1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Ty, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(getPostAllocaInsertPoint());
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Ty, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         VectorTy, Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // Just emit it as an l-value and drop the result.
195   EmitLValue(E);
196 }
197 
198 /// EmitAnyExpr - Emit code to compute the specified expression which
199 /// can have any type.  The result is returned as an RValue struct.
200 /// If this is an aggregate expression, AggSlot indicates where the
201 /// result should be returned.
202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
203                                     AggValueSlot aggSlot,
204                                     bool ignoreResult) {
205   switch (getEvaluationKind(E->getType())) {
206   case TEK_Scalar:
207     return RValue::get(EmitScalarExpr(E, ignoreResult));
208   case TEK_Complex:
209     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
210   case TEK_Aggregate:
211     if (!ignoreResult && aggSlot.isIgnored())
212       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
213     EmitAggExpr(E, aggSlot);
214     return aggSlot.asRValue();
215   }
216   llvm_unreachable("bad evaluation kind");
217 }
218 
219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
220 /// always be accessible even if no aggregate location is provided.
221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
222   AggValueSlot AggSlot = AggValueSlot::ignored();
223 
224   if (hasAggregateEvaluationKind(E->getType()))
225     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
226   return EmitAnyExpr(E, AggSlot);
227 }
228 
229 /// EmitAnyExprToMem - Evaluate an expression into a given memory
230 /// location.
231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
232                                        Address Location,
233                                        Qualifiers Quals,
234                                        bool IsInit) {
235   // FIXME: This function should take an LValue as an argument.
236   switch (getEvaluationKind(E->getType())) {
237   case TEK_Complex:
238     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
239                               /*isInit*/ false);
240     return;
241 
242   case TEK_Aggregate: {
243     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
244                                          AggValueSlot::IsDestructed_t(IsInit),
245                                          AggValueSlot::DoesNotNeedGCBarriers,
246                                          AggValueSlot::IsAliased_t(!IsInit),
247                                          AggValueSlot::MayOverlap));
248     return;
249   }
250 
251   case TEK_Scalar: {
252     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
253     LValue LV = MakeAddrLValue(Location, E->getType());
254     EmitStoreThroughLValue(RV, LV);
255     return;
256   }
257   }
258   llvm_unreachable("bad evaluation kind");
259 }
260 
261 static void
262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
263                      const Expr *E, Address ReferenceTemporary) {
264   // Objective-C++ ARC:
265   //   If we are binding a reference to a temporary that has ownership, we
266   //   need to perform retain/release operations on the temporary.
267   //
268   // FIXME: This should be looking at E, not M.
269   if (auto Lifetime = M->getType().getObjCLifetime()) {
270     switch (Lifetime) {
271     case Qualifiers::OCL_None:
272     case Qualifiers::OCL_ExplicitNone:
273       // Carry on to normal cleanup handling.
274       break;
275 
276     case Qualifiers::OCL_Autoreleasing:
277       // Nothing to do; cleaned up by an autorelease pool.
278       return;
279 
280     case Qualifiers::OCL_Strong:
281     case Qualifiers::OCL_Weak:
282       switch (StorageDuration Duration = M->getStorageDuration()) {
283       case SD_Static:
284         // Note: we intentionally do not register a cleanup to release
285         // the object on program termination.
286         return;
287 
288       case SD_Thread:
289         // FIXME: We should probably register a cleanup in this case.
290         return;
291 
292       case SD_Automatic:
293       case SD_FullExpression:
294         CodeGenFunction::Destroyer *Destroy;
295         CleanupKind CleanupKind;
296         if (Lifetime == Qualifiers::OCL_Strong) {
297           const ValueDecl *VD = M->getExtendingDecl();
298           bool Precise =
299               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
300           CleanupKind = CGF.getARCCleanupKind();
301           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
302                             : &CodeGenFunction::destroyARCStrongImprecise;
303         } else {
304           // __weak objects always get EH cleanups; otherwise, exceptions
305           // could cause really nasty crashes instead of mere leaks.
306           CleanupKind = NormalAndEHCleanup;
307           Destroy = &CodeGenFunction::destroyARCWeak;
308         }
309         if (Duration == SD_FullExpression)
310           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
311                           M->getType(), *Destroy,
312                           CleanupKind & EHCleanup);
313         else
314           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
315                                           M->getType(),
316                                           *Destroy, CleanupKind & EHCleanup);
317         return;
318 
319       case SD_Dynamic:
320         llvm_unreachable("temporary cannot have dynamic storage duration");
321       }
322       llvm_unreachable("unknown storage duration");
323     }
324   }
325 
326   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
327   if (const RecordType *RT =
328           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
329     // Get the destructor for the reference temporary.
330     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
331     if (!ClassDecl->hasTrivialDestructor())
332       ReferenceTemporaryDtor = ClassDecl->getDestructor();
333   }
334 
335   if (!ReferenceTemporaryDtor)
336     return;
337 
338   // Call the destructor for the temporary.
339   switch (M->getStorageDuration()) {
340   case SD_Static:
341   case SD_Thread: {
342     llvm::FunctionCallee CleanupFn;
343     llvm::Constant *CleanupArg;
344     if (E->getType()->isArrayType()) {
345       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
346           ReferenceTemporary, E->getType(),
347           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
348           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
349       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
350     } else {
351       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
352           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
353       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
354     }
355     CGF.CGM.getCXXABI().registerGlobalDtor(
356         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
357     break;
358   }
359 
360   case SD_FullExpression:
361     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
362                     CodeGenFunction::destroyCXXObject,
363                     CGF.getLangOpts().Exceptions);
364     break;
365 
366   case SD_Automatic:
367     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
368                                     ReferenceTemporary, E->getType(),
369                                     CodeGenFunction::destroyCXXObject,
370                                     CGF.getLangOpts().Exceptions);
371     break;
372 
373   case SD_Dynamic:
374     llvm_unreachable("temporary cannot have dynamic storage duration");
375   }
376 }
377 
378 static Address createReferenceTemporary(CodeGenFunction &CGF,
379                                         const MaterializeTemporaryExpr *M,
380                                         const Expr *Inner,
381                                         Address *Alloca = nullptr) {
382   auto &TCG = CGF.getTargetHooks();
383   switch (M->getStorageDuration()) {
384   case SD_FullExpression:
385   case SD_Automatic: {
386     // If we have a constant temporary array or record try to promote it into a
387     // constant global under the same rules a normal constant would've been
388     // promoted. This is easier on the optimizer and generally emits fewer
389     // instructions.
390     QualType Ty = Inner->getType();
391     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
392         (Ty->isArrayType() || Ty->isRecordType()) &&
393         CGF.CGM.isTypeConstant(Ty, true))
394       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
395         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
396         auto *GV = new llvm::GlobalVariable(
397             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
398             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
399             llvm::GlobalValue::NotThreadLocal,
400             CGF.getContext().getTargetAddressSpace(AS));
401         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
402         GV->setAlignment(alignment.getAsAlign());
403         llvm::Constant *C = GV;
404         if (AS != LangAS::Default)
405           C = TCG.performAddrSpaceCast(
406               CGF.CGM, GV, AS, LangAS::Default,
407               GV->getValueType()->getPointerTo(
408                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
409         // FIXME: Should we put the new global into a COMDAT?
410         return Address(C, GV->getValueType(), alignment);
411       }
412     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
413   }
414   case SD_Thread:
415   case SD_Static:
416     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
417 
418   case SD_Dynamic:
419     llvm_unreachable("temporary can't have dynamic storage duration");
420   }
421   llvm_unreachable("unknown storage duration");
422 }
423 
424 /// Helper method to check if the underlying ABI is AAPCS
425 static bool isAAPCS(const TargetInfo &TargetInfo) {
426   return TargetInfo.getABI().startswith("aapcs");
427 }
428 
429 LValue CodeGenFunction::
430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
431   const Expr *E = M->getSubExpr();
432 
433   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
434           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
435          "Reference should never be pseudo-strong!");
436 
437   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
438   // as that will cause the lifetime adjustment to be lost for ARC
439   auto ownership = M->getType().getObjCLifetime();
440   if (ownership != Qualifiers::OCL_None &&
441       ownership != Qualifiers::OCL_ExplicitNone) {
442     Address Object = createReferenceTemporary(*this, M, E);
443     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
444       llvm::Type *Ty = ConvertTypeForMem(E->getType());
445       Object = Address(llvm::ConstantExpr::getBitCast(
446                            Var, Ty->getPointerTo(Object.getAddressSpace())),
447                        Ty, Object.getAlignment());
448 
449       // createReferenceTemporary will promote the temporary to a global with a
450       // constant initializer if it can.  It can only do this to a value of
451       // ARC-manageable type if the value is global and therefore "immune" to
452       // ref-counting operations.  Therefore we have no need to emit either a
453       // dynamic initialization or a cleanup and we can just return the address
454       // of the temporary.
455       if (Var->hasInitializer())
456         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 
458       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
459     }
460     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
461                                        AlignmentSource::Decl);
462 
463     switch (getEvaluationKind(E->getType())) {
464     default: llvm_unreachable("expected scalar or aggregate expression");
465     case TEK_Scalar:
466       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
467       break;
468     case TEK_Aggregate: {
469       EmitAggExpr(E, AggValueSlot::forAddr(Object,
470                                            E->getType().getQualifiers(),
471                                            AggValueSlot::IsDestructed,
472                                            AggValueSlot::DoesNotNeedGCBarriers,
473                                            AggValueSlot::IsNotAliased,
474                                            AggValueSlot::DoesNotOverlap));
475       break;
476     }
477     }
478 
479     pushTemporaryCleanup(*this, M, E, Object);
480     return RefTempDst;
481   }
482 
483   SmallVector<const Expr *, 2> CommaLHSs;
484   SmallVector<SubobjectAdjustment, 2> Adjustments;
485   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
486 
487   for (const auto &Ignored : CommaLHSs)
488     EmitIgnoredExpr(Ignored);
489 
490   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
491     if (opaque->getType()->isRecordType()) {
492       assert(Adjustments.empty());
493       return EmitOpaqueValueLValue(opaque);
494     }
495   }
496 
497   // Create and initialize the reference temporary.
498   Address Alloca = Address::invalid();
499   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
500   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
501           Object.getPointer()->stripPointerCasts())) {
502     llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
503     Object = Address(llvm::ConstantExpr::getBitCast(
504                          cast<llvm::Constant>(Object.getPointer()),
505                          TemporaryType->getPointerTo()),
506                      TemporaryType,
507                      Object.getAlignment());
508     // If the temporary is a global and has a constant initializer or is a
509     // constant temporary that we promoted to a global, we may have already
510     // initialized it.
511     if (!Var->hasInitializer()) {
512       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
513       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
514     }
515   } else {
516     switch (M->getStorageDuration()) {
517     case SD_Automatic:
518       if (auto *Size = EmitLifetimeStart(
519               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
520               Alloca.getPointer())) {
521         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
522                                                   Alloca, Size);
523       }
524       break;
525 
526     case SD_FullExpression: {
527       if (!ShouldEmitLifetimeMarkers)
528         break;
529 
530       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
531       // marker. Instead, start the lifetime of a conditional temporary earlier
532       // so that it's unconditional. Don't do this with sanitizers which need
533       // more precise lifetime marks.
534       ConditionalEvaluation *OldConditional = nullptr;
535       CGBuilderTy::InsertPoint OldIP;
536       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
537           !SanOpts.has(SanitizerKind::HWAddress) &&
538           !SanOpts.has(SanitizerKind::Memory) &&
539           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
540         OldConditional = OutermostConditional;
541         OutermostConditional = nullptr;
542 
543         OldIP = Builder.saveIP();
544         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
545         Builder.restoreIP(CGBuilderTy::InsertPoint(
546             Block, llvm::BasicBlock::iterator(Block->back())));
547       }
548 
549       if (auto *Size = EmitLifetimeStart(
550               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
551               Alloca.getPointer())) {
552         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
553                                              Size);
554       }
555 
556       if (OldConditional) {
557         OutermostConditional = OldConditional;
558         Builder.restoreIP(OldIP);
559       }
560       break;
561     }
562 
563     default:
564       break;
565     }
566     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
567   }
568   pushTemporaryCleanup(*this, M, E, Object);
569 
570   // Perform derived-to-base casts and/or field accesses, to get from the
571   // temporary object we created (and, potentially, for which we extended
572   // the lifetime) to the subobject we're binding the reference to.
573   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
574     switch (Adjustment.Kind) {
575     case SubobjectAdjustment::DerivedToBaseAdjustment:
576       Object =
577           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
578                                 Adjustment.DerivedToBase.BasePath->path_begin(),
579                                 Adjustment.DerivedToBase.BasePath->path_end(),
580                                 /*NullCheckValue=*/ false, E->getExprLoc());
581       break;
582 
583     case SubobjectAdjustment::FieldAdjustment: {
584       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
585       LV = EmitLValueForField(LV, Adjustment.Field);
586       assert(LV.isSimple() &&
587              "materialized temporary field is not a simple lvalue");
588       Object = LV.getAddress(*this);
589       break;
590     }
591 
592     case SubobjectAdjustment::MemberPointerAdjustment: {
593       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
594       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
595                                                Adjustment.Ptr.MPT);
596       break;
597     }
598     }
599   }
600 
601   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
602 }
603 
604 RValue
605 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
606   // Emit the expression as an lvalue.
607   LValue LV = EmitLValue(E);
608   assert(LV.isSimple());
609   llvm::Value *Value = LV.getPointer(*this);
610 
611   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
612     // C++11 [dcl.ref]p5 (as amended by core issue 453):
613     //   If a glvalue to which a reference is directly bound designates neither
614     //   an existing object or function of an appropriate type nor a region of
615     //   storage of suitable size and alignment to contain an object of the
616     //   reference's type, the behavior is undefined.
617     QualType Ty = E->getType();
618     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
619   }
620 
621   return RValue::get(Value);
622 }
623 
624 
625 /// getAccessedFieldNo - Given an encoded value and a result number, return the
626 /// input field number being accessed.
627 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
628                                              const llvm::Constant *Elts) {
629   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
630       ->getZExtValue();
631 }
632 
633 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
634 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
635                                     llvm::Value *High) {
636   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
637   llvm::Value *K47 = Builder.getInt64(47);
638   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
639   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
640   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
641   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
642   return Builder.CreateMul(B1, KMul);
643 }
644 
645 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
646   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
647          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
648 }
649 
650 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
651   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
652   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
653          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
654           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
655           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
656 }
657 
658 bool CodeGenFunction::sanitizePerformTypeCheck() const {
659   return SanOpts.has(SanitizerKind::Null) ||
660          SanOpts.has(SanitizerKind::Alignment) ||
661          SanOpts.has(SanitizerKind::ObjectSize) ||
662          SanOpts.has(SanitizerKind::Vptr);
663 }
664 
665 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
666                                     llvm::Value *Ptr, QualType Ty,
667                                     CharUnits Alignment,
668                                     SanitizerSet SkippedChecks,
669                                     llvm::Value *ArraySize) {
670   if (!sanitizePerformTypeCheck())
671     return;
672 
673   // Don't check pointers outside the default address space. The null check
674   // isn't correct, the object-size check isn't supported by LLVM, and we can't
675   // communicate the addresses to the runtime handler for the vptr check.
676   if (Ptr->getType()->getPointerAddressSpace())
677     return;
678 
679   // Don't check pointers to volatile data. The behavior here is implementation-
680   // defined.
681   if (Ty.isVolatileQualified())
682     return;
683 
684   SanitizerScope SanScope(this);
685 
686   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
687   llvm::BasicBlock *Done = nullptr;
688 
689   // Quickly determine whether we have a pointer to an alloca. It's possible
690   // to skip null checks, and some alignment checks, for these pointers. This
691   // can reduce compile-time significantly.
692   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
693 
694   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
695   llvm::Value *IsNonNull = nullptr;
696   bool IsGuaranteedNonNull =
697       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
698   bool AllowNullPointers = isNullPointerAllowed(TCK);
699   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
700       !IsGuaranteedNonNull) {
701     // The glvalue must not be an empty glvalue.
702     IsNonNull = Builder.CreateIsNotNull(Ptr);
703 
704     // The IR builder can constant-fold the null check if the pointer points to
705     // a constant.
706     IsGuaranteedNonNull = IsNonNull == True;
707 
708     // Skip the null check if the pointer is known to be non-null.
709     if (!IsGuaranteedNonNull) {
710       if (AllowNullPointers) {
711         // When performing pointer casts, it's OK if the value is null.
712         // Skip the remaining checks in that case.
713         Done = createBasicBlock("null");
714         llvm::BasicBlock *Rest = createBasicBlock("not.null");
715         Builder.CreateCondBr(IsNonNull, Rest, Done);
716         EmitBlock(Rest);
717       } else {
718         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
719       }
720     }
721   }
722 
723   if (SanOpts.has(SanitizerKind::ObjectSize) &&
724       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
725       !Ty->isIncompleteType()) {
726     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
727     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
728     if (ArraySize)
729       Size = Builder.CreateMul(Size, ArraySize);
730 
731     // Degenerate case: new X[0] does not need an objectsize check.
732     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
733     if (!ConstantSize || !ConstantSize->isNullValue()) {
734       // The glvalue must refer to a large enough storage region.
735       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
736       //        to check this.
737       // FIXME: Get object address space
738       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
739       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
740       llvm::Value *Min = Builder.getFalse();
741       llvm::Value *NullIsUnknown = Builder.getFalse();
742       llvm::Value *Dynamic = Builder.getFalse();
743       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
744       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
745           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
746       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
747     }
748   }
749 
750   uint64_t AlignVal = 0;
751   llvm::Value *PtrAsInt = nullptr;
752 
753   if (SanOpts.has(SanitizerKind::Alignment) &&
754       !SkippedChecks.has(SanitizerKind::Alignment)) {
755     AlignVal = Alignment.getQuantity();
756     if (!Ty->isIncompleteType() && !AlignVal)
757       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
758                                              /*ForPointeeType=*/true)
759                      .getQuantity();
760 
761     // The glvalue must be suitably aligned.
762     if (AlignVal > 1 &&
763         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
764       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
765       llvm::Value *Align = Builder.CreateAnd(
766           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
767       llvm::Value *Aligned =
768           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
769       if (Aligned != True)
770         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
771     }
772   }
773 
774   if (Checks.size() > 0) {
775     // Make sure we're not losing information. Alignment needs to be a power of
776     // 2
777     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
778     llvm::Constant *StaticData[] = {
779         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
780         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
781         llvm::ConstantInt::get(Int8Ty, TCK)};
782     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
783               PtrAsInt ? PtrAsInt : Ptr);
784   }
785 
786   // If possible, check that the vptr indicates that there is a subobject of
787   // type Ty at offset zero within this object.
788   //
789   // C++11 [basic.life]p5,6:
790   //   [For storage which does not refer to an object within its lifetime]
791   //   The program has undefined behavior if:
792   //    -- the [pointer or glvalue] is used to access a non-static data member
793   //       or call a non-static member function
794   if (SanOpts.has(SanitizerKind::Vptr) &&
795       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
796     // Ensure that the pointer is non-null before loading it. If there is no
797     // compile-time guarantee, reuse the run-time null check or emit a new one.
798     if (!IsGuaranteedNonNull) {
799       if (!IsNonNull)
800         IsNonNull = Builder.CreateIsNotNull(Ptr);
801       if (!Done)
802         Done = createBasicBlock("vptr.null");
803       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
804       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
805       EmitBlock(VptrNotNull);
806     }
807 
808     // Compute a hash of the mangled name of the type.
809     //
810     // FIXME: This is not guaranteed to be deterministic! Move to a
811     //        fingerprinting mechanism once LLVM provides one. For the time
812     //        being the implementation happens to be deterministic.
813     SmallString<64> MangledName;
814     llvm::raw_svector_ostream Out(MangledName);
815     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
816                                                      Out);
817 
818     // Contained in NoSanitizeList based on the mangled type.
819     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
820                                                            Out.str())) {
821       llvm::hash_code TypeHash = hash_value(Out.str());
822 
823       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
824       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
825       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
826       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
827       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
828       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
829 
830       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
831       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
832 
833       // Look the hash up in our cache.
834       const int CacheSize = 128;
835       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
836       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
837                                                      "__ubsan_vptr_type_cache");
838       llvm::Value *Slot = Builder.CreateAnd(Hash,
839                                             llvm::ConstantInt::get(IntPtrTy,
840                                                                    CacheSize-1));
841       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
842       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
843           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
844           getPointerAlign());
845 
846       // If the hash isn't in the cache, call a runtime handler to perform the
847       // hard work of checking whether the vptr is for an object of the right
848       // type. This will either fill in the cache and return, or produce a
849       // diagnostic.
850       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
851       llvm::Constant *StaticData[] = {
852         EmitCheckSourceLocation(Loc),
853         EmitCheckTypeDescriptor(Ty),
854         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
855         llvm::ConstantInt::get(Int8Ty, TCK)
856       };
857       llvm::Value *DynamicData[] = { Ptr, Hash };
858       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
859                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
860                 DynamicData);
861     }
862   }
863 
864   if (Done) {
865     Builder.CreateBr(Done);
866     EmitBlock(Done);
867   }
868 }
869 
870 /// Determine whether this expression refers to a flexible array member in a
871 /// struct. We disable array bounds checks for such members.
872 static bool isFlexibleArrayMemberExpr(const Expr *E) {
873   // For compatibility with existing code, we treat arrays of length 0 or
874   // 1 as flexible array members.
875   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
876   // the two mechanisms.
877   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
878   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
879     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
880     // was produced by macro expansion.
881     if (CAT->getSize().ugt(1))
882       return false;
883   } else if (!isa<IncompleteArrayType>(AT))
884     return false;
885 
886   E = E->IgnoreParens();
887 
888   // A flexible array member must be the last member in the class.
889   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
890     // FIXME: If the base type of the member expr is not FD->getParent(),
891     // this should not be treated as a flexible array member access.
892     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
893       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
894       // member, only a T[0] or T[] member gets that treatment.
895       if (FD->getParent()->isUnion())
896         return true;
897       RecordDecl::field_iterator FI(
898           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
899       return ++FI == FD->getParent()->field_end();
900     }
901   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
902     return IRE->getDecl()->getNextIvar() == nullptr;
903   }
904 
905   return false;
906 }
907 
908 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
909                                                    QualType EltTy) {
910   ASTContext &C = getContext();
911   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
912   if (!EltSize)
913     return nullptr;
914 
915   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
916   if (!ArrayDeclRef)
917     return nullptr;
918 
919   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
920   if (!ParamDecl)
921     return nullptr;
922 
923   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
924   if (!POSAttr)
925     return nullptr;
926 
927   // Don't load the size if it's a lower bound.
928   int POSType = POSAttr->getType();
929   if (POSType != 0 && POSType != 1)
930     return nullptr;
931 
932   // Find the implicit size parameter.
933   auto PassedSizeIt = SizeArguments.find(ParamDecl);
934   if (PassedSizeIt == SizeArguments.end())
935     return nullptr;
936 
937   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
938   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
939   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
940   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
941                                               C.getSizeType(), E->getExprLoc());
942   llvm::Value *SizeOfElement =
943       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
944   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
945 }
946 
947 /// If Base is known to point to the start of an array, return the length of
948 /// that array. Return 0 if the length cannot be determined.
949 static llvm::Value *getArrayIndexingBound(
950     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
951   // For the vector indexing extension, the bound is the number of elements.
952   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
953     IndexedType = Base->getType();
954     return CGF.Builder.getInt32(VT->getNumElements());
955   }
956 
957   Base = Base->IgnoreParens();
958 
959   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
960     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
961         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
962       IndexedType = CE->getSubExpr()->getType();
963       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
964       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
965         return CGF.Builder.getInt(CAT->getSize());
966       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
967         return CGF.getVLASize(VAT).NumElts;
968       // Ignore pass_object_size here. It's not applicable on decayed pointers.
969     }
970   }
971 
972   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
973   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
974     IndexedType = Base->getType();
975     return POS;
976   }
977 
978   return nullptr;
979 }
980 
981 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
982                                       llvm::Value *Index, QualType IndexType,
983                                       bool Accessed) {
984   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
985          "should not be called unless adding bounds checks");
986   SanitizerScope SanScope(this);
987 
988   QualType IndexedType;
989   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
990   if (!Bound)
991     return;
992 
993   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
994   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
995   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
996 
997   llvm::Constant *StaticData[] = {
998     EmitCheckSourceLocation(E->getExprLoc()),
999     EmitCheckTypeDescriptor(IndexedType),
1000     EmitCheckTypeDescriptor(IndexType)
1001   };
1002   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1003                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1004   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1005             SanitizerHandler::OutOfBounds, StaticData, Index);
1006 }
1007 
1008 
1009 CodeGenFunction::ComplexPairTy CodeGenFunction::
1010 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1011                          bool isInc, bool isPre) {
1012   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1013 
1014   llvm::Value *NextVal;
1015   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1016     uint64_t AmountVal = isInc ? 1 : -1;
1017     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1018 
1019     // Add the inc/dec to the real part.
1020     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1021   } else {
1022     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1023     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1024     if (!isInc)
1025       FVal.changeSign();
1026     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1027 
1028     // Add the inc/dec to the real part.
1029     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1030   }
1031 
1032   ComplexPairTy IncVal(NextVal, InVal.second);
1033 
1034   // Store the updated result through the lvalue.
1035   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1036   if (getLangOpts().OpenMP)
1037     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1038                                                               E->getSubExpr());
1039 
1040   // If this is a postinc, return the value read from memory, otherwise use the
1041   // updated value.
1042   return isPre ? IncVal : InVal;
1043 }
1044 
1045 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1046                                              CodeGenFunction *CGF) {
1047   // Bind VLAs in the cast type.
1048   if (CGF && E->getType()->isVariablyModifiedType())
1049     CGF->EmitVariablyModifiedType(E->getType());
1050 
1051   if (CGDebugInfo *DI = getModuleDebugInfo())
1052     DI->EmitExplicitCastType(E->getType());
1053 }
1054 
1055 //===----------------------------------------------------------------------===//
1056 //                         LValue Expression Emission
1057 //===----------------------------------------------------------------------===//
1058 
1059 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1060 /// derive a more accurate bound on the alignment of the pointer.
1061 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1062                                                   LValueBaseInfo *BaseInfo,
1063                                                   TBAAAccessInfo *TBAAInfo) {
1064   // We allow this with ObjC object pointers because of fragile ABIs.
1065   assert(E->getType()->isPointerType() ||
1066          E->getType()->isObjCObjectPointerType());
1067   E = E->IgnoreParens();
1068 
1069   // Casts:
1070   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1071     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1072       CGM.EmitExplicitCastExprType(ECE, this);
1073 
1074     switch (CE->getCastKind()) {
1075     // Non-converting casts (but not C's implicit conversion from void*).
1076     case CK_BitCast:
1077     case CK_NoOp:
1078     case CK_AddressSpaceConversion:
1079       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1080         if (PtrTy->getPointeeType()->isVoidType())
1081           break;
1082 
1083         LValueBaseInfo InnerBaseInfo;
1084         TBAAAccessInfo InnerTBAAInfo;
1085         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1086                                                 &InnerBaseInfo,
1087                                                 &InnerTBAAInfo);
1088         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1089         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1090 
1091         if (isa<ExplicitCastExpr>(CE)) {
1092           LValueBaseInfo TargetTypeBaseInfo;
1093           TBAAAccessInfo TargetTypeTBAAInfo;
1094           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1095               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1096           if (TBAAInfo)
1097             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1098                                                  TargetTypeTBAAInfo);
1099           // If the source l-value is opaque, honor the alignment of the
1100           // casted-to type.
1101           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1102             if (BaseInfo)
1103               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1104             Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1105           }
1106         }
1107 
1108         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1109             CE->getCastKind() == CK_BitCast) {
1110           if (auto PT = E->getType()->getAs<PointerType>())
1111             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1112                                       /*MayBeNull=*/true,
1113                                       CodeGenFunction::CFITCK_UnrelatedCast,
1114                                       CE->getBeginLoc());
1115         }
1116 
1117         if (CE->getCastKind() == CK_AddressSpaceConversion)
1118          return Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1119 
1120         llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1121         return Builder.CreateElementBitCast(Addr, ElemTy);
1122       }
1123       break;
1124 
1125     // Array-to-pointer decay.
1126     case CK_ArrayToPointerDecay:
1127       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1128 
1129     // Derived-to-base conversions.
1130     case CK_UncheckedDerivedToBase:
1131     case CK_DerivedToBase: {
1132       // TODO: Support accesses to members of base classes in TBAA. For now, we
1133       // conservatively pretend that the complete object is of the base class
1134       // type.
1135       if (TBAAInfo)
1136         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1137       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1138       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1139       return GetAddressOfBaseClass(Addr, Derived,
1140                                    CE->path_begin(), CE->path_end(),
1141                                    ShouldNullCheckClassCastValue(CE),
1142                                    CE->getExprLoc());
1143     }
1144 
1145     // TODO: Is there any reason to treat base-to-derived conversions
1146     // specially?
1147     default:
1148       break;
1149     }
1150   }
1151 
1152   // Unary &.
1153   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1154     if (UO->getOpcode() == UO_AddrOf) {
1155       LValue LV = EmitLValue(UO->getSubExpr());
1156       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1157       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1158       return LV.getAddress(*this);
1159     }
1160   }
1161 
1162   // TODO: conditional operators, comma.
1163 
1164   // Otherwise, use the alignment of the type.
1165   CharUnits Align =
1166       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1167   llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1168   return Address(EmitScalarExpr(E), ElemTy, Align);
1169 }
1170 
1171 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1172   llvm::Value *V = RV.getScalarVal();
1173   if (auto MPT = T->getAs<MemberPointerType>())
1174     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1175   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1176 }
1177 
1178 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1179   if (Ty->isVoidType())
1180     return RValue::get(nullptr);
1181 
1182   switch (getEvaluationKind(Ty)) {
1183   case TEK_Complex: {
1184     llvm::Type *EltTy =
1185       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1186     llvm::Value *U = llvm::UndefValue::get(EltTy);
1187     return RValue::getComplex(std::make_pair(U, U));
1188   }
1189 
1190   // If this is a use of an undefined aggregate type, the aggregate must have an
1191   // identifiable address.  Just because the contents of the value are undefined
1192   // doesn't mean that the address can't be taken and compared.
1193   case TEK_Aggregate: {
1194     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1195     return RValue::getAggregate(DestPtr);
1196   }
1197 
1198   case TEK_Scalar:
1199     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1200   }
1201   llvm_unreachable("bad evaluation kind");
1202 }
1203 
1204 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1205                                               const char *Name) {
1206   ErrorUnsupported(E, Name);
1207   return GetUndefRValue(E->getType());
1208 }
1209 
1210 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1211                                               const char *Name) {
1212   ErrorUnsupported(E, Name);
1213   llvm::Type *ElTy = ConvertType(E->getType());
1214   llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy);
1215   return MakeAddrLValue(
1216       Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1217 }
1218 
1219 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1220   const Expr *Base = Obj;
1221   while (!isa<CXXThisExpr>(Base)) {
1222     // The result of a dynamic_cast can be null.
1223     if (isa<CXXDynamicCastExpr>(Base))
1224       return false;
1225 
1226     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1227       Base = CE->getSubExpr();
1228     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1229       Base = PE->getSubExpr();
1230     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1231       if (UO->getOpcode() == UO_Extension)
1232         Base = UO->getSubExpr();
1233       else
1234         return false;
1235     } else {
1236       return false;
1237     }
1238   }
1239   return true;
1240 }
1241 
1242 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1243   LValue LV;
1244   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1245     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1246   else
1247     LV = EmitLValue(E);
1248   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1249     SanitizerSet SkippedChecks;
1250     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1251       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1252       if (IsBaseCXXThis)
1253         SkippedChecks.set(SanitizerKind::Alignment, true);
1254       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1255         SkippedChecks.set(SanitizerKind::Null, true);
1256     }
1257     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1258                   LV.getAlignment(), SkippedChecks);
1259   }
1260   return LV;
1261 }
1262 
1263 /// EmitLValue - Emit code to compute a designator that specifies the location
1264 /// of the expression.
1265 ///
1266 /// This can return one of two things: a simple address or a bitfield reference.
1267 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1268 /// an LLVM pointer type.
1269 ///
1270 /// If this returns a bitfield reference, nothing about the pointee type of the
1271 /// LLVM value is known: For example, it may not be a pointer to an integer.
1272 ///
1273 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1274 /// this method guarantees that the returned pointer type will point to an LLVM
1275 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1276 /// length type, this is not possible.
1277 ///
1278 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1279   ApplyDebugLocation DL(*this, E);
1280   switch (E->getStmtClass()) {
1281   default: return EmitUnsupportedLValue(E, "l-value expression");
1282 
1283   case Expr::ObjCPropertyRefExprClass:
1284     llvm_unreachable("cannot emit a property reference directly");
1285 
1286   case Expr::ObjCSelectorExprClass:
1287     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1288   case Expr::ObjCIsaExprClass:
1289     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1290   case Expr::BinaryOperatorClass:
1291     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1292   case Expr::CompoundAssignOperatorClass: {
1293     QualType Ty = E->getType();
1294     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1295       Ty = AT->getValueType();
1296     if (!Ty->isAnyComplexType())
1297       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1298     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1299   }
1300   case Expr::CallExprClass:
1301   case Expr::CXXMemberCallExprClass:
1302   case Expr::CXXOperatorCallExprClass:
1303   case Expr::UserDefinedLiteralClass:
1304     return EmitCallExprLValue(cast<CallExpr>(E));
1305   case Expr::CXXRewrittenBinaryOperatorClass:
1306     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1307   case Expr::VAArgExprClass:
1308     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1309   case Expr::DeclRefExprClass:
1310     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1311   case Expr::ConstantExprClass: {
1312     const ConstantExpr *CE = cast<ConstantExpr>(E);
1313     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1314       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1315                              ->getCallReturnType(getContext())
1316                              ->getPointeeType();
1317       return MakeNaturalAlignAddrLValue(Result, RetType);
1318     }
1319     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1320   }
1321   case Expr::ParenExprClass:
1322     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1323   case Expr::GenericSelectionExprClass:
1324     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1325   case Expr::PredefinedExprClass:
1326     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1327   case Expr::StringLiteralClass:
1328     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1329   case Expr::ObjCEncodeExprClass:
1330     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1331   case Expr::PseudoObjectExprClass:
1332     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1333   case Expr::InitListExprClass:
1334     return EmitInitListLValue(cast<InitListExpr>(E));
1335   case Expr::CXXTemporaryObjectExprClass:
1336   case Expr::CXXConstructExprClass:
1337     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1338   case Expr::CXXBindTemporaryExprClass:
1339     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1340   case Expr::CXXUuidofExprClass:
1341     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1342   case Expr::LambdaExprClass:
1343     return EmitAggExprToLValue(E);
1344 
1345   case Expr::ExprWithCleanupsClass: {
1346     const auto *cleanups = cast<ExprWithCleanups>(E);
1347     RunCleanupsScope Scope(*this);
1348     LValue LV = EmitLValue(cleanups->getSubExpr());
1349     if (LV.isSimple()) {
1350       // Defend against branches out of gnu statement expressions surrounded by
1351       // cleanups.
1352       Address Addr = LV.getAddress(*this);
1353       llvm::Value *V = Addr.getPointer();
1354       Scope.ForceCleanup({&V});
1355       return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(),
1356                               LV.getBaseInfo(), LV.getTBAAInfo());
1357     }
1358     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1359     // bitfield lvalue or some other non-simple lvalue?
1360     return LV;
1361   }
1362 
1363   case Expr::CXXDefaultArgExprClass: {
1364     auto *DAE = cast<CXXDefaultArgExpr>(E);
1365     CXXDefaultArgExprScope Scope(*this, DAE);
1366     return EmitLValue(DAE->getExpr());
1367   }
1368   case Expr::CXXDefaultInitExprClass: {
1369     auto *DIE = cast<CXXDefaultInitExpr>(E);
1370     CXXDefaultInitExprScope Scope(*this, DIE);
1371     return EmitLValue(DIE->getExpr());
1372   }
1373   case Expr::CXXTypeidExprClass:
1374     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1375 
1376   case Expr::ObjCMessageExprClass:
1377     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1378   case Expr::ObjCIvarRefExprClass:
1379     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1380   case Expr::StmtExprClass:
1381     return EmitStmtExprLValue(cast<StmtExpr>(E));
1382   case Expr::UnaryOperatorClass:
1383     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1384   case Expr::ArraySubscriptExprClass:
1385     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1386   case Expr::MatrixSubscriptExprClass:
1387     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1388   case Expr::OMPArraySectionExprClass:
1389     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1390   case Expr::ExtVectorElementExprClass:
1391     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1392   case Expr::MemberExprClass:
1393     return EmitMemberExpr(cast<MemberExpr>(E));
1394   case Expr::CompoundLiteralExprClass:
1395     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1396   case Expr::ConditionalOperatorClass:
1397     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1398   case Expr::BinaryConditionalOperatorClass:
1399     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1400   case Expr::ChooseExprClass:
1401     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1402   case Expr::OpaqueValueExprClass:
1403     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1404   case Expr::SubstNonTypeTemplateParmExprClass:
1405     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1406   case Expr::ImplicitCastExprClass:
1407   case Expr::CStyleCastExprClass:
1408   case Expr::CXXFunctionalCastExprClass:
1409   case Expr::CXXStaticCastExprClass:
1410   case Expr::CXXDynamicCastExprClass:
1411   case Expr::CXXReinterpretCastExprClass:
1412   case Expr::CXXConstCastExprClass:
1413   case Expr::CXXAddrspaceCastExprClass:
1414   case Expr::ObjCBridgedCastExprClass:
1415     return EmitCastLValue(cast<CastExpr>(E));
1416 
1417   case Expr::MaterializeTemporaryExprClass:
1418     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1419 
1420   case Expr::CoawaitExprClass:
1421     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1422   case Expr::CoyieldExprClass:
1423     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1424   }
1425 }
1426 
1427 /// Given an object of the given canonical type, can we safely copy a
1428 /// value out of it based on its initializer?
1429 static bool isConstantEmittableObjectType(QualType type) {
1430   assert(type.isCanonical());
1431   assert(!type->isReferenceType());
1432 
1433   // Must be const-qualified but non-volatile.
1434   Qualifiers qs = type.getLocalQualifiers();
1435   if (!qs.hasConst() || qs.hasVolatile()) return false;
1436 
1437   // Otherwise, all object types satisfy this except C++ classes with
1438   // mutable subobjects or non-trivial copy/destroy behavior.
1439   if (const auto *RT = dyn_cast<RecordType>(type))
1440     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1441       if (RD->hasMutableFields() || !RD->isTrivial())
1442         return false;
1443 
1444   return true;
1445 }
1446 
1447 /// Can we constant-emit a load of a reference to a variable of the
1448 /// given type?  This is different from predicates like
1449 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1450 /// in situations that don't necessarily satisfy the language's rules
1451 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1452 /// to do this with const float variables even if those variables
1453 /// aren't marked 'constexpr'.
1454 enum ConstantEmissionKind {
1455   CEK_None,
1456   CEK_AsReferenceOnly,
1457   CEK_AsValueOrReference,
1458   CEK_AsValueOnly
1459 };
1460 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1461   type = type.getCanonicalType();
1462   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1463     if (isConstantEmittableObjectType(ref->getPointeeType()))
1464       return CEK_AsValueOrReference;
1465     return CEK_AsReferenceOnly;
1466   }
1467   if (isConstantEmittableObjectType(type))
1468     return CEK_AsValueOnly;
1469   return CEK_None;
1470 }
1471 
1472 /// Try to emit a reference to the given value without producing it as
1473 /// an l-value.  This is just an optimization, but it avoids us needing
1474 /// to emit global copies of variables if they're named without triggering
1475 /// a formal use in a context where we can't emit a direct reference to them,
1476 /// for instance if a block or lambda or a member of a local class uses a
1477 /// const int variable or constexpr variable from an enclosing function.
1478 CodeGenFunction::ConstantEmission
1479 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1480   ValueDecl *value = refExpr->getDecl();
1481 
1482   // The value needs to be an enum constant or a constant variable.
1483   ConstantEmissionKind CEK;
1484   if (isa<ParmVarDecl>(value)) {
1485     CEK = CEK_None;
1486   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1487     CEK = checkVarTypeForConstantEmission(var->getType());
1488   } else if (isa<EnumConstantDecl>(value)) {
1489     CEK = CEK_AsValueOnly;
1490   } else {
1491     CEK = CEK_None;
1492   }
1493   if (CEK == CEK_None) return ConstantEmission();
1494 
1495   Expr::EvalResult result;
1496   bool resultIsReference;
1497   QualType resultType;
1498 
1499   // It's best to evaluate all the way as an r-value if that's permitted.
1500   if (CEK != CEK_AsReferenceOnly &&
1501       refExpr->EvaluateAsRValue(result, getContext())) {
1502     resultIsReference = false;
1503     resultType = refExpr->getType();
1504 
1505   // Otherwise, try to evaluate as an l-value.
1506   } else if (CEK != CEK_AsValueOnly &&
1507              refExpr->EvaluateAsLValue(result, getContext())) {
1508     resultIsReference = true;
1509     resultType = value->getType();
1510 
1511   // Failure.
1512   } else {
1513     return ConstantEmission();
1514   }
1515 
1516   // In any case, if the initializer has side-effects, abandon ship.
1517   if (result.HasSideEffects)
1518     return ConstantEmission();
1519 
1520   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1521   // referencing a global host variable by copy. In this case the lambda should
1522   // make a copy of the value of the global host variable. The DRE of the
1523   // captured reference variable cannot be emitted as load from the host
1524   // global variable as compile time constant, since the host variable is not
1525   // accessible on device. The DRE of the captured reference variable has to be
1526   // loaded from captures.
1527   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1528       refExpr->refersToEnclosingVariableOrCapture()) {
1529     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1530     if (MD && MD->getParent()->isLambda() &&
1531         MD->getOverloadedOperator() == OO_Call) {
1532       const APValue::LValueBase &base = result.Val.getLValueBase();
1533       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1534         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1535           if (!VD->hasAttr<CUDADeviceAttr>()) {
1536             return ConstantEmission();
1537           }
1538         }
1539       }
1540     }
1541   }
1542 
1543   // Emit as a constant.
1544   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1545                                                result.Val, resultType);
1546 
1547   // Make sure we emit a debug reference to the global variable.
1548   // This should probably fire even for
1549   if (isa<VarDecl>(value)) {
1550     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1551       EmitDeclRefExprDbgValue(refExpr, result.Val);
1552   } else {
1553     assert(isa<EnumConstantDecl>(value));
1554     EmitDeclRefExprDbgValue(refExpr, result.Val);
1555   }
1556 
1557   // If we emitted a reference constant, we need to dereference that.
1558   if (resultIsReference)
1559     return ConstantEmission::forReference(C);
1560 
1561   return ConstantEmission::forValue(C);
1562 }
1563 
1564 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1565                                                         const MemberExpr *ME) {
1566   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1567     // Try to emit static variable member expressions as DREs.
1568     return DeclRefExpr::Create(
1569         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1570         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1571         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1572   }
1573   return nullptr;
1574 }
1575 
1576 CodeGenFunction::ConstantEmission
1577 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1578   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1579     return tryEmitAsConstant(DRE);
1580   return ConstantEmission();
1581 }
1582 
1583 llvm::Value *CodeGenFunction::emitScalarConstant(
1584     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1585   assert(Constant && "not a constant");
1586   if (Constant.isReference())
1587     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1588                             E->getExprLoc())
1589         .getScalarVal();
1590   return Constant.getValue();
1591 }
1592 
1593 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1594                                                SourceLocation Loc) {
1595   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1596                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1597                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1598 }
1599 
1600 static bool hasBooleanRepresentation(QualType Ty) {
1601   if (Ty->isBooleanType())
1602     return true;
1603 
1604   if (const EnumType *ET = Ty->getAs<EnumType>())
1605     return ET->getDecl()->getIntegerType()->isBooleanType();
1606 
1607   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1608     return hasBooleanRepresentation(AT->getValueType());
1609 
1610   return false;
1611 }
1612 
1613 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1614                             llvm::APInt &Min, llvm::APInt &End,
1615                             bool StrictEnums, bool IsBool) {
1616   const EnumType *ET = Ty->getAs<EnumType>();
1617   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1618                                 ET && !ET->getDecl()->isFixed();
1619   if (!IsBool && !IsRegularCPlusPlusEnum)
1620     return false;
1621 
1622   if (IsBool) {
1623     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1624     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1625   } else {
1626     const EnumDecl *ED = ET->getDecl();
1627     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1628     unsigned Bitwidth = LTy->getScalarSizeInBits();
1629     unsigned NumNegativeBits = ED->getNumNegativeBits();
1630     unsigned NumPositiveBits = ED->getNumPositiveBits();
1631 
1632     if (NumNegativeBits) {
1633       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1634       assert(NumBits <= Bitwidth);
1635       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1636       Min = -End;
1637     } else {
1638       assert(NumPositiveBits <= Bitwidth);
1639       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1640       Min = llvm::APInt::getZero(Bitwidth);
1641     }
1642   }
1643   return true;
1644 }
1645 
1646 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1647   llvm::APInt Min, End;
1648   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1649                        hasBooleanRepresentation(Ty)))
1650     return nullptr;
1651 
1652   llvm::MDBuilder MDHelper(getLLVMContext());
1653   return MDHelper.createRange(Min, End);
1654 }
1655 
1656 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1657                                            SourceLocation Loc) {
1658   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1659   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1660   if (!HasBoolCheck && !HasEnumCheck)
1661     return false;
1662 
1663   bool IsBool = hasBooleanRepresentation(Ty) ||
1664                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1665   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1666   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1667   if (!NeedsBoolCheck && !NeedsEnumCheck)
1668     return false;
1669 
1670   // Single-bit booleans don't need to be checked. Special-case this to avoid
1671   // a bit width mismatch when handling bitfield values. This is handled by
1672   // EmitFromMemory for the non-bitfield case.
1673   if (IsBool &&
1674       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1675     return false;
1676 
1677   llvm::APInt Min, End;
1678   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1679     return true;
1680 
1681   auto &Ctx = getLLVMContext();
1682   SanitizerScope SanScope(this);
1683   llvm::Value *Check;
1684   --End;
1685   if (!Min) {
1686     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1687   } else {
1688     llvm::Value *Upper =
1689         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1690     llvm::Value *Lower =
1691         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1692     Check = Builder.CreateAnd(Upper, Lower);
1693   }
1694   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1695                                   EmitCheckTypeDescriptor(Ty)};
1696   SanitizerMask Kind =
1697       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1698   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1699             StaticArgs, EmitCheckValue(Value));
1700   return true;
1701 }
1702 
1703 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1704                                                QualType Ty,
1705                                                SourceLocation Loc,
1706                                                LValueBaseInfo BaseInfo,
1707                                                TBAAAccessInfo TBAAInfo,
1708                                                bool isNontemporal) {
1709   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1710     // For better performance, handle vector loads differently.
1711     if (Ty->isVectorType()) {
1712       const llvm::Type *EltTy = Addr.getElementType();
1713 
1714       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1715 
1716       // Handle vectors of size 3 like size 4 for better performance.
1717       if (VTy->getNumElements() == 3) {
1718 
1719         // Bitcast to vec4 type.
1720         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1721         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1722         // Now load value.
1723         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1724 
1725         // Shuffle vector to get vec3.
1726         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1727                                         "extractVec");
1728         return EmitFromMemory(V, Ty);
1729       }
1730     }
1731   }
1732 
1733   // Atomic operations have to be done on integral types.
1734   LValue AtomicLValue =
1735       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1736   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1737     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1738   }
1739 
1740   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1741   if (isNontemporal) {
1742     llvm::MDNode *Node = llvm::MDNode::get(
1743         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1744     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1745   }
1746 
1747   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1748 
1749   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1750     // In order to prevent the optimizer from throwing away the check, don't
1751     // attach range metadata to the load.
1752   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1753     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1754       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1755 
1756   return EmitFromMemory(Load, Ty);
1757 }
1758 
1759 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1760   // Bool has a different representation in memory than in registers.
1761   if (hasBooleanRepresentation(Ty)) {
1762     // This should really always be an i1, but sometimes it's already
1763     // an i8, and it's awkward to track those cases down.
1764     if (Value->getType()->isIntegerTy(1))
1765       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1766     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1767            "wrong value rep of bool");
1768   }
1769 
1770   return Value;
1771 }
1772 
1773 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1774   // Bool has a different representation in memory than in registers.
1775   if (hasBooleanRepresentation(Ty)) {
1776     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1777            "wrong value rep of bool");
1778     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1779   }
1780 
1781   return Value;
1782 }
1783 
1784 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1785 // MatrixType), if it points to a array (the memory type of MatrixType).
1786 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1787                                          bool IsVector = true) {
1788   auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1789   if (ArrayTy && IsVector) {
1790     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1791                                                 ArrayTy->getNumElements());
1792 
1793     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1794   }
1795   auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1796   if (VectorTy && !IsVector) {
1797     auto *ArrayTy = llvm::ArrayType::get(
1798         VectorTy->getElementType(),
1799         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1800 
1801     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1802   }
1803 
1804   return Addr;
1805 }
1806 
1807 // Emit a store of a matrix LValue. This may require casting the original
1808 // pointer to memory address (ArrayType) to a pointer to the value type
1809 // (VectorType).
1810 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1811                                     bool isInit, CodeGenFunction &CGF) {
1812   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1813                                            value->getType()->isVectorTy());
1814   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1815                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1816                         lvalue.isNontemporal());
1817 }
1818 
1819 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1820                                         bool Volatile, QualType Ty,
1821                                         LValueBaseInfo BaseInfo,
1822                                         TBAAAccessInfo TBAAInfo,
1823                                         bool isInit, bool isNontemporal) {
1824   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1825     // Handle vectors differently to get better performance.
1826     if (Ty->isVectorType()) {
1827       llvm::Type *SrcTy = Value->getType();
1828       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1829       // Handle vec3 special.
1830       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1831         // Our source is a vec3, do a shuffle vector to make it a vec4.
1832         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1833                                             "extractVec");
1834         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1835       }
1836       if (Addr.getElementType() != SrcTy) {
1837         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1838       }
1839     }
1840   }
1841 
1842   Value = EmitToMemory(Value, Ty);
1843 
1844   LValue AtomicLValue =
1845       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1846   if (Ty->isAtomicType() ||
1847       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1848     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1849     return;
1850   }
1851 
1852   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1853   if (isNontemporal) {
1854     llvm::MDNode *Node =
1855         llvm::MDNode::get(Store->getContext(),
1856                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1857     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1858   }
1859 
1860   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1861 }
1862 
1863 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1864                                         bool isInit) {
1865   if (lvalue.getType()->isConstantMatrixType()) {
1866     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1867     return;
1868   }
1869 
1870   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1871                     lvalue.getType(), lvalue.getBaseInfo(),
1872                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1873 }
1874 
1875 // Emit a load of a LValue of matrix type. This may require casting the pointer
1876 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1877 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1878                                      CodeGenFunction &CGF) {
1879   assert(LV.getType()->isConstantMatrixType());
1880   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1881   LV.setAddress(Addr);
1882   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1883 }
1884 
1885 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1886 /// method emits the address of the lvalue, then loads the result as an rvalue,
1887 /// returning the rvalue.
1888 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1889   if (LV.isObjCWeak()) {
1890     // load of a __weak object.
1891     Address AddrWeakObj = LV.getAddress(*this);
1892     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1893                                                              AddrWeakObj));
1894   }
1895   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1896     // In MRC mode, we do a load+autorelease.
1897     if (!getLangOpts().ObjCAutoRefCount) {
1898       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1899     }
1900 
1901     // In ARC mode, we load retained and then consume the value.
1902     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1903     Object = EmitObjCConsumeObject(LV.getType(), Object);
1904     return RValue::get(Object);
1905   }
1906 
1907   if (LV.isSimple()) {
1908     assert(!LV.getType()->isFunctionType());
1909 
1910     if (LV.getType()->isConstantMatrixType())
1911       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1912 
1913     // Everything needs a load.
1914     return RValue::get(EmitLoadOfScalar(LV, Loc));
1915   }
1916 
1917   if (LV.isVectorElt()) {
1918     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1919                                               LV.isVolatileQualified());
1920     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1921                                                     "vecext"));
1922   }
1923 
1924   // If this is a reference to a subset of the elements of a vector, either
1925   // shuffle the input or extract/insert them as appropriate.
1926   if (LV.isExtVectorElt()) {
1927     return EmitLoadOfExtVectorElementLValue(LV);
1928   }
1929 
1930   // Global Register variables always invoke intrinsics
1931   if (LV.isGlobalReg())
1932     return EmitLoadOfGlobalRegLValue(LV);
1933 
1934   if (LV.isMatrixElt()) {
1935     llvm::Value *Idx = LV.getMatrixIdx();
1936     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1937       const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
1938       llvm::MatrixBuilder MB(Builder);
1939       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1940     }
1941     llvm::LoadInst *Load =
1942         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1943     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1944   }
1945 
1946   assert(LV.isBitField() && "Unknown LValue type!");
1947   return EmitLoadOfBitfieldLValue(LV, Loc);
1948 }
1949 
1950 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1951                                                  SourceLocation Loc) {
1952   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1953 
1954   // Get the output type.
1955   llvm::Type *ResLTy = ConvertType(LV.getType());
1956 
1957   Address Ptr = LV.getBitFieldAddress();
1958   llvm::Value *Val =
1959       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1960 
1961   bool UseVolatile = LV.isVolatileQualified() &&
1962                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1963   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1964   const unsigned StorageSize =
1965       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1966   if (Info.IsSigned) {
1967     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1968     unsigned HighBits = StorageSize - Offset - Info.Size;
1969     if (HighBits)
1970       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1971     if (Offset + HighBits)
1972       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1973   } else {
1974     if (Offset)
1975       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1976     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1977       Val = Builder.CreateAnd(
1978           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1979   }
1980   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1981   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1982   return RValue::get(Val);
1983 }
1984 
1985 // If this is a reference to a subset of the elements of a vector, create an
1986 // appropriate shufflevector.
1987 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1988   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1989                                         LV.isVolatileQualified());
1990 
1991   const llvm::Constant *Elts = LV.getExtVectorElts();
1992 
1993   // If the result of the expression is a non-vector type, we must be extracting
1994   // a single element.  Just codegen as an extractelement.
1995   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1996   if (!ExprVT) {
1997     unsigned InIdx = getAccessedFieldNo(0, Elts);
1998     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1999     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2000   }
2001 
2002   // Always use shuffle vector to try to retain the original program structure
2003   unsigned NumResultElts = ExprVT->getNumElements();
2004 
2005   SmallVector<int, 4> Mask;
2006   for (unsigned i = 0; i != NumResultElts; ++i)
2007     Mask.push_back(getAccessedFieldNo(i, Elts));
2008 
2009   Vec = Builder.CreateShuffleVector(Vec, Mask);
2010   return RValue::get(Vec);
2011 }
2012 
2013 /// Generates lvalue for partial ext_vector access.
2014 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2015   Address VectorAddress = LV.getExtVectorAddress();
2016   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2017   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2018 
2019   Address CastToPointerElement =
2020     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2021                                  "conv.ptr.element");
2022 
2023   const llvm::Constant *Elts = LV.getExtVectorElts();
2024   unsigned ix = getAccessedFieldNo(0, Elts);
2025 
2026   Address VectorBasePtrPlusIx =
2027     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2028                                    "vector.elt");
2029 
2030   return VectorBasePtrPlusIx;
2031 }
2032 
2033 /// Load of global gamed gegisters are always calls to intrinsics.
2034 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2035   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2036          "Bad type for register variable");
2037   llvm::MDNode *RegName = cast<llvm::MDNode>(
2038       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2039 
2040   // We accept integer and pointer types only
2041   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2042   llvm::Type *Ty = OrigTy;
2043   if (OrigTy->isPointerTy())
2044     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2045   llvm::Type *Types[] = { Ty };
2046 
2047   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2048   llvm::Value *Call = Builder.CreateCall(
2049       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2050   if (OrigTy->isPointerTy())
2051     Call = Builder.CreateIntToPtr(Call, OrigTy);
2052   return RValue::get(Call);
2053 }
2054 
2055 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2056 /// lvalue, where both are guaranteed to the have the same type, and that type
2057 /// is 'Ty'.
2058 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2059                                              bool isInit) {
2060   if (!Dst.isSimple()) {
2061     if (Dst.isVectorElt()) {
2062       // Read/modify/write the vector, inserting the new element.
2063       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2064                                             Dst.isVolatileQualified());
2065       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2066                                         Dst.getVectorIdx(), "vecins");
2067       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2068                           Dst.isVolatileQualified());
2069       return;
2070     }
2071 
2072     // If this is an update of extended vector elements, insert them as
2073     // appropriate.
2074     if (Dst.isExtVectorElt())
2075       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2076 
2077     if (Dst.isGlobalReg())
2078       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2079 
2080     if (Dst.isMatrixElt()) {
2081       llvm::Value *Idx = Dst.getMatrixIdx();
2082       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2083         const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2084         llvm::MatrixBuilder MB(Builder);
2085         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2086       }
2087       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2088       llvm::Value *Vec =
2089           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2090       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2091                           Dst.isVolatileQualified());
2092       return;
2093     }
2094 
2095     assert(Dst.isBitField() && "Unknown LValue type");
2096     return EmitStoreThroughBitfieldLValue(Src, Dst);
2097   }
2098 
2099   // There's special magic for assigning into an ARC-qualified l-value.
2100   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2101     switch (Lifetime) {
2102     case Qualifiers::OCL_None:
2103       llvm_unreachable("present but none");
2104 
2105     case Qualifiers::OCL_ExplicitNone:
2106       // nothing special
2107       break;
2108 
2109     case Qualifiers::OCL_Strong:
2110       if (isInit) {
2111         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2112         break;
2113       }
2114       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2115       return;
2116 
2117     case Qualifiers::OCL_Weak:
2118       if (isInit)
2119         // Initialize and then skip the primitive store.
2120         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2121       else
2122         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2123                          /*ignore*/ true);
2124       return;
2125 
2126     case Qualifiers::OCL_Autoreleasing:
2127       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2128                                                      Src.getScalarVal()));
2129       // fall into the normal path
2130       break;
2131     }
2132   }
2133 
2134   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2135     // load of a __weak object.
2136     Address LvalueDst = Dst.getAddress(*this);
2137     llvm::Value *src = Src.getScalarVal();
2138      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2139     return;
2140   }
2141 
2142   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2143     // load of a __strong object.
2144     Address LvalueDst = Dst.getAddress(*this);
2145     llvm::Value *src = Src.getScalarVal();
2146     if (Dst.isObjCIvar()) {
2147       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2148       llvm::Type *ResultType = IntPtrTy;
2149       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2150       llvm::Value *RHS = dst.getPointer();
2151       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2152       llvm::Value *LHS =
2153         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2154                                "sub.ptr.lhs.cast");
2155       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2156       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2157                                               BytesBetween);
2158     } else if (Dst.isGlobalObjCRef()) {
2159       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2160                                                 Dst.isThreadLocalRef());
2161     }
2162     else
2163       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2164     return;
2165   }
2166 
2167   assert(Src.isScalar() && "Can't emit an agg store with this method");
2168   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2169 }
2170 
2171 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2172                                                      llvm::Value **Result) {
2173   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2174   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2175   Address Ptr = Dst.getBitFieldAddress();
2176 
2177   // Get the source value, truncated to the width of the bit-field.
2178   llvm::Value *SrcVal = Src.getScalarVal();
2179 
2180   // Cast the source to the storage type and shift it into place.
2181   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2182                                  /*isSigned=*/false);
2183   llvm::Value *MaskedVal = SrcVal;
2184 
2185   const bool UseVolatile =
2186       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2187       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2188   const unsigned StorageSize =
2189       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2190   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2191   // See if there are other bits in the bitfield's storage we'll need to load
2192   // and mask together with source before storing.
2193   if (StorageSize != Info.Size) {
2194     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2195     llvm::Value *Val =
2196         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2197 
2198     // Mask the source value as needed.
2199     if (!hasBooleanRepresentation(Dst.getType()))
2200       SrcVal = Builder.CreateAnd(
2201           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2202           "bf.value");
2203     MaskedVal = SrcVal;
2204     if (Offset)
2205       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2206 
2207     // Mask out the original value.
2208     Val = Builder.CreateAnd(
2209         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2210         "bf.clear");
2211 
2212     // Or together the unchanged values and the source value.
2213     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2214   } else {
2215     assert(Offset == 0);
2216     // According to the AACPS:
2217     // When a volatile bit-field is written, and its container does not overlap
2218     // with any non-bit-field member, its container must be read exactly once
2219     // and written exactly once using the access width appropriate to the type
2220     // of the container. The two accesses are not atomic.
2221     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2222         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2223       Builder.CreateLoad(Ptr, true, "bf.load");
2224   }
2225 
2226   // Write the new value back out.
2227   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2228 
2229   // Return the new value of the bit-field, if requested.
2230   if (Result) {
2231     llvm::Value *ResultVal = MaskedVal;
2232 
2233     // Sign extend the value if needed.
2234     if (Info.IsSigned) {
2235       assert(Info.Size <= StorageSize);
2236       unsigned HighBits = StorageSize - Info.Size;
2237       if (HighBits) {
2238         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2239         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2240       }
2241     }
2242 
2243     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2244                                       "bf.result.cast");
2245     *Result = EmitFromMemory(ResultVal, Dst.getType());
2246   }
2247 }
2248 
2249 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2250                                                                LValue Dst) {
2251   // This access turns into a read/modify/write of the vector.  Load the input
2252   // value now.
2253   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2254                                         Dst.isVolatileQualified());
2255   const llvm::Constant *Elts = Dst.getExtVectorElts();
2256 
2257   llvm::Value *SrcVal = Src.getScalarVal();
2258 
2259   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2260     unsigned NumSrcElts = VTy->getNumElements();
2261     unsigned NumDstElts =
2262         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2263     if (NumDstElts == NumSrcElts) {
2264       // Use shuffle vector is the src and destination are the same number of
2265       // elements and restore the vector mask since it is on the side it will be
2266       // stored.
2267       SmallVector<int, 4> Mask(NumDstElts);
2268       for (unsigned i = 0; i != NumSrcElts; ++i)
2269         Mask[getAccessedFieldNo(i, Elts)] = i;
2270 
2271       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2272     } else if (NumDstElts > NumSrcElts) {
2273       // Extended the source vector to the same length and then shuffle it
2274       // into the destination.
2275       // FIXME: since we're shuffling with undef, can we just use the indices
2276       //        into that?  This could be simpler.
2277       SmallVector<int, 4> ExtMask;
2278       for (unsigned i = 0; i != NumSrcElts; ++i)
2279         ExtMask.push_back(i);
2280       ExtMask.resize(NumDstElts, -1);
2281       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2282       // build identity
2283       SmallVector<int, 4> Mask;
2284       for (unsigned i = 0; i != NumDstElts; ++i)
2285         Mask.push_back(i);
2286 
2287       // When the vector size is odd and .odd or .hi is used, the last element
2288       // of the Elts constant array will be one past the size of the vector.
2289       // Ignore the last element here, if it is greater than the mask size.
2290       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2291         NumSrcElts--;
2292 
2293       // modify when what gets shuffled in
2294       for (unsigned i = 0; i != NumSrcElts; ++i)
2295         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2296       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2297     } else {
2298       // We should never shorten the vector
2299       llvm_unreachable("unexpected shorten vector length");
2300     }
2301   } else {
2302     // If the Src is a scalar (not a vector) it must be updating one element.
2303     unsigned InIdx = getAccessedFieldNo(0, Elts);
2304     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2305     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2306   }
2307 
2308   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2309                       Dst.isVolatileQualified());
2310 }
2311 
2312 /// Store of global named registers are always calls to intrinsics.
2313 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2314   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2315          "Bad type for register variable");
2316   llvm::MDNode *RegName = cast<llvm::MDNode>(
2317       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2318   assert(RegName && "Register LValue is not metadata");
2319 
2320   // We accept integer and pointer types only
2321   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2322   llvm::Type *Ty = OrigTy;
2323   if (OrigTy->isPointerTy())
2324     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2325   llvm::Type *Types[] = { Ty };
2326 
2327   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2328   llvm::Value *Value = Src.getScalarVal();
2329   if (OrigTy->isPointerTy())
2330     Value = Builder.CreatePtrToInt(Value, Ty);
2331   Builder.CreateCall(
2332       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2333 }
2334 
2335 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2336 // generating write-barries API. It is currently a global, ivar,
2337 // or neither.
2338 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2339                                  LValue &LV,
2340                                  bool IsMemberAccess=false) {
2341   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2342     return;
2343 
2344   if (isa<ObjCIvarRefExpr>(E)) {
2345     QualType ExpTy = E->getType();
2346     if (IsMemberAccess && ExpTy->isPointerType()) {
2347       // If ivar is a structure pointer, assigning to field of
2348       // this struct follows gcc's behavior and makes it a non-ivar
2349       // writer-barrier conservatively.
2350       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2351       if (ExpTy->isRecordType()) {
2352         LV.setObjCIvar(false);
2353         return;
2354       }
2355     }
2356     LV.setObjCIvar(true);
2357     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2358     LV.setBaseIvarExp(Exp->getBase());
2359     LV.setObjCArray(E->getType()->isArrayType());
2360     return;
2361   }
2362 
2363   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2364     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2365       if (VD->hasGlobalStorage()) {
2366         LV.setGlobalObjCRef(true);
2367         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2368       }
2369     }
2370     LV.setObjCArray(E->getType()->isArrayType());
2371     return;
2372   }
2373 
2374   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2375     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2376     return;
2377   }
2378 
2379   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2380     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2381     if (LV.isObjCIvar()) {
2382       // If cast is to a structure pointer, follow gcc's behavior and make it
2383       // a non-ivar write-barrier.
2384       QualType ExpTy = E->getType();
2385       if (ExpTy->isPointerType())
2386         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2387       if (ExpTy->isRecordType())
2388         LV.setObjCIvar(false);
2389     }
2390     return;
2391   }
2392 
2393   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2394     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2395     return;
2396   }
2397 
2398   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2399     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2400     return;
2401   }
2402 
2403   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2404     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2405     return;
2406   }
2407 
2408   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2409     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2410     return;
2411   }
2412 
2413   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2414     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2415     if (LV.isObjCIvar() && !LV.isObjCArray())
2416       // Using array syntax to assigning to what an ivar points to is not
2417       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2418       LV.setObjCIvar(false);
2419     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2420       // Using array syntax to assigning to what global points to is not
2421       // same as assigning to the global itself. {id *G;} G[i] = 0;
2422       LV.setGlobalObjCRef(false);
2423     return;
2424   }
2425 
2426   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2427     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2428     // We don't know if member is an 'ivar', but this flag is looked at
2429     // only in the context of LV.isObjCIvar().
2430     LV.setObjCArray(E->getType()->isArrayType());
2431     return;
2432   }
2433 }
2434 
2435 static llvm::Value *
2436 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2437                                 llvm::Value *V, llvm::Type *IRType,
2438                                 StringRef Name = StringRef()) {
2439   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2440   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2441 }
2442 
2443 static LValue EmitThreadPrivateVarDeclLValue(
2444     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2445     llvm::Type *RealVarTy, SourceLocation Loc) {
2446   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2447     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2448         CGF, VD, Addr, Loc);
2449   else
2450     Addr =
2451         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2452 
2453   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2454   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2455 }
2456 
2457 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2458                                            const VarDecl *VD, QualType T) {
2459   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2460       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2461   // Return an invalid address if variable is MT_To and unified
2462   // memory is not enabled. For all other cases: MT_Link and
2463   // MT_To with unified memory, return a valid address.
2464   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2465                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2466     return Address::invalid();
2467   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2468           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2469            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2470          "Expected link clause OR to clause with unified memory enabled.");
2471   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2472   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2473   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2474 }
2475 
2476 Address
2477 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2478                                      LValueBaseInfo *PointeeBaseInfo,
2479                                      TBAAAccessInfo *PointeeTBAAInfo) {
2480   llvm::LoadInst *Load =
2481       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2482   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2483 
2484   QualType PointeeType = RefLVal.getType()->getPointeeType();
2485   CharUnits Align = CGM.getNaturalTypeAlignment(
2486       PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2487       /* forPointeeType= */ true);
2488   return Address(Load, ConvertTypeForMem(PointeeType), Align);
2489 }
2490 
2491 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2492   LValueBaseInfo PointeeBaseInfo;
2493   TBAAAccessInfo PointeeTBAAInfo;
2494   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2495                                             &PointeeTBAAInfo);
2496   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2497                         PointeeBaseInfo, PointeeTBAAInfo);
2498 }
2499 
2500 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2501                                            const PointerType *PtrTy,
2502                                            LValueBaseInfo *BaseInfo,
2503                                            TBAAAccessInfo *TBAAInfo) {
2504   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2505   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2506                                                    BaseInfo, TBAAInfo,
2507                                                    /*forPointeeType=*/true));
2508 }
2509 
2510 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2511                                                 const PointerType *PtrTy) {
2512   LValueBaseInfo BaseInfo;
2513   TBAAAccessInfo TBAAInfo;
2514   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2515   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2516 }
2517 
2518 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2519                                       const Expr *E, const VarDecl *VD) {
2520   QualType T = E->getType();
2521 
2522   // If it's thread_local, emit a call to its wrapper function instead.
2523   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2524       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2525     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2526   // Check if the variable is marked as declare target with link clause in
2527   // device codegen.
2528   if (CGF.getLangOpts().OpenMPIsDevice) {
2529     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2530     if (Addr.isValid())
2531       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2532   }
2533 
2534   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2535   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2536   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2537   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2538   Address Addr(V, RealVarTy, Alignment);
2539   // Emit reference to the private copy of the variable if it is an OpenMP
2540   // threadprivate variable.
2541   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2542       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2543     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2544                                           E->getExprLoc());
2545   }
2546   LValue LV = VD->getType()->isReferenceType() ?
2547       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2548                                     AlignmentSource::Decl) :
2549       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2550   setObjCGCLValueClass(CGF.getContext(), E, LV);
2551   return LV;
2552 }
2553 
2554 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2555                                                GlobalDecl GD) {
2556   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2557   if (FD->hasAttr<WeakRefAttr>()) {
2558     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2559     return aliasee.getPointer();
2560   }
2561 
2562   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2563   if (!FD->hasPrototype()) {
2564     if (const FunctionProtoType *Proto =
2565             FD->getType()->getAs<FunctionProtoType>()) {
2566       // Ugly case: for a K&R-style definition, the type of the definition
2567       // isn't the same as the type of a use.  Correct for this with a
2568       // bitcast.
2569       QualType NoProtoType =
2570           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2571       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2572       V = llvm::ConstantExpr::getBitCast(V,
2573                                       CGM.getTypes().ConvertType(NoProtoType));
2574     }
2575   }
2576   return V;
2577 }
2578 
2579 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2580                                      GlobalDecl GD) {
2581   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2582   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2583   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2584   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2585                             AlignmentSource::Decl);
2586 }
2587 
2588 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2589                                       llvm::Value *ThisValue) {
2590   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2591   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2592   return CGF.EmitLValueForField(LV, FD);
2593 }
2594 
2595 /// Named Registers are named metadata pointing to the register name
2596 /// which will be read from/written to as an argument to the intrinsic
2597 /// @llvm.read/write_register.
2598 /// So far, only the name is being passed down, but other options such as
2599 /// register type, allocation type or even optimization options could be
2600 /// passed down via the metadata node.
2601 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2602   SmallString<64> Name("llvm.named.register.");
2603   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2604   assert(Asm->getLabel().size() < 64-Name.size() &&
2605       "Register name too big");
2606   Name.append(Asm->getLabel());
2607   llvm::NamedMDNode *M =
2608     CGM.getModule().getOrInsertNamedMetadata(Name);
2609   if (M->getNumOperands() == 0) {
2610     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2611                                               Asm->getLabel());
2612     llvm::Metadata *Ops[] = {Str};
2613     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2614   }
2615 
2616   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2617 
2618   llvm::Value *Ptr =
2619     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2620   return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2621 }
2622 
2623 /// Determine whether we can emit a reference to \p VD from the current
2624 /// context, despite not necessarily having seen an odr-use of the variable in
2625 /// this context.
2626 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2627                                                const DeclRefExpr *E,
2628                                                const VarDecl *VD,
2629                                                bool IsConstant) {
2630   // For a variable declared in an enclosing scope, do not emit a spurious
2631   // reference even if we have a capture, as that will emit an unwarranted
2632   // reference to our capture state, and will likely generate worse code than
2633   // emitting a local copy.
2634   if (E->refersToEnclosingVariableOrCapture())
2635     return false;
2636 
2637   // For a local declaration declared in this function, we can always reference
2638   // it even if we don't have an odr-use.
2639   if (VD->hasLocalStorage()) {
2640     return VD->getDeclContext() ==
2641            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2642   }
2643 
2644   // For a global declaration, we can emit a reference to it if we know
2645   // for sure that we are able to emit a definition of it.
2646   VD = VD->getDefinition(CGF.getContext());
2647   if (!VD)
2648     return false;
2649 
2650   // Don't emit a spurious reference if it might be to a variable that only
2651   // exists on a different device / target.
2652   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2653   // cross-target reference.
2654   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2655       CGF.getLangOpts().OpenCL) {
2656     return false;
2657   }
2658 
2659   // We can emit a spurious reference only if the linkage implies that we'll
2660   // be emitting a non-interposable symbol that will be retained until link
2661   // time.
2662   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2663   case llvm::GlobalValue::ExternalLinkage:
2664   case llvm::GlobalValue::LinkOnceODRLinkage:
2665   case llvm::GlobalValue::WeakODRLinkage:
2666   case llvm::GlobalValue::InternalLinkage:
2667   case llvm::GlobalValue::PrivateLinkage:
2668     return true;
2669   default:
2670     return false;
2671   }
2672 }
2673 
2674 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2675   const NamedDecl *ND = E->getDecl();
2676   QualType T = E->getType();
2677 
2678   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2679          "should not emit an unevaluated operand");
2680 
2681   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2682     // Global Named registers access via intrinsics only
2683     if (VD->getStorageClass() == SC_Register &&
2684         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2685       return EmitGlobalNamedRegister(VD, CGM);
2686 
2687     // If this DeclRefExpr does not constitute an odr-use of the variable,
2688     // we're not permitted to emit a reference to it in general, and it might
2689     // not be captured if capture would be necessary for a use. Emit the
2690     // constant value directly instead.
2691     if (E->isNonOdrUse() == NOUR_Constant &&
2692         (VD->getType()->isReferenceType() ||
2693          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2694       VD->getAnyInitializer(VD);
2695       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2696           E->getLocation(), *VD->evaluateValue(), VD->getType());
2697       assert(Val && "failed to emit constant expression");
2698 
2699       Address Addr = Address::invalid();
2700       if (!VD->getType()->isReferenceType()) {
2701         // Spill the constant value to a global.
2702         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2703                                            getContext().getDeclAlign(VD));
2704         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2705         auto *PTy = llvm::PointerType::get(
2706             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2707         if (PTy != Addr.getType())
2708           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2709       } else {
2710         // Should we be using the alignment of the constant pointer we emitted?
2711         CharUnits Alignment =
2712             CGM.getNaturalTypeAlignment(E->getType(),
2713                                         /* BaseInfo= */ nullptr,
2714                                         /* TBAAInfo= */ nullptr,
2715                                         /* forPointeeType= */ true);
2716         Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2717       }
2718       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2719     }
2720 
2721     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2722 
2723     // Check for captured variables.
2724     if (E->refersToEnclosingVariableOrCapture()) {
2725       VD = VD->getCanonicalDecl();
2726       if (auto *FD = LambdaCaptureFields.lookup(VD))
2727         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2728       if (CapturedStmtInfo) {
2729         auto I = LocalDeclMap.find(VD);
2730         if (I != LocalDeclMap.end()) {
2731           LValue CapLVal;
2732           if (VD->getType()->isReferenceType())
2733             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2734                                                 AlignmentSource::Decl);
2735           else
2736             CapLVal = MakeAddrLValue(I->second, T);
2737           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2738           // in simd context.
2739           if (getLangOpts().OpenMP &&
2740               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2741             CapLVal.setNontemporal(/*Value=*/true);
2742           return CapLVal;
2743         }
2744         LValue CapLVal =
2745             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2746                                     CapturedStmtInfo->getContextValue());
2747         Address LValueAddress = CapLVal.getAddress(*this);
2748         CapLVal = MakeAddrLValue(
2749             Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2750                     getContext().getDeclAlign(VD)),
2751             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2752             CapLVal.getTBAAInfo());
2753         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2754         // in simd context.
2755         if (getLangOpts().OpenMP &&
2756             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2757           CapLVal.setNontemporal(/*Value=*/true);
2758         return CapLVal;
2759       }
2760 
2761       assert(isa<BlockDecl>(CurCodeDecl));
2762       Address addr = GetAddrOfBlockDecl(VD);
2763       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2764     }
2765   }
2766 
2767   // FIXME: We should be able to assert this for FunctionDecls as well!
2768   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2769   // those with a valid source location.
2770   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2771           !E->getLocation().isValid()) &&
2772          "Should not use decl without marking it used!");
2773 
2774   if (ND->hasAttr<WeakRefAttr>()) {
2775     const auto *VD = cast<ValueDecl>(ND);
2776     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2777     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2778   }
2779 
2780   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2781     // Check if this is a global variable.
2782     if (VD->hasLinkage() || VD->isStaticDataMember())
2783       return EmitGlobalVarDeclLValue(*this, E, VD);
2784 
2785     Address addr = Address::invalid();
2786 
2787     // The variable should generally be present in the local decl map.
2788     auto iter = LocalDeclMap.find(VD);
2789     if (iter != LocalDeclMap.end()) {
2790       addr = iter->second;
2791 
2792     // Otherwise, it might be static local we haven't emitted yet for
2793     // some reason; most likely, because it's in an outer function.
2794     } else if (VD->isStaticLocal()) {
2795       llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2796           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2797       addr = Address(
2798           var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2799 
2800     // No other cases for now.
2801     } else {
2802       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2803     }
2804 
2805 
2806     // Check for OpenMP threadprivate variables.
2807     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2808         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2809       return EmitThreadPrivateVarDeclLValue(
2810           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2811           E->getExprLoc());
2812     }
2813 
2814     // Drill into block byref variables.
2815     bool isBlockByref = VD->isEscapingByref();
2816     if (isBlockByref) {
2817       addr = emitBlockByrefAddress(addr, VD);
2818     }
2819 
2820     // Drill into reference types.
2821     LValue LV = VD->getType()->isReferenceType() ?
2822         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2823         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2824 
2825     bool isLocalStorage = VD->hasLocalStorage();
2826 
2827     bool NonGCable = isLocalStorage &&
2828                      !VD->getType()->isReferenceType() &&
2829                      !isBlockByref;
2830     if (NonGCable) {
2831       LV.getQuals().removeObjCGCAttr();
2832       LV.setNonGC(true);
2833     }
2834 
2835     bool isImpreciseLifetime =
2836       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2837     if (isImpreciseLifetime)
2838       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2839     setObjCGCLValueClass(getContext(), E, LV);
2840     return LV;
2841   }
2842 
2843   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2844     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2845 
2846     // Emit debuginfo for the function declaration if the target wants to.
2847     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2848       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2849         auto *Fn =
2850             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2851         if (!Fn->getSubprogram())
2852           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2853       }
2854     }
2855 
2856     return LV;
2857   }
2858 
2859   // FIXME: While we're emitting a binding from an enclosing scope, all other
2860   // DeclRefExprs we see should be implicitly treated as if they also refer to
2861   // an enclosing scope.
2862   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2863     return EmitLValue(BD->getBinding());
2864 
2865   // We can form DeclRefExprs naming GUID declarations when reconstituting
2866   // non-type template parameters into expressions.
2867   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2868     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2869                           AlignmentSource::Decl);
2870 
2871   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2872     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2873                           AlignmentSource::Decl);
2874 
2875   llvm_unreachable("Unhandled DeclRefExpr");
2876 }
2877 
2878 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2879   // __extension__ doesn't affect lvalue-ness.
2880   if (E->getOpcode() == UO_Extension)
2881     return EmitLValue(E->getSubExpr());
2882 
2883   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2884   switch (E->getOpcode()) {
2885   default: llvm_unreachable("Unknown unary operator lvalue!");
2886   case UO_Deref: {
2887     QualType T = E->getSubExpr()->getType()->getPointeeType();
2888     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2889 
2890     LValueBaseInfo BaseInfo;
2891     TBAAAccessInfo TBAAInfo;
2892     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2893                                             &TBAAInfo);
2894     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2895     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2896 
2897     // We should not generate __weak write barrier on indirect reference
2898     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2899     // But, we continue to generate __strong write barrier on indirect write
2900     // into a pointer to object.
2901     if (getLangOpts().ObjC &&
2902         getLangOpts().getGC() != LangOptions::NonGC &&
2903         LV.isObjCWeak())
2904       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2905     return LV;
2906   }
2907   case UO_Real:
2908   case UO_Imag: {
2909     LValue LV = EmitLValue(E->getSubExpr());
2910     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2911 
2912     // __real is valid on scalars.  This is a faster way of testing that.
2913     // __imag can only produce an rvalue on scalars.
2914     if (E->getOpcode() == UO_Real &&
2915         !LV.getAddress(*this).getElementType()->isStructTy()) {
2916       assert(E->getSubExpr()->getType()->isArithmeticType());
2917       return LV;
2918     }
2919 
2920     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2921 
2922     Address Component =
2923         (E->getOpcode() == UO_Real
2924              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2925              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2926     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2927                                    CGM.getTBAAInfoForSubobject(LV, T));
2928     ElemLV.getQuals().addQualifiers(LV.getQuals());
2929     return ElemLV;
2930   }
2931   case UO_PreInc:
2932   case UO_PreDec: {
2933     LValue LV = EmitLValue(E->getSubExpr());
2934     bool isInc = E->getOpcode() == UO_PreInc;
2935 
2936     if (E->getType()->isAnyComplexType())
2937       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2938     else
2939       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2940     return LV;
2941   }
2942   }
2943 }
2944 
2945 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2946   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2947                         E->getType(), AlignmentSource::Decl);
2948 }
2949 
2950 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2951   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2952                         E->getType(), AlignmentSource::Decl);
2953 }
2954 
2955 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2956   auto SL = E->getFunctionName();
2957   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2958   StringRef FnName = CurFn->getName();
2959   if (FnName.startswith("\01"))
2960     FnName = FnName.substr(1);
2961   StringRef NameItems[] = {
2962       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2963   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2964   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2965     std::string Name = std::string(SL->getString());
2966     if (!Name.empty()) {
2967       unsigned Discriminator =
2968           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2969       if (Discriminator)
2970         Name += "_" + Twine(Discriminator + 1).str();
2971       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2972       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2973     } else {
2974       auto C =
2975           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2976       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2977     }
2978   }
2979   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2980   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2981 }
2982 
2983 /// Emit a type description suitable for use by a runtime sanitizer library. The
2984 /// format of a type descriptor is
2985 ///
2986 /// \code
2987 ///   { i16 TypeKind, i16 TypeInfo }
2988 /// \endcode
2989 ///
2990 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2991 /// integer, 1 for a floating point value, and -1 for anything else.
2992 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2993   // Only emit each type's descriptor once.
2994   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2995     return C;
2996 
2997   uint16_t TypeKind = -1;
2998   uint16_t TypeInfo = 0;
2999 
3000   if (T->isIntegerType()) {
3001     TypeKind = 0;
3002     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3003                (T->isSignedIntegerType() ? 1 : 0);
3004   } else if (T->isFloatingType()) {
3005     TypeKind = 1;
3006     TypeInfo = getContext().getTypeSize(T);
3007   }
3008 
3009   // Format the type name as if for a diagnostic, including quotes and
3010   // optionally an 'aka'.
3011   SmallString<32> Buffer;
3012   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3013                                     (intptr_t)T.getAsOpaquePtr(),
3014                                     StringRef(), StringRef(), None, Buffer,
3015                                     None);
3016 
3017   llvm::Constant *Components[] = {
3018     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3019     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3020   };
3021   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3022 
3023   auto *GV = new llvm::GlobalVariable(
3024       CGM.getModule(), Descriptor->getType(),
3025       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3026   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3027   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3028 
3029   // Remember the descriptor for this type.
3030   CGM.setTypeDescriptorInMap(T, GV);
3031 
3032   return GV;
3033 }
3034 
3035 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3036   llvm::Type *TargetTy = IntPtrTy;
3037 
3038   if (V->getType() == TargetTy)
3039     return V;
3040 
3041   // Floating-point types which fit into intptr_t are bitcast to integers
3042   // and then passed directly (after zero-extension, if necessary).
3043   if (V->getType()->isFloatingPointTy()) {
3044     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3045     if (Bits <= TargetTy->getIntegerBitWidth())
3046       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3047                                                          Bits));
3048   }
3049 
3050   // Integers which fit in intptr_t are zero-extended and passed directly.
3051   if (V->getType()->isIntegerTy() &&
3052       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3053     return Builder.CreateZExt(V, TargetTy);
3054 
3055   // Pointers are passed directly, everything else is passed by address.
3056   if (!V->getType()->isPointerTy()) {
3057     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3058     Builder.CreateStore(V, Ptr);
3059     V = Ptr.getPointer();
3060   }
3061   return Builder.CreatePtrToInt(V, TargetTy);
3062 }
3063 
3064 /// Emit a representation of a SourceLocation for passing to a handler
3065 /// in a sanitizer runtime library. The format for this data is:
3066 /// \code
3067 ///   struct SourceLocation {
3068 ///     const char *Filename;
3069 ///     int32_t Line, Column;
3070 ///   };
3071 /// \endcode
3072 /// For an invalid SourceLocation, the Filename pointer is null.
3073 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3074   llvm::Constant *Filename;
3075   int Line, Column;
3076 
3077   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3078   if (PLoc.isValid()) {
3079     StringRef FilenameString = PLoc.getFilename();
3080 
3081     int PathComponentsToStrip =
3082         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3083     if (PathComponentsToStrip < 0) {
3084       assert(PathComponentsToStrip != INT_MIN);
3085       int PathComponentsToKeep = -PathComponentsToStrip;
3086       auto I = llvm::sys::path::rbegin(FilenameString);
3087       auto E = llvm::sys::path::rend(FilenameString);
3088       while (I != E && --PathComponentsToKeep)
3089         ++I;
3090 
3091       FilenameString = FilenameString.substr(I - E);
3092     } else if (PathComponentsToStrip > 0) {
3093       auto I = llvm::sys::path::begin(FilenameString);
3094       auto E = llvm::sys::path::end(FilenameString);
3095       while (I != E && PathComponentsToStrip--)
3096         ++I;
3097 
3098       if (I != E)
3099         FilenameString =
3100             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3101       else
3102         FilenameString = llvm::sys::path::filename(FilenameString);
3103     }
3104 
3105     auto FilenameGV =
3106         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3107     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3108                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3109     Filename = FilenameGV.getPointer();
3110     Line = PLoc.getLine();
3111     Column = PLoc.getColumn();
3112   } else {
3113     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3114     Line = Column = 0;
3115   }
3116 
3117   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3118                             Builder.getInt32(Column)};
3119 
3120   return llvm::ConstantStruct::getAnon(Data);
3121 }
3122 
3123 namespace {
3124 /// Specify under what conditions this check can be recovered
3125 enum class CheckRecoverableKind {
3126   /// Always terminate program execution if this check fails.
3127   Unrecoverable,
3128   /// Check supports recovering, runtime has both fatal (noreturn) and
3129   /// non-fatal handlers for this check.
3130   Recoverable,
3131   /// Runtime conditionally aborts, always need to support recovery.
3132   AlwaysRecoverable
3133 };
3134 }
3135 
3136 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3137   assert(Kind.countPopulation() == 1);
3138   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3139     return CheckRecoverableKind::AlwaysRecoverable;
3140   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3141     return CheckRecoverableKind::Unrecoverable;
3142   else
3143     return CheckRecoverableKind::Recoverable;
3144 }
3145 
3146 namespace {
3147 struct SanitizerHandlerInfo {
3148   char const *const Name;
3149   unsigned Version;
3150 };
3151 }
3152 
3153 const SanitizerHandlerInfo SanitizerHandlers[] = {
3154 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3155     LIST_SANITIZER_CHECKS
3156 #undef SANITIZER_CHECK
3157 };
3158 
3159 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3160                                  llvm::FunctionType *FnType,
3161                                  ArrayRef<llvm::Value *> FnArgs,
3162                                  SanitizerHandler CheckHandler,
3163                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3164                                  llvm::BasicBlock *ContBB) {
3165   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3166   Optional<ApplyDebugLocation> DL;
3167   if (!CGF.Builder.getCurrentDebugLocation()) {
3168     // Ensure that the call has at least an artificial debug location.
3169     DL.emplace(CGF, SourceLocation());
3170   }
3171   bool NeedsAbortSuffix =
3172       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3173   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3174   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3175   const StringRef CheckName = CheckInfo.Name;
3176   std::string FnName = "__ubsan_handle_" + CheckName.str();
3177   if (CheckInfo.Version && !MinimalRuntime)
3178     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3179   if (MinimalRuntime)
3180     FnName += "_minimal";
3181   if (NeedsAbortSuffix)
3182     FnName += "_abort";
3183   bool MayReturn =
3184       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3185 
3186   llvm::AttrBuilder B(CGF.getLLVMContext());
3187   if (!MayReturn) {
3188     B.addAttribute(llvm::Attribute::NoReturn)
3189         .addAttribute(llvm::Attribute::NoUnwind);
3190   }
3191   B.addAttribute(llvm::Attribute::UWTable);
3192 
3193   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3194       FnType, FnName,
3195       llvm::AttributeList::get(CGF.getLLVMContext(),
3196                                llvm::AttributeList::FunctionIndex, B),
3197       /*Local=*/true);
3198   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3199   if (!MayReturn) {
3200     HandlerCall->setDoesNotReturn();
3201     CGF.Builder.CreateUnreachable();
3202   } else {
3203     CGF.Builder.CreateBr(ContBB);
3204   }
3205 }
3206 
3207 void CodeGenFunction::EmitCheck(
3208     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3209     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3210     ArrayRef<llvm::Value *> DynamicArgs) {
3211   assert(IsSanitizerScope);
3212   assert(Checked.size() > 0);
3213   assert(CheckHandler >= 0 &&
3214          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3215   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3216 
3217   llvm::Value *FatalCond = nullptr;
3218   llvm::Value *RecoverableCond = nullptr;
3219   llvm::Value *TrapCond = nullptr;
3220   for (int i = 0, n = Checked.size(); i < n; ++i) {
3221     llvm::Value *Check = Checked[i].first;
3222     // -fsanitize-trap= overrides -fsanitize-recover=.
3223     llvm::Value *&Cond =
3224         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3225             ? TrapCond
3226             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3227                   ? RecoverableCond
3228                   : FatalCond;
3229     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3230   }
3231 
3232   if (TrapCond)
3233     EmitTrapCheck(TrapCond, CheckHandler);
3234   if (!FatalCond && !RecoverableCond)
3235     return;
3236 
3237   llvm::Value *JointCond;
3238   if (FatalCond && RecoverableCond)
3239     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3240   else
3241     JointCond = FatalCond ? FatalCond : RecoverableCond;
3242   assert(JointCond);
3243 
3244   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3245   assert(SanOpts.has(Checked[0].second));
3246 #ifndef NDEBUG
3247   for (int i = 1, n = Checked.size(); i < n; ++i) {
3248     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3249            "All recoverable kinds in a single check must be same!");
3250     assert(SanOpts.has(Checked[i].second));
3251   }
3252 #endif
3253 
3254   llvm::BasicBlock *Cont = createBasicBlock("cont");
3255   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3256   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3257   // Give hint that we very much don't expect to execute the handler
3258   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3259   llvm::MDBuilder MDHelper(getLLVMContext());
3260   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3261   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3262   EmitBlock(Handlers);
3263 
3264   // Handler functions take an i8* pointing to the (handler-specific) static
3265   // information block, followed by a sequence of intptr_t arguments
3266   // representing operand values.
3267   SmallVector<llvm::Value *, 4> Args;
3268   SmallVector<llvm::Type *, 4> ArgTypes;
3269   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3270     Args.reserve(DynamicArgs.size() + 1);
3271     ArgTypes.reserve(DynamicArgs.size() + 1);
3272 
3273     // Emit handler arguments and create handler function type.
3274     if (!StaticArgs.empty()) {
3275       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3276       auto *InfoPtr =
3277           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3278                                    llvm::GlobalVariable::PrivateLinkage, Info);
3279       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3280       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3281       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3282       ArgTypes.push_back(Int8PtrTy);
3283     }
3284 
3285     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3286       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3287       ArgTypes.push_back(IntPtrTy);
3288     }
3289   }
3290 
3291   llvm::FunctionType *FnType =
3292     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3293 
3294   if (!FatalCond || !RecoverableCond) {
3295     // Simple case: we need to generate a single handler call, either
3296     // fatal, or non-fatal.
3297     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3298                          (FatalCond != nullptr), Cont);
3299   } else {
3300     // Emit two handler calls: first one for set of unrecoverable checks,
3301     // another one for recoverable.
3302     llvm::BasicBlock *NonFatalHandlerBB =
3303         createBasicBlock("non_fatal." + CheckName);
3304     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3305     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3306     EmitBlock(FatalHandlerBB);
3307     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3308                          NonFatalHandlerBB);
3309     EmitBlock(NonFatalHandlerBB);
3310     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3311                          Cont);
3312   }
3313 
3314   EmitBlock(Cont);
3315 }
3316 
3317 void CodeGenFunction::EmitCfiSlowPathCheck(
3318     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3319     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3320   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3321 
3322   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3323   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3324 
3325   llvm::MDBuilder MDHelper(getLLVMContext());
3326   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3327   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3328 
3329   EmitBlock(CheckBB);
3330 
3331   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3332 
3333   llvm::CallInst *CheckCall;
3334   llvm::FunctionCallee SlowPathFn;
3335   if (WithDiag) {
3336     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3337     auto *InfoPtr =
3338         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3339                                  llvm::GlobalVariable::PrivateLinkage, Info);
3340     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3341     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3342 
3343     SlowPathFn = CGM.getModule().getOrInsertFunction(
3344         "__cfi_slowpath_diag",
3345         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3346                                 false));
3347     CheckCall = Builder.CreateCall(
3348         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3349   } else {
3350     SlowPathFn = CGM.getModule().getOrInsertFunction(
3351         "__cfi_slowpath",
3352         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3353     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3354   }
3355 
3356   CGM.setDSOLocal(
3357       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3358   CheckCall->setDoesNotThrow();
3359 
3360   EmitBlock(Cont);
3361 }
3362 
3363 // Emit a stub for __cfi_check function so that the linker knows about this
3364 // symbol in LTO mode.
3365 void CodeGenFunction::EmitCfiCheckStub() {
3366   llvm::Module *M = &CGM.getModule();
3367   auto &Ctx = M->getContext();
3368   llvm::Function *F = llvm::Function::Create(
3369       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3370       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3371   CGM.setDSOLocal(F);
3372   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3373   // FIXME: consider emitting an intrinsic call like
3374   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3375   // which can be lowered in CrossDSOCFI pass to the actual contents of
3376   // __cfi_check. This would allow inlining of __cfi_check calls.
3377   llvm::CallInst::Create(
3378       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3379   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3380 }
3381 
3382 // This function is basically a switch over the CFI failure kind, which is
3383 // extracted from CFICheckFailData (1st function argument). Each case is either
3384 // llvm.trap or a call to one of the two runtime handlers, based on
3385 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3386 // failure kind) traps, but this should really never happen.  CFICheckFailData
3387 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3388 // check kind; in this case __cfi_check_fail traps as well.
3389 void CodeGenFunction::EmitCfiCheckFail() {
3390   SanitizerScope SanScope(this);
3391   FunctionArgList Args;
3392   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3393                             ImplicitParamDecl::Other);
3394   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3395                             ImplicitParamDecl::Other);
3396   Args.push_back(&ArgData);
3397   Args.push_back(&ArgAddr);
3398 
3399   const CGFunctionInfo &FI =
3400     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3401 
3402   llvm::Function *F = llvm::Function::Create(
3403       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3404       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3405 
3406   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3407   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3408   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3409 
3410   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3411                 SourceLocation());
3412 
3413   // This function is not affected by NoSanitizeList. This function does
3414   // not have a source location, but "src:*" would still apply. Revert any
3415   // changes to SanOpts made in StartFunction.
3416   SanOpts = CGM.getLangOpts().Sanitize;
3417 
3418   llvm::Value *Data =
3419       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3420                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3421   llvm::Value *Addr =
3422       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3423                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3424 
3425   // Data == nullptr means the calling module has trap behaviour for this check.
3426   llvm::Value *DataIsNotNullPtr =
3427       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3428   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3429 
3430   llvm::StructType *SourceLocationTy =
3431       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3432   llvm::StructType *CfiCheckFailDataTy =
3433       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3434 
3435   llvm::Value *V = Builder.CreateConstGEP2_32(
3436       CfiCheckFailDataTy,
3437       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3438       0);
3439 
3440   Address CheckKindAddr(V, Int8Ty, getIntAlign());
3441   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3442 
3443   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3444       CGM.getLLVMContext(),
3445       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3446   llvm::Value *ValidVtable = Builder.CreateZExt(
3447       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3448                          {Addr, AllVtables}),
3449       IntPtrTy);
3450 
3451   const std::pair<int, SanitizerMask> CheckKinds[] = {
3452       {CFITCK_VCall, SanitizerKind::CFIVCall},
3453       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3454       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3455       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3456       {CFITCK_ICall, SanitizerKind::CFIICall}};
3457 
3458   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3459   for (auto CheckKindMaskPair : CheckKinds) {
3460     int Kind = CheckKindMaskPair.first;
3461     SanitizerMask Mask = CheckKindMaskPair.second;
3462     llvm::Value *Cond =
3463         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3464     if (CGM.getLangOpts().Sanitize.has(Mask))
3465       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3466                 {Data, Addr, ValidVtable});
3467     else
3468       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3469   }
3470 
3471   FinishFunction();
3472   // The only reference to this function will be created during LTO link.
3473   // Make sure it survives until then.
3474   CGM.addUsedGlobal(F);
3475 }
3476 
3477 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3478   if (SanOpts.has(SanitizerKind::Unreachable)) {
3479     SanitizerScope SanScope(this);
3480     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3481                              SanitizerKind::Unreachable),
3482               SanitizerHandler::BuiltinUnreachable,
3483               EmitCheckSourceLocation(Loc), None);
3484   }
3485   Builder.CreateUnreachable();
3486 }
3487 
3488 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3489                                     SanitizerHandler CheckHandlerID) {
3490   llvm::BasicBlock *Cont = createBasicBlock("cont");
3491 
3492   // If we're optimizing, collapse all calls to trap down to just one per
3493   // check-type per function to save on code size.
3494   if (TrapBBs.size() <= CheckHandlerID)
3495     TrapBBs.resize(CheckHandlerID + 1);
3496   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3497 
3498   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3499     TrapBB = createBasicBlock("trap");
3500     Builder.CreateCondBr(Checked, Cont, TrapBB);
3501     EmitBlock(TrapBB);
3502 
3503     llvm::CallInst *TrapCall =
3504         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3505                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3506 
3507     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3508       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3509                                     CGM.getCodeGenOpts().TrapFuncName);
3510       TrapCall->addFnAttr(A);
3511     }
3512     TrapCall->setDoesNotReturn();
3513     TrapCall->setDoesNotThrow();
3514     Builder.CreateUnreachable();
3515   } else {
3516     auto Call = TrapBB->begin();
3517     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3518 
3519     Call->applyMergedLocation(Call->getDebugLoc(),
3520                               Builder.getCurrentDebugLocation());
3521     Builder.CreateCondBr(Checked, Cont, TrapBB);
3522   }
3523 
3524   EmitBlock(Cont);
3525 }
3526 
3527 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3528   llvm::CallInst *TrapCall =
3529       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3530 
3531   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3532     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3533                                   CGM.getCodeGenOpts().TrapFuncName);
3534     TrapCall->addFnAttr(A);
3535   }
3536 
3537   return TrapCall;
3538 }
3539 
3540 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3541                                                  LValueBaseInfo *BaseInfo,
3542                                                  TBAAAccessInfo *TBAAInfo) {
3543   assert(E->getType()->isArrayType() &&
3544          "Array to pointer decay must have array source type!");
3545 
3546   // Expressions of array type can't be bitfields or vector elements.
3547   LValue LV = EmitLValue(E);
3548   Address Addr = LV.getAddress(*this);
3549 
3550   // If the array type was an incomplete type, we need to make sure
3551   // the decay ends up being the right type.
3552   llvm::Type *NewTy = ConvertType(E->getType());
3553   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3554 
3555   // Note that VLA pointers are always decayed, so we don't need to do
3556   // anything here.
3557   if (!E->getType()->isVariableArrayType()) {
3558     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3559            "Expected pointer to array");
3560     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3561   }
3562 
3563   // The result of this decay conversion points to an array element within the
3564   // base lvalue. However, since TBAA currently does not support representing
3565   // accesses to elements of member arrays, we conservatively represent accesses
3566   // to the pointee object as if it had no any base lvalue specified.
3567   // TODO: Support TBAA for member arrays.
3568   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3569   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3570   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3571 
3572   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3573 }
3574 
3575 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3576 /// array to pointer, return the array subexpression.
3577 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3578   // If this isn't just an array->pointer decay, bail out.
3579   const auto *CE = dyn_cast<CastExpr>(E);
3580   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3581     return nullptr;
3582 
3583   // If this is a decay from variable width array, bail out.
3584   const Expr *SubExpr = CE->getSubExpr();
3585   if (SubExpr->getType()->isVariableArrayType())
3586     return nullptr;
3587 
3588   return SubExpr;
3589 }
3590 
3591 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3592                                           llvm::Type *elemType,
3593                                           llvm::Value *ptr,
3594                                           ArrayRef<llvm::Value*> indices,
3595                                           bool inbounds,
3596                                           bool signedIndices,
3597                                           SourceLocation loc,
3598                                     const llvm::Twine &name = "arrayidx") {
3599   if (inbounds) {
3600     return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3601                                       CodeGenFunction::NotSubtraction, loc,
3602                                       name);
3603   } else {
3604     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3605   }
3606 }
3607 
3608 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3609                                       llvm::Value *idx,
3610                                       CharUnits eltSize) {
3611   // If we have a constant index, we can use the exact offset of the
3612   // element we're accessing.
3613   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3614     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3615     return arrayAlign.alignmentAtOffset(offset);
3616 
3617   // Otherwise, use the worst-case alignment for any element.
3618   } else {
3619     return arrayAlign.alignmentOfArrayElement(eltSize);
3620   }
3621 }
3622 
3623 static QualType getFixedSizeElementType(const ASTContext &ctx,
3624                                         const VariableArrayType *vla) {
3625   QualType eltType;
3626   do {
3627     eltType = vla->getElementType();
3628   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3629   return eltType;
3630 }
3631 
3632 /// Given an array base, check whether its member access belongs to a record
3633 /// with preserve_access_index attribute or not.
3634 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3635   if (!ArrayBase || !CGF.getDebugInfo())
3636     return false;
3637 
3638   // Only support base as either a MemberExpr or DeclRefExpr.
3639   // DeclRefExpr to cover cases like:
3640   //    struct s { int a; int b[10]; };
3641   //    struct s *p;
3642   //    p[1].a
3643   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3644   // p->b[5] is a MemberExpr example.
3645   const Expr *E = ArrayBase->IgnoreImpCasts();
3646   if (const auto *ME = dyn_cast<MemberExpr>(E))
3647     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3648 
3649   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3650     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3651     if (!VarDef)
3652       return false;
3653 
3654     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3655     if (!PtrT)
3656       return false;
3657 
3658     const auto *PointeeT = PtrT->getPointeeType()
3659                              ->getUnqualifiedDesugaredType();
3660     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3661       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3662     return false;
3663   }
3664 
3665   return false;
3666 }
3667 
3668 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3669                                      ArrayRef<llvm::Value *> indices,
3670                                      QualType eltType, bool inbounds,
3671                                      bool signedIndices, SourceLocation loc,
3672                                      QualType *arrayType = nullptr,
3673                                      const Expr *Base = nullptr,
3674                                      const llvm::Twine &name = "arrayidx") {
3675   // All the indices except that last must be zero.
3676 #ifndef NDEBUG
3677   for (auto idx : indices.drop_back())
3678     assert(isa<llvm::ConstantInt>(idx) &&
3679            cast<llvm::ConstantInt>(idx)->isZero());
3680 #endif
3681 
3682   // Determine the element size of the statically-sized base.  This is
3683   // the thing that the indices are expressed in terms of.
3684   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3685     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3686   }
3687 
3688   // We can use that to compute the best alignment of the element.
3689   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3690   CharUnits eltAlign =
3691     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3692 
3693   llvm::Value *eltPtr;
3694   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3695   if (!LastIndex ||
3696       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3697     eltPtr = emitArraySubscriptGEP(
3698         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3699         signedIndices, loc, name);
3700   } else {
3701     // Remember the original array subscript for bpf target
3702     unsigned idx = LastIndex->getZExtValue();
3703     llvm::DIType *DbgInfo = nullptr;
3704     if (arrayType)
3705       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3706     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3707                                                         addr.getPointer(),
3708                                                         indices.size() - 1,
3709                                                         idx, DbgInfo);
3710   }
3711 
3712   return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3713 }
3714 
3715 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3716                                                bool Accessed) {
3717   // The index must always be an integer, which is not an aggregate.  Emit it
3718   // in lexical order (this complexity is, sadly, required by C++17).
3719   llvm::Value *IdxPre =
3720       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3721   bool SignedIndices = false;
3722   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3723     auto *Idx = IdxPre;
3724     if (E->getLHS() != E->getIdx()) {
3725       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3726       Idx = EmitScalarExpr(E->getIdx());
3727     }
3728 
3729     QualType IdxTy = E->getIdx()->getType();
3730     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3731     SignedIndices |= IdxSigned;
3732 
3733     if (SanOpts.has(SanitizerKind::ArrayBounds))
3734       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3735 
3736     // Extend or truncate the index type to 32 or 64-bits.
3737     if (Promote && Idx->getType() != IntPtrTy)
3738       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3739 
3740     return Idx;
3741   };
3742   IdxPre = nullptr;
3743 
3744   // If the base is a vector type, then we are forming a vector element lvalue
3745   // with this subscript.
3746   if (E->getBase()->getType()->isVectorType() &&
3747       !isa<ExtVectorElementExpr>(E->getBase())) {
3748     // Emit the vector as an lvalue to get its address.
3749     LValue LHS = EmitLValue(E->getBase());
3750     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3751     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3752     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3753                                  E->getBase()->getType(), LHS.getBaseInfo(),
3754                                  TBAAAccessInfo());
3755   }
3756 
3757   // All the other cases basically behave like simple offsetting.
3758 
3759   // Handle the extvector case we ignored above.
3760   if (isa<ExtVectorElementExpr>(E->getBase())) {
3761     LValue LV = EmitLValue(E->getBase());
3762     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3763     Address Addr = EmitExtVectorElementLValue(LV);
3764 
3765     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3766     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3767                                  SignedIndices, E->getExprLoc());
3768     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3769                           CGM.getTBAAInfoForSubobject(LV, EltType));
3770   }
3771 
3772   LValueBaseInfo EltBaseInfo;
3773   TBAAAccessInfo EltTBAAInfo;
3774   Address Addr = Address::invalid();
3775   if (const VariableArrayType *vla =
3776            getContext().getAsVariableArrayType(E->getType())) {
3777     // The base must be a pointer, which is not an aggregate.  Emit
3778     // it.  It needs to be emitted first in case it's what captures
3779     // the VLA bounds.
3780     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3781     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3782 
3783     // The element count here is the total number of non-VLA elements.
3784     llvm::Value *numElements = getVLASize(vla).NumElts;
3785 
3786     // Effectively, the multiply by the VLA size is part of the GEP.
3787     // GEP indexes are signed, and scaling an index isn't permitted to
3788     // signed-overflow, so we use the same semantics for our explicit
3789     // multiply.  We suppress this if overflow is not undefined behavior.
3790     if (getLangOpts().isSignedOverflowDefined()) {
3791       Idx = Builder.CreateMul(Idx, numElements);
3792     } else {
3793       Idx = Builder.CreateNSWMul(Idx, numElements);
3794     }
3795 
3796     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3797                                  !getLangOpts().isSignedOverflowDefined(),
3798                                  SignedIndices, E->getExprLoc());
3799 
3800   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3801     // Indexing over an interface, as in "NSString *P; P[4];"
3802 
3803     // Emit the base pointer.
3804     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3805     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3806 
3807     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3808     llvm::Value *InterfaceSizeVal =
3809         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3810 
3811     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3812 
3813     // We don't necessarily build correct LLVM struct types for ObjC
3814     // interfaces, so we can't rely on GEP to do this scaling
3815     // correctly, so we need to cast to i8*.  FIXME: is this actually
3816     // true?  A lot of other things in the fragile ABI would break...
3817     llvm::Type *OrigBaseTy = Addr.getType();
3818     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3819 
3820     // Do the GEP.
3821     CharUnits EltAlign =
3822       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3823     llvm::Value *EltPtr =
3824         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3825                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3826     Addr = Address(EltPtr, Addr.getElementType(), EltAlign);
3827 
3828     // Cast back.
3829     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3830   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3831     // If this is A[i] where A is an array, the frontend will have decayed the
3832     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3833     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3834     // "gep x, i" here.  Emit one "gep A, 0, i".
3835     assert(Array->getType()->isArrayType() &&
3836            "Array to pointer decay must have array source type!");
3837     LValue ArrayLV;
3838     // For simple multidimensional array indexing, set the 'accessed' flag for
3839     // better bounds-checking of the base expression.
3840     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3841       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3842     else
3843       ArrayLV = EmitLValue(Array);
3844     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3845 
3846     // Propagate the alignment from the array itself to the result.
3847     QualType arrayType = Array->getType();
3848     Addr = emitArraySubscriptGEP(
3849         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3850         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3851         E->getExprLoc(), &arrayType, E->getBase());
3852     EltBaseInfo = ArrayLV.getBaseInfo();
3853     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3854   } else {
3855     // The base must be a pointer; emit it with an estimate of its alignment.
3856     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3857     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3858     QualType ptrType = E->getBase()->getType();
3859     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3860                                  !getLangOpts().isSignedOverflowDefined(),
3861                                  SignedIndices, E->getExprLoc(), &ptrType,
3862                                  E->getBase());
3863   }
3864 
3865   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3866 
3867   if (getLangOpts().ObjC &&
3868       getLangOpts().getGC() != LangOptions::NonGC) {
3869     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3870     setObjCGCLValueClass(getContext(), E, LV);
3871   }
3872   return LV;
3873 }
3874 
3875 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3876   assert(
3877       !E->isIncomplete() &&
3878       "incomplete matrix subscript expressions should be rejected during Sema");
3879   LValue Base = EmitLValue(E->getBase());
3880   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3881   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3882   llvm::Value *NumRows = Builder.getIntN(
3883       RowIdx->getType()->getScalarSizeInBits(),
3884       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3885   llvm::Value *FinalIdx =
3886       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3887   return LValue::MakeMatrixElt(
3888       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3889       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3890 }
3891 
3892 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3893                                        LValueBaseInfo &BaseInfo,
3894                                        TBAAAccessInfo &TBAAInfo,
3895                                        QualType BaseTy, QualType ElTy,
3896                                        bool IsLowerBound) {
3897   LValue BaseLVal;
3898   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3899     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3900     if (BaseTy->isArrayType()) {
3901       Address Addr = BaseLVal.getAddress(CGF);
3902       BaseInfo = BaseLVal.getBaseInfo();
3903 
3904       // If the array type was an incomplete type, we need to make sure
3905       // the decay ends up being the right type.
3906       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3907       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3908 
3909       // Note that VLA pointers are always decayed, so we don't need to do
3910       // anything here.
3911       if (!BaseTy->isVariableArrayType()) {
3912         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3913                "Expected pointer to array");
3914         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3915       }
3916 
3917       return CGF.Builder.CreateElementBitCast(Addr,
3918                                               CGF.ConvertTypeForMem(ElTy));
3919     }
3920     LValueBaseInfo TypeBaseInfo;
3921     TBAAAccessInfo TypeTBAAInfo;
3922     CharUnits Align =
3923         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3924     BaseInfo.mergeForCast(TypeBaseInfo);
3925     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3926     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
3927                    CGF.ConvertTypeForMem(ElTy), Align);
3928   }
3929   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3930 }
3931 
3932 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3933                                                 bool IsLowerBound) {
3934   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3935   QualType ResultExprTy;
3936   if (auto *AT = getContext().getAsArrayType(BaseTy))
3937     ResultExprTy = AT->getElementType();
3938   else
3939     ResultExprTy = BaseTy->getPointeeType();
3940   llvm::Value *Idx = nullptr;
3941   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3942     // Requesting lower bound or upper bound, but without provided length and
3943     // without ':' symbol for the default length -> length = 1.
3944     // Idx = LowerBound ?: 0;
3945     if (auto *LowerBound = E->getLowerBound()) {
3946       Idx = Builder.CreateIntCast(
3947           EmitScalarExpr(LowerBound), IntPtrTy,
3948           LowerBound->getType()->hasSignedIntegerRepresentation());
3949     } else
3950       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3951   } else {
3952     // Try to emit length or lower bound as constant. If this is possible, 1
3953     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3954     // IR (LB + Len) - 1.
3955     auto &C = CGM.getContext();
3956     auto *Length = E->getLength();
3957     llvm::APSInt ConstLength;
3958     if (Length) {
3959       // Idx = LowerBound + Length - 1;
3960       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3961         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3962         Length = nullptr;
3963       }
3964       auto *LowerBound = E->getLowerBound();
3965       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3966       if (LowerBound) {
3967         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3968           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3969           LowerBound = nullptr;
3970         }
3971       }
3972       if (!Length)
3973         --ConstLength;
3974       else if (!LowerBound)
3975         --ConstLowerBound;
3976 
3977       if (Length || LowerBound) {
3978         auto *LowerBoundVal =
3979             LowerBound
3980                 ? Builder.CreateIntCast(
3981                       EmitScalarExpr(LowerBound), IntPtrTy,
3982                       LowerBound->getType()->hasSignedIntegerRepresentation())
3983                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3984         auto *LengthVal =
3985             Length
3986                 ? Builder.CreateIntCast(
3987                       EmitScalarExpr(Length), IntPtrTy,
3988                       Length->getType()->hasSignedIntegerRepresentation())
3989                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3990         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3991                                 /*HasNUW=*/false,
3992                                 !getLangOpts().isSignedOverflowDefined());
3993         if (Length && LowerBound) {
3994           Idx = Builder.CreateSub(
3995               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3996               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3997         }
3998       } else
3999         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4000     } else {
4001       // Idx = ArraySize - 1;
4002       QualType ArrayTy = BaseTy->isPointerType()
4003                              ? E->getBase()->IgnoreParenImpCasts()->getType()
4004                              : BaseTy;
4005       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4006         Length = VAT->getSizeExpr();
4007         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4008           ConstLength = *L;
4009           Length = nullptr;
4010         }
4011       } else {
4012         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4013         ConstLength = CAT->getSize();
4014       }
4015       if (Length) {
4016         auto *LengthVal = Builder.CreateIntCast(
4017             EmitScalarExpr(Length), IntPtrTy,
4018             Length->getType()->hasSignedIntegerRepresentation());
4019         Idx = Builder.CreateSub(
4020             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4021             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4022       } else {
4023         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4024         --ConstLength;
4025         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4026       }
4027     }
4028   }
4029   assert(Idx);
4030 
4031   Address EltPtr = Address::invalid();
4032   LValueBaseInfo BaseInfo;
4033   TBAAAccessInfo TBAAInfo;
4034   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4035     // The base must be a pointer, which is not an aggregate.  Emit
4036     // it.  It needs to be emitted first in case it's what captures
4037     // the VLA bounds.
4038     Address Base =
4039         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4040                                 BaseTy, VLA->getElementType(), IsLowerBound);
4041     // The element count here is the total number of non-VLA elements.
4042     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4043 
4044     // Effectively, the multiply by the VLA size is part of the GEP.
4045     // GEP indexes are signed, and scaling an index isn't permitted to
4046     // signed-overflow, so we use the same semantics for our explicit
4047     // multiply.  We suppress this if overflow is not undefined behavior.
4048     if (getLangOpts().isSignedOverflowDefined())
4049       Idx = Builder.CreateMul(Idx, NumElements);
4050     else
4051       Idx = Builder.CreateNSWMul(Idx, NumElements);
4052     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4053                                    !getLangOpts().isSignedOverflowDefined(),
4054                                    /*signedIndices=*/false, E->getExprLoc());
4055   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4056     // If this is A[i] where A is an array, the frontend will have decayed the
4057     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4058     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4059     // "gep x, i" here.  Emit one "gep A, 0, i".
4060     assert(Array->getType()->isArrayType() &&
4061            "Array to pointer decay must have array source type!");
4062     LValue ArrayLV;
4063     // For simple multidimensional array indexing, set the 'accessed' flag for
4064     // better bounds-checking of the base expression.
4065     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4066       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4067     else
4068       ArrayLV = EmitLValue(Array);
4069 
4070     // Propagate the alignment from the array itself to the result.
4071     EltPtr = emitArraySubscriptGEP(
4072         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4073         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4074         /*signedIndices=*/false, E->getExprLoc());
4075     BaseInfo = ArrayLV.getBaseInfo();
4076     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4077   } else {
4078     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4079                                            TBAAInfo, BaseTy, ResultExprTy,
4080                                            IsLowerBound);
4081     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4082                                    !getLangOpts().isSignedOverflowDefined(),
4083                                    /*signedIndices=*/false, E->getExprLoc());
4084   }
4085 
4086   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4087 }
4088 
4089 LValue CodeGenFunction::
4090 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4091   // Emit the base vector as an l-value.
4092   LValue Base;
4093 
4094   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4095   if (E->isArrow()) {
4096     // If it is a pointer to a vector, emit the address and form an lvalue with
4097     // it.
4098     LValueBaseInfo BaseInfo;
4099     TBAAAccessInfo TBAAInfo;
4100     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4101     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4102     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4103     Base.getQuals().removeObjCGCAttr();
4104   } else if (E->getBase()->isGLValue()) {
4105     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4106     // emit the base as an lvalue.
4107     assert(E->getBase()->getType()->isVectorType());
4108     Base = EmitLValue(E->getBase());
4109   } else {
4110     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4111     assert(E->getBase()->getType()->isVectorType() &&
4112            "Result must be a vector");
4113     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4114 
4115     // Store the vector to memory (because LValue wants an address).
4116     Address VecMem = CreateMemTemp(E->getBase()->getType());
4117     Builder.CreateStore(Vec, VecMem);
4118     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4119                           AlignmentSource::Decl);
4120   }
4121 
4122   QualType type =
4123     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4124 
4125   // Encode the element access list into a vector of unsigned indices.
4126   SmallVector<uint32_t, 4> Indices;
4127   E->getEncodedElementAccess(Indices);
4128 
4129   if (Base.isSimple()) {
4130     llvm::Constant *CV =
4131         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4132     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4133                                     Base.getBaseInfo(), TBAAAccessInfo());
4134   }
4135   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4136 
4137   llvm::Constant *BaseElts = Base.getExtVectorElts();
4138   SmallVector<llvm::Constant *, 4> CElts;
4139 
4140   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4141     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4142   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4143   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4144                                   Base.getBaseInfo(), TBAAAccessInfo());
4145 }
4146 
4147 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4148   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4149     EmitIgnoredExpr(E->getBase());
4150     return EmitDeclRefLValue(DRE);
4151   }
4152 
4153   Expr *BaseExpr = E->getBase();
4154   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4155   LValue BaseLV;
4156   if (E->isArrow()) {
4157     LValueBaseInfo BaseInfo;
4158     TBAAAccessInfo TBAAInfo;
4159     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4160     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4161     SanitizerSet SkippedChecks;
4162     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4163     if (IsBaseCXXThis)
4164       SkippedChecks.set(SanitizerKind::Alignment, true);
4165     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4166       SkippedChecks.set(SanitizerKind::Null, true);
4167     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4168                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4169     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4170   } else
4171     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4172 
4173   NamedDecl *ND = E->getMemberDecl();
4174   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4175     LValue LV = EmitLValueForField(BaseLV, Field);
4176     setObjCGCLValueClass(getContext(), E, LV);
4177     if (getLangOpts().OpenMP) {
4178       // If the member was explicitly marked as nontemporal, mark it as
4179       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4180       // to children as nontemporal too.
4181       if ((IsWrappedCXXThis(BaseExpr) &&
4182            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4183           BaseLV.isNontemporal())
4184         LV.setNontemporal(/*Value=*/true);
4185     }
4186     return LV;
4187   }
4188 
4189   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4190     return EmitFunctionDeclLValue(*this, E, FD);
4191 
4192   llvm_unreachable("Unhandled member declaration!");
4193 }
4194 
4195 /// Given that we are currently emitting a lambda, emit an l-value for
4196 /// one of its members.
4197 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4198   if (CurCodeDecl) {
4199     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4200     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4201   }
4202   QualType LambdaTagType =
4203     getContext().getTagDeclType(Field->getParent());
4204   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4205   return EmitLValueForField(LambdaLV, Field);
4206 }
4207 
4208 /// Get the field index in the debug info. The debug info structure/union
4209 /// will ignore the unnamed bitfields.
4210 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4211                                              unsigned FieldIndex) {
4212   unsigned I = 0, Skipped = 0;
4213 
4214   for (auto F : Rec->getDefinition()->fields()) {
4215     if (I == FieldIndex)
4216       break;
4217     if (F->isUnnamedBitfield())
4218       Skipped++;
4219     I++;
4220   }
4221 
4222   return FieldIndex - Skipped;
4223 }
4224 
4225 /// Get the address of a zero-sized field within a record. The resulting
4226 /// address doesn't necessarily have the right type.
4227 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4228                                        const FieldDecl *Field) {
4229   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4230       CGF.getContext().getFieldOffset(Field));
4231   if (Offset.isZero())
4232     return Base;
4233   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4234   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4235 }
4236 
4237 /// Drill down to the storage of a field without walking into
4238 /// reference types.
4239 ///
4240 /// The resulting address doesn't necessarily have the right type.
4241 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4242                                       const FieldDecl *field) {
4243   if (field->isZeroSize(CGF.getContext()))
4244     return emitAddrOfZeroSizeField(CGF, base, field);
4245 
4246   const RecordDecl *rec = field->getParent();
4247 
4248   unsigned idx =
4249     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4250 
4251   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4252 }
4253 
4254 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4255                                         Address addr, const FieldDecl *field) {
4256   const RecordDecl *rec = field->getParent();
4257   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4258       base.getType(), rec->getLocation());
4259 
4260   unsigned idx =
4261       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4262 
4263   return CGF.Builder.CreatePreserveStructAccessIndex(
4264       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4265 }
4266 
4267 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4268   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4269   if (!RD)
4270     return false;
4271 
4272   if (RD->isDynamicClass())
4273     return true;
4274 
4275   for (const auto &Base : RD->bases())
4276     if (hasAnyVptr(Base.getType(), Context))
4277       return true;
4278 
4279   for (const FieldDecl *Field : RD->fields())
4280     if (hasAnyVptr(Field->getType(), Context))
4281       return true;
4282 
4283   return false;
4284 }
4285 
4286 LValue CodeGenFunction::EmitLValueForField(LValue base,
4287                                            const FieldDecl *field) {
4288   LValueBaseInfo BaseInfo = base.getBaseInfo();
4289 
4290   if (field->isBitField()) {
4291     const CGRecordLayout &RL =
4292         CGM.getTypes().getCGRecordLayout(field->getParent());
4293     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4294     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4295                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4296                              Info.VolatileStorageSize != 0 &&
4297                              field->getType()
4298                                  .withCVRQualifiers(base.getVRQualifiers())
4299                                  .isVolatileQualified();
4300     Address Addr = base.getAddress(*this);
4301     unsigned Idx = RL.getLLVMFieldNo(field);
4302     const RecordDecl *rec = field->getParent();
4303     if (!UseVolatile) {
4304       if (!IsInPreservedAIRegion &&
4305           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4306         if (Idx != 0)
4307           // For structs, we GEP to the field that the record layout suggests.
4308           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4309       } else {
4310         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4311             getContext().getRecordType(rec), rec->getLocation());
4312         Addr = Builder.CreatePreserveStructAccessIndex(
4313             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4314             DbgInfo);
4315       }
4316     }
4317     const unsigned SS =
4318         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4319     // Get the access type.
4320     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4321     if (Addr.getElementType() != FieldIntTy)
4322       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4323     if (UseVolatile) {
4324       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4325       if (VolatileOffset)
4326         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4327     }
4328 
4329     QualType fieldType =
4330         field->getType().withCVRQualifiers(base.getVRQualifiers());
4331     // TODO: Support TBAA for bit fields.
4332     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4333     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4334                                 TBAAAccessInfo());
4335   }
4336 
4337   // Fields of may-alias structures are may-alias themselves.
4338   // FIXME: this should get propagated down through anonymous structs
4339   // and unions.
4340   QualType FieldType = field->getType();
4341   const RecordDecl *rec = field->getParent();
4342   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4343   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4344   TBAAAccessInfo FieldTBAAInfo;
4345   if (base.getTBAAInfo().isMayAlias() ||
4346           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4347     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4348   } else if (rec->isUnion()) {
4349     // TODO: Support TBAA for unions.
4350     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4351   } else {
4352     // If no base type been assigned for the base access, then try to generate
4353     // one for this base lvalue.
4354     FieldTBAAInfo = base.getTBAAInfo();
4355     if (!FieldTBAAInfo.BaseType) {
4356         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4357         assert(!FieldTBAAInfo.Offset &&
4358                "Nonzero offset for an access with no base type!");
4359     }
4360 
4361     // Adjust offset to be relative to the base type.
4362     const ASTRecordLayout &Layout =
4363         getContext().getASTRecordLayout(field->getParent());
4364     unsigned CharWidth = getContext().getCharWidth();
4365     if (FieldTBAAInfo.BaseType)
4366       FieldTBAAInfo.Offset +=
4367           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4368 
4369     // Update the final access type and size.
4370     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4371     FieldTBAAInfo.Size =
4372         getContext().getTypeSizeInChars(FieldType).getQuantity();
4373   }
4374 
4375   Address addr = base.getAddress(*this);
4376   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4377     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4378         ClassDef->isDynamicClass()) {
4379       // Getting to any field of dynamic object requires stripping dynamic
4380       // information provided by invariant.group.  This is because accessing
4381       // fields may leak the real address of dynamic object, which could result
4382       // in miscompilation when leaked pointer would be compared.
4383       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4384       addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4385     }
4386   }
4387 
4388   unsigned RecordCVR = base.getVRQualifiers();
4389   if (rec->isUnion()) {
4390     // For unions, there is no pointer adjustment.
4391     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4392         hasAnyVptr(FieldType, getContext()))
4393       // Because unions can easily skip invariant.barriers, we need to add
4394       // a barrier every time CXXRecord field with vptr is referenced.
4395       addr = Builder.CreateLaunderInvariantGroup(addr);
4396 
4397     if (IsInPreservedAIRegion ||
4398         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4399       // Remember the original union field index
4400       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4401           rec->getLocation());
4402       addr = Address(
4403           Builder.CreatePreserveUnionAccessIndex(
4404               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4405           addr.getElementType(), addr.getAlignment());
4406     }
4407 
4408     if (FieldType->isReferenceType())
4409       addr = Builder.CreateElementBitCast(
4410           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4411   } else {
4412     if (!IsInPreservedAIRegion &&
4413         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4414       // For structs, we GEP to the field that the record layout suggests.
4415       addr = emitAddrOfFieldStorage(*this, addr, field);
4416     else
4417       // Remember the original struct field index
4418       addr = emitPreserveStructAccess(*this, base, addr, field);
4419   }
4420 
4421   // If this is a reference field, load the reference right now.
4422   if (FieldType->isReferenceType()) {
4423     LValue RefLVal =
4424         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4425     if (RecordCVR & Qualifiers::Volatile)
4426       RefLVal.getQuals().addVolatile();
4427     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4428 
4429     // Qualifiers on the struct don't apply to the referencee.
4430     RecordCVR = 0;
4431     FieldType = FieldType->getPointeeType();
4432   }
4433 
4434   // Make sure that the address is pointing to the right type.  This is critical
4435   // for both unions and structs.  A union needs a bitcast, a struct element
4436   // will need a bitcast if the LLVM type laid out doesn't match the desired
4437   // type.
4438   addr = Builder.CreateElementBitCast(
4439       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4440 
4441   if (field->hasAttr<AnnotateAttr>())
4442     addr = EmitFieldAnnotations(field, addr);
4443 
4444   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4445   LV.getQuals().addCVRQualifiers(RecordCVR);
4446 
4447   // __weak attribute on a field is ignored.
4448   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4449     LV.getQuals().removeObjCGCAttr();
4450 
4451   return LV;
4452 }
4453 
4454 LValue
4455 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4456                                                   const FieldDecl *Field) {
4457   QualType FieldType = Field->getType();
4458 
4459   if (!FieldType->isReferenceType())
4460     return EmitLValueForField(Base, Field);
4461 
4462   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4463 
4464   // Make sure that the address is pointing to the right type.
4465   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4466   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4467 
4468   // TODO: Generate TBAA information that describes this access as a structure
4469   // member access and not just an access to an object of the field's type. This
4470   // should be similar to what we do in EmitLValueForField().
4471   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4472   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4473   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4474   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4475                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4476 }
4477 
4478 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4479   if (E->isFileScope()) {
4480     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4481     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4482   }
4483   if (E->getType()->isVariablyModifiedType())
4484     // make sure to emit the VLA size.
4485     EmitVariablyModifiedType(E->getType());
4486 
4487   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4488   const Expr *InitExpr = E->getInitializer();
4489   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4490 
4491   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4492                    /*Init*/ true);
4493 
4494   // Block-scope compound literals are destroyed at the end of the enclosing
4495   // scope in C.
4496   if (!getLangOpts().CPlusPlus)
4497     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4498       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4499                                   E->getType(), getDestroyer(DtorKind),
4500                                   DtorKind & EHCleanup);
4501 
4502   return Result;
4503 }
4504 
4505 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4506   if (!E->isGLValue())
4507     // Initializing an aggregate temporary in C++11: T{...}.
4508     return EmitAggExprToLValue(E);
4509 
4510   // An lvalue initializer list must be initializing a reference.
4511   assert(E->isTransparent() && "non-transparent glvalue init list");
4512   return EmitLValue(E->getInit(0));
4513 }
4514 
4515 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4516 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4517 /// LValue is returned and the current block has been terminated.
4518 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4519                                                     const Expr *Operand) {
4520   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4521     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4522     return None;
4523   }
4524 
4525   return CGF.EmitLValue(Operand);
4526 }
4527 
4528 LValue CodeGenFunction::
4529 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4530   if (!expr->isGLValue()) {
4531     // ?: here should be an aggregate.
4532     assert(hasAggregateEvaluationKind(expr->getType()) &&
4533            "Unexpected conditional operator!");
4534     return EmitAggExprToLValue(expr);
4535   }
4536 
4537   OpaqueValueMapping binding(*this, expr);
4538 
4539   const Expr *condExpr = expr->getCond();
4540   bool CondExprBool;
4541   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4542     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4543     if (!CondExprBool) std::swap(live, dead);
4544 
4545     if (!ContainsLabel(dead)) {
4546       // If the true case is live, we need to track its region.
4547       if (CondExprBool)
4548         incrementProfileCounter(expr);
4549       // If a throw expression we emit it and return an undefined lvalue
4550       // because it can't be used.
4551       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4552         EmitCXXThrowExpr(ThrowExpr);
4553         llvm::Type *ElemTy = ConvertType(dead->getType());
4554         llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy);
4555         return MakeAddrLValue(
4556             Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4557             dead->getType());
4558       }
4559       return EmitLValue(live);
4560     }
4561   }
4562 
4563   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4564   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4565   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4566 
4567   ConditionalEvaluation eval(*this);
4568   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4569 
4570   // Any temporaries created here are conditional.
4571   EmitBlock(lhsBlock);
4572   incrementProfileCounter(expr);
4573   eval.begin(*this);
4574   Optional<LValue> lhs =
4575       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4576   eval.end(*this);
4577 
4578   if (lhs && !lhs->isSimple())
4579     return EmitUnsupportedLValue(expr, "conditional operator");
4580 
4581   lhsBlock = Builder.GetInsertBlock();
4582   if (lhs)
4583     Builder.CreateBr(contBlock);
4584 
4585   // Any temporaries created here are conditional.
4586   EmitBlock(rhsBlock);
4587   eval.begin(*this);
4588   Optional<LValue> rhs =
4589       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4590   eval.end(*this);
4591   if (rhs && !rhs->isSimple())
4592     return EmitUnsupportedLValue(expr, "conditional operator");
4593   rhsBlock = Builder.GetInsertBlock();
4594 
4595   EmitBlock(contBlock);
4596 
4597   if (lhs && rhs) {
4598     Address lhsAddr = lhs->getAddress(*this);
4599     Address rhsAddr = rhs->getAddress(*this);
4600     llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4601     phi->addIncoming(lhsAddr.getPointer(), lhsBlock);
4602     phi->addIncoming(rhsAddr.getPointer(), rhsBlock);
4603     Address result(phi, lhsAddr.getElementType(),
4604                    std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4605     AlignmentSource alignSource =
4606       std::max(lhs->getBaseInfo().getAlignmentSource(),
4607                rhs->getBaseInfo().getAlignmentSource());
4608     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4609         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4610     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4611                           TBAAInfo);
4612   } else {
4613     assert((lhs || rhs) &&
4614            "both operands of glvalue conditional are throw-expressions?");
4615     return lhs ? *lhs : *rhs;
4616   }
4617 }
4618 
4619 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4620 /// type. If the cast is to a reference, we can have the usual lvalue result,
4621 /// otherwise if a cast is needed by the code generator in an lvalue context,
4622 /// then it must mean that we need the address of an aggregate in order to
4623 /// access one of its members.  This can happen for all the reasons that casts
4624 /// are permitted with aggregate result, including noop aggregate casts, and
4625 /// cast from scalar to union.
4626 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4627   switch (E->getCastKind()) {
4628   case CK_ToVoid:
4629   case CK_BitCast:
4630   case CK_LValueToRValueBitCast:
4631   case CK_ArrayToPointerDecay:
4632   case CK_FunctionToPointerDecay:
4633   case CK_NullToMemberPointer:
4634   case CK_NullToPointer:
4635   case CK_IntegralToPointer:
4636   case CK_PointerToIntegral:
4637   case CK_PointerToBoolean:
4638   case CK_VectorSplat:
4639   case CK_IntegralCast:
4640   case CK_BooleanToSignedIntegral:
4641   case CK_IntegralToBoolean:
4642   case CK_IntegralToFloating:
4643   case CK_FloatingToIntegral:
4644   case CK_FloatingToBoolean:
4645   case CK_FloatingCast:
4646   case CK_FloatingRealToComplex:
4647   case CK_FloatingComplexToReal:
4648   case CK_FloatingComplexToBoolean:
4649   case CK_FloatingComplexCast:
4650   case CK_FloatingComplexToIntegralComplex:
4651   case CK_IntegralRealToComplex:
4652   case CK_IntegralComplexToReal:
4653   case CK_IntegralComplexToBoolean:
4654   case CK_IntegralComplexCast:
4655   case CK_IntegralComplexToFloatingComplex:
4656   case CK_DerivedToBaseMemberPointer:
4657   case CK_BaseToDerivedMemberPointer:
4658   case CK_MemberPointerToBoolean:
4659   case CK_ReinterpretMemberPointer:
4660   case CK_AnyPointerToBlockPointerCast:
4661   case CK_ARCProduceObject:
4662   case CK_ARCConsumeObject:
4663   case CK_ARCReclaimReturnedObject:
4664   case CK_ARCExtendBlockObject:
4665   case CK_CopyAndAutoreleaseBlockObject:
4666   case CK_IntToOCLSampler:
4667   case CK_FloatingToFixedPoint:
4668   case CK_FixedPointToFloating:
4669   case CK_FixedPointCast:
4670   case CK_FixedPointToBoolean:
4671   case CK_FixedPointToIntegral:
4672   case CK_IntegralToFixedPoint:
4673   case CK_MatrixCast:
4674     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4675 
4676   case CK_Dependent:
4677     llvm_unreachable("dependent cast kind in IR gen!");
4678 
4679   case CK_BuiltinFnToFnPtr:
4680     llvm_unreachable("builtin functions are handled elsewhere");
4681 
4682   // These are never l-values; just use the aggregate emission code.
4683   case CK_NonAtomicToAtomic:
4684   case CK_AtomicToNonAtomic:
4685     return EmitAggExprToLValue(E);
4686 
4687   case CK_Dynamic: {
4688     LValue LV = EmitLValue(E->getSubExpr());
4689     Address V = LV.getAddress(*this);
4690     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4691     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4692   }
4693 
4694   case CK_ConstructorConversion:
4695   case CK_UserDefinedConversion:
4696   case CK_CPointerToObjCPointerCast:
4697   case CK_BlockPointerToObjCPointerCast:
4698   case CK_LValueToRValue:
4699     return EmitLValue(E->getSubExpr());
4700 
4701   case CK_NoOp: {
4702     // CK_NoOp can model a qualification conversion, which can remove an array
4703     // bound and change the IR type.
4704     // FIXME: Once pointee types are removed from IR, remove this.
4705     LValue LV = EmitLValue(E->getSubExpr());
4706     if (LV.isSimple()) {
4707       Address V = LV.getAddress(*this);
4708       if (V.isValid()) {
4709         llvm::Type *T = ConvertTypeForMem(E->getType());
4710         if (V.getElementType() != T)
4711           LV.setAddress(Builder.CreateElementBitCast(V, T));
4712       }
4713     }
4714     return LV;
4715   }
4716 
4717   case CK_UncheckedDerivedToBase:
4718   case CK_DerivedToBase: {
4719     const auto *DerivedClassTy =
4720         E->getSubExpr()->getType()->castAs<RecordType>();
4721     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4722 
4723     LValue LV = EmitLValue(E->getSubExpr());
4724     Address This = LV.getAddress(*this);
4725 
4726     // Perform the derived-to-base conversion
4727     Address Base = GetAddressOfBaseClass(
4728         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4729         /*NullCheckValue=*/false, E->getExprLoc());
4730 
4731     // TODO: Support accesses to members of base classes in TBAA. For now, we
4732     // conservatively pretend that the complete object is of the base class
4733     // type.
4734     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4735                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4736   }
4737   case CK_ToUnion:
4738     return EmitAggExprToLValue(E);
4739   case CK_BaseToDerived: {
4740     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4741     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4742 
4743     LValue LV = EmitLValue(E->getSubExpr());
4744 
4745     // Perform the base-to-derived conversion
4746     Address Derived = GetAddressOfDerivedClass(
4747         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4748         /*NullCheckValue=*/false);
4749 
4750     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4751     // performed and the object is not of the derived type.
4752     if (sanitizePerformTypeCheck())
4753       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4754                     Derived.getPointer(), E->getType());
4755 
4756     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4757       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4758                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4759                                 E->getBeginLoc());
4760 
4761     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4762                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4763   }
4764   case CK_LValueBitCast: {
4765     // This must be a reinterpret_cast (or c-style equivalent).
4766     const auto *CE = cast<ExplicitCastExpr>(E);
4767 
4768     CGM.EmitExplicitCastExprType(CE, this);
4769     LValue LV = EmitLValue(E->getSubExpr());
4770     Address V = Builder.CreateElementBitCast(
4771         LV.getAddress(*this),
4772         ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4773 
4774     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4775       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4776                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4777                                 E->getBeginLoc());
4778 
4779     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4780                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4781   }
4782   case CK_AddressSpaceConversion: {
4783     LValue LV = EmitLValue(E->getSubExpr());
4784     QualType DestTy = getContext().getPointerType(E->getType());
4785     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4786         *this, LV.getPointer(*this),
4787         E->getSubExpr()->getType().getAddressSpace(),
4788         E->getType().getAddressSpace(), ConvertType(DestTy));
4789     return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4790                                   LV.getAddress(*this).getAlignment()),
4791                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4792   }
4793   case CK_ObjCObjectLValueCast: {
4794     LValue LV = EmitLValue(E->getSubExpr());
4795     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4796                                              ConvertType(E->getType()));
4797     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4798                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4799   }
4800   case CK_ZeroToOCLOpaqueType:
4801     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4802   }
4803 
4804   llvm_unreachable("Unhandled lvalue cast kind?");
4805 }
4806 
4807 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4808   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4809   return getOrCreateOpaqueLValueMapping(e);
4810 }
4811 
4812 LValue
4813 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4814   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4815 
4816   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4817       it = OpaqueLValues.find(e);
4818 
4819   if (it != OpaqueLValues.end())
4820     return it->second;
4821 
4822   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4823   return EmitLValue(e->getSourceExpr());
4824 }
4825 
4826 RValue
4827 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4828   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4829 
4830   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4831       it = OpaqueRValues.find(e);
4832 
4833   if (it != OpaqueRValues.end())
4834     return it->second;
4835 
4836   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4837   return EmitAnyExpr(e->getSourceExpr());
4838 }
4839 
4840 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4841                                            const FieldDecl *FD,
4842                                            SourceLocation Loc) {
4843   QualType FT = FD->getType();
4844   LValue FieldLV = EmitLValueForField(LV, FD);
4845   switch (getEvaluationKind(FT)) {
4846   case TEK_Complex:
4847     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4848   case TEK_Aggregate:
4849     return FieldLV.asAggregateRValue(*this);
4850   case TEK_Scalar:
4851     // This routine is used to load fields one-by-one to perform a copy, so
4852     // don't load reference fields.
4853     if (FD->getType()->isReferenceType())
4854       return RValue::get(FieldLV.getPointer(*this));
4855     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4856     // primitive load.
4857     if (FieldLV.isBitField())
4858       return EmitLoadOfLValue(FieldLV, Loc);
4859     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4860   }
4861   llvm_unreachable("bad evaluation kind");
4862 }
4863 
4864 //===--------------------------------------------------------------------===//
4865 //                             Expression Emission
4866 //===--------------------------------------------------------------------===//
4867 
4868 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4869                                      ReturnValueSlot ReturnValue) {
4870   // Builtins never have block type.
4871   if (E->getCallee()->getType()->isBlockPointerType())
4872     return EmitBlockCallExpr(E, ReturnValue);
4873 
4874   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4875     return EmitCXXMemberCallExpr(CE, ReturnValue);
4876 
4877   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4878     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4879 
4880   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4881     if (const CXXMethodDecl *MD =
4882           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4883       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4884 
4885   CGCallee callee = EmitCallee(E->getCallee());
4886 
4887   if (callee.isBuiltin()) {
4888     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4889                            E, ReturnValue);
4890   }
4891 
4892   if (callee.isPseudoDestructor()) {
4893     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4894   }
4895 
4896   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4897 }
4898 
4899 /// Emit a CallExpr without considering whether it might be a subclass.
4900 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4901                                            ReturnValueSlot ReturnValue) {
4902   CGCallee Callee = EmitCallee(E->getCallee());
4903   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4904 }
4905 
4906 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4907   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4908 
4909   if (auto builtinID = FD->getBuiltinID()) {
4910     std::string FDInlineName = (FD->getName() + ".inline").str();
4911     // When directing calling an inline builtin, call it through it's mangled
4912     // name to make it clear it's not the actual builtin.
4913     if (FD->isInlineBuiltinDeclaration() &&
4914         CGF.CurFn->getName() != FDInlineName) {
4915       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4916       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
4917       llvm::Module *M = Fn->getParent();
4918       llvm::Function *Clone = M->getFunction(FDInlineName);
4919       if (!Clone) {
4920         Clone = llvm::Function::Create(Fn->getFunctionType(),
4921                                        llvm::GlobalValue::InternalLinkage,
4922                                        Fn->getAddressSpace(), FDInlineName, M);
4923         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
4924       }
4925       return CGCallee::forDirect(Clone, GD);
4926     }
4927 
4928     // Replaceable builtins provide their own implementation of a builtin. If we
4929     // are in an inline builtin implementation, avoid trivial infinite
4930     // recursion.
4931     else
4932       return CGCallee::forBuiltin(builtinID, FD);
4933   }
4934 
4935   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4936   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4937       FD->hasAttr<CUDAGlobalAttr>())
4938     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4939         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4940 
4941   return CGCallee::forDirect(CalleePtr, GD);
4942 }
4943 
4944 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4945   E = E->IgnoreParens();
4946 
4947   // Look through function-to-pointer decay.
4948   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4949     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4950         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4951       return EmitCallee(ICE->getSubExpr());
4952     }
4953 
4954   // Resolve direct calls.
4955   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4956     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4957       return EmitDirectCallee(*this, FD);
4958     }
4959   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4960     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4961       EmitIgnoredExpr(ME->getBase());
4962       return EmitDirectCallee(*this, FD);
4963     }
4964 
4965   // Look through template substitutions.
4966   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4967     return EmitCallee(NTTP->getReplacement());
4968 
4969   // Treat pseudo-destructor calls differently.
4970   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4971     return CGCallee::forPseudoDestructor(PDE);
4972   }
4973 
4974   // Otherwise, we have an indirect reference.
4975   llvm::Value *calleePtr;
4976   QualType functionType;
4977   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4978     calleePtr = EmitScalarExpr(E);
4979     functionType = ptrType->getPointeeType();
4980   } else {
4981     functionType = E->getType();
4982     calleePtr = EmitLValue(E).getPointer(*this);
4983   }
4984   assert(functionType->isFunctionType());
4985 
4986   GlobalDecl GD;
4987   if (const auto *VD =
4988           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4989     GD = GlobalDecl(VD);
4990 
4991   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4992   CGCallee callee(calleeInfo, calleePtr);
4993   return callee;
4994 }
4995 
4996 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4997   // Comma expressions just emit their LHS then their RHS as an l-value.
4998   if (E->getOpcode() == BO_Comma) {
4999     EmitIgnoredExpr(E->getLHS());
5000     EnsureInsertPoint();
5001     return EmitLValue(E->getRHS());
5002   }
5003 
5004   if (E->getOpcode() == BO_PtrMemD ||
5005       E->getOpcode() == BO_PtrMemI)
5006     return EmitPointerToDataMemberBinaryExpr(E);
5007 
5008   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5009 
5010   // Note that in all of these cases, __block variables need the RHS
5011   // evaluated first just in case the variable gets moved by the RHS.
5012 
5013   switch (getEvaluationKind(E->getType())) {
5014   case TEK_Scalar: {
5015     switch (E->getLHS()->getType().getObjCLifetime()) {
5016     case Qualifiers::OCL_Strong:
5017       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5018 
5019     case Qualifiers::OCL_Autoreleasing:
5020       return EmitARCStoreAutoreleasing(E).first;
5021 
5022     // No reason to do any of these differently.
5023     case Qualifiers::OCL_None:
5024     case Qualifiers::OCL_ExplicitNone:
5025     case Qualifiers::OCL_Weak:
5026       break;
5027     }
5028 
5029     RValue RV = EmitAnyExpr(E->getRHS());
5030     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5031     if (RV.isScalar())
5032       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5033     EmitStoreThroughLValue(RV, LV);
5034     if (getLangOpts().OpenMP)
5035       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5036                                                                 E->getLHS());
5037     return LV;
5038   }
5039 
5040   case TEK_Complex:
5041     return EmitComplexAssignmentLValue(E);
5042 
5043   case TEK_Aggregate:
5044     return EmitAggExprToLValue(E);
5045   }
5046   llvm_unreachable("bad evaluation kind");
5047 }
5048 
5049 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5050   RValue RV = EmitCallExpr(E);
5051 
5052   if (!RV.isScalar())
5053     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5054                           AlignmentSource::Decl);
5055 
5056   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5057          "Can't have a scalar return unless the return type is a "
5058          "reference type!");
5059 
5060   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5061 }
5062 
5063 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5064   // FIXME: This shouldn't require another copy.
5065   return EmitAggExprToLValue(E);
5066 }
5067 
5068 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5069   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5070          && "binding l-value to type which needs a temporary");
5071   AggValueSlot Slot = CreateAggTemp(E->getType());
5072   EmitCXXConstructExpr(E, Slot);
5073   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5074 }
5075 
5076 LValue
5077 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5078   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5079 }
5080 
5081 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5082   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5083                                       ConvertType(E->getType()));
5084 }
5085 
5086 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5087   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5088                         AlignmentSource::Decl);
5089 }
5090 
5091 LValue
5092 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5093   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5094   Slot.setExternallyDestructed();
5095   EmitAggExpr(E->getSubExpr(), Slot);
5096   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5097   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5098 }
5099 
5100 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5101   RValue RV = EmitObjCMessageExpr(E);
5102 
5103   if (!RV.isScalar())
5104     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5105                           AlignmentSource::Decl);
5106 
5107   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5108          "Can't have a scalar return unless the return type is a "
5109          "reference type!");
5110 
5111   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5112 }
5113 
5114 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5115   Address V =
5116     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5117   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5118 }
5119 
5120 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5121                                              const ObjCIvarDecl *Ivar) {
5122   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5123 }
5124 
5125 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5126                                           llvm::Value *BaseValue,
5127                                           const ObjCIvarDecl *Ivar,
5128                                           unsigned CVRQualifiers) {
5129   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5130                                                    Ivar, CVRQualifiers);
5131 }
5132 
5133 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5134   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5135   llvm::Value *BaseValue = nullptr;
5136   const Expr *BaseExpr = E->getBase();
5137   Qualifiers BaseQuals;
5138   QualType ObjectTy;
5139   if (E->isArrow()) {
5140     BaseValue = EmitScalarExpr(BaseExpr);
5141     ObjectTy = BaseExpr->getType()->getPointeeType();
5142     BaseQuals = ObjectTy.getQualifiers();
5143   } else {
5144     LValue BaseLV = EmitLValue(BaseExpr);
5145     BaseValue = BaseLV.getPointer(*this);
5146     ObjectTy = BaseExpr->getType();
5147     BaseQuals = ObjectTy.getQualifiers();
5148   }
5149 
5150   LValue LV =
5151     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5152                       BaseQuals.getCVRQualifiers());
5153   setObjCGCLValueClass(getContext(), E, LV);
5154   return LV;
5155 }
5156 
5157 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5158   // Can only get l-value for message expression returning aggregate type
5159   RValue RV = EmitAnyExprToTemp(E);
5160   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5161                         AlignmentSource::Decl);
5162 }
5163 
5164 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5165                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5166                                  llvm::Value *Chain) {
5167   // Get the actual function type. The callee type will always be a pointer to
5168   // function type or a block pointer type.
5169   assert(CalleeType->isFunctionPointerType() &&
5170          "Call must have function pointer type!");
5171 
5172   const Decl *TargetDecl =
5173       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5174 
5175   CalleeType = getContext().getCanonicalType(CalleeType);
5176 
5177   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5178 
5179   CGCallee Callee = OrigCallee;
5180 
5181   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5182       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5183     if (llvm::Constant *PrefixSig =
5184             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5185       SanitizerScope SanScope(this);
5186       // Remove any (C++17) exception specifications, to allow calling e.g. a
5187       // noexcept function through a non-noexcept pointer.
5188       auto ProtoTy =
5189         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5190       llvm::Constant *FTRTTIConst =
5191           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5192       llvm::Type *PrefixSigType = PrefixSig->getType();
5193       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5194           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5195 
5196       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5197 
5198       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5199           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5200       llvm::Value *CalleeSigPtr =
5201           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5202       llvm::Value *CalleeSig =
5203           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5204       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5205 
5206       llvm::BasicBlock *Cont = createBasicBlock("cont");
5207       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5208       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5209 
5210       EmitBlock(TypeCheck);
5211       llvm::Value *CalleeRTTIPtr =
5212           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5213       llvm::Value *CalleeRTTIEncoded =
5214           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5215       llvm::Value *CalleeRTTI =
5216           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5217       llvm::Value *CalleeRTTIMatch =
5218           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5219       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5220                                       EmitCheckTypeDescriptor(CalleeType)};
5221       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5222                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5223                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5224 
5225       Builder.CreateBr(Cont);
5226       EmitBlock(Cont);
5227     }
5228   }
5229 
5230   const auto *FnType = cast<FunctionType>(PointeeType);
5231 
5232   // If we are checking indirect calls and this call is indirect, check that the
5233   // function pointer is a member of the bit set for the function type.
5234   if (SanOpts.has(SanitizerKind::CFIICall) &&
5235       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5236     SanitizerScope SanScope(this);
5237     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5238 
5239     llvm::Metadata *MD;
5240     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5241       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5242     else
5243       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5244 
5245     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5246 
5247     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5248     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5249     llvm::Value *TypeTest = Builder.CreateCall(
5250         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5251 
5252     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5253     llvm::Constant *StaticData[] = {
5254         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5255         EmitCheckSourceLocation(E->getBeginLoc()),
5256         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5257     };
5258     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5259       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5260                            CastedCallee, StaticData);
5261     } else {
5262       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5263                 SanitizerHandler::CFICheckFail, StaticData,
5264                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5265     }
5266   }
5267 
5268   CallArgList Args;
5269   if (Chain)
5270     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5271              CGM.getContext().VoidPtrTy);
5272 
5273   // C++17 requires that we evaluate arguments to a call using assignment syntax
5274   // right-to-left, and that we evaluate arguments to certain other operators
5275   // left-to-right. Note that we allow this to override the order dictated by
5276   // the calling convention on the MS ABI, which means that parameter
5277   // destruction order is not necessarily reverse construction order.
5278   // FIXME: Revisit this based on C++ committee response to unimplementability.
5279   EvaluationOrder Order = EvaluationOrder::Default;
5280   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5281     if (OCE->isAssignmentOp())
5282       Order = EvaluationOrder::ForceRightToLeft;
5283     else {
5284       switch (OCE->getOperator()) {
5285       case OO_LessLess:
5286       case OO_GreaterGreater:
5287       case OO_AmpAmp:
5288       case OO_PipePipe:
5289       case OO_Comma:
5290       case OO_ArrowStar:
5291         Order = EvaluationOrder::ForceLeftToRight;
5292         break;
5293       default:
5294         break;
5295       }
5296     }
5297   }
5298 
5299   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5300                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5301 
5302   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5303       Args, FnType, /*ChainCall=*/Chain);
5304 
5305   // C99 6.5.2.2p6:
5306   //   If the expression that denotes the called function has a type
5307   //   that does not include a prototype, [the default argument
5308   //   promotions are performed]. If the number of arguments does not
5309   //   equal the number of parameters, the behavior is undefined. If
5310   //   the function is defined with a type that includes a prototype,
5311   //   and either the prototype ends with an ellipsis (, ...) or the
5312   //   types of the arguments after promotion are not compatible with
5313   //   the types of the parameters, the behavior is undefined. If the
5314   //   function is defined with a type that does not include a
5315   //   prototype, and the types of the arguments after promotion are
5316   //   not compatible with those of the parameters after promotion,
5317   //   the behavior is undefined [except in some trivial cases].
5318   // That is, in the general case, we should assume that a call
5319   // through an unprototyped function type works like a *non-variadic*
5320   // call.  The way we make this work is to cast to the exact type
5321   // of the promoted arguments.
5322   //
5323   // Chain calls use this same code path to add the invisible chain parameter
5324   // to the function type.
5325   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5326     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5327     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5328     CalleeTy = CalleeTy->getPointerTo(AS);
5329 
5330     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5331     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5332     Callee.setFunctionPointer(CalleePtr);
5333   }
5334 
5335   // HIP function pointer contains kernel handle when it is used in triple
5336   // chevron. The kernel stub needs to be loaded from kernel handle and used
5337   // as callee.
5338   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5339       isa<CUDAKernelCallExpr>(E) &&
5340       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5341     llvm::Value *Handle = Callee.getFunctionPointer();
5342     auto *Cast =
5343         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5344     auto *Stub = Builder.CreateLoad(
5345         Address(Cast, Handle->getType(), CGM.getPointerAlign()));
5346     Callee.setFunctionPointer(Stub);
5347   }
5348   llvm::CallBase *CallOrInvoke = nullptr;
5349   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5350                          E == MustTailCall, E->getExprLoc());
5351 
5352   // Generate function declaration DISuprogram in order to be used
5353   // in debug info about call sites.
5354   if (CGDebugInfo *DI = getDebugInfo()) {
5355     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5356       FunctionArgList Args;
5357       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5358       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5359                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5360                                   CalleeDecl);
5361     }
5362   }
5363 
5364   return Call;
5365 }
5366 
5367 LValue CodeGenFunction::
5368 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5369   Address BaseAddr = Address::invalid();
5370   if (E->getOpcode() == BO_PtrMemI) {
5371     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5372   } else {
5373     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5374   }
5375 
5376   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5377   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5378 
5379   LValueBaseInfo BaseInfo;
5380   TBAAAccessInfo TBAAInfo;
5381   Address MemberAddr =
5382     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5383                                     &TBAAInfo);
5384 
5385   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5386 }
5387 
5388 /// Given the address of a temporary variable, produce an r-value of
5389 /// its type.
5390 RValue CodeGenFunction::convertTempToRValue(Address addr,
5391                                             QualType type,
5392                                             SourceLocation loc) {
5393   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5394   switch (getEvaluationKind(type)) {
5395   case TEK_Complex:
5396     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5397   case TEK_Aggregate:
5398     return lvalue.asAggregateRValue(*this);
5399   case TEK_Scalar:
5400     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5401   }
5402   llvm_unreachable("bad evaluation kind");
5403 }
5404 
5405 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5406   assert(Val->getType()->isFPOrFPVectorTy());
5407   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5408     return;
5409 
5410   llvm::MDBuilder MDHelper(getLLVMContext());
5411   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5412 
5413   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5414 }
5415 
5416 namespace {
5417   struct LValueOrRValue {
5418     LValue LV;
5419     RValue RV;
5420   };
5421 }
5422 
5423 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5424                                            const PseudoObjectExpr *E,
5425                                            bool forLValue,
5426                                            AggValueSlot slot) {
5427   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5428 
5429   // Find the result expression, if any.
5430   const Expr *resultExpr = E->getResultExpr();
5431   LValueOrRValue result;
5432 
5433   for (PseudoObjectExpr::const_semantics_iterator
5434          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5435     const Expr *semantic = *i;
5436 
5437     // If this semantic expression is an opaque value, bind it
5438     // to the result of its source expression.
5439     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5440       // Skip unique OVEs.
5441       if (ov->isUnique()) {
5442         assert(ov != resultExpr &&
5443                "A unique OVE cannot be used as the result expression");
5444         continue;
5445       }
5446 
5447       // If this is the result expression, we may need to evaluate
5448       // directly into the slot.
5449       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5450       OVMA opaqueData;
5451       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5452           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5453         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5454         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5455                                        AlignmentSource::Decl);
5456         opaqueData = OVMA::bind(CGF, ov, LV);
5457         result.RV = slot.asRValue();
5458 
5459       // Otherwise, emit as normal.
5460       } else {
5461         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5462 
5463         // If this is the result, also evaluate the result now.
5464         if (ov == resultExpr) {
5465           if (forLValue)
5466             result.LV = CGF.EmitLValue(ov);
5467           else
5468             result.RV = CGF.EmitAnyExpr(ov, slot);
5469         }
5470       }
5471 
5472       opaques.push_back(opaqueData);
5473 
5474     // Otherwise, if the expression is the result, evaluate it
5475     // and remember the result.
5476     } else if (semantic == resultExpr) {
5477       if (forLValue)
5478         result.LV = CGF.EmitLValue(semantic);
5479       else
5480         result.RV = CGF.EmitAnyExpr(semantic, slot);
5481 
5482     // Otherwise, evaluate the expression in an ignored context.
5483     } else {
5484       CGF.EmitIgnoredExpr(semantic);
5485     }
5486   }
5487 
5488   // Unbind all the opaques now.
5489   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5490     opaques[i].unbind(CGF);
5491 
5492   return result;
5493 }
5494 
5495 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5496                                                AggValueSlot slot) {
5497   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5498 }
5499 
5500 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5501   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5502 }
5503