1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     auto CurIP = Builder.saveIP();
78     Builder.SetInsertPoint(AllocaInsertPt);
79     V = getTargetHooks().performAddrSpaceCast(
80         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
81         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
82     Builder.restoreIP(CurIP);
83   }
84 
85   return Address(V, Align);
86 }
87 
88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
90 /// insertion point of the builder.
91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
92                                                     const Twine &Name,
93                                                     llvm::Value *ArraySize) {
94   if (ArraySize)
95     return Builder.CreateAlloca(Ty, ArraySize, Name);
96   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
97                               ArraySize, Name, AllocaInsertPt);
98 }
99 
100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
101 /// default alignment of the corresponding LLVM type, which is *not*
102 /// guaranteed to be related in any way to the expected alignment of
103 /// an AST type that might have been lowered to Ty.
104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
105                                                       const Twine &Name) {
106   CharUnits Align =
107     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
108   return CreateTempAlloca(Ty, Align, Name);
109 }
110 
111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
112   assert(isa<llvm::AllocaInst>(Var.getPointer()));
113   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
114   Store->setAlignment(Var.getAlignment().getQuantity());
115   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
116   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
117 }
118 
119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
120   CharUnits Align = getContext().getTypeAlignInChars(Ty);
121   return CreateTempAlloca(ConvertType(Ty), Align, Name);
122 }
123 
124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
125                                        bool CastToDefaultAddrSpace) {
126   // FIXME: Should we prefer the preferred type alignment here?
127   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
128                        CastToDefaultAddrSpace);
129 }
130 
131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
132                                        const Twine &Name,
133                                        bool CastToDefaultAddrSpace) {
134   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
135                           CastToDefaultAddrSpace);
136 }
137 
138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
139 /// expression and compare the result against zero, returning an Int1Ty value.
140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
141   PGO.setCurrentStmt(E);
142   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
143     llvm::Value *MemPtr = EmitScalarExpr(E);
144     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
145   }
146 
147   QualType BoolTy = getContext().BoolTy;
148   SourceLocation Loc = E->getExprLoc();
149   if (!E->getType()->isAnyComplexType())
150     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
151 
152   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
153                                        Loc);
154 }
155 
156 /// EmitIgnoredExpr - Emit code to compute the specified expression,
157 /// ignoring the result.
158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
159   if (E->isRValue())
160     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
161 
162   // Just emit it as an l-value and drop the result.
163   EmitLValue(E);
164 }
165 
166 /// EmitAnyExpr - Emit code to compute the specified expression which
167 /// can have any type.  The result is returned as an RValue struct.
168 /// If this is an aggregate expression, AggSlot indicates where the
169 /// result should be returned.
170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
171                                     AggValueSlot aggSlot,
172                                     bool ignoreResult) {
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Scalar:
175     return RValue::get(EmitScalarExpr(E, ignoreResult));
176   case TEK_Complex:
177     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
178   case TEK_Aggregate:
179     if (!ignoreResult && aggSlot.isIgnored())
180       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
181     EmitAggExpr(E, aggSlot);
182     return aggSlot.asRValue();
183   }
184   llvm_unreachable("bad evaluation kind");
185 }
186 
187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
188 /// always be accessible even if no aggregate location is provided.
189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
190   AggValueSlot AggSlot = AggValueSlot::ignored();
191 
192   if (hasAggregateEvaluationKind(E->getType()))
193     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
194   return EmitAnyExpr(E, AggSlot);
195 }
196 
197 /// EmitAnyExprToMem - Evaluate an expression into a given memory
198 /// location.
199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
200                                        Address Location,
201                                        Qualifiers Quals,
202                                        bool IsInit) {
203   // FIXME: This function should take an LValue as an argument.
204   switch (getEvaluationKind(E->getType())) {
205   case TEK_Complex:
206     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
207                               /*isInit*/ false);
208     return;
209 
210   case TEK_Aggregate: {
211     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
212                                          AggValueSlot::IsDestructed_t(IsInit),
213                                          AggValueSlot::DoesNotNeedGCBarriers,
214                                          AggValueSlot::IsAliased_t(!IsInit)));
215     return;
216   }
217 
218   case TEK_Scalar: {
219     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
220     LValue LV = MakeAddrLValue(Location, E->getType());
221     EmitStoreThroughLValue(RV, LV);
222     return;
223   }
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 static void
229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
230                      const Expr *E, Address ReferenceTemporary) {
231   // Objective-C++ ARC:
232   //   If we are binding a reference to a temporary that has ownership, we
233   //   need to perform retain/release operations on the temporary.
234   //
235   // FIXME: This should be looking at E, not M.
236   if (auto Lifetime = M->getType().getObjCLifetime()) {
237     switch (Lifetime) {
238     case Qualifiers::OCL_None:
239     case Qualifiers::OCL_ExplicitNone:
240       // Carry on to normal cleanup handling.
241       break;
242 
243     case Qualifiers::OCL_Autoreleasing:
244       // Nothing to do; cleaned up by an autorelease pool.
245       return;
246 
247     case Qualifiers::OCL_Strong:
248     case Qualifiers::OCL_Weak:
249       switch (StorageDuration Duration = M->getStorageDuration()) {
250       case SD_Static:
251         // Note: we intentionally do not register a cleanup to release
252         // the object on program termination.
253         return;
254 
255       case SD_Thread:
256         // FIXME: We should probably register a cleanup in this case.
257         return;
258 
259       case SD_Automatic:
260       case SD_FullExpression:
261         CodeGenFunction::Destroyer *Destroy;
262         CleanupKind CleanupKind;
263         if (Lifetime == Qualifiers::OCL_Strong) {
264           const ValueDecl *VD = M->getExtendingDecl();
265           bool Precise =
266               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
267           CleanupKind = CGF.getARCCleanupKind();
268           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
269                             : &CodeGenFunction::destroyARCStrongImprecise;
270         } else {
271           // __weak objects always get EH cleanups; otherwise, exceptions
272           // could cause really nasty crashes instead of mere leaks.
273           CleanupKind = NormalAndEHCleanup;
274           Destroy = &CodeGenFunction::destroyARCWeak;
275         }
276         if (Duration == SD_FullExpression)
277           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
278                           M->getType(), *Destroy,
279                           CleanupKind & EHCleanup);
280         else
281           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
282                                           M->getType(),
283                                           *Destroy, CleanupKind & EHCleanup);
284         return;
285 
286       case SD_Dynamic:
287         llvm_unreachable("temporary cannot have dynamic storage duration");
288       }
289       llvm_unreachable("unknown storage duration");
290     }
291   }
292 
293   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
294   if (const RecordType *RT =
295           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
296     // Get the destructor for the reference temporary.
297     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
298     if (!ClassDecl->hasTrivialDestructor())
299       ReferenceTemporaryDtor = ClassDecl->getDestructor();
300   }
301 
302   if (!ReferenceTemporaryDtor)
303     return;
304 
305   // Call the destructor for the temporary.
306   switch (M->getStorageDuration()) {
307   case SD_Static:
308   case SD_Thread: {
309     llvm::Constant *CleanupFn;
310     llvm::Constant *CleanupArg;
311     if (E->getType()->isArrayType()) {
312       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
313           ReferenceTemporary, E->getType(),
314           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
315           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
316       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
317     } else {
318       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
319                                                StructorType::Complete);
320       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
321     }
322     CGF.CGM.getCXXABI().registerGlobalDtor(
323         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
324     break;
325   }
326 
327   case SD_FullExpression:
328     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
329                     CodeGenFunction::destroyCXXObject,
330                     CGF.getLangOpts().Exceptions);
331     break;
332 
333   case SD_Automatic:
334     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
335                                     ReferenceTemporary, E->getType(),
336                                     CodeGenFunction::destroyCXXObject,
337                                     CGF.getLangOpts().Exceptions);
338     break;
339 
340   case SD_Dynamic:
341     llvm_unreachable("temporary cannot have dynamic storage duration");
342   }
343 }
344 
345 static Address createReferenceTemporary(CodeGenFunction &CGF,
346                                         const MaterializeTemporaryExpr *M,
347                                         const Expr *Inner) {
348   auto &TCG = CGF.getTargetHooks();
349   switch (M->getStorageDuration()) {
350   case SD_FullExpression:
351   case SD_Automatic: {
352     // If we have a constant temporary array or record try to promote it into a
353     // constant global under the same rules a normal constant would've been
354     // promoted. This is easier on the optimizer and generally emits fewer
355     // instructions.
356     QualType Ty = Inner->getType();
357     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
358         (Ty->isArrayType() || Ty->isRecordType()) &&
359         CGF.CGM.isTypeConstant(Ty, true))
360       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
361         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
362           auto AS = AddrSpace.getValue();
363           auto *GV = new llvm::GlobalVariable(
364               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
365               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
366               llvm::GlobalValue::NotThreadLocal,
367               CGF.getContext().getTargetAddressSpace(AS));
368           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
369           GV->setAlignment(alignment.getQuantity());
370           llvm::Constant *C = GV;
371           if (AS != LangAS::Default)
372             C = TCG.performAddrSpaceCast(
373                 CGF.CGM, GV, AS, LangAS::Default,
374                 GV->getValueType()->getPointerTo(
375                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
376           // FIXME: Should we put the new global into a COMDAT?
377           return Address(C, alignment);
378         }
379       }
380     return CGF.CreateMemTemp(Ty, "ref.tmp");
381   }
382   case SD_Thread:
383   case SD_Static:
384     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
385 
386   case SD_Dynamic:
387     llvm_unreachable("temporary can't have dynamic storage duration");
388   }
389   llvm_unreachable("unknown storage duration");
390 }
391 
392 LValue CodeGenFunction::
393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
394   const Expr *E = M->GetTemporaryExpr();
395 
396     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
397     // as that will cause the lifetime adjustment to be lost for ARC
398   auto ownership = M->getType().getObjCLifetime();
399   if (ownership != Qualifiers::OCL_None &&
400       ownership != Qualifiers::OCL_ExplicitNone) {
401     Address Object = createReferenceTemporary(*this, M, E);
402     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
403       Object = Address(llvm::ConstantExpr::getBitCast(Var,
404                            ConvertTypeForMem(E->getType())
405                              ->getPointerTo(Object.getAddressSpace())),
406                        Object.getAlignment());
407 
408       // createReferenceTemporary will promote the temporary to a global with a
409       // constant initializer if it can.  It can only do this to a value of
410       // ARC-manageable type if the value is global and therefore "immune" to
411       // ref-counting operations.  Therefore we have no need to emit either a
412       // dynamic initialization or a cleanup and we can just return the address
413       // of the temporary.
414       if (Var->hasInitializer())
415         return MakeAddrLValue(Object, M->getType(),
416                               LValueBaseInfo(AlignmentSource::Decl, false));
417 
418       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
419     }
420     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
421                                        LValueBaseInfo(AlignmentSource::Decl,
422                                                       false));
423 
424     switch (getEvaluationKind(E->getType())) {
425     default: llvm_unreachable("expected scalar or aggregate expression");
426     case TEK_Scalar:
427       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
428       break;
429     case TEK_Aggregate: {
430       EmitAggExpr(E, AggValueSlot::forAddr(Object,
431                                            E->getType().getQualifiers(),
432                                            AggValueSlot::IsDestructed,
433                                            AggValueSlot::DoesNotNeedGCBarriers,
434                                            AggValueSlot::IsNotAliased));
435       break;
436     }
437     }
438 
439     pushTemporaryCleanup(*this, M, E, Object);
440     return RefTempDst;
441   }
442 
443   SmallVector<const Expr *, 2> CommaLHSs;
444   SmallVector<SubobjectAdjustment, 2> Adjustments;
445   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
446 
447   for (const auto &Ignored : CommaLHSs)
448     EmitIgnoredExpr(Ignored);
449 
450   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
451     if (opaque->getType()->isRecordType()) {
452       assert(Adjustments.empty());
453       return EmitOpaqueValueLValue(opaque);
454     }
455   }
456 
457   // Create and initialize the reference temporary.
458   Address Object = createReferenceTemporary(*this, M, E);
459   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
460           Object.getPointer()->stripPointerCasts())) {
461     Object = Address(llvm::ConstantExpr::getBitCast(
462                          cast<llvm::Constant>(Object.getPointer()),
463                          ConvertTypeForMem(E->getType())->getPointerTo()),
464                      Object.getAlignment());
465     // If the temporary is a global and has a constant initializer or is a
466     // constant temporary that we promoted to a global, we may have already
467     // initialized it.
468     if (!Var->hasInitializer()) {
469       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
471     }
472   } else {
473     switch (M->getStorageDuration()) {
474     case SD_Automatic:
475     case SD_FullExpression:
476       if (auto *Size = EmitLifetimeStart(
477               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
478               Object.getPointer())) {
479         if (M->getStorageDuration() == SD_Automatic)
480           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
481                                                     Object, Size);
482         else
483           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
484                                                Size);
485       }
486       break;
487     default:
488       break;
489     }
490     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
491   }
492   pushTemporaryCleanup(*this, M, E, Object);
493 
494   // Perform derived-to-base casts and/or field accesses, to get from the
495   // temporary object we created (and, potentially, for which we extended
496   // the lifetime) to the subobject we're binding the reference to.
497   for (unsigned I = Adjustments.size(); I != 0; --I) {
498     SubobjectAdjustment &Adjustment = Adjustments[I-1];
499     switch (Adjustment.Kind) {
500     case SubobjectAdjustment::DerivedToBaseAdjustment:
501       Object =
502           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
503                                 Adjustment.DerivedToBase.BasePath->path_begin(),
504                                 Adjustment.DerivedToBase.BasePath->path_end(),
505                                 /*NullCheckValue=*/ false, E->getExprLoc());
506       break;
507 
508     case SubobjectAdjustment::FieldAdjustment: {
509       LValue LV = MakeAddrLValue(Object, E->getType(),
510                                  LValueBaseInfo(AlignmentSource::Decl, false));
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(),
528                         LValueBaseInfo(AlignmentSource::Decl, false));
529 }
530 
531 RValue
532 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
533   // Emit the expression as an lvalue.
534   LValue LV = EmitLValue(E);
535   assert(LV.isSimple());
536   llvm::Value *Value = LV.getPointer();
537 
538   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
539     // C++11 [dcl.ref]p5 (as amended by core issue 453):
540     //   If a glvalue to which a reference is directly bound designates neither
541     //   an existing object or function of an appropriate type nor a region of
542     //   storage of suitable size and alignment to contain an object of the
543     //   reference's type, the behavior is undefined.
544     QualType Ty = E->getType();
545     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
546   }
547 
548   return RValue::get(Value);
549 }
550 
551 
552 /// getAccessedFieldNo - Given an encoded value and a result number, return the
553 /// input field number being accessed.
554 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
555                                              const llvm::Constant *Elts) {
556   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
557       ->getZExtValue();
558 }
559 
560 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
561 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
562                                     llvm::Value *High) {
563   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
564   llvm::Value *K47 = Builder.getInt64(47);
565   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
566   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
567   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
568   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
569   return Builder.CreateMul(B1, KMul);
570 }
571 
572 bool CodeGenFunction::sanitizePerformTypeCheck() const {
573   return SanOpts.has(SanitizerKind::Null) |
574          SanOpts.has(SanitizerKind::Alignment) |
575          SanOpts.has(SanitizerKind::ObjectSize) |
576          SanOpts.has(SanitizerKind::Vptr);
577 }
578 
579 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
580                                     llvm::Value *Ptr, QualType Ty,
581                                     CharUnits Alignment,
582                                     SanitizerSet SkippedChecks) {
583   if (!sanitizePerformTypeCheck())
584     return;
585 
586   // Don't check pointers outside the default address space. The null check
587   // isn't correct, the object-size check isn't supported by LLVM, and we can't
588   // communicate the addresses to the runtime handler for the vptr check.
589   if (Ptr->getType()->getPointerAddressSpace())
590     return;
591 
592   // Don't check pointers to volatile data. The behavior here is implementation-
593   // defined.
594   if (Ty.isVolatileQualified())
595     return;
596 
597   SanitizerScope SanScope(this);
598 
599   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
600   llvm::BasicBlock *Done = nullptr;
601 
602   // Quickly determine whether we have a pointer to an alloca. It's possible
603   // to skip null checks, and some alignment checks, for these pointers. This
604   // can reduce compile-time significantly.
605   auto PtrToAlloca =
606       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
607 
608   llvm::Value *IsNonNull = nullptr;
609   bool IsGuaranteedNonNull =
610       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
611   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
612                            TCK == TCK_UpcastToVirtualBase;
613   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
614       !IsGuaranteedNonNull) {
615     // The glvalue must not be an empty glvalue.
616     IsNonNull = Builder.CreateIsNotNull(Ptr);
617 
618     // The IR builder can constant-fold the null check if the pointer points to
619     // a constant.
620     IsGuaranteedNonNull =
621         IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext());
622 
623     // Skip the null check if the pointer is known to be non-null.
624     if (!IsGuaranteedNonNull) {
625       if (AllowNullPointers) {
626         // When performing pointer casts, it's OK if the value is null.
627         // Skip the remaining checks in that case.
628         Done = createBasicBlock("null");
629         llvm::BasicBlock *Rest = createBasicBlock("not.null");
630         Builder.CreateCondBr(IsNonNull, Rest, Done);
631         EmitBlock(Rest);
632       } else {
633         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
634       }
635     }
636   }
637 
638   if (SanOpts.has(SanitizerKind::ObjectSize) &&
639       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
640       !Ty->isIncompleteType()) {
641     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
642 
643     // The glvalue must refer to a large enough storage region.
644     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
645     //        to check this.
646     // FIXME: Get object address space
647     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
648     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
649     llvm::Value *Min = Builder.getFalse();
650     llvm::Value *NullIsUnknown = Builder.getFalse();
651     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
652     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
653         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
654         llvm::ConstantInt::get(IntPtrTy, Size));
655     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
656   }
657 
658   uint64_t AlignVal = 0;
659 
660   if (SanOpts.has(SanitizerKind::Alignment) &&
661       !SkippedChecks.has(SanitizerKind::Alignment)) {
662     AlignVal = Alignment.getQuantity();
663     if (!Ty->isIncompleteType() && !AlignVal)
664       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
665 
666     // The glvalue must be suitably aligned.
667     if (AlignVal > 1 &&
668         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
669       llvm::Value *Align =
670           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
671                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
672       llvm::Value *Aligned =
673         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
674       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
675     }
676   }
677 
678   if (Checks.size() > 0) {
679     // Make sure we're not losing information. Alignment needs to be a power of
680     // 2
681     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
682     llvm::Constant *StaticData[] = {
683         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
684         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
685         llvm::ConstantInt::get(Int8Ty, TCK)};
686     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
687   }
688 
689   // If possible, check that the vptr indicates that there is a subobject of
690   // type Ty at offset zero within this object.
691   //
692   // C++11 [basic.life]p5,6:
693   //   [For storage which does not refer to an object within its lifetime]
694   //   The program has undefined behavior if:
695   //    -- the [pointer or glvalue] is used to access a non-static data member
696   //       or call a non-static member function
697   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
698   if (SanOpts.has(SanitizerKind::Vptr) &&
699       !SkippedChecks.has(SanitizerKind::Vptr) &&
700       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
701        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
702        TCK == TCK_UpcastToVirtualBase) &&
703       RD && RD->hasDefinition() && RD->isDynamicClass()) {
704     // Ensure that the pointer is non-null before loading it. If there is no
705     // compile-time guarantee, reuse the run-time null check or emit a new one.
706     if (!IsGuaranteedNonNull) {
707       if (!IsNonNull)
708         IsNonNull = Builder.CreateIsNotNull(Ptr);
709       if (!Done)
710         Done = createBasicBlock("vptr.null");
711       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
712       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
713       EmitBlock(VptrNotNull);
714     }
715 
716     // Compute a hash of the mangled name of the type.
717     //
718     // FIXME: This is not guaranteed to be deterministic! Move to a
719     //        fingerprinting mechanism once LLVM provides one. For the time
720     //        being the implementation happens to be deterministic.
721     SmallString<64> MangledName;
722     llvm::raw_svector_ostream Out(MangledName);
723     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
724                                                      Out);
725 
726     // Blacklist based on the mangled type.
727     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
728             SanitizerKind::Vptr, Out.str())) {
729       llvm::hash_code TypeHash = hash_value(Out.str());
730 
731       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
732       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
733       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
734       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
735       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
736       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
737 
738       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
739       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
740 
741       // Look the hash up in our cache.
742       const int CacheSize = 128;
743       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
744       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
745                                                      "__ubsan_vptr_type_cache");
746       llvm::Value *Slot = Builder.CreateAnd(Hash,
747                                             llvm::ConstantInt::get(IntPtrTy,
748                                                                    CacheSize-1));
749       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
750       llvm::Value *CacheVal =
751         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
752                                   getPointerAlign());
753 
754       // If the hash isn't in the cache, call a runtime handler to perform the
755       // hard work of checking whether the vptr is for an object of the right
756       // type. This will either fill in the cache and return, or produce a
757       // diagnostic.
758       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
759       llvm::Constant *StaticData[] = {
760         EmitCheckSourceLocation(Loc),
761         EmitCheckTypeDescriptor(Ty),
762         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
763         llvm::ConstantInt::get(Int8Ty, TCK)
764       };
765       llvm::Value *DynamicData[] = { Ptr, Hash };
766       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
767                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
768                 DynamicData);
769     }
770   }
771 
772   if (Done) {
773     Builder.CreateBr(Done);
774     EmitBlock(Done);
775   }
776 }
777 
778 /// Determine whether this expression refers to a flexible array member in a
779 /// struct. We disable array bounds checks for such members.
780 static bool isFlexibleArrayMemberExpr(const Expr *E) {
781   // For compatibility with existing code, we treat arrays of length 0 or
782   // 1 as flexible array members.
783   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
784   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
785     if (CAT->getSize().ugt(1))
786       return false;
787   } else if (!isa<IncompleteArrayType>(AT))
788     return false;
789 
790   E = E->IgnoreParens();
791 
792   // A flexible array member must be the last member in the class.
793   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
794     // FIXME: If the base type of the member expr is not FD->getParent(),
795     // this should not be treated as a flexible array member access.
796     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
797       RecordDecl::field_iterator FI(
798           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
799       return ++FI == FD->getParent()->field_end();
800     }
801   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
802     return IRE->getDecl()->getNextIvar() == nullptr;
803   }
804 
805   return false;
806 }
807 
808 /// If Base is known to point to the start of an array, return the length of
809 /// that array. Return 0 if the length cannot be determined.
810 static llvm::Value *getArrayIndexingBound(
811     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
812   // For the vector indexing extension, the bound is the number of elements.
813   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
814     IndexedType = Base->getType();
815     return CGF.Builder.getInt32(VT->getNumElements());
816   }
817 
818   Base = Base->IgnoreParens();
819 
820   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
821     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
822         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
823       IndexedType = CE->getSubExpr()->getType();
824       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
825       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
826         return CGF.Builder.getInt(CAT->getSize());
827       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
828         return CGF.getVLASize(VAT).first;
829     }
830   }
831 
832   return nullptr;
833 }
834 
835 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
836                                       llvm::Value *Index, QualType IndexType,
837                                       bool Accessed) {
838   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
839          "should not be called unless adding bounds checks");
840   SanitizerScope SanScope(this);
841 
842   QualType IndexedType;
843   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
844   if (!Bound)
845     return;
846 
847   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
848   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
849   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
850 
851   llvm::Constant *StaticData[] = {
852     EmitCheckSourceLocation(E->getExprLoc()),
853     EmitCheckTypeDescriptor(IndexedType),
854     EmitCheckTypeDescriptor(IndexType)
855   };
856   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
857                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
858   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
859             SanitizerHandler::OutOfBounds, StaticData, Index);
860 }
861 
862 
863 CodeGenFunction::ComplexPairTy CodeGenFunction::
864 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
865                          bool isInc, bool isPre) {
866   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
867 
868   llvm::Value *NextVal;
869   if (isa<llvm::IntegerType>(InVal.first->getType())) {
870     uint64_t AmountVal = isInc ? 1 : -1;
871     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
872 
873     // Add the inc/dec to the real part.
874     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
875   } else {
876     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
877     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
878     if (!isInc)
879       FVal.changeSign();
880     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
881 
882     // Add the inc/dec to the real part.
883     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
884   }
885 
886   ComplexPairTy IncVal(NextVal, InVal.second);
887 
888   // Store the updated result through the lvalue.
889   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
890 
891   // If this is a postinc, return the value read from memory, otherwise use the
892   // updated value.
893   return isPre ? IncVal : InVal;
894 }
895 
896 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
897                                              CodeGenFunction *CGF) {
898   // Bind VLAs in the cast type.
899   if (CGF && E->getType()->isVariablyModifiedType())
900     CGF->EmitVariablyModifiedType(E->getType());
901 
902   if (CGDebugInfo *DI = getModuleDebugInfo())
903     DI->EmitExplicitCastType(E->getType());
904 }
905 
906 //===----------------------------------------------------------------------===//
907 //                         LValue Expression Emission
908 //===----------------------------------------------------------------------===//
909 
910 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
911 /// derive a more accurate bound on the alignment of the pointer.
912 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
913                                                   LValueBaseInfo *BaseInfo) {
914   // We allow this with ObjC object pointers because of fragile ABIs.
915   assert(E->getType()->isPointerType() ||
916          E->getType()->isObjCObjectPointerType());
917   E = E->IgnoreParens();
918 
919   // Casts:
920   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
921     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
922       CGM.EmitExplicitCastExprType(ECE, this);
923 
924     switch (CE->getCastKind()) {
925     // Non-converting casts (but not C's implicit conversion from void*).
926     case CK_BitCast:
927     case CK_NoOp:
928     case CK_AddressSpaceConversion:
929       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
930         if (PtrTy->getPointeeType()->isVoidType())
931           break;
932 
933         LValueBaseInfo InnerInfo;
934         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo);
935         if (BaseInfo) *BaseInfo = InnerInfo;
936 
937         // If this is an explicit bitcast, and the source l-value is
938         // opaque, honor the alignment of the casted-to type.
939         if (isa<ExplicitCastExpr>(CE) &&
940             InnerInfo.getAlignmentSource() != AlignmentSource::Decl) {
941           LValueBaseInfo ExpInfo;
942           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
943                                                            &ExpInfo);
944           if (BaseInfo)
945             BaseInfo->mergeForCast(ExpInfo);
946           Addr = Address(Addr.getPointer(), Align);
947         }
948 
949         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
950             CE->getCastKind() == CK_BitCast) {
951           if (auto PT = E->getType()->getAs<PointerType>())
952             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
953                                       /*MayBeNull=*/true,
954                                       CodeGenFunction::CFITCK_UnrelatedCast,
955                                       CE->getLocStart());
956         }
957         return CE->getCastKind() != CK_AddressSpaceConversion
958                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
959                    : Builder.CreateAddrSpaceCast(Addr,
960                                                  ConvertType(E->getType()));
961       }
962       break;
963 
964     // Array-to-pointer decay.
965     case CK_ArrayToPointerDecay:
966       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo);
967 
968     // Derived-to-base conversions.
969     case CK_UncheckedDerivedToBase:
970     case CK_DerivedToBase: {
971       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
972       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
973       return GetAddressOfBaseClass(Addr, Derived,
974                                    CE->path_begin(), CE->path_end(),
975                                    ShouldNullCheckClassCastValue(CE),
976                                    CE->getExprLoc());
977     }
978 
979     // TODO: Is there any reason to treat base-to-derived conversions
980     // specially?
981     default:
982       break;
983     }
984   }
985 
986   // Unary &.
987   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
988     if (UO->getOpcode() == UO_AddrOf) {
989       LValue LV = EmitLValue(UO->getSubExpr());
990       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
991       return LV.getAddress();
992     }
993   }
994 
995   // TODO: conditional operators, comma.
996 
997   // Otherwise, use the alignment of the type.
998   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo);
999   return Address(EmitScalarExpr(E), Align);
1000 }
1001 
1002 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1003   if (Ty->isVoidType())
1004     return RValue::get(nullptr);
1005 
1006   switch (getEvaluationKind(Ty)) {
1007   case TEK_Complex: {
1008     llvm::Type *EltTy =
1009       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1010     llvm::Value *U = llvm::UndefValue::get(EltTy);
1011     return RValue::getComplex(std::make_pair(U, U));
1012   }
1013 
1014   // If this is a use of an undefined aggregate type, the aggregate must have an
1015   // identifiable address.  Just because the contents of the value are undefined
1016   // doesn't mean that the address can't be taken and compared.
1017   case TEK_Aggregate: {
1018     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1019     return RValue::getAggregate(DestPtr);
1020   }
1021 
1022   case TEK_Scalar:
1023     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1024   }
1025   llvm_unreachable("bad evaluation kind");
1026 }
1027 
1028 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1029                                               const char *Name) {
1030   ErrorUnsupported(E, Name);
1031   return GetUndefRValue(E->getType());
1032 }
1033 
1034 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1035                                               const char *Name) {
1036   ErrorUnsupported(E, Name);
1037   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1038   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1039                         E->getType());
1040 }
1041 
1042 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1043   const Expr *Base = Obj;
1044   while (!isa<CXXThisExpr>(Base)) {
1045     // The result of a dynamic_cast can be null.
1046     if (isa<CXXDynamicCastExpr>(Base))
1047       return false;
1048 
1049     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1050       Base = CE->getSubExpr();
1051     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1052       Base = PE->getSubExpr();
1053     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1054       if (UO->getOpcode() == UO_Extension)
1055         Base = UO->getSubExpr();
1056       else
1057         return false;
1058     } else {
1059       return false;
1060     }
1061   }
1062   return true;
1063 }
1064 
1065 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1066   LValue LV;
1067   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1068     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1069   else
1070     LV = EmitLValue(E);
1071   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1072     SanitizerSet SkippedChecks;
1073     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1074       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1075       if (IsBaseCXXThis)
1076         SkippedChecks.set(SanitizerKind::Alignment, true);
1077       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1078         SkippedChecks.set(SanitizerKind::Null, true);
1079     }
1080     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1081                   E->getType(), LV.getAlignment(), SkippedChecks);
1082   }
1083   return LV;
1084 }
1085 
1086 /// EmitLValue - Emit code to compute a designator that specifies the location
1087 /// of the expression.
1088 ///
1089 /// This can return one of two things: a simple address or a bitfield reference.
1090 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1091 /// an LLVM pointer type.
1092 ///
1093 /// If this returns a bitfield reference, nothing about the pointee type of the
1094 /// LLVM value is known: For example, it may not be a pointer to an integer.
1095 ///
1096 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1097 /// this method guarantees that the returned pointer type will point to an LLVM
1098 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1099 /// length type, this is not possible.
1100 ///
1101 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1102   ApplyDebugLocation DL(*this, E);
1103   switch (E->getStmtClass()) {
1104   default: return EmitUnsupportedLValue(E, "l-value expression");
1105 
1106   case Expr::ObjCPropertyRefExprClass:
1107     llvm_unreachable("cannot emit a property reference directly");
1108 
1109   case Expr::ObjCSelectorExprClass:
1110     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1111   case Expr::ObjCIsaExprClass:
1112     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1113   case Expr::BinaryOperatorClass:
1114     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1115   case Expr::CompoundAssignOperatorClass: {
1116     QualType Ty = E->getType();
1117     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1118       Ty = AT->getValueType();
1119     if (!Ty->isAnyComplexType())
1120       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1121     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1122   }
1123   case Expr::CallExprClass:
1124   case Expr::CXXMemberCallExprClass:
1125   case Expr::CXXOperatorCallExprClass:
1126   case Expr::UserDefinedLiteralClass:
1127     return EmitCallExprLValue(cast<CallExpr>(E));
1128   case Expr::VAArgExprClass:
1129     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1130   case Expr::DeclRefExprClass:
1131     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1132   case Expr::ParenExprClass:
1133     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1134   case Expr::GenericSelectionExprClass:
1135     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1136   case Expr::PredefinedExprClass:
1137     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1138   case Expr::StringLiteralClass:
1139     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1140   case Expr::ObjCEncodeExprClass:
1141     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1142   case Expr::PseudoObjectExprClass:
1143     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1144   case Expr::InitListExprClass:
1145     return EmitInitListLValue(cast<InitListExpr>(E));
1146   case Expr::CXXTemporaryObjectExprClass:
1147   case Expr::CXXConstructExprClass:
1148     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1149   case Expr::CXXBindTemporaryExprClass:
1150     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1151   case Expr::CXXUuidofExprClass:
1152     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1153   case Expr::LambdaExprClass:
1154     return EmitLambdaLValue(cast<LambdaExpr>(E));
1155 
1156   case Expr::ExprWithCleanupsClass: {
1157     const auto *cleanups = cast<ExprWithCleanups>(E);
1158     enterFullExpression(cleanups);
1159     RunCleanupsScope Scope(*this);
1160     LValue LV = EmitLValue(cleanups->getSubExpr());
1161     if (LV.isSimple()) {
1162       // Defend against branches out of gnu statement expressions surrounded by
1163       // cleanups.
1164       llvm::Value *V = LV.getPointer();
1165       Scope.ForceCleanup({&V});
1166       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1167                               getContext(), LV.getBaseInfo(),
1168                               LV.getTBAAInfo());
1169     }
1170     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1171     // bitfield lvalue or some other non-simple lvalue?
1172     return LV;
1173   }
1174 
1175   case Expr::CXXDefaultArgExprClass:
1176     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1177   case Expr::CXXDefaultInitExprClass: {
1178     CXXDefaultInitExprScope Scope(*this);
1179     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1180   }
1181   case Expr::CXXTypeidExprClass:
1182     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1183 
1184   case Expr::ObjCMessageExprClass:
1185     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1186   case Expr::ObjCIvarRefExprClass:
1187     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1188   case Expr::StmtExprClass:
1189     return EmitStmtExprLValue(cast<StmtExpr>(E));
1190   case Expr::UnaryOperatorClass:
1191     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1192   case Expr::ArraySubscriptExprClass:
1193     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1194   case Expr::OMPArraySectionExprClass:
1195     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1196   case Expr::ExtVectorElementExprClass:
1197     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1198   case Expr::MemberExprClass:
1199     return EmitMemberExpr(cast<MemberExpr>(E));
1200   case Expr::CompoundLiteralExprClass:
1201     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1202   case Expr::ConditionalOperatorClass:
1203     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1204   case Expr::BinaryConditionalOperatorClass:
1205     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1206   case Expr::ChooseExprClass:
1207     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1208   case Expr::OpaqueValueExprClass:
1209     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1210   case Expr::SubstNonTypeTemplateParmExprClass:
1211     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1212   case Expr::ImplicitCastExprClass:
1213   case Expr::CStyleCastExprClass:
1214   case Expr::CXXFunctionalCastExprClass:
1215   case Expr::CXXStaticCastExprClass:
1216   case Expr::CXXDynamicCastExprClass:
1217   case Expr::CXXReinterpretCastExprClass:
1218   case Expr::CXXConstCastExprClass:
1219   case Expr::ObjCBridgedCastExprClass:
1220     return EmitCastLValue(cast<CastExpr>(E));
1221 
1222   case Expr::MaterializeTemporaryExprClass:
1223     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1224 
1225   case Expr::CoawaitExprClass:
1226     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1227   case Expr::CoyieldExprClass:
1228     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1229   }
1230 }
1231 
1232 /// Given an object of the given canonical type, can we safely copy a
1233 /// value out of it based on its initializer?
1234 static bool isConstantEmittableObjectType(QualType type) {
1235   assert(type.isCanonical());
1236   assert(!type->isReferenceType());
1237 
1238   // Must be const-qualified but non-volatile.
1239   Qualifiers qs = type.getLocalQualifiers();
1240   if (!qs.hasConst() || qs.hasVolatile()) return false;
1241 
1242   // Otherwise, all object types satisfy this except C++ classes with
1243   // mutable subobjects or non-trivial copy/destroy behavior.
1244   if (const auto *RT = dyn_cast<RecordType>(type))
1245     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1246       if (RD->hasMutableFields() || !RD->isTrivial())
1247         return false;
1248 
1249   return true;
1250 }
1251 
1252 /// Can we constant-emit a load of a reference to a variable of the
1253 /// given type?  This is different from predicates like
1254 /// Decl::isUsableInConstantExpressions because we do want it to apply
1255 /// in situations that don't necessarily satisfy the language's rules
1256 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1257 /// to do this with const float variables even if those variables
1258 /// aren't marked 'constexpr'.
1259 enum ConstantEmissionKind {
1260   CEK_None,
1261   CEK_AsReferenceOnly,
1262   CEK_AsValueOrReference,
1263   CEK_AsValueOnly
1264 };
1265 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1266   type = type.getCanonicalType();
1267   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1268     if (isConstantEmittableObjectType(ref->getPointeeType()))
1269       return CEK_AsValueOrReference;
1270     return CEK_AsReferenceOnly;
1271   }
1272   if (isConstantEmittableObjectType(type))
1273     return CEK_AsValueOnly;
1274   return CEK_None;
1275 }
1276 
1277 /// Try to emit a reference to the given value without producing it as
1278 /// an l-value.  This is actually more than an optimization: we can't
1279 /// produce an l-value for variables that we never actually captured
1280 /// in a block or lambda, which means const int variables or constexpr
1281 /// literals or similar.
1282 CodeGenFunction::ConstantEmission
1283 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1284   ValueDecl *value = refExpr->getDecl();
1285 
1286   // The value needs to be an enum constant or a constant variable.
1287   ConstantEmissionKind CEK;
1288   if (isa<ParmVarDecl>(value)) {
1289     CEK = CEK_None;
1290   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1291     CEK = checkVarTypeForConstantEmission(var->getType());
1292   } else if (isa<EnumConstantDecl>(value)) {
1293     CEK = CEK_AsValueOnly;
1294   } else {
1295     CEK = CEK_None;
1296   }
1297   if (CEK == CEK_None) return ConstantEmission();
1298 
1299   Expr::EvalResult result;
1300   bool resultIsReference;
1301   QualType resultType;
1302 
1303   // It's best to evaluate all the way as an r-value if that's permitted.
1304   if (CEK != CEK_AsReferenceOnly &&
1305       refExpr->EvaluateAsRValue(result, getContext())) {
1306     resultIsReference = false;
1307     resultType = refExpr->getType();
1308 
1309   // Otherwise, try to evaluate as an l-value.
1310   } else if (CEK != CEK_AsValueOnly &&
1311              refExpr->EvaluateAsLValue(result, getContext())) {
1312     resultIsReference = true;
1313     resultType = value->getType();
1314 
1315   // Failure.
1316   } else {
1317     return ConstantEmission();
1318   }
1319 
1320   // In any case, if the initializer has side-effects, abandon ship.
1321   if (result.HasSideEffects)
1322     return ConstantEmission();
1323 
1324   // Emit as a constant.
1325   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1326                                                result.Val, resultType);
1327 
1328   // Make sure we emit a debug reference to the global variable.
1329   // This should probably fire even for
1330   if (isa<VarDecl>(value)) {
1331     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1332       EmitDeclRefExprDbgValue(refExpr, result.Val);
1333   } else {
1334     assert(isa<EnumConstantDecl>(value));
1335     EmitDeclRefExprDbgValue(refExpr, result.Val);
1336   }
1337 
1338   // If we emitted a reference constant, we need to dereference that.
1339   if (resultIsReference)
1340     return ConstantEmission::forReference(C);
1341 
1342   return ConstantEmission::forValue(C);
1343 }
1344 
1345 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1346                                                         const MemberExpr *ME) {
1347   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1348     // Try to emit static variable member expressions as DREs.
1349     return DeclRefExpr::Create(
1350         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1351         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1352         ME->getType(), ME->getValueKind());
1353   }
1354   return nullptr;
1355 }
1356 
1357 CodeGenFunction::ConstantEmission
1358 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1359   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1360     return tryEmitAsConstant(DRE);
1361   return ConstantEmission();
1362 }
1363 
1364 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1365                                                SourceLocation Loc) {
1366   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1367                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1368                           lvalue.getTBAAInfo(),
1369                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1370                           lvalue.isNontemporal());
1371 }
1372 
1373 static bool hasBooleanRepresentation(QualType Ty) {
1374   if (Ty->isBooleanType())
1375     return true;
1376 
1377   if (const EnumType *ET = Ty->getAs<EnumType>())
1378     return ET->getDecl()->getIntegerType()->isBooleanType();
1379 
1380   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1381     return hasBooleanRepresentation(AT->getValueType());
1382 
1383   return false;
1384 }
1385 
1386 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1387                             llvm::APInt &Min, llvm::APInt &End,
1388                             bool StrictEnums, bool IsBool) {
1389   const EnumType *ET = Ty->getAs<EnumType>();
1390   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1391                                 ET && !ET->getDecl()->isFixed();
1392   if (!IsBool && !IsRegularCPlusPlusEnum)
1393     return false;
1394 
1395   if (IsBool) {
1396     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1397     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1398   } else {
1399     const EnumDecl *ED = ET->getDecl();
1400     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1401     unsigned Bitwidth = LTy->getScalarSizeInBits();
1402     unsigned NumNegativeBits = ED->getNumNegativeBits();
1403     unsigned NumPositiveBits = ED->getNumPositiveBits();
1404 
1405     if (NumNegativeBits) {
1406       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1407       assert(NumBits <= Bitwidth);
1408       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1409       Min = -End;
1410     } else {
1411       assert(NumPositiveBits <= Bitwidth);
1412       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1413       Min = llvm::APInt(Bitwidth, 0);
1414     }
1415   }
1416   return true;
1417 }
1418 
1419 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1420   llvm::APInt Min, End;
1421   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1422                        hasBooleanRepresentation(Ty)))
1423     return nullptr;
1424 
1425   llvm::MDBuilder MDHelper(getLLVMContext());
1426   return MDHelper.createRange(Min, End);
1427 }
1428 
1429 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1430                                            SourceLocation Loc) {
1431   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1432   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1433   if (!HasBoolCheck && !HasEnumCheck)
1434     return false;
1435 
1436   bool IsBool = hasBooleanRepresentation(Ty) ||
1437                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1438   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1439   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1440   if (!NeedsBoolCheck && !NeedsEnumCheck)
1441     return false;
1442 
1443   // Single-bit booleans don't need to be checked. Special-case this to avoid
1444   // a bit width mismatch when handling bitfield values. This is handled by
1445   // EmitFromMemory for the non-bitfield case.
1446   if (IsBool &&
1447       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1448     return false;
1449 
1450   llvm::APInt Min, End;
1451   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1452     return true;
1453 
1454   SanitizerScope SanScope(this);
1455   llvm::Value *Check;
1456   --End;
1457   if (!Min) {
1458     Check = Builder.CreateICmpULE(
1459         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1460   } else {
1461     llvm::Value *Upper = Builder.CreateICmpSLE(
1462         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1463     llvm::Value *Lower = Builder.CreateICmpSGE(
1464         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1465     Check = Builder.CreateAnd(Upper, Lower);
1466   }
1467   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1468                                   EmitCheckTypeDescriptor(Ty)};
1469   SanitizerMask Kind =
1470       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1471   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1472             StaticArgs, EmitCheckValue(Value));
1473   return true;
1474 }
1475 
1476 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1477                                                QualType Ty,
1478                                                SourceLocation Loc,
1479                                                LValueBaseInfo BaseInfo,
1480                                                llvm::MDNode *TBAAInfo,
1481                                                QualType TBAABaseType,
1482                                                uint64_t TBAAOffset,
1483                                                bool isNontemporal) {
1484   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1485     // For better performance, handle vector loads differently.
1486     if (Ty->isVectorType()) {
1487       const llvm::Type *EltTy = Addr.getElementType();
1488 
1489       const auto *VTy = cast<llvm::VectorType>(EltTy);
1490 
1491       // Handle vectors of size 3 like size 4 for better performance.
1492       if (VTy->getNumElements() == 3) {
1493 
1494         // Bitcast to vec4 type.
1495         llvm::VectorType *vec4Ty =
1496             llvm::VectorType::get(VTy->getElementType(), 4);
1497         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1498         // Now load value.
1499         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1500 
1501         // Shuffle vector to get vec3.
1502         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1503                                         {0, 1, 2}, "extractVec");
1504         return EmitFromMemory(V, Ty);
1505       }
1506     }
1507   }
1508 
1509   // Atomic operations have to be done on integral types.
1510   LValue AtomicLValue =
1511       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1512   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1513     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1514   }
1515 
1516   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1517   if (isNontemporal) {
1518     llvm::MDNode *Node = llvm::MDNode::get(
1519         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1520     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1521   }
1522   if (TBAAInfo) {
1523     bool MayAlias = BaseInfo.getMayAlias();
1524     llvm::MDNode *TBAA = MayAlias
1525         ? CGM.getTBAAInfo(getContext().CharTy)
1526         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1527     if (TBAA)
1528       CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias);
1529   }
1530 
1531   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1532     // In order to prevent the optimizer from throwing away the check, don't
1533     // attach range metadata to the load.
1534   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1535     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1536       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1537 
1538   return EmitFromMemory(Load, Ty);
1539 }
1540 
1541 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1542   // Bool has a different representation in memory than in registers.
1543   if (hasBooleanRepresentation(Ty)) {
1544     // This should really always be an i1, but sometimes it's already
1545     // an i8, and it's awkward to track those cases down.
1546     if (Value->getType()->isIntegerTy(1))
1547       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1548     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1549            "wrong value rep of bool");
1550   }
1551 
1552   return Value;
1553 }
1554 
1555 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1556   // Bool has a different representation in memory than in registers.
1557   if (hasBooleanRepresentation(Ty)) {
1558     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1559            "wrong value rep of bool");
1560     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1561   }
1562 
1563   return Value;
1564 }
1565 
1566 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1567                                         bool Volatile, QualType Ty,
1568                                         LValueBaseInfo BaseInfo,
1569                                         llvm::MDNode *TBAAInfo,
1570                                         bool isInit, QualType TBAABaseType,
1571                                         uint64_t TBAAOffset,
1572                                         bool isNontemporal) {
1573 
1574   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1575     // Handle vectors differently to get better performance.
1576     if (Ty->isVectorType()) {
1577       llvm::Type *SrcTy = Value->getType();
1578       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1579       // Handle vec3 special.
1580       if (VecTy && VecTy->getNumElements() == 3) {
1581         // Our source is a vec3, do a shuffle vector to make it a vec4.
1582         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1583                                   Builder.getInt32(2),
1584                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1585         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1586         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1587                                             MaskV, "extractVec");
1588         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1589       }
1590       if (Addr.getElementType() != SrcTy) {
1591         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1592       }
1593     }
1594   }
1595 
1596   Value = EmitToMemory(Value, Ty);
1597 
1598   LValue AtomicLValue =
1599       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1600   if (Ty->isAtomicType() ||
1601       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1602     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1603     return;
1604   }
1605 
1606   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1607   if (isNontemporal) {
1608     llvm::MDNode *Node =
1609         llvm::MDNode::get(Store->getContext(),
1610                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1611     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1612   }
1613   if (TBAAInfo) {
1614     bool MayAlias = BaseInfo.getMayAlias();
1615     llvm::MDNode *TBAA = MayAlias
1616         ? CGM.getTBAAInfo(getContext().CharTy)
1617         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1618     if (TBAA)
1619       CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias);
1620   }
1621 }
1622 
1623 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1624                                         bool isInit) {
1625   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1626                     lvalue.getType(), lvalue.getBaseInfo(),
1627                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1628                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1629 }
1630 
1631 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1632 /// method emits the address of the lvalue, then loads the result as an rvalue,
1633 /// returning the rvalue.
1634 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1635   if (LV.isObjCWeak()) {
1636     // load of a __weak object.
1637     Address AddrWeakObj = LV.getAddress();
1638     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1639                                                              AddrWeakObj));
1640   }
1641   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1642     // In MRC mode, we do a load+autorelease.
1643     if (!getLangOpts().ObjCAutoRefCount) {
1644       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1645     }
1646 
1647     // In ARC mode, we load retained and then consume the value.
1648     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1649     Object = EmitObjCConsumeObject(LV.getType(), Object);
1650     return RValue::get(Object);
1651   }
1652 
1653   if (LV.isSimple()) {
1654     assert(!LV.getType()->isFunctionType());
1655 
1656     // Everything needs a load.
1657     return RValue::get(EmitLoadOfScalar(LV, Loc));
1658   }
1659 
1660   if (LV.isVectorElt()) {
1661     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1662                                               LV.isVolatileQualified());
1663     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1664                                                     "vecext"));
1665   }
1666 
1667   // If this is a reference to a subset of the elements of a vector, either
1668   // shuffle the input or extract/insert them as appropriate.
1669   if (LV.isExtVectorElt())
1670     return EmitLoadOfExtVectorElementLValue(LV);
1671 
1672   // Global Register variables always invoke intrinsics
1673   if (LV.isGlobalReg())
1674     return EmitLoadOfGlobalRegLValue(LV);
1675 
1676   assert(LV.isBitField() && "Unknown LValue type!");
1677   return EmitLoadOfBitfieldLValue(LV, Loc);
1678 }
1679 
1680 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1681                                                  SourceLocation Loc) {
1682   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1683 
1684   // Get the output type.
1685   llvm::Type *ResLTy = ConvertType(LV.getType());
1686 
1687   Address Ptr = LV.getBitFieldAddress();
1688   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1689 
1690   if (Info.IsSigned) {
1691     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1692     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1693     if (HighBits)
1694       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1695     if (Info.Offset + HighBits)
1696       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1697   } else {
1698     if (Info.Offset)
1699       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1700     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1701       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1702                                                               Info.Size),
1703                               "bf.clear");
1704   }
1705   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1706   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1707   return RValue::get(Val);
1708 }
1709 
1710 // If this is a reference to a subset of the elements of a vector, create an
1711 // appropriate shufflevector.
1712 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1713   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1714                                         LV.isVolatileQualified());
1715 
1716   const llvm::Constant *Elts = LV.getExtVectorElts();
1717 
1718   // If the result of the expression is a non-vector type, we must be extracting
1719   // a single element.  Just codegen as an extractelement.
1720   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1721   if (!ExprVT) {
1722     unsigned InIdx = getAccessedFieldNo(0, Elts);
1723     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1724     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1725   }
1726 
1727   // Always use shuffle vector to try to retain the original program structure
1728   unsigned NumResultElts = ExprVT->getNumElements();
1729 
1730   SmallVector<llvm::Constant*, 4> Mask;
1731   for (unsigned i = 0; i != NumResultElts; ++i)
1732     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1733 
1734   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1735   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1736                                     MaskV);
1737   return RValue::get(Vec);
1738 }
1739 
1740 /// @brief Generates lvalue for partial ext_vector access.
1741 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1742   Address VectorAddress = LV.getExtVectorAddress();
1743   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1744   QualType EQT = ExprVT->getElementType();
1745   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1746 
1747   Address CastToPointerElement =
1748     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1749                                  "conv.ptr.element");
1750 
1751   const llvm::Constant *Elts = LV.getExtVectorElts();
1752   unsigned ix = getAccessedFieldNo(0, Elts);
1753 
1754   Address VectorBasePtrPlusIx =
1755     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1756                                    getContext().getTypeSizeInChars(EQT),
1757                                    "vector.elt");
1758 
1759   return VectorBasePtrPlusIx;
1760 }
1761 
1762 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1763 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1764   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1765          "Bad type for register variable");
1766   llvm::MDNode *RegName = cast<llvm::MDNode>(
1767       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1768 
1769   // We accept integer and pointer types only
1770   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1771   llvm::Type *Ty = OrigTy;
1772   if (OrigTy->isPointerTy())
1773     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1774   llvm::Type *Types[] = { Ty };
1775 
1776   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1777   llvm::Value *Call = Builder.CreateCall(
1778       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1779   if (OrigTy->isPointerTy())
1780     Call = Builder.CreateIntToPtr(Call, OrigTy);
1781   return RValue::get(Call);
1782 }
1783 
1784 
1785 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1786 /// lvalue, where both are guaranteed to the have the same type, and that type
1787 /// is 'Ty'.
1788 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1789                                              bool isInit) {
1790   if (!Dst.isSimple()) {
1791     if (Dst.isVectorElt()) {
1792       // Read/modify/write the vector, inserting the new element.
1793       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1794                                             Dst.isVolatileQualified());
1795       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1796                                         Dst.getVectorIdx(), "vecins");
1797       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1798                           Dst.isVolatileQualified());
1799       return;
1800     }
1801 
1802     // If this is an update of extended vector elements, insert them as
1803     // appropriate.
1804     if (Dst.isExtVectorElt())
1805       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1806 
1807     if (Dst.isGlobalReg())
1808       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1809 
1810     assert(Dst.isBitField() && "Unknown LValue type");
1811     return EmitStoreThroughBitfieldLValue(Src, Dst);
1812   }
1813 
1814   // There's special magic for assigning into an ARC-qualified l-value.
1815   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1816     switch (Lifetime) {
1817     case Qualifiers::OCL_None:
1818       llvm_unreachable("present but none");
1819 
1820     case Qualifiers::OCL_ExplicitNone:
1821       // nothing special
1822       break;
1823 
1824     case Qualifiers::OCL_Strong:
1825       if (isInit) {
1826         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1827         break;
1828       }
1829       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1830       return;
1831 
1832     case Qualifiers::OCL_Weak:
1833       if (isInit)
1834         // Initialize and then skip the primitive store.
1835         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1836       else
1837         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1838       return;
1839 
1840     case Qualifiers::OCL_Autoreleasing:
1841       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1842                                                      Src.getScalarVal()));
1843       // fall into the normal path
1844       break;
1845     }
1846   }
1847 
1848   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1849     // load of a __weak object.
1850     Address LvalueDst = Dst.getAddress();
1851     llvm::Value *src = Src.getScalarVal();
1852      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1853     return;
1854   }
1855 
1856   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1857     // load of a __strong object.
1858     Address LvalueDst = Dst.getAddress();
1859     llvm::Value *src = Src.getScalarVal();
1860     if (Dst.isObjCIvar()) {
1861       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1862       llvm::Type *ResultType = IntPtrTy;
1863       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1864       llvm::Value *RHS = dst.getPointer();
1865       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1866       llvm::Value *LHS =
1867         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1868                                "sub.ptr.lhs.cast");
1869       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1870       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1871                                               BytesBetween);
1872     } else if (Dst.isGlobalObjCRef()) {
1873       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1874                                                 Dst.isThreadLocalRef());
1875     }
1876     else
1877       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1878     return;
1879   }
1880 
1881   assert(Src.isScalar() && "Can't emit an agg store with this method");
1882   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1883 }
1884 
1885 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1886                                                      llvm::Value **Result) {
1887   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1888   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1889   Address Ptr = Dst.getBitFieldAddress();
1890 
1891   // Get the source value, truncated to the width of the bit-field.
1892   llvm::Value *SrcVal = Src.getScalarVal();
1893 
1894   // Cast the source to the storage type and shift it into place.
1895   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1896                                  /*IsSigned=*/false);
1897   llvm::Value *MaskedVal = SrcVal;
1898 
1899   // See if there are other bits in the bitfield's storage we'll need to load
1900   // and mask together with source before storing.
1901   if (Info.StorageSize != Info.Size) {
1902     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1903     llvm::Value *Val =
1904       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1905 
1906     // Mask the source value as needed.
1907     if (!hasBooleanRepresentation(Dst.getType()))
1908       SrcVal = Builder.CreateAnd(SrcVal,
1909                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1910                                                             Info.Size),
1911                                  "bf.value");
1912     MaskedVal = SrcVal;
1913     if (Info.Offset)
1914       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1915 
1916     // Mask out the original value.
1917     Val = Builder.CreateAnd(Val,
1918                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1919                                                      Info.Offset,
1920                                                      Info.Offset + Info.Size),
1921                             "bf.clear");
1922 
1923     // Or together the unchanged values and the source value.
1924     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1925   } else {
1926     assert(Info.Offset == 0);
1927   }
1928 
1929   // Write the new value back out.
1930   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1931 
1932   // Return the new value of the bit-field, if requested.
1933   if (Result) {
1934     llvm::Value *ResultVal = MaskedVal;
1935 
1936     // Sign extend the value if needed.
1937     if (Info.IsSigned) {
1938       assert(Info.Size <= Info.StorageSize);
1939       unsigned HighBits = Info.StorageSize - Info.Size;
1940       if (HighBits) {
1941         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1942         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1943       }
1944     }
1945 
1946     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1947                                       "bf.result.cast");
1948     *Result = EmitFromMemory(ResultVal, Dst.getType());
1949   }
1950 }
1951 
1952 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1953                                                                LValue Dst) {
1954   // This access turns into a read/modify/write of the vector.  Load the input
1955   // value now.
1956   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1957                                         Dst.isVolatileQualified());
1958   const llvm::Constant *Elts = Dst.getExtVectorElts();
1959 
1960   llvm::Value *SrcVal = Src.getScalarVal();
1961 
1962   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1963     unsigned NumSrcElts = VTy->getNumElements();
1964     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1965     if (NumDstElts == NumSrcElts) {
1966       // Use shuffle vector is the src and destination are the same number of
1967       // elements and restore the vector mask since it is on the side it will be
1968       // stored.
1969       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1970       for (unsigned i = 0; i != NumSrcElts; ++i)
1971         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1972 
1973       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1974       Vec = Builder.CreateShuffleVector(SrcVal,
1975                                         llvm::UndefValue::get(Vec->getType()),
1976                                         MaskV);
1977     } else if (NumDstElts > NumSrcElts) {
1978       // Extended the source vector to the same length and then shuffle it
1979       // into the destination.
1980       // FIXME: since we're shuffling with undef, can we just use the indices
1981       //        into that?  This could be simpler.
1982       SmallVector<llvm::Constant*, 4> ExtMask;
1983       for (unsigned i = 0; i != NumSrcElts; ++i)
1984         ExtMask.push_back(Builder.getInt32(i));
1985       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1986       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1987       llvm::Value *ExtSrcVal =
1988         Builder.CreateShuffleVector(SrcVal,
1989                                     llvm::UndefValue::get(SrcVal->getType()),
1990                                     ExtMaskV);
1991       // build identity
1992       SmallVector<llvm::Constant*, 4> Mask;
1993       for (unsigned i = 0; i != NumDstElts; ++i)
1994         Mask.push_back(Builder.getInt32(i));
1995 
1996       // When the vector size is odd and .odd or .hi is used, the last element
1997       // of the Elts constant array will be one past the size of the vector.
1998       // Ignore the last element here, if it is greater than the mask size.
1999       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2000         NumSrcElts--;
2001 
2002       // modify when what gets shuffled in
2003       for (unsigned i = 0; i != NumSrcElts; ++i)
2004         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2005       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2006       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2007     } else {
2008       // We should never shorten the vector
2009       llvm_unreachable("unexpected shorten vector length");
2010     }
2011   } else {
2012     // If the Src is a scalar (not a vector) it must be updating one element.
2013     unsigned InIdx = getAccessedFieldNo(0, Elts);
2014     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2015     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2016   }
2017 
2018   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2019                       Dst.isVolatileQualified());
2020 }
2021 
2022 /// @brief Store of global named registers are always calls to intrinsics.
2023 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2024   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2025          "Bad type for register variable");
2026   llvm::MDNode *RegName = cast<llvm::MDNode>(
2027       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2028   assert(RegName && "Register LValue is not metadata");
2029 
2030   // We accept integer and pointer types only
2031   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2032   llvm::Type *Ty = OrigTy;
2033   if (OrigTy->isPointerTy())
2034     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2035   llvm::Type *Types[] = { Ty };
2036 
2037   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2038   llvm::Value *Value = Src.getScalarVal();
2039   if (OrigTy->isPointerTy())
2040     Value = Builder.CreatePtrToInt(Value, Ty);
2041   Builder.CreateCall(
2042       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2043 }
2044 
2045 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2046 // generating write-barries API. It is currently a global, ivar,
2047 // or neither.
2048 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2049                                  LValue &LV,
2050                                  bool IsMemberAccess=false) {
2051   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2052     return;
2053 
2054   if (isa<ObjCIvarRefExpr>(E)) {
2055     QualType ExpTy = E->getType();
2056     if (IsMemberAccess && ExpTy->isPointerType()) {
2057       // If ivar is a structure pointer, assigning to field of
2058       // this struct follows gcc's behavior and makes it a non-ivar
2059       // writer-barrier conservatively.
2060       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2061       if (ExpTy->isRecordType()) {
2062         LV.setObjCIvar(false);
2063         return;
2064       }
2065     }
2066     LV.setObjCIvar(true);
2067     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2068     LV.setBaseIvarExp(Exp->getBase());
2069     LV.setObjCArray(E->getType()->isArrayType());
2070     return;
2071   }
2072 
2073   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2074     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2075       if (VD->hasGlobalStorage()) {
2076         LV.setGlobalObjCRef(true);
2077         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2078       }
2079     }
2080     LV.setObjCArray(E->getType()->isArrayType());
2081     return;
2082   }
2083 
2084   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2085     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2086     return;
2087   }
2088 
2089   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2090     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2091     if (LV.isObjCIvar()) {
2092       // If cast is to a structure pointer, follow gcc's behavior and make it
2093       // a non-ivar write-barrier.
2094       QualType ExpTy = E->getType();
2095       if (ExpTy->isPointerType())
2096         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2097       if (ExpTy->isRecordType())
2098         LV.setObjCIvar(false);
2099     }
2100     return;
2101   }
2102 
2103   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2104     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2105     return;
2106   }
2107 
2108   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2109     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2110     return;
2111   }
2112 
2113   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2114     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2115     return;
2116   }
2117 
2118   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2119     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2120     return;
2121   }
2122 
2123   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2124     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2125     if (LV.isObjCIvar() && !LV.isObjCArray())
2126       // Using array syntax to assigning to what an ivar points to is not
2127       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2128       LV.setObjCIvar(false);
2129     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2130       // Using array syntax to assigning to what global points to is not
2131       // same as assigning to the global itself. {id *G;} G[i] = 0;
2132       LV.setGlobalObjCRef(false);
2133     return;
2134   }
2135 
2136   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2137     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2138     // We don't know if member is an 'ivar', but this flag is looked at
2139     // only in the context of LV.isObjCIvar().
2140     LV.setObjCArray(E->getType()->isArrayType());
2141     return;
2142   }
2143 }
2144 
2145 static llvm::Value *
2146 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2147                                 llvm::Value *V, llvm::Type *IRType,
2148                                 StringRef Name = StringRef()) {
2149   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2150   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2151 }
2152 
2153 static LValue EmitThreadPrivateVarDeclLValue(
2154     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2155     llvm::Type *RealVarTy, SourceLocation Loc) {
2156   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2157   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2158   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2159   return CGF.MakeAddrLValue(Addr, T, BaseInfo);
2160 }
2161 
2162 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2163                                              const ReferenceType *RefTy,
2164                                              LValueBaseInfo *BaseInfo) {
2165   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2166   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2167                                               BaseInfo, /*forPointee*/ true));
2168 }
2169 
2170 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2171                                                   const ReferenceType *RefTy) {
2172   LValueBaseInfo BaseInfo;
2173   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo);
2174   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo);
2175 }
2176 
2177 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2178                                            const PointerType *PtrTy,
2179                                            LValueBaseInfo *BaseInfo) {
2180   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2181   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2182                                                BaseInfo,
2183                                                /*forPointeeType=*/true));
2184 }
2185 
2186 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2187                                                 const PointerType *PtrTy) {
2188   LValueBaseInfo BaseInfo;
2189   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo);
2190   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo);
2191 }
2192 
2193 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2194                                       const Expr *E, const VarDecl *VD) {
2195   QualType T = E->getType();
2196 
2197   // If it's thread_local, emit a call to its wrapper function instead.
2198   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2199       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2200     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2201 
2202   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2203   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2204   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2205   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2206   Address Addr(V, Alignment);
2207   LValue LV;
2208   // Emit reference to the private copy of the variable if it is an OpenMP
2209   // threadprivate variable.
2210   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2211     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2212                                           E->getExprLoc());
2213   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2214     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2215   } else {
2216     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2217     LV = CGF.MakeAddrLValue(Addr, T, BaseInfo);
2218   }
2219   setObjCGCLValueClass(CGF.getContext(), E, LV);
2220   return LV;
2221 }
2222 
2223 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2224                                                const FunctionDecl *FD) {
2225   if (FD->hasAttr<WeakRefAttr>()) {
2226     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2227     return aliasee.getPointer();
2228   }
2229 
2230   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2231   if (!FD->hasPrototype()) {
2232     if (const FunctionProtoType *Proto =
2233             FD->getType()->getAs<FunctionProtoType>()) {
2234       // Ugly case: for a K&R-style definition, the type of the definition
2235       // isn't the same as the type of a use.  Correct for this with a
2236       // bitcast.
2237       QualType NoProtoType =
2238           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2239       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2240       V = llvm::ConstantExpr::getBitCast(V,
2241                                       CGM.getTypes().ConvertType(NoProtoType));
2242     }
2243   }
2244   return V;
2245 }
2246 
2247 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2248                                      const Expr *E, const FunctionDecl *FD) {
2249   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2250   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2251   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2252   return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo);
2253 }
2254 
2255 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2256                                       llvm::Value *ThisValue) {
2257   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2258   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2259   return CGF.EmitLValueForField(LV, FD);
2260 }
2261 
2262 /// Named Registers are named metadata pointing to the register name
2263 /// which will be read from/written to as an argument to the intrinsic
2264 /// @llvm.read/write_register.
2265 /// So far, only the name is being passed down, but other options such as
2266 /// register type, allocation type or even optimization options could be
2267 /// passed down via the metadata node.
2268 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2269   SmallString<64> Name("llvm.named.register.");
2270   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2271   assert(Asm->getLabel().size() < 64-Name.size() &&
2272       "Register name too big");
2273   Name.append(Asm->getLabel());
2274   llvm::NamedMDNode *M =
2275     CGM.getModule().getOrInsertNamedMetadata(Name);
2276   if (M->getNumOperands() == 0) {
2277     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2278                                               Asm->getLabel());
2279     llvm::Metadata *Ops[] = {Str};
2280     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2281   }
2282 
2283   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2284 
2285   llvm::Value *Ptr =
2286     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2287   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2288 }
2289 
2290 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2291   const NamedDecl *ND = E->getDecl();
2292   QualType T = E->getType();
2293 
2294   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2295     // Global Named registers access via intrinsics only
2296     if (VD->getStorageClass() == SC_Register &&
2297         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2298       return EmitGlobalNamedRegister(VD, CGM);
2299 
2300     // A DeclRefExpr for a reference initialized by a constant expression can
2301     // appear without being odr-used. Directly emit the constant initializer.
2302     const Expr *Init = VD->getAnyInitializer(VD);
2303     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2304         VD->isUsableInConstantExpressions(getContext()) &&
2305         VD->checkInitIsICE() &&
2306         // Do not emit if it is private OpenMP variable.
2307         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2308           LocalDeclMap.count(VD))) {
2309       llvm::Constant *Val =
2310         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2311                                             *VD->evaluateValue(),
2312                                             VD->getType());
2313       assert(Val && "failed to emit reference constant expression");
2314       // FIXME: Eventually we will want to emit vector element references.
2315 
2316       // Should we be using the alignment of the constant pointer we emitted?
2317       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2318                                                     /*pointee*/ true);
2319       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2320       return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo);
2321     }
2322 
2323     // Check for captured variables.
2324     if (E->refersToEnclosingVariableOrCapture()) {
2325       VD = VD->getCanonicalDecl();
2326       if (auto *FD = LambdaCaptureFields.lookup(VD))
2327         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2328       else if (CapturedStmtInfo) {
2329         auto I = LocalDeclMap.find(VD);
2330         if (I != LocalDeclMap.end()) {
2331           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2332             return EmitLoadOfReferenceLValue(I->second, RefTy);
2333           return MakeAddrLValue(I->second, T);
2334         }
2335         LValue CapLVal =
2336             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2337                                     CapturedStmtInfo->getContextValue());
2338         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2339         return MakeAddrLValue(
2340             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2341             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias));
2342       }
2343 
2344       assert(isa<BlockDecl>(CurCodeDecl));
2345       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2346       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2347       return MakeAddrLValue(addr, T, BaseInfo);
2348     }
2349   }
2350 
2351   // FIXME: We should be able to assert this for FunctionDecls as well!
2352   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2353   // those with a valid source location.
2354   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2355           !E->getLocation().isValid()) &&
2356          "Should not use decl without marking it used!");
2357 
2358   if (ND->hasAttr<WeakRefAttr>()) {
2359     const auto *VD = cast<ValueDecl>(ND);
2360     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2361     return MakeAddrLValue(Aliasee, T,
2362                           LValueBaseInfo(AlignmentSource::Decl, false));
2363   }
2364 
2365   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2366     // Check if this is a global variable.
2367     if (VD->hasLinkage() || VD->isStaticDataMember())
2368       return EmitGlobalVarDeclLValue(*this, E, VD);
2369 
2370     Address addr = Address::invalid();
2371 
2372     // The variable should generally be present in the local decl map.
2373     auto iter = LocalDeclMap.find(VD);
2374     if (iter != LocalDeclMap.end()) {
2375       addr = iter->second;
2376 
2377     // Otherwise, it might be static local we haven't emitted yet for
2378     // some reason; most likely, because it's in an outer function.
2379     } else if (VD->isStaticLocal()) {
2380       addr = Address(CGM.getOrCreateStaticVarDecl(
2381           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2382                      getContext().getDeclAlign(VD));
2383 
2384     // No other cases for now.
2385     } else {
2386       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2387     }
2388 
2389 
2390     // Check for OpenMP threadprivate variables.
2391     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2392       return EmitThreadPrivateVarDeclLValue(
2393           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2394           E->getExprLoc());
2395     }
2396 
2397     // Drill into block byref variables.
2398     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2399     if (isBlockByref) {
2400       addr = emitBlockByrefAddress(addr, VD);
2401     }
2402 
2403     // Drill into reference types.
2404     LValue LV;
2405     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2406       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2407     } else {
2408       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2409       LV = MakeAddrLValue(addr, T, BaseInfo);
2410     }
2411 
2412     bool isLocalStorage = VD->hasLocalStorage();
2413 
2414     bool NonGCable = isLocalStorage &&
2415                      !VD->getType()->isReferenceType() &&
2416                      !isBlockByref;
2417     if (NonGCable) {
2418       LV.getQuals().removeObjCGCAttr();
2419       LV.setNonGC(true);
2420     }
2421 
2422     bool isImpreciseLifetime =
2423       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2424     if (isImpreciseLifetime)
2425       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2426     setObjCGCLValueClass(getContext(), E, LV);
2427     return LV;
2428   }
2429 
2430   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2431     return EmitFunctionDeclLValue(*this, E, FD);
2432 
2433   // FIXME: While we're emitting a binding from an enclosing scope, all other
2434   // DeclRefExprs we see should be implicitly treated as if they also refer to
2435   // an enclosing scope.
2436   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2437     return EmitLValue(BD->getBinding());
2438 
2439   llvm_unreachable("Unhandled DeclRefExpr");
2440 }
2441 
2442 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2443   // __extension__ doesn't affect lvalue-ness.
2444   if (E->getOpcode() == UO_Extension)
2445     return EmitLValue(E->getSubExpr());
2446 
2447   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2448   switch (E->getOpcode()) {
2449   default: llvm_unreachable("Unknown unary operator lvalue!");
2450   case UO_Deref: {
2451     QualType T = E->getSubExpr()->getType()->getPointeeType();
2452     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2453 
2454     LValueBaseInfo BaseInfo;
2455     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo);
2456     LValue LV = MakeAddrLValue(Addr, T, BaseInfo);
2457     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2458 
2459     // We should not generate __weak write barrier on indirect reference
2460     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2461     // But, we continue to generate __strong write barrier on indirect write
2462     // into a pointer to object.
2463     if (getLangOpts().ObjC1 &&
2464         getLangOpts().getGC() != LangOptions::NonGC &&
2465         LV.isObjCWeak())
2466       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2467     return LV;
2468   }
2469   case UO_Real:
2470   case UO_Imag: {
2471     LValue LV = EmitLValue(E->getSubExpr());
2472     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2473 
2474     // __real is valid on scalars.  This is a faster way of testing that.
2475     // __imag can only produce an rvalue on scalars.
2476     if (E->getOpcode() == UO_Real &&
2477         !LV.getAddress().getElementType()->isStructTy()) {
2478       assert(E->getSubExpr()->getType()->isArithmeticType());
2479       return LV;
2480     }
2481 
2482     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2483 
2484     Address Component =
2485       (E->getOpcode() == UO_Real
2486          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2487          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2488     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo());
2489     ElemLV.getQuals().addQualifiers(LV.getQuals());
2490     return ElemLV;
2491   }
2492   case UO_PreInc:
2493   case UO_PreDec: {
2494     LValue LV = EmitLValue(E->getSubExpr());
2495     bool isInc = E->getOpcode() == UO_PreInc;
2496 
2497     if (E->getType()->isAnyComplexType())
2498       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2499     else
2500       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2501     return LV;
2502   }
2503   }
2504 }
2505 
2506 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2507   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2508                         E->getType(),
2509                         LValueBaseInfo(AlignmentSource::Decl, false));
2510 }
2511 
2512 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2513   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2514                         E->getType(),
2515                         LValueBaseInfo(AlignmentSource::Decl, false));
2516 }
2517 
2518 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2519   auto SL = E->getFunctionName();
2520   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2521   StringRef FnName = CurFn->getName();
2522   if (FnName.startswith("\01"))
2523     FnName = FnName.substr(1);
2524   StringRef NameItems[] = {
2525       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2526   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2527   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2528   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2529     std::string Name = SL->getString();
2530     if (!Name.empty()) {
2531       unsigned Discriminator =
2532           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2533       if (Discriminator)
2534         Name += "_" + Twine(Discriminator + 1).str();
2535       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2536       return MakeAddrLValue(C, E->getType(), BaseInfo);
2537     } else {
2538       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2539       return MakeAddrLValue(C, E->getType(), BaseInfo);
2540     }
2541   }
2542   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2543   return MakeAddrLValue(C, E->getType(), BaseInfo);
2544 }
2545 
2546 /// Emit a type description suitable for use by a runtime sanitizer library. The
2547 /// format of a type descriptor is
2548 ///
2549 /// \code
2550 ///   { i16 TypeKind, i16 TypeInfo }
2551 /// \endcode
2552 ///
2553 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2554 /// integer, 1 for a floating point value, and -1 for anything else.
2555 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2556   // Only emit each type's descriptor once.
2557   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2558     return C;
2559 
2560   uint16_t TypeKind = -1;
2561   uint16_t TypeInfo = 0;
2562 
2563   if (T->isIntegerType()) {
2564     TypeKind = 0;
2565     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2566                (T->isSignedIntegerType() ? 1 : 0);
2567   } else if (T->isFloatingType()) {
2568     TypeKind = 1;
2569     TypeInfo = getContext().getTypeSize(T);
2570   }
2571 
2572   // Format the type name as if for a diagnostic, including quotes and
2573   // optionally an 'aka'.
2574   SmallString<32> Buffer;
2575   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2576                                     (intptr_t)T.getAsOpaquePtr(),
2577                                     StringRef(), StringRef(), None, Buffer,
2578                                     None);
2579 
2580   llvm::Constant *Components[] = {
2581     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2582     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2583   };
2584   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2585 
2586   auto *GV = new llvm::GlobalVariable(
2587       CGM.getModule(), Descriptor->getType(),
2588       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2589   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2590   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2591 
2592   // Remember the descriptor for this type.
2593   CGM.setTypeDescriptorInMap(T, GV);
2594 
2595   return GV;
2596 }
2597 
2598 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2599   llvm::Type *TargetTy = IntPtrTy;
2600 
2601   // Floating-point types which fit into intptr_t are bitcast to integers
2602   // and then passed directly (after zero-extension, if necessary).
2603   if (V->getType()->isFloatingPointTy()) {
2604     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2605     if (Bits <= TargetTy->getIntegerBitWidth())
2606       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2607                                                          Bits));
2608   }
2609 
2610   // Integers which fit in intptr_t are zero-extended and passed directly.
2611   if (V->getType()->isIntegerTy() &&
2612       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2613     return Builder.CreateZExt(V, TargetTy);
2614 
2615   // Pointers are passed directly, everything else is passed by address.
2616   if (!V->getType()->isPointerTy()) {
2617     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2618     Builder.CreateStore(V, Ptr);
2619     V = Ptr.getPointer();
2620   }
2621   return Builder.CreatePtrToInt(V, TargetTy);
2622 }
2623 
2624 /// \brief Emit a representation of a SourceLocation for passing to a handler
2625 /// in a sanitizer runtime library. The format for this data is:
2626 /// \code
2627 ///   struct SourceLocation {
2628 ///     const char *Filename;
2629 ///     int32_t Line, Column;
2630 ///   };
2631 /// \endcode
2632 /// For an invalid SourceLocation, the Filename pointer is null.
2633 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2634   llvm::Constant *Filename;
2635   int Line, Column;
2636 
2637   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2638   if (PLoc.isValid()) {
2639     StringRef FilenameString = PLoc.getFilename();
2640 
2641     int PathComponentsToStrip =
2642         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2643     if (PathComponentsToStrip < 0) {
2644       assert(PathComponentsToStrip != INT_MIN);
2645       int PathComponentsToKeep = -PathComponentsToStrip;
2646       auto I = llvm::sys::path::rbegin(FilenameString);
2647       auto E = llvm::sys::path::rend(FilenameString);
2648       while (I != E && --PathComponentsToKeep)
2649         ++I;
2650 
2651       FilenameString = FilenameString.substr(I - E);
2652     } else if (PathComponentsToStrip > 0) {
2653       auto I = llvm::sys::path::begin(FilenameString);
2654       auto E = llvm::sys::path::end(FilenameString);
2655       while (I != E && PathComponentsToStrip--)
2656         ++I;
2657 
2658       if (I != E)
2659         FilenameString =
2660             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2661       else
2662         FilenameString = llvm::sys::path::filename(FilenameString);
2663     }
2664 
2665     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2666     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2667                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2668     Filename = FilenameGV.getPointer();
2669     Line = PLoc.getLine();
2670     Column = PLoc.getColumn();
2671   } else {
2672     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2673     Line = Column = 0;
2674   }
2675 
2676   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2677                             Builder.getInt32(Column)};
2678 
2679   return llvm::ConstantStruct::getAnon(Data);
2680 }
2681 
2682 namespace {
2683 /// \brief Specify under what conditions this check can be recovered
2684 enum class CheckRecoverableKind {
2685   /// Always terminate program execution if this check fails.
2686   Unrecoverable,
2687   /// Check supports recovering, runtime has both fatal (noreturn) and
2688   /// non-fatal handlers for this check.
2689   Recoverable,
2690   /// Runtime conditionally aborts, always need to support recovery.
2691   AlwaysRecoverable
2692 };
2693 }
2694 
2695 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2696   assert(llvm::countPopulation(Kind) == 1);
2697   switch (Kind) {
2698   case SanitizerKind::Vptr:
2699     return CheckRecoverableKind::AlwaysRecoverable;
2700   case SanitizerKind::Return:
2701   case SanitizerKind::Unreachable:
2702     return CheckRecoverableKind::Unrecoverable;
2703   default:
2704     return CheckRecoverableKind::Recoverable;
2705   }
2706 }
2707 
2708 namespace {
2709 struct SanitizerHandlerInfo {
2710   char const *const Name;
2711   unsigned Version;
2712 };
2713 }
2714 
2715 const SanitizerHandlerInfo SanitizerHandlers[] = {
2716 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2717     LIST_SANITIZER_CHECKS
2718 #undef SANITIZER_CHECK
2719 };
2720 
2721 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2722                                  llvm::FunctionType *FnType,
2723                                  ArrayRef<llvm::Value *> FnArgs,
2724                                  SanitizerHandler CheckHandler,
2725                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2726                                  llvm::BasicBlock *ContBB) {
2727   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2728   bool NeedsAbortSuffix =
2729       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2730   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2731   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2732   const StringRef CheckName = CheckInfo.Name;
2733   std::string FnName = "__ubsan_handle_" + CheckName.str();
2734   if (CheckInfo.Version && !MinimalRuntime)
2735     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2736   if (MinimalRuntime)
2737     FnName += "_minimal";
2738   if (NeedsAbortSuffix)
2739     FnName += "_abort";
2740   bool MayReturn =
2741       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2742 
2743   llvm::AttrBuilder B;
2744   if (!MayReturn) {
2745     B.addAttribute(llvm::Attribute::NoReturn)
2746         .addAttribute(llvm::Attribute::NoUnwind);
2747   }
2748   B.addAttribute(llvm::Attribute::UWTable);
2749 
2750   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2751       FnType, FnName,
2752       llvm::AttributeList::get(CGF.getLLVMContext(),
2753                                llvm::AttributeList::FunctionIndex, B),
2754       /*Local=*/true);
2755   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2756   if (!MayReturn) {
2757     HandlerCall->setDoesNotReturn();
2758     CGF.Builder.CreateUnreachable();
2759   } else {
2760     CGF.Builder.CreateBr(ContBB);
2761   }
2762 }
2763 
2764 void CodeGenFunction::EmitCheck(
2765     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2766     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2767     ArrayRef<llvm::Value *> DynamicArgs) {
2768   assert(IsSanitizerScope);
2769   assert(Checked.size() > 0);
2770   assert(CheckHandler >= 0 &&
2771          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2772   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2773 
2774   llvm::Value *FatalCond = nullptr;
2775   llvm::Value *RecoverableCond = nullptr;
2776   llvm::Value *TrapCond = nullptr;
2777   for (int i = 0, n = Checked.size(); i < n; ++i) {
2778     llvm::Value *Check = Checked[i].first;
2779     // -fsanitize-trap= overrides -fsanitize-recover=.
2780     llvm::Value *&Cond =
2781         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2782             ? TrapCond
2783             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2784                   ? RecoverableCond
2785                   : FatalCond;
2786     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2787   }
2788 
2789   if (TrapCond)
2790     EmitTrapCheck(TrapCond);
2791   if (!FatalCond && !RecoverableCond)
2792     return;
2793 
2794   llvm::Value *JointCond;
2795   if (FatalCond && RecoverableCond)
2796     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2797   else
2798     JointCond = FatalCond ? FatalCond : RecoverableCond;
2799   assert(JointCond);
2800 
2801   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2802   assert(SanOpts.has(Checked[0].second));
2803 #ifndef NDEBUG
2804   for (int i = 1, n = Checked.size(); i < n; ++i) {
2805     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2806            "All recoverable kinds in a single check must be same!");
2807     assert(SanOpts.has(Checked[i].second));
2808   }
2809 #endif
2810 
2811   llvm::BasicBlock *Cont = createBasicBlock("cont");
2812   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2813   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2814   // Give hint that we very much don't expect to execute the handler
2815   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2816   llvm::MDBuilder MDHelper(getLLVMContext());
2817   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2818   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2819   EmitBlock(Handlers);
2820 
2821   // Handler functions take an i8* pointing to the (handler-specific) static
2822   // information block, followed by a sequence of intptr_t arguments
2823   // representing operand values.
2824   SmallVector<llvm::Value *, 4> Args;
2825   SmallVector<llvm::Type *, 4> ArgTypes;
2826   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2827     Args.reserve(DynamicArgs.size() + 1);
2828     ArgTypes.reserve(DynamicArgs.size() + 1);
2829 
2830     // Emit handler arguments and create handler function type.
2831     if (!StaticArgs.empty()) {
2832       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2833       auto *InfoPtr =
2834           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2835                                    llvm::GlobalVariable::PrivateLinkage, Info);
2836       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2837       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2838       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2839       ArgTypes.push_back(Int8PtrTy);
2840     }
2841 
2842     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2843       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2844       ArgTypes.push_back(IntPtrTy);
2845     }
2846   }
2847 
2848   llvm::FunctionType *FnType =
2849     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2850 
2851   if (!FatalCond || !RecoverableCond) {
2852     // Simple case: we need to generate a single handler call, either
2853     // fatal, or non-fatal.
2854     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2855                          (FatalCond != nullptr), Cont);
2856   } else {
2857     // Emit two handler calls: first one for set of unrecoverable checks,
2858     // another one for recoverable.
2859     llvm::BasicBlock *NonFatalHandlerBB =
2860         createBasicBlock("non_fatal." + CheckName);
2861     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2862     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2863     EmitBlock(FatalHandlerBB);
2864     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2865                          NonFatalHandlerBB);
2866     EmitBlock(NonFatalHandlerBB);
2867     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2868                          Cont);
2869   }
2870 
2871   EmitBlock(Cont);
2872 }
2873 
2874 void CodeGenFunction::EmitCfiSlowPathCheck(
2875     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2876     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2877   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2878 
2879   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2880   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2881 
2882   llvm::MDBuilder MDHelper(getLLVMContext());
2883   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2884   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2885 
2886   EmitBlock(CheckBB);
2887 
2888   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2889 
2890   llvm::CallInst *CheckCall;
2891   if (WithDiag) {
2892     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2893     auto *InfoPtr =
2894         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2895                                  llvm::GlobalVariable::PrivateLinkage, Info);
2896     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2897     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2898 
2899     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2900         "__cfi_slowpath_diag",
2901         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2902                                 false));
2903     CheckCall = Builder.CreateCall(
2904         SlowPathDiagFn,
2905         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2906   } else {
2907     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2908         "__cfi_slowpath",
2909         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2910     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2911   }
2912 
2913   CheckCall->setDoesNotThrow();
2914 
2915   EmitBlock(Cont);
2916 }
2917 
2918 // Emit a stub for __cfi_check function so that the linker knows about this
2919 // symbol in LTO mode.
2920 void CodeGenFunction::EmitCfiCheckStub() {
2921   llvm::Module *M = &CGM.getModule();
2922   auto &Ctx = M->getContext();
2923   llvm::Function *F = llvm::Function::Create(
2924       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2925       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2926   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2927   // FIXME: consider emitting an intrinsic call like
2928   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2929   // which can be lowered in CrossDSOCFI pass to the actual contents of
2930   // __cfi_check. This would allow inlining of __cfi_check calls.
2931   llvm::CallInst::Create(
2932       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2933   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2934 }
2935 
2936 // This function is basically a switch over the CFI failure kind, which is
2937 // extracted from CFICheckFailData (1st function argument). Each case is either
2938 // llvm.trap or a call to one of the two runtime handlers, based on
2939 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2940 // failure kind) traps, but this should really never happen.  CFICheckFailData
2941 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2942 // check kind; in this case __cfi_check_fail traps as well.
2943 void CodeGenFunction::EmitCfiCheckFail() {
2944   SanitizerScope SanScope(this);
2945   FunctionArgList Args;
2946   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2947                             ImplicitParamDecl::Other);
2948   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2949                             ImplicitParamDecl::Other);
2950   Args.push_back(&ArgData);
2951   Args.push_back(&ArgAddr);
2952 
2953   const CGFunctionInfo &FI =
2954     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2955 
2956   llvm::Function *F = llvm::Function::Create(
2957       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2958       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2959   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2960 
2961   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2962                 SourceLocation());
2963 
2964   llvm::Value *Data =
2965       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2966                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2967   llvm::Value *Addr =
2968       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2969                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2970 
2971   // Data == nullptr means the calling module has trap behaviour for this check.
2972   llvm::Value *DataIsNotNullPtr =
2973       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2974   EmitTrapCheck(DataIsNotNullPtr);
2975 
2976   llvm::StructType *SourceLocationTy =
2977       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2978   llvm::StructType *CfiCheckFailDataTy =
2979       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2980 
2981   llvm::Value *V = Builder.CreateConstGEP2_32(
2982       CfiCheckFailDataTy,
2983       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2984       0);
2985   Address CheckKindAddr(V, getIntAlign());
2986   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2987 
2988   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2989       CGM.getLLVMContext(),
2990       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2991   llvm::Value *ValidVtable = Builder.CreateZExt(
2992       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2993                          {Addr, AllVtables}),
2994       IntPtrTy);
2995 
2996   const std::pair<int, SanitizerMask> CheckKinds[] = {
2997       {CFITCK_VCall, SanitizerKind::CFIVCall},
2998       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2999       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3000       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3001       {CFITCK_ICall, SanitizerKind::CFIICall}};
3002 
3003   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3004   for (auto CheckKindMaskPair : CheckKinds) {
3005     int Kind = CheckKindMaskPair.first;
3006     SanitizerMask Mask = CheckKindMaskPair.second;
3007     llvm::Value *Cond =
3008         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3009     if (CGM.getLangOpts().Sanitize.has(Mask))
3010       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3011                 {Data, Addr, ValidVtable});
3012     else
3013       EmitTrapCheck(Cond);
3014   }
3015 
3016   FinishFunction();
3017   // The only reference to this function will be created during LTO link.
3018   // Make sure it survives until then.
3019   CGM.addUsedGlobal(F);
3020 }
3021 
3022 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3023   llvm::BasicBlock *Cont = createBasicBlock("cont");
3024 
3025   // If we're optimizing, collapse all calls to trap down to just one per
3026   // function to save on code size.
3027   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3028     TrapBB = createBasicBlock("trap");
3029     Builder.CreateCondBr(Checked, Cont, TrapBB);
3030     EmitBlock(TrapBB);
3031     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3032     TrapCall->setDoesNotReturn();
3033     TrapCall->setDoesNotThrow();
3034     Builder.CreateUnreachable();
3035   } else {
3036     Builder.CreateCondBr(Checked, Cont, TrapBB);
3037   }
3038 
3039   EmitBlock(Cont);
3040 }
3041 
3042 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3043   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3044 
3045   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3046     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3047                                   CGM.getCodeGenOpts().TrapFuncName);
3048     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3049   }
3050 
3051   return TrapCall;
3052 }
3053 
3054 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3055                                                  LValueBaseInfo *BaseInfo) {
3056   assert(E->getType()->isArrayType() &&
3057          "Array to pointer decay must have array source type!");
3058 
3059   // Expressions of array type can't be bitfields or vector elements.
3060   LValue LV = EmitLValue(E);
3061   Address Addr = LV.getAddress();
3062   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3063 
3064   // If the array type was an incomplete type, we need to make sure
3065   // the decay ends up being the right type.
3066   llvm::Type *NewTy = ConvertType(E->getType());
3067   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3068 
3069   // Note that VLA pointers are always decayed, so we don't need to do
3070   // anything here.
3071   if (!E->getType()->isVariableArrayType()) {
3072     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3073            "Expected pointer to array");
3074     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3075   }
3076 
3077   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3078   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3079 }
3080 
3081 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3082 /// array to pointer, return the array subexpression.
3083 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3084   // If this isn't just an array->pointer decay, bail out.
3085   const auto *CE = dyn_cast<CastExpr>(E);
3086   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3087     return nullptr;
3088 
3089   // If this is a decay from variable width array, bail out.
3090   const Expr *SubExpr = CE->getSubExpr();
3091   if (SubExpr->getType()->isVariableArrayType())
3092     return nullptr;
3093 
3094   return SubExpr;
3095 }
3096 
3097 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3098                                           llvm::Value *ptr,
3099                                           ArrayRef<llvm::Value*> indices,
3100                                           bool inbounds,
3101                                           bool signedIndices,
3102                                           SourceLocation loc,
3103                                     const llvm::Twine &name = "arrayidx") {
3104   if (inbounds) {
3105     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3106                                       CodeGenFunction::NotSubtraction, loc,
3107                                       name);
3108   } else {
3109     return CGF.Builder.CreateGEP(ptr, indices, name);
3110   }
3111 }
3112 
3113 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3114                                       llvm::Value *idx,
3115                                       CharUnits eltSize) {
3116   // If we have a constant index, we can use the exact offset of the
3117   // element we're accessing.
3118   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3119     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3120     return arrayAlign.alignmentAtOffset(offset);
3121 
3122   // Otherwise, use the worst-case alignment for any element.
3123   } else {
3124     return arrayAlign.alignmentOfArrayElement(eltSize);
3125   }
3126 }
3127 
3128 static QualType getFixedSizeElementType(const ASTContext &ctx,
3129                                         const VariableArrayType *vla) {
3130   QualType eltType;
3131   do {
3132     eltType = vla->getElementType();
3133   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3134   return eltType;
3135 }
3136 
3137 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3138                                      ArrayRef<llvm::Value *> indices,
3139                                      QualType eltType, bool inbounds,
3140                                      bool signedIndices, SourceLocation loc,
3141                                      const llvm::Twine &name = "arrayidx") {
3142   // All the indices except that last must be zero.
3143 #ifndef NDEBUG
3144   for (auto idx : indices.drop_back())
3145     assert(isa<llvm::ConstantInt>(idx) &&
3146            cast<llvm::ConstantInt>(idx)->isZero());
3147 #endif
3148 
3149   // Determine the element size of the statically-sized base.  This is
3150   // the thing that the indices are expressed in terms of.
3151   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3152     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3153   }
3154 
3155   // We can use that to compute the best alignment of the element.
3156   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3157   CharUnits eltAlign =
3158     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3159 
3160   llvm::Value *eltPtr = emitArraySubscriptGEP(
3161       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3162   return Address(eltPtr, eltAlign);
3163 }
3164 
3165 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3166                                                bool Accessed) {
3167   // The index must always be an integer, which is not an aggregate.  Emit it
3168   // in lexical order (this complexity is, sadly, required by C++17).
3169   llvm::Value *IdxPre =
3170       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3171   bool SignedIndices = false;
3172   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3173     auto *Idx = IdxPre;
3174     if (E->getLHS() != E->getIdx()) {
3175       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3176       Idx = EmitScalarExpr(E->getIdx());
3177     }
3178 
3179     QualType IdxTy = E->getIdx()->getType();
3180     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3181     SignedIndices |= IdxSigned;
3182 
3183     if (SanOpts.has(SanitizerKind::ArrayBounds))
3184       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3185 
3186     // Extend or truncate the index type to 32 or 64-bits.
3187     if (Promote && Idx->getType() != IntPtrTy)
3188       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3189 
3190     return Idx;
3191   };
3192   IdxPre = nullptr;
3193 
3194   // If the base is a vector type, then we are forming a vector element lvalue
3195   // with this subscript.
3196   if (E->getBase()->getType()->isVectorType() &&
3197       !isa<ExtVectorElementExpr>(E->getBase())) {
3198     // Emit the vector as an lvalue to get its address.
3199     LValue LHS = EmitLValue(E->getBase());
3200     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3201     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3202     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3203                                  E->getBase()->getType(),
3204                                  LHS.getBaseInfo());
3205   }
3206 
3207   // All the other cases basically behave like simple offsetting.
3208 
3209   // Handle the extvector case we ignored above.
3210   if (isa<ExtVectorElementExpr>(E->getBase())) {
3211     LValue LV = EmitLValue(E->getBase());
3212     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3213     Address Addr = EmitExtVectorElementLValue(LV);
3214 
3215     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3216     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3217                                  SignedIndices, E->getExprLoc());
3218     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo());
3219   }
3220 
3221   LValueBaseInfo BaseInfo;
3222   Address Addr = Address::invalid();
3223   if (const VariableArrayType *vla =
3224            getContext().getAsVariableArrayType(E->getType())) {
3225     // The base must be a pointer, which is not an aggregate.  Emit
3226     // it.  It needs to be emitted first in case it's what captures
3227     // the VLA bounds.
3228     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3229     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3230 
3231     // The element count here is the total number of non-VLA elements.
3232     llvm::Value *numElements = getVLASize(vla).first;
3233 
3234     // Effectively, the multiply by the VLA size is part of the GEP.
3235     // GEP indexes are signed, and scaling an index isn't permitted to
3236     // signed-overflow, so we use the same semantics for our explicit
3237     // multiply.  We suppress this if overflow is not undefined behavior.
3238     if (getLangOpts().isSignedOverflowDefined()) {
3239       Idx = Builder.CreateMul(Idx, numElements);
3240     } else {
3241       Idx = Builder.CreateNSWMul(Idx, numElements);
3242     }
3243 
3244     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3245                                  !getLangOpts().isSignedOverflowDefined(),
3246                                  SignedIndices, E->getExprLoc());
3247 
3248   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3249     // Indexing over an interface, as in "NSString *P; P[4];"
3250 
3251     // Emit the base pointer.
3252     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3253     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3254 
3255     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3256     llvm::Value *InterfaceSizeVal =
3257         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3258 
3259     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3260 
3261     // We don't necessarily build correct LLVM struct types for ObjC
3262     // interfaces, so we can't rely on GEP to do this scaling
3263     // correctly, so we need to cast to i8*.  FIXME: is this actually
3264     // true?  A lot of other things in the fragile ABI would break...
3265     llvm::Type *OrigBaseTy = Addr.getType();
3266     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3267 
3268     // Do the GEP.
3269     CharUnits EltAlign =
3270       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3271     llvm::Value *EltPtr =
3272         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3273                               SignedIndices, E->getExprLoc());
3274     Addr = Address(EltPtr, EltAlign);
3275 
3276     // Cast back.
3277     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3278   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3279     // If this is A[i] where A is an array, the frontend will have decayed the
3280     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3281     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3282     // "gep x, i" here.  Emit one "gep A, 0, i".
3283     assert(Array->getType()->isArrayType() &&
3284            "Array to pointer decay must have array source type!");
3285     LValue ArrayLV;
3286     // For simple multidimensional array indexing, set the 'accessed' flag for
3287     // better bounds-checking of the base expression.
3288     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3289       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3290     else
3291       ArrayLV = EmitLValue(Array);
3292     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3293 
3294     // Propagate the alignment from the array itself to the result.
3295     Addr = emitArraySubscriptGEP(
3296         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3297         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3298         E->getExprLoc());
3299     BaseInfo = ArrayLV.getBaseInfo();
3300   } else {
3301     // The base must be a pointer; emit it with an estimate of its alignment.
3302     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3303     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3304     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3305                                  !getLangOpts().isSignedOverflowDefined(),
3306                                  SignedIndices, E->getExprLoc());
3307   }
3308 
3309   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo);
3310 
3311   // TODO: Preserve/extend path TBAA metadata?
3312 
3313   if (getLangOpts().ObjC1 &&
3314       getLangOpts().getGC() != LangOptions::NonGC) {
3315     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3316     setObjCGCLValueClass(getContext(), E, LV);
3317   }
3318   return LV;
3319 }
3320 
3321 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3322                                        LValueBaseInfo &BaseInfo,
3323                                        QualType BaseTy, QualType ElTy,
3324                                        bool IsLowerBound) {
3325   LValue BaseLVal;
3326   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3327     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3328     if (BaseTy->isArrayType()) {
3329       Address Addr = BaseLVal.getAddress();
3330       BaseInfo = BaseLVal.getBaseInfo();
3331 
3332       // If the array type was an incomplete type, we need to make sure
3333       // the decay ends up being the right type.
3334       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3335       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3336 
3337       // Note that VLA pointers are always decayed, so we don't need to do
3338       // anything here.
3339       if (!BaseTy->isVariableArrayType()) {
3340         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3341                "Expected pointer to array");
3342         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3343                                            "arraydecay");
3344       }
3345 
3346       return CGF.Builder.CreateElementBitCast(Addr,
3347                                               CGF.ConvertTypeForMem(ElTy));
3348     }
3349     LValueBaseInfo TypeInfo;
3350     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3351     BaseInfo.mergeForCast(TypeInfo);
3352     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3353   }
3354   return CGF.EmitPointerWithAlignment(Base, &BaseInfo);
3355 }
3356 
3357 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3358                                                 bool IsLowerBound) {
3359   QualType BaseTy;
3360   if (auto *ASE =
3361           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3362     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3363   else
3364     BaseTy = E->getBase()->getType();
3365   QualType ResultExprTy;
3366   if (auto *AT = getContext().getAsArrayType(BaseTy))
3367     ResultExprTy = AT->getElementType();
3368   else
3369     ResultExprTy = BaseTy->getPointeeType();
3370   llvm::Value *Idx = nullptr;
3371   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3372     // Requesting lower bound or upper bound, but without provided length and
3373     // without ':' symbol for the default length -> length = 1.
3374     // Idx = LowerBound ?: 0;
3375     if (auto *LowerBound = E->getLowerBound()) {
3376       Idx = Builder.CreateIntCast(
3377           EmitScalarExpr(LowerBound), IntPtrTy,
3378           LowerBound->getType()->hasSignedIntegerRepresentation());
3379     } else
3380       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3381   } else {
3382     // Try to emit length or lower bound as constant. If this is possible, 1
3383     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3384     // IR (LB + Len) - 1.
3385     auto &C = CGM.getContext();
3386     auto *Length = E->getLength();
3387     llvm::APSInt ConstLength;
3388     if (Length) {
3389       // Idx = LowerBound + Length - 1;
3390       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3391         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3392         Length = nullptr;
3393       }
3394       auto *LowerBound = E->getLowerBound();
3395       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3396       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3397         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3398         LowerBound = nullptr;
3399       }
3400       if (!Length)
3401         --ConstLength;
3402       else if (!LowerBound)
3403         --ConstLowerBound;
3404 
3405       if (Length || LowerBound) {
3406         auto *LowerBoundVal =
3407             LowerBound
3408                 ? Builder.CreateIntCast(
3409                       EmitScalarExpr(LowerBound), IntPtrTy,
3410                       LowerBound->getType()->hasSignedIntegerRepresentation())
3411                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3412         auto *LengthVal =
3413             Length
3414                 ? Builder.CreateIntCast(
3415                       EmitScalarExpr(Length), IntPtrTy,
3416                       Length->getType()->hasSignedIntegerRepresentation())
3417                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3418         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3419                                 /*HasNUW=*/false,
3420                                 !getLangOpts().isSignedOverflowDefined());
3421         if (Length && LowerBound) {
3422           Idx = Builder.CreateSub(
3423               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3424               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3425         }
3426       } else
3427         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3428     } else {
3429       // Idx = ArraySize - 1;
3430       QualType ArrayTy = BaseTy->isPointerType()
3431                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3432                              : BaseTy;
3433       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3434         Length = VAT->getSizeExpr();
3435         if (Length->isIntegerConstantExpr(ConstLength, C))
3436           Length = nullptr;
3437       } else {
3438         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3439         ConstLength = CAT->getSize();
3440       }
3441       if (Length) {
3442         auto *LengthVal = Builder.CreateIntCast(
3443             EmitScalarExpr(Length), IntPtrTy,
3444             Length->getType()->hasSignedIntegerRepresentation());
3445         Idx = Builder.CreateSub(
3446             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3447             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3448       } else {
3449         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3450         --ConstLength;
3451         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3452       }
3453     }
3454   }
3455   assert(Idx);
3456 
3457   Address EltPtr = Address::invalid();
3458   LValueBaseInfo BaseInfo;
3459   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3460     // The base must be a pointer, which is not an aggregate.  Emit
3461     // it.  It needs to be emitted first in case it's what captures
3462     // the VLA bounds.
3463     Address Base =
3464         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy,
3465                                 VLA->getElementType(), IsLowerBound);
3466     // The element count here is the total number of non-VLA elements.
3467     llvm::Value *NumElements = getVLASize(VLA).first;
3468 
3469     // Effectively, the multiply by the VLA size is part of the GEP.
3470     // GEP indexes are signed, and scaling an index isn't permitted to
3471     // signed-overflow, so we use the same semantics for our explicit
3472     // multiply.  We suppress this if overflow is not undefined behavior.
3473     if (getLangOpts().isSignedOverflowDefined())
3474       Idx = Builder.CreateMul(Idx, NumElements);
3475     else
3476       Idx = Builder.CreateNSWMul(Idx, NumElements);
3477     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3478                                    !getLangOpts().isSignedOverflowDefined(),
3479                                    /*SignedIndices=*/false, E->getExprLoc());
3480   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3481     // If this is A[i] where A is an array, the frontend will have decayed the
3482     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3483     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3484     // "gep x, i" here.  Emit one "gep A, 0, i".
3485     assert(Array->getType()->isArrayType() &&
3486            "Array to pointer decay must have array source type!");
3487     LValue ArrayLV;
3488     // For simple multidimensional array indexing, set the 'accessed' flag for
3489     // better bounds-checking of the base expression.
3490     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3491       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3492     else
3493       ArrayLV = EmitLValue(Array);
3494 
3495     // Propagate the alignment from the array itself to the result.
3496     EltPtr = emitArraySubscriptGEP(
3497         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3498         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3499         /*SignedIndices=*/false, E->getExprLoc());
3500     BaseInfo = ArrayLV.getBaseInfo();
3501   } else {
3502     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3503                                            BaseTy, ResultExprTy, IsLowerBound);
3504     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3505                                    !getLangOpts().isSignedOverflowDefined(),
3506                                    /*SignedIndices=*/false, E->getExprLoc());
3507   }
3508 
3509   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo);
3510 }
3511 
3512 LValue CodeGenFunction::
3513 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3514   // Emit the base vector as an l-value.
3515   LValue Base;
3516 
3517   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3518   if (E->isArrow()) {
3519     // If it is a pointer to a vector, emit the address and form an lvalue with
3520     // it.
3521     LValueBaseInfo BaseInfo;
3522     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3523     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3524     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo);
3525     Base.getQuals().removeObjCGCAttr();
3526   } else if (E->getBase()->isGLValue()) {
3527     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3528     // emit the base as an lvalue.
3529     assert(E->getBase()->getType()->isVectorType());
3530     Base = EmitLValue(E->getBase());
3531   } else {
3532     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3533     assert(E->getBase()->getType()->isVectorType() &&
3534            "Result must be a vector");
3535     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3536 
3537     // Store the vector to memory (because LValue wants an address).
3538     Address VecMem = CreateMemTemp(E->getBase()->getType());
3539     Builder.CreateStore(Vec, VecMem);
3540     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3541                           LValueBaseInfo(AlignmentSource::Decl, false));
3542   }
3543 
3544   QualType type =
3545     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3546 
3547   // Encode the element access list into a vector of unsigned indices.
3548   SmallVector<uint32_t, 4> Indices;
3549   E->getEncodedElementAccess(Indices);
3550 
3551   if (Base.isSimple()) {
3552     llvm::Constant *CV =
3553         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3554     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3555                                     Base.getBaseInfo());
3556   }
3557   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3558 
3559   llvm::Constant *BaseElts = Base.getExtVectorElts();
3560   SmallVector<llvm::Constant *, 4> CElts;
3561 
3562   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3563     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3564   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3565   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3566                                   Base.getBaseInfo());
3567 }
3568 
3569 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3570   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3571     EmitIgnoredExpr(E->getBase());
3572     return EmitDeclRefLValue(DRE);
3573   }
3574 
3575   Expr *BaseExpr = E->getBase();
3576   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3577   LValue BaseLV;
3578   if (E->isArrow()) {
3579     LValueBaseInfo BaseInfo;
3580     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo);
3581     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3582     SanitizerSet SkippedChecks;
3583     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3584     if (IsBaseCXXThis)
3585       SkippedChecks.set(SanitizerKind::Alignment, true);
3586     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3587       SkippedChecks.set(SanitizerKind::Null, true);
3588     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3589                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3590     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo);
3591   } else
3592     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3593 
3594   NamedDecl *ND = E->getMemberDecl();
3595   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3596     LValue LV = EmitLValueForField(BaseLV, Field);
3597     setObjCGCLValueClass(getContext(), E, LV);
3598     return LV;
3599   }
3600 
3601   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3602     return EmitFunctionDeclLValue(*this, E, FD);
3603 
3604   llvm_unreachable("Unhandled member declaration!");
3605 }
3606 
3607 /// Given that we are currently emitting a lambda, emit an l-value for
3608 /// one of its members.
3609 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3610   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3611   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3612   QualType LambdaTagType =
3613     getContext().getTagDeclType(Field->getParent());
3614   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3615   return EmitLValueForField(LambdaLV, Field);
3616 }
3617 
3618 /// Drill down to the storage of a field without walking into
3619 /// reference types.
3620 ///
3621 /// The resulting address doesn't necessarily have the right type.
3622 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3623                                       const FieldDecl *field) {
3624   const RecordDecl *rec = field->getParent();
3625 
3626   unsigned idx =
3627     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3628 
3629   CharUnits offset;
3630   // Adjust the alignment down to the given offset.
3631   // As a special case, if the LLVM field index is 0, we know that this
3632   // is zero.
3633   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3634                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3635          "LLVM field at index zero had non-zero offset?");
3636   if (idx != 0) {
3637     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3638     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3639     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3640   }
3641 
3642   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3643 }
3644 
3645 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3646   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3647   if (!RD)
3648     return false;
3649 
3650   if (RD->isDynamicClass())
3651     return true;
3652 
3653   for (const auto &Base : RD->bases())
3654     if (hasAnyVptr(Base.getType(), Context))
3655       return true;
3656 
3657   for (const FieldDecl *Field : RD->fields())
3658     if (hasAnyVptr(Field->getType(), Context))
3659       return true;
3660 
3661   return false;
3662 }
3663 
3664 LValue CodeGenFunction::EmitLValueForField(LValue base,
3665                                            const FieldDecl *field) {
3666   LValueBaseInfo BaseInfo = base.getBaseInfo();
3667   AlignmentSource fieldAlignSource =
3668     getFieldAlignmentSource(BaseInfo.getAlignmentSource());
3669   LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias());
3670 
3671   QualType type = field->getType();
3672   const RecordDecl *rec = field->getParent();
3673   if (rec->isUnion() || rec->hasAttr<MayAliasAttr>() || type->isVectorType())
3674     FieldBaseInfo.setMayAlias(true);
3675   bool mayAlias = FieldBaseInfo.getMayAlias();
3676 
3677   if (field->isBitField()) {
3678     const CGRecordLayout &RL =
3679       CGM.getTypes().getCGRecordLayout(field->getParent());
3680     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3681     Address Addr = base.getAddress();
3682     unsigned Idx = RL.getLLVMFieldNo(field);
3683     if (Idx != 0)
3684       // For structs, we GEP to the field that the record layout suggests.
3685       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3686                                      field->getName());
3687     // Get the access type.
3688     llvm::Type *FieldIntTy =
3689       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3690     if (Addr.getElementType() != FieldIntTy)
3691       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3692 
3693     QualType fieldType =
3694       field->getType().withCVRQualifiers(base.getVRQualifiers());
3695     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo);
3696   }
3697 
3698   Address addr = base.getAddress();
3699   unsigned cvr = base.getVRQualifiers();
3700   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3701   if (rec->isUnion()) {
3702     // For unions, there is no pointer adjustment.
3703     assert(!type->isReferenceType() && "union has reference member");
3704     // TODO: handle path-aware TBAA for union.
3705     TBAAPath = false;
3706 
3707     const auto FieldType = field->getType();
3708     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3709         hasAnyVptr(FieldType, getContext()))
3710       // Because unions can easily skip invariant.barriers, we need to add
3711       // a barrier every time CXXRecord field with vptr is referenced.
3712       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3713                      addr.getAlignment());
3714   } else {
3715     // For structs, we GEP to the field that the record layout suggests.
3716     addr = emitAddrOfFieldStorage(*this, addr, field);
3717 
3718     // If this is a reference field, load the reference right now.
3719     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3720       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3721       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3722 
3723       // Loading the reference will disable path-aware TBAA.
3724       TBAAPath = false;
3725       if (CGM.shouldUseTBAA()) {
3726         llvm::MDNode *tbaa;
3727         if (mayAlias)
3728           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3729         else
3730           tbaa = CGM.getTBAAInfo(type);
3731         if (tbaa)
3732           CGM.DecorateInstructionWithTBAA(load, tbaa);
3733       }
3734 
3735       mayAlias = false;
3736       type = refType->getPointeeType();
3737 
3738       CharUnits alignment =
3739         getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true);
3740       FieldBaseInfo.setMayAlias(false);
3741       addr = Address(load, alignment);
3742 
3743       // Qualifiers on the struct don't apply to the referencee, and
3744       // we'll pick up CVR from the actual type later, so reset these
3745       // additional qualifiers now.
3746       cvr = 0;
3747     }
3748   }
3749 
3750   // Make sure that the address is pointing to the right type.  This is critical
3751   // for both unions and structs.  A union needs a bitcast, a struct element
3752   // will need a bitcast if the LLVM type laid out doesn't match the desired
3753   // type.
3754   addr = Builder.CreateElementBitCast(addr,
3755                                       CGM.getTypes().ConvertTypeForMem(type),
3756                                       field->getName());
3757 
3758   if (field->hasAttr<AnnotateAttr>())
3759     addr = EmitFieldAnnotations(field, addr);
3760 
3761   LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo);
3762   LV.getQuals().addCVRQualifiers(cvr);
3763   if (TBAAPath) {
3764     const ASTRecordLayout &Layout =
3765         getContext().getASTRecordLayout(field->getParent());
3766     // Set the base type to be the base type of the base LValue and
3767     // update offset to be relative to the base type.
3768     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3769     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3770                      Layout.getFieldOffset(field->getFieldIndex()) /
3771                                            getContext().getCharWidth());
3772   }
3773 
3774   // __weak attribute on a field is ignored.
3775   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3776     LV.getQuals().removeObjCGCAttr();
3777 
3778   // Fields of may_alias structs act like 'char' for TBAA purposes.
3779   // FIXME: this should get propagated down through anonymous structs
3780   // and unions.
3781   if (mayAlias && LV.getTBAAInfo())
3782     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3783 
3784   return LV;
3785 }
3786 
3787 LValue
3788 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3789                                                   const FieldDecl *Field) {
3790   QualType FieldType = Field->getType();
3791 
3792   if (!FieldType->isReferenceType())
3793     return EmitLValueForField(Base, Field);
3794 
3795   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3796 
3797   // Make sure that the address is pointing to the right type.
3798   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3799   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3800 
3801   // TODO: access-path TBAA?
3802   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3803   LValueBaseInfo FieldBaseInfo(
3804       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3805       BaseInfo.getMayAlias());
3806   return MakeAddrLValue(V, FieldType, FieldBaseInfo);
3807 }
3808 
3809 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3810   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
3811   if (E->isFileScope()) {
3812     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3813     return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo);
3814   }
3815   if (E->getType()->isVariablyModifiedType())
3816     // make sure to emit the VLA size.
3817     EmitVariablyModifiedType(E->getType());
3818 
3819   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3820   const Expr *InitExpr = E->getInitializer();
3821   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo);
3822 
3823   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3824                    /*Init*/ true);
3825 
3826   return Result;
3827 }
3828 
3829 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3830   if (!E->isGLValue())
3831     // Initializing an aggregate temporary in C++11: T{...}.
3832     return EmitAggExprToLValue(E);
3833 
3834   // An lvalue initializer list must be initializing a reference.
3835   assert(E->isTransparent() && "non-transparent glvalue init list");
3836   return EmitLValue(E->getInit(0));
3837 }
3838 
3839 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3840 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3841 /// LValue is returned and the current block has been terminated.
3842 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3843                                                     const Expr *Operand) {
3844   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3845     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3846     return None;
3847   }
3848 
3849   return CGF.EmitLValue(Operand);
3850 }
3851 
3852 LValue CodeGenFunction::
3853 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3854   if (!expr->isGLValue()) {
3855     // ?: here should be an aggregate.
3856     assert(hasAggregateEvaluationKind(expr->getType()) &&
3857            "Unexpected conditional operator!");
3858     return EmitAggExprToLValue(expr);
3859   }
3860 
3861   OpaqueValueMapping binding(*this, expr);
3862 
3863   const Expr *condExpr = expr->getCond();
3864   bool CondExprBool;
3865   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3866     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3867     if (!CondExprBool) std::swap(live, dead);
3868 
3869     if (!ContainsLabel(dead)) {
3870       // If the true case is live, we need to track its region.
3871       if (CondExprBool)
3872         incrementProfileCounter(expr);
3873       return EmitLValue(live);
3874     }
3875   }
3876 
3877   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3878   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3879   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3880 
3881   ConditionalEvaluation eval(*this);
3882   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3883 
3884   // Any temporaries created here are conditional.
3885   EmitBlock(lhsBlock);
3886   incrementProfileCounter(expr);
3887   eval.begin(*this);
3888   Optional<LValue> lhs =
3889       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3890   eval.end(*this);
3891 
3892   if (lhs && !lhs->isSimple())
3893     return EmitUnsupportedLValue(expr, "conditional operator");
3894 
3895   lhsBlock = Builder.GetInsertBlock();
3896   if (lhs)
3897     Builder.CreateBr(contBlock);
3898 
3899   // Any temporaries created here are conditional.
3900   EmitBlock(rhsBlock);
3901   eval.begin(*this);
3902   Optional<LValue> rhs =
3903       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3904   eval.end(*this);
3905   if (rhs && !rhs->isSimple())
3906     return EmitUnsupportedLValue(expr, "conditional operator");
3907   rhsBlock = Builder.GetInsertBlock();
3908 
3909   EmitBlock(contBlock);
3910 
3911   if (lhs && rhs) {
3912     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3913                                            2, "cond-lvalue");
3914     phi->addIncoming(lhs->getPointer(), lhsBlock);
3915     phi->addIncoming(rhs->getPointer(), rhsBlock);
3916     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3917     AlignmentSource alignSource =
3918       std::max(lhs->getBaseInfo().getAlignmentSource(),
3919                rhs->getBaseInfo().getAlignmentSource());
3920     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3921                     rhs->getBaseInfo().getMayAlias();
3922     return MakeAddrLValue(result, expr->getType(),
3923                           LValueBaseInfo(alignSource, MayAlias));
3924   } else {
3925     assert((lhs || rhs) &&
3926            "both operands of glvalue conditional are throw-expressions?");
3927     return lhs ? *lhs : *rhs;
3928   }
3929 }
3930 
3931 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3932 /// type. If the cast is to a reference, we can have the usual lvalue result,
3933 /// otherwise if a cast is needed by the code generator in an lvalue context,
3934 /// then it must mean that we need the address of an aggregate in order to
3935 /// access one of its members.  This can happen for all the reasons that casts
3936 /// are permitted with aggregate result, including noop aggregate casts, and
3937 /// cast from scalar to union.
3938 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3939   switch (E->getCastKind()) {
3940   case CK_ToVoid:
3941   case CK_BitCast:
3942   case CK_ArrayToPointerDecay:
3943   case CK_FunctionToPointerDecay:
3944   case CK_NullToMemberPointer:
3945   case CK_NullToPointer:
3946   case CK_IntegralToPointer:
3947   case CK_PointerToIntegral:
3948   case CK_PointerToBoolean:
3949   case CK_VectorSplat:
3950   case CK_IntegralCast:
3951   case CK_BooleanToSignedIntegral:
3952   case CK_IntegralToBoolean:
3953   case CK_IntegralToFloating:
3954   case CK_FloatingToIntegral:
3955   case CK_FloatingToBoolean:
3956   case CK_FloatingCast:
3957   case CK_FloatingRealToComplex:
3958   case CK_FloatingComplexToReal:
3959   case CK_FloatingComplexToBoolean:
3960   case CK_FloatingComplexCast:
3961   case CK_FloatingComplexToIntegralComplex:
3962   case CK_IntegralRealToComplex:
3963   case CK_IntegralComplexToReal:
3964   case CK_IntegralComplexToBoolean:
3965   case CK_IntegralComplexCast:
3966   case CK_IntegralComplexToFloatingComplex:
3967   case CK_DerivedToBaseMemberPointer:
3968   case CK_BaseToDerivedMemberPointer:
3969   case CK_MemberPointerToBoolean:
3970   case CK_ReinterpretMemberPointer:
3971   case CK_AnyPointerToBlockPointerCast:
3972   case CK_ARCProduceObject:
3973   case CK_ARCConsumeObject:
3974   case CK_ARCReclaimReturnedObject:
3975   case CK_ARCExtendBlockObject:
3976   case CK_CopyAndAutoreleaseBlockObject:
3977   case CK_AddressSpaceConversion:
3978   case CK_IntToOCLSampler:
3979     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3980 
3981   case CK_Dependent:
3982     llvm_unreachable("dependent cast kind in IR gen!");
3983 
3984   case CK_BuiltinFnToFnPtr:
3985     llvm_unreachable("builtin functions are handled elsewhere");
3986 
3987   // These are never l-values; just use the aggregate emission code.
3988   case CK_NonAtomicToAtomic:
3989   case CK_AtomicToNonAtomic:
3990     return EmitAggExprToLValue(E);
3991 
3992   case CK_Dynamic: {
3993     LValue LV = EmitLValue(E->getSubExpr());
3994     Address V = LV.getAddress();
3995     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3996     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3997   }
3998 
3999   case CK_ConstructorConversion:
4000   case CK_UserDefinedConversion:
4001   case CK_CPointerToObjCPointerCast:
4002   case CK_BlockPointerToObjCPointerCast:
4003   case CK_NoOp:
4004   case CK_LValueToRValue:
4005     return EmitLValue(E->getSubExpr());
4006 
4007   case CK_UncheckedDerivedToBase:
4008   case CK_DerivedToBase: {
4009     const RecordType *DerivedClassTy =
4010       E->getSubExpr()->getType()->getAs<RecordType>();
4011     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4012 
4013     LValue LV = EmitLValue(E->getSubExpr());
4014     Address This = LV.getAddress();
4015 
4016     // Perform the derived-to-base conversion
4017     Address Base = GetAddressOfBaseClass(
4018         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4019         /*NullCheckValue=*/false, E->getExprLoc());
4020 
4021     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo());
4022   }
4023   case CK_ToUnion:
4024     return EmitAggExprToLValue(E);
4025   case CK_BaseToDerived: {
4026     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4027     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4028 
4029     LValue LV = EmitLValue(E->getSubExpr());
4030 
4031     // Perform the base-to-derived conversion
4032     Address Derived =
4033       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4034                                E->path_begin(), E->path_end(),
4035                                /*NullCheckValue=*/false);
4036 
4037     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4038     // performed and the object is not of the derived type.
4039     if (sanitizePerformTypeCheck())
4040       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4041                     Derived.getPointer(), E->getType());
4042 
4043     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4044       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4045                                 /*MayBeNull=*/false,
4046                                 CFITCK_DerivedCast, E->getLocStart());
4047 
4048     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo());
4049   }
4050   case CK_LValueBitCast: {
4051     // This must be a reinterpret_cast (or c-style equivalent).
4052     const auto *CE = cast<ExplicitCastExpr>(E);
4053 
4054     CGM.EmitExplicitCastExprType(CE, this);
4055     LValue LV = EmitLValue(E->getSubExpr());
4056     Address V = Builder.CreateBitCast(LV.getAddress(),
4057                                       ConvertType(CE->getTypeAsWritten()));
4058 
4059     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4060       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4061                                 /*MayBeNull=*/false,
4062                                 CFITCK_UnrelatedCast, E->getLocStart());
4063 
4064     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4065   }
4066   case CK_ObjCObjectLValueCast: {
4067     LValue LV = EmitLValue(E->getSubExpr());
4068     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4069                                              ConvertType(E->getType()));
4070     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4071   }
4072   case CK_ZeroToOCLQueue:
4073     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4074   case CK_ZeroToOCLEvent:
4075     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4076   }
4077 
4078   llvm_unreachable("Unhandled lvalue cast kind?");
4079 }
4080 
4081 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4082   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4083   return getOpaqueLValueMapping(e);
4084 }
4085 
4086 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4087                                            const FieldDecl *FD,
4088                                            SourceLocation Loc) {
4089   QualType FT = FD->getType();
4090   LValue FieldLV = EmitLValueForField(LV, FD);
4091   switch (getEvaluationKind(FT)) {
4092   case TEK_Complex:
4093     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4094   case TEK_Aggregate:
4095     return FieldLV.asAggregateRValue();
4096   case TEK_Scalar:
4097     // This routine is used to load fields one-by-one to perform a copy, so
4098     // don't load reference fields.
4099     if (FD->getType()->isReferenceType())
4100       return RValue::get(FieldLV.getPointer());
4101     return EmitLoadOfLValue(FieldLV, Loc);
4102   }
4103   llvm_unreachable("bad evaluation kind");
4104 }
4105 
4106 //===--------------------------------------------------------------------===//
4107 //                             Expression Emission
4108 //===--------------------------------------------------------------------===//
4109 
4110 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4111                                      ReturnValueSlot ReturnValue) {
4112   // Builtins never have block type.
4113   if (E->getCallee()->getType()->isBlockPointerType())
4114     return EmitBlockCallExpr(E, ReturnValue);
4115 
4116   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4117     return EmitCXXMemberCallExpr(CE, ReturnValue);
4118 
4119   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4120     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4121 
4122   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4123     if (const CXXMethodDecl *MD =
4124           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4125       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4126 
4127   CGCallee callee = EmitCallee(E->getCallee());
4128 
4129   if (callee.isBuiltin()) {
4130     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4131                            E, ReturnValue);
4132   }
4133 
4134   if (callee.isPseudoDestructor()) {
4135     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4136   }
4137 
4138   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4139 }
4140 
4141 /// Emit a CallExpr without considering whether it might be a subclass.
4142 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4143                                            ReturnValueSlot ReturnValue) {
4144   CGCallee Callee = EmitCallee(E->getCallee());
4145   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4146 }
4147 
4148 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4149   if (auto builtinID = FD->getBuiltinID()) {
4150     return CGCallee::forBuiltin(builtinID, FD);
4151   }
4152 
4153   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4154   return CGCallee::forDirect(calleePtr, FD);
4155 }
4156 
4157 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4158   E = E->IgnoreParens();
4159 
4160   // Look through function-to-pointer decay.
4161   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4162     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4163         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4164       return EmitCallee(ICE->getSubExpr());
4165     }
4166 
4167   // Resolve direct calls.
4168   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4169     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4170       return EmitDirectCallee(*this, FD);
4171     }
4172   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4173     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4174       EmitIgnoredExpr(ME->getBase());
4175       return EmitDirectCallee(*this, FD);
4176     }
4177 
4178   // Look through template substitutions.
4179   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4180     return EmitCallee(NTTP->getReplacement());
4181 
4182   // Treat pseudo-destructor calls differently.
4183   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4184     return CGCallee::forPseudoDestructor(PDE);
4185   }
4186 
4187   // Otherwise, we have an indirect reference.
4188   llvm::Value *calleePtr;
4189   QualType functionType;
4190   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4191     calleePtr = EmitScalarExpr(E);
4192     functionType = ptrType->getPointeeType();
4193   } else {
4194     functionType = E->getType();
4195     calleePtr = EmitLValue(E).getPointer();
4196   }
4197   assert(functionType->isFunctionType());
4198   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4199                           E->getReferencedDeclOfCallee());
4200   CGCallee callee(calleeInfo, calleePtr);
4201   return callee;
4202 }
4203 
4204 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4205   // Comma expressions just emit their LHS then their RHS as an l-value.
4206   if (E->getOpcode() == BO_Comma) {
4207     EmitIgnoredExpr(E->getLHS());
4208     EnsureInsertPoint();
4209     return EmitLValue(E->getRHS());
4210   }
4211 
4212   if (E->getOpcode() == BO_PtrMemD ||
4213       E->getOpcode() == BO_PtrMemI)
4214     return EmitPointerToDataMemberBinaryExpr(E);
4215 
4216   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4217 
4218   // Note that in all of these cases, __block variables need the RHS
4219   // evaluated first just in case the variable gets moved by the RHS.
4220 
4221   switch (getEvaluationKind(E->getType())) {
4222   case TEK_Scalar: {
4223     switch (E->getLHS()->getType().getObjCLifetime()) {
4224     case Qualifiers::OCL_Strong:
4225       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4226 
4227     case Qualifiers::OCL_Autoreleasing:
4228       return EmitARCStoreAutoreleasing(E).first;
4229 
4230     // No reason to do any of these differently.
4231     case Qualifiers::OCL_None:
4232     case Qualifiers::OCL_ExplicitNone:
4233     case Qualifiers::OCL_Weak:
4234       break;
4235     }
4236 
4237     RValue RV = EmitAnyExpr(E->getRHS());
4238     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4239     if (RV.isScalar())
4240       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4241     EmitStoreThroughLValue(RV, LV);
4242     return LV;
4243   }
4244 
4245   case TEK_Complex:
4246     return EmitComplexAssignmentLValue(E);
4247 
4248   case TEK_Aggregate:
4249     return EmitAggExprToLValue(E);
4250   }
4251   llvm_unreachable("bad evaluation kind");
4252 }
4253 
4254 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4255   RValue RV = EmitCallExpr(E);
4256 
4257   if (!RV.isScalar())
4258     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4259                           LValueBaseInfo(AlignmentSource::Decl, false));
4260 
4261   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4262          "Can't have a scalar return unless the return type is a "
4263          "reference type!");
4264 
4265   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4266 }
4267 
4268 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4269   // FIXME: This shouldn't require another copy.
4270   return EmitAggExprToLValue(E);
4271 }
4272 
4273 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4274   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4275          && "binding l-value to type which needs a temporary");
4276   AggValueSlot Slot = CreateAggTemp(E->getType());
4277   EmitCXXConstructExpr(E, Slot);
4278   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4279                         LValueBaseInfo(AlignmentSource::Decl, false));
4280 }
4281 
4282 LValue
4283 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4284   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4285 }
4286 
4287 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4288   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4289                                       ConvertType(E->getType()));
4290 }
4291 
4292 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4293   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4294                         LValueBaseInfo(AlignmentSource::Decl, false));
4295 }
4296 
4297 LValue
4298 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4299   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4300   Slot.setExternallyDestructed();
4301   EmitAggExpr(E->getSubExpr(), Slot);
4302   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4303   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4304                         LValueBaseInfo(AlignmentSource::Decl, false));
4305 }
4306 
4307 LValue
4308 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4309   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4310   EmitLambdaExpr(E, Slot);
4311   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4312                         LValueBaseInfo(AlignmentSource::Decl, false));
4313 }
4314 
4315 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4316   RValue RV = EmitObjCMessageExpr(E);
4317 
4318   if (!RV.isScalar())
4319     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4320                           LValueBaseInfo(AlignmentSource::Decl, false));
4321 
4322   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4323          "Can't have a scalar return unless the return type is a "
4324          "reference type!");
4325 
4326   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4327 }
4328 
4329 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4330   Address V =
4331     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4332   return MakeAddrLValue(V, E->getType(),
4333                         LValueBaseInfo(AlignmentSource::Decl, false));
4334 }
4335 
4336 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4337                                              const ObjCIvarDecl *Ivar) {
4338   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4339 }
4340 
4341 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4342                                           llvm::Value *BaseValue,
4343                                           const ObjCIvarDecl *Ivar,
4344                                           unsigned CVRQualifiers) {
4345   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4346                                                    Ivar, CVRQualifiers);
4347 }
4348 
4349 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4350   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4351   llvm::Value *BaseValue = nullptr;
4352   const Expr *BaseExpr = E->getBase();
4353   Qualifiers BaseQuals;
4354   QualType ObjectTy;
4355   if (E->isArrow()) {
4356     BaseValue = EmitScalarExpr(BaseExpr);
4357     ObjectTy = BaseExpr->getType()->getPointeeType();
4358     BaseQuals = ObjectTy.getQualifiers();
4359   } else {
4360     LValue BaseLV = EmitLValue(BaseExpr);
4361     BaseValue = BaseLV.getPointer();
4362     ObjectTy = BaseExpr->getType();
4363     BaseQuals = ObjectTy.getQualifiers();
4364   }
4365 
4366   LValue LV =
4367     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4368                       BaseQuals.getCVRQualifiers());
4369   setObjCGCLValueClass(getContext(), E, LV);
4370   return LV;
4371 }
4372 
4373 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4374   // Can only get l-value for message expression returning aggregate type
4375   RValue RV = EmitAnyExprToTemp(E);
4376   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4377                         LValueBaseInfo(AlignmentSource::Decl, false));
4378 }
4379 
4380 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4381                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4382                                  llvm::Value *Chain) {
4383   // Get the actual function type. The callee type will always be a pointer to
4384   // function type or a block pointer type.
4385   assert(CalleeType->isFunctionPointerType() &&
4386          "Call must have function pointer type!");
4387 
4388   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4389 
4390   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4391     // We can only guarantee that a function is called from the correct
4392     // context/function based on the appropriate target attributes,
4393     // so only check in the case where we have both always_inline and target
4394     // since otherwise we could be making a conditional call after a check for
4395     // the proper cpu features (and it won't cause code generation issues due to
4396     // function based code generation).
4397     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4398         TargetDecl->hasAttr<TargetAttr>())
4399       checkTargetFeatures(E, FD);
4400 
4401   CalleeType = getContext().getCanonicalType(CalleeType);
4402 
4403   const auto *FnType =
4404       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4405 
4406   CGCallee Callee = OrigCallee;
4407 
4408   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4409       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4410     if (llvm::Constant *PrefixSig =
4411             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4412       SanitizerScope SanScope(this);
4413       llvm::Constant *FTRTTIConst =
4414           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4415       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4416       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4417           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4418 
4419       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4420 
4421       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4422           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4423       llvm::Value *CalleeSigPtr =
4424           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4425       llvm::Value *CalleeSig =
4426           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4427       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4428 
4429       llvm::BasicBlock *Cont = createBasicBlock("cont");
4430       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4431       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4432 
4433       EmitBlock(TypeCheck);
4434       llvm::Value *CalleeRTTIPtr =
4435           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4436       llvm::Value *CalleeRTTIEncoded =
4437           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4438       llvm::Value *CalleeRTTI =
4439           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4440       llvm::Value *CalleeRTTIMatch =
4441           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4442       llvm::Constant *StaticData[] = {
4443         EmitCheckSourceLocation(E->getLocStart()),
4444         EmitCheckTypeDescriptor(CalleeType)
4445       };
4446       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4447                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4448 
4449       Builder.CreateBr(Cont);
4450       EmitBlock(Cont);
4451     }
4452   }
4453 
4454   // If we are checking indirect calls and this call is indirect, check that the
4455   // function pointer is a member of the bit set for the function type.
4456   if (SanOpts.has(SanitizerKind::CFIICall) &&
4457       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4458     SanitizerScope SanScope(this);
4459     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4460 
4461     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4462     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4463 
4464     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4465     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4466     llvm::Value *TypeTest = Builder.CreateCall(
4467         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4468 
4469     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4470     llvm::Constant *StaticData[] = {
4471         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4472         EmitCheckSourceLocation(E->getLocStart()),
4473         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4474     };
4475     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4476       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4477                            CastedCallee, StaticData);
4478     } else {
4479       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4480                 SanitizerHandler::CFICheckFail, StaticData,
4481                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4482     }
4483   }
4484 
4485   CallArgList Args;
4486   if (Chain)
4487     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4488              CGM.getContext().VoidPtrTy);
4489 
4490   // C++17 requires that we evaluate arguments to a call using assignment syntax
4491   // right-to-left, and that we evaluate arguments to certain other operators
4492   // left-to-right. Note that we allow this to override the order dictated by
4493   // the calling convention on the MS ABI, which means that parameter
4494   // destruction order is not necessarily reverse construction order.
4495   // FIXME: Revisit this based on C++ committee response to unimplementability.
4496   EvaluationOrder Order = EvaluationOrder::Default;
4497   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4498     if (OCE->isAssignmentOp())
4499       Order = EvaluationOrder::ForceRightToLeft;
4500     else {
4501       switch (OCE->getOperator()) {
4502       case OO_LessLess:
4503       case OO_GreaterGreater:
4504       case OO_AmpAmp:
4505       case OO_PipePipe:
4506       case OO_Comma:
4507       case OO_ArrowStar:
4508         Order = EvaluationOrder::ForceLeftToRight;
4509         break;
4510       default:
4511         break;
4512       }
4513     }
4514   }
4515 
4516   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4517                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4518 
4519   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4520       Args, FnType, /*isChainCall=*/Chain);
4521 
4522   // C99 6.5.2.2p6:
4523   //   If the expression that denotes the called function has a type
4524   //   that does not include a prototype, [the default argument
4525   //   promotions are performed]. If the number of arguments does not
4526   //   equal the number of parameters, the behavior is undefined. If
4527   //   the function is defined with a type that includes a prototype,
4528   //   and either the prototype ends with an ellipsis (, ...) or the
4529   //   types of the arguments after promotion are not compatible with
4530   //   the types of the parameters, the behavior is undefined. If the
4531   //   function is defined with a type that does not include a
4532   //   prototype, and the types of the arguments after promotion are
4533   //   not compatible with those of the parameters after promotion,
4534   //   the behavior is undefined [except in some trivial cases].
4535   // That is, in the general case, we should assume that a call
4536   // through an unprototyped function type works like a *non-variadic*
4537   // call.  The way we make this work is to cast to the exact type
4538   // of the promoted arguments.
4539   //
4540   // Chain calls use this same code path to add the invisible chain parameter
4541   // to the function type.
4542   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4543     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4544     CalleeTy = CalleeTy->getPointerTo();
4545 
4546     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4547     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4548     Callee.setFunctionPointer(CalleePtr);
4549   }
4550 
4551   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4552 }
4553 
4554 LValue CodeGenFunction::
4555 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4556   Address BaseAddr = Address::invalid();
4557   if (E->getOpcode() == BO_PtrMemI) {
4558     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4559   } else {
4560     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4561   }
4562 
4563   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4564 
4565   const MemberPointerType *MPT
4566     = E->getRHS()->getType()->getAs<MemberPointerType>();
4567 
4568   LValueBaseInfo BaseInfo;
4569   Address MemberAddr =
4570     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo);
4571 
4572   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo);
4573 }
4574 
4575 /// Given the address of a temporary variable, produce an r-value of
4576 /// its type.
4577 RValue CodeGenFunction::convertTempToRValue(Address addr,
4578                                             QualType type,
4579                                             SourceLocation loc) {
4580   LValue lvalue = MakeAddrLValue(addr, type,
4581                                  LValueBaseInfo(AlignmentSource::Decl, false));
4582   switch (getEvaluationKind(type)) {
4583   case TEK_Complex:
4584     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4585   case TEK_Aggregate:
4586     return lvalue.asAggregateRValue();
4587   case TEK_Scalar:
4588     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4589   }
4590   llvm_unreachable("bad evaluation kind");
4591 }
4592 
4593 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4594   assert(Val->getType()->isFPOrFPVectorTy());
4595   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4596     return;
4597 
4598   llvm::MDBuilder MDHelper(getLLVMContext());
4599   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4600 
4601   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4602 }
4603 
4604 namespace {
4605   struct LValueOrRValue {
4606     LValue LV;
4607     RValue RV;
4608   };
4609 }
4610 
4611 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4612                                            const PseudoObjectExpr *E,
4613                                            bool forLValue,
4614                                            AggValueSlot slot) {
4615   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4616 
4617   // Find the result expression, if any.
4618   const Expr *resultExpr = E->getResultExpr();
4619   LValueOrRValue result;
4620 
4621   for (PseudoObjectExpr::const_semantics_iterator
4622          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4623     const Expr *semantic = *i;
4624 
4625     // If this semantic expression is an opaque value, bind it
4626     // to the result of its source expression.
4627     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4628 
4629       // If this is the result expression, we may need to evaluate
4630       // directly into the slot.
4631       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4632       OVMA opaqueData;
4633       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4634           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4635         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4636         LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
4637         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4638                                        BaseInfo);
4639         opaqueData = OVMA::bind(CGF, ov, LV);
4640         result.RV = slot.asRValue();
4641 
4642       // Otherwise, emit as normal.
4643       } else {
4644         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4645 
4646         // If this is the result, also evaluate the result now.
4647         if (ov == resultExpr) {
4648           if (forLValue)
4649             result.LV = CGF.EmitLValue(ov);
4650           else
4651             result.RV = CGF.EmitAnyExpr(ov, slot);
4652         }
4653       }
4654 
4655       opaques.push_back(opaqueData);
4656 
4657     // Otherwise, if the expression is the result, evaluate it
4658     // and remember the result.
4659     } else if (semantic == resultExpr) {
4660       if (forLValue)
4661         result.LV = CGF.EmitLValue(semantic);
4662       else
4663         result.RV = CGF.EmitAnyExpr(semantic, slot);
4664 
4665     // Otherwise, evaluate the expression in an ignored context.
4666     } else {
4667       CGF.EmitIgnoredExpr(semantic);
4668     }
4669   }
4670 
4671   // Unbind all the opaques now.
4672   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4673     opaques[i].unbind(CGF);
4674 
4675   return result;
4676 }
4677 
4678 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4679                                                AggValueSlot slot) {
4680   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4681 }
4682 
4683 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4684   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4685 }
4686