1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51     cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
64                                           const Twine &Name,
65                                           llvm::Value *ArraySize,
66                                           bool CastToDefaultAddrSpace) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   llvm::Value *V = Alloca;
70   // Alloca always returns a pointer in alloca address space, which may
71   // be different from the type defined by the language. For example,
72   // in C++ the auto variables are in the default address space. Therefore
73   // cast alloca to the default address space when necessary.
74   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
75     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
76     auto CurIP = Builder.saveIP();
77     Builder.SetInsertPoint(AllocaInsertPt);
78     V = getTargetHooks().performAddrSpaceCast(
79         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
80         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
81     Builder.restoreIP(CurIP);
82   }
83 
84   return Address(V, Align);
85 }
86 
87 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
88 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
89 /// insertion point of the builder.
90 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
91                                                     const Twine &Name,
92                                                     llvm::Value *ArraySize) {
93   if (ArraySize)
94     return Builder.CreateAlloca(Ty, ArraySize, Name);
95   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
96                               ArraySize, Name, AllocaInsertPt);
97 }
98 
99 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
100 /// default alignment of the corresponding LLVM type, which is *not*
101 /// guaranteed to be related in any way to the expected alignment of
102 /// an AST type that might have been lowered to Ty.
103 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
104                                                       const Twine &Name) {
105   CharUnits Align =
106     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
107   return CreateTempAlloca(Ty, Align, Name);
108 }
109 
110 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
111   assert(isa<llvm::AllocaInst>(Var.getPointer()));
112   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
113   Store->setAlignment(Var.getAlignment().getQuantity());
114   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
115   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
116 }
117 
118 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
119   CharUnits Align = getContext().getTypeAlignInChars(Ty);
120   return CreateTempAlloca(ConvertType(Ty), Align, Name);
121 }
122 
123 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
124                                        bool CastToDefaultAddrSpace) {
125   // FIXME: Should we prefer the preferred type alignment here?
126   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
127                        CastToDefaultAddrSpace);
128 }
129 
130 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
131                                        const Twine &Name,
132                                        bool CastToDefaultAddrSpace) {
133   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
134                           CastToDefaultAddrSpace);
135 }
136 
137 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
138 /// expression and compare the result against zero, returning an Int1Ty value.
139 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
140   PGO.setCurrentStmt(E);
141   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
142     llvm::Value *MemPtr = EmitScalarExpr(E);
143     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
144   }
145 
146   QualType BoolTy = getContext().BoolTy;
147   SourceLocation Loc = E->getExprLoc();
148   if (!E->getType()->isAnyComplexType())
149     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
150 
151   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
152                                        Loc);
153 }
154 
155 /// EmitIgnoredExpr - Emit code to compute the specified expression,
156 /// ignoring the result.
157 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
158   if (E->isRValue())
159     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
160 
161   // Just emit it as an l-value and drop the result.
162   EmitLValue(E);
163 }
164 
165 /// EmitAnyExpr - Emit code to compute the specified expression which
166 /// can have any type.  The result is returned as an RValue struct.
167 /// If this is an aggregate expression, AggSlot indicates where the
168 /// result should be returned.
169 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
170                                     AggValueSlot aggSlot,
171                                     bool ignoreResult) {
172   switch (getEvaluationKind(E->getType())) {
173   case TEK_Scalar:
174     return RValue::get(EmitScalarExpr(E, ignoreResult));
175   case TEK_Complex:
176     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
177   case TEK_Aggregate:
178     if (!ignoreResult && aggSlot.isIgnored())
179       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
180     EmitAggExpr(E, aggSlot);
181     return aggSlot.asRValue();
182   }
183   llvm_unreachable("bad evaluation kind");
184 }
185 
186 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
187 /// always be accessible even if no aggregate location is provided.
188 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
189   AggValueSlot AggSlot = AggValueSlot::ignored();
190 
191   if (hasAggregateEvaluationKind(E->getType()))
192     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
193   return EmitAnyExpr(E, AggSlot);
194 }
195 
196 /// EmitAnyExprToMem - Evaluate an expression into a given memory
197 /// location.
198 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
199                                        Address Location,
200                                        Qualifiers Quals,
201                                        bool IsInit) {
202   // FIXME: This function should take an LValue as an argument.
203   switch (getEvaluationKind(E->getType())) {
204   case TEK_Complex:
205     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
206                               /*isInit*/ false);
207     return;
208 
209   case TEK_Aggregate: {
210     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
211                                          AggValueSlot::IsDestructed_t(IsInit),
212                                          AggValueSlot::DoesNotNeedGCBarriers,
213                                          AggValueSlot::IsAliased_t(!IsInit)));
214     return;
215   }
216 
217   case TEK_Scalar: {
218     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
219     LValue LV = MakeAddrLValue(Location, E->getType());
220     EmitStoreThroughLValue(RV, LV);
221     return;
222   }
223   }
224   llvm_unreachable("bad evaluation kind");
225 }
226 
227 static void
228 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
229                      const Expr *E, Address ReferenceTemporary) {
230   // Objective-C++ ARC:
231   //   If we are binding a reference to a temporary that has ownership, we
232   //   need to perform retain/release operations on the temporary.
233   //
234   // FIXME: This should be looking at E, not M.
235   if (auto Lifetime = M->getType().getObjCLifetime()) {
236     switch (Lifetime) {
237     case Qualifiers::OCL_None:
238     case Qualifiers::OCL_ExplicitNone:
239       // Carry on to normal cleanup handling.
240       break;
241 
242     case Qualifiers::OCL_Autoreleasing:
243       // Nothing to do; cleaned up by an autorelease pool.
244       return;
245 
246     case Qualifiers::OCL_Strong:
247     case Qualifiers::OCL_Weak:
248       switch (StorageDuration Duration = M->getStorageDuration()) {
249       case SD_Static:
250         // Note: we intentionally do not register a cleanup to release
251         // the object on program termination.
252         return;
253 
254       case SD_Thread:
255         // FIXME: We should probably register a cleanup in this case.
256         return;
257 
258       case SD_Automatic:
259       case SD_FullExpression:
260         CodeGenFunction::Destroyer *Destroy;
261         CleanupKind CleanupKind;
262         if (Lifetime == Qualifiers::OCL_Strong) {
263           const ValueDecl *VD = M->getExtendingDecl();
264           bool Precise =
265               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
266           CleanupKind = CGF.getARCCleanupKind();
267           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
268                             : &CodeGenFunction::destroyARCStrongImprecise;
269         } else {
270           // __weak objects always get EH cleanups; otherwise, exceptions
271           // could cause really nasty crashes instead of mere leaks.
272           CleanupKind = NormalAndEHCleanup;
273           Destroy = &CodeGenFunction::destroyARCWeak;
274         }
275         if (Duration == SD_FullExpression)
276           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
277                           M->getType(), *Destroy,
278                           CleanupKind & EHCleanup);
279         else
280           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
281                                           M->getType(),
282                                           *Destroy, CleanupKind & EHCleanup);
283         return;
284 
285       case SD_Dynamic:
286         llvm_unreachable("temporary cannot have dynamic storage duration");
287       }
288       llvm_unreachable("unknown storage duration");
289     }
290   }
291 
292   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
293   if (const RecordType *RT =
294           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
295     // Get the destructor for the reference temporary.
296     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
297     if (!ClassDecl->hasTrivialDestructor())
298       ReferenceTemporaryDtor = ClassDecl->getDestructor();
299   }
300 
301   if (!ReferenceTemporaryDtor)
302     return;
303 
304   // Call the destructor for the temporary.
305   switch (M->getStorageDuration()) {
306   case SD_Static:
307   case SD_Thread: {
308     llvm::Constant *CleanupFn;
309     llvm::Constant *CleanupArg;
310     if (E->getType()->isArrayType()) {
311       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
312           ReferenceTemporary, E->getType(),
313           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
314           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
315       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
316     } else {
317       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
318                                                StructorType::Complete);
319       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
320     }
321     CGF.CGM.getCXXABI().registerGlobalDtor(
322         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
323     break;
324   }
325 
326   case SD_FullExpression:
327     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
328                     CodeGenFunction::destroyCXXObject,
329                     CGF.getLangOpts().Exceptions);
330     break;
331 
332   case SD_Automatic:
333     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
334                                     ReferenceTemporary, E->getType(),
335                                     CodeGenFunction::destroyCXXObject,
336                                     CGF.getLangOpts().Exceptions);
337     break;
338 
339   case SD_Dynamic:
340     llvm_unreachable("temporary cannot have dynamic storage duration");
341   }
342 }
343 
344 static Address createReferenceTemporary(CodeGenFunction &CGF,
345                                         const MaterializeTemporaryExpr *M,
346                                         const Expr *Inner) {
347   auto &TCG = CGF.getTargetHooks();
348   switch (M->getStorageDuration()) {
349   case SD_FullExpression:
350   case SD_Automatic: {
351     // If we have a constant temporary array or record try to promote it into a
352     // constant global under the same rules a normal constant would've been
353     // promoted. This is easier on the optimizer and generally emits fewer
354     // instructions.
355     QualType Ty = Inner->getType();
356     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
357         (Ty->isArrayType() || Ty->isRecordType()) &&
358         CGF.CGM.isTypeConstant(Ty, true))
359       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
360         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
361           auto AS = AddrSpace.getValue();
362           auto *GV = new llvm::GlobalVariable(
363               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
364               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
365               llvm::GlobalValue::NotThreadLocal,
366               CGF.getContext().getTargetAddressSpace(AS));
367           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
368           GV->setAlignment(alignment.getQuantity());
369           llvm::Constant *C = GV;
370           if (AS != LangAS::Default)
371             C = TCG.performAddrSpaceCast(
372                 CGF.CGM, GV, AS, LangAS::Default,
373                 GV->getValueType()->getPointerTo(
374                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
375           // FIXME: Should we put the new global into a COMDAT?
376           return Address(C, alignment);
377         }
378       }
379     return CGF.CreateMemTemp(Ty, "ref.tmp");
380   }
381   case SD_Thread:
382   case SD_Static:
383     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
384 
385   case SD_Dynamic:
386     llvm_unreachable("temporary can't have dynamic storage duration");
387   }
388   llvm_unreachable("unknown storage duration");
389 }
390 
391 LValue CodeGenFunction::
392 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
393   const Expr *E = M->GetTemporaryExpr();
394 
395     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
396     // as that will cause the lifetime adjustment to be lost for ARC
397   auto ownership = M->getType().getObjCLifetime();
398   if (ownership != Qualifiers::OCL_None &&
399       ownership != Qualifiers::OCL_ExplicitNone) {
400     Address Object = createReferenceTemporary(*this, M, E);
401     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
402       Object = Address(llvm::ConstantExpr::getBitCast(Var,
403                            ConvertTypeForMem(E->getType())
404                              ->getPointerTo(Object.getAddressSpace())),
405                        Object.getAlignment());
406 
407       // createReferenceTemporary will promote the temporary to a global with a
408       // constant initializer if it can.  It can only do this to a value of
409       // ARC-manageable type if the value is global and therefore "immune" to
410       // ref-counting operations.  Therefore we have no need to emit either a
411       // dynamic initialization or a cleanup and we can just return the address
412       // of the temporary.
413       if (Var->hasInitializer())
414         return MakeAddrLValue(Object, M->getType(),
415                               LValueBaseInfo(AlignmentSource::Decl, false));
416 
417       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
418     }
419     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
420                                        LValueBaseInfo(AlignmentSource::Decl,
421                                                       false));
422 
423     switch (getEvaluationKind(E->getType())) {
424     default: llvm_unreachable("expected scalar or aggregate expression");
425     case TEK_Scalar:
426       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
427       break;
428     case TEK_Aggregate: {
429       EmitAggExpr(E, AggValueSlot::forAddr(Object,
430                                            E->getType().getQualifiers(),
431                                            AggValueSlot::IsDestructed,
432                                            AggValueSlot::DoesNotNeedGCBarriers,
433                                            AggValueSlot::IsNotAliased));
434       break;
435     }
436     }
437 
438     pushTemporaryCleanup(*this, M, E, Object);
439     return RefTempDst;
440   }
441 
442   SmallVector<const Expr *, 2> CommaLHSs;
443   SmallVector<SubobjectAdjustment, 2> Adjustments;
444   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
445 
446   for (const auto &Ignored : CommaLHSs)
447     EmitIgnoredExpr(Ignored);
448 
449   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
450     if (opaque->getType()->isRecordType()) {
451       assert(Adjustments.empty());
452       return EmitOpaqueValueLValue(opaque);
453     }
454   }
455 
456   // Create and initialize the reference temporary.
457   Address Object = createReferenceTemporary(*this, M, E);
458   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
459           Object.getPointer()->stripPointerCasts())) {
460     Object = Address(llvm::ConstantExpr::getBitCast(
461                          cast<llvm::Constant>(Object.getPointer()),
462                          ConvertTypeForMem(E->getType())->getPointerTo()),
463                      Object.getAlignment());
464     // If the temporary is a global and has a constant initializer or is a
465     // constant temporary that we promoted to a global, we may have already
466     // initialized it.
467     if (!Var->hasInitializer()) {
468       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
469       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
470     }
471   } else {
472     switch (M->getStorageDuration()) {
473     case SD_Automatic:
474     case SD_FullExpression:
475       if (auto *Size = EmitLifetimeStart(
476               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
477               Object.getPointer())) {
478         if (M->getStorageDuration() == SD_Automatic)
479           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
480                                                     Object, Size);
481         else
482           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
483                                                Size);
484       }
485       break;
486     default:
487       break;
488     }
489     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
490   }
491   pushTemporaryCleanup(*this, M, E, Object);
492 
493   // Perform derived-to-base casts and/or field accesses, to get from the
494   // temporary object we created (and, potentially, for which we extended
495   // the lifetime) to the subobject we're binding the reference to.
496   for (unsigned I = Adjustments.size(); I != 0; --I) {
497     SubobjectAdjustment &Adjustment = Adjustments[I-1];
498     switch (Adjustment.Kind) {
499     case SubobjectAdjustment::DerivedToBaseAdjustment:
500       Object =
501           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
502                                 Adjustment.DerivedToBase.BasePath->path_begin(),
503                                 Adjustment.DerivedToBase.BasePath->path_end(),
504                                 /*NullCheckValue=*/ false, E->getExprLoc());
505       break;
506 
507     case SubobjectAdjustment::FieldAdjustment: {
508       LValue LV = MakeAddrLValue(Object, E->getType(),
509                                  LValueBaseInfo(AlignmentSource::Decl, false));
510       LV = EmitLValueForField(LV, Adjustment.Field);
511       assert(LV.isSimple() &&
512              "materialized temporary field is not a simple lvalue");
513       Object = LV.getAddress();
514       break;
515     }
516 
517     case SubobjectAdjustment::MemberPointerAdjustment: {
518       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
519       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
520                                                Adjustment.Ptr.MPT);
521       break;
522     }
523     }
524   }
525 
526   return MakeAddrLValue(Object, M->getType(),
527                         LValueBaseInfo(AlignmentSource::Decl, false));
528 }
529 
530 RValue
531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
532   // Emit the expression as an lvalue.
533   LValue LV = EmitLValue(E);
534   assert(LV.isSimple());
535   llvm::Value *Value = LV.getPointer();
536 
537   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
538     // C++11 [dcl.ref]p5 (as amended by core issue 453):
539     //   If a glvalue to which a reference is directly bound designates neither
540     //   an existing object or function of an appropriate type nor a region of
541     //   storage of suitable size and alignment to contain an object of the
542     //   reference's type, the behavior is undefined.
543     QualType Ty = E->getType();
544     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
545   }
546 
547   return RValue::get(Value);
548 }
549 
550 
551 /// getAccessedFieldNo - Given an encoded value and a result number, return the
552 /// input field number being accessed.
553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
554                                              const llvm::Constant *Elts) {
555   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
556       ->getZExtValue();
557 }
558 
559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
561                                     llvm::Value *High) {
562   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
563   llvm::Value *K47 = Builder.getInt64(47);
564   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
565   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
566   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
567   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
568   return Builder.CreateMul(B1, KMul);
569 }
570 
571 bool CodeGenFunction::sanitizePerformTypeCheck() const {
572   return SanOpts.has(SanitizerKind::Null) |
573          SanOpts.has(SanitizerKind::Alignment) |
574          SanOpts.has(SanitizerKind::ObjectSize) |
575          SanOpts.has(SanitizerKind::Vptr);
576 }
577 
578 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
579                                     llvm::Value *Ptr, QualType Ty,
580                                     CharUnits Alignment,
581                                     SanitizerSet SkippedChecks) {
582   if (!sanitizePerformTypeCheck())
583     return;
584 
585   // Don't check pointers outside the default address space. The null check
586   // isn't correct, the object-size check isn't supported by LLVM, and we can't
587   // communicate the addresses to the runtime handler for the vptr check.
588   if (Ptr->getType()->getPointerAddressSpace())
589     return;
590 
591   // Don't check pointers to volatile data. The behavior here is implementation-
592   // defined.
593   if (Ty.isVolatileQualified())
594     return;
595 
596   SanitizerScope SanScope(this);
597 
598   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
599   llvm::BasicBlock *Done = nullptr;
600 
601   // Quickly determine whether we have a pointer to an alloca. It's possible
602   // to skip null checks, and some alignment checks, for these pointers. This
603   // can reduce compile-time significantly.
604   auto PtrToAlloca =
605       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
606 
607   llvm::Value *IsNonNull = nullptr;
608   bool IsGuaranteedNonNull =
609       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
610   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
611                            TCK == TCK_UpcastToVirtualBase;
612   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
613       !IsGuaranteedNonNull) {
614     // The glvalue must not be an empty glvalue.
615     IsNonNull = Builder.CreateIsNotNull(Ptr);
616 
617     // The IR builder can constant-fold the null check if the pointer points to
618     // a constant.
619     IsGuaranteedNonNull =
620         IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext());
621 
622     // Skip the null check if the pointer is known to be non-null.
623     if (!IsGuaranteedNonNull) {
624       if (AllowNullPointers) {
625         // When performing pointer casts, it's OK if the value is null.
626         // Skip the remaining checks in that case.
627         Done = createBasicBlock("null");
628         llvm::BasicBlock *Rest = createBasicBlock("not.null");
629         Builder.CreateCondBr(IsNonNull, Rest, Done);
630         EmitBlock(Rest);
631       } else {
632         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
633       }
634     }
635   }
636 
637   if (SanOpts.has(SanitizerKind::ObjectSize) &&
638       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
639       !Ty->isIncompleteType()) {
640     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
641 
642     // The glvalue must refer to a large enough storage region.
643     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
644     //        to check this.
645     // FIXME: Get object address space
646     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
647     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
648     llvm::Value *Min = Builder.getFalse();
649     llvm::Value *NullIsUnknown = Builder.getFalse();
650     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
651     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
652         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
653         llvm::ConstantInt::get(IntPtrTy, Size));
654     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
655   }
656 
657   uint64_t AlignVal = 0;
658 
659   if (SanOpts.has(SanitizerKind::Alignment) &&
660       !SkippedChecks.has(SanitizerKind::Alignment)) {
661     AlignVal = Alignment.getQuantity();
662     if (!Ty->isIncompleteType() && !AlignVal)
663       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
664 
665     // The glvalue must be suitably aligned.
666     if (AlignVal > 1 &&
667         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
668       llvm::Value *Align =
669           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
670                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
671       llvm::Value *Aligned =
672         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
673       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
674     }
675   }
676 
677   if (Checks.size() > 0) {
678     // Make sure we're not losing information. Alignment needs to be a power of
679     // 2
680     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
681     llvm::Constant *StaticData[] = {
682         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
683         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
684         llvm::ConstantInt::get(Int8Ty, TCK)};
685     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
686   }
687 
688   // If possible, check that the vptr indicates that there is a subobject of
689   // type Ty at offset zero within this object.
690   //
691   // C++11 [basic.life]p5,6:
692   //   [For storage which does not refer to an object within its lifetime]
693   //   The program has undefined behavior if:
694   //    -- the [pointer or glvalue] is used to access a non-static data member
695   //       or call a non-static member function
696   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
697   bool HasNullCheck = IsGuaranteedNonNull || IsNonNull;
698   if (SanOpts.has(SanitizerKind::Vptr) &&
699       !SkippedChecks.has(SanitizerKind::Vptr) && HasNullCheck &&
700       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
701        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
702        TCK == TCK_UpcastToVirtualBase) &&
703       RD && RD->hasDefinition() && RD->isDynamicClass()) {
704     // Ensure that the pointer is non-null before loading it. If there is no
705     // compile-time guarantee, reuse the run-time null check.
706     if (!IsGuaranteedNonNull) {
707       assert(IsNonNull && "Missing run-time null check");
708       if (!Done)
709         Done = createBasicBlock("vptr.null");
710       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
711       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
712       EmitBlock(VptrNotNull);
713     }
714 
715     // Compute a hash of the mangled name of the type.
716     //
717     // FIXME: This is not guaranteed to be deterministic! Move to a
718     //        fingerprinting mechanism once LLVM provides one. For the time
719     //        being the implementation happens to be deterministic.
720     SmallString<64> MangledName;
721     llvm::raw_svector_ostream Out(MangledName);
722     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
723                                                      Out);
724 
725     // Blacklist based on the mangled type.
726     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
727             Out.str())) {
728       llvm::hash_code TypeHash = hash_value(Out.str());
729 
730       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
731       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
732       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
733       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
734       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
735       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
736 
737       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
738       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
739 
740       // Look the hash up in our cache.
741       const int CacheSize = 128;
742       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
743       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
744                                                      "__ubsan_vptr_type_cache");
745       llvm::Value *Slot = Builder.CreateAnd(Hash,
746                                             llvm::ConstantInt::get(IntPtrTy,
747                                                                    CacheSize-1));
748       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
749       llvm::Value *CacheVal =
750         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
751                                   getPointerAlign());
752 
753       // If the hash isn't in the cache, call a runtime handler to perform the
754       // hard work of checking whether the vptr is for an object of the right
755       // type. This will either fill in the cache and return, or produce a
756       // diagnostic.
757       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
758       llvm::Constant *StaticData[] = {
759         EmitCheckSourceLocation(Loc),
760         EmitCheckTypeDescriptor(Ty),
761         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
762         llvm::ConstantInt::get(Int8Ty, TCK)
763       };
764       llvm::Value *DynamicData[] = { Ptr, Hash };
765       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
766                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
767                 DynamicData);
768     }
769   }
770 
771   if (Done) {
772     Builder.CreateBr(Done);
773     EmitBlock(Done);
774   }
775 }
776 
777 /// Determine whether this expression refers to a flexible array member in a
778 /// struct. We disable array bounds checks for such members.
779 static bool isFlexibleArrayMemberExpr(const Expr *E) {
780   // For compatibility with existing code, we treat arrays of length 0 or
781   // 1 as flexible array members.
782   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
783   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
784     if (CAT->getSize().ugt(1))
785       return false;
786   } else if (!isa<IncompleteArrayType>(AT))
787     return false;
788 
789   E = E->IgnoreParens();
790 
791   // A flexible array member must be the last member in the class.
792   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
793     // FIXME: If the base type of the member expr is not FD->getParent(),
794     // this should not be treated as a flexible array member access.
795     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
796       RecordDecl::field_iterator FI(
797           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
798       return ++FI == FD->getParent()->field_end();
799     }
800   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
801     return IRE->getDecl()->getNextIvar() == nullptr;
802   }
803 
804   return false;
805 }
806 
807 /// If Base is known to point to the start of an array, return the length of
808 /// that array. Return 0 if the length cannot be determined.
809 static llvm::Value *getArrayIndexingBound(
810     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
811   // For the vector indexing extension, the bound is the number of elements.
812   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
813     IndexedType = Base->getType();
814     return CGF.Builder.getInt32(VT->getNumElements());
815   }
816 
817   Base = Base->IgnoreParens();
818 
819   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
820     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
821         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
822       IndexedType = CE->getSubExpr()->getType();
823       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
824       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
825         return CGF.Builder.getInt(CAT->getSize());
826       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
827         return CGF.getVLASize(VAT).first;
828     }
829   }
830 
831   return nullptr;
832 }
833 
834 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
835                                       llvm::Value *Index, QualType IndexType,
836                                       bool Accessed) {
837   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
838          "should not be called unless adding bounds checks");
839   SanitizerScope SanScope(this);
840 
841   QualType IndexedType;
842   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
843   if (!Bound)
844     return;
845 
846   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
847   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
848   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
849 
850   llvm::Constant *StaticData[] = {
851     EmitCheckSourceLocation(E->getExprLoc()),
852     EmitCheckTypeDescriptor(IndexedType),
853     EmitCheckTypeDescriptor(IndexType)
854   };
855   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
856                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
857   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
858             SanitizerHandler::OutOfBounds, StaticData, Index);
859 }
860 
861 
862 CodeGenFunction::ComplexPairTy CodeGenFunction::
863 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
864                          bool isInc, bool isPre) {
865   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
866 
867   llvm::Value *NextVal;
868   if (isa<llvm::IntegerType>(InVal.first->getType())) {
869     uint64_t AmountVal = isInc ? 1 : -1;
870     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
871 
872     // Add the inc/dec to the real part.
873     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
874   } else {
875     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
876     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
877     if (!isInc)
878       FVal.changeSign();
879     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
880 
881     // Add the inc/dec to the real part.
882     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
883   }
884 
885   ComplexPairTy IncVal(NextVal, InVal.second);
886 
887   // Store the updated result through the lvalue.
888   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
889 
890   // If this is a postinc, return the value read from memory, otherwise use the
891   // updated value.
892   return isPre ? IncVal : InVal;
893 }
894 
895 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
896                                              CodeGenFunction *CGF) {
897   // Bind VLAs in the cast type.
898   if (CGF && E->getType()->isVariablyModifiedType())
899     CGF->EmitVariablyModifiedType(E->getType());
900 
901   if (CGDebugInfo *DI = getModuleDebugInfo())
902     DI->EmitExplicitCastType(E->getType());
903 }
904 
905 //===----------------------------------------------------------------------===//
906 //                         LValue Expression Emission
907 //===----------------------------------------------------------------------===//
908 
909 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
910 /// derive a more accurate bound on the alignment of the pointer.
911 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
912                                                   LValueBaseInfo *BaseInfo) {
913   // We allow this with ObjC object pointers because of fragile ABIs.
914   assert(E->getType()->isPointerType() ||
915          E->getType()->isObjCObjectPointerType());
916   E = E->IgnoreParens();
917 
918   // Casts:
919   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
920     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
921       CGM.EmitExplicitCastExprType(ECE, this);
922 
923     switch (CE->getCastKind()) {
924     // Non-converting casts (but not C's implicit conversion from void*).
925     case CK_BitCast:
926     case CK_NoOp:
927       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
928         if (PtrTy->getPointeeType()->isVoidType())
929           break;
930 
931         LValueBaseInfo InnerInfo;
932         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo);
933         if (BaseInfo) *BaseInfo = InnerInfo;
934 
935         // If this is an explicit bitcast, and the source l-value is
936         // opaque, honor the alignment of the casted-to type.
937         if (isa<ExplicitCastExpr>(CE) &&
938             InnerInfo.getAlignmentSource() != AlignmentSource::Decl) {
939           LValueBaseInfo ExpInfo;
940           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
941                                                            &ExpInfo);
942           if (BaseInfo)
943             BaseInfo->mergeForCast(ExpInfo);
944           Addr = Address(Addr.getPointer(), Align);
945         }
946 
947         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
948             CE->getCastKind() == CK_BitCast) {
949           if (auto PT = E->getType()->getAs<PointerType>())
950             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
951                                       /*MayBeNull=*/true,
952                                       CodeGenFunction::CFITCK_UnrelatedCast,
953                                       CE->getLocStart());
954         }
955 
956         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
957       }
958       break;
959 
960     // Array-to-pointer decay.
961     case CK_ArrayToPointerDecay:
962       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo);
963 
964     // Derived-to-base conversions.
965     case CK_UncheckedDerivedToBase:
966     case CK_DerivedToBase: {
967       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
968       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
969       return GetAddressOfBaseClass(Addr, Derived,
970                                    CE->path_begin(), CE->path_end(),
971                                    ShouldNullCheckClassCastValue(CE),
972                                    CE->getExprLoc());
973     }
974 
975     // TODO: Is there any reason to treat base-to-derived conversions
976     // specially?
977     default:
978       break;
979     }
980   }
981 
982   // Unary &.
983   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
984     if (UO->getOpcode() == UO_AddrOf) {
985       LValue LV = EmitLValue(UO->getSubExpr());
986       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
987       return LV.getAddress();
988     }
989   }
990 
991   // TODO: conditional operators, comma.
992 
993   // Otherwise, use the alignment of the type.
994   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo);
995   return Address(EmitScalarExpr(E), Align);
996 }
997 
998 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
999   if (Ty->isVoidType())
1000     return RValue::get(nullptr);
1001 
1002   switch (getEvaluationKind(Ty)) {
1003   case TEK_Complex: {
1004     llvm::Type *EltTy =
1005       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1006     llvm::Value *U = llvm::UndefValue::get(EltTy);
1007     return RValue::getComplex(std::make_pair(U, U));
1008   }
1009 
1010   // If this is a use of an undefined aggregate type, the aggregate must have an
1011   // identifiable address.  Just because the contents of the value are undefined
1012   // doesn't mean that the address can't be taken and compared.
1013   case TEK_Aggregate: {
1014     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1015     return RValue::getAggregate(DestPtr);
1016   }
1017 
1018   case TEK_Scalar:
1019     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1020   }
1021   llvm_unreachable("bad evaluation kind");
1022 }
1023 
1024 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1025                                               const char *Name) {
1026   ErrorUnsupported(E, Name);
1027   return GetUndefRValue(E->getType());
1028 }
1029 
1030 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1031                                               const char *Name) {
1032   ErrorUnsupported(E, Name);
1033   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1034   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1035                         E->getType());
1036 }
1037 
1038 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1039   const Expr *Base = Obj;
1040   while (!isa<CXXThisExpr>(Base)) {
1041     // The result of a dynamic_cast can be null.
1042     if (isa<CXXDynamicCastExpr>(Base))
1043       return false;
1044 
1045     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1046       Base = CE->getSubExpr();
1047     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1048       Base = PE->getSubExpr();
1049     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1050       if (UO->getOpcode() == UO_Extension)
1051         Base = UO->getSubExpr();
1052       else
1053         return false;
1054     } else {
1055       return false;
1056     }
1057   }
1058   return true;
1059 }
1060 
1061 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1062   LValue LV;
1063   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1064     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1065   else
1066     LV = EmitLValue(E);
1067   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1068     SanitizerSet SkippedChecks;
1069     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1070       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1071       if (IsBaseCXXThis)
1072         SkippedChecks.set(SanitizerKind::Alignment, true);
1073       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1074         SkippedChecks.set(SanitizerKind::Null, true);
1075     }
1076     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1077                   E->getType(), LV.getAlignment(), SkippedChecks);
1078   }
1079   return LV;
1080 }
1081 
1082 /// EmitLValue - Emit code to compute a designator that specifies the location
1083 /// of the expression.
1084 ///
1085 /// This can return one of two things: a simple address or a bitfield reference.
1086 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1087 /// an LLVM pointer type.
1088 ///
1089 /// If this returns a bitfield reference, nothing about the pointee type of the
1090 /// LLVM value is known: For example, it may not be a pointer to an integer.
1091 ///
1092 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1093 /// this method guarantees that the returned pointer type will point to an LLVM
1094 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1095 /// length type, this is not possible.
1096 ///
1097 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1098   ApplyDebugLocation DL(*this, E);
1099   switch (E->getStmtClass()) {
1100   default: return EmitUnsupportedLValue(E, "l-value expression");
1101 
1102   case Expr::ObjCPropertyRefExprClass:
1103     llvm_unreachable("cannot emit a property reference directly");
1104 
1105   case Expr::ObjCSelectorExprClass:
1106     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1107   case Expr::ObjCIsaExprClass:
1108     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1109   case Expr::BinaryOperatorClass:
1110     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1111   case Expr::CompoundAssignOperatorClass: {
1112     QualType Ty = E->getType();
1113     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1114       Ty = AT->getValueType();
1115     if (!Ty->isAnyComplexType())
1116       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1117     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1118   }
1119   case Expr::CallExprClass:
1120   case Expr::CXXMemberCallExprClass:
1121   case Expr::CXXOperatorCallExprClass:
1122   case Expr::UserDefinedLiteralClass:
1123     return EmitCallExprLValue(cast<CallExpr>(E));
1124   case Expr::VAArgExprClass:
1125     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1126   case Expr::DeclRefExprClass:
1127     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1128   case Expr::ParenExprClass:
1129     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1130   case Expr::GenericSelectionExprClass:
1131     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1132   case Expr::PredefinedExprClass:
1133     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1134   case Expr::StringLiteralClass:
1135     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1136   case Expr::ObjCEncodeExprClass:
1137     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1138   case Expr::PseudoObjectExprClass:
1139     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1140   case Expr::InitListExprClass:
1141     return EmitInitListLValue(cast<InitListExpr>(E));
1142   case Expr::CXXTemporaryObjectExprClass:
1143   case Expr::CXXConstructExprClass:
1144     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1145   case Expr::CXXBindTemporaryExprClass:
1146     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1147   case Expr::CXXUuidofExprClass:
1148     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1149   case Expr::LambdaExprClass:
1150     return EmitLambdaLValue(cast<LambdaExpr>(E));
1151 
1152   case Expr::ExprWithCleanupsClass: {
1153     const auto *cleanups = cast<ExprWithCleanups>(E);
1154     enterFullExpression(cleanups);
1155     RunCleanupsScope Scope(*this);
1156     LValue LV = EmitLValue(cleanups->getSubExpr());
1157     if (LV.isSimple()) {
1158       // Defend against branches out of gnu statement expressions surrounded by
1159       // cleanups.
1160       llvm::Value *V = LV.getPointer();
1161       Scope.ForceCleanup({&V});
1162       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1163                               getContext(), LV.getBaseInfo(),
1164                               LV.getTBAAInfo());
1165     }
1166     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1167     // bitfield lvalue or some other non-simple lvalue?
1168     return LV;
1169   }
1170 
1171   case Expr::CXXDefaultArgExprClass:
1172     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1173   case Expr::CXXDefaultInitExprClass: {
1174     CXXDefaultInitExprScope Scope(*this);
1175     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1176   }
1177   case Expr::CXXTypeidExprClass:
1178     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1179 
1180   case Expr::ObjCMessageExprClass:
1181     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1182   case Expr::ObjCIvarRefExprClass:
1183     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1184   case Expr::StmtExprClass:
1185     return EmitStmtExprLValue(cast<StmtExpr>(E));
1186   case Expr::UnaryOperatorClass:
1187     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1188   case Expr::ArraySubscriptExprClass:
1189     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1190   case Expr::OMPArraySectionExprClass:
1191     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1192   case Expr::ExtVectorElementExprClass:
1193     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1194   case Expr::MemberExprClass:
1195     return EmitMemberExpr(cast<MemberExpr>(E));
1196   case Expr::CompoundLiteralExprClass:
1197     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1198   case Expr::ConditionalOperatorClass:
1199     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1200   case Expr::BinaryConditionalOperatorClass:
1201     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1202   case Expr::ChooseExprClass:
1203     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1204   case Expr::OpaqueValueExprClass:
1205     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1206   case Expr::SubstNonTypeTemplateParmExprClass:
1207     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1208   case Expr::ImplicitCastExprClass:
1209   case Expr::CStyleCastExprClass:
1210   case Expr::CXXFunctionalCastExprClass:
1211   case Expr::CXXStaticCastExprClass:
1212   case Expr::CXXDynamicCastExprClass:
1213   case Expr::CXXReinterpretCastExprClass:
1214   case Expr::CXXConstCastExprClass:
1215   case Expr::ObjCBridgedCastExprClass:
1216     return EmitCastLValue(cast<CastExpr>(E));
1217 
1218   case Expr::MaterializeTemporaryExprClass:
1219     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1220 
1221   case Expr::CoawaitExprClass:
1222     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1223   case Expr::CoyieldExprClass:
1224     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1225   }
1226 }
1227 
1228 /// Given an object of the given canonical type, can we safely copy a
1229 /// value out of it based on its initializer?
1230 static bool isConstantEmittableObjectType(QualType type) {
1231   assert(type.isCanonical());
1232   assert(!type->isReferenceType());
1233 
1234   // Must be const-qualified but non-volatile.
1235   Qualifiers qs = type.getLocalQualifiers();
1236   if (!qs.hasConst() || qs.hasVolatile()) return false;
1237 
1238   // Otherwise, all object types satisfy this except C++ classes with
1239   // mutable subobjects or non-trivial copy/destroy behavior.
1240   if (const auto *RT = dyn_cast<RecordType>(type))
1241     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1242       if (RD->hasMutableFields() || !RD->isTrivial())
1243         return false;
1244 
1245   return true;
1246 }
1247 
1248 /// Can we constant-emit a load of a reference to a variable of the
1249 /// given type?  This is different from predicates like
1250 /// Decl::isUsableInConstantExpressions because we do want it to apply
1251 /// in situations that don't necessarily satisfy the language's rules
1252 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1253 /// to do this with const float variables even if those variables
1254 /// aren't marked 'constexpr'.
1255 enum ConstantEmissionKind {
1256   CEK_None,
1257   CEK_AsReferenceOnly,
1258   CEK_AsValueOrReference,
1259   CEK_AsValueOnly
1260 };
1261 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1262   type = type.getCanonicalType();
1263   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1264     if (isConstantEmittableObjectType(ref->getPointeeType()))
1265       return CEK_AsValueOrReference;
1266     return CEK_AsReferenceOnly;
1267   }
1268   if (isConstantEmittableObjectType(type))
1269     return CEK_AsValueOnly;
1270   return CEK_None;
1271 }
1272 
1273 /// Try to emit a reference to the given value without producing it as
1274 /// an l-value.  This is actually more than an optimization: we can't
1275 /// produce an l-value for variables that we never actually captured
1276 /// in a block or lambda, which means const int variables or constexpr
1277 /// literals or similar.
1278 CodeGenFunction::ConstantEmission
1279 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1280   ValueDecl *value = refExpr->getDecl();
1281 
1282   // The value needs to be an enum constant or a constant variable.
1283   ConstantEmissionKind CEK;
1284   if (isa<ParmVarDecl>(value)) {
1285     CEK = CEK_None;
1286   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1287     CEK = checkVarTypeForConstantEmission(var->getType());
1288   } else if (isa<EnumConstantDecl>(value)) {
1289     CEK = CEK_AsValueOnly;
1290   } else {
1291     CEK = CEK_None;
1292   }
1293   if (CEK == CEK_None) return ConstantEmission();
1294 
1295   Expr::EvalResult result;
1296   bool resultIsReference;
1297   QualType resultType;
1298 
1299   // It's best to evaluate all the way as an r-value if that's permitted.
1300   if (CEK != CEK_AsReferenceOnly &&
1301       refExpr->EvaluateAsRValue(result, getContext())) {
1302     resultIsReference = false;
1303     resultType = refExpr->getType();
1304 
1305   // Otherwise, try to evaluate as an l-value.
1306   } else if (CEK != CEK_AsValueOnly &&
1307              refExpr->EvaluateAsLValue(result, getContext())) {
1308     resultIsReference = true;
1309     resultType = value->getType();
1310 
1311   // Failure.
1312   } else {
1313     return ConstantEmission();
1314   }
1315 
1316   // In any case, if the initializer has side-effects, abandon ship.
1317   if (result.HasSideEffects)
1318     return ConstantEmission();
1319 
1320   // Emit as a constant.
1321   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1322 
1323   // Make sure we emit a debug reference to the global variable.
1324   // This should probably fire even for
1325   if (isa<VarDecl>(value)) {
1326     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1327       EmitDeclRefExprDbgValue(refExpr, result.Val);
1328   } else {
1329     assert(isa<EnumConstantDecl>(value));
1330     EmitDeclRefExprDbgValue(refExpr, result.Val);
1331   }
1332 
1333   // If we emitted a reference constant, we need to dereference that.
1334   if (resultIsReference)
1335     return ConstantEmission::forReference(C);
1336 
1337   return ConstantEmission::forValue(C);
1338 }
1339 
1340 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1341                                                SourceLocation Loc) {
1342   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1343                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1344                           lvalue.getTBAAInfo(),
1345                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1346                           lvalue.isNontemporal());
1347 }
1348 
1349 static bool hasBooleanRepresentation(QualType Ty) {
1350   if (Ty->isBooleanType())
1351     return true;
1352 
1353   if (const EnumType *ET = Ty->getAs<EnumType>())
1354     return ET->getDecl()->getIntegerType()->isBooleanType();
1355 
1356   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1357     return hasBooleanRepresentation(AT->getValueType());
1358 
1359   return false;
1360 }
1361 
1362 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1363                             llvm::APInt &Min, llvm::APInt &End,
1364                             bool StrictEnums, bool IsBool) {
1365   const EnumType *ET = Ty->getAs<EnumType>();
1366   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1367                                 ET && !ET->getDecl()->isFixed();
1368   if (!IsBool && !IsRegularCPlusPlusEnum)
1369     return false;
1370 
1371   if (IsBool) {
1372     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1373     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1374   } else {
1375     const EnumDecl *ED = ET->getDecl();
1376     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1377     unsigned Bitwidth = LTy->getScalarSizeInBits();
1378     unsigned NumNegativeBits = ED->getNumNegativeBits();
1379     unsigned NumPositiveBits = ED->getNumPositiveBits();
1380 
1381     if (NumNegativeBits) {
1382       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1383       assert(NumBits <= Bitwidth);
1384       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1385       Min = -End;
1386     } else {
1387       assert(NumPositiveBits <= Bitwidth);
1388       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1389       Min = llvm::APInt(Bitwidth, 0);
1390     }
1391   }
1392   return true;
1393 }
1394 
1395 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1396   llvm::APInt Min, End;
1397   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1398                        hasBooleanRepresentation(Ty)))
1399     return nullptr;
1400 
1401   llvm::MDBuilder MDHelper(getLLVMContext());
1402   return MDHelper.createRange(Min, End);
1403 }
1404 
1405 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1406                                            SourceLocation Loc) {
1407   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1408   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1409   if (!HasBoolCheck && !HasEnumCheck)
1410     return false;
1411 
1412   bool IsBool = hasBooleanRepresentation(Ty) ||
1413                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1414   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1415   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1416   if (!NeedsBoolCheck && !NeedsEnumCheck)
1417     return false;
1418 
1419   // Single-bit booleans don't need to be checked. Special-case this to avoid
1420   // a bit width mismatch when handling bitfield values. This is handled by
1421   // EmitFromMemory for the non-bitfield case.
1422   if (IsBool &&
1423       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1424     return false;
1425 
1426   llvm::APInt Min, End;
1427   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1428     return true;
1429 
1430   SanitizerScope SanScope(this);
1431   llvm::Value *Check;
1432   --End;
1433   if (!Min) {
1434     Check = Builder.CreateICmpULE(
1435         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1436   } else {
1437     llvm::Value *Upper = Builder.CreateICmpSLE(
1438         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1439     llvm::Value *Lower = Builder.CreateICmpSGE(
1440         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1441     Check = Builder.CreateAnd(Upper, Lower);
1442   }
1443   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1444                                   EmitCheckTypeDescriptor(Ty)};
1445   SanitizerMask Kind =
1446       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1447   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1448             StaticArgs, EmitCheckValue(Value));
1449   return true;
1450 }
1451 
1452 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1453                                                QualType Ty,
1454                                                SourceLocation Loc,
1455                                                LValueBaseInfo BaseInfo,
1456                                                llvm::MDNode *TBAAInfo,
1457                                                QualType TBAABaseType,
1458                                                uint64_t TBAAOffset,
1459                                                bool isNontemporal) {
1460   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1461     // For better performance, handle vector loads differently.
1462     if (Ty->isVectorType()) {
1463       const llvm::Type *EltTy = Addr.getElementType();
1464 
1465       const auto *VTy = cast<llvm::VectorType>(EltTy);
1466 
1467       // Handle vectors of size 3 like size 4 for better performance.
1468       if (VTy->getNumElements() == 3) {
1469 
1470         // Bitcast to vec4 type.
1471         llvm::VectorType *vec4Ty =
1472             llvm::VectorType::get(VTy->getElementType(), 4);
1473         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1474         // Now load value.
1475         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1476 
1477         // Shuffle vector to get vec3.
1478         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1479                                         {0, 1, 2}, "extractVec");
1480         return EmitFromMemory(V, Ty);
1481       }
1482     }
1483   }
1484 
1485   // Atomic operations have to be done on integral types.
1486   LValue AtomicLValue =
1487       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1488   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1489     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1490   }
1491 
1492   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1493   if (isNontemporal) {
1494     llvm::MDNode *Node = llvm::MDNode::get(
1495         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1496     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1497   }
1498   if (TBAAInfo) {
1499     bool MayAlias = BaseInfo.getMayAlias();
1500     llvm::MDNode *TBAA = MayAlias
1501         ? CGM.getTBAAInfo(getContext().CharTy)
1502         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1503     if (TBAA)
1504       CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias);
1505   }
1506 
1507   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1508     // In order to prevent the optimizer from throwing away the check, don't
1509     // attach range metadata to the load.
1510   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1511     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1512       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1513 
1514   return EmitFromMemory(Load, Ty);
1515 }
1516 
1517 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1518   // Bool has a different representation in memory than in registers.
1519   if (hasBooleanRepresentation(Ty)) {
1520     // This should really always be an i1, but sometimes it's already
1521     // an i8, and it's awkward to track those cases down.
1522     if (Value->getType()->isIntegerTy(1))
1523       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1524     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1525            "wrong value rep of bool");
1526   }
1527 
1528   return Value;
1529 }
1530 
1531 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1532   // Bool has a different representation in memory than in registers.
1533   if (hasBooleanRepresentation(Ty)) {
1534     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1535            "wrong value rep of bool");
1536     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1537   }
1538 
1539   return Value;
1540 }
1541 
1542 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1543                                         bool Volatile, QualType Ty,
1544                                         LValueBaseInfo BaseInfo,
1545                                         llvm::MDNode *TBAAInfo,
1546                                         bool isInit, QualType TBAABaseType,
1547                                         uint64_t TBAAOffset,
1548                                         bool isNontemporal) {
1549 
1550   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1551     // Handle vectors differently to get better performance.
1552     if (Ty->isVectorType()) {
1553       llvm::Type *SrcTy = Value->getType();
1554       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1555       // Handle vec3 special.
1556       if (VecTy && VecTy->getNumElements() == 3) {
1557         // Our source is a vec3, do a shuffle vector to make it a vec4.
1558         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1559                                   Builder.getInt32(2),
1560                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1561         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1562         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1563                                             MaskV, "extractVec");
1564         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1565       }
1566       if (Addr.getElementType() != SrcTy) {
1567         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1568       }
1569     }
1570   }
1571 
1572   Value = EmitToMemory(Value, Ty);
1573 
1574   LValue AtomicLValue =
1575       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1576   if (Ty->isAtomicType() ||
1577       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1578     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1579     return;
1580   }
1581 
1582   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1583   if (isNontemporal) {
1584     llvm::MDNode *Node =
1585         llvm::MDNode::get(Store->getContext(),
1586                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1587     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1588   }
1589   if (TBAAInfo) {
1590     bool MayAlias = BaseInfo.getMayAlias();
1591     llvm::MDNode *TBAA = MayAlias
1592         ? CGM.getTBAAInfo(getContext().CharTy)
1593         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1594     if (TBAA)
1595       CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias);
1596   }
1597 }
1598 
1599 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1600                                         bool isInit) {
1601   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1602                     lvalue.getType(), lvalue.getBaseInfo(),
1603                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1604                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1605 }
1606 
1607 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1608 /// method emits the address of the lvalue, then loads the result as an rvalue,
1609 /// returning the rvalue.
1610 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1611   if (LV.isObjCWeak()) {
1612     // load of a __weak object.
1613     Address AddrWeakObj = LV.getAddress();
1614     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1615                                                              AddrWeakObj));
1616   }
1617   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1618     // In MRC mode, we do a load+autorelease.
1619     if (!getLangOpts().ObjCAutoRefCount) {
1620       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1621     }
1622 
1623     // In ARC mode, we load retained and then consume the value.
1624     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1625     Object = EmitObjCConsumeObject(LV.getType(), Object);
1626     return RValue::get(Object);
1627   }
1628 
1629   if (LV.isSimple()) {
1630     assert(!LV.getType()->isFunctionType());
1631 
1632     // Everything needs a load.
1633     return RValue::get(EmitLoadOfScalar(LV, Loc));
1634   }
1635 
1636   if (LV.isVectorElt()) {
1637     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1638                                               LV.isVolatileQualified());
1639     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1640                                                     "vecext"));
1641   }
1642 
1643   // If this is a reference to a subset of the elements of a vector, either
1644   // shuffle the input or extract/insert them as appropriate.
1645   if (LV.isExtVectorElt())
1646     return EmitLoadOfExtVectorElementLValue(LV);
1647 
1648   // Global Register variables always invoke intrinsics
1649   if (LV.isGlobalReg())
1650     return EmitLoadOfGlobalRegLValue(LV);
1651 
1652   assert(LV.isBitField() && "Unknown LValue type!");
1653   return EmitLoadOfBitfieldLValue(LV, Loc);
1654 }
1655 
1656 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1657                                                  SourceLocation Loc) {
1658   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1659 
1660   // Get the output type.
1661   llvm::Type *ResLTy = ConvertType(LV.getType());
1662 
1663   Address Ptr = LV.getBitFieldAddress();
1664   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1665 
1666   if (Info.IsSigned) {
1667     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1668     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1669     if (HighBits)
1670       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1671     if (Info.Offset + HighBits)
1672       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1673   } else {
1674     if (Info.Offset)
1675       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1676     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1677       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1678                                                               Info.Size),
1679                               "bf.clear");
1680   }
1681   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1682   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1683   return RValue::get(Val);
1684 }
1685 
1686 // If this is a reference to a subset of the elements of a vector, create an
1687 // appropriate shufflevector.
1688 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1689   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1690                                         LV.isVolatileQualified());
1691 
1692   const llvm::Constant *Elts = LV.getExtVectorElts();
1693 
1694   // If the result of the expression is a non-vector type, we must be extracting
1695   // a single element.  Just codegen as an extractelement.
1696   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1697   if (!ExprVT) {
1698     unsigned InIdx = getAccessedFieldNo(0, Elts);
1699     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1700     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1701   }
1702 
1703   // Always use shuffle vector to try to retain the original program structure
1704   unsigned NumResultElts = ExprVT->getNumElements();
1705 
1706   SmallVector<llvm::Constant*, 4> Mask;
1707   for (unsigned i = 0; i != NumResultElts; ++i)
1708     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1709 
1710   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1711   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1712                                     MaskV);
1713   return RValue::get(Vec);
1714 }
1715 
1716 /// @brief Generates lvalue for partial ext_vector access.
1717 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1718   Address VectorAddress = LV.getExtVectorAddress();
1719   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1720   QualType EQT = ExprVT->getElementType();
1721   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1722 
1723   Address CastToPointerElement =
1724     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1725                                  "conv.ptr.element");
1726 
1727   const llvm::Constant *Elts = LV.getExtVectorElts();
1728   unsigned ix = getAccessedFieldNo(0, Elts);
1729 
1730   Address VectorBasePtrPlusIx =
1731     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1732                                    getContext().getTypeSizeInChars(EQT),
1733                                    "vector.elt");
1734 
1735   return VectorBasePtrPlusIx;
1736 }
1737 
1738 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1739 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1740   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1741          "Bad type for register variable");
1742   llvm::MDNode *RegName = cast<llvm::MDNode>(
1743       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1744 
1745   // We accept integer and pointer types only
1746   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1747   llvm::Type *Ty = OrigTy;
1748   if (OrigTy->isPointerTy())
1749     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1750   llvm::Type *Types[] = { Ty };
1751 
1752   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1753   llvm::Value *Call = Builder.CreateCall(
1754       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1755   if (OrigTy->isPointerTy())
1756     Call = Builder.CreateIntToPtr(Call, OrigTy);
1757   return RValue::get(Call);
1758 }
1759 
1760 
1761 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1762 /// lvalue, where both are guaranteed to the have the same type, and that type
1763 /// is 'Ty'.
1764 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1765                                              bool isInit) {
1766   if (!Dst.isSimple()) {
1767     if (Dst.isVectorElt()) {
1768       // Read/modify/write the vector, inserting the new element.
1769       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1770                                             Dst.isVolatileQualified());
1771       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1772                                         Dst.getVectorIdx(), "vecins");
1773       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1774                           Dst.isVolatileQualified());
1775       return;
1776     }
1777 
1778     // If this is an update of extended vector elements, insert them as
1779     // appropriate.
1780     if (Dst.isExtVectorElt())
1781       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1782 
1783     if (Dst.isGlobalReg())
1784       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1785 
1786     assert(Dst.isBitField() && "Unknown LValue type");
1787     return EmitStoreThroughBitfieldLValue(Src, Dst);
1788   }
1789 
1790   // There's special magic for assigning into an ARC-qualified l-value.
1791   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1792     switch (Lifetime) {
1793     case Qualifiers::OCL_None:
1794       llvm_unreachable("present but none");
1795 
1796     case Qualifiers::OCL_ExplicitNone:
1797       // nothing special
1798       break;
1799 
1800     case Qualifiers::OCL_Strong:
1801       if (isInit) {
1802         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1803         break;
1804       }
1805       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1806       return;
1807 
1808     case Qualifiers::OCL_Weak:
1809       if (isInit)
1810         // Initialize and then skip the primitive store.
1811         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1812       else
1813         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1814       return;
1815 
1816     case Qualifiers::OCL_Autoreleasing:
1817       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1818                                                      Src.getScalarVal()));
1819       // fall into the normal path
1820       break;
1821     }
1822   }
1823 
1824   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1825     // load of a __weak object.
1826     Address LvalueDst = Dst.getAddress();
1827     llvm::Value *src = Src.getScalarVal();
1828      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1829     return;
1830   }
1831 
1832   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1833     // load of a __strong object.
1834     Address LvalueDst = Dst.getAddress();
1835     llvm::Value *src = Src.getScalarVal();
1836     if (Dst.isObjCIvar()) {
1837       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1838       llvm::Type *ResultType = IntPtrTy;
1839       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1840       llvm::Value *RHS = dst.getPointer();
1841       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1842       llvm::Value *LHS =
1843         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1844                                "sub.ptr.lhs.cast");
1845       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1846       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1847                                               BytesBetween);
1848     } else if (Dst.isGlobalObjCRef()) {
1849       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1850                                                 Dst.isThreadLocalRef());
1851     }
1852     else
1853       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1854     return;
1855   }
1856 
1857   assert(Src.isScalar() && "Can't emit an agg store with this method");
1858   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1859 }
1860 
1861 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1862                                                      llvm::Value **Result) {
1863   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1864   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1865   Address Ptr = Dst.getBitFieldAddress();
1866 
1867   // Get the source value, truncated to the width of the bit-field.
1868   llvm::Value *SrcVal = Src.getScalarVal();
1869 
1870   // Cast the source to the storage type and shift it into place.
1871   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1872                                  /*IsSigned=*/false);
1873   llvm::Value *MaskedVal = SrcVal;
1874 
1875   // See if there are other bits in the bitfield's storage we'll need to load
1876   // and mask together with source before storing.
1877   if (Info.StorageSize != Info.Size) {
1878     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1879     llvm::Value *Val =
1880       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1881 
1882     // Mask the source value as needed.
1883     if (!hasBooleanRepresentation(Dst.getType()))
1884       SrcVal = Builder.CreateAnd(SrcVal,
1885                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1886                                                             Info.Size),
1887                                  "bf.value");
1888     MaskedVal = SrcVal;
1889     if (Info.Offset)
1890       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1891 
1892     // Mask out the original value.
1893     Val = Builder.CreateAnd(Val,
1894                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1895                                                      Info.Offset,
1896                                                      Info.Offset + Info.Size),
1897                             "bf.clear");
1898 
1899     // Or together the unchanged values and the source value.
1900     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1901   } else {
1902     assert(Info.Offset == 0);
1903   }
1904 
1905   // Write the new value back out.
1906   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1907 
1908   // Return the new value of the bit-field, if requested.
1909   if (Result) {
1910     llvm::Value *ResultVal = MaskedVal;
1911 
1912     // Sign extend the value if needed.
1913     if (Info.IsSigned) {
1914       assert(Info.Size <= Info.StorageSize);
1915       unsigned HighBits = Info.StorageSize - Info.Size;
1916       if (HighBits) {
1917         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1918         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1919       }
1920     }
1921 
1922     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1923                                       "bf.result.cast");
1924     *Result = EmitFromMemory(ResultVal, Dst.getType());
1925   }
1926 }
1927 
1928 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1929                                                                LValue Dst) {
1930   // This access turns into a read/modify/write of the vector.  Load the input
1931   // value now.
1932   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1933                                         Dst.isVolatileQualified());
1934   const llvm::Constant *Elts = Dst.getExtVectorElts();
1935 
1936   llvm::Value *SrcVal = Src.getScalarVal();
1937 
1938   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1939     unsigned NumSrcElts = VTy->getNumElements();
1940     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1941     if (NumDstElts == NumSrcElts) {
1942       // Use shuffle vector is the src and destination are the same number of
1943       // elements and restore the vector mask since it is on the side it will be
1944       // stored.
1945       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1946       for (unsigned i = 0; i != NumSrcElts; ++i)
1947         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1948 
1949       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1950       Vec = Builder.CreateShuffleVector(SrcVal,
1951                                         llvm::UndefValue::get(Vec->getType()),
1952                                         MaskV);
1953     } else if (NumDstElts > NumSrcElts) {
1954       // Extended the source vector to the same length and then shuffle it
1955       // into the destination.
1956       // FIXME: since we're shuffling with undef, can we just use the indices
1957       //        into that?  This could be simpler.
1958       SmallVector<llvm::Constant*, 4> ExtMask;
1959       for (unsigned i = 0; i != NumSrcElts; ++i)
1960         ExtMask.push_back(Builder.getInt32(i));
1961       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1962       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1963       llvm::Value *ExtSrcVal =
1964         Builder.CreateShuffleVector(SrcVal,
1965                                     llvm::UndefValue::get(SrcVal->getType()),
1966                                     ExtMaskV);
1967       // build identity
1968       SmallVector<llvm::Constant*, 4> Mask;
1969       for (unsigned i = 0; i != NumDstElts; ++i)
1970         Mask.push_back(Builder.getInt32(i));
1971 
1972       // When the vector size is odd and .odd or .hi is used, the last element
1973       // of the Elts constant array will be one past the size of the vector.
1974       // Ignore the last element here, if it is greater than the mask size.
1975       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1976         NumSrcElts--;
1977 
1978       // modify when what gets shuffled in
1979       for (unsigned i = 0; i != NumSrcElts; ++i)
1980         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1981       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1982       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1983     } else {
1984       // We should never shorten the vector
1985       llvm_unreachable("unexpected shorten vector length");
1986     }
1987   } else {
1988     // If the Src is a scalar (not a vector) it must be updating one element.
1989     unsigned InIdx = getAccessedFieldNo(0, Elts);
1990     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1991     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1992   }
1993 
1994   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1995                       Dst.isVolatileQualified());
1996 }
1997 
1998 /// @brief Store of global named registers are always calls to intrinsics.
1999 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2000   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2001          "Bad type for register variable");
2002   llvm::MDNode *RegName = cast<llvm::MDNode>(
2003       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2004   assert(RegName && "Register LValue is not metadata");
2005 
2006   // We accept integer and pointer types only
2007   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2008   llvm::Type *Ty = OrigTy;
2009   if (OrigTy->isPointerTy())
2010     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2011   llvm::Type *Types[] = { Ty };
2012 
2013   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2014   llvm::Value *Value = Src.getScalarVal();
2015   if (OrigTy->isPointerTy())
2016     Value = Builder.CreatePtrToInt(Value, Ty);
2017   Builder.CreateCall(
2018       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2019 }
2020 
2021 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2022 // generating write-barries API. It is currently a global, ivar,
2023 // or neither.
2024 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2025                                  LValue &LV,
2026                                  bool IsMemberAccess=false) {
2027   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2028     return;
2029 
2030   if (isa<ObjCIvarRefExpr>(E)) {
2031     QualType ExpTy = E->getType();
2032     if (IsMemberAccess && ExpTy->isPointerType()) {
2033       // If ivar is a structure pointer, assigning to field of
2034       // this struct follows gcc's behavior and makes it a non-ivar
2035       // writer-barrier conservatively.
2036       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2037       if (ExpTy->isRecordType()) {
2038         LV.setObjCIvar(false);
2039         return;
2040       }
2041     }
2042     LV.setObjCIvar(true);
2043     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2044     LV.setBaseIvarExp(Exp->getBase());
2045     LV.setObjCArray(E->getType()->isArrayType());
2046     return;
2047   }
2048 
2049   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2050     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2051       if (VD->hasGlobalStorage()) {
2052         LV.setGlobalObjCRef(true);
2053         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2054       }
2055     }
2056     LV.setObjCArray(E->getType()->isArrayType());
2057     return;
2058   }
2059 
2060   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2061     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2062     return;
2063   }
2064 
2065   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2066     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2067     if (LV.isObjCIvar()) {
2068       // If cast is to a structure pointer, follow gcc's behavior and make it
2069       // a non-ivar write-barrier.
2070       QualType ExpTy = E->getType();
2071       if (ExpTy->isPointerType())
2072         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2073       if (ExpTy->isRecordType())
2074         LV.setObjCIvar(false);
2075     }
2076     return;
2077   }
2078 
2079   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2080     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2081     return;
2082   }
2083 
2084   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2085     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2086     return;
2087   }
2088 
2089   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2090     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2091     return;
2092   }
2093 
2094   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2095     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2096     return;
2097   }
2098 
2099   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2100     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2101     if (LV.isObjCIvar() && !LV.isObjCArray())
2102       // Using array syntax to assigning to what an ivar points to is not
2103       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2104       LV.setObjCIvar(false);
2105     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2106       // Using array syntax to assigning to what global points to is not
2107       // same as assigning to the global itself. {id *G;} G[i] = 0;
2108       LV.setGlobalObjCRef(false);
2109     return;
2110   }
2111 
2112   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2113     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2114     // We don't know if member is an 'ivar', but this flag is looked at
2115     // only in the context of LV.isObjCIvar().
2116     LV.setObjCArray(E->getType()->isArrayType());
2117     return;
2118   }
2119 }
2120 
2121 static llvm::Value *
2122 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2123                                 llvm::Value *V, llvm::Type *IRType,
2124                                 StringRef Name = StringRef()) {
2125   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2126   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2127 }
2128 
2129 static LValue EmitThreadPrivateVarDeclLValue(
2130     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2131     llvm::Type *RealVarTy, SourceLocation Loc) {
2132   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2133   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2134   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2135   return CGF.MakeAddrLValue(Addr, T, BaseInfo);
2136 }
2137 
2138 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2139                                              const ReferenceType *RefTy,
2140                                              LValueBaseInfo *BaseInfo) {
2141   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2142   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2143                                               BaseInfo, /*forPointee*/ true));
2144 }
2145 
2146 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2147                                                   const ReferenceType *RefTy) {
2148   LValueBaseInfo BaseInfo;
2149   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo);
2150   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo);
2151 }
2152 
2153 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2154                                            const PointerType *PtrTy,
2155                                            LValueBaseInfo *BaseInfo) {
2156   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2157   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2158                                                BaseInfo,
2159                                                /*forPointeeType=*/true));
2160 }
2161 
2162 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2163                                                 const PointerType *PtrTy) {
2164   LValueBaseInfo BaseInfo;
2165   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo);
2166   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo);
2167 }
2168 
2169 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2170                                       const Expr *E, const VarDecl *VD) {
2171   QualType T = E->getType();
2172 
2173   // If it's thread_local, emit a call to its wrapper function instead.
2174   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2175       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2176     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2177 
2178   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2179   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2180   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2181   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2182   Address Addr(V, Alignment);
2183   LValue LV;
2184   // Emit reference to the private copy of the variable if it is an OpenMP
2185   // threadprivate variable.
2186   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2187     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2188                                           E->getExprLoc());
2189   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2190     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2191   } else {
2192     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2193     LV = CGF.MakeAddrLValue(Addr, T, BaseInfo);
2194   }
2195   setObjCGCLValueClass(CGF.getContext(), E, LV);
2196   return LV;
2197 }
2198 
2199 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2200                                                const FunctionDecl *FD) {
2201   if (FD->hasAttr<WeakRefAttr>()) {
2202     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2203     return aliasee.getPointer();
2204   }
2205 
2206   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2207   if (!FD->hasPrototype()) {
2208     if (const FunctionProtoType *Proto =
2209             FD->getType()->getAs<FunctionProtoType>()) {
2210       // Ugly case: for a K&R-style definition, the type of the definition
2211       // isn't the same as the type of a use.  Correct for this with a
2212       // bitcast.
2213       QualType NoProtoType =
2214           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2215       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2216       V = llvm::ConstantExpr::getBitCast(V,
2217                                       CGM.getTypes().ConvertType(NoProtoType));
2218     }
2219   }
2220   return V;
2221 }
2222 
2223 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2224                                      const Expr *E, const FunctionDecl *FD) {
2225   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2226   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2227   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2228   return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo);
2229 }
2230 
2231 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2232                                       llvm::Value *ThisValue) {
2233   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2234   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2235   return CGF.EmitLValueForField(LV, FD);
2236 }
2237 
2238 /// Named Registers are named metadata pointing to the register name
2239 /// which will be read from/written to as an argument to the intrinsic
2240 /// @llvm.read/write_register.
2241 /// So far, only the name is being passed down, but other options such as
2242 /// register type, allocation type or even optimization options could be
2243 /// passed down via the metadata node.
2244 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2245   SmallString<64> Name("llvm.named.register.");
2246   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2247   assert(Asm->getLabel().size() < 64-Name.size() &&
2248       "Register name too big");
2249   Name.append(Asm->getLabel());
2250   llvm::NamedMDNode *M =
2251     CGM.getModule().getOrInsertNamedMetadata(Name);
2252   if (M->getNumOperands() == 0) {
2253     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2254                                               Asm->getLabel());
2255     llvm::Metadata *Ops[] = {Str};
2256     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2257   }
2258 
2259   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2260 
2261   llvm::Value *Ptr =
2262     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2263   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2264 }
2265 
2266 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2267   const NamedDecl *ND = E->getDecl();
2268   QualType T = E->getType();
2269 
2270   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2271     // Global Named registers access via intrinsics only
2272     if (VD->getStorageClass() == SC_Register &&
2273         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2274       return EmitGlobalNamedRegister(VD, CGM);
2275 
2276     // A DeclRefExpr for a reference initialized by a constant expression can
2277     // appear without being odr-used. Directly emit the constant initializer.
2278     const Expr *Init = VD->getAnyInitializer(VD);
2279     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2280         VD->isUsableInConstantExpressions(getContext()) &&
2281         VD->checkInitIsICE() &&
2282         // Do not emit if it is private OpenMP variable.
2283         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2284           LocalDeclMap.count(VD))) {
2285       llvm::Constant *Val =
2286         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2287       assert(Val && "failed to emit reference constant expression");
2288       // FIXME: Eventually we will want to emit vector element references.
2289 
2290       // Should we be using the alignment of the constant pointer we emitted?
2291       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2292                                                     /*pointee*/ true);
2293       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2294       return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo);
2295     }
2296 
2297     // Check for captured variables.
2298     if (E->refersToEnclosingVariableOrCapture()) {
2299       if (auto *FD = LambdaCaptureFields.lookup(VD))
2300         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2301       else if (CapturedStmtInfo) {
2302         auto I = LocalDeclMap.find(VD);
2303         if (I != LocalDeclMap.end()) {
2304           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2305             return EmitLoadOfReferenceLValue(I->second, RefTy);
2306           return MakeAddrLValue(I->second, T);
2307         }
2308         LValue CapLVal =
2309             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2310                                     CapturedStmtInfo->getContextValue());
2311         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2312         return MakeAddrLValue(
2313             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2314             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias));
2315       }
2316 
2317       assert(isa<BlockDecl>(CurCodeDecl));
2318       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2319       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2320       return MakeAddrLValue(addr, T, BaseInfo);
2321     }
2322   }
2323 
2324   // FIXME: We should be able to assert this for FunctionDecls as well!
2325   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2326   // those with a valid source location.
2327   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2328           !E->getLocation().isValid()) &&
2329          "Should not use decl without marking it used!");
2330 
2331   if (ND->hasAttr<WeakRefAttr>()) {
2332     const auto *VD = cast<ValueDecl>(ND);
2333     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2334     return MakeAddrLValue(Aliasee, T,
2335                           LValueBaseInfo(AlignmentSource::Decl, false));
2336   }
2337 
2338   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2339     // Check if this is a global variable.
2340     if (VD->hasLinkage() || VD->isStaticDataMember())
2341       return EmitGlobalVarDeclLValue(*this, E, VD);
2342 
2343     Address addr = Address::invalid();
2344 
2345     // The variable should generally be present in the local decl map.
2346     auto iter = LocalDeclMap.find(VD);
2347     if (iter != LocalDeclMap.end()) {
2348       addr = iter->second;
2349 
2350     // Otherwise, it might be static local we haven't emitted yet for
2351     // some reason; most likely, because it's in an outer function.
2352     } else if (VD->isStaticLocal()) {
2353       addr = Address(CGM.getOrCreateStaticVarDecl(
2354           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2355                      getContext().getDeclAlign(VD));
2356 
2357     // No other cases for now.
2358     } else {
2359       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2360     }
2361 
2362 
2363     // Check for OpenMP threadprivate variables.
2364     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2365       return EmitThreadPrivateVarDeclLValue(
2366           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2367           E->getExprLoc());
2368     }
2369 
2370     // Drill into block byref variables.
2371     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2372     if (isBlockByref) {
2373       addr = emitBlockByrefAddress(addr, VD);
2374     }
2375 
2376     // Drill into reference types.
2377     LValue LV;
2378     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2379       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2380     } else {
2381       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2382       LV = MakeAddrLValue(addr, T, BaseInfo);
2383     }
2384 
2385     bool isLocalStorage = VD->hasLocalStorage();
2386 
2387     bool NonGCable = isLocalStorage &&
2388                      !VD->getType()->isReferenceType() &&
2389                      !isBlockByref;
2390     if (NonGCable) {
2391       LV.getQuals().removeObjCGCAttr();
2392       LV.setNonGC(true);
2393     }
2394 
2395     bool isImpreciseLifetime =
2396       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2397     if (isImpreciseLifetime)
2398       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2399     setObjCGCLValueClass(getContext(), E, LV);
2400     return LV;
2401   }
2402 
2403   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2404     return EmitFunctionDeclLValue(*this, E, FD);
2405 
2406   // FIXME: While we're emitting a binding from an enclosing scope, all other
2407   // DeclRefExprs we see should be implicitly treated as if they also refer to
2408   // an enclosing scope.
2409   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2410     return EmitLValue(BD->getBinding());
2411 
2412   llvm_unreachable("Unhandled DeclRefExpr");
2413 }
2414 
2415 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2416   // __extension__ doesn't affect lvalue-ness.
2417   if (E->getOpcode() == UO_Extension)
2418     return EmitLValue(E->getSubExpr());
2419 
2420   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2421   switch (E->getOpcode()) {
2422   default: llvm_unreachable("Unknown unary operator lvalue!");
2423   case UO_Deref: {
2424     QualType T = E->getSubExpr()->getType()->getPointeeType();
2425     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2426 
2427     LValueBaseInfo BaseInfo;
2428     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo);
2429     LValue LV = MakeAddrLValue(Addr, T, BaseInfo);
2430     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2431 
2432     // We should not generate __weak write barrier on indirect reference
2433     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2434     // But, we continue to generate __strong write barrier on indirect write
2435     // into a pointer to object.
2436     if (getLangOpts().ObjC1 &&
2437         getLangOpts().getGC() != LangOptions::NonGC &&
2438         LV.isObjCWeak())
2439       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2440     return LV;
2441   }
2442   case UO_Real:
2443   case UO_Imag: {
2444     LValue LV = EmitLValue(E->getSubExpr());
2445     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2446 
2447     // __real is valid on scalars.  This is a faster way of testing that.
2448     // __imag can only produce an rvalue on scalars.
2449     if (E->getOpcode() == UO_Real &&
2450         !LV.getAddress().getElementType()->isStructTy()) {
2451       assert(E->getSubExpr()->getType()->isArithmeticType());
2452       return LV;
2453     }
2454 
2455     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2456 
2457     Address Component =
2458       (E->getOpcode() == UO_Real
2459          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2460          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2461     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo());
2462     ElemLV.getQuals().addQualifiers(LV.getQuals());
2463     return ElemLV;
2464   }
2465   case UO_PreInc:
2466   case UO_PreDec: {
2467     LValue LV = EmitLValue(E->getSubExpr());
2468     bool isInc = E->getOpcode() == UO_PreInc;
2469 
2470     if (E->getType()->isAnyComplexType())
2471       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2472     else
2473       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2474     return LV;
2475   }
2476   }
2477 }
2478 
2479 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2480   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2481                         E->getType(),
2482                         LValueBaseInfo(AlignmentSource::Decl, false));
2483 }
2484 
2485 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2486   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2487                         E->getType(),
2488                         LValueBaseInfo(AlignmentSource::Decl, false));
2489 }
2490 
2491 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2492   auto SL = E->getFunctionName();
2493   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2494   StringRef FnName = CurFn->getName();
2495   if (FnName.startswith("\01"))
2496     FnName = FnName.substr(1);
2497   StringRef NameItems[] = {
2498       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2499   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2500   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2501   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2502     std::string Name = SL->getString();
2503     if (!Name.empty()) {
2504       unsigned Discriminator =
2505           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2506       if (Discriminator)
2507         Name += "_" + Twine(Discriminator + 1).str();
2508       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2509       return MakeAddrLValue(C, E->getType(), BaseInfo);
2510     } else {
2511       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2512       return MakeAddrLValue(C, E->getType(), BaseInfo);
2513     }
2514   }
2515   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2516   return MakeAddrLValue(C, E->getType(), BaseInfo);
2517 }
2518 
2519 /// Emit a type description suitable for use by a runtime sanitizer library. The
2520 /// format of a type descriptor is
2521 ///
2522 /// \code
2523 ///   { i16 TypeKind, i16 TypeInfo }
2524 /// \endcode
2525 ///
2526 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2527 /// integer, 1 for a floating point value, and -1 for anything else.
2528 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2529   // Only emit each type's descriptor once.
2530   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2531     return C;
2532 
2533   uint16_t TypeKind = -1;
2534   uint16_t TypeInfo = 0;
2535 
2536   if (T->isIntegerType()) {
2537     TypeKind = 0;
2538     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2539                (T->isSignedIntegerType() ? 1 : 0);
2540   } else if (T->isFloatingType()) {
2541     TypeKind = 1;
2542     TypeInfo = getContext().getTypeSize(T);
2543   }
2544 
2545   // Format the type name as if for a diagnostic, including quotes and
2546   // optionally an 'aka'.
2547   SmallString<32> Buffer;
2548   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2549                                     (intptr_t)T.getAsOpaquePtr(),
2550                                     StringRef(), StringRef(), None, Buffer,
2551                                     None);
2552 
2553   llvm::Constant *Components[] = {
2554     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2555     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2556   };
2557   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2558 
2559   auto *GV = new llvm::GlobalVariable(
2560       CGM.getModule(), Descriptor->getType(),
2561       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2562   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2563   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2564 
2565   // Remember the descriptor for this type.
2566   CGM.setTypeDescriptorInMap(T, GV);
2567 
2568   return GV;
2569 }
2570 
2571 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2572   llvm::Type *TargetTy = IntPtrTy;
2573 
2574   // Floating-point types which fit into intptr_t are bitcast to integers
2575   // and then passed directly (after zero-extension, if necessary).
2576   if (V->getType()->isFloatingPointTy()) {
2577     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2578     if (Bits <= TargetTy->getIntegerBitWidth())
2579       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2580                                                          Bits));
2581   }
2582 
2583   // Integers which fit in intptr_t are zero-extended and passed directly.
2584   if (V->getType()->isIntegerTy() &&
2585       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2586     return Builder.CreateZExt(V, TargetTy);
2587 
2588   // Pointers are passed directly, everything else is passed by address.
2589   if (!V->getType()->isPointerTy()) {
2590     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2591     Builder.CreateStore(V, Ptr);
2592     V = Ptr.getPointer();
2593   }
2594   return Builder.CreatePtrToInt(V, TargetTy);
2595 }
2596 
2597 /// \brief Emit a representation of a SourceLocation for passing to a handler
2598 /// in a sanitizer runtime library. The format for this data is:
2599 /// \code
2600 ///   struct SourceLocation {
2601 ///     const char *Filename;
2602 ///     int32_t Line, Column;
2603 ///   };
2604 /// \endcode
2605 /// For an invalid SourceLocation, the Filename pointer is null.
2606 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2607   llvm::Constant *Filename;
2608   int Line, Column;
2609 
2610   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2611   if (PLoc.isValid()) {
2612     StringRef FilenameString = PLoc.getFilename();
2613 
2614     int PathComponentsToStrip =
2615         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2616     if (PathComponentsToStrip < 0) {
2617       assert(PathComponentsToStrip != INT_MIN);
2618       int PathComponentsToKeep = -PathComponentsToStrip;
2619       auto I = llvm::sys::path::rbegin(FilenameString);
2620       auto E = llvm::sys::path::rend(FilenameString);
2621       while (I != E && --PathComponentsToKeep)
2622         ++I;
2623 
2624       FilenameString = FilenameString.substr(I - E);
2625     } else if (PathComponentsToStrip > 0) {
2626       auto I = llvm::sys::path::begin(FilenameString);
2627       auto E = llvm::sys::path::end(FilenameString);
2628       while (I != E && PathComponentsToStrip--)
2629         ++I;
2630 
2631       if (I != E)
2632         FilenameString =
2633             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2634       else
2635         FilenameString = llvm::sys::path::filename(FilenameString);
2636     }
2637 
2638     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2639     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2640                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2641     Filename = FilenameGV.getPointer();
2642     Line = PLoc.getLine();
2643     Column = PLoc.getColumn();
2644   } else {
2645     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2646     Line = Column = 0;
2647   }
2648 
2649   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2650                             Builder.getInt32(Column)};
2651 
2652   return llvm::ConstantStruct::getAnon(Data);
2653 }
2654 
2655 namespace {
2656 /// \brief Specify under what conditions this check can be recovered
2657 enum class CheckRecoverableKind {
2658   /// Always terminate program execution if this check fails.
2659   Unrecoverable,
2660   /// Check supports recovering, runtime has both fatal (noreturn) and
2661   /// non-fatal handlers for this check.
2662   Recoverable,
2663   /// Runtime conditionally aborts, always need to support recovery.
2664   AlwaysRecoverable
2665 };
2666 }
2667 
2668 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2669   assert(llvm::countPopulation(Kind) == 1);
2670   switch (Kind) {
2671   case SanitizerKind::Vptr:
2672     return CheckRecoverableKind::AlwaysRecoverable;
2673   case SanitizerKind::Return:
2674   case SanitizerKind::Unreachable:
2675     return CheckRecoverableKind::Unrecoverable;
2676   default:
2677     return CheckRecoverableKind::Recoverable;
2678   }
2679 }
2680 
2681 namespace {
2682 struct SanitizerHandlerInfo {
2683   char const *const Name;
2684   unsigned Version;
2685 };
2686 }
2687 
2688 const SanitizerHandlerInfo SanitizerHandlers[] = {
2689 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2690     LIST_SANITIZER_CHECKS
2691 #undef SANITIZER_CHECK
2692 };
2693 
2694 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2695                                  llvm::FunctionType *FnType,
2696                                  ArrayRef<llvm::Value *> FnArgs,
2697                                  SanitizerHandler CheckHandler,
2698                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2699                                  llvm::BasicBlock *ContBB) {
2700   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2701   bool NeedsAbortSuffix =
2702       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2703   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2704   const StringRef CheckName = CheckInfo.Name;
2705   std::string FnName =
2706       ("__ubsan_handle_" + CheckName +
2707        (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") +
2708        (NeedsAbortSuffix ? "_abort" : ""))
2709           .str();
2710   bool MayReturn =
2711       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2712 
2713   llvm::AttrBuilder B;
2714   if (!MayReturn) {
2715     B.addAttribute(llvm::Attribute::NoReturn)
2716         .addAttribute(llvm::Attribute::NoUnwind);
2717   }
2718   B.addAttribute(llvm::Attribute::UWTable);
2719 
2720   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2721       FnType, FnName,
2722       llvm::AttributeList::get(CGF.getLLVMContext(),
2723                                llvm::AttributeList::FunctionIndex, B),
2724       /*Local=*/true);
2725   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2726   if (!MayReturn) {
2727     HandlerCall->setDoesNotReturn();
2728     CGF.Builder.CreateUnreachable();
2729   } else {
2730     CGF.Builder.CreateBr(ContBB);
2731   }
2732 }
2733 
2734 void CodeGenFunction::EmitCheck(
2735     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2736     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2737     ArrayRef<llvm::Value *> DynamicArgs) {
2738   assert(IsSanitizerScope);
2739   assert(Checked.size() > 0);
2740   assert(CheckHandler >= 0 &&
2741          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2742   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2743 
2744   llvm::Value *FatalCond = nullptr;
2745   llvm::Value *RecoverableCond = nullptr;
2746   llvm::Value *TrapCond = nullptr;
2747   for (int i = 0, n = Checked.size(); i < n; ++i) {
2748     llvm::Value *Check = Checked[i].first;
2749     // -fsanitize-trap= overrides -fsanitize-recover=.
2750     llvm::Value *&Cond =
2751         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2752             ? TrapCond
2753             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2754                   ? RecoverableCond
2755                   : FatalCond;
2756     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2757   }
2758 
2759   if (TrapCond)
2760     EmitTrapCheck(TrapCond);
2761   if (!FatalCond && !RecoverableCond)
2762     return;
2763 
2764   llvm::Value *JointCond;
2765   if (FatalCond && RecoverableCond)
2766     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2767   else
2768     JointCond = FatalCond ? FatalCond : RecoverableCond;
2769   assert(JointCond);
2770 
2771   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2772   assert(SanOpts.has(Checked[0].second));
2773 #ifndef NDEBUG
2774   for (int i = 1, n = Checked.size(); i < n; ++i) {
2775     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2776            "All recoverable kinds in a single check must be same!");
2777     assert(SanOpts.has(Checked[i].second));
2778   }
2779 #endif
2780 
2781   llvm::BasicBlock *Cont = createBasicBlock("cont");
2782   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2783   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2784   // Give hint that we very much don't expect to execute the handler
2785   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2786   llvm::MDBuilder MDHelper(getLLVMContext());
2787   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2788   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2789   EmitBlock(Handlers);
2790 
2791   // Handler functions take an i8* pointing to the (handler-specific) static
2792   // information block, followed by a sequence of intptr_t arguments
2793   // representing operand values.
2794   SmallVector<llvm::Value *, 4> Args;
2795   SmallVector<llvm::Type *, 4> ArgTypes;
2796   Args.reserve(DynamicArgs.size() + 1);
2797   ArgTypes.reserve(DynamicArgs.size() + 1);
2798 
2799   // Emit handler arguments and create handler function type.
2800   if (!StaticArgs.empty()) {
2801     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2802     auto *InfoPtr =
2803         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2804                                  llvm::GlobalVariable::PrivateLinkage, Info);
2805     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2806     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2807     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2808     ArgTypes.push_back(Int8PtrTy);
2809   }
2810 
2811   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2812     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2813     ArgTypes.push_back(IntPtrTy);
2814   }
2815 
2816   llvm::FunctionType *FnType =
2817     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2818 
2819   if (!FatalCond || !RecoverableCond) {
2820     // Simple case: we need to generate a single handler call, either
2821     // fatal, or non-fatal.
2822     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2823                          (FatalCond != nullptr), Cont);
2824   } else {
2825     // Emit two handler calls: first one for set of unrecoverable checks,
2826     // another one for recoverable.
2827     llvm::BasicBlock *NonFatalHandlerBB =
2828         createBasicBlock("non_fatal." + CheckName);
2829     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2830     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2831     EmitBlock(FatalHandlerBB);
2832     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2833                          NonFatalHandlerBB);
2834     EmitBlock(NonFatalHandlerBB);
2835     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2836                          Cont);
2837   }
2838 
2839   EmitBlock(Cont);
2840 }
2841 
2842 void CodeGenFunction::EmitCfiSlowPathCheck(
2843     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2844     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2845   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2846 
2847   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2848   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2849 
2850   llvm::MDBuilder MDHelper(getLLVMContext());
2851   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2852   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2853 
2854   EmitBlock(CheckBB);
2855 
2856   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2857 
2858   llvm::CallInst *CheckCall;
2859   if (WithDiag) {
2860     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2861     auto *InfoPtr =
2862         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2863                                  llvm::GlobalVariable::PrivateLinkage, Info);
2864     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2865     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2866 
2867     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2868         "__cfi_slowpath_diag",
2869         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2870                                 false));
2871     CheckCall = Builder.CreateCall(
2872         SlowPathDiagFn,
2873         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2874   } else {
2875     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2876         "__cfi_slowpath",
2877         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2878     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2879   }
2880 
2881   CheckCall->setDoesNotThrow();
2882 
2883   EmitBlock(Cont);
2884 }
2885 
2886 // Emit a stub for __cfi_check function so that the linker knows about this
2887 // symbol in LTO mode.
2888 void CodeGenFunction::EmitCfiCheckStub() {
2889   llvm::Module *M = &CGM.getModule();
2890   auto &Ctx = M->getContext();
2891   llvm::Function *F = llvm::Function::Create(
2892       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2893       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2894   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2895   // FIXME: consider emitting an intrinsic call like
2896   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2897   // which can be lowered in CrossDSOCFI pass to the actual contents of
2898   // __cfi_check. This would allow inlining of __cfi_check calls.
2899   llvm::CallInst::Create(
2900       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2901   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2902 }
2903 
2904 // This function is basically a switch over the CFI failure kind, which is
2905 // extracted from CFICheckFailData (1st function argument). Each case is either
2906 // llvm.trap or a call to one of the two runtime handlers, based on
2907 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2908 // failure kind) traps, but this should really never happen.  CFICheckFailData
2909 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2910 // check kind; in this case __cfi_check_fail traps as well.
2911 void CodeGenFunction::EmitCfiCheckFail() {
2912   SanitizerScope SanScope(this);
2913   FunctionArgList Args;
2914   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2915                             ImplicitParamDecl::Other);
2916   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2917                             ImplicitParamDecl::Other);
2918   Args.push_back(&ArgData);
2919   Args.push_back(&ArgAddr);
2920 
2921   const CGFunctionInfo &FI =
2922     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2923 
2924   llvm::Function *F = llvm::Function::Create(
2925       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2926       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2927   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2928 
2929   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2930                 SourceLocation());
2931 
2932   llvm::Value *Data =
2933       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2934                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2935   llvm::Value *Addr =
2936       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2937                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2938 
2939   // Data == nullptr means the calling module has trap behaviour for this check.
2940   llvm::Value *DataIsNotNullPtr =
2941       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2942   EmitTrapCheck(DataIsNotNullPtr);
2943 
2944   llvm::StructType *SourceLocationTy =
2945       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2946   llvm::StructType *CfiCheckFailDataTy =
2947       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2948 
2949   llvm::Value *V = Builder.CreateConstGEP2_32(
2950       CfiCheckFailDataTy,
2951       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2952       0);
2953   Address CheckKindAddr(V, getIntAlign());
2954   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2955 
2956   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2957       CGM.getLLVMContext(),
2958       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2959   llvm::Value *ValidVtable = Builder.CreateZExt(
2960       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2961                          {Addr, AllVtables}),
2962       IntPtrTy);
2963 
2964   const std::pair<int, SanitizerMask> CheckKinds[] = {
2965       {CFITCK_VCall, SanitizerKind::CFIVCall},
2966       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2967       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2968       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2969       {CFITCK_ICall, SanitizerKind::CFIICall}};
2970 
2971   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2972   for (auto CheckKindMaskPair : CheckKinds) {
2973     int Kind = CheckKindMaskPair.first;
2974     SanitizerMask Mask = CheckKindMaskPair.second;
2975     llvm::Value *Cond =
2976         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2977     if (CGM.getLangOpts().Sanitize.has(Mask))
2978       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
2979                 {Data, Addr, ValidVtable});
2980     else
2981       EmitTrapCheck(Cond);
2982   }
2983 
2984   FinishFunction();
2985   // The only reference to this function will be created during LTO link.
2986   // Make sure it survives until then.
2987   CGM.addUsedGlobal(F);
2988 }
2989 
2990 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2991   llvm::BasicBlock *Cont = createBasicBlock("cont");
2992 
2993   // If we're optimizing, collapse all calls to trap down to just one per
2994   // function to save on code size.
2995   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2996     TrapBB = createBasicBlock("trap");
2997     Builder.CreateCondBr(Checked, Cont, TrapBB);
2998     EmitBlock(TrapBB);
2999     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3000     TrapCall->setDoesNotReturn();
3001     TrapCall->setDoesNotThrow();
3002     Builder.CreateUnreachable();
3003   } else {
3004     Builder.CreateCondBr(Checked, Cont, TrapBB);
3005   }
3006 
3007   EmitBlock(Cont);
3008 }
3009 
3010 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3011   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3012 
3013   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3014     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3015                                   CGM.getCodeGenOpts().TrapFuncName);
3016     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3017   }
3018 
3019   return TrapCall;
3020 }
3021 
3022 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3023                                                  LValueBaseInfo *BaseInfo) {
3024   assert(E->getType()->isArrayType() &&
3025          "Array to pointer decay must have array source type!");
3026 
3027   // Expressions of array type can't be bitfields or vector elements.
3028   LValue LV = EmitLValue(E);
3029   Address Addr = LV.getAddress();
3030   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3031 
3032   // If the array type was an incomplete type, we need to make sure
3033   // the decay ends up being the right type.
3034   llvm::Type *NewTy = ConvertType(E->getType());
3035   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3036 
3037   // Note that VLA pointers are always decayed, so we don't need to do
3038   // anything here.
3039   if (!E->getType()->isVariableArrayType()) {
3040     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3041            "Expected pointer to array");
3042     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3043   }
3044 
3045   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3046   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3047 }
3048 
3049 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3050 /// array to pointer, return the array subexpression.
3051 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3052   // If this isn't just an array->pointer decay, bail out.
3053   const auto *CE = dyn_cast<CastExpr>(E);
3054   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3055     return nullptr;
3056 
3057   // If this is a decay from variable width array, bail out.
3058   const Expr *SubExpr = CE->getSubExpr();
3059   if (SubExpr->getType()->isVariableArrayType())
3060     return nullptr;
3061 
3062   return SubExpr;
3063 }
3064 
3065 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3066                                           llvm::Value *ptr,
3067                                           ArrayRef<llvm::Value*> indices,
3068                                           bool inbounds,
3069                                           bool signedIndices,
3070                                           SourceLocation loc,
3071                                     const llvm::Twine &name = "arrayidx") {
3072   if (inbounds) {
3073     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3074                                       CodeGenFunction::NotSubtraction, loc,
3075                                       name);
3076   } else {
3077     return CGF.Builder.CreateGEP(ptr, indices, name);
3078   }
3079 }
3080 
3081 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3082                                       llvm::Value *idx,
3083                                       CharUnits eltSize) {
3084   // If we have a constant index, we can use the exact offset of the
3085   // element we're accessing.
3086   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3087     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3088     return arrayAlign.alignmentAtOffset(offset);
3089 
3090   // Otherwise, use the worst-case alignment for any element.
3091   } else {
3092     return arrayAlign.alignmentOfArrayElement(eltSize);
3093   }
3094 }
3095 
3096 static QualType getFixedSizeElementType(const ASTContext &ctx,
3097                                         const VariableArrayType *vla) {
3098   QualType eltType;
3099   do {
3100     eltType = vla->getElementType();
3101   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3102   return eltType;
3103 }
3104 
3105 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3106                                      ArrayRef<llvm::Value *> indices,
3107                                      QualType eltType, bool inbounds,
3108                                      bool signedIndices, SourceLocation loc,
3109                                      const llvm::Twine &name = "arrayidx") {
3110   // All the indices except that last must be zero.
3111 #ifndef NDEBUG
3112   for (auto idx : indices.drop_back())
3113     assert(isa<llvm::ConstantInt>(idx) &&
3114            cast<llvm::ConstantInt>(idx)->isZero());
3115 #endif
3116 
3117   // Determine the element size of the statically-sized base.  This is
3118   // the thing that the indices are expressed in terms of.
3119   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3120     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3121   }
3122 
3123   // We can use that to compute the best alignment of the element.
3124   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3125   CharUnits eltAlign =
3126     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3127 
3128   llvm::Value *eltPtr = emitArraySubscriptGEP(
3129       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3130   return Address(eltPtr, eltAlign);
3131 }
3132 
3133 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3134                                                bool Accessed) {
3135   // The index must always be an integer, which is not an aggregate.  Emit it
3136   // in lexical order (this complexity is, sadly, required by C++17).
3137   llvm::Value *IdxPre =
3138       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3139   bool SignedIndices = false;
3140   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3141     auto *Idx = IdxPre;
3142     if (E->getLHS() != E->getIdx()) {
3143       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3144       Idx = EmitScalarExpr(E->getIdx());
3145     }
3146 
3147     QualType IdxTy = E->getIdx()->getType();
3148     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3149     SignedIndices |= IdxSigned;
3150 
3151     if (SanOpts.has(SanitizerKind::ArrayBounds))
3152       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3153 
3154     // Extend or truncate the index type to 32 or 64-bits.
3155     if (Promote && Idx->getType() != IntPtrTy)
3156       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3157 
3158     return Idx;
3159   };
3160   IdxPre = nullptr;
3161 
3162   // If the base is a vector type, then we are forming a vector element lvalue
3163   // with this subscript.
3164   if (E->getBase()->getType()->isVectorType() &&
3165       !isa<ExtVectorElementExpr>(E->getBase())) {
3166     // Emit the vector as an lvalue to get its address.
3167     LValue LHS = EmitLValue(E->getBase());
3168     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3169     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3170     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3171                                  E->getBase()->getType(),
3172                                  LHS.getBaseInfo());
3173   }
3174 
3175   // All the other cases basically behave like simple offsetting.
3176 
3177   // Handle the extvector case we ignored above.
3178   if (isa<ExtVectorElementExpr>(E->getBase())) {
3179     LValue LV = EmitLValue(E->getBase());
3180     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3181     Address Addr = EmitExtVectorElementLValue(LV);
3182 
3183     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3184     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3185                                  SignedIndices, E->getExprLoc());
3186     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo());
3187   }
3188 
3189   LValueBaseInfo BaseInfo;
3190   Address Addr = Address::invalid();
3191   if (const VariableArrayType *vla =
3192            getContext().getAsVariableArrayType(E->getType())) {
3193     // The base must be a pointer, which is not an aggregate.  Emit
3194     // it.  It needs to be emitted first in case it's what captures
3195     // the VLA bounds.
3196     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3197     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3198 
3199     // The element count here is the total number of non-VLA elements.
3200     llvm::Value *numElements = getVLASize(vla).first;
3201 
3202     // Effectively, the multiply by the VLA size is part of the GEP.
3203     // GEP indexes are signed, and scaling an index isn't permitted to
3204     // signed-overflow, so we use the same semantics for our explicit
3205     // multiply.  We suppress this if overflow is not undefined behavior.
3206     if (getLangOpts().isSignedOverflowDefined()) {
3207       Idx = Builder.CreateMul(Idx, numElements);
3208     } else {
3209       Idx = Builder.CreateNSWMul(Idx, numElements);
3210     }
3211 
3212     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3213                                  !getLangOpts().isSignedOverflowDefined(),
3214                                  SignedIndices, E->getExprLoc());
3215 
3216   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3217     // Indexing over an interface, as in "NSString *P; P[4];"
3218 
3219     // Emit the base pointer.
3220     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3221     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3222 
3223     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3224     llvm::Value *InterfaceSizeVal =
3225         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3226 
3227     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3228 
3229     // We don't necessarily build correct LLVM struct types for ObjC
3230     // interfaces, so we can't rely on GEP to do this scaling
3231     // correctly, so we need to cast to i8*.  FIXME: is this actually
3232     // true?  A lot of other things in the fragile ABI would break...
3233     llvm::Type *OrigBaseTy = Addr.getType();
3234     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3235 
3236     // Do the GEP.
3237     CharUnits EltAlign =
3238       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3239     llvm::Value *EltPtr =
3240         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3241                               SignedIndices, E->getExprLoc());
3242     Addr = Address(EltPtr, EltAlign);
3243 
3244     // Cast back.
3245     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3246   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3247     // If this is A[i] where A is an array, the frontend will have decayed the
3248     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3249     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3250     // "gep x, i" here.  Emit one "gep A, 0, i".
3251     assert(Array->getType()->isArrayType() &&
3252            "Array to pointer decay must have array source type!");
3253     LValue ArrayLV;
3254     // For simple multidimensional array indexing, set the 'accessed' flag for
3255     // better bounds-checking of the base expression.
3256     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3257       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3258     else
3259       ArrayLV = EmitLValue(Array);
3260     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3261 
3262     // Propagate the alignment from the array itself to the result.
3263     Addr = emitArraySubscriptGEP(
3264         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3265         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3266         E->getExprLoc());
3267     BaseInfo = ArrayLV.getBaseInfo();
3268   } else {
3269     // The base must be a pointer; emit it with an estimate of its alignment.
3270     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3271     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3272     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3273                                  !getLangOpts().isSignedOverflowDefined(),
3274                                  SignedIndices, E->getExprLoc());
3275   }
3276 
3277   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo);
3278 
3279   // TODO: Preserve/extend path TBAA metadata?
3280 
3281   if (getLangOpts().ObjC1 &&
3282       getLangOpts().getGC() != LangOptions::NonGC) {
3283     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3284     setObjCGCLValueClass(getContext(), E, LV);
3285   }
3286   return LV;
3287 }
3288 
3289 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3290                                        LValueBaseInfo &BaseInfo,
3291                                        QualType BaseTy, QualType ElTy,
3292                                        bool IsLowerBound) {
3293   LValue BaseLVal;
3294   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3295     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3296     if (BaseTy->isArrayType()) {
3297       Address Addr = BaseLVal.getAddress();
3298       BaseInfo = BaseLVal.getBaseInfo();
3299 
3300       // If the array type was an incomplete type, we need to make sure
3301       // the decay ends up being the right type.
3302       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3303       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3304 
3305       // Note that VLA pointers are always decayed, so we don't need to do
3306       // anything here.
3307       if (!BaseTy->isVariableArrayType()) {
3308         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3309                "Expected pointer to array");
3310         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3311                                            "arraydecay");
3312       }
3313 
3314       return CGF.Builder.CreateElementBitCast(Addr,
3315                                               CGF.ConvertTypeForMem(ElTy));
3316     }
3317     LValueBaseInfo TypeInfo;
3318     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3319     BaseInfo.mergeForCast(TypeInfo);
3320     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3321   }
3322   return CGF.EmitPointerWithAlignment(Base, &BaseInfo);
3323 }
3324 
3325 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3326                                                 bool IsLowerBound) {
3327   QualType BaseTy;
3328   if (auto *ASE =
3329           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3330     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3331   else
3332     BaseTy = E->getBase()->getType();
3333   QualType ResultExprTy;
3334   if (auto *AT = getContext().getAsArrayType(BaseTy))
3335     ResultExprTy = AT->getElementType();
3336   else
3337     ResultExprTy = BaseTy->getPointeeType();
3338   llvm::Value *Idx = nullptr;
3339   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3340     // Requesting lower bound or upper bound, but without provided length and
3341     // without ':' symbol for the default length -> length = 1.
3342     // Idx = LowerBound ?: 0;
3343     if (auto *LowerBound = E->getLowerBound()) {
3344       Idx = Builder.CreateIntCast(
3345           EmitScalarExpr(LowerBound), IntPtrTy,
3346           LowerBound->getType()->hasSignedIntegerRepresentation());
3347     } else
3348       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3349   } else {
3350     // Try to emit length or lower bound as constant. If this is possible, 1
3351     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3352     // IR (LB + Len) - 1.
3353     auto &C = CGM.getContext();
3354     auto *Length = E->getLength();
3355     llvm::APSInt ConstLength;
3356     if (Length) {
3357       // Idx = LowerBound + Length - 1;
3358       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3359         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3360         Length = nullptr;
3361       }
3362       auto *LowerBound = E->getLowerBound();
3363       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3364       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3365         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3366         LowerBound = nullptr;
3367       }
3368       if (!Length)
3369         --ConstLength;
3370       else if (!LowerBound)
3371         --ConstLowerBound;
3372 
3373       if (Length || LowerBound) {
3374         auto *LowerBoundVal =
3375             LowerBound
3376                 ? Builder.CreateIntCast(
3377                       EmitScalarExpr(LowerBound), IntPtrTy,
3378                       LowerBound->getType()->hasSignedIntegerRepresentation())
3379                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3380         auto *LengthVal =
3381             Length
3382                 ? Builder.CreateIntCast(
3383                       EmitScalarExpr(Length), IntPtrTy,
3384                       Length->getType()->hasSignedIntegerRepresentation())
3385                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3386         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3387                                 /*HasNUW=*/false,
3388                                 !getLangOpts().isSignedOverflowDefined());
3389         if (Length && LowerBound) {
3390           Idx = Builder.CreateSub(
3391               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3392               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3393         }
3394       } else
3395         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3396     } else {
3397       // Idx = ArraySize - 1;
3398       QualType ArrayTy = BaseTy->isPointerType()
3399                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3400                              : BaseTy;
3401       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3402         Length = VAT->getSizeExpr();
3403         if (Length->isIntegerConstantExpr(ConstLength, C))
3404           Length = nullptr;
3405       } else {
3406         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3407         ConstLength = CAT->getSize();
3408       }
3409       if (Length) {
3410         auto *LengthVal = Builder.CreateIntCast(
3411             EmitScalarExpr(Length), IntPtrTy,
3412             Length->getType()->hasSignedIntegerRepresentation());
3413         Idx = Builder.CreateSub(
3414             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3415             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3416       } else {
3417         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3418         --ConstLength;
3419         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3420       }
3421     }
3422   }
3423   assert(Idx);
3424 
3425   Address EltPtr = Address::invalid();
3426   LValueBaseInfo BaseInfo;
3427   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3428     // The base must be a pointer, which is not an aggregate.  Emit
3429     // it.  It needs to be emitted first in case it's what captures
3430     // the VLA bounds.
3431     Address Base =
3432         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy,
3433                                 VLA->getElementType(), IsLowerBound);
3434     // The element count here is the total number of non-VLA elements.
3435     llvm::Value *NumElements = getVLASize(VLA).first;
3436 
3437     // Effectively, the multiply by the VLA size is part of the GEP.
3438     // GEP indexes are signed, and scaling an index isn't permitted to
3439     // signed-overflow, so we use the same semantics for our explicit
3440     // multiply.  We suppress this if overflow is not undefined behavior.
3441     if (getLangOpts().isSignedOverflowDefined())
3442       Idx = Builder.CreateMul(Idx, NumElements);
3443     else
3444       Idx = Builder.CreateNSWMul(Idx, NumElements);
3445     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3446                                    !getLangOpts().isSignedOverflowDefined(),
3447                                    /*SignedIndices=*/false, E->getExprLoc());
3448   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3449     // If this is A[i] where A is an array, the frontend will have decayed the
3450     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3451     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3452     // "gep x, i" here.  Emit one "gep A, 0, i".
3453     assert(Array->getType()->isArrayType() &&
3454            "Array to pointer decay must have array source type!");
3455     LValue ArrayLV;
3456     // For simple multidimensional array indexing, set the 'accessed' flag for
3457     // better bounds-checking of the base expression.
3458     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3459       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3460     else
3461       ArrayLV = EmitLValue(Array);
3462 
3463     // Propagate the alignment from the array itself to the result.
3464     EltPtr = emitArraySubscriptGEP(
3465         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3466         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3467         /*SignedIndices=*/false, E->getExprLoc());
3468     BaseInfo = ArrayLV.getBaseInfo();
3469   } else {
3470     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3471                                            BaseTy, ResultExprTy, IsLowerBound);
3472     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3473                                    !getLangOpts().isSignedOverflowDefined(),
3474                                    /*SignedIndices=*/false, E->getExprLoc());
3475   }
3476 
3477   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo);
3478 }
3479 
3480 LValue CodeGenFunction::
3481 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3482   // Emit the base vector as an l-value.
3483   LValue Base;
3484 
3485   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3486   if (E->isArrow()) {
3487     // If it is a pointer to a vector, emit the address and form an lvalue with
3488     // it.
3489     LValueBaseInfo BaseInfo;
3490     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3491     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3492     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo);
3493     Base.getQuals().removeObjCGCAttr();
3494   } else if (E->getBase()->isGLValue()) {
3495     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3496     // emit the base as an lvalue.
3497     assert(E->getBase()->getType()->isVectorType());
3498     Base = EmitLValue(E->getBase());
3499   } else {
3500     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3501     assert(E->getBase()->getType()->isVectorType() &&
3502            "Result must be a vector");
3503     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3504 
3505     // Store the vector to memory (because LValue wants an address).
3506     Address VecMem = CreateMemTemp(E->getBase()->getType());
3507     Builder.CreateStore(Vec, VecMem);
3508     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3509                           LValueBaseInfo(AlignmentSource::Decl, false));
3510   }
3511 
3512   QualType type =
3513     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3514 
3515   // Encode the element access list into a vector of unsigned indices.
3516   SmallVector<uint32_t, 4> Indices;
3517   E->getEncodedElementAccess(Indices);
3518 
3519   if (Base.isSimple()) {
3520     llvm::Constant *CV =
3521         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3522     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3523                                     Base.getBaseInfo());
3524   }
3525   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3526 
3527   llvm::Constant *BaseElts = Base.getExtVectorElts();
3528   SmallVector<llvm::Constant *, 4> CElts;
3529 
3530   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3531     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3532   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3533   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3534                                   Base.getBaseInfo());
3535 }
3536 
3537 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3538   Expr *BaseExpr = E->getBase();
3539   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3540   LValue BaseLV;
3541   if (E->isArrow()) {
3542     LValueBaseInfo BaseInfo;
3543     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo);
3544     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3545     SanitizerSet SkippedChecks;
3546     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3547     if (IsBaseCXXThis)
3548       SkippedChecks.set(SanitizerKind::Alignment, true);
3549     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3550       SkippedChecks.set(SanitizerKind::Null, true);
3551     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3552                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3553     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo);
3554   } else
3555     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3556 
3557   NamedDecl *ND = E->getMemberDecl();
3558   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3559     LValue LV = EmitLValueForField(BaseLV, Field);
3560     setObjCGCLValueClass(getContext(), E, LV);
3561     return LV;
3562   }
3563 
3564   if (auto *VD = dyn_cast<VarDecl>(ND))
3565     return EmitGlobalVarDeclLValue(*this, E, VD);
3566 
3567   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3568     return EmitFunctionDeclLValue(*this, E, FD);
3569 
3570   llvm_unreachable("Unhandled member declaration!");
3571 }
3572 
3573 /// Given that we are currently emitting a lambda, emit an l-value for
3574 /// one of its members.
3575 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3576   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3577   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3578   QualType LambdaTagType =
3579     getContext().getTagDeclType(Field->getParent());
3580   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3581   return EmitLValueForField(LambdaLV, Field);
3582 }
3583 
3584 /// Drill down to the storage of a field without walking into
3585 /// reference types.
3586 ///
3587 /// The resulting address doesn't necessarily have the right type.
3588 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3589                                       const FieldDecl *field) {
3590   const RecordDecl *rec = field->getParent();
3591 
3592   unsigned idx =
3593     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3594 
3595   CharUnits offset;
3596   // Adjust the alignment down to the given offset.
3597   // As a special case, if the LLVM field index is 0, we know that this
3598   // is zero.
3599   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3600                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3601          "LLVM field at index zero had non-zero offset?");
3602   if (idx != 0) {
3603     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3604     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3605     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3606   }
3607 
3608   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3609 }
3610 
3611 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3612   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3613   if (!RD)
3614     return false;
3615 
3616   if (RD->isDynamicClass())
3617     return true;
3618 
3619   for (const auto &Base : RD->bases())
3620     if (hasAnyVptr(Base.getType(), Context))
3621       return true;
3622 
3623   for (const FieldDecl *Field : RD->fields())
3624     if (hasAnyVptr(Field->getType(), Context))
3625       return true;
3626 
3627   return false;
3628 }
3629 
3630 LValue CodeGenFunction::EmitLValueForField(LValue base,
3631                                            const FieldDecl *field) {
3632   LValueBaseInfo BaseInfo = base.getBaseInfo();
3633   AlignmentSource fieldAlignSource =
3634     getFieldAlignmentSource(BaseInfo.getAlignmentSource());
3635   LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias());
3636 
3637   const RecordDecl *rec = field->getParent();
3638   if (rec->isUnion() || rec->hasAttr<MayAliasAttr>())
3639     FieldBaseInfo.setMayAlias(true);
3640   bool mayAlias = FieldBaseInfo.getMayAlias();
3641 
3642   if (field->isBitField()) {
3643     const CGRecordLayout &RL =
3644       CGM.getTypes().getCGRecordLayout(field->getParent());
3645     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3646     Address Addr = base.getAddress();
3647     unsigned Idx = RL.getLLVMFieldNo(field);
3648     if (Idx != 0)
3649       // For structs, we GEP to the field that the record layout suggests.
3650       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3651                                      field->getName());
3652     // Get the access type.
3653     llvm::Type *FieldIntTy =
3654       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3655     if (Addr.getElementType() != FieldIntTy)
3656       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3657 
3658     QualType fieldType =
3659       field->getType().withCVRQualifiers(base.getVRQualifiers());
3660     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo);
3661   }
3662 
3663   QualType type = field->getType();
3664   Address addr = base.getAddress();
3665   unsigned cvr = base.getVRQualifiers();
3666   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3667   if (rec->isUnion()) {
3668     // For unions, there is no pointer adjustment.
3669     assert(!type->isReferenceType() && "union has reference member");
3670     // TODO: handle path-aware TBAA for union.
3671     TBAAPath = false;
3672 
3673     const auto FieldType = field->getType();
3674     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3675         hasAnyVptr(FieldType, getContext()))
3676       // Because unions can easily skip invariant.barriers, we need to add
3677       // a barrier every time CXXRecord field with vptr is referenced.
3678       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3679                      addr.getAlignment());
3680   } else {
3681     // For structs, we GEP to the field that the record layout suggests.
3682     addr = emitAddrOfFieldStorage(*this, addr, field);
3683 
3684     // If this is a reference field, load the reference right now.
3685     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3686       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3687       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3688 
3689       // Loading the reference will disable path-aware TBAA.
3690       TBAAPath = false;
3691       if (CGM.shouldUseTBAA()) {
3692         llvm::MDNode *tbaa;
3693         if (mayAlias)
3694           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3695         else
3696           tbaa = CGM.getTBAAInfo(type);
3697         if (tbaa)
3698           CGM.DecorateInstructionWithTBAA(load, tbaa);
3699       }
3700 
3701       mayAlias = false;
3702       type = refType->getPointeeType();
3703 
3704       CharUnits alignment =
3705         getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true);
3706       FieldBaseInfo.setMayAlias(false);
3707       addr = Address(load, alignment);
3708 
3709       // Qualifiers on the struct don't apply to the referencee, and
3710       // we'll pick up CVR from the actual type later, so reset these
3711       // additional qualifiers now.
3712       cvr = 0;
3713     }
3714   }
3715 
3716   // Make sure that the address is pointing to the right type.  This is critical
3717   // for both unions and structs.  A union needs a bitcast, a struct element
3718   // will need a bitcast if the LLVM type laid out doesn't match the desired
3719   // type.
3720   addr = Builder.CreateElementBitCast(addr,
3721                                       CGM.getTypes().ConvertTypeForMem(type),
3722                                       field->getName());
3723 
3724   if (field->hasAttr<AnnotateAttr>())
3725     addr = EmitFieldAnnotations(field, addr);
3726 
3727   LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo);
3728   LV.getQuals().addCVRQualifiers(cvr);
3729   if (TBAAPath) {
3730     const ASTRecordLayout &Layout =
3731         getContext().getASTRecordLayout(field->getParent());
3732     // Set the base type to be the base type of the base LValue and
3733     // update offset to be relative to the base type.
3734     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3735     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3736                      Layout.getFieldOffset(field->getFieldIndex()) /
3737                                            getContext().getCharWidth());
3738   }
3739 
3740   // __weak attribute on a field is ignored.
3741   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3742     LV.getQuals().removeObjCGCAttr();
3743 
3744   // Fields of may_alias structs act like 'char' for TBAA purposes.
3745   // FIXME: this should get propagated down through anonymous structs
3746   // and unions.
3747   if (mayAlias && LV.getTBAAInfo())
3748     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3749 
3750   return LV;
3751 }
3752 
3753 LValue
3754 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3755                                                   const FieldDecl *Field) {
3756   QualType FieldType = Field->getType();
3757 
3758   if (!FieldType->isReferenceType())
3759     return EmitLValueForField(Base, Field);
3760 
3761   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3762 
3763   // Make sure that the address is pointing to the right type.
3764   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3765   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3766 
3767   // TODO: access-path TBAA?
3768   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3769   LValueBaseInfo FieldBaseInfo(
3770       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3771       BaseInfo.getMayAlias());
3772   return MakeAddrLValue(V, FieldType, FieldBaseInfo);
3773 }
3774 
3775 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3776   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
3777   if (E->isFileScope()) {
3778     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3779     return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo);
3780   }
3781   if (E->getType()->isVariablyModifiedType())
3782     // make sure to emit the VLA size.
3783     EmitVariablyModifiedType(E->getType());
3784 
3785   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3786   const Expr *InitExpr = E->getInitializer();
3787   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo);
3788 
3789   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3790                    /*Init*/ true);
3791 
3792   return Result;
3793 }
3794 
3795 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3796   if (!E->isGLValue())
3797     // Initializing an aggregate temporary in C++11: T{...}.
3798     return EmitAggExprToLValue(E);
3799 
3800   // An lvalue initializer list must be initializing a reference.
3801   assert(E->isTransparent() && "non-transparent glvalue init list");
3802   return EmitLValue(E->getInit(0));
3803 }
3804 
3805 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3806 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3807 /// LValue is returned and the current block has been terminated.
3808 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3809                                                     const Expr *Operand) {
3810   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3811     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3812     return None;
3813   }
3814 
3815   return CGF.EmitLValue(Operand);
3816 }
3817 
3818 LValue CodeGenFunction::
3819 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3820   if (!expr->isGLValue()) {
3821     // ?: here should be an aggregate.
3822     assert(hasAggregateEvaluationKind(expr->getType()) &&
3823            "Unexpected conditional operator!");
3824     return EmitAggExprToLValue(expr);
3825   }
3826 
3827   OpaqueValueMapping binding(*this, expr);
3828 
3829   const Expr *condExpr = expr->getCond();
3830   bool CondExprBool;
3831   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3832     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3833     if (!CondExprBool) std::swap(live, dead);
3834 
3835     if (!ContainsLabel(dead)) {
3836       // If the true case is live, we need to track its region.
3837       if (CondExprBool)
3838         incrementProfileCounter(expr);
3839       return EmitLValue(live);
3840     }
3841   }
3842 
3843   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3844   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3845   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3846 
3847   ConditionalEvaluation eval(*this);
3848   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3849 
3850   // Any temporaries created here are conditional.
3851   EmitBlock(lhsBlock);
3852   incrementProfileCounter(expr);
3853   eval.begin(*this);
3854   Optional<LValue> lhs =
3855       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3856   eval.end(*this);
3857 
3858   if (lhs && !lhs->isSimple())
3859     return EmitUnsupportedLValue(expr, "conditional operator");
3860 
3861   lhsBlock = Builder.GetInsertBlock();
3862   if (lhs)
3863     Builder.CreateBr(contBlock);
3864 
3865   // Any temporaries created here are conditional.
3866   EmitBlock(rhsBlock);
3867   eval.begin(*this);
3868   Optional<LValue> rhs =
3869       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3870   eval.end(*this);
3871   if (rhs && !rhs->isSimple())
3872     return EmitUnsupportedLValue(expr, "conditional operator");
3873   rhsBlock = Builder.GetInsertBlock();
3874 
3875   EmitBlock(contBlock);
3876 
3877   if (lhs && rhs) {
3878     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3879                                            2, "cond-lvalue");
3880     phi->addIncoming(lhs->getPointer(), lhsBlock);
3881     phi->addIncoming(rhs->getPointer(), rhsBlock);
3882     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3883     AlignmentSource alignSource =
3884       std::max(lhs->getBaseInfo().getAlignmentSource(),
3885                rhs->getBaseInfo().getAlignmentSource());
3886     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3887                     rhs->getBaseInfo().getMayAlias();
3888     return MakeAddrLValue(result, expr->getType(),
3889                           LValueBaseInfo(alignSource, MayAlias));
3890   } else {
3891     assert((lhs || rhs) &&
3892            "both operands of glvalue conditional are throw-expressions?");
3893     return lhs ? *lhs : *rhs;
3894   }
3895 }
3896 
3897 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3898 /// type. If the cast is to a reference, we can have the usual lvalue result,
3899 /// otherwise if a cast is needed by the code generator in an lvalue context,
3900 /// then it must mean that we need the address of an aggregate in order to
3901 /// access one of its members.  This can happen for all the reasons that casts
3902 /// are permitted with aggregate result, including noop aggregate casts, and
3903 /// cast from scalar to union.
3904 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3905   switch (E->getCastKind()) {
3906   case CK_ToVoid:
3907   case CK_BitCast:
3908   case CK_ArrayToPointerDecay:
3909   case CK_FunctionToPointerDecay:
3910   case CK_NullToMemberPointer:
3911   case CK_NullToPointer:
3912   case CK_IntegralToPointer:
3913   case CK_PointerToIntegral:
3914   case CK_PointerToBoolean:
3915   case CK_VectorSplat:
3916   case CK_IntegralCast:
3917   case CK_BooleanToSignedIntegral:
3918   case CK_IntegralToBoolean:
3919   case CK_IntegralToFloating:
3920   case CK_FloatingToIntegral:
3921   case CK_FloatingToBoolean:
3922   case CK_FloatingCast:
3923   case CK_FloatingRealToComplex:
3924   case CK_FloatingComplexToReal:
3925   case CK_FloatingComplexToBoolean:
3926   case CK_FloatingComplexCast:
3927   case CK_FloatingComplexToIntegralComplex:
3928   case CK_IntegralRealToComplex:
3929   case CK_IntegralComplexToReal:
3930   case CK_IntegralComplexToBoolean:
3931   case CK_IntegralComplexCast:
3932   case CK_IntegralComplexToFloatingComplex:
3933   case CK_DerivedToBaseMemberPointer:
3934   case CK_BaseToDerivedMemberPointer:
3935   case CK_MemberPointerToBoolean:
3936   case CK_ReinterpretMemberPointer:
3937   case CK_AnyPointerToBlockPointerCast:
3938   case CK_ARCProduceObject:
3939   case CK_ARCConsumeObject:
3940   case CK_ARCReclaimReturnedObject:
3941   case CK_ARCExtendBlockObject:
3942   case CK_CopyAndAutoreleaseBlockObject:
3943   case CK_AddressSpaceConversion:
3944   case CK_IntToOCLSampler:
3945     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3946 
3947   case CK_Dependent:
3948     llvm_unreachable("dependent cast kind in IR gen!");
3949 
3950   case CK_BuiltinFnToFnPtr:
3951     llvm_unreachable("builtin functions are handled elsewhere");
3952 
3953   // These are never l-values; just use the aggregate emission code.
3954   case CK_NonAtomicToAtomic:
3955   case CK_AtomicToNonAtomic:
3956     return EmitAggExprToLValue(E);
3957 
3958   case CK_Dynamic: {
3959     LValue LV = EmitLValue(E->getSubExpr());
3960     Address V = LV.getAddress();
3961     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3962     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3963   }
3964 
3965   case CK_ConstructorConversion:
3966   case CK_UserDefinedConversion:
3967   case CK_CPointerToObjCPointerCast:
3968   case CK_BlockPointerToObjCPointerCast:
3969   case CK_NoOp:
3970   case CK_LValueToRValue:
3971     return EmitLValue(E->getSubExpr());
3972 
3973   case CK_UncheckedDerivedToBase:
3974   case CK_DerivedToBase: {
3975     const RecordType *DerivedClassTy =
3976       E->getSubExpr()->getType()->getAs<RecordType>();
3977     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3978 
3979     LValue LV = EmitLValue(E->getSubExpr());
3980     Address This = LV.getAddress();
3981 
3982     // Perform the derived-to-base conversion
3983     Address Base = GetAddressOfBaseClass(
3984         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3985         /*NullCheckValue=*/false, E->getExprLoc());
3986 
3987     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo());
3988   }
3989   case CK_ToUnion:
3990     return EmitAggExprToLValue(E);
3991   case CK_BaseToDerived: {
3992     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3993     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3994 
3995     LValue LV = EmitLValue(E->getSubExpr());
3996 
3997     // Perform the base-to-derived conversion
3998     Address Derived =
3999       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4000                                E->path_begin(), E->path_end(),
4001                                /*NullCheckValue=*/false);
4002 
4003     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4004     // performed and the object is not of the derived type.
4005     if (sanitizePerformTypeCheck())
4006       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4007                     Derived.getPointer(), E->getType());
4008 
4009     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4010       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4011                                 /*MayBeNull=*/false,
4012                                 CFITCK_DerivedCast, E->getLocStart());
4013 
4014     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo());
4015   }
4016   case CK_LValueBitCast: {
4017     // This must be a reinterpret_cast (or c-style equivalent).
4018     const auto *CE = cast<ExplicitCastExpr>(E);
4019 
4020     CGM.EmitExplicitCastExprType(CE, this);
4021     LValue LV = EmitLValue(E->getSubExpr());
4022     Address V = Builder.CreateBitCast(LV.getAddress(),
4023                                       ConvertType(CE->getTypeAsWritten()));
4024 
4025     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4026       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4027                                 /*MayBeNull=*/false,
4028                                 CFITCK_UnrelatedCast, E->getLocStart());
4029 
4030     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4031   }
4032   case CK_ObjCObjectLValueCast: {
4033     LValue LV = EmitLValue(E->getSubExpr());
4034     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4035                                              ConvertType(E->getType()));
4036     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4037   }
4038   case CK_ZeroToOCLQueue:
4039     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4040   case CK_ZeroToOCLEvent:
4041     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4042   }
4043 
4044   llvm_unreachable("Unhandled lvalue cast kind?");
4045 }
4046 
4047 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4048   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4049   return getOpaqueLValueMapping(e);
4050 }
4051 
4052 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4053                                            const FieldDecl *FD,
4054                                            SourceLocation Loc) {
4055   QualType FT = FD->getType();
4056   LValue FieldLV = EmitLValueForField(LV, FD);
4057   switch (getEvaluationKind(FT)) {
4058   case TEK_Complex:
4059     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4060   case TEK_Aggregate:
4061     return FieldLV.asAggregateRValue();
4062   case TEK_Scalar:
4063     // This routine is used to load fields one-by-one to perform a copy, so
4064     // don't load reference fields.
4065     if (FD->getType()->isReferenceType())
4066       return RValue::get(FieldLV.getPointer());
4067     return EmitLoadOfLValue(FieldLV, Loc);
4068   }
4069   llvm_unreachable("bad evaluation kind");
4070 }
4071 
4072 //===--------------------------------------------------------------------===//
4073 //                             Expression Emission
4074 //===--------------------------------------------------------------------===//
4075 
4076 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4077                                      ReturnValueSlot ReturnValue) {
4078   // Builtins never have block type.
4079   if (E->getCallee()->getType()->isBlockPointerType())
4080     return EmitBlockCallExpr(E, ReturnValue);
4081 
4082   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4083     return EmitCXXMemberCallExpr(CE, ReturnValue);
4084 
4085   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4086     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4087 
4088   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4089     if (const CXXMethodDecl *MD =
4090           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4091       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4092 
4093   CGCallee callee = EmitCallee(E->getCallee());
4094 
4095   if (callee.isBuiltin()) {
4096     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4097                            E, ReturnValue);
4098   }
4099 
4100   if (callee.isPseudoDestructor()) {
4101     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4102   }
4103 
4104   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4105 }
4106 
4107 /// Emit a CallExpr without considering whether it might be a subclass.
4108 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4109                                            ReturnValueSlot ReturnValue) {
4110   CGCallee Callee = EmitCallee(E->getCallee());
4111   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4112 }
4113 
4114 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4115   if (auto builtinID = FD->getBuiltinID()) {
4116     return CGCallee::forBuiltin(builtinID, FD);
4117   }
4118 
4119   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4120   return CGCallee::forDirect(calleePtr, FD);
4121 }
4122 
4123 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4124   E = E->IgnoreParens();
4125 
4126   // Look through function-to-pointer decay.
4127   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4128     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4129         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4130       return EmitCallee(ICE->getSubExpr());
4131     }
4132 
4133   // Resolve direct calls.
4134   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4135     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4136       return EmitDirectCallee(*this, FD);
4137     }
4138   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4139     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4140       EmitIgnoredExpr(ME->getBase());
4141       return EmitDirectCallee(*this, FD);
4142     }
4143 
4144   // Look through template substitutions.
4145   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4146     return EmitCallee(NTTP->getReplacement());
4147 
4148   // Treat pseudo-destructor calls differently.
4149   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4150     return CGCallee::forPseudoDestructor(PDE);
4151   }
4152 
4153   // Otherwise, we have an indirect reference.
4154   llvm::Value *calleePtr;
4155   QualType functionType;
4156   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4157     calleePtr = EmitScalarExpr(E);
4158     functionType = ptrType->getPointeeType();
4159   } else {
4160     functionType = E->getType();
4161     calleePtr = EmitLValue(E).getPointer();
4162   }
4163   assert(functionType->isFunctionType());
4164   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4165                           E->getReferencedDeclOfCallee());
4166   CGCallee callee(calleeInfo, calleePtr);
4167   return callee;
4168 }
4169 
4170 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4171   // Comma expressions just emit their LHS then their RHS as an l-value.
4172   if (E->getOpcode() == BO_Comma) {
4173     EmitIgnoredExpr(E->getLHS());
4174     EnsureInsertPoint();
4175     return EmitLValue(E->getRHS());
4176   }
4177 
4178   if (E->getOpcode() == BO_PtrMemD ||
4179       E->getOpcode() == BO_PtrMemI)
4180     return EmitPointerToDataMemberBinaryExpr(E);
4181 
4182   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4183 
4184   // Note that in all of these cases, __block variables need the RHS
4185   // evaluated first just in case the variable gets moved by the RHS.
4186 
4187   switch (getEvaluationKind(E->getType())) {
4188   case TEK_Scalar: {
4189     switch (E->getLHS()->getType().getObjCLifetime()) {
4190     case Qualifiers::OCL_Strong:
4191       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4192 
4193     case Qualifiers::OCL_Autoreleasing:
4194       return EmitARCStoreAutoreleasing(E).first;
4195 
4196     // No reason to do any of these differently.
4197     case Qualifiers::OCL_None:
4198     case Qualifiers::OCL_ExplicitNone:
4199     case Qualifiers::OCL_Weak:
4200       break;
4201     }
4202 
4203     RValue RV = EmitAnyExpr(E->getRHS());
4204     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4205     if (RV.isScalar())
4206       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4207     EmitStoreThroughLValue(RV, LV);
4208     return LV;
4209   }
4210 
4211   case TEK_Complex:
4212     return EmitComplexAssignmentLValue(E);
4213 
4214   case TEK_Aggregate:
4215     return EmitAggExprToLValue(E);
4216   }
4217   llvm_unreachable("bad evaluation kind");
4218 }
4219 
4220 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4221   RValue RV = EmitCallExpr(E);
4222 
4223   if (!RV.isScalar())
4224     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4225                           LValueBaseInfo(AlignmentSource::Decl, false));
4226 
4227   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4228          "Can't have a scalar return unless the return type is a "
4229          "reference type!");
4230 
4231   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4232 }
4233 
4234 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4235   // FIXME: This shouldn't require another copy.
4236   return EmitAggExprToLValue(E);
4237 }
4238 
4239 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4240   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4241          && "binding l-value to type which needs a temporary");
4242   AggValueSlot Slot = CreateAggTemp(E->getType());
4243   EmitCXXConstructExpr(E, Slot);
4244   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4245                         LValueBaseInfo(AlignmentSource::Decl, false));
4246 }
4247 
4248 LValue
4249 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4250   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4251 }
4252 
4253 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4254   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4255                                       ConvertType(E->getType()));
4256 }
4257 
4258 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4259   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4260                         LValueBaseInfo(AlignmentSource::Decl, false));
4261 }
4262 
4263 LValue
4264 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4265   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4266   Slot.setExternallyDestructed();
4267   EmitAggExpr(E->getSubExpr(), Slot);
4268   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4269   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4270                         LValueBaseInfo(AlignmentSource::Decl, false));
4271 }
4272 
4273 LValue
4274 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4275   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4276   EmitLambdaExpr(E, Slot);
4277   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4278                         LValueBaseInfo(AlignmentSource::Decl, false));
4279 }
4280 
4281 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4282   RValue RV = EmitObjCMessageExpr(E);
4283 
4284   if (!RV.isScalar())
4285     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4286                           LValueBaseInfo(AlignmentSource::Decl, false));
4287 
4288   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4289          "Can't have a scalar return unless the return type is a "
4290          "reference type!");
4291 
4292   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4293 }
4294 
4295 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4296   Address V =
4297     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4298   return MakeAddrLValue(V, E->getType(),
4299                         LValueBaseInfo(AlignmentSource::Decl, false));
4300 }
4301 
4302 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4303                                              const ObjCIvarDecl *Ivar) {
4304   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4305 }
4306 
4307 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4308                                           llvm::Value *BaseValue,
4309                                           const ObjCIvarDecl *Ivar,
4310                                           unsigned CVRQualifiers) {
4311   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4312                                                    Ivar, CVRQualifiers);
4313 }
4314 
4315 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4316   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4317   llvm::Value *BaseValue = nullptr;
4318   const Expr *BaseExpr = E->getBase();
4319   Qualifiers BaseQuals;
4320   QualType ObjectTy;
4321   if (E->isArrow()) {
4322     BaseValue = EmitScalarExpr(BaseExpr);
4323     ObjectTy = BaseExpr->getType()->getPointeeType();
4324     BaseQuals = ObjectTy.getQualifiers();
4325   } else {
4326     LValue BaseLV = EmitLValue(BaseExpr);
4327     BaseValue = BaseLV.getPointer();
4328     ObjectTy = BaseExpr->getType();
4329     BaseQuals = ObjectTy.getQualifiers();
4330   }
4331 
4332   LValue LV =
4333     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4334                       BaseQuals.getCVRQualifiers());
4335   setObjCGCLValueClass(getContext(), E, LV);
4336   return LV;
4337 }
4338 
4339 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4340   // Can only get l-value for message expression returning aggregate type
4341   RValue RV = EmitAnyExprToTemp(E);
4342   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4343                         LValueBaseInfo(AlignmentSource::Decl, false));
4344 }
4345 
4346 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4347                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4348                                  llvm::Value *Chain) {
4349   // Get the actual function type. The callee type will always be a pointer to
4350   // function type or a block pointer type.
4351   assert(CalleeType->isFunctionPointerType() &&
4352          "Call must have function pointer type!");
4353 
4354   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4355 
4356   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4357     // We can only guarantee that a function is called from the correct
4358     // context/function based on the appropriate target attributes,
4359     // so only check in the case where we have both always_inline and target
4360     // since otherwise we could be making a conditional call after a check for
4361     // the proper cpu features (and it won't cause code generation issues due to
4362     // function based code generation).
4363     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4364         TargetDecl->hasAttr<TargetAttr>())
4365       checkTargetFeatures(E, FD);
4366 
4367   CalleeType = getContext().getCanonicalType(CalleeType);
4368 
4369   const auto *FnType =
4370       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4371 
4372   CGCallee Callee = OrigCallee;
4373 
4374   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4375       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4376     if (llvm::Constant *PrefixSig =
4377             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4378       SanitizerScope SanScope(this);
4379       llvm::Constant *FTRTTIConst =
4380           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4381       llvm::Type *PrefixStructTyElems[] = {
4382         PrefixSig->getType(),
4383         FTRTTIConst->getType()
4384       };
4385       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4386           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4387 
4388       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4389 
4390       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4391           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4392       llvm::Value *CalleeSigPtr =
4393           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4394       llvm::Value *CalleeSig =
4395           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4396       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4397 
4398       llvm::BasicBlock *Cont = createBasicBlock("cont");
4399       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4400       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4401 
4402       EmitBlock(TypeCheck);
4403       llvm::Value *CalleeRTTIPtr =
4404           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4405       llvm::Value *CalleeRTTI =
4406           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4407       llvm::Value *CalleeRTTIMatch =
4408           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4409       llvm::Constant *StaticData[] = {
4410         EmitCheckSourceLocation(E->getLocStart()),
4411         EmitCheckTypeDescriptor(CalleeType)
4412       };
4413       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4414                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4415 
4416       Builder.CreateBr(Cont);
4417       EmitBlock(Cont);
4418     }
4419   }
4420 
4421   // If we are checking indirect calls and this call is indirect, check that the
4422   // function pointer is a member of the bit set for the function type.
4423   if (SanOpts.has(SanitizerKind::CFIICall) &&
4424       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4425     SanitizerScope SanScope(this);
4426     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4427 
4428     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4429     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4430 
4431     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4432     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4433     llvm::Value *TypeTest = Builder.CreateCall(
4434         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4435 
4436     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4437     llvm::Constant *StaticData[] = {
4438         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4439         EmitCheckSourceLocation(E->getLocStart()),
4440         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4441     };
4442     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4443       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4444                            CastedCallee, StaticData);
4445     } else {
4446       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4447                 SanitizerHandler::CFICheckFail, StaticData,
4448                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4449     }
4450   }
4451 
4452   CallArgList Args;
4453   if (Chain)
4454     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4455              CGM.getContext().VoidPtrTy);
4456 
4457   // C++17 requires that we evaluate arguments to a call using assignment syntax
4458   // right-to-left, and that we evaluate arguments to certain other operators
4459   // left-to-right. Note that we allow this to override the order dictated by
4460   // the calling convention on the MS ABI, which means that parameter
4461   // destruction order is not necessarily reverse construction order.
4462   // FIXME: Revisit this based on C++ committee response to unimplementability.
4463   EvaluationOrder Order = EvaluationOrder::Default;
4464   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4465     if (OCE->isAssignmentOp())
4466       Order = EvaluationOrder::ForceRightToLeft;
4467     else {
4468       switch (OCE->getOperator()) {
4469       case OO_LessLess:
4470       case OO_GreaterGreater:
4471       case OO_AmpAmp:
4472       case OO_PipePipe:
4473       case OO_Comma:
4474       case OO_ArrowStar:
4475         Order = EvaluationOrder::ForceLeftToRight;
4476         break;
4477       default:
4478         break;
4479       }
4480     }
4481   }
4482 
4483   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4484                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4485 
4486   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4487       Args, FnType, /*isChainCall=*/Chain);
4488 
4489   // C99 6.5.2.2p6:
4490   //   If the expression that denotes the called function has a type
4491   //   that does not include a prototype, [the default argument
4492   //   promotions are performed]. If the number of arguments does not
4493   //   equal the number of parameters, the behavior is undefined. If
4494   //   the function is defined with a type that includes a prototype,
4495   //   and either the prototype ends with an ellipsis (, ...) or the
4496   //   types of the arguments after promotion are not compatible with
4497   //   the types of the parameters, the behavior is undefined. If the
4498   //   function is defined with a type that does not include a
4499   //   prototype, and the types of the arguments after promotion are
4500   //   not compatible with those of the parameters after promotion,
4501   //   the behavior is undefined [except in some trivial cases].
4502   // That is, in the general case, we should assume that a call
4503   // through an unprototyped function type works like a *non-variadic*
4504   // call.  The way we make this work is to cast to the exact type
4505   // of the promoted arguments.
4506   //
4507   // Chain calls use this same code path to add the invisible chain parameter
4508   // to the function type.
4509   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4510     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4511     CalleeTy = CalleeTy->getPointerTo();
4512 
4513     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4514     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4515     Callee.setFunctionPointer(CalleePtr);
4516   }
4517 
4518   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4519 }
4520 
4521 LValue CodeGenFunction::
4522 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4523   Address BaseAddr = Address::invalid();
4524   if (E->getOpcode() == BO_PtrMemI) {
4525     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4526   } else {
4527     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4528   }
4529 
4530   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4531 
4532   const MemberPointerType *MPT
4533     = E->getRHS()->getType()->getAs<MemberPointerType>();
4534 
4535   LValueBaseInfo BaseInfo;
4536   Address MemberAddr =
4537     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo);
4538 
4539   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo);
4540 }
4541 
4542 /// Given the address of a temporary variable, produce an r-value of
4543 /// its type.
4544 RValue CodeGenFunction::convertTempToRValue(Address addr,
4545                                             QualType type,
4546                                             SourceLocation loc) {
4547   LValue lvalue = MakeAddrLValue(addr, type,
4548                                  LValueBaseInfo(AlignmentSource::Decl, false));
4549   switch (getEvaluationKind(type)) {
4550   case TEK_Complex:
4551     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4552   case TEK_Aggregate:
4553     return lvalue.asAggregateRValue();
4554   case TEK_Scalar:
4555     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4556   }
4557   llvm_unreachable("bad evaluation kind");
4558 }
4559 
4560 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4561   assert(Val->getType()->isFPOrFPVectorTy());
4562   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4563     return;
4564 
4565   llvm::MDBuilder MDHelper(getLLVMContext());
4566   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4567 
4568   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4569 }
4570 
4571 namespace {
4572   struct LValueOrRValue {
4573     LValue LV;
4574     RValue RV;
4575   };
4576 }
4577 
4578 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4579                                            const PseudoObjectExpr *E,
4580                                            bool forLValue,
4581                                            AggValueSlot slot) {
4582   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4583 
4584   // Find the result expression, if any.
4585   const Expr *resultExpr = E->getResultExpr();
4586   LValueOrRValue result;
4587 
4588   for (PseudoObjectExpr::const_semantics_iterator
4589          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4590     const Expr *semantic = *i;
4591 
4592     // If this semantic expression is an opaque value, bind it
4593     // to the result of its source expression.
4594     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4595 
4596       // If this is the result expression, we may need to evaluate
4597       // directly into the slot.
4598       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4599       OVMA opaqueData;
4600       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4601           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4602         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4603         LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
4604         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4605                                        BaseInfo);
4606         opaqueData = OVMA::bind(CGF, ov, LV);
4607         result.RV = slot.asRValue();
4608 
4609       // Otherwise, emit as normal.
4610       } else {
4611         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4612 
4613         // If this is the result, also evaluate the result now.
4614         if (ov == resultExpr) {
4615           if (forLValue)
4616             result.LV = CGF.EmitLValue(ov);
4617           else
4618             result.RV = CGF.EmitAnyExpr(ov, slot);
4619         }
4620       }
4621 
4622       opaques.push_back(opaqueData);
4623 
4624     // Otherwise, if the expression is the result, evaluate it
4625     // and remember the result.
4626     } else if (semantic == resultExpr) {
4627       if (forLValue)
4628         result.LV = CGF.EmitLValue(semantic);
4629       else
4630         result.RV = CGF.EmitAnyExpr(semantic, slot);
4631 
4632     // Otherwise, evaluate the expression in an ignored context.
4633     } else {
4634       CGF.EmitIgnoredExpr(semantic);
4635     }
4636   }
4637 
4638   // Unbind all the opaques now.
4639   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4640     opaques[i].unbind(CGF);
4641 
4642   return result;
4643 }
4644 
4645 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4646                                                AggValueSlot slot) {
4647   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4648 }
4649 
4650 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4651   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4652 }
4653