1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name, 65 llvm::Value *ArraySize, 66 bool CastToDefaultAddrSpace) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 llvm::Value *V = Alloca; 70 // Alloca always returns a pointer in alloca address space, which may 71 // be different from the type defined by the language. For example, 72 // in C++ the auto variables are in the default address space. Therefore 73 // cast alloca to the default address space when necessary. 74 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 75 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 76 auto CurIP = Builder.saveIP(); 77 Builder.SetInsertPoint(AllocaInsertPt); 78 V = getTargetHooks().performAddrSpaceCast( 79 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 80 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 81 Builder.restoreIP(CurIP); 82 } 83 84 return Address(V, Align); 85 } 86 87 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 88 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 89 /// insertion point of the builder. 90 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 91 const Twine &Name, 92 llvm::Value *ArraySize) { 93 if (ArraySize) 94 return Builder.CreateAlloca(Ty, ArraySize, Name); 95 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 96 ArraySize, Name, AllocaInsertPt); 97 } 98 99 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 100 /// default alignment of the corresponding LLVM type, which is *not* 101 /// guaranteed to be related in any way to the expected alignment of 102 /// an AST type that might have been lowered to Ty. 103 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 104 const Twine &Name) { 105 CharUnits Align = 106 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 107 return CreateTempAlloca(Ty, Align, Name); 108 } 109 110 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 111 assert(isa<llvm::AllocaInst>(Var.getPointer())); 112 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 113 Store->setAlignment(Var.getAlignment().getQuantity()); 114 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 115 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 116 } 117 118 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 119 CharUnits Align = getContext().getTypeAlignInChars(Ty); 120 return CreateTempAlloca(ConvertType(Ty), Align, Name); 121 } 122 123 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 124 bool CastToDefaultAddrSpace) { 125 // FIXME: Should we prefer the preferred type alignment here? 126 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 127 CastToDefaultAddrSpace); 128 } 129 130 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 131 const Twine &Name, 132 bool CastToDefaultAddrSpace) { 133 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 134 CastToDefaultAddrSpace); 135 } 136 137 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 138 /// expression and compare the result against zero, returning an Int1Ty value. 139 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 140 PGO.setCurrentStmt(E); 141 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 142 llvm::Value *MemPtr = EmitScalarExpr(E); 143 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 144 } 145 146 QualType BoolTy = getContext().BoolTy; 147 SourceLocation Loc = E->getExprLoc(); 148 if (!E->getType()->isAnyComplexType()) 149 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 150 151 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 152 Loc); 153 } 154 155 /// EmitIgnoredExpr - Emit code to compute the specified expression, 156 /// ignoring the result. 157 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 158 if (E->isRValue()) 159 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 160 161 // Just emit it as an l-value and drop the result. 162 EmitLValue(E); 163 } 164 165 /// EmitAnyExpr - Emit code to compute the specified expression which 166 /// can have any type. The result is returned as an RValue struct. 167 /// If this is an aggregate expression, AggSlot indicates where the 168 /// result should be returned. 169 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 170 AggValueSlot aggSlot, 171 bool ignoreResult) { 172 switch (getEvaluationKind(E->getType())) { 173 case TEK_Scalar: 174 return RValue::get(EmitScalarExpr(E, ignoreResult)); 175 case TEK_Complex: 176 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 177 case TEK_Aggregate: 178 if (!ignoreResult && aggSlot.isIgnored()) 179 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 180 EmitAggExpr(E, aggSlot); 181 return aggSlot.asRValue(); 182 } 183 llvm_unreachable("bad evaluation kind"); 184 } 185 186 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 187 /// always be accessible even if no aggregate location is provided. 188 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 189 AggValueSlot AggSlot = AggValueSlot::ignored(); 190 191 if (hasAggregateEvaluationKind(E->getType())) 192 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 193 return EmitAnyExpr(E, AggSlot); 194 } 195 196 /// EmitAnyExprToMem - Evaluate an expression into a given memory 197 /// location. 198 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 199 Address Location, 200 Qualifiers Quals, 201 bool IsInit) { 202 // FIXME: This function should take an LValue as an argument. 203 switch (getEvaluationKind(E->getType())) { 204 case TEK_Complex: 205 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 206 /*isInit*/ false); 207 return; 208 209 case TEK_Aggregate: { 210 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 211 AggValueSlot::IsDestructed_t(IsInit), 212 AggValueSlot::DoesNotNeedGCBarriers, 213 AggValueSlot::IsAliased_t(!IsInit))); 214 return; 215 } 216 217 case TEK_Scalar: { 218 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 219 LValue LV = MakeAddrLValue(Location, E->getType()); 220 EmitStoreThroughLValue(RV, LV); 221 return; 222 } 223 } 224 llvm_unreachable("bad evaluation kind"); 225 } 226 227 static void 228 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 229 const Expr *E, Address ReferenceTemporary) { 230 // Objective-C++ ARC: 231 // If we are binding a reference to a temporary that has ownership, we 232 // need to perform retain/release operations on the temporary. 233 // 234 // FIXME: This should be looking at E, not M. 235 if (auto Lifetime = M->getType().getObjCLifetime()) { 236 switch (Lifetime) { 237 case Qualifiers::OCL_None: 238 case Qualifiers::OCL_ExplicitNone: 239 // Carry on to normal cleanup handling. 240 break; 241 242 case Qualifiers::OCL_Autoreleasing: 243 // Nothing to do; cleaned up by an autorelease pool. 244 return; 245 246 case Qualifiers::OCL_Strong: 247 case Qualifiers::OCL_Weak: 248 switch (StorageDuration Duration = M->getStorageDuration()) { 249 case SD_Static: 250 // Note: we intentionally do not register a cleanup to release 251 // the object on program termination. 252 return; 253 254 case SD_Thread: 255 // FIXME: We should probably register a cleanup in this case. 256 return; 257 258 case SD_Automatic: 259 case SD_FullExpression: 260 CodeGenFunction::Destroyer *Destroy; 261 CleanupKind CleanupKind; 262 if (Lifetime == Qualifiers::OCL_Strong) { 263 const ValueDecl *VD = M->getExtendingDecl(); 264 bool Precise = 265 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 266 CleanupKind = CGF.getARCCleanupKind(); 267 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 268 : &CodeGenFunction::destroyARCStrongImprecise; 269 } else { 270 // __weak objects always get EH cleanups; otherwise, exceptions 271 // could cause really nasty crashes instead of mere leaks. 272 CleanupKind = NormalAndEHCleanup; 273 Destroy = &CodeGenFunction::destroyARCWeak; 274 } 275 if (Duration == SD_FullExpression) 276 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 277 M->getType(), *Destroy, 278 CleanupKind & EHCleanup); 279 else 280 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 281 M->getType(), 282 *Destroy, CleanupKind & EHCleanup); 283 return; 284 285 case SD_Dynamic: 286 llvm_unreachable("temporary cannot have dynamic storage duration"); 287 } 288 llvm_unreachable("unknown storage duration"); 289 } 290 } 291 292 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 293 if (const RecordType *RT = 294 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 295 // Get the destructor for the reference temporary. 296 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 297 if (!ClassDecl->hasTrivialDestructor()) 298 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 299 } 300 301 if (!ReferenceTemporaryDtor) 302 return; 303 304 // Call the destructor for the temporary. 305 switch (M->getStorageDuration()) { 306 case SD_Static: 307 case SD_Thread: { 308 llvm::Constant *CleanupFn; 309 llvm::Constant *CleanupArg; 310 if (E->getType()->isArrayType()) { 311 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 312 ReferenceTemporary, E->getType(), 313 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 314 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 315 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 316 } else { 317 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 318 StructorType::Complete); 319 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 320 } 321 CGF.CGM.getCXXABI().registerGlobalDtor( 322 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 323 break; 324 } 325 326 case SD_FullExpression: 327 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 328 CodeGenFunction::destroyCXXObject, 329 CGF.getLangOpts().Exceptions); 330 break; 331 332 case SD_Automatic: 333 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 334 ReferenceTemporary, E->getType(), 335 CodeGenFunction::destroyCXXObject, 336 CGF.getLangOpts().Exceptions); 337 break; 338 339 case SD_Dynamic: 340 llvm_unreachable("temporary cannot have dynamic storage duration"); 341 } 342 } 343 344 static Address createReferenceTemporary(CodeGenFunction &CGF, 345 const MaterializeTemporaryExpr *M, 346 const Expr *Inner) { 347 auto &TCG = CGF.getTargetHooks(); 348 switch (M->getStorageDuration()) { 349 case SD_FullExpression: 350 case SD_Automatic: { 351 // If we have a constant temporary array or record try to promote it into a 352 // constant global under the same rules a normal constant would've been 353 // promoted. This is easier on the optimizer and generally emits fewer 354 // instructions. 355 QualType Ty = Inner->getType(); 356 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 357 (Ty->isArrayType() || Ty->isRecordType()) && 358 CGF.CGM.isTypeConstant(Ty, true)) 359 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 360 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 361 auto AS = AddrSpace.getValue(); 362 auto *GV = new llvm::GlobalVariable( 363 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 364 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 365 llvm::GlobalValue::NotThreadLocal, 366 CGF.getContext().getTargetAddressSpace(AS)); 367 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 368 GV->setAlignment(alignment.getQuantity()); 369 llvm::Constant *C = GV; 370 if (AS != LangAS::Default) 371 C = TCG.performAddrSpaceCast( 372 CGF.CGM, GV, AS, LangAS::Default, 373 GV->getValueType()->getPointerTo( 374 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 375 // FIXME: Should we put the new global into a COMDAT? 376 return Address(C, alignment); 377 } 378 } 379 return CGF.CreateMemTemp(Ty, "ref.tmp"); 380 } 381 case SD_Thread: 382 case SD_Static: 383 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 384 385 case SD_Dynamic: 386 llvm_unreachable("temporary can't have dynamic storage duration"); 387 } 388 llvm_unreachable("unknown storage duration"); 389 } 390 391 LValue CodeGenFunction:: 392 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 393 const Expr *E = M->GetTemporaryExpr(); 394 395 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 396 // as that will cause the lifetime adjustment to be lost for ARC 397 auto ownership = M->getType().getObjCLifetime(); 398 if (ownership != Qualifiers::OCL_None && 399 ownership != Qualifiers::OCL_ExplicitNone) { 400 Address Object = createReferenceTemporary(*this, M, E); 401 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 402 Object = Address(llvm::ConstantExpr::getBitCast(Var, 403 ConvertTypeForMem(E->getType()) 404 ->getPointerTo(Object.getAddressSpace())), 405 Object.getAlignment()); 406 407 // createReferenceTemporary will promote the temporary to a global with a 408 // constant initializer if it can. It can only do this to a value of 409 // ARC-manageable type if the value is global and therefore "immune" to 410 // ref-counting operations. Therefore we have no need to emit either a 411 // dynamic initialization or a cleanup and we can just return the address 412 // of the temporary. 413 if (Var->hasInitializer()) 414 return MakeAddrLValue(Object, M->getType(), 415 LValueBaseInfo(AlignmentSource::Decl, false)); 416 417 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 418 } 419 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 420 LValueBaseInfo(AlignmentSource::Decl, 421 false)); 422 423 switch (getEvaluationKind(E->getType())) { 424 default: llvm_unreachable("expected scalar or aggregate expression"); 425 case TEK_Scalar: 426 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 427 break; 428 case TEK_Aggregate: { 429 EmitAggExpr(E, AggValueSlot::forAddr(Object, 430 E->getType().getQualifiers(), 431 AggValueSlot::IsDestructed, 432 AggValueSlot::DoesNotNeedGCBarriers, 433 AggValueSlot::IsNotAliased)); 434 break; 435 } 436 } 437 438 pushTemporaryCleanup(*this, M, E, Object); 439 return RefTempDst; 440 } 441 442 SmallVector<const Expr *, 2> CommaLHSs; 443 SmallVector<SubobjectAdjustment, 2> Adjustments; 444 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 445 446 for (const auto &Ignored : CommaLHSs) 447 EmitIgnoredExpr(Ignored); 448 449 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 450 if (opaque->getType()->isRecordType()) { 451 assert(Adjustments.empty()); 452 return EmitOpaqueValueLValue(opaque); 453 } 454 } 455 456 // Create and initialize the reference temporary. 457 Address Object = createReferenceTemporary(*this, M, E); 458 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 459 Object.getPointer()->stripPointerCasts())) { 460 Object = Address(llvm::ConstantExpr::getBitCast( 461 cast<llvm::Constant>(Object.getPointer()), 462 ConvertTypeForMem(E->getType())->getPointerTo()), 463 Object.getAlignment()); 464 // If the temporary is a global and has a constant initializer or is a 465 // constant temporary that we promoted to a global, we may have already 466 // initialized it. 467 if (!Var->hasInitializer()) { 468 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 469 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 470 } 471 } else { 472 switch (M->getStorageDuration()) { 473 case SD_Automatic: 474 case SD_FullExpression: 475 if (auto *Size = EmitLifetimeStart( 476 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 477 Object.getPointer())) { 478 if (M->getStorageDuration() == SD_Automatic) 479 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 480 Object, Size); 481 else 482 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 483 Size); 484 } 485 break; 486 default: 487 break; 488 } 489 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 490 } 491 pushTemporaryCleanup(*this, M, E, Object); 492 493 // Perform derived-to-base casts and/or field accesses, to get from the 494 // temporary object we created (and, potentially, for which we extended 495 // the lifetime) to the subobject we're binding the reference to. 496 for (unsigned I = Adjustments.size(); I != 0; --I) { 497 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 498 switch (Adjustment.Kind) { 499 case SubobjectAdjustment::DerivedToBaseAdjustment: 500 Object = 501 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 502 Adjustment.DerivedToBase.BasePath->path_begin(), 503 Adjustment.DerivedToBase.BasePath->path_end(), 504 /*NullCheckValue=*/ false, E->getExprLoc()); 505 break; 506 507 case SubobjectAdjustment::FieldAdjustment: { 508 LValue LV = MakeAddrLValue(Object, E->getType(), 509 LValueBaseInfo(AlignmentSource::Decl, false)); 510 LV = EmitLValueForField(LV, Adjustment.Field); 511 assert(LV.isSimple() && 512 "materialized temporary field is not a simple lvalue"); 513 Object = LV.getAddress(); 514 break; 515 } 516 517 case SubobjectAdjustment::MemberPointerAdjustment: { 518 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 519 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 520 Adjustment.Ptr.MPT); 521 break; 522 } 523 } 524 } 525 526 return MakeAddrLValue(Object, M->getType(), 527 LValueBaseInfo(AlignmentSource::Decl, false)); 528 } 529 530 RValue 531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 532 // Emit the expression as an lvalue. 533 LValue LV = EmitLValue(E); 534 assert(LV.isSimple()); 535 llvm::Value *Value = LV.getPointer(); 536 537 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 538 // C++11 [dcl.ref]p5 (as amended by core issue 453): 539 // If a glvalue to which a reference is directly bound designates neither 540 // an existing object or function of an appropriate type nor a region of 541 // storage of suitable size and alignment to contain an object of the 542 // reference's type, the behavior is undefined. 543 QualType Ty = E->getType(); 544 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 545 } 546 547 return RValue::get(Value); 548 } 549 550 551 /// getAccessedFieldNo - Given an encoded value and a result number, return the 552 /// input field number being accessed. 553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 554 const llvm::Constant *Elts) { 555 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 556 ->getZExtValue(); 557 } 558 559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 561 llvm::Value *High) { 562 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 563 llvm::Value *K47 = Builder.getInt64(47); 564 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 565 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 566 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 567 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 568 return Builder.CreateMul(B1, KMul); 569 } 570 571 bool CodeGenFunction::sanitizePerformTypeCheck() const { 572 return SanOpts.has(SanitizerKind::Null) | 573 SanOpts.has(SanitizerKind::Alignment) | 574 SanOpts.has(SanitizerKind::ObjectSize) | 575 SanOpts.has(SanitizerKind::Vptr); 576 } 577 578 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 579 llvm::Value *Ptr, QualType Ty, 580 CharUnits Alignment, 581 SanitizerSet SkippedChecks) { 582 if (!sanitizePerformTypeCheck()) 583 return; 584 585 // Don't check pointers outside the default address space. The null check 586 // isn't correct, the object-size check isn't supported by LLVM, and we can't 587 // communicate the addresses to the runtime handler for the vptr check. 588 if (Ptr->getType()->getPointerAddressSpace()) 589 return; 590 591 // Don't check pointers to volatile data. The behavior here is implementation- 592 // defined. 593 if (Ty.isVolatileQualified()) 594 return; 595 596 SanitizerScope SanScope(this); 597 598 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 599 llvm::BasicBlock *Done = nullptr; 600 601 // Quickly determine whether we have a pointer to an alloca. It's possible 602 // to skip null checks, and some alignment checks, for these pointers. This 603 // can reduce compile-time significantly. 604 auto PtrToAlloca = 605 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 606 607 llvm::Value *IsNonNull = nullptr; 608 bool IsGuaranteedNonNull = 609 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 610 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 611 TCK == TCK_UpcastToVirtualBase; 612 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 613 !IsGuaranteedNonNull) { 614 // The glvalue must not be an empty glvalue. 615 IsNonNull = Builder.CreateIsNotNull(Ptr); 616 617 // The IR builder can constant-fold the null check if the pointer points to 618 // a constant. 619 IsGuaranteedNonNull = 620 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 621 622 // Skip the null check if the pointer is known to be non-null. 623 if (!IsGuaranteedNonNull) { 624 if (AllowNullPointers) { 625 // When performing pointer casts, it's OK if the value is null. 626 // Skip the remaining checks in that case. 627 Done = createBasicBlock("null"); 628 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 629 Builder.CreateCondBr(IsNonNull, Rest, Done); 630 EmitBlock(Rest); 631 } else { 632 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 633 } 634 } 635 } 636 637 if (SanOpts.has(SanitizerKind::ObjectSize) && 638 !SkippedChecks.has(SanitizerKind::ObjectSize) && 639 !Ty->isIncompleteType()) { 640 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 641 642 // The glvalue must refer to a large enough storage region. 643 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 644 // to check this. 645 // FIXME: Get object address space 646 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 647 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 648 llvm::Value *Min = Builder.getFalse(); 649 llvm::Value *NullIsUnknown = Builder.getFalse(); 650 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 651 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 652 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 653 llvm::ConstantInt::get(IntPtrTy, Size)); 654 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 655 } 656 657 uint64_t AlignVal = 0; 658 659 if (SanOpts.has(SanitizerKind::Alignment) && 660 !SkippedChecks.has(SanitizerKind::Alignment)) { 661 AlignVal = Alignment.getQuantity(); 662 if (!Ty->isIncompleteType() && !AlignVal) 663 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 664 665 // The glvalue must be suitably aligned. 666 if (AlignVal > 1 && 667 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 668 llvm::Value *Align = 669 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 670 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 671 llvm::Value *Aligned = 672 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 673 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 674 } 675 } 676 677 if (Checks.size() > 0) { 678 // Make sure we're not losing information. Alignment needs to be a power of 679 // 2 680 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 681 llvm::Constant *StaticData[] = { 682 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 683 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 684 llvm::ConstantInt::get(Int8Ty, TCK)}; 685 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 686 } 687 688 // If possible, check that the vptr indicates that there is a subobject of 689 // type Ty at offset zero within this object. 690 // 691 // C++11 [basic.life]p5,6: 692 // [For storage which does not refer to an object within its lifetime] 693 // The program has undefined behavior if: 694 // -- the [pointer or glvalue] is used to access a non-static data member 695 // or call a non-static member function 696 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 697 bool HasNullCheck = IsGuaranteedNonNull || IsNonNull; 698 if (SanOpts.has(SanitizerKind::Vptr) && 699 !SkippedChecks.has(SanitizerKind::Vptr) && HasNullCheck && 700 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 701 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 702 TCK == TCK_UpcastToVirtualBase) && 703 RD && RD->hasDefinition() && RD->isDynamicClass()) { 704 // Ensure that the pointer is non-null before loading it. If there is no 705 // compile-time guarantee, reuse the run-time null check. 706 if (!IsGuaranteedNonNull) { 707 assert(IsNonNull && "Missing run-time null check"); 708 if (!Done) 709 Done = createBasicBlock("vptr.null"); 710 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 711 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 712 EmitBlock(VptrNotNull); 713 } 714 715 // Compute a hash of the mangled name of the type. 716 // 717 // FIXME: This is not guaranteed to be deterministic! Move to a 718 // fingerprinting mechanism once LLVM provides one. For the time 719 // being the implementation happens to be deterministic. 720 SmallString<64> MangledName; 721 llvm::raw_svector_ostream Out(MangledName); 722 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 723 Out); 724 725 // Blacklist based on the mangled type. 726 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 727 Out.str())) { 728 llvm::hash_code TypeHash = hash_value(Out.str()); 729 730 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 731 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 732 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 733 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 734 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 735 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 736 737 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 738 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 739 740 // Look the hash up in our cache. 741 const int CacheSize = 128; 742 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 743 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 744 "__ubsan_vptr_type_cache"); 745 llvm::Value *Slot = Builder.CreateAnd(Hash, 746 llvm::ConstantInt::get(IntPtrTy, 747 CacheSize-1)); 748 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 749 llvm::Value *CacheVal = 750 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 751 getPointerAlign()); 752 753 // If the hash isn't in the cache, call a runtime handler to perform the 754 // hard work of checking whether the vptr is for an object of the right 755 // type. This will either fill in the cache and return, or produce a 756 // diagnostic. 757 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 758 llvm::Constant *StaticData[] = { 759 EmitCheckSourceLocation(Loc), 760 EmitCheckTypeDescriptor(Ty), 761 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 762 llvm::ConstantInt::get(Int8Ty, TCK) 763 }; 764 llvm::Value *DynamicData[] = { Ptr, Hash }; 765 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 766 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 767 DynamicData); 768 } 769 } 770 771 if (Done) { 772 Builder.CreateBr(Done); 773 EmitBlock(Done); 774 } 775 } 776 777 /// Determine whether this expression refers to a flexible array member in a 778 /// struct. We disable array bounds checks for such members. 779 static bool isFlexibleArrayMemberExpr(const Expr *E) { 780 // For compatibility with existing code, we treat arrays of length 0 or 781 // 1 as flexible array members. 782 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 783 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 784 if (CAT->getSize().ugt(1)) 785 return false; 786 } else if (!isa<IncompleteArrayType>(AT)) 787 return false; 788 789 E = E->IgnoreParens(); 790 791 // A flexible array member must be the last member in the class. 792 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 793 // FIXME: If the base type of the member expr is not FD->getParent(), 794 // this should not be treated as a flexible array member access. 795 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 796 RecordDecl::field_iterator FI( 797 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 798 return ++FI == FD->getParent()->field_end(); 799 } 800 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 801 return IRE->getDecl()->getNextIvar() == nullptr; 802 } 803 804 return false; 805 } 806 807 /// If Base is known to point to the start of an array, return the length of 808 /// that array. Return 0 if the length cannot be determined. 809 static llvm::Value *getArrayIndexingBound( 810 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 811 // For the vector indexing extension, the bound is the number of elements. 812 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 813 IndexedType = Base->getType(); 814 return CGF.Builder.getInt32(VT->getNumElements()); 815 } 816 817 Base = Base->IgnoreParens(); 818 819 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 820 if (CE->getCastKind() == CK_ArrayToPointerDecay && 821 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 822 IndexedType = CE->getSubExpr()->getType(); 823 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 824 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 825 return CGF.Builder.getInt(CAT->getSize()); 826 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 827 return CGF.getVLASize(VAT).first; 828 } 829 } 830 831 return nullptr; 832 } 833 834 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 835 llvm::Value *Index, QualType IndexType, 836 bool Accessed) { 837 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 838 "should not be called unless adding bounds checks"); 839 SanitizerScope SanScope(this); 840 841 QualType IndexedType; 842 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 843 if (!Bound) 844 return; 845 846 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 847 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 848 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 849 850 llvm::Constant *StaticData[] = { 851 EmitCheckSourceLocation(E->getExprLoc()), 852 EmitCheckTypeDescriptor(IndexedType), 853 EmitCheckTypeDescriptor(IndexType) 854 }; 855 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 856 : Builder.CreateICmpULE(IndexVal, BoundVal); 857 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 858 SanitizerHandler::OutOfBounds, StaticData, Index); 859 } 860 861 862 CodeGenFunction::ComplexPairTy CodeGenFunction:: 863 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 864 bool isInc, bool isPre) { 865 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 866 867 llvm::Value *NextVal; 868 if (isa<llvm::IntegerType>(InVal.first->getType())) { 869 uint64_t AmountVal = isInc ? 1 : -1; 870 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 871 872 // Add the inc/dec to the real part. 873 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 874 } else { 875 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 876 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 877 if (!isInc) 878 FVal.changeSign(); 879 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 880 881 // Add the inc/dec to the real part. 882 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 883 } 884 885 ComplexPairTy IncVal(NextVal, InVal.second); 886 887 // Store the updated result through the lvalue. 888 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 889 890 // If this is a postinc, return the value read from memory, otherwise use the 891 // updated value. 892 return isPre ? IncVal : InVal; 893 } 894 895 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 896 CodeGenFunction *CGF) { 897 // Bind VLAs in the cast type. 898 if (CGF && E->getType()->isVariablyModifiedType()) 899 CGF->EmitVariablyModifiedType(E->getType()); 900 901 if (CGDebugInfo *DI = getModuleDebugInfo()) 902 DI->EmitExplicitCastType(E->getType()); 903 } 904 905 //===----------------------------------------------------------------------===// 906 // LValue Expression Emission 907 //===----------------------------------------------------------------------===// 908 909 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 910 /// derive a more accurate bound on the alignment of the pointer. 911 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 912 LValueBaseInfo *BaseInfo) { 913 // We allow this with ObjC object pointers because of fragile ABIs. 914 assert(E->getType()->isPointerType() || 915 E->getType()->isObjCObjectPointerType()); 916 E = E->IgnoreParens(); 917 918 // Casts: 919 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 920 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 921 CGM.EmitExplicitCastExprType(ECE, this); 922 923 switch (CE->getCastKind()) { 924 // Non-converting casts (but not C's implicit conversion from void*). 925 case CK_BitCast: 926 case CK_NoOp: 927 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 928 if (PtrTy->getPointeeType()->isVoidType()) 929 break; 930 931 LValueBaseInfo InnerInfo; 932 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 933 if (BaseInfo) *BaseInfo = InnerInfo; 934 935 // If this is an explicit bitcast, and the source l-value is 936 // opaque, honor the alignment of the casted-to type. 937 if (isa<ExplicitCastExpr>(CE) && 938 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 939 LValueBaseInfo ExpInfo; 940 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 941 &ExpInfo); 942 if (BaseInfo) 943 BaseInfo->mergeForCast(ExpInfo); 944 Addr = Address(Addr.getPointer(), Align); 945 } 946 947 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 948 CE->getCastKind() == CK_BitCast) { 949 if (auto PT = E->getType()->getAs<PointerType>()) 950 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 951 /*MayBeNull=*/true, 952 CodeGenFunction::CFITCK_UnrelatedCast, 953 CE->getLocStart()); 954 } 955 956 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 957 } 958 break; 959 960 // Array-to-pointer decay. 961 case CK_ArrayToPointerDecay: 962 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 963 964 // Derived-to-base conversions. 965 case CK_UncheckedDerivedToBase: 966 case CK_DerivedToBase: { 967 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 968 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 969 return GetAddressOfBaseClass(Addr, Derived, 970 CE->path_begin(), CE->path_end(), 971 ShouldNullCheckClassCastValue(CE), 972 CE->getExprLoc()); 973 } 974 975 // TODO: Is there any reason to treat base-to-derived conversions 976 // specially? 977 default: 978 break; 979 } 980 } 981 982 // Unary &. 983 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 984 if (UO->getOpcode() == UO_AddrOf) { 985 LValue LV = EmitLValue(UO->getSubExpr()); 986 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 987 return LV.getAddress(); 988 } 989 } 990 991 // TODO: conditional operators, comma. 992 993 // Otherwise, use the alignment of the type. 994 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 995 return Address(EmitScalarExpr(E), Align); 996 } 997 998 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 999 if (Ty->isVoidType()) 1000 return RValue::get(nullptr); 1001 1002 switch (getEvaluationKind(Ty)) { 1003 case TEK_Complex: { 1004 llvm::Type *EltTy = 1005 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1006 llvm::Value *U = llvm::UndefValue::get(EltTy); 1007 return RValue::getComplex(std::make_pair(U, U)); 1008 } 1009 1010 // If this is a use of an undefined aggregate type, the aggregate must have an 1011 // identifiable address. Just because the contents of the value are undefined 1012 // doesn't mean that the address can't be taken and compared. 1013 case TEK_Aggregate: { 1014 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1015 return RValue::getAggregate(DestPtr); 1016 } 1017 1018 case TEK_Scalar: 1019 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1020 } 1021 llvm_unreachable("bad evaluation kind"); 1022 } 1023 1024 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1025 const char *Name) { 1026 ErrorUnsupported(E, Name); 1027 return GetUndefRValue(E->getType()); 1028 } 1029 1030 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1031 const char *Name) { 1032 ErrorUnsupported(E, Name); 1033 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1034 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1035 E->getType()); 1036 } 1037 1038 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1039 const Expr *Base = Obj; 1040 while (!isa<CXXThisExpr>(Base)) { 1041 // The result of a dynamic_cast can be null. 1042 if (isa<CXXDynamicCastExpr>(Base)) 1043 return false; 1044 1045 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1046 Base = CE->getSubExpr(); 1047 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1048 Base = PE->getSubExpr(); 1049 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1050 if (UO->getOpcode() == UO_Extension) 1051 Base = UO->getSubExpr(); 1052 else 1053 return false; 1054 } else { 1055 return false; 1056 } 1057 } 1058 return true; 1059 } 1060 1061 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1062 LValue LV; 1063 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1064 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1065 else 1066 LV = EmitLValue(E); 1067 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1068 SanitizerSet SkippedChecks; 1069 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1070 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1071 if (IsBaseCXXThis) 1072 SkippedChecks.set(SanitizerKind::Alignment, true); 1073 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1074 SkippedChecks.set(SanitizerKind::Null, true); 1075 } 1076 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1077 E->getType(), LV.getAlignment(), SkippedChecks); 1078 } 1079 return LV; 1080 } 1081 1082 /// EmitLValue - Emit code to compute a designator that specifies the location 1083 /// of the expression. 1084 /// 1085 /// This can return one of two things: a simple address or a bitfield reference. 1086 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1087 /// an LLVM pointer type. 1088 /// 1089 /// If this returns a bitfield reference, nothing about the pointee type of the 1090 /// LLVM value is known: For example, it may not be a pointer to an integer. 1091 /// 1092 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1093 /// this method guarantees that the returned pointer type will point to an LLVM 1094 /// type of the same size of the lvalue's type. If the lvalue has a variable 1095 /// length type, this is not possible. 1096 /// 1097 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1098 ApplyDebugLocation DL(*this, E); 1099 switch (E->getStmtClass()) { 1100 default: return EmitUnsupportedLValue(E, "l-value expression"); 1101 1102 case Expr::ObjCPropertyRefExprClass: 1103 llvm_unreachable("cannot emit a property reference directly"); 1104 1105 case Expr::ObjCSelectorExprClass: 1106 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1107 case Expr::ObjCIsaExprClass: 1108 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1109 case Expr::BinaryOperatorClass: 1110 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1111 case Expr::CompoundAssignOperatorClass: { 1112 QualType Ty = E->getType(); 1113 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1114 Ty = AT->getValueType(); 1115 if (!Ty->isAnyComplexType()) 1116 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1117 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1118 } 1119 case Expr::CallExprClass: 1120 case Expr::CXXMemberCallExprClass: 1121 case Expr::CXXOperatorCallExprClass: 1122 case Expr::UserDefinedLiteralClass: 1123 return EmitCallExprLValue(cast<CallExpr>(E)); 1124 case Expr::VAArgExprClass: 1125 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1126 case Expr::DeclRefExprClass: 1127 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1128 case Expr::ParenExprClass: 1129 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1130 case Expr::GenericSelectionExprClass: 1131 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1132 case Expr::PredefinedExprClass: 1133 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1134 case Expr::StringLiteralClass: 1135 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1136 case Expr::ObjCEncodeExprClass: 1137 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1138 case Expr::PseudoObjectExprClass: 1139 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1140 case Expr::InitListExprClass: 1141 return EmitInitListLValue(cast<InitListExpr>(E)); 1142 case Expr::CXXTemporaryObjectExprClass: 1143 case Expr::CXXConstructExprClass: 1144 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1145 case Expr::CXXBindTemporaryExprClass: 1146 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1147 case Expr::CXXUuidofExprClass: 1148 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1149 case Expr::LambdaExprClass: 1150 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1151 1152 case Expr::ExprWithCleanupsClass: { 1153 const auto *cleanups = cast<ExprWithCleanups>(E); 1154 enterFullExpression(cleanups); 1155 RunCleanupsScope Scope(*this); 1156 LValue LV = EmitLValue(cleanups->getSubExpr()); 1157 if (LV.isSimple()) { 1158 // Defend against branches out of gnu statement expressions surrounded by 1159 // cleanups. 1160 llvm::Value *V = LV.getPointer(); 1161 Scope.ForceCleanup({&V}); 1162 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1163 getContext(), LV.getBaseInfo(), 1164 LV.getTBAAInfo()); 1165 } 1166 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1167 // bitfield lvalue or some other non-simple lvalue? 1168 return LV; 1169 } 1170 1171 case Expr::CXXDefaultArgExprClass: 1172 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1173 case Expr::CXXDefaultInitExprClass: { 1174 CXXDefaultInitExprScope Scope(*this); 1175 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1176 } 1177 case Expr::CXXTypeidExprClass: 1178 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1179 1180 case Expr::ObjCMessageExprClass: 1181 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1182 case Expr::ObjCIvarRefExprClass: 1183 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1184 case Expr::StmtExprClass: 1185 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1186 case Expr::UnaryOperatorClass: 1187 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1188 case Expr::ArraySubscriptExprClass: 1189 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1190 case Expr::OMPArraySectionExprClass: 1191 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1192 case Expr::ExtVectorElementExprClass: 1193 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1194 case Expr::MemberExprClass: 1195 return EmitMemberExpr(cast<MemberExpr>(E)); 1196 case Expr::CompoundLiteralExprClass: 1197 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1198 case Expr::ConditionalOperatorClass: 1199 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1200 case Expr::BinaryConditionalOperatorClass: 1201 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1202 case Expr::ChooseExprClass: 1203 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1204 case Expr::OpaqueValueExprClass: 1205 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1206 case Expr::SubstNonTypeTemplateParmExprClass: 1207 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1208 case Expr::ImplicitCastExprClass: 1209 case Expr::CStyleCastExprClass: 1210 case Expr::CXXFunctionalCastExprClass: 1211 case Expr::CXXStaticCastExprClass: 1212 case Expr::CXXDynamicCastExprClass: 1213 case Expr::CXXReinterpretCastExprClass: 1214 case Expr::CXXConstCastExprClass: 1215 case Expr::ObjCBridgedCastExprClass: 1216 return EmitCastLValue(cast<CastExpr>(E)); 1217 1218 case Expr::MaterializeTemporaryExprClass: 1219 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1220 1221 case Expr::CoawaitExprClass: 1222 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1223 case Expr::CoyieldExprClass: 1224 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1225 } 1226 } 1227 1228 /// Given an object of the given canonical type, can we safely copy a 1229 /// value out of it based on its initializer? 1230 static bool isConstantEmittableObjectType(QualType type) { 1231 assert(type.isCanonical()); 1232 assert(!type->isReferenceType()); 1233 1234 // Must be const-qualified but non-volatile. 1235 Qualifiers qs = type.getLocalQualifiers(); 1236 if (!qs.hasConst() || qs.hasVolatile()) return false; 1237 1238 // Otherwise, all object types satisfy this except C++ classes with 1239 // mutable subobjects or non-trivial copy/destroy behavior. 1240 if (const auto *RT = dyn_cast<RecordType>(type)) 1241 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1242 if (RD->hasMutableFields() || !RD->isTrivial()) 1243 return false; 1244 1245 return true; 1246 } 1247 1248 /// Can we constant-emit a load of a reference to a variable of the 1249 /// given type? This is different from predicates like 1250 /// Decl::isUsableInConstantExpressions because we do want it to apply 1251 /// in situations that don't necessarily satisfy the language's rules 1252 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1253 /// to do this with const float variables even if those variables 1254 /// aren't marked 'constexpr'. 1255 enum ConstantEmissionKind { 1256 CEK_None, 1257 CEK_AsReferenceOnly, 1258 CEK_AsValueOrReference, 1259 CEK_AsValueOnly 1260 }; 1261 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1262 type = type.getCanonicalType(); 1263 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1264 if (isConstantEmittableObjectType(ref->getPointeeType())) 1265 return CEK_AsValueOrReference; 1266 return CEK_AsReferenceOnly; 1267 } 1268 if (isConstantEmittableObjectType(type)) 1269 return CEK_AsValueOnly; 1270 return CEK_None; 1271 } 1272 1273 /// Try to emit a reference to the given value without producing it as 1274 /// an l-value. This is actually more than an optimization: we can't 1275 /// produce an l-value for variables that we never actually captured 1276 /// in a block or lambda, which means const int variables or constexpr 1277 /// literals or similar. 1278 CodeGenFunction::ConstantEmission 1279 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1280 ValueDecl *value = refExpr->getDecl(); 1281 1282 // The value needs to be an enum constant or a constant variable. 1283 ConstantEmissionKind CEK; 1284 if (isa<ParmVarDecl>(value)) { 1285 CEK = CEK_None; 1286 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1287 CEK = checkVarTypeForConstantEmission(var->getType()); 1288 } else if (isa<EnumConstantDecl>(value)) { 1289 CEK = CEK_AsValueOnly; 1290 } else { 1291 CEK = CEK_None; 1292 } 1293 if (CEK == CEK_None) return ConstantEmission(); 1294 1295 Expr::EvalResult result; 1296 bool resultIsReference; 1297 QualType resultType; 1298 1299 // It's best to evaluate all the way as an r-value if that's permitted. 1300 if (CEK != CEK_AsReferenceOnly && 1301 refExpr->EvaluateAsRValue(result, getContext())) { 1302 resultIsReference = false; 1303 resultType = refExpr->getType(); 1304 1305 // Otherwise, try to evaluate as an l-value. 1306 } else if (CEK != CEK_AsValueOnly && 1307 refExpr->EvaluateAsLValue(result, getContext())) { 1308 resultIsReference = true; 1309 resultType = value->getType(); 1310 1311 // Failure. 1312 } else { 1313 return ConstantEmission(); 1314 } 1315 1316 // In any case, if the initializer has side-effects, abandon ship. 1317 if (result.HasSideEffects) 1318 return ConstantEmission(); 1319 1320 // Emit as a constant. 1321 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1322 1323 // Make sure we emit a debug reference to the global variable. 1324 // This should probably fire even for 1325 if (isa<VarDecl>(value)) { 1326 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1327 EmitDeclRefExprDbgValue(refExpr, result.Val); 1328 } else { 1329 assert(isa<EnumConstantDecl>(value)); 1330 EmitDeclRefExprDbgValue(refExpr, result.Val); 1331 } 1332 1333 // If we emitted a reference constant, we need to dereference that. 1334 if (resultIsReference) 1335 return ConstantEmission::forReference(C); 1336 1337 return ConstantEmission::forValue(C); 1338 } 1339 1340 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1341 SourceLocation Loc) { 1342 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1343 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1344 lvalue.getTBAAInfo(), 1345 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1346 lvalue.isNontemporal()); 1347 } 1348 1349 static bool hasBooleanRepresentation(QualType Ty) { 1350 if (Ty->isBooleanType()) 1351 return true; 1352 1353 if (const EnumType *ET = Ty->getAs<EnumType>()) 1354 return ET->getDecl()->getIntegerType()->isBooleanType(); 1355 1356 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1357 return hasBooleanRepresentation(AT->getValueType()); 1358 1359 return false; 1360 } 1361 1362 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1363 llvm::APInt &Min, llvm::APInt &End, 1364 bool StrictEnums, bool IsBool) { 1365 const EnumType *ET = Ty->getAs<EnumType>(); 1366 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1367 ET && !ET->getDecl()->isFixed(); 1368 if (!IsBool && !IsRegularCPlusPlusEnum) 1369 return false; 1370 1371 if (IsBool) { 1372 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1373 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1374 } else { 1375 const EnumDecl *ED = ET->getDecl(); 1376 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1377 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1378 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1379 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1380 1381 if (NumNegativeBits) { 1382 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1383 assert(NumBits <= Bitwidth); 1384 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1385 Min = -End; 1386 } else { 1387 assert(NumPositiveBits <= Bitwidth); 1388 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1389 Min = llvm::APInt(Bitwidth, 0); 1390 } 1391 } 1392 return true; 1393 } 1394 1395 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1396 llvm::APInt Min, End; 1397 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1398 hasBooleanRepresentation(Ty))) 1399 return nullptr; 1400 1401 llvm::MDBuilder MDHelper(getLLVMContext()); 1402 return MDHelper.createRange(Min, End); 1403 } 1404 1405 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1406 SourceLocation Loc) { 1407 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1408 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1409 if (!HasBoolCheck && !HasEnumCheck) 1410 return false; 1411 1412 bool IsBool = hasBooleanRepresentation(Ty) || 1413 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1414 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1415 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1416 if (!NeedsBoolCheck && !NeedsEnumCheck) 1417 return false; 1418 1419 // Single-bit booleans don't need to be checked. Special-case this to avoid 1420 // a bit width mismatch when handling bitfield values. This is handled by 1421 // EmitFromMemory for the non-bitfield case. 1422 if (IsBool && 1423 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1424 return false; 1425 1426 llvm::APInt Min, End; 1427 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1428 return true; 1429 1430 SanitizerScope SanScope(this); 1431 llvm::Value *Check; 1432 --End; 1433 if (!Min) { 1434 Check = Builder.CreateICmpULE( 1435 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1436 } else { 1437 llvm::Value *Upper = Builder.CreateICmpSLE( 1438 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1439 llvm::Value *Lower = Builder.CreateICmpSGE( 1440 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1441 Check = Builder.CreateAnd(Upper, Lower); 1442 } 1443 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1444 EmitCheckTypeDescriptor(Ty)}; 1445 SanitizerMask Kind = 1446 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1447 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1448 StaticArgs, EmitCheckValue(Value)); 1449 return true; 1450 } 1451 1452 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1453 QualType Ty, 1454 SourceLocation Loc, 1455 LValueBaseInfo BaseInfo, 1456 llvm::MDNode *TBAAInfo, 1457 QualType TBAABaseType, 1458 uint64_t TBAAOffset, 1459 bool isNontemporal) { 1460 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1461 // For better performance, handle vector loads differently. 1462 if (Ty->isVectorType()) { 1463 const llvm::Type *EltTy = Addr.getElementType(); 1464 1465 const auto *VTy = cast<llvm::VectorType>(EltTy); 1466 1467 // Handle vectors of size 3 like size 4 for better performance. 1468 if (VTy->getNumElements() == 3) { 1469 1470 // Bitcast to vec4 type. 1471 llvm::VectorType *vec4Ty = 1472 llvm::VectorType::get(VTy->getElementType(), 4); 1473 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1474 // Now load value. 1475 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1476 1477 // Shuffle vector to get vec3. 1478 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1479 {0, 1, 2}, "extractVec"); 1480 return EmitFromMemory(V, Ty); 1481 } 1482 } 1483 } 1484 1485 // Atomic operations have to be done on integral types. 1486 LValue AtomicLValue = 1487 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1488 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1489 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1490 } 1491 1492 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1493 if (isNontemporal) { 1494 llvm::MDNode *Node = llvm::MDNode::get( 1495 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1496 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1497 } 1498 if (TBAAInfo) { 1499 bool MayAlias = BaseInfo.getMayAlias(); 1500 llvm::MDNode *TBAA = MayAlias 1501 ? CGM.getTBAAInfo(getContext().CharTy) 1502 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1503 if (TBAA) 1504 CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias); 1505 } 1506 1507 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1508 // In order to prevent the optimizer from throwing away the check, don't 1509 // attach range metadata to the load. 1510 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1511 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1512 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1513 1514 return EmitFromMemory(Load, Ty); 1515 } 1516 1517 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1518 // Bool has a different representation in memory than in registers. 1519 if (hasBooleanRepresentation(Ty)) { 1520 // This should really always be an i1, but sometimes it's already 1521 // an i8, and it's awkward to track those cases down. 1522 if (Value->getType()->isIntegerTy(1)) 1523 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1524 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1525 "wrong value rep of bool"); 1526 } 1527 1528 return Value; 1529 } 1530 1531 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1532 // Bool has a different representation in memory than in registers. 1533 if (hasBooleanRepresentation(Ty)) { 1534 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1535 "wrong value rep of bool"); 1536 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1537 } 1538 1539 return Value; 1540 } 1541 1542 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1543 bool Volatile, QualType Ty, 1544 LValueBaseInfo BaseInfo, 1545 llvm::MDNode *TBAAInfo, 1546 bool isInit, QualType TBAABaseType, 1547 uint64_t TBAAOffset, 1548 bool isNontemporal) { 1549 1550 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1551 // Handle vectors differently to get better performance. 1552 if (Ty->isVectorType()) { 1553 llvm::Type *SrcTy = Value->getType(); 1554 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1555 // Handle vec3 special. 1556 if (VecTy && VecTy->getNumElements() == 3) { 1557 // Our source is a vec3, do a shuffle vector to make it a vec4. 1558 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1559 Builder.getInt32(2), 1560 llvm::UndefValue::get(Builder.getInt32Ty())}; 1561 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1562 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1563 MaskV, "extractVec"); 1564 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1565 } 1566 if (Addr.getElementType() != SrcTy) { 1567 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1568 } 1569 } 1570 } 1571 1572 Value = EmitToMemory(Value, Ty); 1573 1574 LValue AtomicLValue = 1575 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1576 if (Ty->isAtomicType() || 1577 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1578 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1579 return; 1580 } 1581 1582 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1583 if (isNontemporal) { 1584 llvm::MDNode *Node = 1585 llvm::MDNode::get(Store->getContext(), 1586 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1587 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1588 } 1589 if (TBAAInfo) { 1590 bool MayAlias = BaseInfo.getMayAlias(); 1591 llvm::MDNode *TBAA = MayAlias 1592 ? CGM.getTBAAInfo(getContext().CharTy) 1593 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1594 if (TBAA) 1595 CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias); 1596 } 1597 } 1598 1599 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1600 bool isInit) { 1601 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1602 lvalue.getType(), lvalue.getBaseInfo(), 1603 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1604 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1605 } 1606 1607 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1608 /// method emits the address of the lvalue, then loads the result as an rvalue, 1609 /// returning the rvalue. 1610 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1611 if (LV.isObjCWeak()) { 1612 // load of a __weak object. 1613 Address AddrWeakObj = LV.getAddress(); 1614 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1615 AddrWeakObj)); 1616 } 1617 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1618 // In MRC mode, we do a load+autorelease. 1619 if (!getLangOpts().ObjCAutoRefCount) { 1620 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1621 } 1622 1623 // In ARC mode, we load retained and then consume the value. 1624 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1625 Object = EmitObjCConsumeObject(LV.getType(), Object); 1626 return RValue::get(Object); 1627 } 1628 1629 if (LV.isSimple()) { 1630 assert(!LV.getType()->isFunctionType()); 1631 1632 // Everything needs a load. 1633 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1634 } 1635 1636 if (LV.isVectorElt()) { 1637 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1638 LV.isVolatileQualified()); 1639 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1640 "vecext")); 1641 } 1642 1643 // If this is a reference to a subset of the elements of a vector, either 1644 // shuffle the input or extract/insert them as appropriate. 1645 if (LV.isExtVectorElt()) 1646 return EmitLoadOfExtVectorElementLValue(LV); 1647 1648 // Global Register variables always invoke intrinsics 1649 if (LV.isGlobalReg()) 1650 return EmitLoadOfGlobalRegLValue(LV); 1651 1652 assert(LV.isBitField() && "Unknown LValue type!"); 1653 return EmitLoadOfBitfieldLValue(LV, Loc); 1654 } 1655 1656 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1657 SourceLocation Loc) { 1658 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1659 1660 // Get the output type. 1661 llvm::Type *ResLTy = ConvertType(LV.getType()); 1662 1663 Address Ptr = LV.getBitFieldAddress(); 1664 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1665 1666 if (Info.IsSigned) { 1667 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1668 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1669 if (HighBits) 1670 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1671 if (Info.Offset + HighBits) 1672 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1673 } else { 1674 if (Info.Offset) 1675 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1676 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1677 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1678 Info.Size), 1679 "bf.clear"); 1680 } 1681 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1682 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1683 return RValue::get(Val); 1684 } 1685 1686 // If this is a reference to a subset of the elements of a vector, create an 1687 // appropriate shufflevector. 1688 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1689 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1690 LV.isVolatileQualified()); 1691 1692 const llvm::Constant *Elts = LV.getExtVectorElts(); 1693 1694 // If the result of the expression is a non-vector type, we must be extracting 1695 // a single element. Just codegen as an extractelement. 1696 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1697 if (!ExprVT) { 1698 unsigned InIdx = getAccessedFieldNo(0, Elts); 1699 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1700 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1701 } 1702 1703 // Always use shuffle vector to try to retain the original program structure 1704 unsigned NumResultElts = ExprVT->getNumElements(); 1705 1706 SmallVector<llvm::Constant*, 4> Mask; 1707 for (unsigned i = 0; i != NumResultElts; ++i) 1708 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1709 1710 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1711 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1712 MaskV); 1713 return RValue::get(Vec); 1714 } 1715 1716 /// @brief Generates lvalue for partial ext_vector access. 1717 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1718 Address VectorAddress = LV.getExtVectorAddress(); 1719 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1720 QualType EQT = ExprVT->getElementType(); 1721 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1722 1723 Address CastToPointerElement = 1724 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1725 "conv.ptr.element"); 1726 1727 const llvm::Constant *Elts = LV.getExtVectorElts(); 1728 unsigned ix = getAccessedFieldNo(0, Elts); 1729 1730 Address VectorBasePtrPlusIx = 1731 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1732 getContext().getTypeSizeInChars(EQT), 1733 "vector.elt"); 1734 1735 return VectorBasePtrPlusIx; 1736 } 1737 1738 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1739 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1740 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1741 "Bad type for register variable"); 1742 llvm::MDNode *RegName = cast<llvm::MDNode>( 1743 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1744 1745 // We accept integer and pointer types only 1746 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1747 llvm::Type *Ty = OrigTy; 1748 if (OrigTy->isPointerTy()) 1749 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1750 llvm::Type *Types[] = { Ty }; 1751 1752 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1753 llvm::Value *Call = Builder.CreateCall( 1754 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1755 if (OrigTy->isPointerTy()) 1756 Call = Builder.CreateIntToPtr(Call, OrigTy); 1757 return RValue::get(Call); 1758 } 1759 1760 1761 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1762 /// lvalue, where both are guaranteed to the have the same type, and that type 1763 /// is 'Ty'. 1764 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1765 bool isInit) { 1766 if (!Dst.isSimple()) { 1767 if (Dst.isVectorElt()) { 1768 // Read/modify/write the vector, inserting the new element. 1769 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1770 Dst.isVolatileQualified()); 1771 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1772 Dst.getVectorIdx(), "vecins"); 1773 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1774 Dst.isVolatileQualified()); 1775 return; 1776 } 1777 1778 // If this is an update of extended vector elements, insert them as 1779 // appropriate. 1780 if (Dst.isExtVectorElt()) 1781 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1782 1783 if (Dst.isGlobalReg()) 1784 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1785 1786 assert(Dst.isBitField() && "Unknown LValue type"); 1787 return EmitStoreThroughBitfieldLValue(Src, Dst); 1788 } 1789 1790 // There's special magic for assigning into an ARC-qualified l-value. 1791 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1792 switch (Lifetime) { 1793 case Qualifiers::OCL_None: 1794 llvm_unreachable("present but none"); 1795 1796 case Qualifiers::OCL_ExplicitNone: 1797 // nothing special 1798 break; 1799 1800 case Qualifiers::OCL_Strong: 1801 if (isInit) { 1802 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1803 break; 1804 } 1805 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1806 return; 1807 1808 case Qualifiers::OCL_Weak: 1809 if (isInit) 1810 // Initialize and then skip the primitive store. 1811 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1812 else 1813 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1814 return; 1815 1816 case Qualifiers::OCL_Autoreleasing: 1817 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1818 Src.getScalarVal())); 1819 // fall into the normal path 1820 break; 1821 } 1822 } 1823 1824 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1825 // load of a __weak object. 1826 Address LvalueDst = Dst.getAddress(); 1827 llvm::Value *src = Src.getScalarVal(); 1828 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1829 return; 1830 } 1831 1832 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1833 // load of a __strong object. 1834 Address LvalueDst = Dst.getAddress(); 1835 llvm::Value *src = Src.getScalarVal(); 1836 if (Dst.isObjCIvar()) { 1837 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1838 llvm::Type *ResultType = IntPtrTy; 1839 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1840 llvm::Value *RHS = dst.getPointer(); 1841 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1842 llvm::Value *LHS = 1843 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1844 "sub.ptr.lhs.cast"); 1845 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1846 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1847 BytesBetween); 1848 } else if (Dst.isGlobalObjCRef()) { 1849 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1850 Dst.isThreadLocalRef()); 1851 } 1852 else 1853 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1854 return; 1855 } 1856 1857 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1858 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1859 } 1860 1861 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1862 llvm::Value **Result) { 1863 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1864 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1865 Address Ptr = Dst.getBitFieldAddress(); 1866 1867 // Get the source value, truncated to the width of the bit-field. 1868 llvm::Value *SrcVal = Src.getScalarVal(); 1869 1870 // Cast the source to the storage type and shift it into place. 1871 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1872 /*IsSigned=*/false); 1873 llvm::Value *MaskedVal = SrcVal; 1874 1875 // See if there are other bits in the bitfield's storage we'll need to load 1876 // and mask together with source before storing. 1877 if (Info.StorageSize != Info.Size) { 1878 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1879 llvm::Value *Val = 1880 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1881 1882 // Mask the source value as needed. 1883 if (!hasBooleanRepresentation(Dst.getType())) 1884 SrcVal = Builder.CreateAnd(SrcVal, 1885 llvm::APInt::getLowBitsSet(Info.StorageSize, 1886 Info.Size), 1887 "bf.value"); 1888 MaskedVal = SrcVal; 1889 if (Info.Offset) 1890 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1891 1892 // Mask out the original value. 1893 Val = Builder.CreateAnd(Val, 1894 ~llvm::APInt::getBitsSet(Info.StorageSize, 1895 Info.Offset, 1896 Info.Offset + Info.Size), 1897 "bf.clear"); 1898 1899 // Or together the unchanged values and the source value. 1900 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1901 } else { 1902 assert(Info.Offset == 0); 1903 } 1904 1905 // Write the new value back out. 1906 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1907 1908 // Return the new value of the bit-field, if requested. 1909 if (Result) { 1910 llvm::Value *ResultVal = MaskedVal; 1911 1912 // Sign extend the value if needed. 1913 if (Info.IsSigned) { 1914 assert(Info.Size <= Info.StorageSize); 1915 unsigned HighBits = Info.StorageSize - Info.Size; 1916 if (HighBits) { 1917 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1918 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1919 } 1920 } 1921 1922 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1923 "bf.result.cast"); 1924 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1925 } 1926 } 1927 1928 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1929 LValue Dst) { 1930 // This access turns into a read/modify/write of the vector. Load the input 1931 // value now. 1932 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1933 Dst.isVolatileQualified()); 1934 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1935 1936 llvm::Value *SrcVal = Src.getScalarVal(); 1937 1938 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1939 unsigned NumSrcElts = VTy->getNumElements(); 1940 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1941 if (NumDstElts == NumSrcElts) { 1942 // Use shuffle vector is the src and destination are the same number of 1943 // elements and restore the vector mask since it is on the side it will be 1944 // stored. 1945 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1946 for (unsigned i = 0; i != NumSrcElts; ++i) 1947 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1948 1949 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1950 Vec = Builder.CreateShuffleVector(SrcVal, 1951 llvm::UndefValue::get(Vec->getType()), 1952 MaskV); 1953 } else if (NumDstElts > NumSrcElts) { 1954 // Extended the source vector to the same length and then shuffle it 1955 // into the destination. 1956 // FIXME: since we're shuffling with undef, can we just use the indices 1957 // into that? This could be simpler. 1958 SmallVector<llvm::Constant*, 4> ExtMask; 1959 for (unsigned i = 0; i != NumSrcElts; ++i) 1960 ExtMask.push_back(Builder.getInt32(i)); 1961 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1962 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1963 llvm::Value *ExtSrcVal = 1964 Builder.CreateShuffleVector(SrcVal, 1965 llvm::UndefValue::get(SrcVal->getType()), 1966 ExtMaskV); 1967 // build identity 1968 SmallVector<llvm::Constant*, 4> Mask; 1969 for (unsigned i = 0; i != NumDstElts; ++i) 1970 Mask.push_back(Builder.getInt32(i)); 1971 1972 // When the vector size is odd and .odd or .hi is used, the last element 1973 // of the Elts constant array will be one past the size of the vector. 1974 // Ignore the last element here, if it is greater than the mask size. 1975 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1976 NumSrcElts--; 1977 1978 // modify when what gets shuffled in 1979 for (unsigned i = 0; i != NumSrcElts; ++i) 1980 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1981 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1982 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1983 } else { 1984 // We should never shorten the vector 1985 llvm_unreachable("unexpected shorten vector length"); 1986 } 1987 } else { 1988 // If the Src is a scalar (not a vector) it must be updating one element. 1989 unsigned InIdx = getAccessedFieldNo(0, Elts); 1990 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1991 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1992 } 1993 1994 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1995 Dst.isVolatileQualified()); 1996 } 1997 1998 /// @brief Store of global named registers are always calls to intrinsics. 1999 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2000 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2001 "Bad type for register variable"); 2002 llvm::MDNode *RegName = cast<llvm::MDNode>( 2003 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2004 assert(RegName && "Register LValue is not metadata"); 2005 2006 // We accept integer and pointer types only 2007 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2008 llvm::Type *Ty = OrigTy; 2009 if (OrigTy->isPointerTy()) 2010 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2011 llvm::Type *Types[] = { Ty }; 2012 2013 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2014 llvm::Value *Value = Src.getScalarVal(); 2015 if (OrigTy->isPointerTy()) 2016 Value = Builder.CreatePtrToInt(Value, Ty); 2017 Builder.CreateCall( 2018 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2019 } 2020 2021 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2022 // generating write-barries API. It is currently a global, ivar, 2023 // or neither. 2024 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2025 LValue &LV, 2026 bool IsMemberAccess=false) { 2027 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2028 return; 2029 2030 if (isa<ObjCIvarRefExpr>(E)) { 2031 QualType ExpTy = E->getType(); 2032 if (IsMemberAccess && ExpTy->isPointerType()) { 2033 // If ivar is a structure pointer, assigning to field of 2034 // this struct follows gcc's behavior and makes it a non-ivar 2035 // writer-barrier conservatively. 2036 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2037 if (ExpTy->isRecordType()) { 2038 LV.setObjCIvar(false); 2039 return; 2040 } 2041 } 2042 LV.setObjCIvar(true); 2043 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2044 LV.setBaseIvarExp(Exp->getBase()); 2045 LV.setObjCArray(E->getType()->isArrayType()); 2046 return; 2047 } 2048 2049 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2050 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2051 if (VD->hasGlobalStorage()) { 2052 LV.setGlobalObjCRef(true); 2053 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2054 } 2055 } 2056 LV.setObjCArray(E->getType()->isArrayType()); 2057 return; 2058 } 2059 2060 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2061 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2062 return; 2063 } 2064 2065 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2066 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2067 if (LV.isObjCIvar()) { 2068 // If cast is to a structure pointer, follow gcc's behavior and make it 2069 // a non-ivar write-barrier. 2070 QualType ExpTy = E->getType(); 2071 if (ExpTy->isPointerType()) 2072 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2073 if (ExpTy->isRecordType()) 2074 LV.setObjCIvar(false); 2075 } 2076 return; 2077 } 2078 2079 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2080 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2081 return; 2082 } 2083 2084 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2085 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2086 return; 2087 } 2088 2089 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2090 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2091 return; 2092 } 2093 2094 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2095 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2096 return; 2097 } 2098 2099 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2100 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2101 if (LV.isObjCIvar() && !LV.isObjCArray()) 2102 // Using array syntax to assigning to what an ivar points to is not 2103 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2104 LV.setObjCIvar(false); 2105 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2106 // Using array syntax to assigning to what global points to is not 2107 // same as assigning to the global itself. {id *G;} G[i] = 0; 2108 LV.setGlobalObjCRef(false); 2109 return; 2110 } 2111 2112 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2113 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2114 // We don't know if member is an 'ivar', but this flag is looked at 2115 // only in the context of LV.isObjCIvar(). 2116 LV.setObjCArray(E->getType()->isArrayType()); 2117 return; 2118 } 2119 } 2120 2121 static llvm::Value * 2122 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2123 llvm::Value *V, llvm::Type *IRType, 2124 StringRef Name = StringRef()) { 2125 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2126 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2127 } 2128 2129 static LValue EmitThreadPrivateVarDeclLValue( 2130 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2131 llvm::Type *RealVarTy, SourceLocation Loc) { 2132 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2133 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2134 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2135 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2136 } 2137 2138 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2139 const ReferenceType *RefTy, 2140 LValueBaseInfo *BaseInfo) { 2141 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2142 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2143 BaseInfo, /*forPointee*/ true)); 2144 } 2145 2146 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2147 const ReferenceType *RefTy) { 2148 LValueBaseInfo BaseInfo; 2149 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2150 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2151 } 2152 2153 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2154 const PointerType *PtrTy, 2155 LValueBaseInfo *BaseInfo) { 2156 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2157 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2158 BaseInfo, 2159 /*forPointeeType=*/true)); 2160 } 2161 2162 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2163 const PointerType *PtrTy) { 2164 LValueBaseInfo BaseInfo; 2165 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2166 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2167 } 2168 2169 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2170 const Expr *E, const VarDecl *VD) { 2171 QualType T = E->getType(); 2172 2173 // If it's thread_local, emit a call to its wrapper function instead. 2174 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2175 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2176 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2177 2178 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2179 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2180 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2181 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2182 Address Addr(V, Alignment); 2183 LValue LV; 2184 // Emit reference to the private copy of the variable if it is an OpenMP 2185 // threadprivate variable. 2186 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2187 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2188 E->getExprLoc()); 2189 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2190 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2191 } else { 2192 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2193 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2194 } 2195 setObjCGCLValueClass(CGF.getContext(), E, LV); 2196 return LV; 2197 } 2198 2199 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2200 const FunctionDecl *FD) { 2201 if (FD->hasAttr<WeakRefAttr>()) { 2202 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2203 return aliasee.getPointer(); 2204 } 2205 2206 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2207 if (!FD->hasPrototype()) { 2208 if (const FunctionProtoType *Proto = 2209 FD->getType()->getAs<FunctionProtoType>()) { 2210 // Ugly case: for a K&R-style definition, the type of the definition 2211 // isn't the same as the type of a use. Correct for this with a 2212 // bitcast. 2213 QualType NoProtoType = 2214 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2215 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2216 V = llvm::ConstantExpr::getBitCast(V, 2217 CGM.getTypes().ConvertType(NoProtoType)); 2218 } 2219 } 2220 return V; 2221 } 2222 2223 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2224 const Expr *E, const FunctionDecl *FD) { 2225 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2226 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2227 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2228 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2229 } 2230 2231 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2232 llvm::Value *ThisValue) { 2233 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2234 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2235 return CGF.EmitLValueForField(LV, FD); 2236 } 2237 2238 /// Named Registers are named metadata pointing to the register name 2239 /// which will be read from/written to as an argument to the intrinsic 2240 /// @llvm.read/write_register. 2241 /// So far, only the name is being passed down, but other options such as 2242 /// register type, allocation type or even optimization options could be 2243 /// passed down via the metadata node. 2244 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2245 SmallString<64> Name("llvm.named.register."); 2246 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2247 assert(Asm->getLabel().size() < 64-Name.size() && 2248 "Register name too big"); 2249 Name.append(Asm->getLabel()); 2250 llvm::NamedMDNode *M = 2251 CGM.getModule().getOrInsertNamedMetadata(Name); 2252 if (M->getNumOperands() == 0) { 2253 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2254 Asm->getLabel()); 2255 llvm::Metadata *Ops[] = {Str}; 2256 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2257 } 2258 2259 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2260 2261 llvm::Value *Ptr = 2262 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2263 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2264 } 2265 2266 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2267 const NamedDecl *ND = E->getDecl(); 2268 QualType T = E->getType(); 2269 2270 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2271 // Global Named registers access via intrinsics only 2272 if (VD->getStorageClass() == SC_Register && 2273 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2274 return EmitGlobalNamedRegister(VD, CGM); 2275 2276 // A DeclRefExpr for a reference initialized by a constant expression can 2277 // appear without being odr-used. Directly emit the constant initializer. 2278 const Expr *Init = VD->getAnyInitializer(VD); 2279 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2280 VD->isUsableInConstantExpressions(getContext()) && 2281 VD->checkInitIsICE() && 2282 // Do not emit if it is private OpenMP variable. 2283 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2284 LocalDeclMap.count(VD))) { 2285 llvm::Constant *Val = 2286 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2287 assert(Val && "failed to emit reference constant expression"); 2288 // FIXME: Eventually we will want to emit vector element references. 2289 2290 // Should we be using the alignment of the constant pointer we emitted? 2291 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2292 /*pointee*/ true); 2293 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2294 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2295 } 2296 2297 // Check for captured variables. 2298 if (E->refersToEnclosingVariableOrCapture()) { 2299 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2300 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2301 else if (CapturedStmtInfo) { 2302 auto I = LocalDeclMap.find(VD); 2303 if (I != LocalDeclMap.end()) { 2304 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2305 return EmitLoadOfReferenceLValue(I->second, RefTy); 2306 return MakeAddrLValue(I->second, T); 2307 } 2308 LValue CapLVal = 2309 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2310 CapturedStmtInfo->getContextValue()); 2311 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2312 return MakeAddrLValue( 2313 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2314 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2315 } 2316 2317 assert(isa<BlockDecl>(CurCodeDecl)); 2318 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2319 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2320 return MakeAddrLValue(addr, T, BaseInfo); 2321 } 2322 } 2323 2324 // FIXME: We should be able to assert this for FunctionDecls as well! 2325 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2326 // those with a valid source location. 2327 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2328 !E->getLocation().isValid()) && 2329 "Should not use decl without marking it used!"); 2330 2331 if (ND->hasAttr<WeakRefAttr>()) { 2332 const auto *VD = cast<ValueDecl>(ND); 2333 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2334 return MakeAddrLValue(Aliasee, T, 2335 LValueBaseInfo(AlignmentSource::Decl, false)); 2336 } 2337 2338 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2339 // Check if this is a global variable. 2340 if (VD->hasLinkage() || VD->isStaticDataMember()) 2341 return EmitGlobalVarDeclLValue(*this, E, VD); 2342 2343 Address addr = Address::invalid(); 2344 2345 // The variable should generally be present in the local decl map. 2346 auto iter = LocalDeclMap.find(VD); 2347 if (iter != LocalDeclMap.end()) { 2348 addr = iter->second; 2349 2350 // Otherwise, it might be static local we haven't emitted yet for 2351 // some reason; most likely, because it's in an outer function. 2352 } else if (VD->isStaticLocal()) { 2353 addr = Address(CGM.getOrCreateStaticVarDecl( 2354 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2355 getContext().getDeclAlign(VD)); 2356 2357 // No other cases for now. 2358 } else { 2359 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2360 } 2361 2362 2363 // Check for OpenMP threadprivate variables. 2364 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2365 return EmitThreadPrivateVarDeclLValue( 2366 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2367 E->getExprLoc()); 2368 } 2369 2370 // Drill into block byref variables. 2371 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2372 if (isBlockByref) { 2373 addr = emitBlockByrefAddress(addr, VD); 2374 } 2375 2376 // Drill into reference types. 2377 LValue LV; 2378 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2379 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2380 } else { 2381 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2382 LV = MakeAddrLValue(addr, T, BaseInfo); 2383 } 2384 2385 bool isLocalStorage = VD->hasLocalStorage(); 2386 2387 bool NonGCable = isLocalStorage && 2388 !VD->getType()->isReferenceType() && 2389 !isBlockByref; 2390 if (NonGCable) { 2391 LV.getQuals().removeObjCGCAttr(); 2392 LV.setNonGC(true); 2393 } 2394 2395 bool isImpreciseLifetime = 2396 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2397 if (isImpreciseLifetime) 2398 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2399 setObjCGCLValueClass(getContext(), E, LV); 2400 return LV; 2401 } 2402 2403 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2404 return EmitFunctionDeclLValue(*this, E, FD); 2405 2406 // FIXME: While we're emitting a binding from an enclosing scope, all other 2407 // DeclRefExprs we see should be implicitly treated as if they also refer to 2408 // an enclosing scope. 2409 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2410 return EmitLValue(BD->getBinding()); 2411 2412 llvm_unreachable("Unhandled DeclRefExpr"); 2413 } 2414 2415 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2416 // __extension__ doesn't affect lvalue-ness. 2417 if (E->getOpcode() == UO_Extension) 2418 return EmitLValue(E->getSubExpr()); 2419 2420 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2421 switch (E->getOpcode()) { 2422 default: llvm_unreachable("Unknown unary operator lvalue!"); 2423 case UO_Deref: { 2424 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2425 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2426 2427 LValueBaseInfo BaseInfo; 2428 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2429 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2430 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2431 2432 // We should not generate __weak write barrier on indirect reference 2433 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2434 // But, we continue to generate __strong write barrier on indirect write 2435 // into a pointer to object. 2436 if (getLangOpts().ObjC1 && 2437 getLangOpts().getGC() != LangOptions::NonGC && 2438 LV.isObjCWeak()) 2439 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2440 return LV; 2441 } 2442 case UO_Real: 2443 case UO_Imag: { 2444 LValue LV = EmitLValue(E->getSubExpr()); 2445 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2446 2447 // __real is valid on scalars. This is a faster way of testing that. 2448 // __imag can only produce an rvalue on scalars. 2449 if (E->getOpcode() == UO_Real && 2450 !LV.getAddress().getElementType()->isStructTy()) { 2451 assert(E->getSubExpr()->getType()->isArithmeticType()); 2452 return LV; 2453 } 2454 2455 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2456 2457 Address Component = 2458 (E->getOpcode() == UO_Real 2459 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2460 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2461 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2462 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2463 return ElemLV; 2464 } 2465 case UO_PreInc: 2466 case UO_PreDec: { 2467 LValue LV = EmitLValue(E->getSubExpr()); 2468 bool isInc = E->getOpcode() == UO_PreInc; 2469 2470 if (E->getType()->isAnyComplexType()) 2471 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2472 else 2473 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2474 return LV; 2475 } 2476 } 2477 } 2478 2479 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2480 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2481 E->getType(), 2482 LValueBaseInfo(AlignmentSource::Decl, false)); 2483 } 2484 2485 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2486 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2487 E->getType(), 2488 LValueBaseInfo(AlignmentSource::Decl, false)); 2489 } 2490 2491 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2492 auto SL = E->getFunctionName(); 2493 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2494 StringRef FnName = CurFn->getName(); 2495 if (FnName.startswith("\01")) 2496 FnName = FnName.substr(1); 2497 StringRef NameItems[] = { 2498 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2499 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2500 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2501 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2502 std::string Name = SL->getString(); 2503 if (!Name.empty()) { 2504 unsigned Discriminator = 2505 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2506 if (Discriminator) 2507 Name += "_" + Twine(Discriminator + 1).str(); 2508 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2509 return MakeAddrLValue(C, E->getType(), BaseInfo); 2510 } else { 2511 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2512 return MakeAddrLValue(C, E->getType(), BaseInfo); 2513 } 2514 } 2515 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2516 return MakeAddrLValue(C, E->getType(), BaseInfo); 2517 } 2518 2519 /// Emit a type description suitable for use by a runtime sanitizer library. The 2520 /// format of a type descriptor is 2521 /// 2522 /// \code 2523 /// { i16 TypeKind, i16 TypeInfo } 2524 /// \endcode 2525 /// 2526 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2527 /// integer, 1 for a floating point value, and -1 for anything else. 2528 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2529 // Only emit each type's descriptor once. 2530 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2531 return C; 2532 2533 uint16_t TypeKind = -1; 2534 uint16_t TypeInfo = 0; 2535 2536 if (T->isIntegerType()) { 2537 TypeKind = 0; 2538 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2539 (T->isSignedIntegerType() ? 1 : 0); 2540 } else if (T->isFloatingType()) { 2541 TypeKind = 1; 2542 TypeInfo = getContext().getTypeSize(T); 2543 } 2544 2545 // Format the type name as if for a diagnostic, including quotes and 2546 // optionally an 'aka'. 2547 SmallString<32> Buffer; 2548 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2549 (intptr_t)T.getAsOpaquePtr(), 2550 StringRef(), StringRef(), None, Buffer, 2551 None); 2552 2553 llvm::Constant *Components[] = { 2554 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2555 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2556 }; 2557 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2558 2559 auto *GV = new llvm::GlobalVariable( 2560 CGM.getModule(), Descriptor->getType(), 2561 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2562 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2563 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2564 2565 // Remember the descriptor for this type. 2566 CGM.setTypeDescriptorInMap(T, GV); 2567 2568 return GV; 2569 } 2570 2571 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2572 llvm::Type *TargetTy = IntPtrTy; 2573 2574 // Floating-point types which fit into intptr_t are bitcast to integers 2575 // and then passed directly (after zero-extension, if necessary). 2576 if (V->getType()->isFloatingPointTy()) { 2577 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2578 if (Bits <= TargetTy->getIntegerBitWidth()) 2579 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2580 Bits)); 2581 } 2582 2583 // Integers which fit in intptr_t are zero-extended and passed directly. 2584 if (V->getType()->isIntegerTy() && 2585 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2586 return Builder.CreateZExt(V, TargetTy); 2587 2588 // Pointers are passed directly, everything else is passed by address. 2589 if (!V->getType()->isPointerTy()) { 2590 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2591 Builder.CreateStore(V, Ptr); 2592 V = Ptr.getPointer(); 2593 } 2594 return Builder.CreatePtrToInt(V, TargetTy); 2595 } 2596 2597 /// \brief Emit a representation of a SourceLocation for passing to a handler 2598 /// in a sanitizer runtime library. The format for this data is: 2599 /// \code 2600 /// struct SourceLocation { 2601 /// const char *Filename; 2602 /// int32_t Line, Column; 2603 /// }; 2604 /// \endcode 2605 /// For an invalid SourceLocation, the Filename pointer is null. 2606 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2607 llvm::Constant *Filename; 2608 int Line, Column; 2609 2610 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2611 if (PLoc.isValid()) { 2612 StringRef FilenameString = PLoc.getFilename(); 2613 2614 int PathComponentsToStrip = 2615 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2616 if (PathComponentsToStrip < 0) { 2617 assert(PathComponentsToStrip != INT_MIN); 2618 int PathComponentsToKeep = -PathComponentsToStrip; 2619 auto I = llvm::sys::path::rbegin(FilenameString); 2620 auto E = llvm::sys::path::rend(FilenameString); 2621 while (I != E && --PathComponentsToKeep) 2622 ++I; 2623 2624 FilenameString = FilenameString.substr(I - E); 2625 } else if (PathComponentsToStrip > 0) { 2626 auto I = llvm::sys::path::begin(FilenameString); 2627 auto E = llvm::sys::path::end(FilenameString); 2628 while (I != E && PathComponentsToStrip--) 2629 ++I; 2630 2631 if (I != E) 2632 FilenameString = 2633 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2634 else 2635 FilenameString = llvm::sys::path::filename(FilenameString); 2636 } 2637 2638 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2639 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2640 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2641 Filename = FilenameGV.getPointer(); 2642 Line = PLoc.getLine(); 2643 Column = PLoc.getColumn(); 2644 } else { 2645 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2646 Line = Column = 0; 2647 } 2648 2649 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2650 Builder.getInt32(Column)}; 2651 2652 return llvm::ConstantStruct::getAnon(Data); 2653 } 2654 2655 namespace { 2656 /// \brief Specify under what conditions this check can be recovered 2657 enum class CheckRecoverableKind { 2658 /// Always terminate program execution if this check fails. 2659 Unrecoverable, 2660 /// Check supports recovering, runtime has both fatal (noreturn) and 2661 /// non-fatal handlers for this check. 2662 Recoverable, 2663 /// Runtime conditionally aborts, always need to support recovery. 2664 AlwaysRecoverable 2665 }; 2666 } 2667 2668 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2669 assert(llvm::countPopulation(Kind) == 1); 2670 switch (Kind) { 2671 case SanitizerKind::Vptr: 2672 return CheckRecoverableKind::AlwaysRecoverable; 2673 case SanitizerKind::Return: 2674 case SanitizerKind::Unreachable: 2675 return CheckRecoverableKind::Unrecoverable; 2676 default: 2677 return CheckRecoverableKind::Recoverable; 2678 } 2679 } 2680 2681 namespace { 2682 struct SanitizerHandlerInfo { 2683 char const *const Name; 2684 unsigned Version; 2685 }; 2686 } 2687 2688 const SanitizerHandlerInfo SanitizerHandlers[] = { 2689 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2690 LIST_SANITIZER_CHECKS 2691 #undef SANITIZER_CHECK 2692 }; 2693 2694 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2695 llvm::FunctionType *FnType, 2696 ArrayRef<llvm::Value *> FnArgs, 2697 SanitizerHandler CheckHandler, 2698 CheckRecoverableKind RecoverKind, bool IsFatal, 2699 llvm::BasicBlock *ContBB) { 2700 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2701 bool NeedsAbortSuffix = 2702 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2703 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2704 const StringRef CheckName = CheckInfo.Name; 2705 std::string FnName = 2706 ("__ubsan_handle_" + CheckName + 2707 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2708 (NeedsAbortSuffix ? "_abort" : "")) 2709 .str(); 2710 bool MayReturn = 2711 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2712 2713 llvm::AttrBuilder B; 2714 if (!MayReturn) { 2715 B.addAttribute(llvm::Attribute::NoReturn) 2716 .addAttribute(llvm::Attribute::NoUnwind); 2717 } 2718 B.addAttribute(llvm::Attribute::UWTable); 2719 2720 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2721 FnType, FnName, 2722 llvm::AttributeList::get(CGF.getLLVMContext(), 2723 llvm::AttributeList::FunctionIndex, B), 2724 /*Local=*/true); 2725 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2726 if (!MayReturn) { 2727 HandlerCall->setDoesNotReturn(); 2728 CGF.Builder.CreateUnreachable(); 2729 } else { 2730 CGF.Builder.CreateBr(ContBB); 2731 } 2732 } 2733 2734 void CodeGenFunction::EmitCheck( 2735 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2736 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2737 ArrayRef<llvm::Value *> DynamicArgs) { 2738 assert(IsSanitizerScope); 2739 assert(Checked.size() > 0); 2740 assert(CheckHandler >= 0 && 2741 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2742 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2743 2744 llvm::Value *FatalCond = nullptr; 2745 llvm::Value *RecoverableCond = nullptr; 2746 llvm::Value *TrapCond = nullptr; 2747 for (int i = 0, n = Checked.size(); i < n; ++i) { 2748 llvm::Value *Check = Checked[i].first; 2749 // -fsanitize-trap= overrides -fsanitize-recover=. 2750 llvm::Value *&Cond = 2751 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2752 ? TrapCond 2753 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2754 ? RecoverableCond 2755 : FatalCond; 2756 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2757 } 2758 2759 if (TrapCond) 2760 EmitTrapCheck(TrapCond); 2761 if (!FatalCond && !RecoverableCond) 2762 return; 2763 2764 llvm::Value *JointCond; 2765 if (FatalCond && RecoverableCond) 2766 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2767 else 2768 JointCond = FatalCond ? FatalCond : RecoverableCond; 2769 assert(JointCond); 2770 2771 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2772 assert(SanOpts.has(Checked[0].second)); 2773 #ifndef NDEBUG 2774 for (int i = 1, n = Checked.size(); i < n; ++i) { 2775 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2776 "All recoverable kinds in a single check must be same!"); 2777 assert(SanOpts.has(Checked[i].second)); 2778 } 2779 #endif 2780 2781 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2782 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2783 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2784 // Give hint that we very much don't expect to execute the handler 2785 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2786 llvm::MDBuilder MDHelper(getLLVMContext()); 2787 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2788 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2789 EmitBlock(Handlers); 2790 2791 // Handler functions take an i8* pointing to the (handler-specific) static 2792 // information block, followed by a sequence of intptr_t arguments 2793 // representing operand values. 2794 SmallVector<llvm::Value *, 4> Args; 2795 SmallVector<llvm::Type *, 4> ArgTypes; 2796 Args.reserve(DynamicArgs.size() + 1); 2797 ArgTypes.reserve(DynamicArgs.size() + 1); 2798 2799 // Emit handler arguments and create handler function type. 2800 if (!StaticArgs.empty()) { 2801 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2802 auto *InfoPtr = 2803 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2804 llvm::GlobalVariable::PrivateLinkage, Info); 2805 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2806 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2807 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2808 ArgTypes.push_back(Int8PtrTy); 2809 } 2810 2811 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2812 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2813 ArgTypes.push_back(IntPtrTy); 2814 } 2815 2816 llvm::FunctionType *FnType = 2817 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2818 2819 if (!FatalCond || !RecoverableCond) { 2820 // Simple case: we need to generate a single handler call, either 2821 // fatal, or non-fatal. 2822 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2823 (FatalCond != nullptr), Cont); 2824 } else { 2825 // Emit two handler calls: first one for set of unrecoverable checks, 2826 // another one for recoverable. 2827 llvm::BasicBlock *NonFatalHandlerBB = 2828 createBasicBlock("non_fatal." + CheckName); 2829 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2830 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2831 EmitBlock(FatalHandlerBB); 2832 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2833 NonFatalHandlerBB); 2834 EmitBlock(NonFatalHandlerBB); 2835 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2836 Cont); 2837 } 2838 2839 EmitBlock(Cont); 2840 } 2841 2842 void CodeGenFunction::EmitCfiSlowPathCheck( 2843 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2844 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2845 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2846 2847 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2848 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2849 2850 llvm::MDBuilder MDHelper(getLLVMContext()); 2851 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2852 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2853 2854 EmitBlock(CheckBB); 2855 2856 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2857 2858 llvm::CallInst *CheckCall; 2859 if (WithDiag) { 2860 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2861 auto *InfoPtr = 2862 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2863 llvm::GlobalVariable::PrivateLinkage, Info); 2864 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2865 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2866 2867 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2868 "__cfi_slowpath_diag", 2869 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2870 false)); 2871 CheckCall = Builder.CreateCall( 2872 SlowPathDiagFn, 2873 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2874 } else { 2875 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2876 "__cfi_slowpath", 2877 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2878 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2879 } 2880 2881 CheckCall->setDoesNotThrow(); 2882 2883 EmitBlock(Cont); 2884 } 2885 2886 // Emit a stub for __cfi_check function so that the linker knows about this 2887 // symbol in LTO mode. 2888 void CodeGenFunction::EmitCfiCheckStub() { 2889 llvm::Module *M = &CGM.getModule(); 2890 auto &Ctx = M->getContext(); 2891 llvm::Function *F = llvm::Function::Create( 2892 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2893 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2894 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2895 // FIXME: consider emitting an intrinsic call like 2896 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2897 // which can be lowered in CrossDSOCFI pass to the actual contents of 2898 // __cfi_check. This would allow inlining of __cfi_check calls. 2899 llvm::CallInst::Create( 2900 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2901 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2902 } 2903 2904 // This function is basically a switch over the CFI failure kind, which is 2905 // extracted from CFICheckFailData (1st function argument). Each case is either 2906 // llvm.trap or a call to one of the two runtime handlers, based on 2907 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2908 // failure kind) traps, but this should really never happen. CFICheckFailData 2909 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2910 // check kind; in this case __cfi_check_fail traps as well. 2911 void CodeGenFunction::EmitCfiCheckFail() { 2912 SanitizerScope SanScope(this); 2913 FunctionArgList Args; 2914 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2915 ImplicitParamDecl::Other); 2916 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2917 ImplicitParamDecl::Other); 2918 Args.push_back(&ArgData); 2919 Args.push_back(&ArgAddr); 2920 2921 const CGFunctionInfo &FI = 2922 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2923 2924 llvm::Function *F = llvm::Function::Create( 2925 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2926 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2927 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2928 2929 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2930 SourceLocation()); 2931 2932 llvm::Value *Data = 2933 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2934 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2935 llvm::Value *Addr = 2936 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2937 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2938 2939 // Data == nullptr means the calling module has trap behaviour for this check. 2940 llvm::Value *DataIsNotNullPtr = 2941 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2942 EmitTrapCheck(DataIsNotNullPtr); 2943 2944 llvm::StructType *SourceLocationTy = 2945 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2946 llvm::StructType *CfiCheckFailDataTy = 2947 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2948 2949 llvm::Value *V = Builder.CreateConstGEP2_32( 2950 CfiCheckFailDataTy, 2951 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2952 0); 2953 Address CheckKindAddr(V, getIntAlign()); 2954 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2955 2956 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2957 CGM.getLLVMContext(), 2958 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2959 llvm::Value *ValidVtable = Builder.CreateZExt( 2960 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2961 {Addr, AllVtables}), 2962 IntPtrTy); 2963 2964 const std::pair<int, SanitizerMask> CheckKinds[] = { 2965 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2966 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2967 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2968 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2969 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2970 2971 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2972 for (auto CheckKindMaskPair : CheckKinds) { 2973 int Kind = CheckKindMaskPair.first; 2974 SanitizerMask Mask = CheckKindMaskPair.second; 2975 llvm::Value *Cond = 2976 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2977 if (CGM.getLangOpts().Sanitize.has(Mask)) 2978 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2979 {Data, Addr, ValidVtable}); 2980 else 2981 EmitTrapCheck(Cond); 2982 } 2983 2984 FinishFunction(); 2985 // The only reference to this function will be created during LTO link. 2986 // Make sure it survives until then. 2987 CGM.addUsedGlobal(F); 2988 } 2989 2990 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2991 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2992 2993 // If we're optimizing, collapse all calls to trap down to just one per 2994 // function to save on code size. 2995 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2996 TrapBB = createBasicBlock("trap"); 2997 Builder.CreateCondBr(Checked, Cont, TrapBB); 2998 EmitBlock(TrapBB); 2999 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3000 TrapCall->setDoesNotReturn(); 3001 TrapCall->setDoesNotThrow(); 3002 Builder.CreateUnreachable(); 3003 } else { 3004 Builder.CreateCondBr(Checked, Cont, TrapBB); 3005 } 3006 3007 EmitBlock(Cont); 3008 } 3009 3010 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3011 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3012 3013 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3014 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3015 CGM.getCodeGenOpts().TrapFuncName); 3016 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3017 } 3018 3019 return TrapCall; 3020 } 3021 3022 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3023 LValueBaseInfo *BaseInfo) { 3024 assert(E->getType()->isArrayType() && 3025 "Array to pointer decay must have array source type!"); 3026 3027 // Expressions of array type can't be bitfields or vector elements. 3028 LValue LV = EmitLValue(E); 3029 Address Addr = LV.getAddress(); 3030 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3031 3032 // If the array type was an incomplete type, we need to make sure 3033 // the decay ends up being the right type. 3034 llvm::Type *NewTy = ConvertType(E->getType()); 3035 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3036 3037 // Note that VLA pointers are always decayed, so we don't need to do 3038 // anything here. 3039 if (!E->getType()->isVariableArrayType()) { 3040 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3041 "Expected pointer to array"); 3042 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3043 } 3044 3045 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3046 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3047 } 3048 3049 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3050 /// array to pointer, return the array subexpression. 3051 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3052 // If this isn't just an array->pointer decay, bail out. 3053 const auto *CE = dyn_cast<CastExpr>(E); 3054 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3055 return nullptr; 3056 3057 // If this is a decay from variable width array, bail out. 3058 const Expr *SubExpr = CE->getSubExpr(); 3059 if (SubExpr->getType()->isVariableArrayType()) 3060 return nullptr; 3061 3062 return SubExpr; 3063 } 3064 3065 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3066 llvm::Value *ptr, 3067 ArrayRef<llvm::Value*> indices, 3068 bool inbounds, 3069 bool signedIndices, 3070 SourceLocation loc, 3071 const llvm::Twine &name = "arrayidx") { 3072 if (inbounds) { 3073 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3074 CodeGenFunction::NotSubtraction, loc, 3075 name); 3076 } else { 3077 return CGF.Builder.CreateGEP(ptr, indices, name); 3078 } 3079 } 3080 3081 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3082 llvm::Value *idx, 3083 CharUnits eltSize) { 3084 // If we have a constant index, we can use the exact offset of the 3085 // element we're accessing. 3086 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3087 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3088 return arrayAlign.alignmentAtOffset(offset); 3089 3090 // Otherwise, use the worst-case alignment for any element. 3091 } else { 3092 return arrayAlign.alignmentOfArrayElement(eltSize); 3093 } 3094 } 3095 3096 static QualType getFixedSizeElementType(const ASTContext &ctx, 3097 const VariableArrayType *vla) { 3098 QualType eltType; 3099 do { 3100 eltType = vla->getElementType(); 3101 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3102 return eltType; 3103 } 3104 3105 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3106 ArrayRef<llvm::Value *> indices, 3107 QualType eltType, bool inbounds, 3108 bool signedIndices, SourceLocation loc, 3109 const llvm::Twine &name = "arrayidx") { 3110 // All the indices except that last must be zero. 3111 #ifndef NDEBUG 3112 for (auto idx : indices.drop_back()) 3113 assert(isa<llvm::ConstantInt>(idx) && 3114 cast<llvm::ConstantInt>(idx)->isZero()); 3115 #endif 3116 3117 // Determine the element size of the statically-sized base. This is 3118 // the thing that the indices are expressed in terms of. 3119 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3120 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3121 } 3122 3123 // We can use that to compute the best alignment of the element. 3124 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3125 CharUnits eltAlign = 3126 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3127 3128 llvm::Value *eltPtr = emitArraySubscriptGEP( 3129 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3130 return Address(eltPtr, eltAlign); 3131 } 3132 3133 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3134 bool Accessed) { 3135 // The index must always be an integer, which is not an aggregate. Emit it 3136 // in lexical order (this complexity is, sadly, required by C++17). 3137 llvm::Value *IdxPre = 3138 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3139 bool SignedIndices = false; 3140 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3141 auto *Idx = IdxPre; 3142 if (E->getLHS() != E->getIdx()) { 3143 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3144 Idx = EmitScalarExpr(E->getIdx()); 3145 } 3146 3147 QualType IdxTy = E->getIdx()->getType(); 3148 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3149 SignedIndices |= IdxSigned; 3150 3151 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3152 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3153 3154 // Extend or truncate the index type to 32 or 64-bits. 3155 if (Promote && Idx->getType() != IntPtrTy) 3156 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3157 3158 return Idx; 3159 }; 3160 IdxPre = nullptr; 3161 3162 // If the base is a vector type, then we are forming a vector element lvalue 3163 // with this subscript. 3164 if (E->getBase()->getType()->isVectorType() && 3165 !isa<ExtVectorElementExpr>(E->getBase())) { 3166 // Emit the vector as an lvalue to get its address. 3167 LValue LHS = EmitLValue(E->getBase()); 3168 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3169 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3170 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3171 E->getBase()->getType(), 3172 LHS.getBaseInfo()); 3173 } 3174 3175 // All the other cases basically behave like simple offsetting. 3176 3177 // Handle the extvector case we ignored above. 3178 if (isa<ExtVectorElementExpr>(E->getBase())) { 3179 LValue LV = EmitLValue(E->getBase()); 3180 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3181 Address Addr = EmitExtVectorElementLValue(LV); 3182 3183 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3184 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3185 SignedIndices, E->getExprLoc()); 3186 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3187 } 3188 3189 LValueBaseInfo BaseInfo; 3190 Address Addr = Address::invalid(); 3191 if (const VariableArrayType *vla = 3192 getContext().getAsVariableArrayType(E->getType())) { 3193 // The base must be a pointer, which is not an aggregate. Emit 3194 // it. It needs to be emitted first in case it's what captures 3195 // the VLA bounds. 3196 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3197 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3198 3199 // The element count here is the total number of non-VLA elements. 3200 llvm::Value *numElements = getVLASize(vla).first; 3201 3202 // Effectively, the multiply by the VLA size is part of the GEP. 3203 // GEP indexes are signed, and scaling an index isn't permitted to 3204 // signed-overflow, so we use the same semantics for our explicit 3205 // multiply. We suppress this if overflow is not undefined behavior. 3206 if (getLangOpts().isSignedOverflowDefined()) { 3207 Idx = Builder.CreateMul(Idx, numElements); 3208 } else { 3209 Idx = Builder.CreateNSWMul(Idx, numElements); 3210 } 3211 3212 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3213 !getLangOpts().isSignedOverflowDefined(), 3214 SignedIndices, E->getExprLoc()); 3215 3216 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3217 // Indexing over an interface, as in "NSString *P; P[4];" 3218 3219 // Emit the base pointer. 3220 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3221 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3222 3223 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3224 llvm::Value *InterfaceSizeVal = 3225 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3226 3227 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3228 3229 // We don't necessarily build correct LLVM struct types for ObjC 3230 // interfaces, so we can't rely on GEP to do this scaling 3231 // correctly, so we need to cast to i8*. FIXME: is this actually 3232 // true? A lot of other things in the fragile ABI would break... 3233 llvm::Type *OrigBaseTy = Addr.getType(); 3234 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3235 3236 // Do the GEP. 3237 CharUnits EltAlign = 3238 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3239 llvm::Value *EltPtr = 3240 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3241 SignedIndices, E->getExprLoc()); 3242 Addr = Address(EltPtr, EltAlign); 3243 3244 // Cast back. 3245 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3246 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3247 // If this is A[i] where A is an array, the frontend will have decayed the 3248 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3249 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3250 // "gep x, i" here. Emit one "gep A, 0, i". 3251 assert(Array->getType()->isArrayType() && 3252 "Array to pointer decay must have array source type!"); 3253 LValue ArrayLV; 3254 // For simple multidimensional array indexing, set the 'accessed' flag for 3255 // better bounds-checking of the base expression. 3256 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3257 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3258 else 3259 ArrayLV = EmitLValue(Array); 3260 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3261 3262 // Propagate the alignment from the array itself to the result. 3263 Addr = emitArraySubscriptGEP( 3264 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3265 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3266 E->getExprLoc()); 3267 BaseInfo = ArrayLV.getBaseInfo(); 3268 } else { 3269 // The base must be a pointer; emit it with an estimate of its alignment. 3270 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3271 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3272 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3273 !getLangOpts().isSignedOverflowDefined(), 3274 SignedIndices, E->getExprLoc()); 3275 } 3276 3277 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3278 3279 // TODO: Preserve/extend path TBAA metadata? 3280 3281 if (getLangOpts().ObjC1 && 3282 getLangOpts().getGC() != LangOptions::NonGC) { 3283 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3284 setObjCGCLValueClass(getContext(), E, LV); 3285 } 3286 return LV; 3287 } 3288 3289 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3290 LValueBaseInfo &BaseInfo, 3291 QualType BaseTy, QualType ElTy, 3292 bool IsLowerBound) { 3293 LValue BaseLVal; 3294 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3295 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3296 if (BaseTy->isArrayType()) { 3297 Address Addr = BaseLVal.getAddress(); 3298 BaseInfo = BaseLVal.getBaseInfo(); 3299 3300 // If the array type was an incomplete type, we need to make sure 3301 // the decay ends up being the right type. 3302 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3303 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3304 3305 // Note that VLA pointers are always decayed, so we don't need to do 3306 // anything here. 3307 if (!BaseTy->isVariableArrayType()) { 3308 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3309 "Expected pointer to array"); 3310 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3311 "arraydecay"); 3312 } 3313 3314 return CGF.Builder.CreateElementBitCast(Addr, 3315 CGF.ConvertTypeForMem(ElTy)); 3316 } 3317 LValueBaseInfo TypeInfo; 3318 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3319 BaseInfo.mergeForCast(TypeInfo); 3320 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3321 } 3322 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3323 } 3324 3325 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3326 bool IsLowerBound) { 3327 QualType BaseTy; 3328 if (auto *ASE = 3329 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3330 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3331 else 3332 BaseTy = E->getBase()->getType(); 3333 QualType ResultExprTy; 3334 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3335 ResultExprTy = AT->getElementType(); 3336 else 3337 ResultExprTy = BaseTy->getPointeeType(); 3338 llvm::Value *Idx = nullptr; 3339 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3340 // Requesting lower bound or upper bound, but without provided length and 3341 // without ':' symbol for the default length -> length = 1. 3342 // Idx = LowerBound ?: 0; 3343 if (auto *LowerBound = E->getLowerBound()) { 3344 Idx = Builder.CreateIntCast( 3345 EmitScalarExpr(LowerBound), IntPtrTy, 3346 LowerBound->getType()->hasSignedIntegerRepresentation()); 3347 } else 3348 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3349 } else { 3350 // Try to emit length or lower bound as constant. If this is possible, 1 3351 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3352 // IR (LB + Len) - 1. 3353 auto &C = CGM.getContext(); 3354 auto *Length = E->getLength(); 3355 llvm::APSInt ConstLength; 3356 if (Length) { 3357 // Idx = LowerBound + Length - 1; 3358 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3359 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3360 Length = nullptr; 3361 } 3362 auto *LowerBound = E->getLowerBound(); 3363 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3364 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3365 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3366 LowerBound = nullptr; 3367 } 3368 if (!Length) 3369 --ConstLength; 3370 else if (!LowerBound) 3371 --ConstLowerBound; 3372 3373 if (Length || LowerBound) { 3374 auto *LowerBoundVal = 3375 LowerBound 3376 ? Builder.CreateIntCast( 3377 EmitScalarExpr(LowerBound), IntPtrTy, 3378 LowerBound->getType()->hasSignedIntegerRepresentation()) 3379 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3380 auto *LengthVal = 3381 Length 3382 ? Builder.CreateIntCast( 3383 EmitScalarExpr(Length), IntPtrTy, 3384 Length->getType()->hasSignedIntegerRepresentation()) 3385 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3386 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3387 /*HasNUW=*/false, 3388 !getLangOpts().isSignedOverflowDefined()); 3389 if (Length && LowerBound) { 3390 Idx = Builder.CreateSub( 3391 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3392 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3393 } 3394 } else 3395 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3396 } else { 3397 // Idx = ArraySize - 1; 3398 QualType ArrayTy = BaseTy->isPointerType() 3399 ? E->getBase()->IgnoreParenImpCasts()->getType() 3400 : BaseTy; 3401 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3402 Length = VAT->getSizeExpr(); 3403 if (Length->isIntegerConstantExpr(ConstLength, C)) 3404 Length = nullptr; 3405 } else { 3406 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3407 ConstLength = CAT->getSize(); 3408 } 3409 if (Length) { 3410 auto *LengthVal = Builder.CreateIntCast( 3411 EmitScalarExpr(Length), IntPtrTy, 3412 Length->getType()->hasSignedIntegerRepresentation()); 3413 Idx = Builder.CreateSub( 3414 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3415 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3416 } else { 3417 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3418 --ConstLength; 3419 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3420 } 3421 } 3422 } 3423 assert(Idx); 3424 3425 Address EltPtr = Address::invalid(); 3426 LValueBaseInfo BaseInfo; 3427 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3428 // The base must be a pointer, which is not an aggregate. Emit 3429 // it. It needs to be emitted first in case it's what captures 3430 // the VLA bounds. 3431 Address Base = 3432 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3433 VLA->getElementType(), IsLowerBound); 3434 // The element count here is the total number of non-VLA elements. 3435 llvm::Value *NumElements = getVLASize(VLA).first; 3436 3437 // Effectively, the multiply by the VLA size is part of the GEP. 3438 // GEP indexes are signed, and scaling an index isn't permitted to 3439 // signed-overflow, so we use the same semantics for our explicit 3440 // multiply. We suppress this if overflow is not undefined behavior. 3441 if (getLangOpts().isSignedOverflowDefined()) 3442 Idx = Builder.CreateMul(Idx, NumElements); 3443 else 3444 Idx = Builder.CreateNSWMul(Idx, NumElements); 3445 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3446 !getLangOpts().isSignedOverflowDefined(), 3447 /*SignedIndices=*/false, E->getExprLoc()); 3448 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3449 // If this is A[i] where A is an array, the frontend will have decayed the 3450 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3451 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3452 // "gep x, i" here. Emit one "gep A, 0, i". 3453 assert(Array->getType()->isArrayType() && 3454 "Array to pointer decay must have array source type!"); 3455 LValue ArrayLV; 3456 // For simple multidimensional array indexing, set the 'accessed' flag for 3457 // better bounds-checking of the base expression. 3458 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3459 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3460 else 3461 ArrayLV = EmitLValue(Array); 3462 3463 // Propagate the alignment from the array itself to the result. 3464 EltPtr = emitArraySubscriptGEP( 3465 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3466 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3467 /*SignedIndices=*/false, E->getExprLoc()); 3468 BaseInfo = ArrayLV.getBaseInfo(); 3469 } else { 3470 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3471 BaseTy, ResultExprTy, IsLowerBound); 3472 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3473 !getLangOpts().isSignedOverflowDefined(), 3474 /*SignedIndices=*/false, E->getExprLoc()); 3475 } 3476 3477 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3478 } 3479 3480 LValue CodeGenFunction:: 3481 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3482 // Emit the base vector as an l-value. 3483 LValue Base; 3484 3485 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3486 if (E->isArrow()) { 3487 // If it is a pointer to a vector, emit the address and form an lvalue with 3488 // it. 3489 LValueBaseInfo BaseInfo; 3490 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3491 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3492 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3493 Base.getQuals().removeObjCGCAttr(); 3494 } else if (E->getBase()->isGLValue()) { 3495 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3496 // emit the base as an lvalue. 3497 assert(E->getBase()->getType()->isVectorType()); 3498 Base = EmitLValue(E->getBase()); 3499 } else { 3500 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3501 assert(E->getBase()->getType()->isVectorType() && 3502 "Result must be a vector"); 3503 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3504 3505 // Store the vector to memory (because LValue wants an address). 3506 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3507 Builder.CreateStore(Vec, VecMem); 3508 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3509 LValueBaseInfo(AlignmentSource::Decl, false)); 3510 } 3511 3512 QualType type = 3513 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3514 3515 // Encode the element access list into a vector of unsigned indices. 3516 SmallVector<uint32_t, 4> Indices; 3517 E->getEncodedElementAccess(Indices); 3518 3519 if (Base.isSimple()) { 3520 llvm::Constant *CV = 3521 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3522 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3523 Base.getBaseInfo()); 3524 } 3525 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3526 3527 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3528 SmallVector<llvm::Constant *, 4> CElts; 3529 3530 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3531 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3532 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3533 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3534 Base.getBaseInfo()); 3535 } 3536 3537 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3538 Expr *BaseExpr = E->getBase(); 3539 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3540 LValue BaseLV; 3541 if (E->isArrow()) { 3542 LValueBaseInfo BaseInfo; 3543 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3544 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3545 SanitizerSet SkippedChecks; 3546 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3547 if (IsBaseCXXThis) 3548 SkippedChecks.set(SanitizerKind::Alignment, true); 3549 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3550 SkippedChecks.set(SanitizerKind::Null, true); 3551 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3552 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3553 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3554 } else 3555 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3556 3557 NamedDecl *ND = E->getMemberDecl(); 3558 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3559 LValue LV = EmitLValueForField(BaseLV, Field); 3560 setObjCGCLValueClass(getContext(), E, LV); 3561 return LV; 3562 } 3563 3564 if (auto *VD = dyn_cast<VarDecl>(ND)) 3565 return EmitGlobalVarDeclLValue(*this, E, VD); 3566 3567 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3568 return EmitFunctionDeclLValue(*this, E, FD); 3569 3570 llvm_unreachable("Unhandled member declaration!"); 3571 } 3572 3573 /// Given that we are currently emitting a lambda, emit an l-value for 3574 /// one of its members. 3575 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3576 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3577 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3578 QualType LambdaTagType = 3579 getContext().getTagDeclType(Field->getParent()); 3580 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3581 return EmitLValueForField(LambdaLV, Field); 3582 } 3583 3584 /// Drill down to the storage of a field without walking into 3585 /// reference types. 3586 /// 3587 /// The resulting address doesn't necessarily have the right type. 3588 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3589 const FieldDecl *field) { 3590 const RecordDecl *rec = field->getParent(); 3591 3592 unsigned idx = 3593 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3594 3595 CharUnits offset; 3596 // Adjust the alignment down to the given offset. 3597 // As a special case, if the LLVM field index is 0, we know that this 3598 // is zero. 3599 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3600 .getFieldOffset(field->getFieldIndex()) == 0) && 3601 "LLVM field at index zero had non-zero offset?"); 3602 if (idx != 0) { 3603 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3604 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3605 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3606 } 3607 3608 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3609 } 3610 3611 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3612 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3613 if (!RD) 3614 return false; 3615 3616 if (RD->isDynamicClass()) 3617 return true; 3618 3619 for (const auto &Base : RD->bases()) 3620 if (hasAnyVptr(Base.getType(), Context)) 3621 return true; 3622 3623 for (const FieldDecl *Field : RD->fields()) 3624 if (hasAnyVptr(Field->getType(), Context)) 3625 return true; 3626 3627 return false; 3628 } 3629 3630 LValue CodeGenFunction::EmitLValueForField(LValue base, 3631 const FieldDecl *field) { 3632 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3633 AlignmentSource fieldAlignSource = 3634 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3635 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3636 3637 const RecordDecl *rec = field->getParent(); 3638 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>()) 3639 FieldBaseInfo.setMayAlias(true); 3640 bool mayAlias = FieldBaseInfo.getMayAlias(); 3641 3642 if (field->isBitField()) { 3643 const CGRecordLayout &RL = 3644 CGM.getTypes().getCGRecordLayout(field->getParent()); 3645 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3646 Address Addr = base.getAddress(); 3647 unsigned Idx = RL.getLLVMFieldNo(field); 3648 if (Idx != 0) 3649 // For structs, we GEP to the field that the record layout suggests. 3650 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3651 field->getName()); 3652 // Get the access type. 3653 llvm::Type *FieldIntTy = 3654 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3655 if (Addr.getElementType() != FieldIntTy) 3656 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3657 3658 QualType fieldType = 3659 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3660 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3661 } 3662 3663 QualType type = field->getType(); 3664 Address addr = base.getAddress(); 3665 unsigned cvr = base.getVRQualifiers(); 3666 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3667 if (rec->isUnion()) { 3668 // For unions, there is no pointer adjustment. 3669 assert(!type->isReferenceType() && "union has reference member"); 3670 // TODO: handle path-aware TBAA for union. 3671 TBAAPath = false; 3672 3673 const auto FieldType = field->getType(); 3674 if (CGM.getCodeGenOpts().StrictVTablePointers && 3675 hasAnyVptr(FieldType, getContext())) 3676 // Because unions can easily skip invariant.barriers, we need to add 3677 // a barrier every time CXXRecord field with vptr is referenced. 3678 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3679 addr.getAlignment()); 3680 } else { 3681 // For structs, we GEP to the field that the record layout suggests. 3682 addr = emitAddrOfFieldStorage(*this, addr, field); 3683 3684 // If this is a reference field, load the reference right now. 3685 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3686 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3687 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3688 3689 // Loading the reference will disable path-aware TBAA. 3690 TBAAPath = false; 3691 if (CGM.shouldUseTBAA()) { 3692 llvm::MDNode *tbaa; 3693 if (mayAlias) 3694 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3695 else 3696 tbaa = CGM.getTBAAInfo(type); 3697 if (tbaa) 3698 CGM.DecorateInstructionWithTBAA(load, tbaa); 3699 } 3700 3701 mayAlias = false; 3702 type = refType->getPointeeType(); 3703 3704 CharUnits alignment = 3705 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3706 FieldBaseInfo.setMayAlias(false); 3707 addr = Address(load, alignment); 3708 3709 // Qualifiers on the struct don't apply to the referencee, and 3710 // we'll pick up CVR from the actual type later, so reset these 3711 // additional qualifiers now. 3712 cvr = 0; 3713 } 3714 } 3715 3716 // Make sure that the address is pointing to the right type. This is critical 3717 // for both unions and structs. A union needs a bitcast, a struct element 3718 // will need a bitcast if the LLVM type laid out doesn't match the desired 3719 // type. 3720 addr = Builder.CreateElementBitCast(addr, 3721 CGM.getTypes().ConvertTypeForMem(type), 3722 field->getName()); 3723 3724 if (field->hasAttr<AnnotateAttr>()) 3725 addr = EmitFieldAnnotations(field, addr); 3726 3727 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3728 LV.getQuals().addCVRQualifiers(cvr); 3729 if (TBAAPath) { 3730 const ASTRecordLayout &Layout = 3731 getContext().getASTRecordLayout(field->getParent()); 3732 // Set the base type to be the base type of the base LValue and 3733 // update offset to be relative to the base type. 3734 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3735 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3736 Layout.getFieldOffset(field->getFieldIndex()) / 3737 getContext().getCharWidth()); 3738 } 3739 3740 // __weak attribute on a field is ignored. 3741 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3742 LV.getQuals().removeObjCGCAttr(); 3743 3744 // Fields of may_alias structs act like 'char' for TBAA purposes. 3745 // FIXME: this should get propagated down through anonymous structs 3746 // and unions. 3747 if (mayAlias && LV.getTBAAInfo()) 3748 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3749 3750 return LV; 3751 } 3752 3753 LValue 3754 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3755 const FieldDecl *Field) { 3756 QualType FieldType = Field->getType(); 3757 3758 if (!FieldType->isReferenceType()) 3759 return EmitLValueForField(Base, Field); 3760 3761 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3762 3763 // Make sure that the address is pointing to the right type. 3764 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3765 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3766 3767 // TODO: access-path TBAA? 3768 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3769 LValueBaseInfo FieldBaseInfo( 3770 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3771 BaseInfo.getMayAlias()); 3772 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3773 } 3774 3775 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3776 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3777 if (E->isFileScope()) { 3778 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3779 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3780 } 3781 if (E->getType()->isVariablyModifiedType()) 3782 // make sure to emit the VLA size. 3783 EmitVariablyModifiedType(E->getType()); 3784 3785 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3786 const Expr *InitExpr = E->getInitializer(); 3787 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3788 3789 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3790 /*Init*/ true); 3791 3792 return Result; 3793 } 3794 3795 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3796 if (!E->isGLValue()) 3797 // Initializing an aggregate temporary in C++11: T{...}. 3798 return EmitAggExprToLValue(E); 3799 3800 // An lvalue initializer list must be initializing a reference. 3801 assert(E->isTransparent() && "non-transparent glvalue init list"); 3802 return EmitLValue(E->getInit(0)); 3803 } 3804 3805 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3806 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3807 /// LValue is returned and the current block has been terminated. 3808 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3809 const Expr *Operand) { 3810 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3811 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3812 return None; 3813 } 3814 3815 return CGF.EmitLValue(Operand); 3816 } 3817 3818 LValue CodeGenFunction:: 3819 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3820 if (!expr->isGLValue()) { 3821 // ?: here should be an aggregate. 3822 assert(hasAggregateEvaluationKind(expr->getType()) && 3823 "Unexpected conditional operator!"); 3824 return EmitAggExprToLValue(expr); 3825 } 3826 3827 OpaqueValueMapping binding(*this, expr); 3828 3829 const Expr *condExpr = expr->getCond(); 3830 bool CondExprBool; 3831 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3832 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3833 if (!CondExprBool) std::swap(live, dead); 3834 3835 if (!ContainsLabel(dead)) { 3836 // If the true case is live, we need to track its region. 3837 if (CondExprBool) 3838 incrementProfileCounter(expr); 3839 return EmitLValue(live); 3840 } 3841 } 3842 3843 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3844 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3845 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3846 3847 ConditionalEvaluation eval(*this); 3848 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3849 3850 // Any temporaries created here are conditional. 3851 EmitBlock(lhsBlock); 3852 incrementProfileCounter(expr); 3853 eval.begin(*this); 3854 Optional<LValue> lhs = 3855 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3856 eval.end(*this); 3857 3858 if (lhs && !lhs->isSimple()) 3859 return EmitUnsupportedLValue(expr, "conditional operator"); 3860 3861 lhsBlock = Builder.GetInsertBlock(); 3862 if (lhs) 3863 Builder.CreateBr(contBlock); 3864 3865 // Any temporaries created here are conditional. 3866 EmitBlock(rhsBlock); 3867 eval.begin(*this); 3868 Optional<LValue> rhs = 3869 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3870 eval.end(*this); 3871 if (rhs && !rhs->isSimple()) 3872 return EmitUnsupportedLValue(expr, "conditional operator"); 3873 rhsBlock = Builder.GetInsertBlock(); 3874 3875 EmitBlock(contBlock); 3876 3877 if (lhs && rhs) { 3878 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3879 2, "cond-lvalue"); 3880 phi->addIncoming(lhs->getPointer(), lhsBlock); 3881 phi->addIncoming(rhs->getPointer(), rhsBlock); 3882 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3883 AlignmentSource alignSource = 3884 std::max(lhs->getBaseInfo().getAlignmentSource(), 3885 rhs->getBaseInfo().getAlignmentSource()); 3886 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3887 rhs->getBaseInfo().getMayAlias(); 3888 return MakeAddrLValue(result, expr->getType(), 3889 LValueBaseInfo(alignSource, MayAlias)); 3890 } else { 3891 assert((lhs || rhs) && 3892 "both operands of glvalue conditional are throw-expressions?"); 3893 return lhs ? *lhs : *rhs; 3894 } 3895 } 3896 3897 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3898 /// type. If the cast is to a reference, we can have the usual lvalue result, 3899 /// otherwise if a cast is needed by the code generator in an lvalue context, 3900 /// then it must mean that we need the address of an aggregate in order to 3901 /// access one of its members. This can happen for all the reasons that casts 3902 /// are permitted with aggregate result, including noop aggregate casts, and 3903 /// cast from scalar to union. 3904 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3905 switch (E->getCastKind()) { 3906 case CK_ToVoid: 3907 case CK_BitCast: 3908 case CK_ArrayToPointerDecay: 3909 case CK_FunctionToPointerDecay: 3910 case CK_NullToMemberPointer: 3911 case CK_NullToPointer: 3912 case CK_IntegralToPointer: 3913 case CK_PointerToIntegral: 3914 case CK_PointerToBoolean: 3915 case CK_VectorSplat: 3916 case CK_IntegralCast: 3917 case CK_BooleanToSignedIntegral: 3918 case CK_IntegralToBoolean: 3919 case CK_IntegralToFloating: 3920 case CK_FloatingToIntegral: 3921 case CK_FloatingToBoolean: 3922 case CK_FloatingCast: 3923 case CK_FloatingRealToComplex: 3924 case CK_FloatingComplexToReal: 3925 case CK_FloatingComplexToBoolean: 3926 case CK_FloatingComplexCast: 3927 case CK_FloatingComplexToIntegralComplex: 3928 case CK_IntegralRealToComplex: 3929 case CK_IntegralComplexToReal: 3930 case CK_IntegralComplexToBoolean: 3931 case CK_IntegralComplexCast: 3932 case CK_IntegralComplexToFloatingComplex: 3933 case CK_DerivedToBaseMemberPointer: 3934 case CK_BaseToDerivedMemberPointer: 3935 case CK_MemberPointerToBoolean: 3936 case CK_ReinterpretMemberPointer: 3937 case CK_AnyPointerToBlockPointerCast: 3938 case CK_ARCProduceObject: 3939 case CK_ARCConsumeObject: 3940 case CK_ARCReclaimReturnedObject: 3941 case CK_ARCExtendBlockObject: 3942 case CK_CopyAndAutoreleaseBlockObject: 3943 case CK_AddressSpaceConversion: 3944 case CK_IntToOCLSampler: 3945 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3946 3947 case CK_Dependent: 3948 llvm_unreachable("dependent cast kind in IR gen!"); 3949 3950 case CK_BuiltinFnToFnPtr: 3951 llvm_unreachable("builtin functions are handled elsewhere"); 3952 3953 // These are never l-values; just use the aggregate emission code. 3954 case CK_NonAtomicToAtomic: 3955 case CK_AtomicToNonAtomic: 3956 return EmitAggExprToLValue(E); 3957 3958 case CK_Dynamic: { 3959 LValue LV = EmitLValue(E->getSubExpr()); 3960 Address V = LV.getAddress(); 3961 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3962 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3963 } 3964 3965 case CK_ConstructorConversion: 3966 case CK_UserDefinedConversion: 3967 case CK_CPointerToObjCPointerCast: 3968 case CK_BlockPointerToObjCPointerCast: 3969 case CK_NoOp: 3970 case CK_LValueToRValue: 3971 return EmitLValue(E->getSubExpr()); 3972 3973 case CK_UncheckedDerivedToBase: 3974 case CK_DerivedToBase: { 3975 const RecordType *DerivedClassTy = 3976 E->getSubExpr()->getType()->getAs<RecordType>(); 3977 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3978 3979 LValue LV = EmitLValue(E->getSubExpr()); 3980 Address This = LV.getAddress(); 3981 3982 // Perform the derived-to-base conversion 3983 Address Base = GetAddressOfBaseClass( 3984 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3985 /*NullCheckValue=*/false, E->getExprLoc()); 3986 3987 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 3988 } 3989 case CK_ToUnion: 3990 return EmitAggExprToLValue(E); 3991 case CK_BaseToDerived: { 3992 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3993 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3994 3995 LValue LV = EmitLValue(E->getSubExpr()); 3996 3997 // Perform the base-to-derived conversion 3998 Address Derived = 3999 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4000 E->path_begin(), E->path_end(), 4001 /*NullCheckValue=*/false); 4002 4003 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4004 // performed and the object is not of the derived type. 4005 if (sanitizePerformTypeCheck()) 4006 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4007 Derived.getPointer(), E->getType()); 4008 4009 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4010 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4011 /*MayBeNull=*/false, 4012 CFITCK_DerivedCast, E->getLocStart()); 4013 4014 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 4015 } 4016 case CK_LValueBitCast: { 4017 // This must be a reinterpret_cast (or c-style equivalent). 4018 const auto *CE = cast<ExplicitCastExpr>(E); 4019 4020 CGM.EmitExplicitCastExprType(CE, this); 4021 LValue LV = EmitLValue(E->getSubExpr()); 4022 Address V = Builder.CreateBitCast(LV.getAddress(), 4023 ConvertType(CE->getTypeAsWritten())); 4024 4025 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4026 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4027 /*MayBeNull=*/false, 4028 CFITCK_UnrelatedCast, E->getLocStart()); 4029 4030 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4031 } 4032 case CK_ObjCObjectLValueCast: { 4033 LValue LV = EmitLValue(E->getSubExpr()); 4034 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4035 ConvertType(E->getType())); 4036 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4037 } 4038 case CK_ZeroToOCLQueue: 4039 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4040 case CK_ZeroToOCLEvent: 4041 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4042 } 4043 4044 llvm_unreachable("Unhandled lvalue cast kind?"); 4045 } 4046 4047 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4048 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4049 return getOpaqueLValueMapping(e); 4050 } 4051 4052 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4053 const FieldDecl *FD, 4054 SourceLocation Loc) { 4055 QualType FT = FD->getType(); 4056 LValue FieldLV = EmitLValueForField(LV, FD); 4057 switch (getEvaluationKind(FT)) { 4058 case TEK_Complex: 4059 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4060 case TEK_Aggregate: 4061 return FieldLV.asAggregateRValue(); 4062 case TEK_Scalar: 4063 // This routine is used to load fields one-by-one to perform a copy, so 4064 // don't load reference fields. 4065 if (FD->getType()->isReferenceType()) 4066 return RValue::get(FieldLV.getPointer()); 4067 return EmitLoadOfLValue(FieldLV, Loc); 4068 } 4069 llvm_unreachable("bad evaluation kind"); 4070 } 4071 4072 //===--------------------------------------------------------------------===// 4073 // Expression Emission 4074 //===--------------------------------------------------------------------===// 4075 4076 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4077 ReturnValueSlot ReturnValue) { 4078 // Builtins never have block type. 4079 if (E->getCallee()->getType()->isBlockPointerType()) 4080 return EmitBlockCallExpr(E, ReturnValue); 4081 4082 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4083 return EmitCXXMemberCallExpr(CE, ReturnValue); 4084 4085 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4086 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4087 4088 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4089 if (const CXXMethodDecl *MD = 4090 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4091 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4092 4093 CGCallee callee = EmitCallee(E->getCallee()); 4094 4095 if (callee.isBuiltin()) { 4096 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4097 E, ReturnValue); 4098 } 4099 4100 if (callee.isPseudoDestructor()) { 4101 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4102 } 4103 4104 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4105 } 4106 4107 /// Emit a CallExpr without considering whether it might be a subclass. 4108 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4109 ReturnValueSlot ReturnValue) { 4110 CGCallee Callee = EmitCallee(E->getCallee()); 4111 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4112 } 4113 4114 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4115 if (auto builtinID = FD->getBuiltinID()) { 4116 return CGCallee::forBuiltin(builtinID, FD); 4117 } 4118 4119 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4120 return CGCallee::forDirect(calleePtr, FD); 4121 } 4122 4123 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4124 E = E->IgnoreParens(); 4125 4126 // Look through function-to-pointer decay. 4127 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4128 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4129 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4130 return EmitCallee(ICE->getSubExpr()); 4131 } 4132 4133 // Resolve direct calls. 4134 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4135 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4136 return EmitDirectCallee(*this, FD); 4137 } 4138 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4139 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4140 EmitIgnoredExpr(ME->getBase()); 4141 return EmitDirectCallee(*this, FD); 4142 } 4143 4144 // Look through template substitutions. 4145 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4146 return EmitCallee(NTTP->getReplacement()); 4147 4148 // Treat pseudo-destructor calls differently. 4149 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4150 return CGCallee::forPseudoDestructor(PDE); 4151 } 4152 4153 // Otherwise, we have an indirect reference. 4154 llvm::Value *calleePtr; 4155 QualType functionType; 4156 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4157 calleePtr = EmitScalarExpr(E); 4158 functionType = ptrType->getPointeeType(); 4159 } else { 4160 functionType = E->getType(); 4161 calleePtr = EmitLValue(E).getPointer(); 4162 } 4163 assert(functionType->isFunctionType()); 4164 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4165 E->getReferencedDeclOfCallee()); 4166 CGCallee callee(calleeInfo, calleePtr); 4167 return callee; 4168 } 4169 4170 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4171 // Comma expressions just emit their LHS then their RHS as an l-value. 4172 if (E->getOpcode() == BO_Comma) { 4173 EmitIgnoredExpr(E->getLHS()); 4174 EnsureInsertPoint(); 4175 return EmitLValue(E->getRHS()); 4176 } 4177 4178 if (E->getOpcode() == BO_PtrMemD || 4179 E->getOpcode() == BO_PtrMemI) 4180 return EmitPointerToDataMemberBinaryExpr(E); 4181 4182 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4183 4184 // Note that in all of these cases, __block variables need the RHS 4185 // evaluated first just in case the variable gets moved by the RHS. 4186 4187 switch (getEvaluationKind(E->getType())) { 4188 case TEK_Scalar: { 4189 switch (E->getLHS()->getType().getObjCLifetime()) { 4190 case Qualifiers::OCL_Strong: 4191 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4192 4193 case Qualifiers::OCL_Autoreleasing: 4194 return EmitARCStoreAutoreleasing(E).first; 4195 4196 // No reason to do any of these differently. 4197 case Qualifiers::OCL_None: 4198 case Qualifiers::OCL_ExplicitNone: 4199 case Qualifiers::OCL_Weak: 4200 break; 4201 } 4202 4203 RValue RV = EmitAnyExpr(E->getRHS()); 4204 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4205 if (RV.isScalar()) 4206 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4207 EmitStoreThroughLValue(RV, LV); 4208 return LV; 4209 } 4210 4211 case TEK_Complex: 4212 return EmitComplexAssignmentLValue(E); 4213 4214 case TEK_Aggregate: 4215 return EmitAggExprToLValue(E); 4216 } 4217 llvm_unreachable("bad evaluation kind"); 4218 } 4219 4220 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4221 RValue RV = EmitCallExpr(E); 4222 4223 if (!RV.isScalar()) 4224 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4225 LValueBaseInfo(AlignmentSource::Decl, false)); 4226 4227 assert(E->getCallReturnType(getContext())->isReferenceType() && 4228 "Can't have a scalar return unless the return type is a " 4229 "reference type!"); 4230 4231 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4232 } 4233 4234 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4235 // FIXME: This shouldn't require another copy. 4236 return EmitAggExprToLValue(E); 4237 } 4238 4239 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4240 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4241 && "binding l-value to type which needs a temporary"); 4242 AggValueSlot Slot = CreateAggTemp(E->getType()); 4243 EmitCXXConstructExpr(E, Slot); 4244 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4245 LValueBaseInfo(AlignmentSource::Decl, false)); 4246 } 4247 4248 LValue 4249 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4250 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4251 } 4252 4253 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4254 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4255 ConvertType(E->getType())); 4256 } 4257 4258 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4259 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4260 LValueBaseInfo(AlignmentSource::Decl, false)); 4261 } 4262 4263 LValue 4264 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4265 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4266 Slot.setExternallyDestructed(); 4267 EmitAggExpr(E->getSubExpr(), Slot); 4268 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4269 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4270 LValueBaseInfo(AlignmentSource::Decl, false)); 4271 } 4272 4273 LValue 4274 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4275 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4276 EmitLambdaExpr(E, Slot); 4277 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4278 LValueBaseInfo(AlignmentSource::Decl, false)); 4279 } 4280 4281 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4282 RValue RV = EmitObjCMessageExpr(E); 4283 4284 if (!RV.isScalar()) 4285 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4286 LValueBaseInfo(AlignmentSource::Decl, false)); 4287 4288 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4289 "Can't have a scalar return unless the return type is a " 4290 "reference type!"); 4291 4292 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4293 } 4294 4295 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4296 Address V = 4297 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4298 return MakeAddrLValue(V, E->getType(), 4299 LValueBaseInfo(AlignmentSource::Decl, false)); 4300 } 4301 4302 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4303 const ObjCIvarDecl *Ivar) { 4304 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4305 } 4306 4307 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4308 llvm::Value *BaseValue, 4309 const ObjCIvarDecl *Ivar, 4310 unsigned CVRQualifiers) { 4311 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4312 Ivar, CVRQualifiers); 4313 } 4314 4315 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4316 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4317 llvm::Value *BaseValue = nullptr; 4318 const Expr *BaseExpr = E->getBase(); 4319 Qualifiers BaseQuals; 4320 QualType ObjectTy; 4321 if (E->isArrow()) { 4322 BaseValue = EmitScalarExpr(BaseExpr); 4323 ObjectTy = BaseExpr->getType()->getPointeeType(); 4324 BaseQuals = ObjectTy.getQualifiers(); 4325 } else { 4326 LValue BaseLV = EmitLValue(BaseExpr); 4327 BaseValue = BaseLV.getPointer(); 4328 ObjectTy = BaseExpr->getType(); 4329 BaseQuals = ObjectTy.getQualifiers(); 4330 } 4331 4332 LValue LV = 4333 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4334 BaseQuals.getCVRQualifiers()); 4335 setObjCGCLValueClass(getContext(), E, LV); 4336 return LV; 4337 } 4338 4339 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4340 // Can only get l-value for message expression returning aggregate type 4341 RValue RV = EmitAnyExprToTemp(E); 4342 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4343 LValueBaseInfo(AlignmentSource::Decl, false)); 4344 } 4345 4346 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4347 const CallExpr *E, ReturnValueSlot ReturnValue, 4348 llvm::Value *Chain) { 4349 // Get the actual function type. The callee type will always be a pointer to 4350 // function type or a block pointer type. 4351 assert(CalleeType->isFunctionPointerType() && 4352 "Call must have function pointer type!"); 4353 4354 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4355 4356 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4357 // We can only guarantee that a function is called from the correct 4358 // context/function based on the appropriate target attributes, 4359 // so only check in the case where we have both always_inline and target 4360 // since otherwise we could be making a conditional call after a check for 4361 // the proper cpu features (and it won't cause code generation issues due to 4362 // function based code generation). 4363 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4364 TargetDecl->hasAttr<TargetAttr>()) 4365 checkTargetFeatures(E, FD); 4366 4367 CalleeType = getContext().getCanonicalType(CalleeType); 4368 4369 const auto *FnType = 4370 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4371 4372 CGCallee Callee = OrigCallee; 4373 4374 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4375 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4376 if (llvm::Constant *PrefixSig = 4377 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4378 SanitizerScope SanScope(this); 4379 llvm::Constant *FTRTTIConst = 4380 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4381 llvm::Type *PrefixStructTyElems[] = { 4382 PrefixSig->getType(), 4383 FTRTTIConst->getType() 4384 }; 4385 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4386 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4387 4388 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4389 4390 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4391 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4392 llvm::Value *CalleeSigPtr = 4393 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4394 llvm::Value *CalleeSig = 4395 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4396 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4397 4398 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4399 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4400 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4401 4402 EmitBlock(TypeCheck); 4403 llvm::Value *CalleeRTTIPtr = 4404 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4405 llvm::Value *CalleeRTTI = 4406 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4407 llvm::Value *CalleeRTTIMatch = 4408 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4409 llvm::Constant *StaticData[] = { 4410 EmitCheckSourceLocation(E->getLocStart()), 4411 EmitCheckTypeDescriptor(CalleeType) 4412 }; 4413 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4414 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4415 4416 Builder.CreateBr(Cont); 4417 EmitBlock(Cont); 4418 } 4419 } 4420 4421 // If we are checking indirect calls and this call is indirect, check that the 4422 // function pointer is a member of the bit set for the function type. 4423 if (SanOpts.has(SanitizerKind::CFIICall) && 4424 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4425 SanitizerScope SanScope(this); 4426 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4427 4428 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4429 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4430 4431 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4432 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4433 llvm::Value *TypeTest = Builder.CreateCall( 4434 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4435 4436 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4437 llvm::Constant *StaticData[] = { 4438 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4439 EmitCheckSourceLocation(E->getLocStart()), 4440 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4441 }; 4442 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4443 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4444 CastedCallee, StaticData); 4445 } else { 4446 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4447 SanitizerHandler::CFICheckFail, StaticData, 4448 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4449 } 4450 } 4451 4452 CallArgList Args; 4453 if (Chain) 4454 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4455 CGM.getContext().VoidPtrTy); 4456 4457 // C++17 requires that we evaluate arguments to a call using assignment syntax 4458 // right-to-left, and that we evaluate arguments to certain other operators 4459 // left-to-right. Note that we allow this to override the order dictated by 4460 // the calling convention on the MS ABI, which means that parameter 4461 // destruction order is not necessarily reverse construction order. 4462 // FIXME: Revisit this based on C++ committee response to unimplementability. 4463 EvaluationOrder Order = EvaluationOrder::Default; 4464 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4465 if (OCE->isAssignmentOp()) 4466 Order = EvaluationOrder::ForceRightToLeft; 4467 else { 4468 switch (OCE->getOperator()) { 4469 case OO_LessLess: 4470 case OO_GreaterGreater: 4471 case OO_AmpAmp: 4472 case OO_PipePipe: 4473 case OO_Comma: 4474 case OO_ArrowStar: 4475 Order = EvaluationOrder::ForceLeftToRight; 4476 break; 4477 default: 4478 break; 4479 } 4480 } 4481 } 4482 4483 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4484 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4485 4486 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4487 Args, FnType, /*isChainCall=*/Chain); 4488 4489 // C99 6.5.2.2p6: 4490 // If the expression that denotes the called function has a type 4491 // that does not include a prototype, [the default argument 4492 // promotions are performed]. If the number of arguments does not 4493 // equal the number of parameters, the behavior is undefined. If 4494 // the function is defined with a type that includes a prototype, 4495 // and either the prototype ends with an ellipsis (, ...) or the 4496 // types of the arguments after promotion are not compatible with 4497 // the types of the parameters, the behavior is undefined. If the 4498 // function is defined with a type that does not include a 4499 // prototype, and the types of the arguments after promotion are 4500 // not compatible with those of the parameters after promotion, 4501 // the behavior is undefined [except in some trivial cases]. 4502 // That is, in the general case, we should assume that a call 4503 // through an unprototyped function type works like a *non-variadic* 4504 // call. The way we make this work is to cast to the exact type 4505 // of the promoted arguments. 4506 // 4507 // Chain calls use this same code path to add the invisible chain parameter 4508 // to the function type. 4509 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4510 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4511 CalleeTy = CalleeTy->getPointerTo(); 4512 4513 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4514 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4515 Callee.setFunctionPointer(CalleePtr); 4516 } 4517 4518 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4519 } 4520 4521 LValue CodeGenFunction:: 4522 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4523 Address BaseAddr = Address::invalid(); 4524 if (E->getOpcode() == BO_PtrMemI) { 4525 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4526 } else { 4527 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4528 } 4529 4530 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4531 4532 const MemberPointerType *MPT 4533 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4534 4535 LValueBaseInfo BaseInfo; 4536 Address MemberAddr = 4537 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4538 4539 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4540 } 4541 4542 /// Given the address of a temporary variable, produce an r-value of 4543 /// its type. 4544 RValue CodeGenFunction::convertTempToRValue(Address addr, 4545 QualType type, 4546 SourceLocation loc) { 4547 LValue lvalue = MakeAddrLValue(addr, type, 4548 LValueBaseInfo(AlignmentSource::Decl, false)); 4549 switch (getEvaluationKind(type)) { 4550 case TEK_Complex: 4551 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4552 case TEK_Aggregate: 4553 return lvalue.asAggregateRValue(); 4554 case TEK_Scalar: 4555 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4556 } 4557 llvm_unreachable("bad evaluation kind"); 4558 } 4559 4560 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4561 assert(Val->getType()->isFPOrFPVectorTy()); 4562 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4563 return; 4564 4565 llvm::MDBuilder MDHelper(getLLVMContext()); 4566 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4567 4568 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4569 } 4570 4571 namespace { 4572 struct LValueOrRValue { 4573 LValue LV; 4574 RValue RV; 4575 }; 4576 } 4577 4578 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4579 const PseudoObjectExpr *E, 4580 bool forLValue, 4581 AggValueSlot slot) { 4582 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4583 4584 // Find the result expression, if any. 4585 const Expr *resultExpr = E->getResultExpr(); 4586 LValueOrRValue result; 4587 4588 for (PseudoObjectExpr::const_semantics_iterator 4589 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4590 const Expr *semantic = *i; 4591 4592 // If this semantic expression is an opaque value, bind it 4593 // to the result of its source expression. 4594 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4595 4596 // If this is the result expression, we may need to evaluate 4597 // directly into the slot. 4598 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4599 OVMA opaqueData; 4600 if (ov == resultExpr && ov->isRValue() && !forLValue && 4601 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4602 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4603 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4604 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4605 BaseInfo); 4606 opaqueData = OVMA::bind(CGF, ov, LV); 4607 result.RV = slot.asRValue(); 4608 4609 // Otherwise, emit as normal. 4610 } else { 4611 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4612 4613 // If this is the result, also evaluate the result now. 4614 if (ov == resultExpr) { 4615 if (forLValue) 4616 result.LV = CGF.EmitLValue(ov); 4617 else 4618 result.RV = CGF.EmitAnyExpr(ov, slot); 4619 } 4620 } 4621 4622 opaques.push_back(opaqueData); 4623 4624 // Otherwise, if the expression is the result, evaluate it 4625 // and remember the result. 4626 } else if (semantic == resultExpr) { 4627 if (forLValue) 4628 result.LV = CGF.EmitLValue(semantic); 4629 else 4630 result.RV = CGF.EmitAnyExpr(semantic, slot); 4631 4632 // Otherwise, evaluate the expression in an ignored context. 4633 } else { 4634 CGF.EmitIgnoredExpr(semantic); 4635 } 4636 } 4637 4638 // Unbind all the opaques now. 4639 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4640 opaques[i].unbind(CGF); 4641 4642 return result; 4643 } 4644 4645 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4646 AggValueSlot slot) { 4647 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4648 } 4649 4650 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4651 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4652 } 4653