1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/Support/ConvertUTF.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/Path.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 #include <string> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 //===--------------------------------------------------------------------===// 49 // Miscellaneous Helper Methods 50 //===--------------------------------------------------------------------===// 51 52 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 53 unsigned addressSpace = 54 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 55 56 llvm::PointerType *destType = Int8PtrTy; 57 if (addressSpace) 58 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 59 60 if (value->getType() == destType) return value; 61 return Builder.CreateBitCast(value, destType); 62 } 63 64 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 65 /// block. 66 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 67 CharUnits Align, 68 const Twine &Name, 69 llvm::Value *ArraySize) { 70 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 71 Alloca->setAlignment(Align.getAsAlign()); 72 return Address(Alloca, Align); 73 } 74 75 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 76 /// block. The alloca is casted to default address space if necessary. 77 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 78 const Twine &Name, 79 llvm::Value *ArraySize, 80 Address *AllocaAddr) { 81 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 82 if (AllocaAddr) 83 *AllocaAddr = Alloca; 84 llvm::Value *V = Alloca.getPointer(); 85 // Alloca always returns a pointer in alloca address space, which may 86 // be different from the type defined by the language. For example, 87 // in C++ the auto variables are in the default address space. Therefore 88 // cast alloca to the default address space when necessary. 89 if (getASTAllocaAddressSpace() != LangAS::Default) { 90 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 91 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 92 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 93 // otherwise alloca is inserted at the current insertion point of the 94 // builder. 95 if (!ArraySize) 96 Builder.SetInsertPoint(AllocaInsertPt); 97 V = getTargetHooks().performAddrSpaceCast( 98 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 99 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 100 } 101 102 return Address(V, Align); 103 } 104 105 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 106 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 107 /// insertion point of the builder. 108 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 109 const Twine &Name, 110 llvm::Value *ArraySize) { 111 if (ArraySize) 112 return Builder.CreateAlloca(Ty, ArraySize, Name); 113 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 114 ArraySize, Name, AllocaInsertPt); 115 } 116 117 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 118 /// default alignment of the corresponding LLVM type, which is *not* 119 /// guaranteed to be related in any way to the expected alignment of 120 /// an AST type that might have been lowered to Ty. 121 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 122 const Twine &Name) { 123 CharUnits Align = 124 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 125 return CreateTempAlloca(Ty, Align, Name); 126 } 127 128 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 129 auto *Alloca = Var.getPointer(); 130 assert(isa<llvm::AllocaInst>(Alloca) || 131 (isa<llvm::AddrSpaceCastInst>(Alloca) && 132 isa<llvm::AllocaInst>( 133 cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand()))); 134 135 auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false, 136 Var.getAlignment().getAsAlign()); 137 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 138 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 139 } 140 141 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 142 CharUnits Align = getContext().getTypeAlignInChars(Ty); 143 return CreateTempAlloca(ConvertType(Ty), Align, Name); 144 } 145 146 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 147 Address *Alloca) { 148 // FIXME: Should we prefer the preferred type alignment here? 149 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 150 } 151 152 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 153 const Twine &Name, Address *Alloca) { 154 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 155 /*ArraySize=*/nullptr, Alloca); 156 157 if (Ty->isConstantMatrixType()) { 158 auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType()); 159 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 160 ArrayTy->getNumElements()); 161 162 Result = Address( 163 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 164 Result.getAlignment()); 165 } 166 return Result; 167 } 168 169 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 170 const Twine &Name) { 171 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 172 } 173 174 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 175 const Twine &Name) { 176 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 177 Name); 178 } 179 180 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 181 /// expression and compare the result against zero, returning an Int1Ty value. 182 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 183 PGO.setCurrentStmt(E); 184 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 185 llvm::Value *MemPtr = EmitScalarExpr(E); 186 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 187 } 188 189 QualType BoolTy = getContext().BoolTy; 190 SourceLocation Loc = E->getExprLoc(); 191 CGFPOptionsRAII FPOptsRAII(*this, E); 192 if (!E->getType()->isAnyComplexType()) 193 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 194 195 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 196 Loc); 197 } 198 199 /// EmitIgnoredExpr - Emit code to compute the specified expression, 200 /// ignoring the result. 201 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 202 if (E->isRValue()) 203 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 204 205 // Just emit it as an l-value and drop the result. 206 EmitLValue(E); 207 } 208 209 /// EmitAnyExpr - Emit code to compute the specified expression which 210 /// can have any type. The result is returned as an RValue struct. 211 /// If this is an aggregate expression, AggSlot indicates where the 212 /// result should be returned. 213 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 214 AggValueSlot aggSlot, 215 bool ignoreResult) { 216 switch (getEvaluationKind(E->getType())) { 217 case TEK_Scalar: 218 return RValue::get(EmitScalarExpr(E, ignoreResult)); 219 case TEK_Complex: 220 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 221 case TEK_Aggregate: 222 if (!ignoreResult && aggSlot.isIgnored()) 223 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 224 EmitAggExpr(E, aggSlot); 225 return aggSlot.asRValue(); 226 } 227 llvm_unreachable("bad evaluation kind"); 228 } 229 230 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 231 /// always be accessible even if no aggregate location is provided. 232 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 233 AggValueSlot AggSlot = AggValueSlot::ignored(); 234 235 if (hasAggregateEvaluationKind(E->getType())) 236 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 237 return EmitAnyExpr(E, AggSlot); 238 } 239 240 /// EmitAnyExprToMem - Evaluate an expression into a given memory 241 /// location. 242 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 243 Address Location, 244 Qualifiers Quals, 245 bool IsInit) { 246 // FIXME: This function should take an LValue as an argument. 247 switch (getEvaluationKind(E->getType())) { 248 case TEK_Complex: 249 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 250 /*isInit*/ false); 251 return; 252 253 case TEK_Aggregate: { 254 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 255 AggValueSlot::IsDestructed_t(IsInit), 256 AggValueSlot::DoesNotNeedGCBarriers, 257 AggValueSlot::IsAliased_t(!IsInit), 258 AggValueSlot::MayOverlap)); 259 return; 260 } 261 262 case TEK_Scalar: { 263 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 264 LValue LV = MakeAddrLValue(Location, E->getType()); 265 EmitStoreThroughLValue(RV, LV); 266 return; 267 } 268 } 269 llvm_unreachable("bad evaluation kind"); 270 } 271 272 static void 273 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 274 const Expr *E, Address ReferenceTemporary) { 275 // Objective-C++ ARC: 276 // If we are binding a reference to a temporary that has ownership, we 277 // need to perform retain/release operations on the temporary. 278 // 279 // FIXME: This should be looking at E, not M. 280 if (auto Lifetime = M->getType().getObjCLifetime()) { 281 switch (Lifetime) { 282 case Qualifiers::OCL_None: 283 case Qualifiers::OCL_ExplicitNone: 284 // Carry on to normal cleanup handling. 285 break; 286 287 case Qualifiers::OCL_Autoreleasing: 288 // Nothing to do; cleaned up by an autorelease pool. 289 return; 290 291 case Qualifiers::OCL_Strong: 292 case Qualifiers::OCL_Weak: 293 switch (StorageDuration Duration = M->getStorageDuration()) { 294 case SD_Static: 295 // Note: we intentionally do not register a cleanup to release 296 // the object on program termination. 297 return; 298 299 case SD_Thread: 300 // FIXME: We should probably register a cleanup in this case. 301 return; 302 303 case SD_Automatic: 304 case SD_FullExpression: 305 CodeGenFunction::Destroyer *Destroy; 306 CleanupKind CleanupKind; 307 if (Lifetime == Qualifiers::OCL_Strong) { 308 const ValueDecl *VD = M->getExtendingDecl(); 309 bool Precise = 310 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 311 CleanupKind = CGF.getARCCleanupKind(); 312 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 313 : &CodeGenFunction::destroyARCStrongImprecise; 314 } else { 315 // __weak objects always get EH cleanups; otherwise, exceptions 316 // could cause really nasty crashes instead of mere leaks. 317 CleanupKind = NormalAndEHCleanup; 318 Destroy = &CodeGenFunction::destroyARCWeak; 319 } 320 if (Duration == SD_FullExpression) 321 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 322 M->getType(), *Destroy, 323 CleanupKind & EHCleanup); 324 else 325 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 326 M->getType(), 327 *Destroy, CleanupKind & EHCleanup); 328 return; 329 330 case SD_Dynamic: 331 llvm_unreachable("temporary cannot have dynamic storage duration"); 332 } 333 llvm_unreachable("unknown storage duration"); 334 } 335 } 336 337 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 338 if (const RecordType *RT = 339 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 340 // Get the destructor for the reference temporary. 341 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 342 if (!ClassDecl->hasTrivialDestructor()) 343 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 344 } 345 346 if (!ReferenceTemporaryDtor) 347 return; 348 349 // Call the destructor for the temporary. 350 switch (M->getStorageDuration()) { 351 case SD_Static: 352 case SD_Thread: { 353 llvm::FunctionCallee CleanupFn; 354 llvm::Constant *CleanupArg; 355 if (E->getType()->isArrayType()) { 356 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 357 ReferenceTemporary, E->getType(), 358 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 359 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 360 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 361 } else { 362 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 363 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 364 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 365 } 366 CGF.CGM.getCXXABI().registerGlobalDtor( 367 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 368 break; 369 } 370 371 case SD_FullExpression: 372 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 373 CodeGenFunction::destroyCXXObject, 374 CGF.getLangOpts().Exceptions); 375 break; 376 377 case SD_Automatic: 378 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 379 ReferenceTemporary, E->getType(), 380 CodeGenFunction::destroyCXXObject, 381 CGF.getLangOpts().Exceptions); 382 break; 383 384 case SD_Dynamic: 385 llvm_unreachable("temporary cannot have dynamic storage duration"); 386 } 387 } 388 389 static Address createReferenceTemporary(CodeGenFunction &CGF, 390 const MaterializeTemporaryExpr *M, 391 const Expr *Inner, 392 Address *Alloca = nullptr) { 393 auto &TCG = CGF.getTargetHooks(); 394 switch (M->getStorageDuration()) { 395 case SD_FullExpression: 396 case SD_Automatic: { 397 // If we have a constant temporary array or record try to promote it into a 398 // constant global under the same rules a normal constant would've been 399 // promoted. This is easier on the optimizer and generally emits fewer 400 // instructions. 401 QualType Ty = Inner->getType(); 402 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 403 (Ty->isArrayType() || Ty->isRecordType()) && 404 CGF.CGM.isTypeConstant(Ty, true)) 405 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 406 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 407 auto AS = AddrSpace.getValue(); 408 auto *GV = new llvm::GlobalVariable( 409 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 410 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 411 llvm::GlobalValue::NotThreadLocal, 412 CGF.getContext().getTargetAddressSpace(AS)); 413 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 414 GV->setAlignment(alignment.getAsAlign()); 415 llvm::Constant *C = GV; 416 if (AS != LangAS::Default) 417 C = TCG.performAddrSpaceCast( 418 CGF.CGM, GV, AS, LangAS::Default, 419 GV->getValueType()->getPointerTo( 420 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 421 // FIXME: Should we put the new global into a COMDAT? 422 return Address(C, alignment); 423 } 424 } 425 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 426 } 427 case SD_Thread: 428 case SD_Static: 429 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 430 431 case SD_Dynamic: 432 llvm_unreachable("temporary can't have dynamic storage duration"); 433 } 434 llvm_unreachable("unknown storage duration"); 435 } 436 437 /// Helper method to check if the underlying ABI is AAPCS 438 static bool isAAPCS(const TargetInfo &TargetInfo) { 439 return TargetInfo.getABI().startswith("aapcs"); 440 } 441 442 LValue CodeGenFunction:: 443 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 444 const Expr *E = M->getSubExpr(); 445 446 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 447 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 448 "Reference should never be pseudo-strong!"); 449 450 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 451 // as that will cause the lifetime adjustment to be lost for ARC 452 auto ownership = M->getType().getObjCLifetime(); 453 if (ownership != Qualifiers::OCL_None && 454 ownership != Qualifiers::OCL_ExplicitNone) { 455 Address Object = createReferenceTemporary(*this, M, E); 456 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 457 Object = Address(llvm::ConstantExpr::getBitCast(Var, 458 ConvertTypeForMem(E->getType()) 459 ->getPointerTo(Object.getAddressSpace())), 460 Object.getAlignment()); 461 462 // createReferenceTemporary will promote the temporary to a global with a 463 // constant initializer if it can. It can only do this to a value of 464 // ARC-manageable type if the value is global and therefore "immune" to 465 // ref-counting operations. Therefore we have no need to emit either a 466 // dynamic initialization or a cleanup and we can just return the address 467 // of the temporary. 468 if (Var->hasInitializer()) 469 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 470 471 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 472 } 473 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 474 AlignmentSource::Decl); 475 476 switch (getEvaluationKind(E->getType())) { 477 default: llvm_unreachable("expected scalar or aggregate expression"); 478 case TEK_Scalar: 479 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 480 break; 481 case TEK_Aggregate: { 482 EmitAggExpr(E, AggValueSlot::forAddr(Object, 483 E->getType().getQualifiers(), 484 AggValueSlot::IsDestructed, 485 AggValueSlot::DoesNotNeedGCBarriers, 486 AggValueSlot::IsNotAliased, 487 AggValueSlot::DoesNotOverlap)); 488 break; 489 } 490 } 491 492 pushTemporaryCleanup(*this, M, E, Object); 493 return RefTempDst; 494 } 495 496 SmallVector<const Expr *, 2> CommaLHSs; 497 SmallVector<SubobjectAdjustment, 2> Adjustments; 498 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 499 500 for (const auto &Ignored : CommaLHSs) 501 EmitIgnoredExpr(Ignored); 502 503 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 504 if (opaque->getType()->isRecordType()) { 505 assert(Adjustments.empty()); 506 return EmitOpaqueValueLValue(opaque); 507 } 508 } 509 510 // Create and initialize the reference temporary. 511 Address Alloca = Address::invalid(); 512 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 513 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 514 Object.getPointer()->stripPointerCasts())) { 515 Object = Address(llvm::ConstantExpr::getBitCast( 516 cast<llvm::Constant>(Object.getPointer()), 517 ConvertTypeForMem(E->getType())->getPointerTo()), 518 Object.getAlignment()); 519 // If the temporary is a global and has a constant initializer or is a 520 // constant temporary that we promoted to a global, we may have already 521 // initialized it. 522 if (!Var->hasInitializer()) { 523 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 524 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 525 } 526 } else { 527 switch (M->getStorageDuration()) { 528 case SD_Automatic: 529 if (auto *Size = EmitLifetimeStart( 530 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 531 Alloca.getPointer())) { 532 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 533 Alloca, Size); 534 } 535 break; 536 537 case SD_FullExpression: { 538 if (!ShouldEmitLifetimeMarkers) 539 break; 540 541 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 542 // marker. Instead, start the lifetime of a conditional temporary earlier 543 // so that it's unconditional. Don't do this with sanitizers which need 544 // more precise lifetime marks. 545 ConditionalEvaluation *OldConditional = nullptr; 546 CGBuilderTy::InsertPoint OldIP; 547 if (isInConditionalBranch() && !E->getType().isDestructedType() && 548 !SanOpts.has(SanitizerKind::HWAddress) && 549 !SanOpts.has(SanitizerKind::Memory) && 550 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 551 OldConditional = OutermostConditional; 552 OutermostConditional = nullptr; 553 554 OldIP = Builder.saveIP(); 555 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 556 Builder.restoreIP(CGBuilderTy::InsertPoint( 557 Block, llvm::BasicBlock::iterator(Block->back()))); 558 } 559 560 if (auto *Size = EmitLifetimeStart( 561 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 562 Alloca.getPointer())) { 563 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 564 Size); 565 } 566 567 if (OldConditional) { 568 OutermostConditional = OldConditional; 569 Builder.restoreIP(OldIP); 570 } 571 break; 572 } 573 574 default: 575 break; 576 } 577 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 578 } 579 pushTemporaryCleanup(*this, M, E, Object); 580 581 // Perform derived-to-base casts and/or field accesses, to get from the 582 // temporary object we created (and, potentially, for which we extended 583 // the lifetime) to the subobject we're binding the reference to. 584 for (unsigned I = Adjustments.size(); I != 0; --I) { 585 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 586 switch (Adjustment.Kind) { 587 case SubobjectAdjustment::DerivedToBaseAdjustment: 588 Object = 589 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 590 Adjustment.DerivedToBase.BasePath->path_begin(), 591 Adjustment.DerivedToBase.BasePath->path_end(), 592 /*NullCheckValue=*/ false, E->getExprLoc()); 593 break; 594 595 case SubobjectAdjustment::FieldAdjustment: { 596 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 597 LV = EmitLValueForField(LV, Adjustment.Field); 598 assert(LV.isSimple() && 599 "materialized temporary field is not a simple lvalue"); 600 Object = LV.getAddress(*this); 601 break; 602 } 603 604 case SubobjectAdjustment::MemberPointerAdjustment: { 605 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 606 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 607 Adjustment.Ptr.MPT); 608 break; 609 } 610 } 611 } 612 613 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 614 } 615 616 RValue 617 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 618 // Emit the expression as an lvalue. 619 LValue LV = EmitLValue(E); 620 assert(LV.isSimple()); 621 llvm::Value *Value = LV.getPointer(*this); 622 623 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 624 // C++11 [dcl.ref]p5 (as amended by core issue 453): 625 // If a glvalue to which a reference is directly bound designates neither 626 // an existing object or function of an appropriate type nor a region of 627 // storage of suitable size and alignment to contain an object of the 628 // reference's type, the behavior is undefined. 629 QualType Ty = E->getType(); 630 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 631 } 632 633 return RValue::get(Value); 634 } 635 636 637 /// getAccessedFieldNo - Given an encoded value and a result number, return the 638 /// input field number being accessed. 639 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 640 const llvm::Constant *Elts) { 641 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 642 ->getZExtValue(); 643 } 644 645 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 646 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 647 llvm::Value *High) { 648 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 649 llvm::Value *K47 = Builder.getInt64(47); 650 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 651 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 652 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 653 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 654 return Builder.CreateMul(B1, KMul); 655 } 656 657 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 658 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 659 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 660 } 661 662 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 663 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 664 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 665 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 666 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 667 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 668 } 669 670 bool CodeGenFunction::sanitizePerformTypeCheck() const { 671 return SanOpts.has(SanitizerKind::Null) | 672 SanOpts.has(SanitizerKind::Alignment) | 673 SanOpts.has(SanitizerKind::ObjectSize) | 674 SanOpts.has(SanitizerKind::Vptr); 675 } 676 677 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 678 llvm::Value *Ptr, QualType Ty, 679 CharUnits Alignment, 680 SanitizerSet SkippedChecks, 681 llvm::Value *ArraySize) { 682 if (!sanitizePerformTypeCheck()) 683 return; 684 685 // Don't check pointers outside the default address space. The null check 686 // isn't correct, the object-size check isn't supported by LLVM, and we can't 687 // communicate the addresses to the runtime handler for the vptr check. 688 if (Ptr->getType()->getPointerAddressSpace()) 689 return; 690 691 // Don't check pointers to volatile data. The behavior here is implementation- 692 // defined. 693 if (Ty.isVolatileQualified()) 694 return; 695 696 SanitizerScope SanScope(this); 697 698 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 699 llvm::BasicBlock *Done = nullptr; 700 701 // Quickly determine whether we have a pointer to an alloca. It's possible 702 // to skip null checks, and some alignment checks, for these pointers. This 703 // can reduce compile-time significantly. 704 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 705 706 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 707 llvm::Value *IsNonNull = nullptr; 708 bool IsGuaranteedNonNull = 709 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 710 bool AllowNullPointers = isNullPointerAllowed(TCK); 711 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 712 !IsGuaranteedNonNull) { 713 // The glvalue must not be an empty glvalue. 714 IsNonNull = Builder.CreateIsNotNull(Ptr); 715 716 // The IR builder can constant-fold the null check if the pointer points to 717 // a constant. 718 IsGuaranteedNonNull = IsNonNull == True; 719 720 // Skip the null check if the pointer is known to be non-null. 721 if (!IsGuaranteedNonNull) { 722 if (AllowNullPointers) { 723 // When performing pointer casts, it's OK if the value is null. 724 // Skip the remaining checks in that case. 725 Done = createBasicBlock("null"); 726 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 727 Builder.CreateCondBr(IsNonNull, Rest, Done); 728 EmitBlock(Rest); 729 } else { 730 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 731 } 732 } 733 } 734 735 if (SanOpts.has(SanitizerKind::ObjectSize) && 736 !SkippedChecks.has(SanitizerKind::ObjectSize) && 737 !Ty->isIncompleteType()) { 738 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 739 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 740 if (ArraySize) 741 Size = Builder.CreateMul(Size, ArraySize); 742 743 // Degenerate case: new X[0] does not need an objectsize check. 744 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 745 if (!ConstantSize || !ConstantSize->isNullValue()) { 746 // The glvalue must refer to a large enough storage region. 747 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 748 // to check this. 749 // FIXME: Get object address space 750 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 751 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 752 llvm::Value *Min = Builder.getFalse(); 753 llvm::Value *NullIsUnknown = Builder.getFalse(); 754 llvm::Value *Dynamic = Builder.getFalse(); 755 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 756 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 757 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 758 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 759 } 760 } 761 762 uint64_t AlignVal = 0; 763 llvm::Value *PtrAsInt = nullptr; 764 765 if (SanOpts.has(SanitizerKind::Alignment) && 766 !SkippedChecks.has(SanitizerKind::Alignment)) { 767 AlignVal = Alignment.getQuantity(); 768 if (!Ty->isIncompleteType() && !AlignVal) 769 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 770 /*ForPointeeType=*/true) 771 .getQuantity(); 772 773 // The glvalue must be suitably aligned. 774 if (AlignVal > 1 && 775 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 776 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 777 llvm::Value *Align = Builder.CreateAnd( 778 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 779 llvm::Value *Aligned = 780 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 781 if (Aligned != True) 782 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 783 } 784 } 785 786 if (Checks.size() > 0) { 787 // Make sure we're not losing information. Alignment needs to be a power of 788 // 2 789 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 790 llvm::Constant *StaticData[] = { 791 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 792 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 793 llvm::ConstantInt::get(Int8Ty, TCK)}; 794 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 795 PtrAsInt ? PtrAsInt : Ptr); 796 } 797 798 // If possible, check that the vptr indicates that there is a subobject of 799 // type Ty at offset zero within this object. 800 // 801 // C++11 [basic.life]p5,6: 802 // [For storage which does not refer to an object within its lifetime] 803 // The program has undefined behavior if: 804 // -- the [pointer or glvalue] is used to access a non-static data member 805 // or call a non-static member function 806 if (SanOpts.has(SanitizerKind::Vptr) && 807 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 808 // Ensure that the pointer is non-null before loading it. If there is no 809 // compile-time guarantee, reuse the run-time null check or emit a new one. 810 if (!IsGuaranteedNonNull) { 811 if (!IsNonNull) 812 IsNonNull = Builder.CreateIsNotNull(Ptr); 813 if (!Done) 814 Done = createBasicBlock("vptr.null"); 815 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 816 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 817 EmitBlock(VptrNotNull); 818 } 819 820 // Compute a hash of the mangled name of the type. 821 // 822 // FIXME: This is not guaranteed to be deterministic! Move to a 823 // fingerprinting mechanism once LLVM provides one. For the time 824 // being the implementation happens to be deterministic. 825 SmallString<64> MangledName; 826 llvm::raw_svector_ostream Out(MangledName); 827 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 828 Out); 829 830 // Contained in NoSanitizeList based on the mangled type. 831 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 832 Out.str())) { 833 llvm::hash_code TypeHash = hash_value(Out.str()); 834 835 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 836 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 837 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 838 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 839 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 840 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 841 842 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 843 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 844 845 // Look the hash up in our cache. 846 const int CacheSize = 128; 847 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 848 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 849 "__ubsan_vptr_type_cache"); 850 llvm::Value *Slot = Builder.CreateAnd(Hash, 851 llvm::ConstantInt::get(IntPtrTy, 852 CacheSize-1)); 853 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 854 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 855 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 856 getPointerAlign()); 857 858 // If the hash isn't in the cache, call a runtime handler to perform the 859 // hard work of checking whether the vptr is for an object of the right 860 // type. This will either fill in the cache and return, or produce a 861 // diagnostic. 862 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 863 llvm::Constant *StaticData[] = { 864 EmitCheckSourceLocation(Loc), 865 EmitCheckTypeDescriptor(Ty), 866 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 867 llvm::ConstantInt::get(Int8Ty, TCK) 868 }; 869 llvm::Value *DynamicData[] = { Ptr, Hash }; 870 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 871 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 872 DynamicData); 873 } 874 } 875 876 if (Done) { 877 Builder.CreateBr(Done); 878 EmitBlock(Done); 879 } 880 } 881 882 /// Determine whether this expression refers to a flexible array member in a 883 /// struct. We disable array bounds checks for such members. 884 static bool isFlexibleArrayMemberExpr(const Expr *E) { 885 // For compatibility with existing code, we treat arrays of length 0 or 886 // 1 as flexible array members. 887 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 888 // the two mechanisms. 889 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 890 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 891 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 892 // was produced by macro expansion. 893 if (CAT->getSize().ugt(1)) 894 return false; 895 } else if (!isa<IncompleteArrayType>(AT)) 896 return false; 897 898 E = E->IgnoreParens(); 899 900 // A flexible array member must be the last member in the class. 901 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 902 // FIXME: If the base type of the member expr is not FD->getParent(), 903 // this should not be treated as a flexible array member access. 904 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 905 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 906 // member, only a T[0] or T[] member gets that treatment. 907 if (FD->getParent()->isUnion()) 908 return true; 909 RecordDecl::field_iterator FI( 910 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 911 return ++FI == FD->getParent()->field_end(); 912 } 913 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 914 return IRE->getDecl()->getNextIvar() == nullptr; 915 } 916 917 return false; 918 } 919 920 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 921 QualType EltTy) { 922 ASTContext &C = getContext(); 923 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 924 if (!EltSize) 925 return nullptr; 926 927 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 928 if (!ArrayDeclRef) 929 return nullptr; 930 931 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 932 if (!ParamDecl) 933 return nullptr; 934 935 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 936 if (!POSAttr) 937 return nullptr; 938 939 // Don't load the size if it's a lower bound. 940 int POSType = POSAttr->getType(); 941 if (POSType != 0 && POSType != 1) 942 return nullptr; 943 944 // Find the implicit size parameter. 945 auto PassedSizeIt = SizeArguments.find(ParamDecl); 946 if (PassedSizeIt == SizeArguments.end()) 947 return nullptr; 948 949 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 950 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 951 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 952 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 953 C.getSizeType(), E->getExprLoc()); 954 llvm::Value *SizeOfElement = 955 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 956 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 957 } 958 959 /// If Base is known to point to the start of an array, return the length of 960 /// that array. Return 0 if the length cannot be determined. 961 static llvm::Value *getArrayIndexingBound( 962 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 963 // For the vector indexing extension, the bound is the number of elements. 964 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 965 IndexedType = Base->getType(); 966 return CGF.Builder.getInt32(VT->getNumElements()); 967 } 968 969 Base = Base->IgnoreParens(); 970 971 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 972 if (CE->getCastKind() == CK_ArrayToPointerDecay && 973 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 974 IndexedType = CE->getSubExpr()->getType(); 975 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 976 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 977 return CGF.Builder.getInt(CAT->getSize()); 978 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 979 return CGF.getVLASize(VAT).NumElts; 980 // Ignore pass_object_size here. It's not applicable on decayed pointers. 981 } 982 } 983 984 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 985 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 986 IndexedType = Base->getType(); 987 return POS; 988 } 989 990 return nullptr; 991 } 992 993 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 994 llvm::Value *Index, QualType IndexType, 995 bool Accessed) { 996 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 997 "should not be called unless adding bounds checks"); 998 SanitizerScope SanScope(this); 999 1000 QualType IndexedType; 1001 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 1002 if (!Bound) 1003 return; 1004 1005 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 1006 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 1007 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 1008 1009 llvm::Constant *StaticData[] = { 1010 EmitCheckSourceLocation(E->getExprLoc()), 1011 EmitCheckTypeDescriptor(IndexedType), 1012 EmitCheckTypeDescriptor(IndexType) 1013 }; 1014 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1015 : Builder.CreateICmpULE(IndexVal, BoundVal); 1016 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1017 SanitizerHandler::OutOfBounds, StaticData, Index); 1018 } 1019 1020 1021 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1022 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1023 bool isInc, bool isPre) { 1024 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1025 1026 llvm::Value *NextVal; 1027 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1028 uint64_t AmountVal = isInc ? 1 : -1; 1029 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1030 1031 // Add the inc/dec to the real part. 1032 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1033 } else { 1034 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1035 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1036 if (!isInc) 1037 FVal.changeSign(); 1038 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1039 1040 // Add the inc/dec to the real part. 1041 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1042 } 1043 1044 ComplexPairTy IncVal(NextVal, InVal.second); 1045 1046 // Store the updated result through the lvalue. 1047 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1048 if (getLangOpts().OpenMP) 1049 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1050 E->getSubExpr()); 1051 1052 // If this is a postinc, return the value read from memory, otherwise use the 1053 // updated value. 1054 return isPre ? IncVal : InVal; 1055 } 1056 1057 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1058 CodeGenFunction *CGF) { 1059 // Bind VLAs in the cast type. 1060 if (CGF && E->getType()->isVariablyModifiedType()) 1061 CGF->EmitVariablyModifiedType(E->getType()); 1062 1063 if (CGDebugInfo *DI = getModuleDebugInfo()) 1064 DI->EmitExplicitCastType(E->getType()); 1065 } 1066 1067 //===----------------------------------------------------------------------===// 1068 // LValue Expression Emission 1069 //===----------------------------------------------------------------------===// 1070 1071 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1072 /// derive a more accurate bound on the alignment of the pointer. 1073 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1074 LValueBaseInfo *BaseInfo, 1075 TBAAAccessInfo *TBAAInfo) { 1076 // We allow this with ObjC object pointers because of fragile ABIs. 1077 assert(E->getType()->isPointerType() || 1078 E->getType()->isObjCObjectPointerType()); 1079 E = E->IgnoreParens(); 1080 1081 // Casts: 1082 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1083 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1084 CGM.EmitExplicitCastExprType(ECE, this); 1085 1086 switch (CE->getCastKind()) { 1087 // Non-converting casts (but not C's implicit conversion from void*). 1088 case CK_BitCast: 1089 case CK_NoOp: 1090 case CK_AddressSpaceConversion: 1091 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1092 if (PtrTy->getPointeeType()->isVoidType()) 1093 break; 1094 1095 LValueBaseInfo InnerBaseInfo; 1096 TBAAAccessInfo InnerTBAAInfo; 1097 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1098 &InnerBaseInfo, 1099 &InnerTBAAInfo); 1100 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1101 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1102 1103 if (isa<ExplicitCastExpr>(CE)) { 1104 LValueBaseInfo TargetTypeBaseInfo; 1105 TBAAAccessInfo TargetTypeTBAAInfo; 1106 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1107 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1108 if (TBAAInfo) 1109 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1110 TargetTypeTBAAInfo); 1111 // If the source l-value is opaque, honor the alignment of the 1112 // casted-to type. 1113 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1114 if (BaseInfo) 1115 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1116 Addr = Address(Addr.getPointer(), Align); 1117 } 1118 } 1119 1120 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1121 CE->getCastKind() == CK_BitCast) { 1122 if (auto PT = E->getType()->getAs<PointerType>()) 1123 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1124 /*MayBeNull=*/true, 1125 CodeGenFunction::CFITCK_UnrelatedCast, 1126 CE->getBeginLoc()); 1127 } 1128 return CE->getCastKind() != CK_AddressSpaceConversion 1129 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1130 : Builder.CreateAddrSpaceCast(Addr, 1131 ConvertType(E->getType())); 1132 } 1133 break; 1134 1135 // Array-to-pointer decay. 1136 case CK_ArrayToPointerDecay: 1137 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1138 1139 // Derived-to-base conversions. 1140 case CK_UncheckedDerivedToBase: 1141 case CK_DerivedToBase: { 1142 // TODO: Support accesses to members of base classes in TBAA. For now, we 1143 // conservatively pretend that the complete object is of the base class 1144 // type. 1145 if (TBAAInfo) 1146 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1147 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1148 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1149 return GetAddressOfBaseClass(Addr, Derived, 1150 CE->path_begin(), CE->path_end(), 1151 ShouldNullCheckClassCastValue(CE), 1152 CE->getExprLoc()); 1153 } 1154 1155 // TODO: Is there any reason to treat base-to-derived conversions 1156 // specially? 1157 default: 1158 break; 1159 } 1160 } 1161 1162 // Unary &. 1163 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1164 if (UO->getOpcode() == UO_AddrOf) { 1165 LValue LV = EmitLValue(UO->getSubExpr()); 1166 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1167 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1168 return LV.getAddress(*this); 1169 } 1170 } 1171 1172 // TODO: conditional operators, comma. 1173 1174 // Otherwise, use the alignment of the type. 1175 CharUnits Align = 1176 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1177 return Address(EmitScalarExpr(E), Align); 1178 } 1179 1180 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1181 llvm::Value *V = RV.getScalarVal(); 1182 if (auto MPT = T->getAs<MemberPointerType>()) 1183 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1184 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1185 } 1186 1187 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1188 if (Ty->isVoidType()) 1189 return RValue::get(nullptr); 1190 1191 switch (getEvaluationKind(Ty)) { 1192 case TEK_Complex: { 1193 llvm::Type *EltTy = 1194 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1195 llvm::Value *U = llvm::UndefValue::get(EltTy); 1196 return RValue::getComplex(std::make_pair(U, U)); 1197 } 1198 1199 // If this is a use of an undefined aggregate type, the aggregate must have an 1200 // identifiable address. Just because the contents of the value are undefined 1201 // doesn't mean that the address can't be taken and compared. 1202 case TEK_Aggregate: { 1203 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1204 return RValue::getAggregate(DestPtr); 1205 } 1206 1207 case TEK_Scalar: 1208 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1209 } 1210 llvm_unreachable("bad evaluation kind"); 1211 } 1212 1213 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1214 const char *Name) { 1215 ErrorUnsupported(E, Name); 1216 return GetUndefRValue(E->getType()); 1217 } 1218 1219 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1220 const char *Name) { 1221 ErrorUnsupported(E, Name); 1222 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1223 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1224 E->getType()); 1225 } 1226 1227 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1228 const Expr *Base = Obj; 1229 while (!isa<CXXThisExpr>(Base)) { 1230 // The result of a dynamic_cast can be null. 1231 if (isa<CXXDynamicCastExpr>(Base)) 1232 return false; 1233 1234 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1235 Base = CE->getSubExpr(); 1236 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1237 Base = PE->getSubExpr(); 1238 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1239 if (UO->getOpcode() == UO_Extension) 1240 Base = UO->getSubExpr(); 1241 else 1242 return false; 1243 } else { 1244 return false; 1245 } 1246 } 1247 return true; 1248 } 1249 1250 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1251 LValue LV; 1252 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1253 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1254 else 1255 LV = EmitLValue(E); 1256 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1257 SanitizerSet SkippedChecks; 1258 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1259 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1260 if (IsBaseCXXThis) 1261 SkippedChecks.set(SanitizerKind::Alignment, true); 1262 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1263 SkippedChecks.set(SanitizerKind::Null, true); 1264 } 1265 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1266 LV.getAlignment(), SkippedChecks); 1267 } 1268 return LV; 1269 } 1270 1271 /// EmitLValue - Emit code to compute a designator that specifies the location 1272 /// of the expression. 1273 /// 1274 /// This can return one of two things: a simple address or a bitfield reference. 1275 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1276 /// an LLVM pointer type. 1277 /// 1278 /// If this returns a bitfield reference, nothing about the pointee type of the 1279 /// LLVM value is known: For example, it may not be a pointer to an integer. 1280 /// 1281 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1282 /// this method guarantees that the returned pointer type will point to an LLVM 1283 /// type of the same size of the lvalue's type. If the lvalue has a variable 1284 /// length type, this is not possible. 1285 /// 1286 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1287 ApplyDebugLocation DL(*this, E); 1288 switch (E->getStmtClass()) { 1289 default: return EmitUnsupportedLValue(E, "l-value expression"); 1290 1291 case Expr::ObjCPropertyRefExprClass: 1292 llvm_unreachable("cannot emit a property reference directly"); 1293 1294 case Expr::ObjCSelectorExprClass: 1295 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1296 case Expr::ObjCIsaExprClass: 1297 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1298 case Expr::BinaryOperatorClass: 1299 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1300 case Expr::CompoundAssignOperatorClass: { 1301 QualType Ty = E->getType(); 1302 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1303 Ty = AT->getValueType(); 1304 if (!Ty->isAnyComplexType()) 1305 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1306 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1307 } 1308 case Expr::CallExprClass: 1309 case Expr::CXXMemberCallExprClass: 1310 case Expr::CXXOperatorCallExprClass: 1311 case Expr::UserDefinedLiteralClass: 1312 return EmitCallExprLValue(cast<CallExpr>(E)); 1313 case Expr::CXXRewrittenBinaryOperatorClass: 1314 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1315 case Expr::VAArgExprClass: 1316 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1317 case Expr::DeclRefExprClass: 1318 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1319 case Expr::ConstantExprClass: { 1320 const ConstantExpr *CE = cast<ConstantExpr>(E); 1321 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1322 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1323 ->getCallReturnType(getContext()); 1324 return MakeNaturalAlignAddrLValue(Result, RetType); 1325 } 1326 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1327 } 1328 case Expr::ParenExprClass: 1329 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1330 case Expr::GenericSelectionExprClass: 1331 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1332 case Expr::PredefinedExprClass: 1333 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1334 case Expr::StringLiteralClass: 1335 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1336 case Expr::ObjCEncodeExprClass: 1337 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1338 case Expr::PseudoObjectExprClass: 1339 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1340 case Expr::InitListExprClass: 1341 return EmitInitListLValue(cast<InitListExpr>(E)); 1342 case Expr::CXXTemporaryObjectExprClass: 1343 case Expr::CXXConstructExprClass: 1344 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1345 case Expr::CXXBindTemporaryExprClass: 1346 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1347 case Expr::CXXUuidofExprClass: 1348 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1349 case Expr::LambdaExprClass: 1350 return EmitAggExprToLValue(E); 1351 1352 case Expr::ExprWithCleanupsClass: { 1353 const auto *cleanups = cast<ExprWithCleanups>(E); 1354 RunCleanupsScope Scope(*this); 1355 LValue LV = EmitLValue(cleanups->getSubExpr()); 1356 if (LV.isSimple()) { 1357 // Defend against branches out of gnu statement expressions surrounded by 1358 // cleanups. 1359 llvm::Value *V = LV.getPointer(*this); 1360 Scope.ForceCleanup({&V}); 1361 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1362 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1363 } 1364 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1365 // bitfield lvalue or some other non-simple lvalue? 1366 return LV; 1367 } 1368 1369 case Expr::CXXDefaultArgExprClass: { 1370 auto *DAE = cast<CXXDefaultArgExpr>(E); 1371 CXXDefaultArgExprScope Scope(*this, DAE); 1372 return EmitLValue(DAE->getExpr()); 1373 } 1374 case Expr::CXXDefaultInitExprClass: { 1375 auto *DIE = cast<CXXDefaultInitExpr>(E); 1376 CXXDefaultInitExprScope Scope(*this, DIE); 1377 return EmitLValue(DIE->getExpr()); 1378 } 1379 case Expr::CXXTypeidExprClass: 1380 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1381 1382 case Expr::ObjCMessageExprClass: 1383 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1384 case Expr::ObjCIvarRefExprClass: 1385 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1386 case Expr::StmtExprClass: 1387 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1388 case Expr::UnaryOperatorClass: 1389 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1390 case Expr::ArraySubscriptExprClass: 1391 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1392 case Expr::MatrixSubscriptExprClass: 1393 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1394 case Expr::OMPArraySectionExprClass: 1395 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1396 case Expr::ExtVectorElementExprClass: 1397 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1398 case Expr::MemberExprClass: 1399 return EmitMemberExpr(cast<MemberExpr>(E)); 1400 case Expr::CompoundLiteralExprClass: 1401 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1402 case Expr::ConditionalOperatorClass: 1403 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1404 case Expr::BinaryConditionalOperatorClass: 1405 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1406 case Expr::ChooseExprClass: 1407 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1408 case Expr::OpaqueValueExprClass: 1409 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1410 case Expr::SubstNonTypeTemplateParmExprClass: 1411 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1412 case Expr::ImplicitCastExprClass: 1413 case Expr::CStyleCastExprClass: 1414 case Expr::CXXFunctionalCastExprClass: 1415 case Expr::CXXStaticCastExprClass: 1416 case Expr::CXXDynamicCastExprClass: 1417 case Expr::CXXReinterpretCastExprClass: 1418 case Expr::CXXConstCastExprClass: 1419 case Expr::CXXAddrspaceCastExprClass: 1420 case Expr::ObjCBridgedCastExprClass: 1421 return EmitCastLValue(cast<CastExpr>(E)); 1422 1423 case Expr::MaterializeTemporaryExprClass: 1424 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1425 1426 case Expr::CoawaitExprClass: 1427 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1428 case Expr::CoyieldExprClass: 1429 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1430 } 1431 } 1432 1433 /// Given an object of the given canonical type, can we safely copy a 1434 /// value out of it based on its initializer? 1435 static bool isConstantEmittableObjectType(QualType type) { 1436 assert(type.isCanonical()); 1437 assert(!type->isReferenceType()); 1438 1439 // Must be const-qualified but non-volatile. 1440 Qualifiers qs = type.getLocalQualifiers(); 1441 if (!qs.hasConst() || qs.hasVolatile()) return false; 1442 1443 // Otherwise, all object types satisfy this except C++ classes with 1444 // mutable subobjects or non-trivial copy/destroy behavior. 1445 if (const auto *RT = dyn_cast<RecordType>(type)) 1446 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1447 if (RD->hasMutableFields() || !RD->isTrivial()) 1448 return false; 1449 1450 return true; 1451 } 1452 1453 /// Can we constant-emit a load of a reference to a variable of the 1454 /// given type? This is different from predicates like 1455 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1456 /// in situations that don't necessarily satisfy the language's rules 1457 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1458 /// to do this with const float variables even if those variables 1459 /// aren't marked 'constexpr'. 1460 enum ConstantEmissionKind { 1461 CEK_None, 1462 CEK_AsReferenceOnly, 1463 CEK_AsValueOrReference, 1464 CEK_AsValueOnly 1465 }; 1466 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1467 type = type.getCanonicalType(); 1468 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1469 if (isConstantEmittableObjectType(ref->getPointeeType())) 1470 return CEK_AsValueOrReference; 1471 return CEK_AsReferenceOnly; 1472 } 1473 if (isConstantEmittableObjectType(type)) 1474 return CEK_AsValueOnly; 1475 return CEK_None; 1476 } 1477 1478 /// Try to emit a reference to the given value without producing it as 1479 /// an l-value. This is just an optimization, but it avoids us needing 1480 /// to emit global copies of variables if they're named without triggering 1481 /// a formal use in a context where we can't emit a direct reference to them, 1482 /// for instance if a block or lambda or a member of a local class uses a 1483 /// const int variable or constexpr variable from an enclosing function. 1484 CodeGenFunction::ConstantEmission 1485 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1486 ValueDecl *value = refExpr->getDecl(); 1487 1488 // The value needs to be an enum constant or a constant variable. 1489 ConstantEmissionKind CEK; 1490 if (isa<ParmVarDecl>(value)) { 1491 CEK = CEK_None; 1492 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1493 CEK = checkVarTypeForConstantEmission(var->getType()); 1494 } else if (isa<EnumConstantDecl>(value)) { 1495 CEK = CEK_AsValueOnly; 1496 } else { 1497 CEK = CEK_None; 1498 } 1499 if (CEK == CEK_None) return ConstantEmission(); 1500 1501 Expr::EvalResult result; 1502 bool resultIsReference; 1503 QualType resultType; 1504 1505 // It's best to evaluate all the way as an r-value if that's permitted. 1506 if (CEK != CEK_AsReferenceOnly && 1507 refExpr->EvaluateAsRValue(result, getContext())) { 1508 resultIsReference = false; 1509 resultType = refExpr->getType(); 1510 1511 // Otherwise, try to evaluate as an l-value. 1512 } else if (CEK != CEK_AsValueOnly && 1513 refExpr->EvaluateAsLValue(result, getContext())) { 1514 resultIsReference = true; 1515 resultType = value->getType(); 1516 1517 // Failure. 1518 } else { 1519 return ConstantEmission(); 1520 } 1521 1522 // In any case, if the initializer has side-effects, abandon ship. 1523 if (result.HasSideEffects) 1524 return ConstantEmission(); 1525 1526 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1527 // referencing a global host variable by copy. In this case the lambda should 1528 // make a copy of the value of the global host variable. The DRE of the 1529 // captured reference variable cannot be emitted as load from the host 1530 // global variable as compile time constant, since the host variable is not 1531 // accessible on device. The DRE of the captured reference variable has to be 1532 // loaded from captures. 1533 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1534 refExpr->refersToEnclosingVariableOrCapture()) { 1535 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1536 if (MD && MD->getParent()->isLambda() && 1537 MD->getOverloadedOperator() == OO_Call) { 1538 const APValue::LValueBase &base = result.Val.getLValueBase(); 1539 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1540 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1541 if (!VD->hasAttr<CUDADeviceAttr>()) { 1542 return ConstantEmission(); 1543 } 1544 } 1545 } 1546 } 1547 } 1548 1549 // Emit as a constant. 1550 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1551 result.Val, resultType); 1552 1553 // Make sure we emit a debug reference to the global variable. 1554 // This should probably fire even for 1555 if (isa<VarDecl>(value)) { 1556 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1557 EmitDeclRefExprDbgValue(refExpr, result.Val); 1558 } else { 1559 assert(isa<EnumConstantDecl>(value)); 1560 EmitDeclRefExprDbgValue(refExpr, result.Val); 1561 } 1562 1563 // If we emitted a reference constant, we need to dereference that. 1564 if (resultIsReference) 1565 return ConstantEmission::forReference(C); 1566 1567 return ConstantEmission::forValue(C); 1568 } 1569 1570 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1571 const MemberExpr *ME) { 1572 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1573 // Try to emit static variable member expressions as DREs. 1574 return DeclRefExpr::Create( 1575 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1576 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1577 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1578 } 1579 return nullptr; 1580 } 1581 1582 CodeGenFunction::ConstantEmission 1583 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1584 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1585 return tryEmitAsConstant(DRE); 1586 return ConstantEmission(); 1587 } 1588 1589 llvm::Value *CodeGenFunction::emitScalarConstant( 1590 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1591 assert(Constant && "not a constant"); 1592 if (Constant.isReference()) 1593 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1594 E->getExprLoc()) 1595 .getScalarVal(); 1596 return Constant.getValue(); 1597 } 1598 1599 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1600 SourceLocation Loc) { 1601 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1602 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1603 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1604 } 1605 1606 static bool hasBooleanRepresentation(QualType Ty) { 1607 if (Ty->isBooleanType()) 1608 return true; 1609 1610 if (const EnumType *ET = Ty->getAs<EnumType>()) 1611 return ET->getDecl()->getIntegerType()->isBooleanType(); 1612 1613 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1614 return hasBooleanRepresentation(AT->getValueType()); 1615 1616 return false; 1617 } 1618 1619 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1620 llvm::APInt &Min, llvm::APInt &End, 1621 bool StrictEnums, bool IsBool) { 1622 const EnumType *ET = Ty->getAs<EnumType>(); 1623 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1624 ET && !ET->getDecl()->isFixed(); 1625 if (!IsBool && !IsRegularCPlusPlusEnum) 1626 return false; 1627 1628 if (IsBool) { 1629 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1630 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1631 } else { 1632 const EnumDecl *ED = ET->getDecl(); 1633 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1634 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1635 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1636 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1637 1638 if (NumNegativeBits) { 1639 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1640 assert(NumBits <= Bitwidth); 1641 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1642 Min = -End; 1643 } else { 1644 assert(NumPositiveBits <= Bitwidth); 1645 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1646 Min = llvm::APInt(Bitwidth, 0); 1647 } 1648 } 1649 return true; 1650 } 1651 1652 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1653 llvm::APInt Min, End; 1654 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1655 hasBooleanRepresentation(Ty))) 1656 return nullptr; 1657 1658 llvm::MDBuilder MDHelper(getLLVMContext()); 1659 return MDHelper.createRange(Min, End); 1660 } 1661 1662 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1663 SourceLocation Loc) { 1664 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1665 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1666 if (!HasBoolCheck && !HasEnumCheck) 1667 return false; 1668 1669 bool IsBool = hasBooleanRepresentation(Ty) || 1670 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1671 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1672 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1673 if (!NeedsBoolCheck && !NeedsEnumCheck) 1674 return false; 1675 1676 // Single-bit booleans don't need to be checked. Special-case this to avoid 1677 // a bit width mismatch when handling bitfield values. This is handled by 1678 // EmitFromMemory for the non-bitfield case. 1679 if (IsBool && 1680 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1681 return false; 1682 1683 llvm::APInt Min, End; 1684 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1685 return true; 1686 1687 auto &Ctx = getLLVMContext(); 1688 SanitizerScope SanScope(this); 1689 llvm::Value *Check; 1690 --End; 1691 if (!Min) { 1692 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1693 } else { 1694 llvm::Value *Upper = 1695 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1696 llvm::Value *Lower = 1697 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1698 Check = Builder.CreateAnd(Upper, Lower); 1699 } 1700 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1701 EmitCheckTypeDescriptor(Ty)}; 1702 SanitizerMask Kind = 1703 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1704 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1705 StaticArgs, EmitCheckValue(Value)); 1706 return true; 1707 } 1708 1709 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1710 QualType Ty, 1711 SourceLocation Loc, 1712 LValueBaseInfo BaseInfo, 1713 TBAAAccessInfo TBAAInfo, 1714 bool isNontemporal) { 1715 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1716 // For better performance, handle vector loads differently. 1717 if (Ty->isVectorType()) { 1718 const llvm::Type *EltTy = Addr.getElementType(); 1719 1720 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1721 1722 // Handle vectors of size 3 like size 4 for better performance. 1723 if (VTy->getNumElements() == 3) { 1724 1725 // Bitcast to vec4 type. 1726 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1727 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1728 // Now load value. 1729 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1730 1731 // Shuffle vector to get vec3. 1732 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, 1733 "extractVec"); 1734 return EmitFromMemory(V, Ty); 1735 } 1736 } 1737 } 1738 1739 // Atomic operations have to be done on integral types. 1740 LValue AtomicLValue = 1741 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1742 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1743 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1744 } 1745 1746 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1747 if (isNontemporal) { 1748 llvm::MDNode *Node = llvm::MDNode::get( 1749 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1750 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1751 } 1752 1753 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1754 1755 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1756 // In order to prevent the optimizer from throwing away the check, don't 1757 // attach range metadata to the load. 1758 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1759 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1760 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1761 1762 return EmitFromMemory(Load, Ty); 1763 } 1764 1765 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1766 // Bool has a different representation in memory than in registers. 1767 if (hasBooleanRepresentation(Ty)) { 1768 // This should really always be an i1, but sometimes it's already 1769 // an i8, and it's awkward to track those cases down. 1770 if (Value->getType()->isIntegerTy(1)) 1771 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1772 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1773 "wrong value rep of bool"); 1774 } 1775 1776 return Value; 1777 } 1778 1779 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1780 // Bool has a different representation in memory than in registers. 1781 if (hasBooleanRepresentation(Ty)) { 1782 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1783 "wrong value rep of bool"); 1784 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1785 } 1786 1787 return Value; 1788 } 1789 1790 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1791 // MatrixType), if it points to a array (the memory type of MatrixType). 1792 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1793 bool IsVector = true) { 1794 auto *ArrayTy = dyn_cast<llvm::ArrayType>( 1795 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1796 if (ArrayTy && IsVector) { 1797 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1798 ArrayTy->getNumElements()); 1799 1800 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1801 } 1802 auto *VectorTy = dyn_cast<llvm::VectorType>( 1803 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1804 if (VectorTy && !IsVector) { 1805 auto *ArrayTy = llvm::ArrayType::get( 1806 VectorTy->getElementType(), 1807 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1808 1809 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1810 } 1811 1812 return Addr; 1813 } 1814 1815 // Emit a store of a matrix LValue. This may require casting the original 1816 // pointer to memory address (ArrayType) to a pointer to the value type 1817 // (VectorType). 1818 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1819 bool isInit, CodeGenFunction &CGF) { 1820 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1821 value->getType()->isVectorTy()); 1822 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1823 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1824 lvalue.isNontemporal()); 1825 } 1826 1827 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1828 bool Volatile, QualType Ty, 1829 LValueBaseInfo BaseInfo, 1830 TBAAAccessInfo TBAAInfo, 1831 bool isInit, bool isNontemporal) { 1832 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1833 // Handle vectors differently to get better performance. 1834 if (Ty->isVectorType()) { 1835 llvm::Type *SrcTy = Value->getType(); 1836 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1837 // Handle vec3 special. 1838 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1839 // Our source is a vec3, do a shuffle vector to make it a vec4. 1840 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1841 "extractVec"); 1842 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1843 } 1844 if (Addr.getElementType() != SrcTy) { 1845 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1846 } 1847 } 1848 } 1849 1850 Value = EmitToMemory(Value, Ty); 1851 1852 LValue AtomicLValue = 1853 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1854 if (Ty->isAtomicType() || 1855 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1856 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1857 return; 1858 } 1859 1860 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1861 if (isNontemporal) { 1862 llvm::MDNode *Node = 1863 llvm::MDNode::get(Store->getContext(), 1864 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1865 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1866 } 1867 1868 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1869 } 1870 1871 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1872 bool isInit) { 1873 if (lvalue.getType()->isConstantMatrixType()) { 1874 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1875 return; 1876 } 1877 1878 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1879 lvalue.getType(), lvalue.getBaseInfo(), 1880 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1881 } 1882 1883 // Emit a load of a LValue of matrix type. This may require casting the pointer 1884 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1885 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1886 CodeGenFunction &CGF) { 1887 assert(LV.getType()->isConstantMatrixType()); 1888 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1889 LV.setAddress(Addr); 1890 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1891 } 1892 1893 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1894 /// method emits the address of the lvalue, then loads the result as an rvalue, 1895 /// returning the rvalue. 1896 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1897 if (LV.isObjCWeak()) { 1898 // load of a __weak object. 1899 Address AddrWeakObj = LV.getAddress(*this); 1900 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1901 AddrWeakObj)); 1902 } 1903 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1904 // In MRC mode, we do a load+autorelease. 1905 if (!getLangOpts().ObjCAutoRefCount) { 1906 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1907 } 1908 1909 // In ARC mode, we load retained and then consume the value. 1910 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1911 Object = EmitObjCConsumeObject(LV.getType(), Object); 1912 return RValue::get(Object); 1913 } 1914 1915 if (LV.isSimple()) { 1916 assert(!LV.getType()->isFunctionType()); 1917 1918 if (LV.getType()->isConstantMatrixType()) 1919 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1920 1921 // Everything needs a load. 1922 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1923 } 1924 1925 if (LV.isVectorElt()) { 1926 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1927 LV.isVolatileQualified()); 1928 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1929 "vecext")); 1930 } 1931 1932 // If this is a reference to a subset of the elements of a vector, either 1933 // shuffle the input or extract/insert them as appropriate. 1934 if (LV.isExtVectorElt()) { 1935 return EmitLoadOfExtVectorElementLValue(LV); 1936 } 1937 1938 // Global Register variables always invoke intrinsics 1939 if (LV.isGlobalReg()) 1940 return EmitLoadOfGlobalRegLValue(LV); 1941 1942 if (LV.isMatrixElt()) { 1943 llvm::LoadInst *Load = 1944 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1945 return RValue::get( 1946 Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext")); 1947 } 1948 1949 assert(LV.isBitField() && "Unknown LValue type!"); 1950 return EmitLoadOfBitfieldLValue(LV, Loc); 1951 } 1952 1953 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1954 SourceLocation Loc) { 1955 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1956 1957 // Get the output type. 1958 llvm::Type *ResLTy = ConvertType(LV.getType()); 1959 1960 Address Ptr = LV.getBitFieldAddress(); 1961 llvm::Value *Val = 1962 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1963 1964 bool UseVolatile = LV.isVolatileQualified() && 1965 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1966 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1967 const unsigned StorageSize = 1968 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1969 if (Info.IsSigned) { 1970 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1971 unsigned HighBits = StorageSize - Offset - Info.Size; 1972 if (HighBits) 1973 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1974 if (Offset + HighBits) 1975 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1976 } else { 1977 if (Offset) 1978 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1979 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1980 Val = Builder.CreateAnd( 1981 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1982 } 1983 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1984 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1985 return RValue::get(Val); 1986 } 1987 1988 // If this is a reference to a subset of the elements of a vector, create an 1989 // appropriate shufflevector. 1990 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1991 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1992 LV.isVolatileQualified()); 1993 1994 const llvm::Constant *Elts = LV.getExtVectorElts(); 1995 1996 // If the result of the expression is a non-vector type, we must be extracting 1997 // a single element. Just codegen as an extractelement. 1998 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1999 if (!ExprVT) { 2000 unsigned InIdx = getAccessedFieldNo(0, Elts); 2001 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2002 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2003 } 2004 2005 // Always use shuffle vector to try to retain the original program structure 2006 unsigned NumResultElts = ExprVT->getNumElements(); 2007 2008 SmallVector<int, 4> Mask; 2009 for (unsigned i = 0; i != NumResultElts; ++i) 2010 Mask.push_back(getAccessedFieldNo(i, Elts)); 2011 2012 Vec = Builder.CreateShuffleVector(Vec, Mask); 2013 return RValue::get(Vec); 2014 } 2015 2016 /// Generates lvalue for partial ext_vector access. 2017 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2018 Address VectorAddress = LV.getExtVectorAddress(); 2019 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2020 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2021 2022 Address CastToPointerElement = 2023 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2024 "conv.ptr.element"); 2025 2026 const llvm::Constant *Elts = LV.getExtVectorElts(); 2027 unsigned ix = getAccessedFieldNo(0, Elts); 2028 2029 Address VectorBasePtrPlusIx = 2030 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2031 "vector.elt"); 2032 2033 return VectorBasePtrPlusIx; 2034 } 2035 2036 /// Load of global gamed gegisters are always calls to intrinsics. 2037 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2038 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2039 "Bad type for register variable"); 2040 llvm::MDNode *RegName = cast<llvm::MDNode>( 2041 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2042 2043 // We accept integer and pointer types only 2044 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2045 llvm::Type *Ty = OrigTy; 2046 if (OrigTy->isPointerTy()) 2047 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2048 llvm::Type *Types[] = { Ty }; 2049 2050 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2051 llvm::Value *Call = Builder.CreateCall( 2052 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2053 if (OrigTy->isPointerTy()) 2054 Call = Builder.CreateIntToPtr(Call, OrigTy); 2055 return RValue::get(Call); 2056 } 2057 2058 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2059 /// lvalue, where both are guaranteed to the have the same type, and that type 2060 /// is 'Ty'. 2061 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2062 bool isInit) { 2063 if (!Dst.isSimple()) { 2064 if (Dst.isVectorElt()) { 2065 // Read/modify/write the vector, inserting the new element. 2066 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2067 Dst.isVolatileQualified()); 2068 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2069 Dst.getVectorIdx(), "vecins"); 2070 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2071 Dst.isVolatileQualified()); 2072 return; 2073 } 2074 2075 // If this is an update of extended vector elements, insert them as 2076 // appropriate. 2077 if (Dst.isExtVectorElt()) 2078 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2079 2080 if (Dst.isGlobalReg()) 2081 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2082 2083 if (Dst.isMatrixElt()) { 2084 llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress()); 2085 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2086 Dst.getMatrixIdx(), "matins"); 2087 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2088 Dst.isVolatileQualified()); 2089 return; 2090 } 2091 2092 assert(Dst.isBitField() && "Unknown LValue type"); 2093 return EmitStoreThroughBitfieldLValue(Src, Dst); 2094 } 2095 2096 // There's special magic for assigning into an ARC-qualified l-value. 2097 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2098 switch (Lifetime) { 2099 case Qualifiers::OCL_None: 2100 llvm_unreachable("present but none"); 2101 2102 case Qualifiers::OCL_ExplicitNone: 2103 // nothing special 2104 break; 2105 2106 case Qualifiers::OCL_Strong: 2107 if (isInit) { 2108 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2109 break; 2110 } 2111 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2112 return; 2113 2114 case Qualifiers::OCL_Weak: 2115 if (isInit) 2116 // Initialize and then skip the primitive store. 2117 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2118 else 2119 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2120 /*ignore*/ true); 2121 return; 2122 2123 case Qualifiers::OCL_Autoreleasing: 2124 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2125 Src.getScalarVal())); 2126 // fall into the normal path 2127 break; 2128 } 2129 } 2130 2131 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2132 // load of a __weak object. 2133 Address LvalueDst = Dst.getAddress(*this); 2134 llvm::Value *src = Src.getScalarVal(); 2135 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2136 return; 2137 } 2138 2139 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2140 // load of a __strong object. 2141 Address LvalueDst = Dst.getAddress(*this); 2142 llvm::Value *src = Src.getScalarVal(); 2143 if (Dst.isObjCIvar()) { 2144 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2145 llvm::Type *ResultType = IntPtrTy; 2146 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2147 llvm::Value *RHS = dst.getPointer(); 2148 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2149 llvm::Value *LHS = 2150 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2151 "sub.ptr.lhs.cast"); 2152 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2153 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2154 BytesBetween); 2155 } else if (Dst.isGlobalObjCRef()) { 2156 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2157 Dst.isThreadLocalRef()); 2158 } 2159 else 2160 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2161 return; 2162 } 2163 2164 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2165 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2166 } 2167 2168 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2169 llvm::Value **Result) { 2170 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2171 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2172 Address Ptr = Dst.getBitFieldAddress(); 2173 2174 // Get the source value, truncated to the width of the bit-field. 2175 llvm::Value *SrcVal = Src.getScalarVal(); 2176 2177 // Cast the source to the storage type and shift it into place. 2178 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2179 /*isSigned=*/false); 2180 llvm::Value *MaskedVal = SrcVal; 2181 2182 const bool UseVolatile = 2183 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2184 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2185 const unsigned StorageSize = 2186 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2187 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2188 // See if there are other bits in the bitfield's storage we'll need to load 2189 // and mask together with source before storing. 2190 if (StorageSize != Info.Size) { 2191 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2192 llvm::Value *Val = 2193 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2194 2195 // Mask the source value as needed. 2196 if (!hasBooleanRepresentation(Dst.getType())) 2197 SrcVal = Builder.CreateAnd( 2198 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2199 "bf.value"); 2200 MaskedVal = SrcVal; 2201 if (Offset) 2202 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2203 2204 // Mask out the original value. 2205 Val = Builder.CreateAnd( 2206 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2207 "bf.clear"); 2208 2209 // Or together the unchanged values and the source value. 2210 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2211 } else { 2212 assert(Offset == 0); 2213 // According to the AACPS: 2214 // When a volatile bit-field is written, and its container does not overlap 2215 // with any non-bit-field member, its container must be read exactly once 2216 // and written exactly once using the access width appropriate to the type 2217 // of the container. The two accesses are not atomic. 2218 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2219 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2220 Builder.CreateLoad(Ptr, true, "bf.load"); 2221 } 2222 2223 // Write the new value back out. 2224 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2225 2226 // Return the new value of the bit-field, if requested. 2227 if (Result) { 2228 llvm::Value *ResultVal = MaskedVal; 2229 2230 // Sign extend the value if needed. 2231 if (Info.IsSigned) { 2232 assert(Info.Size <= StorageSize); 2233 unsigned HighBits = StorageSize - Info.Size; 2234 if (HighBits) { 2235 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2236 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2237 } 2238 } 2239 2240 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2241 "bf.result.cast"); 2242 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2243 } 2244 } 2245 2246 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2247 LValue Dst) { 2248 // This access turns into a read/modify/write of the vector. Load the input 2249 // value now. 2250 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2251 Dst.isVolatileQualified()); 2252 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2253 2254 llvm::Value *SrcVal = Src.getScalarVal(); 2255 2256 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2257 unsigned NumSrcElts = VTy->getNumElements(); 2258 unsigned NumDstElts = 2259 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2260 if (NumDstElts == NumSrcElts) { 2261 // Use shuffle vector is the src and destination are the same number of 2262 // elements and restore the vector mask since it is on the side it will be 2263 // stored. 2264 SmallVector<int, 4> Mask(NumDstElts); 2265 for (unsigned i = 0; i != NumSrcElts; ++i) 2266 Mask[getAccessedFieldNo(i, Elts)] = i; 2267 2268 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2269 } else if (NumDstElts > NumSrcElts) { 2270 // Extended the source vector to the same length and then shuffle it 2271 // into the destination. 2272 // FIXME: since we're shuffling with undef, can we just use the indices 2273 // into that? This could be simpler. 2274 SmallVector<int, 4> ExtMask; 2275 for (unsigned i = 0; i != NumSrcElts; ++i) 2276 ExtMask.push_back(i); 2277 ExtMask.resize(NumDstElts, -1); 2278 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2279 // build identity 2280 SmallVector<int, 4> Mask; 2281 for (unsigned i = 0; i != NumDstElts; ++i) 2282 Mask.push_back(i); 2283 2284 // When the vector size is odd and .odd or .hi is used, the last element 2285 // of the Elts constant array will be one past the size of the vector. 2286 // Ignore the last element here, if it is greater than the mask size. 2287 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2288 NumSrcElts--; 2289 2290 // modify when what gets shuffled in 2291 for (unsigned i = 0; i != NumSrcElts; ++i) 2292 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2293 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2294 } else { 2295 // We should never shorten the vector 2296 llvm_unreachable("unexpected shorten vector length"); 2297 } 2298 } else { 2299 // If the Src is a scalar (not a vector) it must be updating one element. 2300 unsigned InIdx = getAccessedFieldNo(0, Elts); 2301 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2302 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2303 } 2304 2305 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2306 Dst.isVolatileQualified()); 2307 } 2308 2309 /// Store of global named registers are always calls to intrinsics. 2310 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2311 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2312 "Bad type for register variable"); 2313 llvm::MDNode *RegName = cast<llvm::MDNode>( 2314 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2315 assert(RegName && "Register LValue is not metadata"); 2316 2317 // We accept integer and pointer types only 2318 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2319 llvm::Type *Ty = OrigTy; 2320 if (OrigTy->isPointerTy()) 2321 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2322 llvm::Type *Types[] = { Ty }; 2323 2324 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2325 llvm::Value *Value = Src.getScalarVal(); 2326 if (OrigTy->isPointerTy()) 2327 Value = Builder.CreatePtrToInt(Value, Ty); 2328 Builder.CreateCall( 2329 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2330 } 2331 2332 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2333 // generating write-barries API. It is currently a global, ivar, 2334 // or neither. 2335 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2336 LValue &LV, 2337 bool IsMemberAccess=false) { 2338 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2339 return; 2340 2341 if (isa<ObjCIvarRefExpr>(E)) { 2342 QualType ExpTy = E->getType(); 2343 if (IsMemberAccess && ExpTy->isPointerType()) { 2344 // If ivar is a structure pointer, assigning to field of 2345 // this struct follows gcc's behavior and makes it a non-ivar 2346 // writer-barrier conservatively. 2347 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2348 if (ExpTy->isRecordType()) { 2349 LV.setObjCIvar(false); 2350 return; 2351 } 2352 } 2353 LV.setObjCIvar(true); 2354 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2355 LV.setBaseIvarExp(Exp->getBase()); 2356 LV.setObjCArray(E->getType()->isArrayType()); 2357 return; 2358 } 2359 2360 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2361 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2362 if (VD->hasGlobalStorage()) { 2363 LV.setGlobalObjCRef(true); 2364 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2365 } 2366 } 2367 LV.setObjCArray(E->getType()->isArrayType()); 2368 return; 2369 } 2370 2371 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2372 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2373 return; 2374 } 2375 2376 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2377 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2378 if (LV.isObjCIvar()) { 2379 // If cast is to a structure pointer, follow gcc's behavior and make it 2380 // a non-ivar write-barrier. 2381 QualType ExpTy = E->getType(); 2382 if (ExpTy->isPointerType()) 2383 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2384 if (ExpTy->isRecordType()) 2385 LV.setObjCIvar(false); 2386 } 2387 return; 2388 } 2389 2390 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2391 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2392 return; 2393 } 2394 2395 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2396 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2397 return; 2398 } 2399 2400 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2401 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2402 return; 2403 } 2404 2405 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2406 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2407 return; 2408 } 2409 2410 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2411 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2412 if (LV.isObjCIvar() && !LV.isObjCArray()) 2413 // Using array syntax to assigning to what an ivar points to is not 2414 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2415 LV.setObjCIvar(false); 2416 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2417 // Using array syntax to assigning to what global points to is not 2418 // same as assigning to the global itself. {id *G;} G[i] = 0; 2419 LV.setGlobalObjCRef(false); 2420 return; 2421 } 2422 2423 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2424 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2425 // We don't know if member is an 'ivar', but this flag is looked at 2426 // only in the context of LV.isObjCIvar(). 2427 LV.setObjCArray(E->getType()->isArrayType()); 2428 return; 2429 } 2430 } 2431 2432 static llvm::Value * 2433 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2434 llvm::Value *V, llvm::Type *IRType, 2435 StringRef Name = StringRef()) { 2436 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2437 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2438 } 2439 2440 static LValue EmitThreadPrivateVarDeclLValue( 2441 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2442 llvm::Type *RealVarTy, SourceLocation Loc) { 2443 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2444 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2445 CGF, VD, Addr, Loc); 2446 else 2447 Addr = 2448 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2449 2450 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2451 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2452 } 2453 2454 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2455 const VarDecl *VD, QualType T) { 2456 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2457 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2458 // Return an invalid address if variable is MT_To and unified 2459 // memory is not enabled. For all other cases: MT_Link and 2460 // MT_To with unified memory, return a valid address. 2461 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2462 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2463 return Address::invalid(); 2464 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2465 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2466 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2467 "Expected link clause OR to clause with unified memory enabled."); 2468 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2469 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2470 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2471 } 2472 2473 Address 2474 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2475 LValueBaseInfo *PointeeBaseInfo, 2476 TBAAAccessInfo *PointeeTBAAInfo) { 2477 llvm::LoadInst *Load = 2478 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2479 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2480 2481 CharUnits Align = CGM.getNaturalTypeAlignment( 2482 RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo, 2483 /* forPointeeType= */ true); 2484 return Address(Load, Align); 2485 } 2486 2487 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2488 LValueBaseInfo PointeeBaseInfo; 2489 TBAAAccessInfo PointeeTBAAInfo; 2490 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2491 &PointeeTBAAInfo); 2492 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2493 PointeeBaseInfo, PointeeTBAAInfo); 2494 } 2495 2496 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2497 const PointerType *PtrTy, 2498 LValueBaseInfo *BaseInfo, 2499 TBAAAccessInfo *TBAAInfo) { 2500 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2501 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), 2502 BaseInfo, TBAAInfo, 2503 /*forPointeeType=*/true)); 2504 } 2505 2506 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2507 const PointerType *PtrTy) { 2508 LValueBaseInfo BaseInfo; 2509 TBAAAccessInfo TBAAInfo; 2510 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2511 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2512 } 2513 2514 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2515 const Expr *E, const VarDecl *VD) { 2516 QualType T = E->getType(); 2517 2518 // If it's thread_local, emit a call to its wrapper function instead. 2519 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2520 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2521 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2522 // Check if the variable is marked as declare target with link clause in 2523 // device codegen. 2524 if (CGF.getLangOpts().OpenMPIsDevice) { 2525 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2526 if (Addr.isValid()) 2527 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2528 } 2529 2530 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2531 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2532 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2533 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2534 Address Addr(V, Alignment); 2535 // Emit reference to the private copy of the variable if it is an OpenMP 2536 // threadprivate variable. 2537 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2538 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2539 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2540 E->getExprLoc()); 2541 } 2542 LValue LV = VD->getType()->isReferenceType() ? 2543 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2544 AlignmentSource::Decl) : 2545 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2546 setObjCGCLValueClass(CGF.getContext(), E, LV); 2547 return LV; 2548 } 2549 2550 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2551 GlobalDecl GD) { 2552 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2553 if (FD->hasAttr<WeakRefAttr>()) { 2554 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2555 return aliasee.getPointer(); 2556 } 2557 2558 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2559 if (!FD->hasPrototype()) { 2560 if (const FunctionProtoType *Proto = 2561 FD->getType()->getAs<FunctionProtoType>()) { 2562 // Ugly case: for a K&R-style definition, the type of the definition 2563 // isn't the same as the type of a use. Correct for this with a 2564 // bitcast. 2565 QualType NoProtoType = 2566 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2567 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2568 V = llvm::ConstantExpr::getBitCast(V, 2569 CGM.getTypes().ConvertType(NoProtoType)); 2570 } 2571 } 2572 return V; 2573 } 2574 2575 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2576 GlobalDecl GD) { 2577 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2578 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2579 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2580 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2581 AlignmentSource::Decl); 2582 } 2583 2584 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2585 llvm::Value *ThisValue) { 2586 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2587 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2588 return CGF.EmitLValueForField(LV, FD); 2589 } 2590 2591 /// Named Registers are named metadata pointing to the register name 2592 /// which will be read from/written to as an argument to the intrinsic 2593 /// @llvm.read/write_register. 2594 /// So far, only the name is being passed down, but other options such as 2595 /// register type, allocation type or even optimization options could be 2596 /// passed down via the metadata node. 2597 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2598 SmallString<64> Name("llvm.named.register."); 2599 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2600 assert(Asm->getLabel().size() < 64-Name.size() && 2601 "Register name too big"); 2602 Name.append(Asm->getLabel()); 2603 llvm::NamedMDNode *M = 2604 CGM.getModule().getOrInsertNamedMetadata(Name); 2605 if (M->getNumOperands() == 0) { 2606 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2607 Asm->getLabel()); 2608 llvm::Metadata *Ops[] = {Str}; 2609 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2610 } 2611 2612 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2613 2614 llvm::Value *Ptr = 2615 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2616 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2617 } 2618 2619 /// Determine whether we can emit a reference to \p VD from the current 2620 /// context, despite not necessarily having seen an odr-use of the variable in 2621 /// this context. 2622 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2623 const DeclRefExpr *E, 2624 const VarDecl *VD, 2625 bool IsConstant) { 2626 // For a variable declared in an enclosing scope, do not emit a spurious 2627 // reference even if we have a capture, as that will emit an unwarranted 2628 // reference to our capture state, and will likely generate worse code than 2629 // emitting a local copy. 2630 if (E->refersToEnclosingVariableOrCapture()) 2631 return false; 2632 2633 // For a local declaration declared in this function, we can always reference 2634 // it even if we don't have an odr-use. 2635 if (VD->hasLocalStorage()) { 2636 return VD->getDeclContext() == 2637 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2638 } 2639 2640 // For a global declaration, we can emit a reference to it if we know 2641 // for sure that we are able to emit a definition of it. 2642 VD = VD->getDefinition(CGF.getContext()); 2643 if (!VD) 2644 return false; 2645 2646 // Don't emit a spurious reference if it might be to a variable that only 2647 // exists on a different device / target. 2648 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2649 // cross-target reference. 2650 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2651 CGF.getLangOpts().OpenCL) { 2652 return false; 2653 } 2654 2655 // We can emit a spurious reference only if the linkage implies that we'll 2656 // be emitting a non-interposable symbol that will be retained until link 2657 // time. 2658 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2659 case llvm::GlobalValue::ExternalLinkage: 2660 case llvm::GlobalValue::LinkOnceODRLinkage: 2661 case llvm::GlobalValue::WeakODRLinkage: 2662 case llvm::GlobalValue::InternalLinkage: 2663 case llvm::GlobalValue::PrivateLinkage: 2664 return true; 2665 default: 2666 return false; 2667 } 2668 } 2669 2670 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2671 const NamedDecl *ND = E->getDecl(); 2672 QualType T = E->getType(); 2673 2674 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2675 "should not emit an unevaluated operand"); 2676 2677 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2678 // Global Named registers access via intrinsics only 2679 if (VD->getStorageClass() == SC_Register && 2680 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2681 return EmitGlobalNamedRegister(VD, CGM); 2682 2683 // If this DeclRefExpr does not constitute an odr-use of the variable, 2684 // we're not permitted to emit a reference to it in general, and it might 2685 // not be captured if capture would be necessary for a use. Emit the 2686 // constant value directly instead. 2687 if (E->isNonOdrUse() == NOUR_Constant && 2688 (VD->getType()->isReferenceType() || 2689 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2690 VD->getAnyInitializer(VD); 2691 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2692 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2693 assert(Val && "failed to emit constant expression"); 2694 2695 Address Addr = Address::invalid(); 2696 if (!VD->getType()->isReferenceType()) { 2697 // Spill the constant value to a global. 2698 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2699 getContext().getDeclAlign(VD)); 2700 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2701 auto *PTy = llvm::PointerType::get( 2702 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2703 if (PTy != Addr.getType()) 2704 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2705 } else { 2706 // Should we be using the alignment of the constant pointer we emitted? 2707 CharUnits Alignment = 2708 CGM.getNaturalTypeAlignment(E->getType(), 2709 /* BaseInfo= */ nullptr, 2710 /* TBAAInfo= */ nullptr, 2711 /* forPointeeType= */ true); 2712 Addr = Address(Val, Alignment); 2713 } 2714 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2715 } 2716 2717 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2718 2719 // Check for captured variables. 2720 if (E->refersToEnclosingVariableOrCapture()) { 2721 VD = VD->getCanonicalDecl(); 2722 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2723 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2724 if (CapturedStmtInfo) { 2725 auto I = LocalDeclMap.find(VD); 2726 if (I != LocalDeclMap.end()) { 2727 LValue CapLVal; 2728 if (VD->getType()->isReferenceType()) 2729 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2730 AlignmentSource::Decl); 2731 else 2732 CapLVal = MakeAddrLValue(I->second, T); 2733 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2734 // in simd context. 2735 if (getLangOpts().OpenMP && 2736 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2737 CapLVal.setNontemporal(/*Value=*/true); 2738 return CapLVal; 2739 } 2740 LValue CapLVal = 2741 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2742 CapturedStmtInfo->getContextValue()); 2743 CapLVal = MakeAddrLValue( 2744 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2745 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2746 CapLVal.getTBAAInfo()); 2747 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2748 // in simd context. 2749 if (getLangOpts().OpenMP && 2750 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2751 CapLVal.setNontemporal(/*Value=*/true); 2752 return CapLVal; 2753 } 2754 2755 assert(isa<BlockDecl>(CurCodeDecl)); 2756 Address addr = GetAddrOfBlockDecl(VD); 2757 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2758 } 2759 } 2760 2761 // FIXME: We should be able to assert this for FunctionDecls as well! 2762 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2763 // those with a valid source location. 2764 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2765 !E->getLocation().isValid()) && 2766 "Should not use decl without marking it used!"); 2767 2768 if (ND->hasAttr<WeakRefAttr>()) { 2769 const auto *VD = cast<ValueDecl>(ND); 2770 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2771 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2772 } 2773 2774 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2775 // Check if this is a global variable. 2776 if (VD->hasLinkage() || VD->isStaticDataMember()) 2777 return EmitGlobalVarDeclLValue(*this, E, VD); 2778 2779 Address addr = Address::invalid(); 2780 2781 // The variable should generally be present in the local decl map. 2782 auto iter = LocalDeclMap.find(VD); 2783 if (iter != LocalDeclMap.end()) { 2784 addr = iter->second; 2785 2786 // Otherwise, it might be static local we haven't emitted yet for 2787 // some reason; most likely, because it's in an outer function. 2788 } else if (VD->isStaticLocal()) { 2789 addr = Address(CGM.getOrCreateStaticVarDecl( 2790 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2791 getContext().getDeclAlign(VD)); 2792 2793 // No other cases for now. 2794 } else { 2795 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2796 } 2797 2798 2799 // Check for OpenMP threadprivate variables. 2800 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2801 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2802 return EmitThreadPrivateVarDeclLValue( 2803 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2804 E->getExprLoc()); 2805 } 2806 2807 // Drill into block byref variables. 2808 bool isBlockByref = VD->isEscapingByref(); 2809 if (isBlockByref) { 2810 addr = emitBlockByrefAddress(addr, VD); 2811 } 2812 2813 // Drill into reference types. 2814 LValue LV = VD->getType()->isReferenceType() ? 2815 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2816 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2817 2818 bool isLocalStorage = VD->hasLocalStorage(); 2819 2820 bool NonGCable = isLocalStorage && 2821 !VD->getType()->isReferenceType() && 2822 !isBlockByref; 2823 if (NonGCable) { 2824 LV.getQuals().removeObjCGCAttr(); 2825 LV.setNonGC(true); 2826 } 2827 2828 bool isImpreciseLifetime = 2829 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2830 if (isImpreciseLifetime) 2831 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2832 setObjCGCLValueClass(getContext(), E, LV); 2833 return LV; 2834 } 2835 2836 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2837 return EmitFunctionDeclLValue(*this, E, FD); 2838 2839 // FIXME: While we're emitting a binding from an enclosing scope, all other 2840 // DeclRefExprs we see should be implicitly treated as if they also refer to 2841 // an enclosing scope. 2842 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2843 return EmitLValue(BD->getBinding()); 2844 2845 // We can form DeclRefExprs naming GUID declarations when reconstituting 2846 // non-type template parameters into expressions. 2847 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2848 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2849 AlignmentSource::Decl); 2850 2851 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2852 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2853 AlignmentSource::Decl); 2854 2855 llvm_unreachable("Unhandled DeclRefExpr"); 2856 } 2857 2858 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2859 // __extension__ doesn't affect lvalue-ness. 2860 if (E->getOpcode() == UO_Extension) 2861 return EmitLValue(E->getSubExpr()); 2862 2863 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2864 switch (E->getOpcode()) { 2865 default: llvm_unreachable("Unknown unary operator lvalue!"); 2866 case UO_Deref: { 2867 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2868 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2869 2870 LValueBaseInfo BaseInfo; 2871 TBAAAccessInfo TBAAInfo; 2872 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2873 &TBAAInfo); 2874 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2875 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2876 2877 // We should not generate __weak write barrier on indirect reference 2878 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2879 // But, we continue to generate __strong write barrier on indirect write 2880 // into a pointer to object. 2881 if (getLangOpts().ObjC && 2882 getLangOpts().getGC() != LangOptions::NonGC && 2883 LV.isObjCWeak()) 2884 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2885 return LV; 2886 } 2887 case UO_Real: 2888 case UO_Imag: { 2889 LValue LV = EmitLValue(E->getSubExpr()); 2890 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2891 2892 // __real is valid on scalars. This is a faster way of testing that. 2893 // __imag can only produce an rvalue on scalars. 2894 if (E->getOpcode() == UO_Real && 2895 !LV.getAddress(*this).getElementType()->isStructTy()) { 2896 assert(E->getSubExpr()->getType()->isArithmeticType()); 2897 return LV; 2898 } 2899 2900 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2901 2902 Address Component = 2903 (E->getOpcode() == UO_Real 2904 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2905 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2906 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2907 CGM.getTBAAInfoForSubobject(LV, T)); 2908 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2909 return ElemLV; 2910 } 2911 case UO_PreInc: 2912 case UO_PreDec: { 2913 LValue LV = EmitLValue(E->getSubExpr()); 2914 bool isInc = E->getOpcode() == UO_PreInc; 2915 2916 if (E->getType()->isAnyComplexType()) 2917 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2918 else 2919 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2920 return LV; 2921 } 2922 } 2923 } 2924 2925 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2926 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2927 E->getType(), AlignmentSource::Decl); 2928 } 2929 2930 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2931 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2932 E->getType(), AlignmentSource::Decl); 2933 } 2934 2935 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2936 auto SL = E->getFunctionName(); 2937 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2938 StringRef FnName = CurFn->getName(); 2939 if (FnName.startswith("\01")) 2940 FnName = FnName.substr(1); 2941 StringRef NameItems[] = { 2942 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2943 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2944 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2945 std::string Name = std::string(SL->getString()); 2946 if (!Name.empty()) { 2947 unsigned Discriminator = 2948 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2949 if (Discriminator) 2950 Name += "_" + Twine(Discriminator + 1).str(); 2951 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2952 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2953 } else { 2954 auto C = 2955 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2956 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2957 } 2958 } 2959 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2960 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2961 } 2962 2963 /// Emit a type description suitable for use by a runtime sanitizer library. The 2964 /// format of a type descriptor is 2965 /// 2966 /// \code 2967 /// { i16 TypeKind, i16 TypeInfo } 2968 /// \endcode 2969 /// 2970 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2971 /// integer, 1 for a floating point value, and -1 for anything else. 2972 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2973 // Only emit each type's descriptor once. 2974 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2975 return C; 2976 2977 uint16_t TypeKind = -1; 2978 uint16_t TypeInfo = 0; 2979 2980 if (T->isIntegerType()) { 2981 TypeKind = 0; 2982 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2983 (T->isSignedIntegerType() ? 1 : 0); 2984 } else if (T->isFloatingType()) { 2985 TypeKind = 1; 2986 TypeInfo = getContext().getTypeSize(T); 2987 } 2988 2989 // Format the type name as if for a diagnostic, including quotes and 2990 // optionally an 'aka'. 2991 SmallString<32> Buffer; 2992 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2993 (intptr_t)T.getAsOpaquePtr(), 2994 StringRef(), StringRef(), None, Buffer, 2995 None); 2996 2997 llvm::Constant *Components[] = { 2998 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2999 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3000 }; 3001 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3002 3003 auto *GV = new llvm::GlobalVariable( 3004 CGM.getModule(), Descriptor->getType(), 3005 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3006 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3007 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3008 3009 // Remember the descriptor for this type. 3010 CGM.setTypeDescriptorInMap(T, GV); 3011 3012 return GV; 3013 } 3014 3015 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3016 llvm::Type *TargetTy = IntPtrTy; 3017 3018 if (V->getType() == TargetTy) 3019 return V; 3020 3021 // Floating-point types which fit into intptr_t are bitcast to integers 3022 // and then passed directly (after zero-extension, if necessary). 3023 if (V->getType()->isFloatingPointTy()) { 3024 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3025 if (Bits <= TargetTy->getIntegerBitWidth()) 3026 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3027 Bits)); 3028 } 3029 3030 // Integers which fit in intptr_t are zero-extended and passed directly. 3031 if (V->getType()->isIntegerTy() && 3032 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3033 return Builder.CreateZExt(V, TargetTy); 3034 3035 // Pointers are passed directly, everything else is passed by address. 3036 if (!V->getType()->isPointerTy()) { 3037 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3038 Builder.CreateStore(V, Ptr); 3039 V = Ptr.getPointer(); 3040 } 3041 return Builder.CreatePtrToInt(V, TargetTy); 3042 } 3043 3044 /// Emit a representation of a SourceLocation for passing to a handler 3045 /// in a sanitizer runtime library. The format for this data is: 3046 /// \code 3047 /// struct SourceLocation { 3048 /// const char *Filename; 3049 /// int32_t Line, Column; 3050 /// }; 3051 /// \endcode 3052 /// For an invalid SourceLocation, the Filename pointer is null. 3053 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3054 llvm::Constant *Filename; 3055 int Line, Column; 3056 3057 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3058 if (PLoc.isValid()) { 3059 StringRef FilenameString = PLoc.getFilename(); 3060 3061 int PathComponentsToStrip = 3062 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3063 if (PathComponentsToStrip < 0) { 3064 assert(PathComponentsToStrip != INT_MIN); 3065 int PathComponentsToKeep = -PathComponentsToStrip; 3066 auto I = llvm::sys::path::rbegin(FilenameString); 3067 auto E = llvm::sys::path::rend(FilenameString); 3068 while (I != E && --PathComponentsToKeep) 3069 ++I; 3070 3071 FilenameString = FilenameString.substr(I - E); 3072 } else if (PathComponentsToStrip > 0) { 3073 auto I = llvm::sys::path::begin(FilenameString); 3074 auto E = llvm::sys::path::end(FilenameString); 3075 while (I != E && PathComponentsToStrip--) 3076 ++I; 3077 3078 if (I != E) 3079 FilenameString = 3080 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3081 else 3082 FilenameString = llvm::sys::path::filename(FilenameString); 3083 } 3084 3085 auto FilenameGV = 3086 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3087 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3088 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3089 Filename = FilenameGV.getPointer(); 3090 Line = PLoc.getLine(); 3091 Column = PLoc.getColumn(); 3092 } else { 3093 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3094 Line = Column = 0; 3095 } 3096 3097 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3098 Builder.getInt32(Column)}; 3099 3100 return llvm::ConstantStruct::getAnon(Data); 3101 } 3102 3103 namespace { 3104 /// Specify under what conditions this check can be recovered 3105 enum class CheckRecoverableKind { 3106 /// Always terminate program execution if this check fails. 3107 Unrecoverable, 3108 /// Check supports recovering, runtime has both fatal (noreturn) and 3109 /// non-fatal handlers for this check. 3110 Recoverable, 3111 /// Runtime conditionally aborts, always need to support recovery. 3112 AlwaysRecoverable 3113 }; 3114 } 3115 3116 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3117 assert(Kind.countPopulation() == 1); 3118 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3119 return CheckRecoverableKind::AlwaysRecoverable; 3120 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3121 return CheckRecoverableKind::Unrecoverable; 3122 else 3123 return CheckRecoverableKind::Recoverable; 3124 } 3125 3126 namespace { 3127 struct SanitizerHandlerInfo { 3128 char const *const Name; 3129 unsigned Version; 3130 }; 3131 } 3132 3133 const SanitizerHandlerInfo SanitizerHandlers[] = { 3134 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3135 LIST_SANITIZER_CHECKS 3136 #undef SANITIZER_CHECK 3137 }; 3138 3139 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3140 llvm::FunctionType *FnType, 3141 ArrayRef<llvm::Value *> FnArgs, 3142 SanitizerHandler CheckHandler, 3143 CheckRecoverableKind RecoverKind, bool IsFatal, 3144 llvm::BasicBlock *ContBB) { 3145 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3146 Optional<ApplyDebugLocation> DL; 3147 if (!CGF.Builder.getCurrentDebugLocation()) { 3148 // Ensure that the call has at least an artificial debug location. 3149 DL.emplace(CGF, SourceLocation()); 3150 } 3151 bool NeedsAbortSuffix = 3152 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3153 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3154 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3155 const StringRef CheckName = CheckInfo.Name; 3156 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3157 if (CheckInfo.Version && !MinimalRuntime) 3158 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3159 if (MinimalRuntime) 3160 FnName += "_minimal"; 3161 if (NeedsAbortSuffix) 3162 FnName += "_abort"; 3163 bool MayReturn = 3164 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3165 3166 llvm::AttrBuilder B; 3167 if (!MayReturn) { 3168 B.addAttribute(llvm::Attribute::NoReturn) 3169 .addAttribute(llvm::Attribute::NoUnwind); 3170 } 3171 B.addAttribute(llvm::Attribute::UWTable); 3172 3173 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3174 FnType, FnName, 3175 llvm::AttributeList::get(CGF.getLLVMContext(), 3176 llvm::AttributeList::FunctionIndex, B), 3177 /*Local=*/true); 3178 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3179 if (!MayReturn) { 3180 HandlerCall->setDoesNotReturn(); 3181 CGF.Builder.CreateUnreachable(); 3182 } else { 3183 CGF.Builder.CreateBr(ContBB); 3184 } 3185 } 3186 3187 void CodeGenFunction::EmitCheck( 3188 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3189 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3190 ArrayRef<llvm::Value *> DynamicArgs) { 3191 assert(IsSanitizerScope); 3192 assert(Checked.size() > 0); 3193 assert(CheckHandler >= 0 && 3194 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3195 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3196 3197 llvm::Value *FatalCond = nullptr; 3198 llvm::Value *RecoverableCond = nullptr; 3199 llvm::Value *TrapCond = nullptr; 3200 for (int i = 0, n = Checked.size(); i < n; ++i) { 3201 llvm::Value *Check = Checked[i].first; 3202 // -fsanitize-trap= overrides -fsanitize-recover=. 3203 llvm::Value *&Cond = 3204 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3205 ? TrapCond 3206 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3207 ? RecoverableCond 3208 : FatalCond; 3209 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3210 } 3211 3212 if (TrapCond) 3213 EmitTrapCheck(TrapCond, CheckHandler); 3214 if (!FatalCond && !RecoverableCond) 3215 return; 3216 3217 llvm::Value *JointCond; 3218 if (FatalCond && RecoverableCond) 3219 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3220 else 3221 JointCond = FatalCond ? FatalCond : RecoverableCond; 3222 assert(JointCond); 3223 3224 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3225 assert(SanOpts.has(Checked[0].second)); 3226 #ifndef NDEBUG 3227 for (int i = 1, n = Checked.size(); i < n; ++i) { 3228 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3229 "All recoverable kinds in a single check must be same!"); 3230 assert(SanOpts.has(Checked[i].second)); 3231 } 3232 #endif 3233 3234 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3235 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3236 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3237 // Give hint that we very much don't expect to execute the handler 3238 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3239 llvm::MDBuilder MDHelper(getLLVMContext()); 3240 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3241 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3242 EmitBlock(Handlers); 3243 3244 // Handler functions take an i8* pointing to the (handler-specific) static 3245 // information block, followed by a sequence of intptr_t arguments 3246 // representing operand values. 3247 SmallVector<llvm::Value *, 4> Args; 3248 SmallVector<llvm::Type *, 4> ArgTypes; 3249 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3250 Args.reserve(DynamicArgs.size() + 1); 3251 ArgTypes.reserve(DynamicArgs.size() + 1); 3252 3253 // Emit handler arguments and create handler function type. 3254 if (!StaticArgs.empty()) { 3255 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3256 auto *InfoPtr = 3257 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3258 llvm::GlobalVariable::PrivateLinkage, Info); 3259 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3260 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3261 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3262 ArgTypes.push_back(Int8PtrTy); 3263 } 3264 3265 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3266 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3267 ArgTypes.push_back(IntPtrTy); 3268 } 3269 } 3270 3271 llvm::FunctionType *FnType = 3272 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3273 3274 if (!FatalCond || !RecoverableCond) { 3275 // Simple case: we need to generate a single handler call, either 3276 // fatal, or non-fatal. 3277 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3278 (FatalCond != nullptr), Cont); 3279 } else { 3280 // Emit two handler calls: first one for set of unrecoverable checks, 3281 // another one for recoverable. 3282 llvm::BasicBlock *NonFatalHandlerBB = 3283 createBasicBlock("non_fatal." + CheckName); 3284 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3285 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3286 EmitBlock(FatalHandlerBB); 3287 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3288 NonFatalHandlerBB); 3289 EmitBlock(NonFatalHandlerBB); 3290 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3291 Cont); 3292 } 3293 3294 EmitBlock(Cont); 3295 } 3296 3297 void CodeGenFunction::EmitCfiSlowPathCheck( 3298 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3299 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3300 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3301 3302 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3303 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3304 3305 llvm::MDBuilder MDHelper(getLLVMContext()); 3306 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3307 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3308 3309 EmitBlock(CheckBB); 3310 3311 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3312 3313 llvm::CallInst *CheckCall; 3314 llvm::FunctionCallee SlowPathFn; 3315 if (WithDiag) { 3316 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3317 auto *InfoPtr = 3318 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3319 llvm::GlobalVariable::PrivateLinkage, Info); 3320 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3321 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3322 3323 SlowPathFn = CGM.getModule().getOrInsertFunction( 3324 "__cfi_slowpath_diag", 3325 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3326 false)); 3327 CheckCall = Builder.CreateCall( 3328 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3329 } else { 3330 SlowPathFn = CGM.getModule().getOrInsertFunction( 3331 "__cfi_slowpath", 3332 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3333 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3334 } 3335 3336 CGM.setDSOLocal( 3337 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3338 CheckCall->setDoesNotThrow(); 3339 3340 EmitBlock(Cont); 3341 } 3342 3343 // Emit a stub for __cfi_check function so that the linker knows about this 3344 // symbol in LTO mode. 3345 void CodeGenFunction::EmitCfiCheckStub() { 3346 llvm::Module *M = &CGM.getModule(); 3347 auto &Ctx = M->getContext(); 3348 llvm::Function *F = llvm::Function::Create( 3349 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3350 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3351 CGM.setDSOLocal(F); 3352 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3353 // FIXME: consider emitting an intrinsic call like 3354 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3355 // which can be lowered in CrossDSOCFI pass to the actual contents of 3356 // __cfi_check. This would allow inlining of __cfi_check calls. 3357 llvm::CallInst::Create( 3358 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3359 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3360 } 3361 3362 // This function is basically a switch over the CFI failure kind, which is 3363 // extracted from CFICheckFailData (1st function argument). Each case is either 3364 // llvm.trap or a call to one of the two runtime handlers, based on 3365 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3366 // failure kind) traps, but this should really never happen. CFICheckFailData 3367 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3368 // check kind; in this case __cfi_check_fail traps as well. 3369 void CodeGenFunction::EmitCfiCheckFail() { 3370 SanitizerScope SanScope(this); 3371 FunctionArgList Args; 3372 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3373 ImplicitParamDecl::Other); 3374 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3375 ImplicitParamDecl::Other); 3376 Args.push_back(&ArgData); 3377 Args.push_back(&ArgAddr); 3378 3379 const CGFunctionInfo &FI = 3380 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3381 3382 llvm::Function *F = llvm::Function::Create( 3383 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3384 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3385 3386 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3387 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3388 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3389 3390 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3391 SourceLocation()); 3392 3393 // This function is not affected by NoSanitizeList. This function does 3394 // not have a source location, but "src:*" would still apply. Revert any 3395 // changes to SanOpts made in StartFunction. 3396 SanOpts = CGM.getLangOpts().Sanitize; 3397 3398 llvm::Value *Data = 3399 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3400 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3401 llvm::Value *Addr = 3402 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3403 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3404 3405 // Data == nullptr means the calling module has trap behaviour for this check. 3406 llvm::Value *DataIsNotNullPtr = 3407 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3408 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3409 3410 llvm::StructType *SourceLocationTy = 3411 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3412 llvm::StructType *CfiCheckFailDataTy = 3413 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3414 3415 llvm::Value *V = Builder.CreateConstGEP2_32( 3416 CfiCheckFailDataTy, 3417 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3418 0); 3419 Address CheckKindAddr(V, getIntAlign()); 3420 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3421 3422 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3423 CGM.getLLVMContext(), 3424 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3425 llvm::Value *ValidVtable = Builder.CreateZExt( 3426 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3427 {Addr, AllVtables}), 3428 IntPtrTy); 3429 3430 const std::pair<int, SanitizerMask> CheckKinds[] = { 3431 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3432 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3433 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3434 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3435 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3436 3437 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3438 for (auto CheckKindMaskPair : CheckKinds) { 3439 int Kind = CheckKindMaskPair.first; 3440 SanitizerMask Mask = CheckKindMaskPair.second; 3441 llvm::Value *Cond = 3442 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3443 if (CGM.getLangOpts().Sanitize.has(Mask)) 3444 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3445 {Data, Addr, ValidVtable}); 3446 else 3447 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3448 } 3449 3450 FinishFunction(); 3451 // The only reference to this function will be created during LTO link. 3452 // Make sure it survives until then. 3453 CGM.addUsedGlobal(F); 3454 } 3455 3456 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3457 if (SanOpts.has(SanitizerKind::Unreachable)) { 3458 SanitizerScope SanScope(this); 3459 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3460 SanitizerKind::Unreachable), 3461 SanitizerHandler::BuiltinUnreachable, 3462 EmitCheckSourceLocation(Loc), None); 3463 } 3464 Builder.CreateUnreachable(); 3465 } 3466 3467 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3468 SanitizerHandler CheckHandlerID) { 3469 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3470 3471 // If we're optimizing, collapse all calls to trap down to just one per 3472 // check-type per function to save on code size. 3473 if (TrapBBs.size() <= CheckHandlerID) 3474 TrapBBs.resize(CheckHandlerID + 1); 3475 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3476 3477 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3478 TrapBB = createBasicBlock("trap"); 3479 Builder.CreateCondBr(Checked, Cont, TrapBB); 3480 EmitBlock(TrapBB); 3481 3482 llvm::CallInst *TrapCall = 3483 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3484 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3485 3486 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3487 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3488 CGM.getCodeGenOpts().TrapFuncName); 3489 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3490 } 3491 TrapCall->setDoesNotReturn(); 3492 TrapCall->setDoesNotThrow(); 3493 Builder.CreateUnreachable(); 3494 } else { 3495 auto Call = TrapBB->begin(); 3496 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3497 3498 Call->applyMergedLocation(Call->getDebugLoc(), 3499 Builder.getCurrentDebugLocation()); 3500 Builder.CreateCondBr(Checked, Cont, TrapBB); 3501 } 3502 3503 EmitBlock(Cont); 3504 } 3505 3506 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3507 llvm::CallInst *TrapCall = 3508 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3509 3510 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3511 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3512 CGM.getCodeGenOpts().TrapFuncName); 3513 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3514 } 3515 3516 return TrapCall; 3517 } 3518 3519 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3520 LValueBaseInfo *BaseInfo, 3521 TBAAAccessInfo *TBAAInfo) { 3522 assert(E->getType()->isArrayType() && 3523 "Array to pointer decay must have array source type!"); 3524 3525 // Expressions of array type can't be bitfields or vector elements. 3526 LValue LV = EmitLValue(E); 3527 Address Addr = LV.getAddress(*this); 3528 3529 // If the array type was an incomplete type, we need to make sure 3530 // the decay ends up being the right type. 3531 llvm::Type *NewTy = ConvertType(E->getType()); 3532 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3533 3534 // Note that VLA pointers are always decayed, so we don't need to do 3535 // anything here. 3536 if (!E->getType()->isVariableArrayType()) { 3537 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3538 "Expected pointer to array"); 3539 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3540 } 3541 3542 // The result of this decay conversion points to an array element within the 3543 // base lvalue. However, since TBAA currently does not support representing 3544 // accesses to elements of member arrays, we conservatively represent accesses 3545 // to the pointee object as if it had no any base lvalue specified. 3546 // TODO: Support TBAA for member arrays. 3547 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3548 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3549 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3550 3551 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3552 } 3553 3554 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3555 /// array to pointer, return the array subexpression. 3556 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3557 // If this isn't just an array->pointer decay, bail out. 3558 const auto *CE = dyn_cast<CastExpr>(E); 3559 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3560 return nullptr; 3561 3562 // If this is a decay from variable width array, bail out. 3563 const Expr *SubExpr = CE->getSubExpr(); 3564 if (SubExpr->getType()->isVariableArrayType()) 3565 return nullptr; 3566 3567 return SubExpr; 3568 } 3569 3570 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3571 llvm::Type *elemType, 3572 llvm::Value *ptr, 3573 ArrayRef<llvm::Value*> indices, 3574 bool inbounds, 3575 bool signedIndices, 3576 SourceLocation loc, 3577 const llvm::Twine &name = "arrayidx") { 3578 if (inbounds) { 3579 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3580 CodeGenFunction::NotSubtraction, loc, 3581 name); 3582 } else { 3583 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3584 } 3585 } 3586 3587 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3588 llvm::Value *idx, 3589 CharUnits eltSize) { 3590 // If we have a constant index, we can use the exact offset of the 3591 // element we're accessing. 3592 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3593 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3594 return arrayAlign.alignmentAtOffset(offset); 3595 3596 // Otherwise, use the worst-case alignment for any element. 3597 } else { 3598 return arrayAlign.alignmentOfArrayElement(eltSize); 3599 } 3600 } 3601 3602 static QualType getFixedSizeElementType(const ASTContext &ctx, 3603 const VariableArrayType *vla) { 3604 QualType eltType; 3605 do { 3606 eltType = vla->getElementType(); 3607 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3608 return eltType; 3609 } 3610 3611 /// Given an array base, check whether its member access belongs to a record 3612 /// with preserve_access_index attribute or not. 3613 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3614 if (!ArrayBase || !CGF.getDebugInfo()) 3615 return false; 3616 3617 // Only support base as either a MemberExpr or DeclRefExpr. 3618 // DeclRefExpr to cover cases like: 3619 // struct s { int a; int b[10]; }; 3620 // struct s *p; 3621 // p[1].a 3622 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3623 // p->b[5] is a MemberExpr example. 3624 const Expr *E = ArrayBase->IgnoreImpCasts(); 3625 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3626 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3627 3628 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3629 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3630 if (!VarDef) 3631 return false; 3632 3633 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3634 if (!PtrT) 3635 return false; 3636 3637 const auto *PointeeT = PtrT->getPointeeType() 3638 ->getUnqualifiedDesugaredType(); 3639 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3640 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3641 return false; 3642 } 3643 3644 return false; 3645 } 3646 3647 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3648 ArrayRef<llvm::Value *> indices, 3649 QualType eltType, bool inbounds, 3650 bool signedIndices, SourceLocation loc, 3651 QualType *arrayType = nullptr, 3652 const Expr *Base = nullptr, 3653 const llvm::Twine &name = "arrayidx") { 3654 // All the indices except that last must be zero. 3655 #ifndef NDEBUG 3656 for (auto idx : indices.drop_back()) 3657 assert(isa<llvm::ConstantInt>(idx) && 3658 cast<llvm::ConstantInt>(idx)->isZero()); 3659 #endif 3660 3661 // Determine the element size of the statically-sized base. This is 3662 // the thing that the indices are expressed in terms of. 3663 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3664 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3665 } 3666 3667 // We can use that to compute the best alignment of the element. 3668 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3669 CharUnits eltAlign = 3670 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3671 3672 llvm::Value *eltPtr; 3673 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3674 if (!LastIndex || 3675 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3676 eltPtr = emitArraySubscriptGEP( 3677 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3678 signedIndices, loc, name); 3679 } else { 3680 // Remember the original array subscript for bpf target 3681 unsigned idx = LastIndex->getZExtValue(); 3682 llvm::DIType *DbgInfo = nullptr; 3683 if (arrayType) 3684 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3685 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3686 addr.getPointer(), 3687 indices.size() - 1, 3688 idx, DbgInfo); 3689 } 3690 3691 return Address(eltPtr, eltAlign); 3692 } 3693 3694 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3695 bool Accessed) { 3696 // The index must always be an integer, which is not an aggregate. Emit it 3697 // in lexical order (this complexity is, sadly, required by C++17). 3698 llvm::Value *IdxPre = 3699 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3700 bool SignedIndices = false; 3701 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3702 auto *Idx = IdxPre; 3703 if (E->getLHS() != E->getIdx()) { 3704 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3705 Idx = EmitScalarExpr(E->getIdx()); 3706 } 3707 3708 QualType IdxTy = E->getIdx()->getType(); 3709 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3710 SignedIndices |= IdxSigned; 3711 3712 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3713 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3714 3715 // Extend or truncate the index type to 32 or 64-bits. 3716 if (Promote && Idx->getType() != IntPtrTy) 3717 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3718 3719 return Idx; 3720 }; 3721 IdxPre = nullptr; 3722 3723 // If the base is a vector type, then we are forming a vector element lvalue 3724 // with this subscript. 3725 if (E->getBase()->getType()->isVectorType() && 3726 !isa<ExtVectorElementExpr>(E->getBase())) { 3727 // Emit the vector as an lvalue to get its address. 3728 LValue LHS = EmitLValue(E->getBase()); 3729 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3730 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3731 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3732 E->getBase()->getType(), LHS.getBaseInfo(), 3733 TBAAAccessInfo()); 3734 } 3735 3736 // All the other cases basically behave like simple offsetting. 3737 3738 // Handle the extvector case we ignored above. 3739 if (isa<ExtVectorElementExpr>(E->getBase())) { 3740 LValue LV = EmitLValue(E->getBase()); 3741 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3742 Address Addr = EmitExtVectorElementLValue(LV); 3743 3744 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3745 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3746 SignedIndices, E->getExprLoc()); 3747 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3748 CGM.getTBAAInfoForSubobject(LV, EltType)); 3749 } 3750 3751 LValueBaseInfo EltBaseInfo; 3752 TBAAAccessInfo EltTBAAInfo; 3753 Address Addr = Address::invalid(); 3754 if (const VariableArrayType *vla = 3755 getContext().getAsVariableArrayType(E->getType())) { 3756 // The base must be a pointer, which is not an aggregate. Emit 3757 // it. It needs to be emitted first in case it's what captures 3758 // the VLA bounds. 3759 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3760 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3761 3762 // The element count here is the total number of non-VLA elements. 3763 llvm::Value *numElements = getVLASize(vla).NumElts; 3764 3765 // Effectively, the multiply by the VLA size is part of the GEP. 3766 // GEP indexes are signed, and scaling an index isn't permitted to 3767 // signed-overflow, so we use the same semantics for our explicit 3768 // multiply. We suppress this if overflow is not undefined behavior. 3769 if (getLangOpts().isSignedOverflowDefined()) { 3770 Idx = Builder.CreateMul(Idx, numElements); 3771 } else { 3772 Idx = Builder.CreateNSWMul(Idx, numElements); 3773 } 3774 3775 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3776 !getLangOpts().isSignedOverflowDefined(), 3777 SignedIndices, E->getExprLoc()); 3778 3779 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3780 // Indexing over an interface, as in "NSString *P; P[4];" 3781 3782 // Emit the base pointer. 3783 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3784 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3785 3786 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3787 llvm::Value *InterfaceSizeVal = 3788 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3789 3790 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3791 3792 // We don't necessarily build correct LLVM struct types for ObjC 3793 // interfaces, so we can't rely on GEP to do this scaling 3794 // correctly, so we need to cast to i8*. FIXME: is this actually 3795 // true? A lot of other things in the fragile ABI would break... 3796 llvm::Type *OrigBaseTy = Addr.getType(); 3797 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3798 3799 // Do the GEP. 3800 CharUnits EltAlign = 3801 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3802 llvm::Value *EltPtr = 3803 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3804 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3805 Addr = Address(EltPtr, EltAlign); 3806 3807 // Cast back. 3808 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3809 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3810 // If this is A[i] where A is an array, the frontend will have decayed the 3811 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3812 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3813 // "gep x, i" here. Emit one "gep A, 0, i". 3814 assert(Array->getType()->isArrayType() && 3815 "Array to pointer decay must have array source type!"); 3816 LValue ArrayLV; 3817 // For simple multidimensional array indexing, set the 'accessed' flag for 3818 // better bounds-checking of the base expression. 3819 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3820 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3821 else 3822 ArrayLV = EmitLValue(Array); 3823 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3824 3825 // Propagate the alignment from the array itself to the result. 3826 QualType arrayType = Array->getType(); 3827 Addr = emitArraySubscriptGEP( 3828 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3829 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3830 E->getExprLoc(), &arrayType, E->getBase()); 3831 EltBaseInfo = ArrayLV.getBaseInfo(); 3832 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3833 } else { 3834 // The base must be a pointer; emit it with an estimate of its alignment. 3835 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3836 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3837 QualType ptrType = E->getBase()->getType(); 3838 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3839 !getLangOpts().isSignedOverflowDefined(), 3840 SignedIndices, E->getExprLoc(), &ptrType, 3841 E->getBase()); 3842 } 3843 3844 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3845 3846 if (getLangOpts().ObjC && 3847 getLangOpts().getGC() != LangOptions::NonGC) { 3848 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3849 setObjCGCLValueClass(getContext(), E, LV); 3850 } 3851 return LV; 3852 } 3853 3854 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3855 assert( 3856 !E->isIncomplete() && 3857 "incomplete matrix subscript expressions should be rejected during Sema"); 3858 LValue Base = EmitLValue(E->getBase()); 3859 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3860 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3861 llvm::Value *NumRows = Builder.getIntN( 3862 RowIdx->getType()->getScalarSizeInBits(), 3863 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3864 llvm::Value *FinalIdx = 3865 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3866 return LValue::MakeMatrixElt( 3867 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3868 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3869 } 3870 3871 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3872 LValueBaseInfo &BaseInfo, 3873 TBAAAccessInfo &TBAAInfo, 3874 QualType BaseTy, QualType ElTy, 3875 bool IsLowerBound) { 3876 LValue BaseLVal; 3877 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3878 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3879 if (BaseTy->isArrayType()) { 3880 Address Addr = BaseLVal.getAddress(CGF); 3881 BaseInfo = BaseLVal.getBaseInfo(); 3882 3883 // If the array type was an incomplete type, we need to make sure 3884 // the decay ends up being the right type. 3885 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3886 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3887 3888 // Note that VLA pointers are always decayed, so we don't need to do 3889 // anything here. 3890 if (!BaseTy->isVariableArrayType()) { 3891 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3892 "Expected pointer to array"); 3893 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3894 } 3895 3896 return CGF.Builder.CreateElementBitCast(Addr, 3897 CGF.ConvertTypeForMem(ElTy)); 3898 } 3899 LValueBaseInfo TypeBaseInfo; 3900 TBAAAccessInfo TypeTBAAInfo; 3901 CharUnits Align = 3902 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3903 BaseInfo.mergeForCast(TypeBaseInfo); 3904 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3905 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3906 } 3907 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3908 } 3909 3910 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3911 bool IsLowerBound) { 3912 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3913 QualType ResultExprTy; 3914 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3915 ResultExprTy = AT->getElementType(); 3916 else 3917 ResultExprTy = BaseTy->getPointeeType(); 3918 llvm::Value *Idx = nullptr; 3919 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3920 // Requesting lower bound or upper bound, but without provided length and 3921 // without ':' symbol for the default length -> length = 1. 3922 // Idx = LowerBound ?: 0; 3923 if (auto *LowerBound = E->getLowerBound()) { 3924 Idx = Builder.CreateIntCast( 3925 EmitScalarExpr(LowerBound), IntPtrTy, 3926 LowerBound->getType()->hasSignedIntegerRepresentation()); 3927 } else 3928 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3929 } else { 3930 // Try to emit length or lower bound as constant. If this is possible, 1 3931 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3932 // IR (LB + Len) - 1. 3933 auto &C = CGM.getContext(); 3934 auto *Length = E->getLength(); 3935 llvm::APSInt ConstLength; 3936 if (Length) { 3937 // Idx = LowerBound + Length - 1; 3938 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3939 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3940 Length = nullptr; 3941 } 3942 auto *LowerBound = E->getLowerBound(); 3943 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3944 if (LowerBound) { 3945 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3946 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3947 LowerBound = nullptr; 3948 } 3949 } 3950 if (!Length) 3951 --ConstLength; 3952 else if (!LowerBound) 3953 --ConstLowerBound; 3954 3955 if (Length || LowerBound) { 3956 auto *LowerBoundVal = 3957 LowerBound 3958 ? Builder.CreateIntCast( 3959 EmitScalarExpr(LowerBound), IntPtrTy, 3960 LowerBound->getType()->hasSignedIntegerRepresentation()) 3961 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3962 auto *LengthVal = 3963 Length 3964 ? Builder.CreateIntCast( 3965 EmitScalarExpr(Length), IntPtrTy, 3966 Length->getType()->hasSignedIntegerRepresentation()) 3967 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3968 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3969 /*HasNUW=*/false, 3970 !getLangOpts().isSignedOverflowDefined()); 3971 if (Length && LowerBound) { 3972 Idx = Builder.CreateSub( 3973 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3974 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3975 } 3976 } else 3977 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3978 } else { 3979 // Idx = ArraySize - 1; 3980 QualType ArrayTy = BaseTy->isPointerType() 3981 ? E->getBase()->IgnoreParenImpCasts()->getType() 3982 : BaseTy; 3983 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3984 Length = VAT->getSizeExpr(); 3985 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 3986 ConstLength = *L; 3987 Length = nullptr; 3988 } 3989 } else { 3990 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3991 ConstLength = CAT->getSize(); 3992 } 3993 if (Length) { 3994 auto *LengthVal = Builder.CreateIntCast( 3995 EmitScalarExpr(Length), IntPtrTy, 3996 Length->getType()->hasSignedIntegerRepresentation()); 3997 Idx = Builder.CreateSub( 3998 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3999 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4000 } else { 4001 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4002 --ConstLength; 4003 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4004 } 4005 } 4006 } 4007 assert(Idx); 4008 4009 Address EltPtr = Address::invalid(); 4010 LValueBaseInfo BaseInfo; 4011 TBAAAccessInfo TBAAInfo; 4012 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4013 // The base must be a pointer, which is not an aggregate. Emit 4014 // it. It needs to be emitted first in case it's what captures 4015 // the VLA bounds. 4016 Address Base = 4017 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4018 BaseTy, VLA->getElementType(), IsLowerBound); 4019 // The element count here is the total number of non-VLA elements. 4020 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4021 4022 // Effectively, the multiply by the VLA size is part of the GEP. 4023 // GEP indexes are signed, and scaling an index isn't permitted to 4024 // signed-overflow, so we use the same semantics for our explicit 4025 // multiply. We suppress this if overflow is not undefined behavior. 4026 if (getLangOpts().isSignedOverflowDefined()) 4027 Idx = Builder.CreateMul(Idx, NumElements); 4028 else 4029 Idx = Builder.CreateNSWMul(Idx, NumElements); 4030 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4031 !getLangOpts().isSignedOverflowDefined(), 4032 /*signedIndices=*/false, E->getExprLoc()); 4033 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4034 // If this is A[i] where A is an array, the frontend will have decayed the 4035 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4036 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4037 // "gep x, i" here. Emit one "gep A, 0, i". 4038 assert(Array->getType()->isArrayType() && 4039 "Array to pointer decay must have array source type!"); 4040 LValue ArrayLV; 4041 // For simple multidimensional array indexing, set the 'accessed' flag for 4042 // better bounds-checking of the base expression. 4043 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4044 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4045 else 4046 ArrayLV = EmitLValue(Array); 4047 4048 // Propagate the alignment from the array itself to the result. 4049 EltPtr = emitArraySubscriptGEP( 4050 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4051 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4052 /*signedIndices=*/false, E->getExprLoc()); 4053 BaseInfo = ArrayLV.getBaseInfo(); 4054 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4055 } else { 4056 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4057 TBAAInfo, BaseTy, ResultExprTy, 4058 IsLowerBound); 4059 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4060 !getLangOpts().isSignedOverflowDefined(), 4061 /*signedIndices=*/false, E->getExprLoc()); 4062 } 4063 4064 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4065 } 4066 4067 LValue CodeGenFunction:: 4068 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4069 // Emit the base vector as an l-value. 4070 LValue Base; 4071 4072 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4073 if (E->isArrow()) { 4074 // If it is a pointer to a vector, emit the address and form an lvalue with 4075 // it. 4076 LValueBaseInfo BaseInfo; 4077 TBAAAccessInfo TBAAInfo; 4078 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4079 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4080 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4081 Base.getQuals().removeObjCGCAttr(); 4082 } else if (E->getBase()->isGLValue()) { 4083 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4084 // emit the base as an lvalue. 4085 assert(E->getBase()->getType()->isVectorType()); 4086 Base = EmitLValue(E->getBase()); 4087 } else { 4088 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4089 assert(E->getBase()->getType()->isVectorType() && 4090 "Result must be a vector"); 4091 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4092 4093 // Store the vector to memory (because LValue wants an address). 4094 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4095 Builder.CreateStore(Vec, VecMem); 4096 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4097 AlignmentSource::Decl); 4098 } 4099 4100 QualType type = 4101 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4102 4103 // Encode the element access list into a vector of unsigned indices. 4104 SmallVector<uint32_t, 4> Indices; 4105 E->getEncodedElementAccess(Indices); 4106 4107 if (Base.isSimple()) { 4108 llvm::Constant *CV = 4109 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4110 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4111 Base.getBaseInfo(), TBAAAccessInfo()); 4112 } 4113 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4114 4115 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4116 SmallVector<llvm::Constant *, 4> CElts; 4117 4118 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4119 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4120 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4121 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4122 Base.getBaseInfo(), TBAAAccessInfo()); 4123 } 4124 4125 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4126 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4127 EmitIgnoredExpr(E->getBase()); 4128 return EmitDeclRefLValue(DRE); 4129 } 4130 4131 Expr *BaseExpr = E->getBase(); 4132 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4133 LValue BaseLV; 4134 if (E->isArrow()) { 4135 LValueBaseInfo BaseInfo; 4136 TBAAAccessInfo TBAAInfo; 4137 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4138 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4139 SanitizerSet SkippedChecks; 4140 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4141 if (IsBaseCXXThis) 4142 SkippedChecks.set(SanitizerKind::Alignment, true); 4143 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4144 SkippedChecks.set(SanitizerKind::Null, true); 4145 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4146 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4147 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4148 } else 4149 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4150 4151 NamedDecl *ND = E->getMemberDecl(); 4152 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4153 LValue LV = EmitLValueForField(BaseLV, Field); 4154 setObjCGCLValueClass(getContext(), E, LV); 4155 if (getLangOpts().OpenMP) { 4156 // If the member was explicitly marked as nontemporal, mark it as 4157 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4158 // to children as nontemporal too. 4159 if ((IsWrappedCXXThis(BaseExpr) && 4160 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4161 BaseLV.isNontemporal()) 4162 LV.setNontemporal(/*Value=*/true); 4163 } 4164 return LV; 4165 } 4166 4167 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4168 return EmitFunctionDeclLValue(*this, E, FD); 4169 4170 llvm_unreachable("Unhandled member declaration!"); 4171 } 4172 4173 /// Given that we are currently emitting a lambda, emit an l-value for 4174 /// one of its members. 4175 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4176 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4177 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4178 QualType LambdaTagType = 4179 getContext().getTagDeclType(Field->getParent()); 4180 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4181 return EmitLValueForField(LambdaLV, Field); 4182 } 4183 4184 /// Get the field index in the debug info. The debug info structure/union 4185 /// will ignore the unnamed bitfields. 4186 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4187 unsigned FieldIndex) { 4188 unsigned I = 0, Skipped = 0; 4189 4190 for (auto F : Rec->getDefinition()->fields()) { 4191 if (I == FieldIndex) 4192 break; 4193 if (F->isUnnamedBitfield()) 4194 Skipped++; 4195 I++; 4196 } 4197 4198 return FieldIndex - Skipped; 4199 } 4200 4201 /// Get the address of a zero-sized field within a record. The resulting 4202 /// address doesn't necessarily have the right type. 4203 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4204 const FieldDecl *Field) { 4205 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4206 CGF.getContext().getFieldOffset(Field)); 4207 if (Offset.isZero()) 4208 return Base; 4209 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4210 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4211 } 4212 4213 /// Drill down to the storage of a field without walking into 4214 /// reference types. 4215 /// 4216 /// The resulting address doesn't necessarily have the right type. 4217 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4218 const FieldDecl *field) { 4219 if (field->isZeroSize(CGF.getContext())) 4220 return emitAddrOfZeroSizeField(CGF, base, field); 4221 4222 const RecordDecl *rec = field->getParent(); 4223 4224 unsigned idx = 4225 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4226 4227 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4228 } 4229 4230 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4231 Address addr, const FieldDecl *field) { 4232 const RecordDecl *rec = field->getParent(); 4233 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4234 base.getType(), rec->getLocation()); 4235 4236 unsigned idx = 4237 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4238 4239 return CGF.Builder.CreatePreserveStructAccessIndex( 4240 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4241 } 4242 4243 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4244 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4245 if (!RD) 4246 return false; 4247 4248 if (RD->isDynamicClass()) 4249 return true; 4250 4251 for (const auto &Base : RD->bases()) 4252 if (hasAnyVptr(Base.getType(), Context)) 4253 return true; 4254 4255 for (const FieldDecl *Field : RD->fields()) 4256 if (hasAnyVptr(Field->getType(), Context)) 4257 return true; 4258 4259 return false; 4260 } 4261 4262 LValue CodeGenFunction::EmitLValueForField(LValue base, 4263 const FieldDecl *field) { 4264 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4265 4266 if (field->isBitField()) { 4267 const CGRecordLayout &RL = 4268 CGM.getTypes().getCGRecordLayout(field->getParent()); 4269 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4270 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4271 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4272 Info.VolatileStorageSize != 0 && 4273 field->getType() 4274 .withCVRQualifiers(base.getVRQualifiers()) 4275 .isVolatileQualified(); 4276 Address Addr = base.getAddress(*this); 4277 unsigned Idx = RL.getLLVMFieldNo(field); 4278 const RecordDecl *rec = field->getParent(); 4279 if (!UseVolatile) { 4280 if (!IsInPreservedAIRegion && 4281 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4282 if (Idx != 0) 4283 // For structs, we GEP to the field that the record layout suggests. 4284 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4285 } else { 4286 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4287 getContext().getRecordType(rec), rec->getLocation()); 4288 Addr = Builder.CreatePreserveStructAccessIndex( 4289 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4290 DbgInfo); 4291 } 4292 } 4293 const unsigned SS = 4294 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4295 // Get the access type. 4296 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4297 if (Addr.getElementType() != FieldIntTy) 4298 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4299 if (UseVolatile) { 4300 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4301 if (VolatileOffset) 4302 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4303 } 4304 4305 QualType fieldType = 4306 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4307 // TODO: Support TBAA for bit fields. 4308 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4309 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4310 TBAAAccessInfo()); 4311 } 4312 4313 // Fields of may-alias structures are may-alias themselves. 4314 // FIXME: this should get propagated down through anonymous structs 4315 // and unions. 4316 QualType FieldType = field->getType(); 4317 const RecordDecl *rec = field->getParent(); 4318 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4319 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4320 TBAAAccessInfo FieldTBAAInfo; 4321 if (base.getTBAAInfo().isMayAlias() || 4322 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4323 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4324 } else if (rec->isUnion()) { 4325 // TODO: Support TBAA for unions. 4326 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4327 } else { 4328 // If no base type been assigned for the base access, then try to generate 4329 // one for this base lvalue. 4330 FieldTBAAInfo = base.getTBAAInfo(); 4331 if (!FieldTBAAInfo.BaseType) { 4332 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4333 assert(!FieldTBAAInfo.Offset && 4334 "Nonzero offset for an access with no base type!"); 4335 } 4336 4337 // Adjust offset to be relative to the base type. 4338 const ASTRecordLayout &Layout = 4339 getContext().getASTRecordLayout(field->getParent()); 4340 unsigned CharWidth = getContext().getCharWidth(); 4341 if (FieldTBAAInfo.BaseType) 4342 FieldTBAAInfo.Offset += 4343 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4344 4345 // Update the final access type and size. 4346 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4347 FieldTBAAInfo.Size = 4348 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4349 } 4350 4351 Address addr = base.getAddress(*this); 4352 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4353 if (CGM.getCodeGenOpts().StrictVTablePointers && 4354 ClassDef->isDynamicClass()) { 4355 // Getting to any field of dynamic object requires stripping dynamic 4356 // information provided by invariant.group. This is because accessing 4357 // fields may leak the real address of dynamic object, which could result 4358 // in miscompilation when leaked pointer would be compared. 4359 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4360 addr = Address(stripped, addr.getAlignment()); 4361 } 4362 } 4363 4364 unsigned RecordCVR = base.getVRQualifiers(); 4365 if (rec->isUnion()) { 4366 // For unions, there is no pointer adjustment. 4367 if (CGM.getCodeGenOpts().StrictVTablePointers && 4368 hasAnyVptr(FieldType, getContext())) 4369 // Because unions can easily skip invariant.barriers, we need to add 4370 // a barrier every time CXXRecord field with vptr is referenced. 4371 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4372 addr.getAlignment()); 4373 4374 if (IsInPreservedAIRegion || 4375 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4376 // Remember the original union field index 4377 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4378 rec->getLocation()); 4379 addr = Address( 4380 Builder.CreatePreserveUnionAccessIndex( 4381 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4382 addr.getAlignment()); 4383 } 4384 4385 if (FieldType->isReferenceType()) 4386 addr = Builder.CreateElementBitCast( 4387 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4388 } else { 4389 if (!IsInPreservedAIRegion && 4390 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4391 // For structs, we GEP to the field that the record layout suggests. 4392 addr = emitAddrOfFieldStorage(*this, addr, field); 4393 else 4394 // Remember the original struct field index 4395 addr = emitPreserveStructAccess(*this, base, addr, field); 4396 } 4397 4398 // If this is a reference field, load the reference right now. 4399 if (FieldType->isReferenceType()) { 4400 LValue RefLVal = 4401 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4402 if (RecordCVR & Qualifiers::Volatile) 4403 RefLVal.getQuals().addVolatile(); 4404 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4405 4406 // Qualifiers on the struct don't apply to the referencee. 4407 RecordCVR = 0; 4408 FieldType = FieldType->getPointeeType(); 4409 } 4410 4411 // Make sure that the address is pointing to the right type. This is critical 4412 // for both unions and structs. A union needs a bitcast, a struct element 4413 // will need a bitcast if the LLVM type laid out doesn't match the desired 4414 // type. 4415 addr = Builder.CreateElementBitCast( 4416 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4417 4418 if (field->hasAttr<AnnotateAttr>()) 4419 addr = EmitFieldAnnotations(field, addr); 4420 4421 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4422 LV.getQuals().addCVRQualifiers(RecordCVR); 4423 4424 // __weak attribute on a field is ignored. 4425 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4426 LV.getQuals().removeObjCGCAttr(); 4427 4428 return LV; 4429 } 4430 4431 LValue 4432 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4433 const FieldDecl *Field) { 4434 QualType FieldType = Field->getType(); 4435 4436 if (!FieldType->isReferenceType()) 4437 return EmitLValueForField(Base, Field); 4438 4439 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4440 4441 // Make sure that the address is pointing to the right type. 4442 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4443 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4444 4445 // TODO: Generate TBAA information that describes this access as a structure 4446 // member access and not just an access to an object of the field's type. This 4447 // should be similar to what we do in EmitLValueForField(). 4448 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4449 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4450 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4451 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4452 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4453 } 4454 4455 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4456 if (E->isFileScope()) { 4457 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4458 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4459 } 4460 if (E->getType()->isVariablyModifiedType()) 4461 // make sure to emit the VLA size. 4462 EmitVariablyModifiedType(E->getType()); 4463 4464 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4465 const Expr *InitExpr = E->getInitializer(); 4466 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4467 4468 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4469 /*Init*/ true); 4470 4471 // Block-scope compound literals are destroyed at the end of the enclosing 4472 // scope in C. 4473 if (!getLangOpts().CPlusPlus) 4474 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4475 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4476 E->getType(), getDestroyer(DtorKind), 4477 DtorKind & EHCleanup); 4478 4479 return Result; 4480 } 4481 4482 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4483 if (!E->isGLValue()) 4484 // Initializing an aggregate temporary in C++11: T{...}. 4485 return EmitAggExprToLValue(E); 4486 4487 // An lvalue initializer list must be initializing a reference. 4488 assert(E->isTransparent() && "non-transparent glvalue init list"); 4489 return EmitLValue(E->getInit(0)); 4490 } 4491 4492 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4493 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4494 /// LValue is returned and the current block has been terminated. 4495 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4496 const Expr *Operand) { 4497 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4498 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4499 return None; 4500 } 4501 4502 return CGF.EmitLValue(Operand); 4503 } 4504 4505 LValue CodeGenFunction:: 4506 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4507 if (!expr->isGLValue()) { 4508 // ?: here should be an aggregate. 4509 assert(hasAggregateEvaluationKind(expr->getType()) && 4510 "Unexpected conditional operator!"); 4511 return EmitAggExprToLValue(expr); 4512 } 4513 4514 OpaqueValueMapping binding(*this, expr); 4515 4516 const Expr *condExpr = expr->getCond(); 4517 bool CondExprBool; 4518 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4519 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4520 if (!CondExprBool) std::swap(live, dead); 4521 4522 if (!ContainsLabel(dead)) { 4523 // If the true case is live, we need to track its region. 4524 if (CondExprBool) 4525 incrementProfileCounter(expr); 4526 // If a throw expression we emit it and return an undefined lvalue 4527 // because it can't be used. 4528 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4529 EmitCXXThrowExpr(ThrowExpr); 4530 llvm::Type *Ty = 4531 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4532 return MakeAddrLValue( 4533 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4534 dead->getType()); 4535 } 4536 return EmitLValue(live); 4537 } 4538 } 4539 4540 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4541 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4542 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4543 4544 ConditionalEvaluation eval(*this); 4545 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4546 4547 // Any temporaries created here are conditional. 4548 EmitBlock(lhsBlock); 4549 incrementProfileCounter(expr); 4550 eval.begin(*this); 4551 Optional<LValue> lhs = 4552 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4553 eval.end(*this); 4554 4555 if (lhs && !lhs->isSimple()) 4556 return EmitUnsupportedLValue(expr, "conditional operator"); 4557 4558 lhsBlock = Builder.GetInsertBlock(); 4559 if (lhs) 4560 Builder.CreateBr(contBlock); 4561 4562 // Any temporaries created here are conditional. 4563 EmitBlock(rhsBlock); 4564 eval.begin(*this); 4565 Optional<LValue> rhs = 4566 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4567 eval.end(*this); 4568 if (rhs && !rhs->isSimple()) 4569 return EmitUnsupportedLValue(expr, "conditional operator"); 4570 rhsBlock = Builder.GetInsertBlock(); 4571 4572 EmitBlock(contBlock); 4573 4574 if (lhs && rhs) { 4575 llvm::PHINode *phi = 4576 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4577 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4578 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4579 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4580 AlignmentSource alignSource = 4581 std::max(lhs->getBaseInfo().getAlignmentSource(), 4582 rhs->getBaseInfo().getAlignmentSource()); 4583 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4584 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4585 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4586 TBAAInfo); 4587 } else { 4588 assert((lhs || rhs) && 4589 "both operands of glvalue conditional are throw-expressions?"); 4590 return lhs ? *lhs : *rhs; 4591 } 4592 } 4593 4594 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4595 /// type. If the cast is to a reference, we can have the usual lvalue result, 4596 /// otherwise if a cast is needed by the code generator in an lvalue context, 4597 /// then it must mean that we need the address of an aggregate in order to 4598 /// access one of its members. This can happen for all the reasons that casts 4599 /// are permitted with aggregate result, including noop aggregate casts, and 4600 /// cast from scalar to union. 4601 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4602 switch (E->getCastKind()) { 4603 case CK_ToVoid: 4604 case CK_BitCast: 4605 case CK_LValueToRValueBitCast: 4606 case CK_ArrayToPointerDecay: 4607 case CK_FunctionToPointerDecay: 4608 case CK_NullToMemberPointer: 4609 case CK_NullToPointer: 4610 case CK_IntegralToPointer: 4611 case CK_PointerToIntegral: 4612 case CK_PointerToBoolean: 4613 case CK_VectorSplat: 4614 case CK_IntegralCast: 4615 case CK_BooleanToSignedIntegral: 4616 case CK_IntegralToBoolean: 4617 case CK_IntegralToFloating: 4618 case CK_FloatingToIntegral: 4619 case CK_FloatingToBoolean: 4620 case CK_FloatingCast: 4621 case CK_FloatingRealToComplex: 4622 case CK_FloatingComplexToReal: 4623 case CK_FloatingComplexToBoolean: 4624 case CK_FloatingComplexCast: 4625 case CK_FloatingComplexToIntegralComplex: 4626 case CK_IntegralRealToComplex: 4627 case CK_IntegralComplexToReal: 4628 case CK_IntegralComplexToBoolean: 4629 case CK_IntegralComplexCast: 4630 case CK_IntegralComplexToFloatingComplex: 4631 case CK_DerivedToBaseMemberPointer: 4632 case CK_BaseToDerivedMemberPointer: 4633 case CK_MemberPointerToBoolean: 4634 case CK_ReinterpretMemberPointer: 4635 case CK_AnyPointerToBlockPointerCast: 4636 case CK_ARCProduceObject: 4637 case CK_ARCConsumeObject: 4638 case CK_ARCReclaimReturnedObject: 4639 case CK_ARCExtendBlockObject: 4640 case CK_CopyAndAutoreleaseBlockObject: 4641 case CK_IntToOCLSampler: 4642 case CK_FloatingToFixedPoint: 4643 case CK_FixedPointToFloating: 4644 case CK_FixedPointCast: 4645 case CK_FixedPointToBoolean: 4646 case CK_FixedPointToIntegral: 4647 case CK_IntegralToFixedPoint: 4648 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4649 4650 case CK_Dependent: 4651 llvm_unreachable("dependent cast kind in IR gen!"); 4652 4653 case CK_BuiltinFnToFnPtr: 4654 llvm_unreachable("builtin functions are handled elsewhere"); 4655 4656 // These are never l-values; just use the aggregate emission code. 4657 case CK_NonAtomicToAtomic: 4658 case CK_AtomicToNonAtomic: 4659 return EmitAggExprToLValue(E); 4660 4661 case CK_Dynamic: { 4662 LValue LV = EmitLValue(E->getSubExpr()); 4663 Address V = LV.getAddress(*this); 4664 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4665 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4666 } 4667 4668 case CK_ConstructorConversion: 4669 case CK_UserDefinedConversion: 4670 case CK_CPointerToObjCPointerCast: 4671 case CK_BlockPointerToObjCPointerCast: 4672 case CK_NoOp: 4673 case CK_LValueToRValue: 4674 return EmitLValue(E->getSubExpr()); 4675 4676 case CK_UncheckedDerivedToBase: 4677 case CK_DerivedToBase: { 4678 const auto *DerivedClassTy = 4679 E->getSubExpr()->getType()->castAs<RecordType>(); 4680 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4681 4682 LValue LV = EmitLValue(E->getSubExpr()); 4683 Address This = LV.getAddress(*this); 4684 4685 // Perform the derived-to-base conversion 4686 Address Base = GetAddressOfBaseClass( 4687 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4688 /*NullCheckValue=*/false, E->getExprLoc()); 4689 4690 // TODO: Support accesses to members of base classes in TBAA. For now, we 4691 // conservatively pretend that the complete object is of the base class 4692 // type. 4693 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4694 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4695 } 4696 case CK_ToUnion: 4697 return EmitAggExprToLValue(E); 4698 case CK_BaseToDerived: { 4699 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4700 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4701 4702 LValue LV = EmitLValue(E->getSubExpr()); 4703 4704 // Perform the base-to-derived conversion 4705 Address Derived = GetAddressOfDerivedClass( 4706 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4707 /*NullCheckValue=*/false); 4708 4709 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4710 // performed and the object is not of the derived type. 4711 if (sanitizePerformTypeCheck()) 4712 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4713 Derived.getPointer(), E->getType()); 4714 4715 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4716 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4717 /*MayBeNull=*/false, CFITCK_DerivedCast, 4718 E->getBeginLoc()); 4719 4720 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4721 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4722 } 4723 case CK_LValueBitCast: { 4724 // This must be a reinterpret_cast (or c-style equivalent). 4725 const auto *CE = cast<ExplicitCastExpr>(E); 4726 4727 CGM.EmitExplicitCastExprType(CE, this); 4728 LValue LV = EmitLValue(E->getSubExpr()); 4729 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4730 ConvertType(CE->getTypeAsWritten())); 4731 4732 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4733 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4734 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4735 E->getBeginLoc()); 4736 4737 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4738 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4739 } 4740 case CK_AddressSpaceConversion: { 4741 LValue LV = EmitLValue(E->getSubExpr()); 4742 QualType DestTy = getContext().getPointerType(E->getType()); 4743 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4744 *this, LV.getPointer(*this), 4745 E->getSubExpr()->getType().getAddressSpace(), 4746 E->getType().getAddressSpace(), ConvertType(DestTy)); 4747 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4748 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4749 } 4750 case CK_ObjCObjectLValueCast: { 4751 LValue LV = EmitLValue(E->getSubExpr()); 4752 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4753 ConvertType(E->getType())); 4754 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4755 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4756 } 4757 case CK_ZeroToOCLOpaqueType: 4758 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4759 } 4760 4761 llvm_unreachable("Unhandled lvalue cast kind?"); 4762 } 4763 4764 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4765 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4766 return getOrCreateOpaqueLValueMapping(e); 4767 } 4768 4769 LValue 4770 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4771 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4772 4773 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4774 it = OpaqueLValues.find(e); 4775 4776 if (it != OpaqueLValues.end()) 4777 return it->second; 4778 4779 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4780 return EmitLValue(e->getSourceExpr()); 4781 } 4782 4783 RValue 4784 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4785 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4786 4787 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4788 it = OpaqueRValues.find(e); 4789 4790 if (it != OpaqueRValues.end()) 4791 return it->second; 4792 4793 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4794 return EmitAnyExpr(e->getSourceExpr()); 4795 } 4796 4797 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4798 const FieldDecl *FD, 4799 SourceLocation Loc) { 4800 QualType FT = FD->getType(); 4801 LValue FieldLV = EmitLValueForField(LV, FD); 4802 switch (getEvaluationKind(FT)) { 4803 case TEK_Complex: 4804 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4805 case TEK_Aggregate: 4806 return FieldLV.asAggregateRValue(*this); 4807 case TEK_Scalar: 4808 // This routine is used to load fields one-by-one to perform a copy, so 4809 // don't load reference fields. 4810 if (FD->getType()->isReferenceType()) 4811 return RValue::get(FieldLV.getPointer(*this)); 4812 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4813 // primitive load. 4814 if (FieldLV.isBitField()) 4815 return EmitLoadOfLValue(FieldLV, Loc); 4816 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4817 } 4818 llvm_unreachable("bad evaluation kind"); 4819 } 4820 4821 //===--------------------------------------------------------------------===// 4822 // Expression Emission 4823 //===--------------------------------------------------------------------===// 4824 4825 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4826 ReturnValueSlot ReturnValue) { 4827 // Builtins never have block type. 4828 if (E->getCallee()->getType()->isBlockPointerType()) 4829 return EmitBlockCallExpr(E, ReturnValue); 4830 4831 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4832 return EmitCXXMemberCallExpr(CE, ReturnValue); 4833 4834 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4835 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4836 4837 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4838 if (const CXXMethodDecl *MD = 4839 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4840 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4841 4842 CGCallee callee = EmitCallee(E->getCallee()); 4843 4844 if (callee.isBuiltin()) { 4845 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4846 E, ReturnValue); 4847 } 4848 4849 if (callee.isPseudoDestructor()) { 4850 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4851 } 4852 4853 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4854 } 4855 4856 /// Emit a CallExpr without considering whether it might be a subclass. 4857 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4858 ReturnValueSlot ReturnValue) { 4859 CGCallee Callee = EmitCallee(E->getCallee()); 4860 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4861 } 4862 4863 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4864 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4865 4866 if (auto builtinID = FD->getBuiltinID()) { 4867 // Replaceable builtin provide their own implementation of a builtin. Unless 4868 // we are in the builtin implementation itself, don't call the actual 4869 // builtin. If we are in the builtin implementation, avoid trivial infinite 4870 // recursion. 4871 if (!FD->isInlineBuiltinDeclaration() || 4872 CGF.CurFn->getName() == FD->getName()) 4873 return CGCallee::forBuiltin(builtinID, FD); 4874 } 4875 4876 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4877 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 4878 FD->hasAttr<CUDAGlobalAttr>()) 4879 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 4880 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 4881 return CGCallee::forDirect(CalleePtr, GD); 4882 } 4883 4884 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4885 E = E->IgnoreParens(); 4886 4887 // Look through function-to-pointer decay. 4888 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4889 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4890 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4891 return EmitCallee(ICE->getSubExpr()); 4892 } 4893 4894 // Resolve direct calls. 4895 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4896 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4897 return EmitDirectCallee(*this, FD); 4898 } 4899 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4900 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4901 EmitIgnoredExpr(ME->getBase()); 4902 return EmitDirectCallee(*this, FD); 4903 } 4904 4905 // Look through template substitutions. 4906 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4907 return EmitCallee(NTTP->getReplacement()); 4908 4909 // Treat pseudo-destructor calls differently. 4910 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4911 return CGCallee::forPseudoDestructor(PDE); 4912 } 4913 4914 // Otherwise, we have an indirect reference. 4915 llvm::Value *calleePtr; 4916 QualType functionType; 4917 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4918 calleePtr = EmitScalarExpr(E); 4919 functionType = ptrType->getPointeeType(); 4920 } else { 4921 functionType = E->getType(); 4922 calleePtr = EmitLValue(E).getPointer(*this); 4923 } 4924 assert(functionType->isFunctionType()); 4925 4926 GlobalDecl GD; 4927 if (const auto *VD = 4928 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4929 GD = GlobalDecl(VD); 4930 4931 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4932 CGCallee callee(calleeInfo, calleePtr); 4933 return callee; 4934 } 4935 4936 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4937 // Comma expressions just emit their LHS then their RHS as an l-value. 4938 if (E->getOpcode() == BO_Comma) { 4939 EmitIgnoredExpr(E->getLHS()); 4940 EnsureInsertPoint(); 4941 return EmitLValue(E->getRHS()); 4942 } 4943 4944 if (E->getOpcode() == BO_PtrMemD || 4945 E->getOpcode() == BO_PtrMemI) 4946 return EmitPointerToDataMemberBinaryExpr(E); 4947 4948 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4949 4950 // Note that in all of these cases, __block variables need the RHS 4951 // evaluated first just in case the variable gets moved by the RHS. 4952 4953 switch (getEvaluationKind(E->getType())) { 4954 case TEK_Scalar: { 4955 switch (E->getLHS()->getType().getObjCLifetime()) { 4956 case Qualifiers::OCL_Strong: 4957 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4958 4959 case Qualifiers::OCL_Autoreleasing: 4960 return EmitARCStoreAutoreleasing(E).first; 4961 4962 // No reason to do any of these differently. 4963 case Qualifiers::OCL_None: 4964 case Qualifiers::OCL_ExplicitNone: 4965 case Qualifiers::OCL_Weak: 4966 break; 4967 } 4968 4969 RValue RV = EmitAnyExpr(E->getRHS()); 4970 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4971 if (RV.isScalar()) 4972 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4973 EmitStoreThroughLValue(RV, LV); 4974 if (getLangOpts().OpenMP) 4975 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4976 E->getLHS()); 4977 return LV; 4978 } 4979 4980 case TEK_Complex: 4981 return EmitComplexAssignmentLValue(E); 4982 4983 case TEK_Aggregate: 4984 return EmitAggExprToLValue(E); 4985 } 4986 llvm_unreachable("bad evaluation kind"); 4987 } 4988 4989 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4990 RValue RV = EmitCallExpr(E); 4991 4992 if (!RV.isScalar()) 4993 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4994 AlignmentSource::Decl); 4995 4996 assert(E->getCallReturnType(getContext())->isReferenceType() && 4997 "Can't have a scalar return unless the return type is a " 4998 "reference type!"); 4999 5000 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5001 } 5002 5003 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5004 // FIXME: This shouldn't require another copy. 5005 return EmitAggExprToLValue(E); 5006 } 5007 5008 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5009 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5010 && "binding l-value to type which needs a temporary"); 5011 AggValueSlot Slot = CreateAggTemp(E->getType()); 5012 EmitCXXConstructExpr(E, Slot); 5013 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5014 } 5015 5016 LValue 5017 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5018 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5019 } 5020 5021 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5022 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5023 ConvertType(E->getType())); 5024 } 5025 5026 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5027 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5028 AlignmentSource::Decl); 5029 } 5030 5031 LValue 5032 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5033 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5034 Slot.setExternallyDestructed(); 5035 EmitAggExpr(E->getSubExpr(), Slot); 5036 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5037 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5038 } 5039 5040 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5041 RValue RV = EmitObjCMessageExpr(E); 5042 5043 if (!RV.isScalar()) 5044 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5045 AlignmentSource::Decl); 5046 5047 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5048 "Can't have a scalar return unless the return type is a " 5049 "reference type!"); 5050 5051 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5052 } 5053 5054 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5055 Address V = 5056 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5057 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5058 } 5059 5060 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5061 const ObjCIvarDecl *Ivar) { 5062 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5063 } 5064 5065 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5066 llvm::Value *BaseValue, 5067 const ObjCIvarDecl *Ivar, 5068 unsigned CVRQualifiers) { 5069 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5070 Ivar, CVRQualifiers); 5071 } 5072 5073 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5074 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5075 llvm::Value *BaseValue = nullptr; 5076 const Expr *BaseExpr = E->getBase(); 5077 Qualifiers BaseQuals; 5078 QualType ObjectTy; 5079 if (E->isArrow()) { 5080 BaseValue = EmitScalarExpr(BaseExpr); 5081 ObjectTy = BaseExpr->getType()->getPointeeType(); 5082 BaseQuals = ObjectTy.getQualifiers(); 5083 } else { 5084 LValue BaseLV = EmitLValue(BaseExpr); 5085 BaseValue = BaseLV.getPointer(*this); 5086 ObjectTy = BaseExpr->getType(); 5087 BaseQuals = ObjectTy.getQualifiers(); 5088 } 5089 5090 LValue LV = 5091 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5092 BaseQuals.getCVRQualifiers()); 5093 setObjCGCLValueClass(getContext(), E, LV); 5094 return LV; 5095 } 5096 5097 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5098 // Can only get l-value for message expression returning aggregate type 5099 RValue RV = EmitAnyExprToTemp(E); 5100 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5101 AlignmentSource::Decl); 5102 } 5103 5104 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5105 const CallExpr *E, ReturnValueSlot ReturnValue, 5106 llvm::Value *Chain) { 5107 // Get the actual function type. The callee type will always be a pointer to 5108 // function type or a block pointer type. 5109 assert(CalleeType->isFunctionPointerType() && 5110 "Call must have function pointer type!"); 5111 5112 const Decl *TargetDecl = 5113 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5114 5115 CalleeType = getContext().getCanonicalType(CalleeType); 5116 5117 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5118 5119 CGCallee Callee = OrigCallee; 5120 5121 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5122 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5123 if (llvm::Constant *PrefixSig = 5124 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5125 SanitizerScope SanScope(this); 5126 // Remove any (C++17) exception specifications, to allow calling e.g. a 5127 // noexcept function through a non-noexcept pointer. 5128 auto ProtoTy = 5129 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5130 llvm::Constant *FTRTTIConst = 5131 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5132 llvm::Type *PrefixSigType = PrefixSig->getType(); 5133 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5134 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5135 5136 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5137 5138 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5139 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5140 llvm::Value *CalleeSigPtr = 5141 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5142 llvm::Value *CalleeSig = 5143 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5144 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5145 5146 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5147 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5148 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5149 5150 EmitBlock(TypeCheck); 5151 llvm::Value *CalleeRTTIPtr = 5152 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5153 llvm::Value *CalleeRTTIEncoded = 5154 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5155 llvm::Value *CalleeRTTI = 5156 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5157 llvm::Value *CalleeRTTIMatch = 5158 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5159 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5160 EmitCheckTypeDescriptor(CalleeType)}; 5161 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5162 SanitizerHandler::FunctionTypeMismatch, StaticData, 5163 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5164 5165 Builder.CreateBr(Cont); 5166 EmitBlock(Cont); 5167 } 5168 } 5169 5170 const auto *FnType = cast<FunctionType>(PointeeType); 5171 5172 // If we are checking indirect calls and this call is indirect, check that the 5173 // function pointer is a member of the bit set for the function type. 5174 if (SanOpts.has(SanitizerKind::CFIICall) && 5175 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5176 SanitizerScope SanScope(this); 5177 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5178 5179 llvm::Metadata *MD; 5180 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5181 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5182 else 5183 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5184 5185 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5186 5187 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5188 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5189 llvm::Value *TypeTest = Builder.CreateCall( 5190 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5191 5192 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5193 llvm::Constant *StaticData[] = { 5194 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5195 EmitCheckSourceLocation(E->getBeginLoc()), 5196 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5197 }; 5198 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5199 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5200 CastedCallee, StaticData); 5201 } else { 5202 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5203 SanitizerHandler::CFICheckFail, StaticData, 5204 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5205 } 5206 } 5207 5208 CallArgList Args; 5209 if (Chain) 5210 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5211 CGM.getContext().VoidPtrTy); 5212 5213 // C++17 requires that we evaluate arguments to a call using assignment syntax 5214 // right-to-left, and that we evaluate arguments to certain other operators 5215 // left-to-right. Note that we allow this to override the order dictated by 5216 // the calling convention on the MS ABI, which means that parameter 5217 // destruction order is not necessarily reverse construction order. 5218 // FIXME: Revisit this based on C++ committee response to unimplementability. 5219 EvaluationOrder Order = EvaluationOrder::Default; 5220 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5221 if (OCE->isAssignmentOp()) 5222 Order = EvaluationOrder::ForceRightToLeft; 5223 else { 5224 switch (OCE->getOperator()) { 5225 case OO_LessLess: 5226 case OO_GreaterGreater: 5227 case OO_AmpAmp: 5228 case OO_PipePipe: 5229 case OO_Comma: 5230 case OO_ArrowStar: 5231 Order = EvaluationOrder::ForceLeftToRight; 5232 break; 5233 default: 5234 break; 5235 } 5236 } 5237 } 5238 5239 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5240 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5241 5242 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5243 Args, FnType, /*ChainCall=*/Chain); 5244 5245 // C99 6.5.2.2p6: 5246 // If the expression that denotes the called function has a type 5247 // that does not include a prototype, [the default argument 5248 // promotions are performed]. If the number of arguments does not 5249 // equal the number of parameters, the behavior is undefined. If 5250 // the function is defined with a type that includes a prototype, 5251 // and either the prototype ends with an ellipsis (, ...) or the 5252 // types of the arguments after promotion are not compatible with 5253 // the types of the parameters, the behavior is undefined. If the 5254 // function is defined with a type that does not include a 5255 // prototype, and the types of the arguments after promotion are 5256 // not compatible with those of the parameters after promotion, 5257 // the behavior is undefined [except in some trivial cases]. 5258 // That is, in the general case, we should assume that a call 5259 // through an unprototyped function type works like a *non-variadic* 5260 // call. The way we make this work is to cast to the exact type 5261 // of the promoted arguments. 5262 // 5263 // Chain calls use this same code path to add the invisible chain parameter 5264 // to the function type. 5265 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5266 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5267 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5268 CalleeTy = CalleeTy->getPointerTo(AS); 5269 5270 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5271 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5272 Callee.setFunctionPointer(CalleePtr); 5273 } 5274 5275 // HIP function pointer contains kernel handle when it is used in triple 5276 // chevron. The kernel stub needs to be loaded from kernel handle and used 5277 // as callee. 5278 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5279 isa<CUDAKernelCallExpr>(E) && 5280 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5281 llvm::Value *Handle = Callee.getFunctionPointer(); 5282 auto *Cast = 5283 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5284 auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign())); 5285 Callee.setFunctionPointer(Stub); 5286 } 5287 llvm::CallBase *CallOrInvoke = nullptr; 5288 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5289 E->getExprLoc()); 5290 5291 // Generate function declaration DISuprogram in order to be used 5292 // in debug info about call sites. 5293 if (CGDebugInfo *DI = getDebugInfo()) { 5294 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5295 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5296 CalleeDecl); 5297 } 5298 5299 return Call; 5300 } 5301 5302 LValue CodeGenFunction:: 5303 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5304 Address BaseAddr = Address::invalid(); 5305 if (E->getOpcode() == BO_PtrMemI) { 5306 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5307 } else { 5308 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5309 } 5310 5311 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5312 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5313 5314 LValueBaseInfo BaseInfo; 5315 TBAAAccessInfo TBAAInfo; 5316 Address MemberAddr = 5317 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5318 &TBAAInfo); 5319 5320 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5321 } 5322 5323 /// Given the address of a temporary variable, produce an r-value of 5324 /// its type. 5325 RValue CodeGenFunction::convertTempToRValue(Address addr, 5326 QualType type, 5327 SourceLocation loc) { 5328 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5329 switch (getEvaluationKind(type)) { 5330 case TEK_Complex: 5331 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5332 case TEK_Aggregate: 5333 return lvalue.asAggregateRValue(*this); 5334 case TEK_Scalar: 5335 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5336 } 5337 llvm_unreachable("bad evaluation kind"); 5338 } 5339 5340 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5341 assert(Val->getType()->isFPOrFPVectorTy()); 5342 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5343 return; 5344 5345 llvm::MDBuilder MDHelper(getLLVMContext()); 5346 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5347 5348 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5349 } 5350 5351 namespace { 5352 struct LValueOrRValue { 5353 LValue LV; 5354 RValue RV; 5355 }; 5356 } 5357 5358 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5359 const PseudoObjectExpr *E, 5360 bool forLValue, 5361 AggValueSlot slot) { 5362 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5363 5364 // Find the result expression, if any. 5365 const Expr *resultExpr = E->getResultExpr(); 5366 LValueOrRValue result; 5367 5368 for (PseudoObjectExpr::const_semantics_iterator 5369 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5370 const Expr *semantic = *i; 5371 5372 // If this semantic expression is an opaque value, bind it 5373 // to the result of its source expression. 5374 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5375 // Skip unique OVEs. 5376 if (ov->isUnique()) { 5377 assert(ov != resultExpr && 5378 "A unique OVE cannot be used as the result expression"); 5379 continue; 5380 } 5381 5382 // If this is the result expression, we may need to evaluate 5383 // directly into the slot. 5384 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5385 OVMA opaqueData; 5386 if (ov == resultExpr && ov->isRValue() && !forLValue && 5387 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5388 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5389 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5390 AlignmentSource::Decl); 5391 opaqueData = OVMA::bind(CGF, ov, LV); 5392 result.RV = slot.asRValue(); 5393 5394 // Otherwise, emit as normal. 5395 } else { 5396 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5397 5398 // If this is the result, also evaluate the result now. 5399 if (ov == resultExpr) { 5400 if (forLValue) 5401 result.LV = CGF.EmitLValue(ov); 5402 else 5403 result.RV = CGF.EmitAnyExpr(ov, slot); 5404 } 5405 } 5406 5407 opaques.push_back(opaqueData); 5408 5409 // Otherwise, if the expression is the result, evaluate it 5410 // and remember the result. 5411 } else if (semantic == resultExpr) { 5412 if (forLValue) 5413 result.LV = CGF.EmitLValue(semantic); 5414 else 5415 result.RV = CGF.EmitAnyExpr(semantic, slot); 5416 5417 // Otherwise, evaluate the expression in an ignored context. 5418 } else { 5419 CGF.EmitIgnoredExpr(semantic); 5420 } 5421 } 5422 5423 // Unbind all the opaques now. 5424 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5425 opaques[i].unbind(CGF); 5426 5427 return result; 5428 } 5429 5430 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5431 AggValueSlot slot) { 5432 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5433 } 5434 5435 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5436 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5437 } 5438