pointer decay must have array source type!");
1687     LValue ArrayLV = EmitLValue(Array);
1688     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1689     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1690     llvm::Value *Args[] = { Zero, Idx };
1691 
1692     // Propagate the alignment from the array itself to the result.
1693     ArrayAlignment = ArrayLV.getAlignment();
1694 
1695     if (getContext().getLangOptions().isSignedOverflowDefined())
1696       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1697     else
1698       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1699   } else {
1700     // The base must be a pointer, which is not an aggregate.  Emit it.
1701     llvm::Value *Base = EmitScalarExpr(E->getBase());
1702     if (getContext().getLangOptions().isSignedOverflowDefined())
1703       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1704     else
1705       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1706   }
1707 
1708   QualType T = E->getBase()->getType()->getPointeeType();
1709   assert(!T.isNull() &&
1710          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1711 
1712 
1713   // Limit the alignment to that of the result type.
1714   LValue LV;
1715   if (!ArrayAlignment.isZero()) {
1716     CharUnits Align = getContext().getTypeAlignInChars(T);
1717     ArrayAlignment = std::min(Align, ArrayAlignment);
1718     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1719   } else {
1720     LV = MakeNaturalAlignAddrLValue(Address, T);
1721   }
1722 
1723   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1724 
1725   if (getContext().getLangOptions().ObjC1 &&
1726       getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1727     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1728     setObjCGCLValueClass(getContext(), E, LV);
1729   }
1730   return LV;
1731 }
1732 
1733 static
1734 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1735                                        SmallVector<unsigned, 4> &Elts) {
1736   SmallVector<llvm::Constant*, 4> CElts;
1737 
1738   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1739   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1740     CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1741 
1742   return llvm::ConstantVector::get(CElts);
1743 }
1744 
1745 LValue CodeGenFunction::
1746 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1747   // Emit the base vector as an l-value.
1748   LValue Base;
1749 
1750   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1751   if (E->isArrow()) {
1752     // If it is a pointer to a vector, emit the address and form an lvalue with
1753     // it.
1754     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1755     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1756     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1757     Base.getQuals().removeObjCGCAttr();
1758   } else if (E->getBase()->isGLValue()) {
1759     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1760     // emit the base as an lvalue.
1761     assert(E->getBase()->getType()->isVectorType());
1762     Base = EmitLValue(E->getBase());
1763   } else {
1764     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1765     assert(E->getBase()->getType()->isVectorType() &&
1766            "Result must be a vector");
1767     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1768 
1769     // Store the vector to memory (because LValue wants an address).
1770     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1771     Builder.CreateStore(Vec, VecMem);
1772     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1773   }
1774 
1775   QualType type =
1776     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1777 
1778   // Encode the element access list into a vector of unsigned indices.
1779   SmallVector<unsigned, 4> Indices;
1780   E->getEncodedElementAccess(Indices);
1781 
1782   if (Base.isSimple()) {
1783     llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1784     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1785   }
1786   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1787 
1788   llvm::Constant *BaseElts = Base.getExtVectorElts();
1789   SmallVector<llvm::Constant *, 4> CElts;
1790 
1791   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1792     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1793       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1794     else
1795       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1796   }
1797   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1798   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1799 }
1800 
1801 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1802   bool isNonGC = false;
1803   Expr *BaseExpr = E->getBase();
1804   llvm::Value *BaseValue = NULL;
1805   Qualifiers BaseQuals;
1806 
1807   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1808   if (E->isArrow()) {
1809     BaseValue = EmitScalarExpr(BaseExpr);
1810     const PointerType *PTy =
1811       BaseExpr->getType()->getAs<PointerType>();
1812     BaseQuals = PTy->getPointeeType().getQualifiers();
1813   } else {
1814     LValue BaseLV = EmitLValue(BaseExpr);
1815     if (BaseLV.isNonGC())
1816       isNonGC = true;
1817     // FIXME: this isn't right for bitfields.
1818     BaseValue = BaseLV.getAddress();
1819     QualType BaseTy = BaseExpr->getType();
1820     BaseQuals = BaseTy.getQualifiers();
1821   }
1822 
1823   NamedDecl *ND = E->getMemberDecl();
1824   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1825     LValue LV = EmitLValueForField(BaseValue, Field,
1826                                    BaseQuals.getCVRQualifiers());
1827     LV.setNonGC(isNonGC);
1828     setObjCGCLValueClass(getContext(), E, LV);
1829     return LV;
1830   }
1831 
1832   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1833     return EmitGlobalVarDeclLValue(*this, E, VD);
1834 
1835   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1836     return EmitFunctionDeclLValue(*this, E, FD);
1837 
1838   llvm_unreachable("Unhandled member declaration!");
1839 }
1840 
1841 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1842                                               const FieldDecl *Field,
1843                                               unsigned CVRQualifiers) {
1844   const CGRecordLayout &RL =
1845     CGM.getTypes().getCGRecordLayout(Field->getParent());
1846   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1847   return LValue::MakeBitfield(BaseValue, Info,
1848                           Field->getType().withCVRQualifiers(CVRQualifiers));
1849 }
1850 
1851 /// EmitLValueForAnonRecordField - Given that the field is a member of
1852 /// an anonymous struct or union buried inside a record, and given
1853 /// that the base value is a pointer to the enclosing record, derive
1854 /// an lvalue for the ultimate field.
1855 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1856                                              const IndirectFieldDecl *Field,
1857                                                      unsigned CVRQualifiers) {
1858   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1859     IEnd = Field->chain_end();
1860   while (true) {
1861     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1862                                    CVRQualifiers);
1863     if (++I == IEnd) return LV;
1864 
1865     assert(LV.isSimple());
1866     BaseValue = LV.getAddress();
1867     CVRQualifiers |= LV.getVRQualifiers();
1868   }
1869 }
1870 
1871 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1872                                            const FieldDecl *field,
1873                                            unsigned cvr) {
1874   if (field->isBitField())
1875     return EmitLValueForBitfield(baseAddr, field, cvr);
1876 
1877   const RecordDecl *rec = field->getParent();
1878   QualType type = field->getType();
1879   CharUnits alignment = getContext().getDeclAlign(field);
1880 
1881   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1882 
1883   llvm::Value *addr = baseAddr;
1884   if (rec->isUnion()) {
1885     // For unions, there is no pointer adjustment.
1886     assert(!type->isReferenceType() && "union has reference member");
1887   } else {
1888     // For structs, we GEP to the field that the record layout suggests.
1889     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1890     addr = Builder.CreateStructGEP(addr, idx, field->getName());
1891 
1892     // If this is a reference field, load the reference right now.
1893     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1894       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1895       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1896       load->setAlignment(alignment.getQuantity());
1897 
1898       if (CGM.shouldUseTBAA()) {
1899         llvm::MDNode *tbaa;
1900         if (mayAlias)
1901           tbaa = CGM.getTBAAInfo(getContext().CharTy);
1902         else
1903           tbaa = CGM.getTBAAInfo(type);
1904         CGM.DecorateInstruction(load, tbaa);
1905       }
1906 
1907       addr = load;
1908       mayAlias = false;
1909       type = refType->getPointeeType();
1910       if (type->isIncompleteType())
1911         alignment = CharUnits();
1912       else
1913         alignment = getContext().getTypeAlignInChars(type);
1914       cvr = 0; // qualifiers don't recursively apply to referencee
1915     }
1916   }
1917 
1918   // Make sure that the address is pointing to the right type.  This is critical
1919   // for both unions and structs.  A union needs a bitcast, a struct element
1920   // will need a bitcast if the LLVM type laid out doesn't match the desired
1921   // type.
1922   addr = EmitBitCastOfLValueToProperType(*this, addr,
1923                                          CGM.getTypes().ConvertTypeForMem(type),
1924                                          field->getName());
1925 
1926   if (field->hasAttr<AnnotateAttr>())
1927     addr = EmitFieldAnnotations(field, addr);
1928 
1929   LValue LV = MakeAddrLValue(addr, type, alignment);
1930   LV.getQuals().addCVRQualifiers(cvr);
1931 
1932   // __weak attribute on a field is ignored.
1933   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1934     LV.getQuals().removeObjCGCAttr();
1935 
1936   // Fields of may_alias structs act like 'char' for TBAA purposes.
1937   // FIXME: this should get propagated down through anonymous structs
1938   // and unions.
1939   if (mayAlias && LV.getTBAAInfo())
1940     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1941 
1942   return LV;
1943 }
1944 
1945 LValue
1946 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1947                                                   const FieldDecl *Field,
1948                                                   unsigned CVRQualifiers) {
1949   QualType FieldType = Field->getType();
1950 
1951   if (!FieldType->isReferenceType())
1952     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1953 
1954   const CGRecordLayout &RL =
1955     CGM.getTypes().getCGRecordLayout(Field->getParent());
1956   unsigned idx = RL.getLLVMFieldNo(Field);
1957   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1958   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1959 
1960 
1961   // Make sure that the address is pointing to the right type.  This is critical
1962   // for both unions and structs.  A union needs a bitcast, a struct element
1963   // will need a bitcast if the LLVM type laid out doesn't match the desired
1964   // type.
1965   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1966   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1967   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1968 
1969   CharUnits Alignment = getContext().getDeclAlign(Field);
1970   return MakeAddrLValue(V, FieldType, Alignment);
1971 }
1972 
1973 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1974   if (E->isFileScope()) {
1975     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
1976     return MakeAddrLValue(GlobalPtr, E->getType());
1977   }
1978 
1979   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1980   const Expr *InitExpr = E->getInitializer();
1981   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1982 
1983   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1984                    /*Init*/ true);
1985 
1986   return Result;
1987 }
1988 
1989 LValue CodeGenFunction::
1990 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1991   if (!expr->isGLValue()) {
1992     // ?: here should be an aggregate.
1993     assert((hasAggregateLLVMType(expr->getType()) &&
1994             !expr->getType()->isAnyComplexType()) &&
1995            "Unexpected conditional operator!");
1996     return EmitAggExprToLValue(expr);
1997   }
1998 
1999   const Expr *condExpr = expr->getCond();
2000   bool CondExprBool;
2001   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2002     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2003     if (!CondExprBool) std::swap(live, dead);
2004 
2005     if (!ContainsLabel(dead))
2006       return EmitLValue(live);
2007   }
2008 
2009   OpaqueValueMapping binding(*this, expr);
2010 
2011   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2012   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2013   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2014 
2015   ConditionalEvaluation eval(*this);
2016   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2017 
2018   // Any temporaries created here are conditional.
2019   EmitBlock(lhsBlock);
2020   eval.begin(*this);
2021   LValue lhs = EmitLValue(expr->getTrueExpr());
2022   eval.end(*this);
2023 
2024   if (!lhs.isSimple())
2025     return EmitUnsupportedLValue(expr, "conditional operator");
2026 
2027   lhsBlock = Builder.GetInsertBlock();
2028   Builder.CreateBr(contBlock);
2029 
2030   // Any temporaries created here are conditional.
2031   EmitBlock(rhsBlock);
2032   eval.begin(*this);
2033   LValue rhs = EmitLValue(expr->getFalseExpr());
2034   eval.end(*this);
2035   if (!rhs.isSimple())
2036     return EmitUnsupportedLValue(expr, "conditional operator");
2037   rhsBlock = Builder.GetInsertBlock();
2038 
2039   EmitBlock(contBlock);
2040 
2041   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2042                                          "cond-lvalue");
2043   phi->addIncoming(lhs.getAddress(), lhsBlock);
2044   phi->addIncoming(rhs.getAddress(), rhsBlock);
2045   return MakeAddrLValue(phi, expr->getType());
2046 }
2047 
2048 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2049 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2050 /// otherwise if a cast is needed by the code generator in an lvalue context,
2051 /// then it must mean that we need the address of an aggregate in order to
2052 /// access one of its fields.  This can happen for all the reasons that casts
2053 /// are permitted with aggregate result, including noop aggregate casts, and
2054 /// cast from scalar to union.
2055 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2056   switch (E->getCastKind()) {
2057   case CK_ToVoid:
2058     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2059 
2060   case CK_Dependent:
2061     llvm_unreachable("dependent cast kind in IR gen!");
2062 
2063   // These two casts are currently treated as no-ops, although they could
2064   // potentially be real operations depending on the target's ABI.
2065   case CK_NonAtomicToAtomic:
2066   case CK_AtomicToNonAtomic:
2067 
2068   case CK_NoOp:
2069   case CK_LValueToRValue:
2070     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2071         || E->getType()->isRecordType())
2072       return EmitLValue(E->getSubExpr());
2073     // Fall through to synthesize a temporary.
2074 
2075   case CK_BitCast:
2076   case CK_ArrayToPointerDecay:
2077   case CK_FunctionToPointerDecay:
2078   case CK_NullToMemberPointer:
2079   case CK_NullToPointer:
2080   case CK_IntegralToPointer:
2081   case CK_PointerToIntegral:
2082   case CK_PointerToBoolean:
2083   case CK_VectorSplat:
2084   case CK_IntegralCast:
2085   case CK_IntegralToBoolean:
2086   case CK_IntegralToFloating:
2087   case CK_FloatingToIntegral:
2088   case CK_FloatingToBoolean:
2089   case CK_FloatingCast:
2090   case CK_FloatingRealToComplex:
2091   case CK_FloatingComplexToReal:
2092   case CK_FloatingComplexToBoolean:
2093   case CK_FloatingComplexCast:
2094   case CK_FloatingComplexToIntegralComplex:
2095   case CK_IntegralRealToComplex:
2096   case CK_IntegralComplexToReal:
2097   case CK_IntegralComplexToBoolean:
2098   case CK_IntegralComplexCast:
2099   case CK_IntegralComplexToFloatingComplex:
2100   case CK_DerivedToBaseMemberPointer:
2101   case CK_BaseToDerivedMemberPointer:
2102   case CK_MemberPointerToBoolean:
2103   case CK_AnyPointerToBlockPointerCast:
2104   case CK_ARCProduceObject:
2105   case CK_ARCConsumeObject:
2106   case CK_ARCReclaimReturnedObject:
2107   case CK_ARCExtendBlockObject: {
2108     // These casts only produce lvalues when we're binding a reference to a
2109     // temporary realized from a (converted) pure rvalue. Emit the expression
2110     // as a value, copy it into a temporary, and return an lvalue referring to
2111     // that temporary.
2112     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2113     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2114     return MakeAddrLValue(V, E->getType());
2115   }
2116 
2117   case CK_Dynamic: {
2118     LValue LV = EmitLValue(E->getSubExpr());
2119     llvm::Value *V = LV.getAddress();
2120     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2121     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2122   }
2123 
2124   case CK_ConstructorConversion:
2125   case CK_UserDefinedConversion:
2126   case CK_CPointerToObjCPointerCast:
2127   case CK_BlockPointerToObjCPointerCast:
2128     return EmitLValue(E->getSubExpr());
2129 
2130   case CK_UncheckedDerivedToBase:
2131   case CK_DerivedToBase: {
2132     const RecordType *DerivedClassTy =
2133       E->getSubExpr()->getType()->getAs<RecordType>();
2134     CXXRecordDecl *DerivedClassDecl =
2135       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2136 
2137     LValue LV = EmitLValue(E->getSubExpr());
2138     llvm::Value *This = LV.getAddress();
2139 
2140     // Perform the derived-to-base conversion
2141     llvm::Value *Base =
2142       GetAddressOfBaseClass(This, DerivedClassDecl,
2143                             E->path_begin(), E->path_end(),
2144                             /*NullCheckValue=*/false);
2145 
2146     return MakeAddrLValue(Base, E->getType());
2147   }
2148   case CK_ToUnion:
2149     return EmitAggExprToLValue(E);
2150   case CK_BaseToDerived: {
2151     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2152     CXXRecordDecl *DerivedClassDecl =
2153       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2154 
2155     LValue LV = EmitLValue(E->getSubExpr());
2156 
2157     // Perform the base-to-derived conversion
2158     llvm::Value *Derived =
2159       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2160                                E->path_begin(), E->path_end(),
2161                                /*NullCheckValue=*/false);
2162 
2163     return MakeAddrLValue(Derived, E->getType());
2164   }
2165   case CK_LValueBitCast: {
2166     // This must be a reinterpret_cast (or c-style equivalent).
2167     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2168 
2169     LValue LV = EmitLValue(E->getSubExpr());
2170     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2171                                            ConvertType(CE->getTypeAsWritten()));
2172     return MakeAddrLValue(V, E->getType());
2173   }
2174   case CK_ObjCObjectLValueCast: {
2175     LValue LV = EmitLValue(E->getSubExpr());
2176     QualType ToType = getContext().getLValueReferenceType(E->getType());
2177     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2178                                            ConvertType(ToType));
2179     return MakeAddrLValue(V, E->getType());
2180   }
2181   }
2182 
2183   llvm_unreachable("Unhandled lvalue cast kind?");
2184 }
2185 
2186 LValue CodeGenFunction::EmitNullInitializationLValue(
2187                                               const CXXScalarValueInitExpr *E) {
2188   QualType Ty = E->getType();
2189   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2190   EmitNullInitialization(LV.getAddress(), Ty);
2191   return LV;
2192 }
2193 
2194 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2195   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2196   return getOpaqueLValueMapping(e);
2197 }
2198 
2199 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2200                                            const MaterializeTemporaryExpr *E) {
2201   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2202   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2203 }
2204 
2205 
2206 //===--------------------------------------------------------------------===//
2207 //                             Expression Emission
2208 //===--------------------------------------------------------------------===//
2209 
2210 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2211                                      ReturnValueSlot ReturnValue) {
2212   if (CGDebugInfo *DI = getDebugInfo())
2213     DI->EmitLocation(Builder, E->getLocStart());
2214 
2215   // Builtins never have block type.
2216   if (E->getCallee()->getType()->isBlockPointerType())
2217     return EmitBlockCallExpr(E, ReturnValue);
2218 
2219   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2220     return EmitCXXMemberCallExpr(CE, ReturnValue);
2221 
2222   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2223     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2224 
2225   const Decl *TargetDecl = E->getCalleeDecl();
2226   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2227     if (unsigned builtinID = FD->getBuiltinID())
2228       return EmitBuiltinExpr(FD, builtinID, E);
2229   }
2230 
2231   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2232     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2233       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2234 
2235   if (const CXXPseudoDestructorExpr *PseudoDtor
2236           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2237     QualType DestroyedType = PseudoDtor->getDestroyedType();
2238     if (getContext().getLangOptions().ObjCAutoRefCount &&
2239         DestroyedType->isObjCLifetimeType() &&
2240         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2241          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2242       // Automatic Reference Counting:
2243       //   If the pseudo-expression names a retainable object with weak or
2244       //   strong lifetime, the object shall be released.
2245       Expr *BaseExpr = PseudoDtor->getBase();
2246       llvm::Value *BaseValue = NULL;
2247       Qualifiers BaseQuals;
2248 
2249       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2250       if (PseudoDtor->isArrow()) {
2251         BaseValue = EmitScalarExpr(BaseExpr);
2252         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2253         BaseQuals = PTy->getPointeeType().getQualifiers();
2254       } else {
2255         LValue BaseLV = EmitLValue(BaseExpr);
2256         BaseValue = BaseLV.getAddress();
2257         QualType BaseTy = BaseExpr->getType();
2258         BaseQuals = BaseTy.getQualifiers();
2259       }
2260 
2261       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2262       case Qualifiers::OCL_None:
2263       case Qualifiers::OCL_ExplicitNone:
2264       case Qualifiers::OCL_Autoreleasing:
2265         break;
2266 
2267       case Qualifiers::OCL_Strong:
2268         EmitARCRelease(Builder.CreateLoad(BaseValue,
2269                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2270                        /*precise*/ true);
2271         break;
2272 
2273       case Qualifiers::OCL_Weak:
2274         EmitARCDestroyWeak(BaseValue);
2275         break;
2276       }
2277     } else {
2278       // C++ [expr.pseudo]p1:
2279       //   The result shall only be used as the operand for the function call
2280       //   operator (), and the result of such a call has type void. The only
2281       //   effect is the evaluation of the postfix-expression before the dot or
2282       //   arrow.
2283       EmitScalarExpr(E->getCallee());
2284     }
2285 
2286     return RValue::get(0);
2287   }
2288 
2289   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2290   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2291                   E->arg_begin(), E->arg_end(), TargetDecl);
2292 }
2293 
2294 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2295   // Comma expressions just emit their LHS then their RHS as an l-value.
2296   if (E->getOpcode() == BO_Comma) {
2297     EmitIgnoredExpr(E->getLHS());
2298     EnsureInsertPoint();
2299     return EmitLValue(E->getRHS());
2300   }
2301 
2302   if (E->getOpcode() == BO_PtrMemD ||
2303       E->getOpcode() == BO_PtrMemI)
2304     return EmitPointerToDataMemberBinaryExpr(E);
2305 
2306   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2307 
2308   // Note that in all of these cases, __block variables need the RHS
2309   // evaluated first just in case the variable gets moved by the RHS.
2310 
2311   if (!hasAggregateLLVMType(E->getType())) {
2312     switch (E->getLHS()->getType().getObjCLifetime()) {
2313     case Qualifiers::OCL_Strong:
2314       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2315 
2316     case Qualifiers::OCL_Autoreleasing:
2317       return EmitARCStoreAutoreleasing(E).first;
2318 
2319     // No reason to do any of these differently.
2320     case Qualifiers::OCL_None:
2321     case Qualifiers::OCL_ExplicitNone:
2322     case Qualifiers::OCL_Weak:
2323       break;
2324     }
2325 
2326     RValue RV = EmitAnyExpr(E->getRHS());
2327     LValue LV = EmitLValue(E->getLHS());
2328     EmitStoreThroughLValue(RV, LV);
2329     return LV;
2330   }
2331 
2332   if (E->getType()->isAnyComplexType())
2333     return EmitComplexAssignmentLValue(E);
2334 
2335   return EmitAggExprToLValue(E);
2336 }
2337 
2338 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2339   RValue RV = EmitCallExpr(E);
2340 
2341   if (!RV.isScalar())
2342     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2343 
2344   assert(E->getCallReturnType()->isReferenceType() &&
2345          "Can't have a scalar return unless the return type is a "
2346          "reference type!");
2347 
2348   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2349 }
2350 
2351 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2352   // FIXME: This shouldn't require another copy.
2353   return EmitAggExprToLValue(E);
2354 }
2355 
2356 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2357   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2358          && "binding l-value to type which needs a temporary");
2359   AggValueSlot Slot = CreateAggTemp(E->getType());
2360   EmitCXXConstructExpr(E, Slot);
2361   return MakeAddrLValue(Slot.getAddr(), E->getType());
2362 }
2363 
2364 LValue
2365 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2366   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2367 }
2368 
2369 LValue
2370 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2371   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2372   Slot.setExternallyDestructed();
2373   EmitAggExpr(E->getSubExpr(), Slot);
2374   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2375   return MakeAddrLValue(Slot.getAddr(), E->getType());
2376 }
2377 
2378 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2379   RValue RV = EmitObjCMessageExpr(E);
2380 
2381   if (!RV.isScalar())
2382     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2383 
2384   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2385          "Can't have a scalar return unless the return type is a "
2386          "reference type!");
2387 
2388   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2389 }
2390 
2391 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2392   llvm::Value *V =
2393     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2394   return MakeAddrLValue(V, E->getType());
2395 }
2396 
2397 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2398                                              const ObjCIvarDecl *Ivar) {
2399   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2400 }
2401 
2402 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2403                                           llvm::Value *BaseValue,
2404                                           const ObjCIvarDecl *Ivar,
2405                                           unsigned CVRQualifiers) {
2406   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2407                                                    Ivar, CVRQualifiers);
2408 }
2409 
2410 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2411   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2412   llvm::Value *BaseValue = 0;
2413   const Expr *BaseExpr = E->getBase();
2414   Qualifiers BaseQuals;
2415   QualType ObjectTy;
2416   if (E->isArrow()) {
2417     BaseValue = EmitScalarExpr(BaseExpr);
2418     ObjectTy = BaseExpr->getType()->getPointeeType();
2419     BaseQuals = ObjectTy.getQualifiers();
2420   } else {
2421     LValue BaseLV = EmitLValue(BaseExpr);
2422     // FIXME: this isn't right for bitfields.
2423     BaseValue = BaseLV.getAddress();
2424     ObjectTy = BaseExpr->getType();
2425     BaseQuals = ObjectTy.getQualifiers();
2426   }
2427 
2428   LValue LV =
2429     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2430                       BaseQuals.getCVRQualifiers());
2431   setObjCGCLValueClass(getContext(), E, LV);
2432   return LV;
2433 }
2434 
2435 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2436   // Can only get l-value for message expression returning aggregate type
2437   RValue RV = EmitAnyExprToTemp(E);
2438   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2439 }
2440 
2441 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2442                                  ReturnValueSlot ReturnValue,
2443                                  CallExpr::const_arg_iterator ArgBeg,
2444                                  CallExpr::const_arg_iterator ArgEnd,
2445                                  const Decl *TargetDecl) {
2446   // Get the actual function type. The callee type will always be a pointer to
2447   // function type or a block pointer type.
2448   assert(CalleeType->isFunctionPointerType() &&
2449          "Call must have function pointer type!");
2450 
2451   CalleeType = getContext().getCanonicalType(CalleeType);
2452 
2453   const FunctionType *FnType
2454     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2455 
2456   CallArgList Args;
2457   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2458 
2459   const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType);
2460 
2461   // C99 6.5.2.2p6:
2462   //   If the expression that denotes the called function has a type
2463   //   that does not include a prototype, [the default argument
2464   //   promotions are performed]. If the number of arguments does not
2465   //   equal the number of parameters, the behavior is undefined. If
2466   //   the function is defined with a type that includes a prototype,
2467   //   and either the prototype ends with an ellipsis (, ...) or the
2468   //   types of the arguments after promotion are not compatible with
2469   //   the types of the parameters, the behavior is undefined. If the
2470   //   function is defined with a type that does not include a
2471   //   prototype, and the types of the arguments after promotion are
2472   //   not compatible with those of the parameters after promotion,
2473   //   the behavior is undefined [except in some trivial cases].
2474   // That is, in the general case, we should assume that a call
2475   // through an unprototyped function type works like a *non-variadic*
2476   // call.  The way we make this work is to cast to the exact type
2477   // of the promoted arguments.
2478   if (isa<FunctionNoProtoType>(FnType) &&
2479       !getTargetHooks().isNoProtoCallVariadic(FnInfo)) {
2480     assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0))
2481              ->isVarArg());
2482     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false);
2483     CalleeTy = CalleeTy->getPointerTo();
2484     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2485   }
2486 
2487   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2488 }
2489 
2490 LValue CodeGenFunction::
2491 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2492   llvm::Value *BaseV;
2493   if (E->getOpcode() == BO_PtrMemI)
2494     BaseV = EmitScalarExpr(E->getLHS());
2495   else
2496     BaseV = EmitLValue(E->getLHS()).getAddress();
2497 
2498   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2499 
2500   const MemberPointerType *MPT
2501     = E->getRHS()->getType()->getAs<MemberPointerType>();
2502 
2503   llvm::Value *AddV =
2504     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2505 
2506   return MakeAddrLValue(AddV, MPT->getPointeeType());
2507 }
2508 
2509 static void
2510 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2511              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2512              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2513   if (E->isCmpXChg()) {
2514     // Note that cmpxchg only supports specifying one ordering and
2515     // doesn't support weak cmpxchg, at least at the moment.
2516     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2517     LoadVal1->setAlignment(Align);
2518     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2519     LoadVal2->setAlignment(Align);
2520     llvm::AtomicCmpXchgInst *CXI =
2521         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2522     CXI->setVolatile(E->isVolatile());
2523     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2524     StoreVal1->setAlignment(Align);
2525     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2526     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2527     return;
2528   }
2529 
2530   if (E->getOp() == AtomicExpr::Load) {
2531     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2532     Load->setAtomic(Order);
2533     Load->setAlignment(Size);
2534     Load->setVolatile(E->isVolatile());
2535     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2536     StoreDest->setAlignment(Align);
2537     return;
2538   }
2539 
2540   if (E->getOp() == AtomicExpr::Store) {
2541     assert(!Dest && "Store does not return a value");
2542     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2543     LoadVal1->setAlignment(Align);
2544     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2545     Store->setAtomic(Order);
2546     Store->setAlignment(Size);
2547     Store->setVolatile(E->isVolatile());
2548     return;
2549   }
2550 
2551   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2552   switch (E->getOp()) {
2553     case AtomicExpr::CmpXchgWeak:
2554     case AtomicExpr::CmpXchgStrong:
2555     case AtomicExpr::Store:
2556     case AtomicExpr::Init:
2557     case AtomicExpr::Load:  assert(0 && "Already handled!");
2558     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2559     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2560     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2561     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2562     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2563     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2564   }
2565   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2566   LoadVal1->setAlignment(Align);
2567   llvm::AtomicRMWInst *RMWI =
2568       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2569   RMWI->setVolatile(E->isVolatile());
2570   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2571   StoreDest->setAlignment(Align);
2572 }
2573 
2574 // This function emits any expression (scalar, complex, or aggregate)
2575 // into a temporary alloca.
2576 static llvm::Value *
2577 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2578   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2579   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2580                        /*Init*/ true);
2581   return DeclPtr;
2582 }
2583 
2584 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2585                                   llvm::Value *Dest) {
2586   if (Ty->isAnyComplexType())
2587     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2588   if (CGF.hasAggregateLLVMType(Ty))
2589     return RValue::getAggregate(Dest);
2590   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2591 }
2592 
2593 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2594   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2595   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2596   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2597   uint64_t Size = sizeChars.getQuantity();
2598   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2599   unsigned Align = alignChars.getQuantity();
2600   unsigned MaxInlineWidth =
2601       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2602   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2603 
2604 
2605 
2606   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2607   Ptr = EmitScalarExpr(E->getPtr());
2608 
2609   if (E->getOp() == AtomicExpr::Init) {
2610     assert(!Dest && "Init does not return a value");
2611     Val1 = EmitScalarExpr(E->getVal1());
2612     llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr);
2613     Store->setAlignment(Size);
2614     Store->setVolatile(E->isVolatile());
2615     return RValue::get(0);
2616   }
2617 
2618   Order = EmitScalarExpr(E->getOrder());
2619   if (E->isCmpXChg()) {
2620     Val1 = EmitScalarExpr(E->getVal1());
2621     Val2 = EmitValToTemp(*this, E->getVal2());
2622     OrderFail = EmitScalarExpr(E->getOrderFail());
2623     (void)OrderFail; // OrderFail is unused at the moment
2624   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2625              MemTy->isPointerType()) {
2626     // For pointers, we're required to do a bit of math: adding 1 to an int*
2627     // is not the same as adding 1 to a uintptr_t.
2628     QualType Val1Ty = E->getVal1()->getType();
2629     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2630     CharUnits PointeeIncAmt =
2631         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2632     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2633     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2634     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2635   } else if (E->getOp() != AtomicExpr::Load) {
2636     Val1 = EmitValToTemp(*this, E->getVal1());
2637   }
2638 
2639   if (E->getOp() != AtomicExpr::Store && !Dest)
2640     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2641 
2642   if (UseLibcall) {
2643     // FIXME: Finalize what the libcalls are actually supposed to look like.
2644     // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2645     return EmitUnsupportedRValue(E, "atomic library call");
2646   }
2647 #if 0
2648   if (UseLibcall) {
2649     const char* LibCallName;
2650     switch (E->getOp()) {
2651     case AtomicExpr::CmpXchgWeak:
2652       LibCallName = "__atomic_compare_exchange_generic"; break;
2653     case AtomicExpr::CmpXchgStrong:
2654       LibCallName = "__atomic_compare_exchange_generic"; break;
2655     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2656     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2657     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2658     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2659     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2660     case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2661     case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2662     case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2663     }
2664     llvm::SmallVector<QualType, 4> Params;
2665     CallArgList Args;
2666     QualType RetTy = getContext().VoidTy;
2667     if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2668       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2669                getContext().VoidPtrTy);
2670     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2671              getContext().VoidPtrTy);
2672     if (E->getOp() != AtomicExpr::Load)
2673       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2674                getContext().VoidPtrTy);
2675     if (E->isCmpXChg()) {
2676       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2677                getContext().VoidPtrTy);
2678       RetTy = getContext().IntTy;
2679     }
2680     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2681              getContext().getSizeType());
2682     const CGFunctionInfo &FuncInfo =
2683         CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo());
2684     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2685     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2686     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2687     if (E->isCmpXChg())
2688       return Res;
2689     if (E->getOp() == AtomicExpr::Store)
2690       return RValue::get(0);
2691     return ConvertTempToRValue(*this, E->getType(), Dest);
2692   }
2693 #endif
2694   llvm::Type *IPtrTy =
2695       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2696   llvm::Value *OrigDest = Dest;
2697   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2698   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2699   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2700   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2701 
2702   if (isa<llvm::ConstantInt>(Order)) {
2703     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2704     switch (ord) {
2705     case 0:  // memory_order_relaxed
2706       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2707                    llvm::Monotonic);
2708       break;
2709     case 1:  // memory_order_consume
2710     case 2:  // memory_order_acquire
2711       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2712                    llvm::Acquire);
2713       break;
2714     case 3:  // memory_order_release
2715       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2716                    llvm::Release);
2717       break;
2718     case 4:  // memory_order_acq_rel
2719       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2720                    llvm::AcquireRelease);
2721       break;
2722     case 5:  // memory_order_seq_cst
2723       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2724                    llvm::SequentiallyConsistent);
2725       break;
2726     default: // invalid order
2727       // We should not ever get here normally, but it's hard to
2728       // enforce that in general.
2729       break;
2730     }
2731     if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init)
2732       return RValue::get(0);
2733     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2734   }
2735 
2736   // Long case, when Order isn't obviously constant.
2737 
2738   // Create all the relevant BB's
2739   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2740                    *AcqRelBB = 0, *SeqCstBB = 0;
2741   MonotonicBB = createBasicBlock("monotonic", CurFn);
2742   if (E->getOp() != AtomicExpr::Store)
2743     AcquireBB = createBasicBlock("acquire", CurFn);
2744   if (E->getOp() != AtomicExpr::Load)
2745     ReleaseBB = createBasicBlock("release", CurFn);
2746   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2747     AcqRelBB = createBasicBlock("acqrel", CurFn);
2748   SeqCstBB = createBasicBlock("seqcst", CurFn);
2749   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2750 
2751   // Create the switch for the split
2752   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2753   // doesn't matter unless someone is crazy enough to use something that
2754   // doesn't fold to a constant for the ordering.
2755   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2756   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2757 
2758   // Emit all the different atomics
2759   Builder.SetInsertPoint(MonotonicBB);
2760   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2761                llvm::Monotonic);
2762   Builder.CreateBr(ContBB);
2763   if (E->getOp() != AtomicExpr::Store) {
2764     Builder.SetInsertPoint(AcquireBB);
2765     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2766                  llvm::Acquire);
2767     Builder.CreateBr(ContBB);
2768     SI->addCase(Builder.getInt32(1), AcquireBB);
2769     SI->addCase(Builder.getInt32(2), AcquireBB);
2770   }
2771   if (E->getOp() != AtomicExpr::Load) {
2772     Builder.SetInsertPoint(ReleaseBB);
2773     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2774                  llvm::Release);
2775     Builder.CreateBr(ContBB);
2776     SI->addCase(Builder.getInt32(3), ReleaseBB);
2777   }
2778   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2779     Builder.SetInsertPoint(AcqRelBB);
2780     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2781                  llvm::AcquireRelease);
2782     Builder.CreateBr(ContBB);
2783     SI->addCase(Builder.getInt32(4), AcqRelBB);
2784   }
2785   Builder.SetInsertPoint(SeqCstBB);
2786   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2787                llvm::SequentiallyConsistent);
2788   Builder.CreateBr(ContBB);
2789   SI->addCase(Builder.getInt32(5), SeqCstBB);
2790 
2791   // Cleanup and return
2792   Builder.SetInsertPoint(ContBB);
2793   if (E->getOp() == AtomicExpr::Store)
2794     return RValue::get(0);
2795   return ConvertTempToRValue(*this, E->getType(), OrigDest);
2796 }
2797 
2798 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2799                                     unsigned AccuracyD) {
2800   assert(Val->getType()->isFPOrFPVectorTy());
2801   if (!AccuracyN || !isa<llvm::Instruction>(Val))
2802     return;
2803 
2804   llvm::Value *Vals[2];
2805   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2806   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2807   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2808 
2809   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2810                                             Node);
2811 }
2812 
2813 namespace {
2814   struct LValueOrRValue {
2815     LValue LV;
2816     RValue RV;
2817   };
2818 }
2819 
2820 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2821                                            const PseudoObjectExpr *E,
2822                                            bool forLValue,
2823                                            AggValueSlot slot) {
2824   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2825 
2826   // Find the result expression, if any.
2827   const Expr *resultExpr = E->getResultExpr();
2828   LValueOrRValue result;
2829 
2830   for (PseudoObjectExpr::const_semantics_iterator
2831          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2832     const Expr *semantic = *i;
2833 
2834     // If this semantic expression is an opaque value, bind it
2835     // to the result of its source expression.
2836     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2837 
2838       // If this is the result expression, we may need to evaluate
2839       // directly into the slot.
2840       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2841       OVMA opaqueData;
2842       if (ov == resultExpr && ov->isRValue() && !forLValue &&
2843           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2844           !ov->getType()->isAnyComplexType()) {
2845         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2846 
2847         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2848         opaqueData = OVMA::bind(CGF, ov, LV);
2849         result.RV = slot.asRValue();
2850 
2851       // Otherwise, emit as normal.
2852       } else {
2853         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2854 
2855         // If this is the result, also evaluate the result now.
2856         if (ov == resultExpr) {
2857           if (forLValue)
2858             result.LV = CGF.EmitLValue(ov);
2859           else
2860             result.RV = CGF.EmitAnyExpr(ov, slot);
2861         }
2862       }
2863 
2864       opaques.push_back(opaqueData);
2865 
2866     // Otherwise, if the expression is the result, evaluate it
2867     // and remember the result.
2868     } else if (semantic == resultExpr) {
2869       if (forLValue)
2870         result.LV = CGF.EmitLValue(semantic);
2871       else
2872         result.RV = CGF.EmitAnyExpr(semantic, slot);
2873 
2874     // Otherwise, evaluate the expression in an ignored context.
2875     } else {
2876       CGF.EmitIgnoredExpr(semantic);
2877     }
2878   }
2879 
2880   // Unbind all the opaques now.
2881   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2882     opaques[i].unbind(CGF);
2883 
2884   return result;
2885 }
2886 
2887 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2888                                                AggValueSlot slot) {
2889   return emitPseudoObjectExpr(*this, E, false, slot).RV;
2890 }
2891 
2892 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2893   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2894 }
2895