1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   PGO.setCurrentStmt(E);
89   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
90     llvm::Value *MemPtr = EmitScalarExpr(E);
91     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
92   }
93 
94   QualType BoolTy = getContext().BoolTy;
95   if (!E->getType()->isAnyComplexType())
96     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
97 
98   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
99 }
100 
101 /// EmitIgnoredExpr - Emit code to compute the specified expression,
102 /// ignoring the result.
103 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
104   if (E->isRValue())
105     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
106 
107   // Just emit it as an l-value and drop the result.
108   EmitLValue(E);
109 }
110 
111 /// EmitAnyExpr - Emit code to compute the specified expression which
112 /// can have any type.  The result is returned as an RValue struct.
113 /// If this is an aggregate expression, AggSlot indicates where the
114 /// result should be returned.
115 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
116                                     AggValueSlot aggSlot,
117                                     bool ignoreResult) {
118   switch (getEvaluationKind(E->getType())) {
119   case TEK_Scalar:
120     return RValue::get(EmitScalarExpr(E, ignoreResult));
121   case TEK_Complex:
122     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
123   case TEK_Aggregate:
124     if (!ignoreResult && aggSlot.isIgnored())
125       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
126     EmitAggExpr(E, aggSlot);
127     return aggSlot.asRValue();
128   }
129   llvm_unreachable("bad evaluation kind");
130 }
131 
132 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
133 /// always be accessible even if no aggregate location is provided.
134 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
135   AggValueSlot AggSlot = AggValueSlot::ignored();
136 
137   if (hasAggregateEvaluationKind(E->getType()))
138     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
139   return EmitAnyExpr(E, AggSlot);
140 }
141 
142 /// EmitAnyExprToMem - Evaluate an expression into a given memory
143 /// location.
144 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
145                                        llvm::Value *Location,
146                                        Qualifiers Quals,
147                                        bool IsInit) {
148   // FIXME: This function should take an LValue as an argument.
149   switch (getEvaluationKind(E->getType())) {
150   case TEK_Complex:
151     EmitComplexExprIntoLValue(E,
152                          MakeNaturalAlignAddrLValue(Location, E->getType()),
153                               /*isInit*/ false);
154     return;
155 
156   case TEK_Aggregate: {
157     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
158     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
159                                          AggValueSlot::IsDestructed_t(IsInit),
160                                          AggValueSlot::DoesNotNeedGCBarriers,
161                                          AggValueSlot::IsAliased_t(!IsInit)));
162     return;
163   }
164 
165   case TEK_Scalar: {
166     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
167     LValue LV = MakeAddrLValue(Location, E->getType());
168     EmitStoreThroughLValue(RV, LV);
169     return;
170   }
171   }
172   llvm_unreachable("bad evaluation kind");
173 }
174 
175 static void
176 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
177                      const Expr *E, llvm::Value *ReferenceTemporary) {
178   // Objective-C++ ARC:
179   //   If we are binding a reference to a temporary that has ownership, we
180   //   need to perform retain/release operations on the temporary.
181   //
182   // FIXME: This should be looking at E, not M.
183   if (CGF.getLangOpts().ObjCAutoRefCount &&
184       M->getType()->isObjCLifetimeType()) {
185     QualType ObjCARCReferenceLifetimeType = M->getType();
186     switch (Qualifiers::ObjCLifetime Lifetime =
187                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
188     case Qualifiers::OCL_None:
189     case Qualifiers::OCL_ExplicitNone:
190       // Carry on to normal cleanup handling.
191       break;
192 
193     case Qualifiers::OCL_Autoreleasing:
194       // Nothing to do; cleaned up by an autorelease pool.
195       return;
196 
197     case Qualifiers::OCL_Strong:
198     case Qualifiers::OCL_Weak:
199       switch (StorageDuration Duration = M->getStorageDuration()) {
200       case SD_Static:
201         // Note: we intentionally do not register a cleanup to release
202         // the object on program termination.
203         return;
204 
205       case SD_Thread:
206         // FIXME: We should probably register a cleanup in this case.
207         return;
208 
209       case SD_Automatic:
210       case SD_FullExpression:
211         assert(!ObjCARCReferenceLifetimeType->isArrayType());
212         CodeGenFunction::Destroyer *Destroy;
213         CleanupKind CleanupKind;
214         if (Lifetime == Qualifiers::OCL_Strong) {
215           const ValueDecl *VD = M->getExtendingDecl();
216           bool Precise =
217               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
218           CleanupKind = CGF.getARCCleanupKind();
219           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
220                             : &CodeGenFunction::destroyARCStrongImprecise;
221         } else {
222           // __weak objects always get EH cleanups; otherwise, exceptions
223           // could cause really nasty crashes instead of mere leaks.
224           CleanupKind = NormalAndEHCleanup;
225           Destroy = &CodeGenFunction::destroyARCWeak;
226         }
227         if (Duration == SD_FullExpression)
228           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
229                           ObjCARCReferenceLifetimeType, *Destroy,
230                           CleanupKind & EHCleanup);
231         else
232           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
233                                           ObjCARCReferenceLifetimeType,
234                                           *Destroy, CleanupKind & EHCleanup);
235         return;
236 
237       case SD_Dynamic:
238         llvm_unreachable("temporary cannot have dynamic storage duration");
239       }
240       llvm_unreachable("unknown storage duration");
241     }
242   }
243 
244   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
245   if (const RecordType *RT =
246           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
247     // Get the destructor for the reference temporary.
248     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
249     if (!ClassDecl->hasTrivialDestructor())
250       ReferenceTemporaryDtor = ClassDecl->getDestructor();
251   }
252 
253   if (!ReferenceTemporaryDtor)
254     return;
255 
256   // Call the destructor for the temporary.
257   switch (M->getStorageDuration()) {
258   case SD_Static:
259   case SD_Thread: {
260     llvm::Constant *CleanupFn;
261     llvm::Constant *CleanupArg;
262     if (E->getType()->isArrayType()) {
263       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
264           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
265           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
266           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
267       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
268     } else {
269       CleanupFn =
270         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
271       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
272     }
273     CGF.CGM.getCXXABI().registerGlobalDtor(
274         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
275     break;
276   }
277 
278   case SD_FullExpression:
279     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
280                     CodeGenFunction::destroyCXXObject,
281                     CGF.getLangOpts().Exceptions);
282     break;
283 
284   case SD_Automatic:
285     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
286                                     ReferenceTemporary, E->getType(),
287                                     CodeGenFunction::destroyCXXObject,
288                                     CGF.getLangOpts().Exceptions);
289     break;
290 
291   case SD_Dynamic:
292     llvm_unreachable("temporary cannot have dynamic storage duration");
293   }
294 }
295 
296 static llvm::Value *
297 createReferenceTemporary(CodeGenFunction &CGF,
298                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
299   switch (M->getStorageDuration()) {
300   case SD_FullExpression:
301   case SD_Automatic:
302     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
303 
304   case SD_Thread:
305   case SD_Static:
306     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
307 
308   case SD_Dynamic:
309     llvm_unreachable("temporary can't have dynamic storage duration");
310   }
311   llvm_unreachable("unknown storage duration");
312 }
313 
314 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
315                                            const MaterializeTemporaryExpr *M) {
316   const Expr *E = M->GetTemporaryExpr();
317 
318   if (getLangOpts().ObjCAutoRefCount &&
319       M->getType()->isObjCLifetimeType() &&
320       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
322     // FIXME: Fold this into the general case below.
323     llvm::Value *Object = createReferenceTemporary(*this, M, E);
324     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
325 
326     if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
327       // We should not have emitted the initializer for this temporary as a
328       // constant.
329       assert(!Var->hasInitializer());
330       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
331     }
332 
333     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
334 
335     pushTemporaryCleanup(*this, M, E, Object);
336     return RefTempDst;
337   }
338 
339   SmallVector<const Expr *, 2> CommaLHSs;
340   SmallVector<SubobjectAdjustment, 2> Adjustments;
341   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
342 
343   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
344     EmitIgnoredExpr(CommaLHSs[I]);
345 
346   if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
347     if (opaque->getType()->isRecordType()) {
348       assert(Adjustments.empty());
349       return EmitOpaqueValueLValue(opaque);
350     }
351   }
352 
353   // Create and initialize the reference temporary.
354   llvm::Value *Object = createReferenceTemporary(*this, M, E);
355   if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
356     // If the temporary is a global and has a constant initializer, we may
357     // have already initialized it.
358     if (!Var->hasInitializer()) {
359       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
360       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
361     }
362   } else {
363     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
364   }
365   pushTemporaryCleanup(*this, M, E, Object);
366 
367   // Perform derived-to-base casts and/or field accesses, to get from the
368   // temporary object we created (and, potentially, for which we extended
369   // the lifetime) to the subobject we're binding the reference to.
370   for (unsigned I = Adjustments.size(); I != 0; --I) {
371     SubobjectAdjustment &Adjustment = Adjustments[I-1];
372     switch (Adjustment.Kind) {
373     case SubobjectAdjustment::DerivedToBaseAdjustment:
374       Object =
375           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
376                                 Adjustment.DerivedToBase.BasePath->path_begin(),
377                                 Adjustment.DerivedToBase.BasePath->path_end(),
378                                 /*NullCheckValue=*/ false);
379       break;
380 
381     case SubobjectAdjustment::FieldAdjustment: {
382       LValue LV = MakeAddrLValue(Object, E->getType());
383       LV = EmitLValueForField(LV, Adjustment.Field);
384       assert(LV.isSimple() &&
385              "materialized temporary field is not a simple lvalue");
386       Object = LV.getAddress();
387       break;
388     }
389 
390     case SubobjectAdjustment::MemberPointerAdjustment: {
391       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
392       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
393           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
394       break;
395     }
396     }
397   }
398 
399   return MakeAddrLValue(Object, M->getType());
400 }
401 
402 RValue
403 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
404   // Emit the expression as an lvalue.
405   LValue LV = EmitLValue(E);
406   assert(LV.isSimple());
407   llvm::Value *Value = LV.getAddress();
408 
409   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
410     // C++11 [dcl.ref]p5 (as amended by core issue 453):
411     //   If a glvalue to which a reference is directly bound designates neither
412     //   an existing object or function of an appropriate type nor a region of
413     //   storage of suitable size and alignment to contain an object of the
414     //   reference's type, the behavior is undefined.
415     QualType Ty = E->getType();
416     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
417   }
418 
419   return RValue::get(Value);
420 }
421 
422 
423 /// getAccessedFieldNo - Given an encoded value and a result number, return the
424 /// input field number being accessed.
425 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
426                                              const llvm::Constant *Elts) {
427   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
428       ->getZExtValue();
429 }
430 
431 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
432 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
433                                     llvm::Value *High) {
434   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
435   llvm::Value *K47 = Builder.getInt64(47);
436   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
437   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
438   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
439   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
440   return Builder.CreateMul(B1, KMul);
441 }
442 
443 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
444                                     llvm::Value *Address,
445                                     QualType Ty, CharUnits Alignment) {
446   if (!SanitizePerformTypeCheck)
447     return;
448 
449   // Don't check pointers outside the default address space. The null check
450   // isn't correct, the object-size check isn't supported by LLVM, and we can't
451   // communicate the addresses to the runtime handler for the vptr check.
452   if (Address->getType()->getPointerAddressSpace())
453     return;
454 
455   llvm::Value *Cond = 0;
456   llvm::BasicBlock *Done = 0;
457 
458   if (SanOpts->Null) {
459     // The glvalue must not be an empty glvalue.
460     Cond = Builder.CreateICmpNE(
461         Address, llvm::Constant::getNullValue(Address->getType()));
462 
463     if (TCK == TCK_DowncastPointer) {
464       // When performing a pointer downcast, it's OK if the value is null.
465       // Skip the remaining checks in that case.
466       Done = createBasicBlock("null");
467       llvm::BasicBlock *Rest = createBasicBlock("not.null");
468       Builder.CreateCondBr(Cond, Rest, Done);
469       EmitBlock(Rest);
470       Cond = 0;
471     }
472   }
473 
474   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
475     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
476 
477     // The glvalue must refer to a large enough storage region.
478     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
479     //        to check this.
480     // FIXME: Get object address space
481     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
482     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
483     llvm::Value *Min = Builder.getFalse();
484     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
485     llvm::Value *LargeEnough =
486         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
487                               llvm::ConstantInt::get(IntPtrTy, Size));
488     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
489   }
490 
491   uint64_t AlignVal = 0;
492 
493   if (SanOpts->Alignment) {
494     AlignVal = Alignment.getQuantity();
495     if (!Ty->isIncompleteType() && !AlignVal)
496       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
497 
498     // The glvalue must be suitably aligned.
499     if (AlignVal) {
500       llvm::Value *Align =
501           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
502                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
503       llvm::Value *Aligned =
504         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
505       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
506     }
507   }
508 
509   if (Cond) {
510     llvm::Constant *StaticData[] = {
511       EmitCheckSourceLocation(Loc),
512       EmitCheckTypeDescriptor(Ty),
513       llvm::ConstantInt::get(SizeTy, AlignVal),
514       llvm::ConstantInt::get(Int8Ty, TCK)
515     };
516     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
517   }
518 
519   // If possible, check that the vptr indicates that there is a subobject of
520   // type Ty at offset zero within this object.
521   //
522   // C++11 [basic.life]p5,6:
523   //   [For storage which does not refer to an object within its lifetime]
524   //   The program has undefined behavior if:
525   //    -- the [pointer or glvalue] is used to access a non-static data member
526   //       or call a non-static member function
527   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
528   if (SanOpts->Vptr &&
529       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
530        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
531       RD && RD->hasDefinition() && RD->isDynamicClass()) {
532     // Compute a hash of the mangled name of the type.
533     //
534     // FIXME: This is not guaranteed to be deterministic! Move to a
535     //        fingerprinting mechanism once LLVM provides one. For the time
536     //        being the implementation happens to be deterministic.
537     SmallString<64> MangledName;
538     llvm::raw_svector_ostream Out(MangledName);
539     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
540                                                      Out);
541     llvm::hash_code TypeHash = hash_value(Out.str());
542 
543     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
544     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
545     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
546     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
547     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
548     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
549 
550     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
551     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
552 
553     // Look the hash up in our cache.
554     const int CacheSize = 128;
555     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
556     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
557                                                    "__ubsan_vptr_type_cache");
558     llvm::Value *Slot = Builder.CreateAnd(Hash,
559                                           llvm::ConstantInt::get(IntPtrTy,
560                                                                  CacheSize-1));
561     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
562     llvm::Value *CacheVal =
563       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
564 
565     // If the hash isn't in the cache, call a runtime handler to perform the
566     // hard work of checking whether the vptr is for an object of the right
567     // type. This will either fill in the cache and return, or produce a
568     // diagnostic.
569     llvm::Constant *StaticData[] = {
570       EmitCheckSourceLocation(Loc),
571       EmitCheckTypeDescriptor(Ty),
572       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
573       llvm::ConstantInt::get(Int8Ty, TCK)
574     };
575     llvm::Value *DynamicData[] = { Address, Hash };
576     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
577               "dynamic_type_cache_miss", StaticData, DynamicData,
578               CRK_AlwaysRecoverable);
579   }
580 
581   if (Done) {
582     Builder.CreateBr(Done);
583     EmitBlock(Done);
584   }
585 }
586 
587 /// Determine whether this expression refers to a flexible array member in a
588 /// struct. We disable array bounds checks for such members.
589 static bool isFlexibleArrayMemberExpr(const Expr *E) {
590   // For compatibility with existing code, we treat arrays of length 0 or
591   // 1 as flexible array members.
592   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
593   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
594     if (CAT->getSize().ugt(1))
595       return false;
596   } else if (!isa<IncompleteArrayType>(AT))
597     return false;
598 
599   E = E->IgnoreParens();
600 
601   // A flexible array member must be the last member in the class.
602   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
603     // FIXME: If the base type of the member expr is not FD->getParent(),
604     // this should not be treated as a flexible array member access.
605     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
606       RecordDecl::field_iterator FI(
607           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
608       return ++FI == FD->getParent()->field_end();
609     }
610   }
611 
612   return false;
613 }
614 
615 /// If Base is known to point to the start of an array, return the length of
616 /// that array. Return 0 if the length cannot be determined.
617 static llvm::Value *getArrayIndexingBound(
618     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
619   // For the vector indexing extension, the bound is the number of elements.
620   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
621     IndexedType = Base->getType();
622     return CGF.Builder.getInt32(VT->getNumElements());
623   }
624 
625   Base = Base->IgnoreParens();
626 
627   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
628     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
629         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
630       IndexedType = CE->getSubExpr()->getType();
631       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
632       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
633         return CGF.Builder.getInt(CAT->getSize());
634       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
635         return CGF.getVLASize(VAT).first;
636     }
637   }
638 
639   return 0;
640 }
641 
642 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
643                                       llvm::Value *Index, QualType IndexType,
644                                       bool Accessed) {
645   assert(SanOpts->ArrayBounds &&
646          "should not be called unless adding bounds checks");
647 
648   QualType IndexedType;
649   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
650   if (!Bound)
651     return;
652 
653   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
654   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
655   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
656 
657   llvm::Constant *StaticData[] = {
658     EmitCheckSourceLocation(E->getExprLoc()),
659     EmitCheckTypeDescriptor(IndexedType),
660     EmitCheckTypeDescriptor(IndexType)
661   };
662   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
663                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
664   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
665 }
666 
667 
668 CodeGenFunction::ComplexPairTy CodeGenFunction::
669 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
670                          bool isInc, bool isPre) {
671   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
672 
673   llvm::Value *NextVal;
674   if (isa<llvm::IntegerType>(InVal.first->getType())) {
675     uint64_t AmountVal = isInc ? 1 : -1;
676     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
677 
678     // Add the inc/dec to the real part.
679     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
680   } else {
681     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
682     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
683     if (!isInc)
684       FVal.changeSign();
685     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
686 
687     // Add the inc/dec to the real part.
688     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
689   }
690 
691   ComplexPairTy IncVal(NextVal, InVal.second);
692 
693   // Store the updated result through the lvalue.
694   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
695 
696   // If this is a postinc, return the value read from memory, otherwise use the
697   // updated value.
698   return isPre ? IncVal : InVal;
699 }
700 
701 
702 //===----------------------------------------------------------------------===//
703 //                         LValue Expression Emission
704 //===----------------------------------------------------------------------===//
705 
706 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
707   if (Ty->isVoidType())
708     return RValue::get(0);
709 
710   switch (getEvaluationKind(Ty)) {
711   case TEK_Complex: {
712     llvm::Type *EltTy =
713       ConvertType(Ty->castAs<ComplexType>()->getElementType());
714     llvm::Value *U = llvm::UndefValue::get(EltTy);
715     return RValue::getComplex(std::make_pair(U, U));
716   }
717 
718   // If this is a use of an undefined aggregate type, the aggregate must have an
719   // identifiable address.  Just because the contents of the value are undefined
720   // doesn't mean that the address can't be taken and compared.
721   case TEK_Aggregate: {
722     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
723     return RValue::getAggregate(DestPtr);
724   }
725 
726   case TEK_Scalar:
727     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
728   }
729   llvm_unreachable("bad evaluation kind");
730 }
731 
732 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
733                                               const char *Name) {
734   ErrorUnsupported(E, Name);
735   return GetUndefRValue(E->getType());
736 }
737 
738 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
739                                               const char *Name) {
740   ErrorUnsupported(E, Name);
741   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
742   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
743 }
744 
745 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
746   LValue LV;
747   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
748     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
749   else
750     LV = EmitLValue(E);
751   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
752     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
753                   E->getType(), LV.getAlignment());
754   return LV;
755 }
756 
757 /// EmitLValue - Emit code to compute a designator that specifies the location
758 /// of the expression.
759 ///
760 /// This can return one of two things: a simple address or a bitfield reference.
761 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
762 /// an LLVM pointer type.
763 ///
764 /// If this returns a bitfield reference, nothing about the pointee type of the
765 /// LLVM value is known: For example, it may not be a pointer to an integer.
766 ///
767 /// If this returns a normal address, and if the lvalue's C type is fixed size,
768 /// this method guarantees that the returned pointer type will point to an LLVM
769 /// type of the same size of the lvalue's type.  If the lvalue has a variable
770 /// length type, this is not possible.
771 ///
772 LValue CodeGenFunction::EmitLValue(const Expr *E) {
773   switch (E->getStmtClass()) {
774   default: return EmitUnsupportedLValue(E, "l-value expression");
775 
776   case Expr::ObjCPropertyRefExprClass:
777     llvm_unreachable("cannot emit a property reference directly");
778 
779   case Expr::ObjCSelectorExprClass:
780     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
781   case Expr::ObjCIsaExprClass:
782     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
783   case Expr::BinaryOperatorClass:
784     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
785   case Expr::CompoundAssignOperatorClass:
786     if (!E->getType()->isAnyComplexType())
787       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
788     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
789   case Expr::CallExprClass:
790   case Expr::CXXMemberCallExprClass:
791   case Expr::CXXOperatorCallExprClass:
792   case Expr::UserDefinedLiteralClass:
793     return EmitCallExprLValue(cast<CallExpr>(E));
794   case Expr::VAArgExprClass:
795     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
796   case Expr::DeclRefExprClass:
797     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
798   case Expr::ParenExprClass:
799     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
800   case Expr::GenericSelectionExprClass:
801     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
802   case Expr::PredefinedExprClass:
803     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
804   case Expr::StringLiteralClass:
805     return EmitStringLiteralLValue(cast<StringLiteral>(E));
806   case Expr::ObjCEncodeExprClass:
807     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
808   case Expr::PseudoObjectExprClass:
809     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
810   case Expr::InitListExprClass:
811     return EmitInitListLValue(cast<InitListExpr>(E));
812   case Expr::CXXTemporaryObjectExprClass:
813   case Expr::CXXConstructExprClass:
814     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
815   case Expr::CXXBindTemporaryExprClass:
816     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
817   case Expr::CXXUuidofExprClass:
818     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
819   case Expr::LambdaExprClass:
820     return EmitLambdaLValue(cast<LambdaExpr>(E));
821 
822   case Expr::ExprWithCleanupsClass: {
823     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
824     enterFullExpression(cleanups);
825     RunCleanupsScope Scope(*this);
826     return EmitLValue(cleanups->getSubExpr());
827   }
828 
829   case Expr::CXXDefaultArgExprClass:
830     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
831   case Expr::CXXDefaultInitExprClass: {
832     CXXDefaultInitExprScope Scope(*this);
833     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
834   }
835   case Expr::CXXTypeidExprClass:
836     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
837 
838   case Expr::ObjCMessageExprClass:
839     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
840   case Expr::ObjCIvarRefExprClass:
841     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
842   case Expr::StmtExprClass:
843     return EmitStmtExprLValue(cast<StmtExpr>(E));
844   case Expr::UnaryOperatorClass:
845     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
846   case Expr::ArraySubscriptExprClass:
847     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
848   case Expr::ExtVectorElementExprClass:
849     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
850   case Expr::MemberExprClass:
851     return EmitMemberExpr(cast<MemberExpr>(E));
852   case Expr::CompoundLiteralExprClass:
853     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
854   case Expr::ConditionalOperatorClass:
855     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
856   case Expr::BinaryConditionalOperatorClass:
857     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
858   case Expr::ChooseExprClass:
859     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
860   case Expr::OpaqueValueExprClass:
861     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
862   case Expr::SubstNonTypeTemplateParmExprClass:
863     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
864   case Expr::ImplicitCastExprClass:
865   case Expr::CStyleCastExprClass:
866   case Expr::CXXFunctionalCastExprClass:
867   case Expr::CXXStaticCastExprClass:
868   case Expr::CXXDynamicCastExprClass:
869   case Expr::CXXReinterpretCastExprClass:
870   case Expr::CXXConstCastExprClass:
871   case Expr::ObjCBridgedCastExprClass:
872     return EmitCastLValue(cast<CastExpr>(E));
873 
874   case Expr::MaterializeTemporaryExprClass:
875     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
876   }
877 }
878 
879 /// Given an object of the given canonical type, can we safely copy a
880 /// value out of it based on its initializer?
881 static bool isConstantEmittableObjectType(QualType type) {
882   assert(type.isCanonical());
883   assert(!type->isReferenceType());
884 
885   // Must be const-qualified but non-volatile.
886   Qualifiers qs = type.getLocalQualifiers();
887   if (!qs.hasConst() || qs.hasVolatile()) return false;
888 
889   // Otherwise, all object types satisfy this except C++ classes with
890   // mutable subobjects or non-trivial copy/destroy behavior.
891   if (const RecordType *RT = dyn_cast<RecordType>(type))
892     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
893       if (RD->hasMutableFields() || !RD->isTrivial())
894         return false;
895 
896   return true;
897 }
898 
899 /// Can we constant-emit a load of a reference to a variable of the
900 /// given type?  This is different from predicates like
901 /// Decl::isUsableInConstantExpressions because we do want it to apply
902 /// in situations that don't necessarily satisfy the language's rules
903 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
904 /// to do this with const float variables even if those variables
905 /// aren't marked 'constexpr'.
906 enum ConstantEmissionKind {
907   CEK_None,
908   CEK_AsReferenceOnly,
909   CEK_AsValueOrReference,
910   CEK_AsValueOnly
911 };
912 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
913   type = type.getCanonicalType();
914   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
915     if (isConstantEmittableObjectType(ref->getPointeeType()))
916       return CEK_AsValueOrReference;
917     return CEK_AsReferenceOnly;
918   }
919   if (isConstantEmittableObjectType(type))
920     return CEK_AsValueOnly;
921   return CEK_None;
922 }
923 
924 /// Try to emit a reference to the given value without producing it as
925 /// an l-value.  This is actually more than an optimization: we can't
926 /// produce an l-value for variables that we never actually captured
927 /// in a block or lambda, which means const int variables or constexpr
928 /// literals or similar.
929 CodeGenFunction::ConstantEmission
930 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
931   ValueDecl *value = refExpr->getDecl();
932 
933   // The value needs to be an enum constant or a constant variable.
934   ConstantEmissionKind CEK;
935   if (isa<ParmVarDecl>(value)) {
936     CEK = CEK_None;
937   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
938     CEK = checkVarTypeForConstantEmission(var->getType());
939   } else if (isa<EnumConstantDecl>(value)) {
940     CEK = CEK_AsValueOnly;
941   } else {
942     CEK = CEK_None;
943   }
944   if (CEK == CEK_None) return ConstantEmission();
945 
946   Expr::EvalResult result;
947   bool resultIsReference;
948   QualType resultType;
949 
950   // It's best to evaluate all the way as an r-value if that's permitted.
951   if (CEK != CEK_AsReferenceOnly &&
952       refExpr->EvaluateAsRValue(result, getContext())) {
953     resultIsReference = false;
954     resultType = refExpr->getType();
955 
956   // Otherwise, try to evaluate as an l-value.
957   } else if (CEK != CEK_AsValueOnly &&
958              refExpr->EvaluateAsLValue(result, getContext())) {
959     resultIsReference = true;
960     resultType = value->getType();
961 
962   // Failure.
963   } else {
964     return ConstantEmission();
965   }
966 
967   // In any case, if the initializer has side-effects, abandon ship.
968   if (result.HasSideEffects)
969     return ConstantEmission();
970 
971   // Emit as a constant.
972   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
973 
974   // Make sure we emit a debug reference to the global variable.
975   // This should probably fire even for
976   if (isa<VarDecl>(value)) {
977     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
978       EmitDeclRefExprDbgValue(refExpr, C);
979   } else {
980     assert(isa<EnumConstantDecl>(value));
981     EmitDeclRefExprDbgValue(refExpr, C);
982   }
983 
984   // If we emitted a reference constant, we need to dereference that.
985   if (resultIsReference)
986     return ConstantEmission::forReference(C);
987 
988   return ConstantEmission::forValue(C);
989 }
990 
991 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
992                                                SourceLocation Loc) {
993   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
994                           lvalue.getAlignment().getQuantity(),
995                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
996                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
997 }
998 
999 static bool hasBooleanRepresentation(QualType Ty) {
1000   if (Ty->isBooleanType())
1001     return true;
1002 
1003   if (const EnumType *ET = Ty->getAs<EnumType>())
1004     return ET->getDecl()->getIntegerType()->isBooleanType();
1005 
1006   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1007     return hasBooleanRepresentation(AT->getValueType());
1008 
1009   return false;
1010 }
1011 
1012 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1013                             llvm::APInt &Min, llvm::APInt &End,
1014                             bool StrictEnums) {
1015   const EnumType *ET = Ty->getAs<EnumType>();
1016   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1017                                 ET && !ET->getDecl()->isFixed();
1018   bool IsBool = hasBooleanRepresentation(Ty);
1019   if (!IsBool && !IsRegularCPlusPlusEnum)
1020     return false;
1021 
1022   if (IsBool) {
1023     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1024     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1025   } else {
1026     const EnumDecl *ED = ET->getDecl();
1027     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1028     unsigned Bitwidth = LTy->getScalarSizeInBits();
1029     unsigned NumNegativeBits = ED->getNumNegativeBits();
1030     unsigned NumPositiveBits = ED->getNumPositiveBits();
1031 
1032     if (NumNegativeBits) {
1033       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1034       assert(NumBits <= Bitwidth);
1035       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1036       Min = -End;
1037     } else {
1038       assert(NumPositiveBits <= Bitwidth);
1039       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1040       Min = llvm::APInt(Bitwidth, 0);
1041     }
1042   }
1043   return true;
1044 }
1045 
1046 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1047   llvm::APInt Min, End;
1048   if (!getRangeForType(*this, Ty, Min, End,
1049                        CGM.getCodeGenOpts().StrictEnums))
1050     return 0;
1051 
1052   llvm::MDBuilder MDHelper(getLLVMContext());
1053   return MDHelper.createRange(Min, End);
1054 }
1055 
1056 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1057                                                unsigned Alignment, QualType Ty,
1058                                                SourceLocation Loc,
1059                                                llvm::MDNode *TBAAInfo,
1060                                                QualType TBAABaseType,
1061                                                uint64_t TBAAOffset) {
1062   // For better performance, handle vector loads differently.
1063   if (Ty->isVectorType()) {
1064     llvm::Value *V;
1065     const llvm::Type *EltTy =
1066     cast<llvm::PointerType>(Addr->getType())->getElementType();
1067 
1068     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1069 
1070     // Handle vectors of size 3, like size 4 for better performance.
1071     if (VTy->getNumElements() == 3) {
1072 
1073       // Bitcast to vec4 type.
1074       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1075                                                          4);
1076       llvm::PointerType *ptVec4Ty =
1077       llvm::PointerType::get(vec4Ty,
1078                              (cast<llvm::PointerType>(
1079                                       Addr->getType()))->getAddressSpace());
1080       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1081                                                 "castToVec4");
1082       // Now load value.
1083       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1084 
1085       // Shuffle vector to get vec3.
1086       llvm::Constant *Mask[] = {
1087         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1088         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1089         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1090       };
1091 
1092       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1093       V = Builder.CreateShuffleVector(LoadVal,
1094                                       llvm::UndefValue::get(vec4Ty),
1095                                       MaskV, "extractVec");
1096       return EmitFromMemory(V, Ty);
1097     }
1098   }
1099 
1100   // Atomic operations have to be done on integral types.
1101   if (Ty->isAtomicType()) {
1102     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1103                                      CharUnits::fromQuantity(Alignment),
1104                                      getContext(), TBAAInfo);
1105     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1106   }
1107 
1108   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1109   if (Volatile)
1110     Load->setVolatile(true);
1111   if (Alignment)
1112     Load->setAlignment(Alignment);
1113   if (TBAAInfo) {
1114     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1115                                                       TBAAOffset);
1116     if (TBAAPath)
1117       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1118   }
1119 
1120   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1121       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1122     llvm::APInt Min, End;
1123     if (getRangeForType(*this, Ty, Min, End, true)) {
1124       --End;
1125       llvm::Value *Check;
1126       if (!Min)
1127         Check = Builder.CreateICmpULE(
1128           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1129       else {
1130         llvm::Value *Upper = Builder.CreateICmpSLE(
1131           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1132         llvm::Value *Lower = Builder.CreateICmpSGE(
1133           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1134         Check = Builder.CreateAnd(Upper, Lower);
1135       }
1136       llvm::Constant *StaticArgs[] = {
1137         EmitCheckSourceLocation(Loc),
1138         EmitCheckTypeDescriptor(Ty)
1139       };
1140       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1141                 CRK_Recoverable);
1142     }
1143   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1144     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1145       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1146 
1147   return EmitFromMemory(Load, Ty);
1148 }
1149 
1150 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1151   // Bool has a different representation in memory than in registers.
1152   if (hasBooleanRepresentation(Ty)) {
1153     // This should really always be an i1, but sometimes it's already
1154     // an i8, and it's awkward to track those cases down.
1155     if (Value->getType()->isIntegerTy(1))
1156       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1157     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1158            "wrong value rep of bool");
1159   }
1160 
1161   return Value;
1162 }
1163 
1164 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1165   // Bool has a different representation in memory than in registers.
1166   if (hasBooleanRepresentation(Ty)) {
1167     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1168            "wrong value rep of bool");
1169     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1170   }
1171 
1172   return Value;
1173 }
1174 
1175 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1176                                         bool Volatile, unsigned Alignment,
1177                                         QualType Ty, llvm::MDNode *TBAAInfo,
1178                                         bool isInit, QualType TBAABaseType,
1179                                         uint64_t TBAAOffset) {
1180 
1181   // Handle vectors differently to get better performance.
1182   if (Ty->isVectorType()) {
1183     llvm::Type *SrcTy = Value->getType();
1184     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1185     // Handle vec3 special.
1186     if (VecTy->getNumElements() == 3) {
1187       llvm::LLVMContext &VMContext = getLLVMContext();
1188 
1189       // Our source is a vec3, do a shuffle vector to make it a vec4.
1190       SmallVector<llvm::Constant*, 4> Mask;
1191       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1192                                             0));
1193       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1194                                             1));
1195       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1196                                             2));
1197       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1198 
1199       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1200       Value = Builder.CreateShuffleVector(Value,
1201                                           llvm::UndefValue::get(VecTy),
1202                                           MaskV, "extractVec");
1203       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1204     }
1205     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1206     if (DstPtr->getElementType() != SrcTy) {
1207       llvm::Type *MemTy =
1208       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1209       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1210     }
1211   }
1212 
1213   Value = EmitToMemory(Value, Ty);
1214 
1215   if (Ty->isAtomicType()) {
1216     EmitAtomicStore(RValue::get(Value),
1217                     LValue::MakeAddr(Addr, Ty,
1218                                      CharUnits::fromQuantity(Alignment),
1219                                      getContext(), TBAAInfo),
1220                     isInit);
1221     return;
1222   }
1223 
1224   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1225   if (Alignment)
1226     Store->setAlignment(Alignment);
1227   if (TBAAInfo) {
1228     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1229                                                       TBAAOffset);
1230     if (TBAAPath)
1231       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1232   }
1233 }
1234 
1235 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1236                                         bool isInit) {
1237   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1238                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1239                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1240                     lvalue.getTBAAOffset());
1241 }
1242 
1243 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1244 /// method emits the address of the lvalue, then loads the result as an rvalue,
1245 /// returning the rvalue.
1246 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1247   if (LV.isObjCWeak()) {
1248     // load of a __weak object.
1249     llvm::Value *AddrWeakObj = LV.getAddress();
1250     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1251                                                              AddrWeakObj));
1252   }
1253   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1254     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1255     Object = EmitObjCConsumeObject(LV.getType(), Object);
1256     return RValue::get(Object);
1257   }
1258 
1259   if (LV.isSimple()) {
1260     assert(!LV.getType()->isFunctionType());
1261 
1262     // Everything needs a load.
1263     return RValue::get(EmitLoadOfScalar(LV, Loc));
1264   }
1265 
1266   if (LV.isVectorElt()) {
1267     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1268                                               LV.isVolatileQualified());
1269     Load->setAlignment(LV.getAlignment().getQuantity());
1270     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1271                                                     "vecext"));
1272   }
1273 
1274   // If this is a reference to a subset of the elements of a vector, either
1275   // shuffle the input or extract/insert them as appropriate.
1276   if (LV.isExtVectorElt())
1277     return EmitLoadOfExtVectorElementLValue(LV);
1278 
1279   assert(LV.isBitField() && "Unknown LValue type!");
1280   return EmitLoadOfBitfieldLValue(LV);
1281 }
1282 
1283 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1284   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1285 
1286   // Get the output type.
1287   llvm::Type *ResLTy = ConvertType(LV.getType());
1288 
1289   llvm::Value *Ptr = LV.getBitFieldAddr();
1290   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1291                                         "bf.load");
1292   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1293 
1294   if (Info.IsSigned) {
1295     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1296     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1297     if (HighBits)
1298       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1299     if (Info.Offset + HighBits)
1300       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1301   } else {
1302     if (Info.Offset)
1303       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1304     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1305       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1306                                                               Info.Size),
1307                               "bf.clear");
1308   }
1309   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1310 
1311   return RValue::get(Val);
1312 }
1313 
1314 // If this is a reference to a subset of the elements of a vector, create an
1315 // appropriate shufflevector.
1316 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1317   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1318                                             LV.isVolatileQualified());
1319   Load->setAlignment(LV.getAlignment().getQuantity());
1320   llvm::Value *Vec = Load;
1321 
1322   const llvm::Constant *Elts = LV.getExtVectorElts();
1323 
1324   // If the result of the expression is a non-vector type, we must be extracting
1325   // a single element.  Just codegen as an extractelement.
1326   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1327   if (!ExprVT) {
1328     unsigned InIdx = getAccessedFieldNo(0, Elts);
1329     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1330     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1331   }
1332 
1333   // Always use shuffle vector to try to retain the original program structure
1334   unsigned NumResultElts = ExprVT->getNumElements();
1335 
1336   SmallVector<llvm::Constant*, 4> Mask;
1337   for (unsigned i = 0; i != NumResultElts; ++i)
1338     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1339 
1340   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1341   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1342                                     MaskV);
1343   return RValue::get(Vec);
1344 }
1345 
1346 
1347 
1348 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1349 /// lvalue, where both are guaranteed to the have the same type, and that type
1350 /// is 'Ty'.
1351 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1352                                              bool isInit) {
1353   if (!Dst.isSimple()) {
1354     if (Dst.isVectorElt()) {
1355       // Read/modify/write the vector, inserting the new element.
1356       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1357                                                 Dst.isVolatileQualified());
1358       Load->setAlignment(Dst.getAlignment().getQuantity());
1359       llvm::Value *Vec = Load;
1360       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1361                                         Dst.getVectorIdx(), "vecins");
1362       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1363                                                    Dst.isVolatileQualified());
1364       Store->setAlignment(Dst.getAlignment().getQuantity());
1365       return;
1366     }
1367 
1368     // If this is an update of extended vector elements, insert them as
1369     // appropriate.
1370     if (Dst.isExtVectorElt())
1371       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1372 
1373     assert(Dst.isBitField() && "Unknown LValue type");
1374     return EmitStoreThroughBitfieldLValue(Src, Dst);
1375   }
1376 
1377   // There's special magic for assigning into an ARC-qualified l-value.
1378   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1379     switch (Lifetime) {
1380     case Qualifiers::OCL_None:
1381       llvm_unreachable("present but none");
1382 
1383     case Qualifiers::OCL_ExplicitNone:
1384       // nothing special
1385       break;
1386 
1387     case Qualifiers::OCL_Strong:
1388       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1389       return;
1390 
1391     case Qualifiers::OCL_Weak:
1392       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1393       return;
1394 
1395     case Qualifiers::OCL_Autoreleasing:
1396       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1397                                                      Src.getScalarVal()));
1398       // fall into the normal path
1399       break;
1400     }
1401   }
1402 
1403   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1404     // load of a __weak object.
1405     llvm::Value *LvalueDst = Dst.getAddress();
1406     llvm::Value *src = Src.getScalarVal();
1407      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1408     return;
1409   }
1410 
1411   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1412     // load of a __strong object.
1413     llvm::Value *LvalueDst = Dst.getAddress();
1414     llvm::Value *src = Src.getScalarVal();
1415     if (Dst.isObjCIvar()) {
1416       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1417       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1418       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1419       llvm::Value *dst = RHS;
1420       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1421       llvm::Value *LHS =
1422         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1423       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1424       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1425                                               BytesBetween);
1426     } else if (Dst.isGlobalObjCRef()) {
1427       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1428                                                 Dst.isThreadLocalRef());
1429     }
1430     else
1431       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1432     return;
1433   }
1434 
1435   assert(Src.isScalar() && "Can't emit an agg store with this method");
1436   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1437 }
1438 
1439 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1440                                                      llvm::Value **Result) {
1441   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1442   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1443   llvm::Value *Ptr = Dst.getBitFieldAddr();
1444 
1445   // Get the source value, truncated to the width of the bit-field.
1446   llvm::Value *SrcVal = Src.getScalarVal();
1447 
1448   // Cast the source to the storage type and shift it into place.
1449   SrcVal = Builder.CreateIntCast(SrcVal,
1450                                  Ptr->getType()->getPointerElementType(),
1451                                  /*IsSigned=*/false);
1452   llvm::Value *MaskedVal = SrcVal;
1453 
1454   // See if there are other bits in the bitfield's storage we'll need to load
1455   // and mask together with source before storing.
1456   if (Info.StorageSize != Info.Size) {
1457     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1458     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1459                                           "bf.load");
1460     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1461 
1462     // Mask the source value as needed.
1463     if (!hasBooleanRepresentation(Dst.getType()))
1464       SrcVal = Builder.CreateAnd(SrcVal,
1465                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1466                                                             Info.Size),
1467                                  "bf.value");
1468     MaskedVal = SrcVal;
1469     if (Info.Offset)
1470       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1471 
1472     // Mask out the original value.
1473     Val = Builder.CreateAnd(Val,
1474                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1475                                                      Info.Offset,
1476                                                      Info.Offset + Info.Size),
1477                             "bf.clear");
1478 
1479     // Or together the unchanged values and the source value.
1480     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1481   } else {
1482     assert(Info.Offset == 0);
1483   }
1484 
1485   // Write the new value back out.
1486   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1487                                                Dst.isVolatileQualified());
1488   Store->setAlignment(Info.StorageAlignment);
1489 
1490   // Return the new value of the bit-field, if requested.
1491   if (Result) {
1492     llvm::Value *ResultVal = MaskedVal;
1493 
1494     // Sign extend the value if needed.
1495     if (Info.IsSigned) {
1496       assert(Info.Size <= Info.StorageSize);
1497       unsigned HighBits = Info.StorageSize - Info.Size;
1498       if (HighBits) {
1499         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1500         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1501       }
1502     }
1503 
1504     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1505                                       "bf.result.cast");
1506     *Result = EmitFromMemory(ResultVal, Dst.getType());
1507   }
1508 }
1509 
1510 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1511                                                                LValue Dst) {
1512   // This access turns into a read/modify/write of the vector.  Load the input
1513   // value now.
1514   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1515                                             Dst.isVolatileQualified());
1516   Load->setAlignment(Dst.getAlignment().getQuantity());
1517   llvm::Value *Vec = Load;
1518   const llvm::Constant *Elts = Dst.getExtVectorElts();
1519 
1520   llvm::Value *SrcVal = Src.getScalarVal();
1521 
1522   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1523     unsigned NumSrcElts = VTy->getNumElements();
1524     unsigned NumDstElts =
1525        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1526     if (NumDstElts == NumSrcElts) {
1527       // Use shuffle vector is the src and destination are the same number of
1528       // elements and restore the vector mask since it is on the side it will be
1529       // stored.
1530       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1531       for (unsigned i = 0; i != NumSrcElts; ++i)
1532         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1533 
1534       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1535       Vec = Builder.CreateShuffleVector(SrcVal,
1536                                         llvm::UndefValue::get(Vec->getType()),
1537                                         MaskV);
1538     } else if (NumDstElts > NumSrcElts) {
1539       // Extended the source vector to the same length and then shuffle it
1540       // into the destination.
1541       // FIXME: since we're shuffling with undef, can we just use the indices
1542       //        into that?  This could be simpler.
1543       SmallVector<llvm::Constant*, 4> ExtMask;
1544       for (unsigned i = 0; i != NumSrcElts; ++i)
1545         ExtMask.push_back(Builder.getInt32(i));
1546       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1547       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1548       llvm::Value *ExtSrcVal =
1549         Builder.CreateShuffleVector(SrcVal,
1550                                     llvm::UndefValue::get(SrcVal->getType()),
1551                                     ExtMaskV);
1552       // build identity
1553       SmallVector<llvm::Constant*, 4> Mask;
1554       for (unsigned i = 0; i != NumDstElts; ++i)
1555         Mask.push_back(Builder.getInt32(i));
1556 
1557       // When the vector size is odd and .odd or .hi is used, the last element
1558       // of the Elts constant array will be one past the size of the vector.
1559       // Ignore the last element here, if it is greater than the mask size.
1560       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1561         NumSrcElts--;
1562 
1563       // modify when what gets shuffled in
1564       for (unsigned i = 0; i != NumSrcElts; ++i)
1565         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1566       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1567       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1568     } else {
1569       // We should never shorten the vector
1570       llvm_unreachable("unexpected shorten vector length");
1571     }
1572   } else {
1573     // If the Src is a scalar (not a vector) it must be updating one element.
1574     unsigned InIdx = getAccessedFieldNo(0, Elts);
1575     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1576     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1577   }
1578 
1579   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1580                                                Dst.isVolatileQualified());
1581   Store->setAlignment(Dst.getAlignment().getQuantity());
1582 }
1583 
1584 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1585 // generating write-barries API. It is currently a global, ivar,
1586 // or neither.
1587 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1588                                  LValue &LV,
1589                                  bool IsMemberAccess=false) {
1590   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1591     return;
1592 
1593   if (isa<ObjCIvarRefExpr>(E)) {
1594     QualType ExpTy = E->getType();
1595     if (IsMemberAccess && ExpTy->isPointerType()) {
1596       // If ivar is a structure pointer, assigning to field of
1597       // this struct follows gcc's behavior and makes it a non-ivar
1598       // writer-barrier conservatively.
1599       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1600       if (ExpTy->isRecordType()) {
1601         LV.setObjCIvar(false);
1602         return;
1603       }
1604     }
1605     LV.setObjCIvar(true);
1606     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1607     LV.setBaseIvarExp(Exp->getBase());
1608     LV.setObjCArray(E->getType()->isArrayType());
1609     return;
1610   }
1611 
1612   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1613     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1614       if (VD->hasGlobalStorage()) {
1615         LV.setGlobalObjCRef(true);
1616         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1617       }
1618     }
1619     LV.setObjCArray(E->getType()->isArrayType());
1620     return;
1621   }
1622 
1623   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1624     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1625     return;
1626   }
1627 
1628   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1629     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1630     if (LV.isObjCIvar()) {
1631       // If cast is to a structure pointer, follow gcc's behavior and make it
1632       // a non-ivar write-barrier.
1633       QualType ExpTy = E->getType();
1634       if (ExpTy->isPointerType())
1635         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1636       if (ExpTy->isRecordType())
1637         LV.setObjCIvar(false);
1638     }
1639     return;
1640   }
1641 
1642   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1643     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1644     return;
1645   }
1646 
1647   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1648     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1649     return;
1650   }
1651 
1652   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1653     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1654     return;
1655   }
1656 
1657   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1658     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1659     return;
1660   }
1661 
1662   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1663     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1664     if (LV.isObjCIvar() && !LV.isObjCArray())
1665       // Using array syntax to assigning to what an ivar points to is not
1666       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1667       LV.setObjCIvar(false);
1668     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1669       // Using array syntax to assigning to what global points to is not
1670       // same as assigning to the global itself. {id *G;} G[i] = 0;
1671       LV.setGlobalObjCRef(false);
1672     return;
1673   }
1674 
1675   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1676     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1677     // We don't know if member is an 'ivar', but this flag is looked at
1678     // only in the context of LV.isObjCIvar().
1679     LV.setObjCArray(E->getType()->isArrayType());
1680     return;
1681   }
1682 }
1683 
1684 static llvm::Value *
1685 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1686                                 llvm::Value *V, llvm::Type *IRType,
1687                                 StringRef Name = StringRef()) {
1688   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1689   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1690 }
1691 
1692 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1693                                       const Expr *E, const VarDecl *VD) {
1694   QualType T = E->getType();
1695 
1696   // If it's thread_local, emit a call to its wrapper function instead.
1697   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1698     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1699 
1700   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1701   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1702   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1703   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1704   LValue LV;
1705   if (VD->getType()->isReferenceType()) {
1706     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1707     LI->setAlignment(Alignment.getQuantity());
1708     V = LI;
1709     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1710   } else {
1711     LV = CGF.MakeAddrLValue(V, T, Alignment);
1712   }
1713   setObjCGCLValueClass(CGF.getContext(), E, LV);
1714   return LV;
1715 }
1716 
1717 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1718                                      const Expr *E, const FunctionDecl *FD) {
1719   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1720   if (!FD->hasPrototype()) {
1721     if (const FunctionProtoType *Proto =
1722             FD->getType()->getAs<FunctionProtoType>()) {
1723       // Ugly case: for a K&R-style definition, the type of the definition
1724       // isn't the same as the type of a use.  Correct for this with a
1725       // bitcast.
1726       QualType NoProtoType =
1727           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1728       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1729       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1730     }
1731   }
1732   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1733   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1734 }
1735 
1736 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1737                                       llvm::Value *ThisValue) {
1738   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1739   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1740   return CGF.EmitLValueForField(LV, FD);
1741 }
1742 
1743 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1744   const NamedDecl *ND = E->getDecl();
1745   CharUnits Alignment = getContext().getDeclAlign(ND);
1746   QualType T = E->getType();
1747 
1748   // A DeclRefExpr for a reference initialized by a constant expression can
1749   // appear without being odr-used. Directly emit the constant initializer.
1750   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1751     const Expr *Init = VD->getAnyInitializer(VD);
1752     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1753         VD->isUsableInConstantExpressions(getContext()) &&
1754         VD->checkInitIsICE()) {
1755       llvm::Constant *Val =
1756         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1757       assert(Val && "failed to emit reference constant expression");
1758       // FIXME: Eventually we will want to emit vector element references.
1759       return MakeAddrLValue(Val, T, Alignment);
1760     }
1761   }
1762 
1763   // FIXME: We should be able to assert this for FunctionDecls as well!
1764   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1765   // those with a valid source location.
1766   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1767           !E->getLocation().isValid()) &&
1768          "Should not use decl without marking it used!");
1769 
1770   if (ND->hasAttr<WeakRefAttr>()) {
1771     const ValueDecl *VD = cast<ValueDecl>(ND);
1772     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1773     return MakeAddrLValue(Aliasee, T, Alignment);
1774   }
1775 
1776   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1777     // Check if this is a global variable.
1778     if (VD->hasLinkage() || VD->isStaticDataMember())
1779       return EmitGlobalVarDeclLValue(*this, E, VD);
1780 
1781     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1782 
1783     llvm::Value *V = LocalDeclMap.lookup(VD);
1784     if (!V && VD->isStaticLocal())
1785       V = CGM.getStaticLocalDeclAddress(VD);
1786 
1787     // Use special handling for lambdas.
1788     if (!V) {
1789       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1790         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1791       } else if (CapturedStmtInfo) {
1792         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1793           return EmitCapturedFieldLValue(*this, FD,
1794                                          CapturedStmtInfo->getContextValue());
1795       }
1796 
1797       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1798       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1799                             T, Alignment);
1800     }
1801 
1802     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1803 
1804     if (isBlockVariable)
1805       V = BuildBlockByrefAddress(V, VD);
1806 
1807     LValue LV;
1808     if (VD->getType()->isReferenceType()) {
1809       llvm::LoadInst *LI = Builder.CreateLoad(V);
1810       LI->setAlignment(Alignment.getQuantity());
1811       V = LI;
1812       LV = MakeNaturalAlignAddrLValue(V, T);
1813     } else {
1814       LV = MakeAddrLValue(V, T, Alignment);
1815     }
1816 
1817     bool isLocalStorage = VD->hasLocalStorage();
1818 
1819     bool NonGCable = isLocalStorage &&
1820                      !VD->getType()->isReferenceType() &&
1821                      !isBlockVariable;
1822     if (NonGCable) {
1823       LV.getQuals().removeObjCGCAttr();
1824       LV.setNonGC(true);
1825     }
1826 
1827     bool isImpreciseLifetime =
1828       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1829     if (isImpreciseLifetime)
1830       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1831     setObjCGCLValueClass(getContext(), E, LV);
1832     return LV;
1833   }
1834 
1835   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1836     return EmitFunctionDeclLValue(*this, E, FD);
1837 
1838   llvm_unreachable("Unhandled DeclRefExpr");
1839 }
1840 
1841 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1842   // __extension__ doesn't affect lvalue-ness.
1843   if (E->getOpcode() == UO_Extension)
1844     return EmitLValue(E->getSubExpr());
1845 
1846   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1847   switch (E->getOpcode()) {
1848   default: llvm_unreachable("Unknown unary operator lvalue!");
1849   case UO_Deref: {
1850     QualType T = E->getSubExpr()->getType()->getPointeeType();
1851     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1852 
1853     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1854     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1855 
1856     // We should not generate __weak write barrier on indirect reference
1857     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1858     // But, we continue to generate __strong write barrier on indirect write
1859     // into a pointer to object.
1860     if (getLangOpts().ObjC1 &&
1861         getLangOpts().getGC() != LangOptions::NonGC &&
1862         LV.isObjCWeak())
1863       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1864     return LV;
1865   }
1866   case UO_Real:
1867   case UO_Imag: {
1868     LValue LV = EmitLValue(E->getSubExpr());
1869     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1870     llvm::Value *Addr = LV.getAddress();
1871 
1872     // __real is valid on scalars.  This is a faster way of testing that.
1873     // __imag can only produce an rvalue on scalars.
1874     if (E->getOpcode() == UO_Real &&
1875         !cast<llvm::PointerType>(Addr->getType())
1876            ->getElementType()->isStructTy()) {
1877       assert(E->getSubExpr()->getType()->isArithmeticType());
1878       return LV;
1879     }
1880 
1881     assert(E->getSubExpr()->getType()->isAnyComplexType());
1882 
1883     unsigned Idx = E->getOpcode() == UO_Imag;
1884     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1885                                                   Idx, "idx"),
1886                           ExprTy);
1887   }
1888   case UO_PreInc:
1889   case UO_PreDec: {
1890     LValue LV = EmitLValue(E->getSubExpr());
1891     bool isInc = E->getOpcode() == UO_PreInc;
1892 
1893     if (E->getType()->isAnyComplexType())
1894       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1895     else
1896       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1897     return LV;
1898   }
1899   }
1900 }
1901 
1902 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1903   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1904                         E->getType());
1905 }
1906 
1907 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1908   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1909                         E->getType());
1910 }
1911 
1912 static llvm::Constant*
1913 GetAddrOfConstantWideString(StringRef Str,
1914                             const char *GlobalName,
1915                             ASTContext &Context,
1916                             QualType Ty, SourceLocation Loc,
1917                             CodeGenModule &CGM) {
1918 
1919   StringLiteral *SL = StringLiteral::Create(Context,
1920                                             Str,
1921                                             StringLiteral::Wide,
1922                                             /*Pascal = */false,
1923                                             Ty, Loc);
1924   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1925   llvm::GlobalVariable *GV =
1926     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1927                              !CGM.getLangOpts().WritableStrings,
1928                              llvm::GlobalValue::PrivateLinkage,
1929                              C, GlobalName);
1930   const unsigned WideAlignment =
1931     Context.getTypeAlignInChars(Ty).getQuantity();
1932   GV->setAlignment(WideAlignment);
1933   return GV;
1934 }
1935 
1936 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1937                                     SmallString<32>& Target) {
1938   Target.resize(CharByteWidth * (Source.size() + 1));
1939   char *ResultPtr = &Target[0];
1940   const UTF8 *ErrorPtr;
1941   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1942   (void)success;
1943   assert(success);
1944   Target.resize(ResultPtr - &Target[0]);
1945 }
1946 
1947 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1948   switch (E->getIdentType()) {
1949   default:
1950     return EmitUnsupportedLValue(E, "predefined expression");
1951 
1952   case PredefinedExpr::Func:
1953   case PredefinedExpr::Function:
1954   case PredefinedExpr::LFunction:
1955   case PredefinedExpr::FuncDName:
1956   case PredefinedExpr::PrettyFunction: {
1957     PredefinedExpr::IdentType IdentType = E->getIdentType();
1958     std::string GlobalVarName;
1959 
1960     switch (IdentType) {
1961     default: llvm_unreachable("Invalid type");
1962     case PredefinedExpr::Func:
1963       GlobalVarName = "__func__.";
1964       break;
1965     case PredefinedExpr::Function:
1966       GlobalVarName = "__FUNCTION__.";
1967       break;
1968     case PredefinedExpr::FuncDName:
1969       GlobalVarName = "__FUNCDNAME__.";
1970       break;
1971     case PredefinedExpr::LFunction:
1972       GlobalVarName = "L__FUNCTION__.";
1973       break;
1974     case PredefinedExpr::PrettyFunction:
1975       GlobalVarName = "__PRETTY_FUNCTION__.";
1976       break;
1977     }
1978 
1979     StringRef FnName = CurFn->getName();
1980     if (FnName.startswith("\01"))
1981       FnName = FnName.substr(1);
1982     GlobalVarName += FnName;
1983 
1984     // If this is outside of a function use the top level decl.
1985     const Decl *CurDecl = CurCodeDecl;
1986     if (CurDecl == 0 || isa<VarDecl>(CurDecl))
1987       CurDecl = getContext().getTranslationUnitDecl();
1988 
1989     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1990     std::string FunctionName;
1991     if (isa<BlockDecl>(CurDecl)) {
1992       // Blocks use the mangled function name.
1993       // FIXME: ComputeName should handle blocks.
1994       FunctionName = FnName.str();
1995     } else if (isa<CapturedDecl>(CurDecl)) {
1996       // For a captured statement, the function name is its enclosing
1997       // function name not the one compiler generated.
1998       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1999     } else {
2000       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2001       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2002                  FunctionName.size() &&
2003              "Computed __func__ length differs from type!");
2004     }
2005 
2006     llvm::Constant *C;
2007     if (ElemType->isWideCharType()) {
2008       SmallString<32> RawChars;
2009       ConvertUTF8ToWideString(
2010           getContext().getTypeSizeInChars(ElemType).getQuantity(),
2011           FunctionName, RawChars);
2012       C = GetAddrOfConstantWideString(RawChars,
2013                                       GlobalVarName.c_str(),
2014                                       getContext(),
2015                                       E->getType(),
2016                                       E->getLocation(),
2017                                       CGM);
2018     } else {
2019       C = CGM.GetAddrOfConstantCString(FunctionName,
2020                                        GlobalVarName.c_str(),
2021                                        1);
2022     }
2023     return MakeAddrLValue(C, E->getType());
2024   }
2025   }
2026 }
2027 
2028 /// Emit a type description suitable for use by a runtime sanitizer library. The
2029 /// format of a type descriptor is
2030 ///
2031 /// \code
2032 ///   { i16 TypeKind, i16 TypeInfo }
2033 /// \endcode
2034 ///
2035 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2036 /// integer, 1 for a floating point value, and -1 for anything else.
2037 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2038   // Only emit each type's descriptor once.
2039   if (llvm::Constant *C = CGM.getTypeDescriptor(T))
2040     return C;
2041 
2042   uint16_t TypeKind = -1;
2043   uint16_t TypeInfo = 0;
2044 
2045   if (T->isIntegerType()) {
2046     TypeKind = 0;
2047     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2048                (T->isSignedIntegerType() ? 1 : 0);
2049   } else if (T->isFloatingType()) {
2050     TypeKind = 1;
2051     TypeInfo = getContext().getTypeSize(T);
2052   }
2053 
2054   // Format the type name as if for a diagnostic, including quotes and
2055   // optionally an 'aka'.
2056   SmallString<32> Buffer;
2057   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2058                                     (intptr_t)T.getAsOpaquePtr(),
2059                                     0, 0, 0, 0, 0, 0, Buffer,
2060                                     ArrayRef<intptr_t>());
2061 
2062   llvm::Constant *Components[] = {
2063     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2064     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2065   };
2066   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2067 
2068   llvm::GlobalVariable *GV =
2069     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2070                              /*isConstant=*/true,
2071                              llvm::GlobalVariable::PrivateLinkage,
2072                              Descriptor);
2073   GV->setUnnamedAddr(true);
2074 
2075   // Remember the descriptor for this type.
2076   CGM.setTypeDescriptor(T, GV);
2077 
2078   return GV;
2079 }
2080 
2081 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2082   llvm::Type *TargetTy = IntPtrTy;
2083 
2084   // Floating-point types which fit into intptr_t are bitcast to integers
2085   // and then passed directly (after zero-extension, if necessary).
2086   if (V->getType()->isFloatingPointTy()) {
2087     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2088     if (Bits <= TargetTy->getIntegerBitWidth())
2089       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2090                                                          Bits));
2091   }
2092 
2093   // Integers which fit in intptr_t are zero-extended and passed directly.
2094   if (V->getType()->isIntegerTy() &&
2095       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2096     return Builder.CreateZExt(V, TargetTy);
2097 
2098   // Pointers are passed directly, everything else is passed by address.
2099   if (!V->getType()->isPointerTy()) {
2100     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2101     Builder.CreateStore(V, Ptr);
2102     V = Ptr;
2103   }
2104   return Builder.CreatePtrToInt(V, TargetTy);
2105 }
2106 
2107 /// \brief Emit a representation of a SourceLocation for passing to a handler
2108 /// in a sanitizer runtime library. The format for this data is:
2109 /// \code
2110 ///   struct SourceLocation {
2111 ///     const char *Filename;
2112 ///     int32_t Line, Column;
2113 ///   };
2114 /// \endcode
2115 /// For an invalid SourceLocation, the Filename pointer is null.
2116 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2117   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2118 
2119   llvm::Constant *Data[] = {
2120     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2121                    : llvm::Constant::getNullValue(Int8PtrTy),
2122     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2123     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2124   };
2125 
2126   return llvm::ConstantStruct::getAnon(Data);
2127 }
2128 
2129 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2130                                 ArrayRef<llvm::Constant *> StaticArgs,
2131                                 ArrayRef<llvm::Value *> DynamicArgs,
2132                                 CheckRecoverableKind RecoverKind) {
2133   assert(SanOpts != &SanitizerOptions::Disabled);
2134 
2135   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2136     assert (RecoverKind != CRK_AlwaysRecoverable &&
2137             "Runtime call required for AlwaysRecoverable kind!");
2138     return EmitTrapCheck(Checked);
2139   }
2140 
2141   llvm::BasicBlock *Cont = createBasicBlock("cont");
2142 
2143   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2144 
2145   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2146 
2147   // Give hint that we very much don't expect to execute the handler
2148   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2149   llvm::MDBuilder MDHelper(getLLVMContext());
2150   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2151   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2152 
2153   EmitBlock(Handler);
2154 
2155   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2156   llvm::GlobalValue *InfoPtr =
2157       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2158                                llvm::GlobalVariable::PrivateLinkage, Info);
2159   InfoPtr->setUnnamedAddr(true);
2160 
2161   SmallVector<llvm::Value *, 4> Args;
2162   SmallVector<llvm::Type *, 4> ArgTypes;
2163   Args.reserve(DynamicArgs.size() + 1);
2164   ArgTypes.reserve(DynamicArgs.size() + 1);
2165 
2166   // Handler functions take an i8* pointing to the (handler-specific) static
2167   // information block, followed by a sequence of intptr_t arguments
2168   // representing operand values.
2169   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2170   ArgTypes.push_back(Int8PtrTy);
2171   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2172     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2173     ArgTypes.push_back(IntPtrTy);
2174   }
2175 
2176   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2177                  ((RecoverKind == CRK_Recoverable) &&
2178                    CGM.getCodeGenOpts().SanitizeRecover);
2179 
2180   llvm::FunctionType *FnType =
2181     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2182   llvm::AttrBuilder B;
2183   if (!Recover) {
2184     B.addAttribute(llvm::Attribute::NoReturn)
2185      .addAttribute(llvm::Attribute::NoUnwind);
2186   }
2187   B.addAttribute(llvm::Attribute::UWTable);
2188 
2189   // Checks that have two variants use a suffix to differentiate them
2190   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2191                            !CGM.getCodeGenOpts().SanitizeRecover;
2192   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2193                               (NeedsAbortSuffix? "_abort" : "")).str();
2194   llvm::Value *Fn =
2195     CGM.CreateRuntimeFunction(FnType, FunctionName,
2196                               llvm::AttributeSet::get(getLLVMContext(),
2197                                               llvm::AttributeSet::FunctionIndex,
2198                                                       B));
2199   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2200   if (Recover) {
2201     Builder.CreateBr(Cont);
2202   } else {
2203     HandlerCall->setDoesNotReturn();
2204     Builder.CreateUnreachable();
2205   }
2206 
2207   EmitBlock(Cont);
2208 }
2209 
2210 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2211   llvm::BasicBlock *Cont = createBasicBlock("cont");
2212 
2213   // If we're optimizing, collapse all calls to trap down to just one per
2214   // function to save on code size.
2215   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2216     TrapBB = createBasicBlock("trap");
2217     Builder.CreateCondBr(Checked, Cont, TrapBB);
2218     EmitBlock(TrapBB);
2219     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2220     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2221     TrapCall->setDoesNotReturn();
2222     TrapCall->setDoesNotThrow();
2223     Builder.CreateUnreachable();
2224   } else {
2225     Builder.CreateCondBr(Checked, Cont, TrapBB);
2226   }
2227 
2228   EmitBlock(Cont);
2229 }
2230 
2231 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2232 /// array to pointer, return the array subexpression.
2233 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2234   // If this isn't just an array->pointer decay, bail out.
2235   const CastExpr *CE = dyn_cast<CastExpr>(E);
2236   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2237     return 0;
2238 
2239   // If this is a decay from variable width array, bail out.
2240   const Expr *SubExpr = CE->getSubExpr();
2241   if (SubExpr->getType()->isVariableArrayType())
2242     return 0;
2243 
2244   return SubExpr;
2245 }
2246 
2247 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2248                                                bool Accessed) {
2249   // The index must always be an integer, which is not an aggregate.  Emit it.
2250   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2251   QualType IdxTy  = E->getIdx()->getType();
2252   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2253 
2254   if (SanOpts->ArrayBounds)
2255     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2256 
2257   // If the base is a vector type, then we are forming a vector element lvalue
2258   // with this subscript.
2259   if (E->getBase()->getType()->isVectorType()) {
2260     // Emit the vector as an lvalue to get its address.
2261     LValue LHS = EmitLValue(E->getBase());
2262     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2263     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2264     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2265                                  E->getBase()->getType(), LHS.getAlignment());
2266   }
2267 
2268   // Extend or truncate the index type to 32 or 64-bits.
2269   if (Idx->getType() != IntPtrTy)
2270     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2271 
2272   // We know that the pointer points to a type of the correct size, unless the
2273   // size is a VLA or Objective-C interface.
2274   llvm::Value *Address = 0;
2275   CharUnits ArrayAlignment;
2276   if (const VariableArrayType *vla =
2277         getContext().getAsVariableArrayType(E->getType())) {
2278     // The base must be a pointer, which is not an aggregate.  Emit
2279     // it.  It needs to be emitted first in case it's what captures
2280     // the VLA bounds.
2281     Address = EmitScalarExpr(E->getBase());
2282 
2283     // The element count here is the total number of non-VLA elements.
2284     llvm::Value *numElements = getVLASize(vla).first;
2285 
2286     // Effectively, the multiply by the VLA size is part of the GEP.
2287     // GEP indexes are signed, and scaling an index isn't permitted to
2288     // signed-overflow, so we use the same semantics for our explicit
2289     // multiply.  We suppress this if overflow is not undefined behavior.
2290     if (getLangOpts().isSignedOverflowDefined()) {
2291       Idx = Builder.CreateMul(Idx, numElements);
2292       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2293     } else {
2294       Idx = Builder.CreateNSWMul(Idx, numElements);
2295       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2296     }
2297   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2298     // Indexing over an interface, as in "NSString *P; P[4];"
2299     llvm::Value *InterfaceSize =
2300       llvm::ConstantInt::get(Idx->getType(),
2301           getContext().getTypeSizeInChars(OIT).getQuantity());
2302 
2303     Idx = Builder.CreateMul(Idx, InterfaceSize);
2304 
2305     // The base must be a pointer, which is not an aggregate.  Emit it.
2306     llvm::Value *Base = EmitScalarExpr(E->getBase());
2307     Address = EmitCastToVoidPtr(Base);
2308     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2309     Address = Builder.CreateBitCast(Address, Base->getType());
2310   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2311     // If this is A[i] where A is an array, the frontend will have decayed the
2312     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2313     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2314     // "gep x, i" here.  Emit one "gep A, 0, i".
2315     assert(Array->getType()->isArrayType() &&
2316            "Array to pointer decay must have array source type!");
2317     LValue ArrayLV;
2318     // For simple multidimensional array indexing, set the 'accessed' flag for
2319     // better bounds-checking of the base expression.
2320     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2321       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2322     else
2323       ArrayLV = EmitLValue(Array);
2324     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2325     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2326     llvm::Value *Args[] = { Zero, Idx };
2327 
2328     // Propagate the alignment from the array itself to the result.
2329     ArrayAlignment = ArrayLV.getAlignment();
2330 
2331     if (getLangOpts().isSignedOverflowDefined())
2332       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2333     else
2334       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2335   } else {
2336     // The base must be a pointer, which is not an aggregate.  Emit it.
2337     llvm::Value *Base = EmitScalarExpr(E->getBase());
2338     if (getLangOpts().isSignedOverflowDefined())
2339       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2340     else
2341       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2342   }
2343 
2344   QualType T = E->getBase()->getType()->getPointeeType();
2345   assert(!T.isNull() &&
2346          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2347 
2348 
2349   // Limit the alignment to that of the result type.
2350   LValue LV;
2351   if (!ArrayAlignment.isZero()) {
2352     CharUnits Align = getContext().getTypeAlignInChars(T);
2353     ArrayAlignment = std::min(Align, ArrayAlignment);
2354     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2355   } else {
2356     LV = MakeNaturalAlignAddrLValue(Address, T);
2357   }
2358 
2359   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2360 
2361   if (getLangOpts().ObjC1 &&
2362       getLangOpts().getGC() != LangOptions::NonGC) {
2363     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2364     setObjCGCLValueClass(getContext(), E, LV);
2365   }
2366   return LV;
2367 }
2368 
2369 static
2370 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2371                                        SmallVectorImpl<unsigned> &Elts) {
2372   SmallVector<llvm::Constant*, 4> CElts;
2373   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2374     CElts.push_back(Builder.getInt32(Elts[i]));
2375 
2376   return llvm::ConstantVector::get(CElts);
2377 }
2378 
2379 LValue CodeGenFunction::
2380 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2381   // Emit the base vector as an l-value.
2382   LValue Base;
2383 
2384   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2385   if (E->isArrow()) {
2386     // If it is a pointer to a vector, emit the address and form an lvalue with
2387     // it.
2388     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2389     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2390     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2391     Base.getQuals().removeObjCGCAttr();
2392   } else if (E->getBase()->isGLValue()) {
2393     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2394     // emit the base as an lvalue.
2395     assert(E->getBase()->getType()->isVectorType());
2396     Base = EmitLValue(E->getBase());
2397   } else {
2398     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2399     assert(E->getBase()->getType()->isVectorType() &&
2400            "Result must be a vector");
2401     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2402 
2403     // Store the vector to memory (because LValue wants an address).
2404     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2405     Builder.CreateStore(Vec, VecMem);
2406     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2407   }
2408 
2409   QualType type =
2410     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2411 
2412   // Encode the element access list into a vector of unsigned indices.
2413   SmallVector<unsigned, 4> Indices;
2414   E->getEncodedElementAccess(Indices);
2415 
2416   if (Base.isSimple()) {
2417     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2418     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2419                                     Base.getAlignment());
2420   }
2421   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2422 
2423   llvm::Constant *BaseElts = Base.getExtVectorElts();
2424   SmallVector<llvm::Constant *, 4> CElts;
2425 
2426   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2427     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2428   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2429   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2430                                   Base.getAlignment());
2431 }
2432 
2433 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2434   Expr *BaseExpr = E->getBase();
2435 
2436   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2437   LValue BaseLV;
2438   if (E->isArrow()) {
2439     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2440     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2441     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2442     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2443   } else
2444     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2445 
2446   NamedDecl *ND = E->getMemberDecl();
2447   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2448     LValue LV = EmitLValueForField(BaseLV, Field);
2449     setObjCGCLValueClass(getContext(), E, LV);
2450     return LV;
2451   }
2452 
2453   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2454     return EmitGlobalVarDeclLValue(*this, E, VD);
2455 
2456   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2457     return EmitFunctionDeclLValue(*this, E, FD);
2458 
2459   llvm_unreachable("Unhandled member declaration!");
2460 }
2461 
2462 /// Given that we are currently emitting a lambda, emit an l-value for
2463 /// one of its members.
2464 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2465   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2466   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2467   QualType LambdaTagType =
2468     getContext().getTagDeclType(Field->getParent());
2469   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2470   return EmitLValueForField(LambdaLV, Field);
2471 }
2472 
2473 LValue CodeGenFunction::EmitLValueForField(LValue base,
2474                                            const FieldDecl *field) {
2475   if (field->isBitField()) {
2476     const CGRecordLayout &RL =
2477       CGM.getTypes().getCGRecordLayout(field->getParent());
2478     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2479     llvm::Value *Addr = base.getAddress();
2480     unsigned Idx = RL.getLLVMFieldNo(field);
2481     if (Idx != 0)
2482       // For structs, we GEP to the field that the record layout suggests.
2483       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2484     // Get the access type.
2485     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2486       getLLVMContext(), Info.StorageSize,
2487       CGM.getContext().getTargetAddressSpace(base.getType()));
2488     if (Addr->getType() != PtrTy)
2489       Addr = Builder.CreateBitCast(Addr, PtrTy);
2490 
2491     QualType fieldType =
2492       field->getType().withCVRQualifiers(base.getVRQualifiers());
2493     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2494   }
2495 
2496   const RecordDecl *rec = field->getParent();
2497   QualType type = field->getType();
2498   CharUnits alignment = getContext().getDeclAlign(field);
2499 
2500   // FIXME: It should be impossible to have an LValue without alignment for a
2501   // complete type.
2502   if (!base.getAlignment().isZero())
2503     alignment = std::min(alignment, base.getAlignment());
2504 
2505   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2506 
2507   llvm::Value *addr = base.getAddress();
2508   unsigned cvr = base.getVRQualifiers();
2509   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2510   if (rec->isUnion()) {
2511     // For unions, there is no pointer adjustment.
2512     assert(!type->isReferenceType() && "union has reference member");
2513     // TODO: handle path-aware TBAA for union.
2514     TBAAPath = false;
2515   } else {
2516     // For structs, we GEP to the field that the record layout suggests.
2517     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2518     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2519 
2520     // If this is a reference field, load the reference right now.
2521     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2522       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2523       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2524       load->setAlignment(alignment.getQuantity());
2525 
2526       // Loading the reference will disable path-aware TBAA.
2527       TBAAPath = false;
2528       if (CGM.shouldUseTBAA()) {
2529         llvm::MDNode *tbaa;
2530         if (mayAlias)
2531           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2532         else
2533           tbaa = CGM.getTBAAInfo(type);
2534         if (tbaa)
2535           CGM.DecorateInstruction(load, tbaa);
2536       }
2537 
2538       addr = load;
2539       mayAlias = false;
2540       type = refType->getPointeeType();
2541       if (type->isIncompleteType())
2542         alignment = CharUnits();
2543       else
2544         alignment = getContext().getTypeAlignInChars(type);
2545       cvr = 0; // qualifiers don't recursively apply to referencee
2546     }
2547   }
2548 
2549   // Make sure that the address is pointing to the right type.  This is critical
2550   // for both unions and structs.  A union needs a bitcast, a struct element
2551   // will need a bitcast if the LLVM type laid out doesn't match the desired
2552   // type.
2553   addr = EmitBitCastOfLValueToProperType(*this, addr,
2554                                          CGM.getTypes().ConvertTypeForMem(type),
2555                                          field->getName());
2556 
2557   if (field->hasAttr<AnnotateAttr>())
2558     addr = EmitFieldAnnotations(field, addr);
2559 
2560   LValue LV = MakeAddrLValue(addr, type, alignment);
2561   LV.getQuals().addCVRQualifiers(cvr);
2562   if (TBAAPath) {
2563     const ASTRecordLayout &Layout =
2564         getContext().getASTRecordLayout(field->getParent());
2565     // Set the base type to be the base type of the base LValue and
2566     // update offset to be relative to the base type.
2567     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2568     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2569                      Layout.getFieldOffset(field->getFieldIndex()) /
2570                                            getContext().getCharWidth());
2571   }
2572 
2573   // __weak attribute on a field is ignored.
2574   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2575     LV.getQuals().removeObjCGCAttr();
2576 
2577   // Fields of may_alias structs act like 'char' for TBAA purposes.
2578   // FIXME: this should get propagated down through anonymous structs
2579   // and unions.
2580   if (mayAlias && LV.getTBAAInfo())
2581     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2582 
2583   return LV;
2584 }
2585 
2586 LValue
2587 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2588                                                   const FieldDecl *Field) {
2589   QualType FieldType = Field->getType();
2590 
2591   if (!FieldType->isReferenceType())
2592     return EmitLValueForField(Base, Field);
2593 
2594   const CGRecordLayout &RL =
2595     CGM.getTypes().getCGRecordLayout(Field->getParent());
2596   unsigned idx = RL.getLLVMFieldNo(Field);
2597   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2598   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2599 
2600   // Make sure that the address is pointing to the right type.  This is critical
2601   // for both unions and structs.  A union needs a bitcast, a struct element
2602   // will need a bitcast if the LLVM type laid out doesn't match the desired
2603   // type.
2604   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2605   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2606 
2607   CharUnits Alignment = getContext().getDeclAlign(Field);
2608 
2609   // FIXME: It should be impossible to have an LValue without alignment for a
2610   // complete type.
2611   if (!Base.getAlignment().isZero())
2612     Alignment = std::min(Alignment, Base.getAlignment());
2613 
2614   return MakeAddrLValue(V, FieldType, Alignment);
2615 }
2616 
2617 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2618   if (E->isFileScope()) {
2619     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2620     return MakeAddrLValue(GlobalPtr, E->getType());
2621   }
2622   if (E->getType()->isVariablyModifiedType())
2623     // make sure to emit the VLA size.
2624     EmitVariablyModifiedType(E->getType());
2625 
2626   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2627   const Expr *InitExpr = E->getInitializer();
2628   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2629 
2630   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2631                    /*Init*/ true);
2632 
2633   return Result;
2634 }
2635 
2636 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2637   if (!E->isGLValue())
2638     // Initializing an aggregate temporary in C++11: T{...}.
2639     return EmitAggExprToLValue(E);
2640 
2641   // An lvalue initializer list must be initializing a reference.
2642   assert(E->getNumInits() == 1 && "reference init with multiple values");
2643   return EmitLValue(E->getInit(0));
2644 }
2645 
2646 LValue CodeGenFunction::
2647 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2648   if (!expr->isGLValue()) {
2649     // ?: here should be an aggregate.
2650     assert(hasAggregateEvaluationKind(expr->getType()) &&
2651            "Unexpected conditional operator!");
2652     return EmitAggExprToLValue(expr);
2653   }
2654 
2655   OpaqueValueMapping binding(*this, expr);
2656   RegionCounter Cnt = getPGORegionCounter(expr);
2657 
2658   const Expr *condExpr = expr->getCond();
2659   bool CondExprBool;
2660   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2661     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2662     if (!CondExprBool) std::swap(live, dead);
2663 
2664     if (!ContainsLabel(dead)) {
2665       // If the true case is live, we need to track its region.
2666       if (CondExprBool)
2667         Cnt.beginRegion(Builder);
2668       return EmitLValue(live);
2669     }
2670   }
2671 
2672   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2673   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2674   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2675 
2676   ConditionalEvaluation eval(*this);
2677   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2678 
2679   // Any temporaries created here are conditional.
2680   EmitBlock(lhsBlock);
2681   Cnt.beginRegion(Builder);
2682   eval.begin(*this);
2683   LValue lhs = EmitLValue(expr->getTrueExpr());
2684   eval.end(*this);
2685 
2686   if (!lhs.isSimple())
2687     return EmitUnsupportedLValue(expr, "conditional operator");
2688 
2689   lhsBlock = Builder.GetInsertBlock();
2690   Builder.CreateBr(contBlock);
2691 
2692   // Any temporaries created here are conditional.
2693   EmitBlock(rhsBlock);
2694   eval.begin(*this);
2695   LValue rhs = EmitLValue(expr->getFalseExpr());
2696   eval.end(*this);
2697   if (!rhs.isSimple())
2698     return EmitUnsupportedLValue(expr, "conditional operator");
2699   rhsBlock = Builder.GetInsertBlock();
2700 
2701   EmitBlock(contBlock);
2702 
2703   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2704                                          "cond-lvalue");
2705   phi->addIncoming(lhs.getAddress(), lhsBlock);
2706   phi->addIncoming(rhs.getAddress(), rhsBlock);
2707   return MakeAddrLValue(phi, expr->getType());
2708 }
2709 
2710 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2711 /// type. If the cast is to a reference, we can have the usual lvalue result,
2712 /// otherwise if a cast is needed by the code generator in an lvalue context,
2713 /// then it must mean that we need the address of an aggregate in order to
2714 /// access one of its members.  This can happen for all the reasons that casts
2715 /// are permitted with aggregate result, including noop aggregate casts, and
2716 /// cast from scalar to union.
2717 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2718   switch (E->getCastKind()) {
2719   case CK_ToVoid:
2720   case CK_BitCast:
2721   case CK_ArrayToPointerDecay:
2722   case CK_FunctionToPointerDecay:
2723   case CK_NullToMemberPointer:
2724   case CK_NullToPointer:
2725   case CK_IntegralToPointer:
2726   case CK_PointerToIntegral:
2727   case CK_PointerToBoolean:
2728   case CK_VectorSplat:
2729   case CK_IntegralCast:
2730   case CK_IntegralToBoolean:
2731   case CK_IntegralToFloating:
2732   case CK_FloatingToIntegral:
2733   case CK_FloatingToBoolean:
2734   case CK_FloatingCast:
2735   case CK_FloatingRealToComplex:
2736   case CK_FloatingComplexToReal:
2737   case CK_FloatingComplexToBoolean:
2738   case CK_FloatingComplexCast:
2739   case CK_FloatingComplexToIntegralComplex:
2740   case CK_IntegralRealToComplex:
2741   case CK_IntegralComplexToReal:
2742   case CK_IntegralComplexToBoolean:
2743   case CK_IntegralComplexCast:
2744   case CK_IntegralComplexToFloatingComplex:
2745   case CK_DerivedToBaseMemberPointer:
2746   case CK_BaseToDerivedMemberPointer:
2747   case CK_MemberPointerToBoolean:
2748   case CK_ReinterpretMemberPointer:
2749   case CK_AnyPointerToBlockPointerCast:
2750   case CK_ARCProduceObject:
2751   case CK_ARCConsumeObject:
2752   case CK_ARCReclaimReturnedObject:
2753   case CK_ARCExtendBlockObject:
2754   case CK_CopyAndAutoreleaseBlockObject:
2755   case CK_AddressSpaceConversion:
2756     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2757 
2758   case CK_Dependent:
2759     llvm_unreachable("dependent cast kind in IR gen!");
2760 
2761   case CK_BuiltinFnToFnPtr:
2762     llvm_unreachable("builtin functions are handled elsewhere");
2763 
2764   // These are never l-values; just use the aggregate emission code.
2765   case CK_NonAtomicToAtomic:
2766   case CK_AtomicToNonAtomic:
2767     return EmitAggExprToLValue(E);
2768 
2769   case CK_Dynamic: {
2770     LValue LV = EmitLValue(E->getSubExpr());
2771     llvm::Value *V = LV.getAddress();
2772     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2773     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2774   }
2775 
2776   case CK_ConstructorConversion:
2777   case CK_UserDefinedConversion:
2778   case CK_CPointerToObjCPointerCast:
2779   case CK_BlockPointerToObjCPointerCast:
2780   case CK_NoOp:
2781   case CK_LValueToRValue:
2782     return EmitLValue(E->getSubExpr());
2783 
2784   case CK_UncheckedDerivedToBase:
2785   case CK_DerivedToBase: {
2786     const RecordType *DerivedClassTy =
2787       E->getSubExpr()->getType()->getAs<RecordType>();
2788     CXXRecordDecl *DerivedClassDecl =
2789       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2790 
2791     LValue LV = EmitLValue(E->getSubExpr());
2792     llvm::Value *This = LV.getAddress();
2793 
2794     // Perform the derived-to-base conversion
2795     llvm::Value *Base =
2796       GetAddressOfBaseClass(This, DerivedClassDecl,
2797                             E->path_begin(), E->path_end(),
2798                             /*NullCheckValue=*/false);
2799 
2800     return MakeAddrLValue(Base, E->getType());
2801   }
2802   case CK_ToUnion:
2803     return EmitAggExprToLValue(E);
2804   case CK_BaseToDerived: {
2805     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2806     CXXRecordDecl *DerivedClassDecl =
2807       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2808 
2809     LValue LV = EmitLValue(E->getSubExpr());
2810 
2811     // Perform the base-to-derived conversion
2812     llvm::Value *Derived =
2813       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2814                                E->path_begin(), E->path_end(),
2815                                /*NullCheckValue=*/false);
2816 
2817     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2818     // performed and the object is not of the derived type.
2819     if (SanitizePerformTypeCheck)
2820       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2821                     Derived, E->getType());
2822 
2823     return MakeAddrLValue(Derived, E->getType());
2824   }
2825   case CK_LValueBitCast: {
2826     // This must be a reinterpret_cast (or c-style equivalent).
2827     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2828 
2829     LValue LV = EmitLValue(E->getSubExpr());
2830     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2831                                            ConvertType(CE->getTypeAsWritten()));
2832     return MakeAddrLValue(V, E->getType());
2833   }
2834   case CK_ObjCObjectLValueCast: {
2835     LValue LV = EmitLValue(E->getSubExpr());
2836     QualType ToType = getContext().getLValueReferenceType(E->getType());
2837     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2838                                            ConvertType(ToType));
2839     return MakeAddrLValue(V, E->getType());
2840   }
2841   case CK_ZeroToOCLEvent:
2842     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2843   }
2844 
2845   llvm_unreachable("Unhandled lvalue cast kind?");
2846 }
2847 
2848 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2849   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2850   return getOpaqueLValueMapping(e);
2851 }
2852 
2853 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2854                                            const FieldDecl *FD,
2855                                            SourceLocation Loc) {
2856   QualType FT = FD->getType();
2857   LValue FieldLV = EmitLValueForField(LV, FD);
2858   switch (getEvaluationKind(FT)) {
2859   case TEK_Complex:
2860     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2861   case TEK_Aggregate:
2862     return FieldLV.asAggregateRValue();
2863   case TEK_Scalar:
2864     return EmitLoadOfLValue(FieldLV, Loc);
2865   }
2866   llvm_unreachable("bad evaluation kind");
2867 }
2868 
2869 //===--------------------------------------------------------------------===//
2870 //                             Expression Emission
2871 //===--------------------------------------------------------------------===//
2872 
2873 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2874                                      ReturnValueSlot ReturnValue) {
2875   if (CGDebugInfo *DI = getDebugInfo()) {
2876     SourceLocation Loc = E->getLocStart();
2877     // Force column info to be generated so we can differentiate
2878     // multiple call sites on the same line in the debug info.
2879     const FunctionDecl* Callee = E->getDirectCallee();
2880     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2881     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2882   }
2883 
2884   // Builtins never have block type.
2885   if (E->getCallee()->getType()->isBlockPointerType())
2886     return EmitBlockCallExpr(E, ReturnValue);
2887 
2888   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2889     return EmitCXXMemberCallExpr(CE, ReturnValue);
2890 
2891   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2892     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2893 
2894   const Decl *TargetDecl = E->getCalleeDecl();
2895   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2896     if (unsigned builtinID = FD->getBuiltinID())
2897       return EmitBuiltinExpr(FD, builtinID, E);
2898   }
2899 
2900   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2901     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2902       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2903 
2904   if (const CXXPseudoDestructorExpr *PseudoDtor
2905           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2906     QualType DestroyedType = PseudoDtor->getDestroyedType();
2907     if (getLangOpts().ObjCAutoRefCount &&
2908         DestroyedType->isObjCLifetimeType() &&
2909         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2910          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2911       // Automatic Reference Counting:
2912       //   If the pseudo-expression names a retainable object with weak or
2913       //   strong lifetime, the object shall be released.
2914       Expr *BaseExpr = PseudoDtor->getBase();
2915       llvm::Value *BaseValue = NULL;
2916       Qualifiers BaseQuals;
2917 
2918       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2919       if (PseudoDtor->isArrow()) {
2920         BaseValue = EmitScalarExpr(BaseExpr);
2921         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2922         BaseQuals = PTy->getPointeeType().getQualifiers();
2923       } else {
2924         LValue BaseLV = EmitLValue(BaseExpr);
2925         BaseValue = BaseLV.getAddress();
2926         QualType BaseTy = BaseExpr->getType();
2927         BaseQuals = BaseTy.getQualifiers();
2928       }
2929 
2930       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2931       case Qualifiers::OCL_None:
2932       case Qualifiers::OCL_ExplicitNone:
2933       case Qualifiers::OCL_Autoreleasing:
2934         break;
2935 
2936       case Qualifiers::OCL_Strong:
2937         EmitARCRelease(Builder.CreateLoad(BaseValue,
2938                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2939                        ARCPreciseLifetime);
2940         break;
2941 
2942       case Qualifiers::OCL_Weak:
2943         EmitARCDestroyWeak(BaseValue);
2944         break;
2945       }
2946     } else {
2947       // C++ [expr.pseudo]p1:
2948       //   The result shall only be used as the operand for the function call
2949       //   operator (), and the result of such a call has type void. The only
2950       //   effect is the evaluation of the postfix-expression before the dot or
2951       //   arrow.
2952       EmitScalarExpr(E->getCallee());
2953     }
2954 
2955     return RValue::get(0);
2956   }
2957 
2958   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2959   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
2960                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
2961 }
2962 
2963 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2964   // Comma expressions just emit their LHS then their RHS as an l-value.
2965   if (E->getOpcode() == BO_Comma) {
2966     EmitIgnoredExpr(E->getLHS());
2967     EnsureInsertPoint();
2968     return EmitLValue(E->getRHS());
2969   }
2970 
2971   if (E->getOpcode() == BO_PtrMemD ||
2972       E->getOpcode() == BO_PtrMemI)
2973     return EmitPointerToDataMemberBinaryExpr(E);
2974 
2975   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2976 
2977   // Note that in all of these cases, __block variables need the RHS
2978   // evaluated first just in case the variable gets moved by the RHS.
2979 
2980   switch (getEvaluationKind(E->getType())) {
2981   case TEK_Scalar: {
2982     switch (E->getLHS()->getType().getObjCLifetime()) {
2983     case Qualifiers::OCL_Strong:
2984       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2985 
2986     case Qualifiers::OCL_Autoreleasing:
2987       return EmitARCStoreAutoreleasing(E).first;
2988 
2989     // No reason to do any of these differently.
2990     case Qualifiers::OCL_None:
2991     case Qualifiers::OCL_ExplicitNone:
2992     case Qualifiers::OCL_Weak:
2993       break;
2994     }
2995 
2996     RValue RV = EmitAnyExpr(E->getRHS());
2997     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2998     EmitStoreThroughLValue(RV, LV);
2999     return LV;
3000   }
3001 
3002   case TEK_Complex:
3003     return EmitComplexAssignmentLValue(E);
3004 
3005   case TEK_Aggregate:
3006     return EmitAggExprToLValue(E);
3007   }
3008   llvm_unreachable("bad evaluation kind");
3009 }
3010 
3011 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3012   RValue RV = EmitCallExpr(E);
3013 
3014   if (!RV.isScalar())
3015     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3016 
3017   assert(E->getCallReturnType()->isReferenceType() &&
3018          "Can't have a scalar return unless the return type is a "
3019          "reference type!");
3020 
3021   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3022 }
3023 
3024 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3025   // FIXME: This shouldn't require another copy.
3026   return EmitAggExprToLValue(E);
3027 }
3028 
3029 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3030   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3031          && "binding l-value to type which needs a temporary");
3032   AggValueSlot Slot = CreateAggTemp(E->getType());
3033   EmitCXXConstructExpr(E, Slot);
3034   return MakeAddrLValue(Slot.getAddr(), E->getType());
3035 }
3036 
3037 LValue
3038 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3039   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3040 }
3041 
3042 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3043   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3044                                ConvertType(E->getType())->getPointerTo());
3045 }
3046 
3047 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3048   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3049 }
3050 
3051 LValue
3052 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3053   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3054   Slot.setExternallyDestructed();
3055   EmitAggExpr(E->getSubExpr(), Slot);
3056   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3057   return MakeAddrLValue(Slot.getAddr(), E->getType());
3058 }
3059 
3060 LValue
3061 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3062   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3063   EmitLambdaExpr(E, Slot);
3064   return MakeAddrLValue(Slot.getAddr(), E->getType());
3065 }
3066 
3067 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3068   RValue RV = EmitObjCMessageExpr(E);
3069 
3070   if (!RV.isScalar())
3071     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3072 
3073   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3074          "Can't have a scalar return unless the return type is a "
3075          "reference type!");
3076 
3077   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3078 }
3079 
3080 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3081   llvm::Value *V =
3082     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3083   return MakeAddrLValue(V, E->getType());
3084 }
3085 
3086 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3087                                              const ObjCIvarDecl *Ivar) {
3088   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3089 }
3090 
3091 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3092                                           llvm::Value *BaseValue,
3093                                           const ObjCIvarDecl *Ivar,
3094                                           unsigned CVRQualifiers) {
3095   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3096                                                    Ivar, CVRQualifiers);
3097 }
3098 
3099 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3100   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3101   llvm::Value *BaseValue = 0;
3102   const Expr *BaseExpr = E->getBase();
3103   Qualifiers BaseQuals;
3104   QualType ObjectTy;
3105   if (E->isArrow()) {
3106     BaseValue = EmitScalarExpr(BaseExpr);
3107     ObjectTy = BaseExpr->getType()->getPointeeType();
3108     BaseQuals = ObjectTy.getQualifiers();
3109   } else {
3110     LValue BaseLV = EmitLValue(BaseExpr);
3111     // FIXME: this isn't right for bitfields.
3112     BaseValue = BaseLV.getAddress();
3113     ObjectTy = BaseExpr->getType();
3114     BaseQuals = ObjectTy.getQualifiers();
3115   }
3116 
3117   LValue LV =
3118     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3119                       BaseQuals.getCVRQualifiers());
3120   setObjCGCLValueClass(getContext(), E, LV);
3121   return LV;
3122 }
3123 
3124 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3125   // Can only get l-value for message expression returning aggregate type
3126   RValue RV = EmitAnyExprToTemp(E);
3127   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3128 }
3129 
3130 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3131                                  SourceLocation CallLoc,
3132                                  ReturnValueSlot ReturnValue,
3133                                  CallExpr::const_arg_iterator ArgBeg,
3134                                  CallExpr::const_arg_iterator ArgEnd,
3135                                  const Decl *TargetDecl) {
3136   // Get the actual function type. The callee type will always be a pointer to
3137   // function type or a block pointer type.
3138   assert(CalleeType->isFunctionPointerType() &&
3139          "Call must have function pointer type!");
3140 
3141   CalleeType = getContext().getCanonicalType(CalleeType);
3142 
3143   const FunctionType *FnType
3144     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3145 
3146   // Force column info to differentiate multiple inlined call sites on
3147   // the same line, analoguous to EmitCallExpr.
3148   bool ForceColumnInfo = false;
3149   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3150     ForceColumnInfo = FD->isInlineSpecified();
3151 
3152   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3153       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3154     if (llvm::Constant *PrefixSig =
3155             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3156       llvm::Constant *FTRTTIConst =
3157           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3158       llvm::Type *PrefixStructTyElems[] = {
3159         PrefixSig->getType(),
3160         FTRTTIConst->getType()
3161       };
3162       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3163           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3164 
3165       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3166           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3167       llvm::Value *CalleeSigPtr =
3168           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3169       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3170       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3171 
3172       llvm::BasicBlock *Cont = createBasicBlock("cont");
3173       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3174       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3175 
3176       EmitBlock(TypeCheck);
3177       llvm::Value *CalleeRTTIPtr =
3178           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3179       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3180       llvm::Value *CalleeRTTIMatch =
3181           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3182       llvm::Constant *StaticData[] = {
3183         EmitCheckSourceLocation(CallLoc),
3184         EmitCheckTypeDescriptor(CalleeType)
3185       };
3186       EmitCheck(CalleeRTTIMatch,
3187                 "function_type_mismatch",
3188                 StaticData,
3189                 Callee,
3190                 CRK_Recoverable);
3191 
3192       Builder.CreateBr(Cont);
3193       EmitBlock(Cont);
3194     }
3195   }
3196 
3197   CallArgList Args;
3198   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3199                ForceColumnInfo);
3200 
3201   const CGFunctionInfo &FnInfo =
3202     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3203 
3204   // C99 6.5.2.2p6:
3205   //   If the expression that denotes the called function has a type
3206   //   that does not include a prototype, [the default argument
3207   //   promotions are performed]. If the number of arguments does not
3208   //   equal the number of parameters, the behavior is undefined. If
3209   //   the function is defined with a type that includes a prototype,
3210   //   and either the prototype ends with an ellipsis (, ...) or the
3211   //   types of the arguments after promotion are not compatible with
3212   //   the types of the parameters, the behavior is undefined. If the
3213   //   function is defined with a type that does not include a
3214   //   prototype, and the types of the arguments after promotion are
3215   //   not compatible with those of the parameters after promotion,
3216   //   the behavior is undefined [except in some trivial cases].
3217   // That is, in the general case, we should assume that a call
3218   // through an unprototyped function type works like a *non-variadic*
3219   // call.  The way we make this work is to cast to the exact type
3220   // of the promoted arguments.
3221   if (isa<FunctionNoProtoType>(FnType)) {
3222     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3223     CalleeTy = CalleeTy->getPointerTo();
3224     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3225   }
3226 
3227   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3228 }
3229 
3230 LValue CodeGenFunction::
3231 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3232   llvm::Value *BaseV;
3233   if (E->getOpcode() == BO_PtrMemI)
3234     BaseV = EmitScalarExpr(E->getLHS());
3235   else
3236     BaseV = EmitLValue(E->getLHS()).getAddress();
3237 
3238   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3239 
3240   const MemberPointerType *MPT
3241     = E->getRHS()->getType()->getAs<MemberPointerType>();
3242 
3243   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3244       *this, E, BaseV, OffsetV, MPT);
3245 
3246   return MakeAddrLValue(AddV, MPT->getPointeeType());
3247 }
3248 
3249 /// Given the address of a temporary variable, produce an r-value of
3250 /// its type.
3251 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3252                                             QualType type,
3253                                             SourceLocation loc) {
3254   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3255   switch (getEvaluationKind(type)) {
3256   case TEK_Complex:
3257     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3258   case TEK_Aggregate:
3259     return lvalue.asAggregateRValue();
3260   case TEK_Scalar:
3261     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3262   }
3263   llvm_unreachable("bad evaluation kind");
3264 }
3265 
3266 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3267   assert(Val->getType()->isFPOrFPVectorTy());
3268   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3269     return;
3270 
3271   llvm::MDBuilder MDHelper(getLLVMContext());
3272   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3273 
3274   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3275 }
3276 
3277 namespace {
3278   struct LValueOrRValue {
3279     LValue LV;
3280     RValue RV;
3281   };
3282 }
3283 
3284 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3285                                            const PseudoObjectExpr *E,
3286                                            bool forLValue,
3287                                            AggValueSlot slot) {
3288   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3289 
3290   // Find the result expression, if any.
3291   const Expr *resultExpr = E->getResultExpr();
3292   LValueOrRValue result;
3293 
3294   for (PseudoObjectExpr::const_semantics_iterator
3295          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3296     const Expr *semantic = *i;
3297 
3298     // If this semantic expression is an opaque value, bind it
3299     // to the result of its source expression.
3300     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3301 
3302       // If this is the result expression, we may need to evaluate
3303       // directly into the slot.
3304       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3305       OVMA opaqueData;
3306       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3307           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3308         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3309 
3310         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3311         opaqueData = OVMA::bind(CGF, ov, LV);
3312         result.RV = slot.asRValue();
3313 
3314       // Otherwise, emit as normal.
3315       } else {
3316         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3317 
3318         // If this is the result, also evaluate the result now.
3319         if (ov == resultExpr) {
3320           if (forLValue)
3321             result.LV = CGF.EmitLValue(ov);
3322           else
3323             result.RV = CGF.EmitAnyExpr(ov, slot);
3324         }
3325       }
3326 
3327       opaques.push_back(opaqueData);
3328 
3329     // Otherwise, if the expression is the result, evaluate it
3330     // and remember the result.
3331     } else if (semantic == resultExpr) {
3332       if (forLValue)
3333         result.LV = CGF.EmitLValue(semantic);
3334       else
3335         result.RV = CGF.EmitAnyExpr(semantic, slot);
3336 
3337     // Otherwise, evaluate the expression in an ignored context.
3338     } else {
3339       CGF.EmitIgnoredExpr(semantic);
3340     }
3341   }
3342 
3343   // Unbind all the opaques now.
3344   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3345     opaques[i].unbind(CGF);
3346 
3347   return result;
3348 }
3349 
3350 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3351                                                AggValueSlot slot) {
3352   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3353 }
3354 
3355 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3356   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3357 }
3358