1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 using namespace clang;
41 using namespace CodeGen;
42 
43 //===--------------------------------------------------------------------===//
44 //                        Miscellaneous Helper Methods
45 //===--------------------------------------------------------------------===//
46 
47 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
48   unsigned addressSpace =
49     cast<llvm::PointerType>(value->getType())->getAddressSpace();
50 
51   llvm::PointerType *destType = Int8PtrTy;
52   if (addressSpace)
53     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
54 
55   if (value->getType() == destType) return value;
56   return Builder.CreateBitCast(value, destType);
57 }
58 
59 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
60 /// block.
61 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
62                                           const Twine &Name) {
63   auto Alloca = CreateTempAlloca(Ty, Name);
64   Alloca->setAlignment(Align.getQuantity());
65   return Address(Alloca, Align);
66 }
67 
68 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
69 /// block.
70 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
71                                                     const Twine &Name) {
72   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
73 }
74 
75 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
76 /// default alignment of the corresponding LLVM type, which is *not*
77 /// guaranteed to be related in any way to the expected alignment of
78 /// an AST type that might have been lowered to Ty.
79 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
80                                                       const Twine &Name) {
81   CharUnits Align =
82     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
83   return CreateTempAlloca(Ty, Align, Name);
84 }
85 
86 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
87   assert(isa<llvm::AllocaInst>(Var.getPointer()));
88   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
89   Store->setAlignment(Var.getAlignment().getQuantity());
90   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
91   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
92 }
93 
94 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
95   CharUnits Align = getContext().getTypeAlignInChars(Ty);
96   return CreateTempAlloca(ConvertType(Ty), Align, Name);
97 }
98 
99 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
100   // FIXME: Should we prefer the preferred type alignment here?
101   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
102 }
103 
104 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
105                                        const Twine &Name) {
106   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
107 }
108 
109 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
110 /// expression and compare the result against zero, returning an Int1Ty value.
111 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
112   PGO.setCurrentStmt(E);
113   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
114     llvm::Value *MemPtr = EmitScalarExpr(E);
115     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
116   }
117 
118   QualType BoolTy = getContext().BoolTy;
119   SourceLocation Loc = E->getExprLoc();
120   if (!E->getType()->isAnyComplexType())
121     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
122 
123   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
124                                        Loc);
125 }
126 
127 /// EmitIgnoredExpr - Emit code to compute the specified expression,
128 /// ignoring the result.
129 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
130   if (E->isRValue())
131     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
132 
133   // Just emit it as an l-value and drop the result.
134   EmitLValue(E);
135 }
136 
137 /// EmitAnyExpr - Emit code to compute the specified expression which
138 /// can have any type.  The result is returned as an RValue struct.
139 /// If this is an aggregate expression, AggSlot indicates where the
140 /// result should be returned.
141 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
142                                     AggValueSlot aggSlot,
143                                     bool ignoreResult) {
144   switch (getEvaluationKind(E->getType())) {
145   case TEK_Scalar:
146     return RValue::get(EmitScalarExpr(E, ignoreResult));
147   case TEK_Complex:
148     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
149   case TEK_Aggregate:
150     if (!ignoreResult && aggSlot.isIgnored())
151       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
152     EmitAggExpr(E, aggSlot);
153     return aggSlot.asRValue();
154   }
155   llvm_unreachable("bad evaluation kind");
156 }
157 
158 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
159 /// always be accessible even if no aggregate location is provided.
160 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
161   AggValueSlot AggSlot = AggValueSlot::ignored();
162 
163   if (hasAggregateEvaluationKind(E->getType()))
164     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
165   return EmitAnyExpr(E, AggSlot);
166 }
167 
168 /// EmitAnyExprToMem - Evaluate an expression into a given memory
169 /// location.
170 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
171                                        Address Location,
172                                        Qualifiers Quals,
173                                        bool IsInit) {
174   // FIXME: This function should take an LValue as an argument.
175   switch (getEvaluationKind(E->getType())) {
176   case TEK_Complex:
177     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
178                               /*isInit*/ false);
179     return;
180 
181   case TEK_Aggregate: {
182     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
183                                          AggValueSlot::IsDestructed_t(IsInit),
184                                          AggValueSlot::DoesNotNeedGCBarriers,
185                                          AggValueSlot::IsAliased_t(!IsInit)));
186     return;
187   }
188 
189   case TEK_Scalar: {
190     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
191     LValue LV = MakeAddrLValue(Location, E->getType());
192     EmitStoreThroughLValue(RV, LV);
193     return;
194   }
195   }
196   llvm_unreachable("bad evaluation kind");
197 }
198 
199 static void
200 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
201                      const Expr *E, Address ReferenceTemporary) {
202   // Objective-C++ ARC:
203   //   If we are binding a reference to a temporary that has ownership, we
204   //   need to perform retain/release operations on the temporary.
205   //
206   // FIXME: This should be looking at E, not M.
207   if (auto Lifetime = M->getType().getObjCLifetime()) {
208     switch (Lifetime) {
209     case Qualifiers::OCL_None:
210     case Qualifiers::OCL_ExplicitNone:
211       // Carry on to normal cleanup handling.
212       break;
213 
214     case Qualifiers::OCL_Autoreleasing:
215       // Nothing to do; cleaned up by an autorelease pool.
216       return;
217 
218     case Qualifiers::OCL_Strong:
219     case Qualifiers::OCL_Weak:
220       switch (StorageDuration Duration = M->getStorageDuration()) {
221       case SD_Static:
222         // Note: we intentionally do not register a cleanup to release
223         // the object on program termination.
224         return;
225 
226       case SD_Thread:
227         // FIXME: We should probably register a cleanup in this case.
228         return;
229 
230       case SD_Automatic:
231       case SD_FullExpression:
232         CodeGenFunction::Destroyer *Destroy;
233         CleanupKind CleanupKind;
234         if (Lifetime == Qualifiers::OCL_Strong) {
235           const ValueDecl *VD = M->getExtendingDecl();
236           bool Precise =
237               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
238           CleanupKind = CGF.getARCCleanupKind();
239           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
240                             : &CodeGenFunction::destroyARCStrongImprecise;
241         } else {
242           // __weak objects always get EH cleanups; otherwise, exceptions
243           // could cause really nasty crashes instead of mere leaks.
244           CleanupKind = NormalAndEHCleanup;
245           Destroy = &CodeGenFunction::destroyARCWeak;
246         }
247         if (Duration == SD_FullExpression)
248           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
249                           M->getType(), *Destroy,
250                           CleanupKind & EHCleanup);
251         else
252           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
253                                           M->getType(),
254                                           *Destroy, CleanupKind & EHCleanup);
255         return;
256 
257       case SD_Dynamic:
258         llvm_unreachable("temporary cannot have dynamic storage duration");
259       }
260       llvm_unreachable("unknown storage duration");
261     }
262   }
263 
264   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
265   if (const RecordType *RT =
266           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
267     // Get the destructor for the reference temporary.
268     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
269     if (!ClassDecl->hasTrivialDestructor())
270       ReferenceTemporaryDtor = ClassDecl->getDestructor();
271   }
272 
273   if (!ReferenceTemporaryDtor)
274     return;
275 
276   // Call the destructor for the temporary.
277   switch (M->getStorageDuration()) {
278   case SD_Static:
279   case SD_Thread: {
280     llvm::Constant *CleanupFn;
281     llvm::Constant *CleanupArg;
282     if (E->getType()->isArrayType()) {
283       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
284           ReferenceTemporary, E->getType(),
285           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
286           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
287       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
288     } else {
289       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
290                                                StructorType::Complete);
291       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
292     }
293     CGF.CGM.getCXXABI().registerGlobalDtor(
294         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
295     break;
296   }
297 
298   case SD_FullExpression:
299     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
300                     CodeGenFunction::destroyCXXObject,
301                     CGF.getLangOpts().Exceptions);
302     break;
303 
304   case SD_Automatic:
305     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
306                                     ReferenceTemporary, E->getType(),
307                                     CodeGenFunction::destroyCXXObject,
308                                     CGF.getLangOpts().Exceptions);
309     break;
310 
311   case SD_Dynamic:
312     llvm_unreachable("temporary cannot have dynamic storage duration");
313   }
314 }
315 
316 static Address
317 createReferenceTemporary(CodeGenFunction &CGF,
318                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
319   switch (M->getStorageDuration()) {
320   case SD_FullExpression:
321   case SD_Automatic: {
322     // If we have a constant temporary array or record try to promote it into a
323     // constant global under the same rules a normal constant would've been
324     // promoted. This is easier on the optimizer and generally emits fewer
325     // instructions.
326     QualType Ty = Inner->getType();
327     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
328         (Ty->isArrayType() || Ty->isRecordType()) &&
329         CGF.CGM.isTypeConstant(Ty, true))
330       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
331         auto *GV = new llvm::GlobalVariable(
332             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
333             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
334         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
335         GV->setAlignment(alignment.getQuantity());
336         // FIXME: Should we put the new global into a COMDAT?
337         return Address(GV, alignment);
338       }
339     return CGF.CreateMemTemp(Ty, "ref.tmp");
340   }
341   case SD_Thread:
342   case SD_Static:
343     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
344 
345   case SD_Dynamic:
346     llvm_unreachable("temporary can't have dynamic storage duration");
347   }
348   llvm_unreachable("unknown storage duration");
349 }
350 
351 LValue CodeGenFunction::
352 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
353   const Expr *E = M->GetTemporaryExpr();
354 
355     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
356     // as that will cause the lifetime adjustment to be lost for ARC
357   auto ownership = M->getType().getObjCLifetime();
358   if (ownership != Qualifiers::OCL_None &&
359       ownership != Qualifiers::OCL_ExplicitNone) {
360     Address Object = createReferenceTemporary(*this, M, E);
361     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
362       Object = Address(llvm::ConstantExpr::getBitCast(Var,
363                            ConvertTypeForMem(E->getType())
364                              ->getPointerTo(Object.getAddressSpace())),
365                        Object.getAlignment());
366 
367       // createReferenceTemporary will promote the temporary to a global with a
368       // constant initializer if it can.  It can only do this to a value of
369       // ARC-manageable type if the value is global and therefore "immune" to
370       // ref-counting operations.  Therefore we have no need to emit either a
371       // dynamic initialization or a cleanup and we can just return the address
372       // of the temporary.
373       if (Var->hasInitializer())
374         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
375 
376       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
377     }
378     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
379                                        AlignmentSource::Decl);
380 
381     switch (getEvaluationKind(E->getType())) {
382     default: llvm_unreachable("expected scalar or aggregate expression");
383     case TEK_Scalar:
384       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
385       break;
386     case TEK_Aggregate: {
387       EmitAggExpr(E, AggValueSlot::forAddr(Object,
388                                            E->getType().getQualifiers(),
389                                            AggValueSlot::IsDestructed,
390                                            AggValueSlot::DoesNotNeedGCBarriers,
391                                            AggValueSlot::IsNotAliased));
392       break;
393     }
394     }
395 
396     pushTemporaryCleanup(*this, M, E, Object);
397     return RefTempDst;
398   }
399 
400   SmallVector<const Expr *, 2> CommaLHSs;
401   SmallVector<SubobjectAdjustment, 2> Adjustments;
402   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
403 
404   for (const auto &Ignored : CommaLHSs)
405     EmitIgnoredExpr(Ignored);
406 
407   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
408     if (opaque->getType()->isRecordType()) {
409       assert(Adjustments.empty());
410       return EmitOpaqueValueLValue(opaque);
411     }
412   }
413 
414   // Create and initialize the reference temporary.
415   Address Object = createReferenceTemporary(*this, M, E);
416   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
417     Object = Address(llvm::ConstantExpr::getBitCast(
418         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
419                      Object.getAlignment());
420     // If the temporary is a global and has a constant initializer or is a
421     // constant temporary that we promoted to a global, we may have already
422     // initialized it.
423     if (!Var->hasInitializer()) {
424       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
425       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
426     }
427   } else {
428     switch (M->getStorageDuration()) {
429     case SD_Automatic:
430     case SD_FullExpression:
431       if (auto *Size = EmitLifetimeStart(
432               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
433               Object.getPointer())) {
434         if (M->getStorageDuration() == SD_Automatic)
435           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
436                                                     Object, Size);
437         else
438           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
439                                                Size);
440       }
441       break;
442     default:
443       break;
444     }
445     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
446   }
447   pushTemporaryCleanup(*this, M, E, Object);
448 
449   // Perform derived-to-base casts and/or field accesses, to get from the
450   // temporary object we created (and, potentially, for which we extended
451   // the lifetime) to the subobject we're binding the reference to.
452   for (unsigned I = Adjustments.size(); I != 0; --I) {
453     SubobjectAdjustment &Adjustment = Adjustments[I-1];
454     switch (Adjustment.Kind) {
455     case SubobjectAdjustment::DerivedToBaseAdjustment:
456       Object =
457           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
458                                 Adjustment.DerivedToBase.BasePath->path_begin(),
459                                 Adjustment.DerivedToBase.BasePath->path_end(),
460                                 /*NullCheckValue=*/ false, E->getExprLoc());
461       break;
462 
463     case SubobjectAdjustment::FieldAdjustment: {
464       LValue LV = MakeAddrLValue(Object, E->getType(),
465                                  AlignmentSource::Decl);
466       LV = EmitLValueForField(LV, Adjustment.Field);
467       assert(LV.isSimple() &&
468              "materialized temporary field is not a simple lvalue");
469       Object = LV.getAddress();
470       break;
471     }
472 
473     case SubobjectAdjustment::MemberPointerAdjustment: {
474       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
475       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
476                                                Adjustment.Ptr.MPT);
477       break;
478     }
479     }
480   }
481 
482   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
483 }
484 
485 RValue
486 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
487   // Emit the expression as an lvalue.
488   LValue LV = EmitLValue(E);
489   assert(LV.isSimple());
490   llvm::Value *Value = LV.getPointer();
491 
492   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
493     // C++11 [dcl.ref]p5 (as amended by core issue 453):
494     //   If a glvalue to which a reference is directly bound designates neither
495     //   an existing object or function of an appropriate type nor a region of
496     //   storage of suitable size and alignment to contain an object of the
497     //   reference's type, the behavior is undefined.
498     QualType Ty = E->getType();
499     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
500   }
501 
502   return RValue::get(Value);
503 }
504 
505 
506 /// getAccessedFieldNo - Given an encoded value and a result number, return the
507 /// input field number being accessed.
508 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
509                                              const llvm::Constant *Elts) {
510   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
511       ->getZExtValue();
512 }
513 
514 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
515 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
516                                     llvm::Value *High) {
517   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
518   llvm::Value *K47 = Builder.getInt64(47);
519   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
520   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
521   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
522   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
523   return Builder.CreateMul(B1, KMul);
524 }
525 
526 bool CodeGenFunction::sanitizePerformTypeCheck() const {
527   return SanOpts.has(SanitizerKind::Null) |
528          SanOpts.has(SanitizerKind::Alignment) |
529          SanOpts.has(SanitizerKind::ObjectSize) |
530          SanOpts.has(SanitizerKind::Vptr);
531 }
532 
533 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
534                                     llvm::Value *Ptr, QualType Ty,
535                                     CharUnits Alignment, bool SkipNullCheck) {
536   if (!sanitizePerformTypeCheck())
537     return;
538 
539   // Don't check pointers outside the default address space. The null check
540   // isn't correct, the object-size check isn't supported by LLVM, and we can't
541   // communicate the addresses to the runtime handler for the vptr check.
542   if (Ptr->getType()->getPointerAddressSpace())
543     return;
544 
545   SanitizerScope SanScope(this);
546 
547   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
548   llvm::BasicBlock *Done = nullptr;
549 
550   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
551                            TCK == TCK_UpcastToVirtualBase;
552   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
553       !SkipNullCheck) {
554     // The glvalue must not be an empty glvalue.
555     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
556 
557     if (AllowNullPointers) {
558       // When performing pointer casts, it's OK if the value is null.
559       // Skip the remaining checks in that case.
560       Done = createBasicBlock("null");
561       llvm::BasicBlock *Rest = createBasicBlock("not.null");
562       Builder.CreateCondBr(IsNonNull, Rest, Done);
563       EmitBlock(Rest);
564     } else {
565       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
566     }
567   }
568 
569   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
570     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
571 
572     // The glvalue must refer to a large enough storage region.
573     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
574     //        to check this.
575     // FIXME: Get object address space
576     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
577     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
578     llvm::Value *Min = Builder.getFalse();
579     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
580     llvm::Value *LargeEnough =
581         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
582                               llvm::ConstantInt::get(IntPtrTy, Size));
583     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
584   }
585 
586   uint64_t AlignVal = 0;
587 
588   if (SanOpts.has(SanitizerKind::Alignment)) {
589     AlignVal = Alignment.getQuantity();
590     if (!Ty->isIncompleteType() && !AlignVal)
591       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
592 
593     // The glvalue must be suitably aligned.
594     if (AlignVal) {
595       llvm::Value *Align =
596           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
597                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
598       llvm::Value *Aligned =
599         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
600       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
601     }
602   }
603 
604   if (Checks.size() > 0) {
605     llvm::Constant *StaticData[] = {
606      EmitCheckSourceLocation(Loc),
607       EmitCheckTypeDescriptor(Ty),
608       llvm::ConstantInt::get(SizeTy, AlignVal),
609       llvm::ConstantInt::get(Int8Ty, TCK)
610     };
611     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
612   }
613 
614   // If possible, check that the vptr indicates that there is a subobject of
615   // type Ty at offset zero within this object.
616   //
617   // C++11 [basic.life]p5,6:
618   //   [For storage which does not refer to an object within its lifetime]
619   //   The program has undefined behavior if:
620   //    -- the [pointer or glvalue] is used to access a non-static data member
621   //       or call a non-static member function
622   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
623   if (SanOpts.has(SanitizerKind::Vptr) &&
624       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
625        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
626        TCK == TCK_UpcastToVirtualBase) &&
627       RD && RD->hasDefinition() && RD->isDynamicClass()) {
628     // Compute a hash of the mangled name of the type.
629     //
630     // FIXME: This is not guaranteed to be deterministic! Move to a
631     //        fingerprinting mechanism once LLVM provides one. For the time
632     //        being the implementation happens to be deterministic.
633     SmallString<64> MangledName;
634     llvm::raw_svector_ostream Out(MangledName);
635     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
636                                                      Out);
637 
638     // Blacklist based on the mangled type.
639     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
640             Out.str())) {
641       llvm::hash_code TypeHash = hash_value(Out.str());
642 
643       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
644       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
645       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
646       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
647       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
648       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
649 
650       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
651       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
652 
653       // Look the hash up in our cache.
654       const int CacheSize = 128;
655       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
656       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
657                                                      "__ubsan_vptr_type_cache");
658       llvm::Value *Slot = Builder.CreateAnd(Hash,
659                                             llvm::ConstantInt::get(IntPtrTy,
660                                                                    CacheSize-1));
661       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
662       llvm::Value *CacheVal =
663         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
664                                   getPointerAlign());
665 
666       // If the hash isn't in the cache, call a runtime handler to perform the
667       // hard work of checking whether the vptr is for an object of the right
668       // type. This will either fill in the cache and return, or produce a
669       // diagnostic.
670       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
671       llvm::Constant *StaticData[] = {
672         EmitCheckSourceLocation(Loc),
673         EmitCheckTypeDescriptor(Ty),
674         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
675         llvm::ConstantInt::get(Int8Ty, TCK)
676       };
677       llvm::Value *DynamicData[] = { Ptr, Hash };
678       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
679                 "dynamic_type_cache_miss", StaticData, DynamicData);
680     }
681   }
682 
683   if (Done) {
684     Builder.CreateBr(Done);
685     EmitBlock(Done);
686   }
687 }
688 
689 /// Determine whether this expression refers to a flexible array member in a
690 /// struct. We disable array bounds checks for such members.
691 static bool isFlexibleArrayMemberExpr(const Expr *E) {
692   // For compatibility with existing code, we treat arrays of length 0 or
693   // 1 as flexible array members.
694   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
695   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
696     if (CAT->getSize().ugt(1))
697       return false;
698   } else if (!isa<IncompleteArrayType>(AT))
699     return false;
700 
701   E = E->IgnoreParens();
702 
703   // A flexible array member must be the last member in the class.
704   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
705     // FIXME: If the base type of the member expr is not FD->getParent(),
706     // this should not be treated as a flexible array member access.
707     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
708       RecordDecl::field_iterator FI(
709           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
710       return ++FI == FD->getParent()->field_end();
711     }
712   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
713     return IRE->getDecl()->getNextIvar() == nullptr;
714   }
715 
716   return false;
717 }
718 
719 /// If Base is known to point to the start of an array, return the length of
720 /// that array. Return 0 if the length cannot be determined.
721 static llvm::Value *getArrayIndexingBound(
722     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
723   // For the vector indexing extension, the bound is the number of elements.
724   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
725     IndexedType = Base->getType();
726     return CGF.Builder.getInt32(VT->getNumElements());
727   }
728 
729   Base = Base->IgnoreParens();
730 
731   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
732     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
733         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
734       IndexedType = CE->getSubExpr()->getType();
735       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
736       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
737         return CGF.Builder.getInt(CAT->getSize());
738       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
739         return CGF.getVLASize(VAT).first;
740     }
741   }
742 
743   return nullptr;
744 }
745 
746 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
747                                       llvm::Value *Index, QualType IndexType,
748                                       bool Accessed) {
749   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
750          "should not be called unless adding bounds checks");
751   SanitizerScope SanScope(this);
752 
753   QualType IndexedType;
754   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
755   if (!Bound)
756     return;
757 
758   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
759   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
760   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
761 
762   llvm::Constant *StaticData[] = {
763     EmitCheckSourceLocation(E->getExprLoc()),
764     EmitCheckTypeDescriptor(IndexedType),
765     EmitCheckTypeDescriptor(IndexType)
766   };
767   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
768                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
769   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
770             StaticData, Index);
771 }
772 
773 
774 CodeGenFunction::ComplexPairTy CodeGenFunction::
775 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
776                          bool isInc, bool isPre) {
777   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
778 
779   llvm::Value *NextVal;
780   if (isa<llvm::IntegerType>(InVal.first->getType())) {
781     uint64_t AmountVal = isInc ? 1 : -1;
782     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
783 
784     // Add the inc/dec to the real part.
785     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
786   } else {
787     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
788     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
789     if (!isInc)
790       FVal.changeSign();
791     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
792 
793     // Add the inc/dec to the real part.
794     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
795   }
796 
797   ComplexPairTy IncVal(NextVal, InVal.second);
798 
799   // Store the updated result through the lvalue.
800   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
801 
802   // If this is a postinc, return the value read from memory, otherwise use the
803   // updated value.
804   return isPre ? IncVal : InVal;
805 }
806 
807 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
808                                              CodeGenFunction *CGF) {
809   // Bind VLAs in the cast type.
810   if (CGF && E->getType()->isVariablyModifiedType())
811     CGF->EmitVariablyModifiedType(E->getType());
812 
813   if (CGDebugInfo *DI = getModuleDebugInfo())
814     DI->EmitExplicitCastType(E->getType());
815 }
816 
817 //===----------------------------------------------------------------------===//
818 //                         LValue Expression Emission
819 //===----------------------------------------------------------------------===//
820 
821 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
822 /// derive a more accurate bound on the alignment of the pointer.
823 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
824                                                   AlignmentSource  *Source) {
825   // We allow this with ObjC object pointers because of fragile ABIs.
826   assert(E->getType()->isPointerType() ||
827          E->getType()->isObjCObjectPointerType());
828   E = E->IgnoreParens();
829 
830   // Casts:
831   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
832     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
833       CGM.EmitExplicitCastExprType(ECE, this);
834 
835     switch (CE->getCastKind()) {
836     // Non-converting casts (but not C's implicit conversion from void*).
837     case CK_BitCast:
838     case CK_NoOp:
839       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
840         if (PtrTy->getPointeeType()->isVoidType())
841           break;
842 
843         AlignmentSource InnerSource;
844         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
845         if (Source) *Source = InnerSource;
846 
847         // If this is an explicit bitcast, and the source l-value is
848         // opaque, honor the alignment of the casted-to type.
849         if (isa<ExplicitCastExpr>(CE) &&
850             InnerSource != AlignmentSource::Decl) {
851           Addr = Address(Addr.getPointer(),
852                          getNaturalPointeeTypeAlignment(E->getType(), Source));
853         }
854 
855         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
856             CE->getCastKind() == CK_BitCast) {
857           if (auto PT = E->getType()->getAs<PointerType>())
858             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
859                                       /*MayBeNull=*/true,
860                                       CodeGenFunction::CFITCK_UnrelatedCast,
861                                       CE->getLocStart());
862         }
863 
864         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
865       }
866       break;
867 
868     // Array-to-pointer decay.
869     case CK_ArrayToPointerDecay:
870       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
871 
872     // Derived-to-base conversions.
873     case CK_UncheckedDerivedToBase:
874     case CK_DerivedToBase: {
875       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
876       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
877       return GetAddressOfBaseClass(Addr, Derived,
878                                    CE->path_begin(), CE->path_end(),
879                                    ShouldNullCheckClassCastValue(CE),
880                                    CE->getExprLoc());
881     }
882 
883     // TODO: Is there any reason to treat base-to-derived conversions
884     // specially?
885     default:
886       break;
887     }
888   }
889 
890   // Unary &.
891   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
892     if (UO->getOpcode() == UO_AddrOf) {
893       LValue LV = EmitLValue(UO->getSubExpr());
894       if (Source) *Source = LV.getAlignmentSource();
895       return LV.getAddress();
896     }
897   }
898 
899   // TODO: conditional operators, comma.
900 
901   // Otherwise, use the alignment of the type.
902   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
903   return Address(EmitScalarExpr(E), Align);
904 }
905 
906 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
907   if (Ty->isVoidType())
908     return RValue::get(nullptr);
909 
910   switch (getEvaluationKind(Ty)) {
911   case TEK_Complex: {
912     llvm::Type *EltTy =
913       ConvertType(Ty->castAs<ComplexType>()->getElementType());
914     llvm::Value *U = llvm::UndefValue::get(EltTy);
915     return RValue::getComplex(std::make_pair(U, U));
916   }
917 
918   // If this is a use of an undefined aggregate type, the aggregate must have an
919   // identifiable address.  Just because the contents of the value are undefined
920   // doesn't mean that the address can't be taken and compared.
921   case TEK_Aggregate: {
922     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
923     return RValue::getAggregate(DestPtr);
924   }
925 
926   case TEK_Scalar:
927     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
928   }
929   llvm_unreachable("bad evaluation kind");
930 }
931 
932 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
933                                               const char *Name) {
934   ErrorUnsupported(E, Name);
935   return GetUndefRValue(E->getType());
936 }
937 
938 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
939                                               const char *Name) {
940   ErrorUnsupported(E, Name);
941   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
942   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
943                         E->getType());
944 }
945 
946 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
947   LValue LV;
948   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
949     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
950   else
951     LV = EmitLValue(E);
952   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
953     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
954                   E->getType(), LV.getAlignment());
955   return LV;
956 }
957 
958 /// EmitLValue - Emit code to compute a designator that specifies the location
959 /// of the expression.
960 ///
961 /// This can return one of two things: a simple address or a bitfield reference.
962 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
963 /// an LLVM pointer type.
964 ///
965 /// If this returns a bitfield reference, nothing about the pointee type of the
966 /// LLVM value is known: For example, it may not be a pointer to an integer.
967 ///
968 /// If this returns a normal address, and if the lvalue's C type is fixed size,
969 /// this method guarantees that the returned pointer type will point to an LLVM
970 /// type of the same size of the lvalue's type.  If the lvalue has a variable
971 /// length type, this is not possible.
972 ///
973 LValue CodeGenFunction::EmitLValue(const Expr *E) {
974   ApplyDebugLocation DL(*this, E);
975   switch (E->getStmtClass()) {
976   default: return EmitUnsupportedLValue(E, "l-value expression");
977 
978   case Expr::ObjCPropertyRefExprClass:
979     llvm_unreachable("cannot emit a property reference directly");
980 
981   case Expr::ObjCSelectorExprClass:
982     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
983   case Expr::ObjCIsaExprClass:
984     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
985   case Expr::BinaryOperatorClass:
986     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
987   case Expr::CompoundAssignOperatorClass: {
988     QualType Ty = E->getType();
989     if (const AtomicType *AT = Ty->getAs<AtomicType>())
990       Ty = AT->getValueType();
991     if (!Ty->isAnyComplexType())
992       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
993     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
994   }
995   case Expr::CallExprClass:
996   case Expr::CXXMemberCallExprClass:
997   case Expr::CXXOperatorCallExprClass:
998   case Expr::UserDefinedLiteralClass:
999     return EmitCallExprLValue(cast<CallExpr>(E));
1000   case Expr::VAArgExprClass:
1001     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1002   case Expr::DeclRefExprClass:
1003     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1004   case Expr::ParenExprClass:
1005     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1006   case Expr::GenericSelectionExprClass:
1007     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1008   case Expr::PredefinedExprClass:
1009     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1010   case Expr::StringLiteralClass:
1011     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1012   case Expr::ObjCEncodeExprClass:
1013     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1014   case Expr::PseudoObjectExprClass:
1015     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1016   case Expr::InitListExprClass:
1017     return EmitInitListLValue(cast<InitListExpr>(E));
1018   case Expr::CXXTemporaryObjectExprClass:
1019   case Expr::CXXConstructExprClass:
1020     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1021   case Expr::CXXBindTemporaryExprClass:
1022     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1023   case Expr::CXXUuidofExprClass:
1024     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1025   case Expr::LambdaExprClass:
1026     return EmitLambdaLValue(cast<LambdaExpr>(E));
1027 
1028   case Expr::ExprWithCleanupsClass: {
1029     const auto *cleanups = cast<ExprWithCleanups>(E);
1030     enterFullExpression(cleanups);
1031     RunCleanupsScope Scope(*this);
1032     return EmitLValue(cleanups->getSubExpr());
1033   }
1034 
1035   case Expr::CXXDefaultArgExprClass:
1036     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1037   case Expr::CXXDefaultInitExprClass: {
1038     CXXDefaultInitExprScope Scope(*this);
1039     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1040   }
1041   case Expr::CXXTypeidExprClass:
1042     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1043 
1044   case Expr::ObjCMessageExprClass:
1045     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1046   case Expr::ObjCIvarRefExprClass:
1047     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1048   case Expr::StmtExprClass:
1049     return EmitStmtExprLValue(cast<StmtExpr>(E));
1050   case Expr::UnaryOperatorClass:
1051     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1052   case Expr::ArraySubscriptExprClass:
1053     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1054   case Expr::OMPArraySectionExprClass:
1055     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1056   case Expr::ExtVectorElementExprClass:
1057     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1058   case Expr::MemberExprClass:
1059     return EmitMemberExpr(cast<MemberExpr>(E));
1060   case Expr::CompoundLiteralExprClass:
1061     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1062   case Expr::ConditionalOperatorClass:
1063     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1064   case Expr::BinaryConditionalOperatorClass:
1065     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1066   case Expr::ChooseExprClass:
1067     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1068   case Expr::OpaqueValueExprClass:
1069     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1070   case Expr::SubstNonTypeTemplateParmExprClass:
1071     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1072   case Expr::ImplicitCastExprClass:
1073   case Expr::CStyleCastExprClass:
1074   case Expr::CXXFunctionalCastExprClass:
1075   case Expr::CXXStaticCastExprClass:
1076   case Expr::CXXDynamicCastExprClass:
1077   case Expr::CXXReinterpretCastExprClass:
1078   case Expr::CXXConstCastExprClass:
1079   case Expr::ObjCBridgedCastExprClass:
1080     return EmitCastLValue(cast<CastExpr>(E));
1081 
1082   case Expr::MaterializeTemporaryExprClass:
1083     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1084   }
1085 }
1086 
1087 /// Given an object of the given canonical type, can we safely copy a
1088 /// value out of it based on its initializer?
1089 static bool isConstantEmittableObjectType(QualType type) {
1090   assert(type.isCanonical());
1091   assert(!type->isReferenceType());
1092 
1093   // Must be const-qualified but non-volatile.
1094   Qualifiers qs = type.getLocalQualifiers();
1095   if (!qs.hasConst() || qs.hasVolatile()) return false;
1096 
1097   // Otherwise, all object types satisfy this except C++ classes with
1098   // mutable subobjects or non-trivial copy/destroy behavior.
1099   if (const auto *RT = dyn_cast<RecordType>(type))
1100     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1101       if (RD->hasMutableFields() || !RD->isTrivial())
1102         return false;
1103 
1104   return true;
1105 }
1106 
1107 /// Can we constant-emit a load of a reference to a variable of the
1108 /// given type?  This is different from predicates like
1109 /// Decl::isUsableInConstantExpressions because we do want it to apply
1110 /// in situations that don't necessarily satisfy the language's rules
1111 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1112 /// to do this with const float variables even if those variables
1113 /// aren't marked 'constexpr'.
1114 enum ConstantEmissionKind {
1115   CEK_None,
1116   CEK_AsReferenceOnly,
1117   CEK_AsValueOrReference,
1118   CEK_AsValueOnly
1119 };
1120 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1121   type = type.getCanonicalType();
1122   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1123     if (isConstantEmittableObjectType(ref->getPointeeType()))
1124       return CEK_AsValueOrReference;
1125     return CEK_AsReferenceOnly;
1126   }
1127   if (isConstantEmittableObjectType(type))
1128     return CEK_AsValueOnly;
1129   return CEK_None;
1130 }
1131 
1132 /// Try to emit a reference to the given value without producing it as
1133 /// an l-value.  This is actually more than an optimization: we can't
1134 /// produce an l-value for variables that we never actually captured
1135 /// in a block or lambda, which means const int variables or constexpr
1136 /// literals or similar.
1137 CodeGenFunction::ConstantEmission
1138 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1139   ValueDecl *value = refExpr->getDecl();
1140 
1141   // The value needs to be an enum constant or a constant variable.
1142   ConstantEmissionKind CEK;
1143   if (isa<ParmVarDecl>(value)) {
1144     CEK = CEK_None;
1145   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1146     CEK = checkVarTypeForConstantEmission(var->getType());
1147   } else if (isa<EnumConstantDecl>(value)) {
1148     CEK = CEK_AsValueOnly;
1149   } else {
1150     CEK = CEK_None;
1151   }
1152   if (CEK == CEK_None) return ConstantEmission();
1153 
1154   Expr::EvalResult result;
1155   bool resultIsReference;
1156   QualType resultType;
1157 
1158   // It's best to evaluate all the way as an r-value if that's permitted.
1159   if (CEK != CEK_AsReferenceOnly &&
1160       refExpr->EvaluateAsRValue(result, getContext())) {
1161     resultIsReference = false;
1162     resultType = refExpr->getType();
1163 
1164   // Otherwise, try to evaluate as an l-value.
1165   } else if (CEK != CEK_AsValueOnly &&
1166              refExpr->EvaluateAsLValue(result, getContext())) {
1167     resultIsReference = true;
1168     resultType = value->getType();
1169 
1170   // Failure.
1171   } else {
1172     return ConstantEmission();
1173   }
1174 
1175   // In any case, if the initializer has side-effects, abandon ship.
1176   if (result.HasSideEffects)
1177     return ConstantEmission();
1178 
1179   // Emit as a constant.
1180   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1181 
1182   // Make sure we emit a debug reference to the global variable.
1183   // This should probably fire even for
1184   if (isa<VarDecl>(value)) {
1185     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1186       EmitDeclRefExprDbgValue(refExpr, result.Val);
1187   } else {
1188     assert(isa<EnumConstantDecl>(value));
1189     EmitDeclRefExprDbgValue(refExpr, result.Val);
1190   }
1191 
1192   // If we emitted a reference constant, we need to dereference that.
1193   if (resultIsReference)
1194     return ConstantEmission::forReference(C);
1195 
1196   return ConstantEmission::forValue(C);
1197 }
1198 
1199 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1200                                                SourceLocation Loc) {
1201   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1202                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1203                           lvalue.getTBAAInfo(),
1204                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1205                           lvalue.isNontemporal());
1206 }
1207 
1208 static bool hasBooleanRepresentation(QualType Ty) {
1209   if (Ty->isBooleanType())
1210     return true;
1211 
1212   if (const EnumType *ET = Ty->getAs<EnumType>())
1213     return ET->getDecl()->getIntegerType()->isBooleanType();
1214 
1215   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1216     return hasBooleanRepresentation(AT->getValueType());
1217 
1218   return false;
1219 }
1220 
1221 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1222                             llvm::APInt &Min, llvm::APInt &End,
1223                             bool StrictEnums, bool IsBool) {
1224   const EnumType *ET = Ty->getAs<EnumType>();
1225   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1226                                 ET && !ET->getDecl()->isFixed();
1227   if (!IsBool && !IsRegularCPlusPlusEnum)
1228     return false;
1229 
1230   if (IsBool) {
1231     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1232     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1233   } else {
1234     const EnumDecl *ED = ET->getDecl();
1235     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1236     unsigned Bitwidth = LTy->getScalarSizeInBits();
1237     unsigned NumNegativeBits = ED->getNumNegativeBits();
1238     unsigned NumPositiveBits = ED->getNumPositiveBits();
1239 
1240     if (NumNegativeBits) {
1241       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1242       assert(NumBits <= Bitwidth);
1243       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1244       Min = -End;
1245     } else {
1246       assert(NumPositiveBits <= Bitwidth);
1247       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1248       Min = llvm::APInt(Bitwidth, 0);
1249     }
1250   }
1251   return true;
1252 }
1253 
1254 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1255   llvm::APInt Min, End;
1256   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1257                        hasBooleanRepresentation(Ty)))
1258     return nullptr;
1259 
1260   llvm::MDBuilder MDHelper(getLLVMContext());
1261   return MDHelper.createRange(Min, End);
1262 }
1263 
1264 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1265                                                QualType Ty,
1266                                                SourceLocation Loc,
1267                                                AlignmentSource AlignSource,
1268                                                llvm::MDNode *TBAAInfo,
1269                                                QualType TBAABaseType,
1270                                                uint64_t TBAAOffset,
1271                                                bool isNontemporal) {
1272   // For better performance, handle vector loads differently.
1273   if (Ty->isVectorType()) {
1274     const llvm::Type *EltTy = Addr.getElementType();
1275 
1276     const auto *VTy = cast<llvm::VectorType>(EltTy);
1277 
1278     // Handle vectors of size 3 like size 4 for better performance.
1279     if (VTy->getNumElements() == 3) {
1280 
1281       // Bitcast to vec4 type.
1282       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1283                                                          4);
1284       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1285       // Now load value.
1286       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1287 
1288       // Shuffle vector to get vec3.
1289       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1290                                       {0, 1, 2}, "extractVec");
1291       return EmitFromMemory(V, Ty);
1292     }
1293   }
1294 
1295   // Atomic operations have to be done on integral types.
1296   LValue AtomicLValue =
1297       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1298   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1299     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1300   }
1301 
1302   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1303   if (isNontemporal) {
1304     llvm::MDNode *Node = llvm::MDNode::get(
1305         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1306     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1307   }
1308   if (TBAAInfo) {
1309     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1310                                                       TBAAOffset);
1311     if (TBAAPath)
1312       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1313                                       false /*ConvertTypeToTag*/);
1314   }
1315 
1316   bool IsBool = hasBooleanRepresentation(Ty) ||
1317                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1318   bool NeedsBoolCheck = SanOpts.has(SanitizerKind::Bool) && IsBool;
1319   bool NeedsEnumCheck =
1320       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1321   if (NeedsBoolCheck || NeedsEnumCheck) {
1322     SanitizerScope SanScope(this);
1323     llvm::APInt Min, End;
1324     if (getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) {
1325       --End;
1326       llvm::Value *Check;
1327       if (!Min)
1328         Check = Builder.CreateICmpULE(
1329           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1330       else {
1331         llvm::Value *Upper = Builder.CreateICmpSLE(
1332           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1333         llvm::Value *Lower = Builder.CreateICmpSGE(
1334           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1335         Check = Builder.CreateAnd(Upper, Lower);
1336       }
1337       llvm::Constant *StaticArgs[] = {
1338         EmitCheckSourceLocation(Loc),
1339         EmitCheckTypeDescriptor(Ty)
1340       };
1341       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1342       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1343                 EmitCheckValue(Load));
1344     }
1345   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1346     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1347       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1348 
1349   return EmitFromMemory(Load, Ty);
1350 }
1351 
1352 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1353   // Bool has a different representation in memory than in registers.
1354   if (hasBooleanRepresentation(Ty)) {
1355     // This should really always be an i1, but sometimes it's already
1356     // an i8, and it's awkward to track those cases down.
1357     if (Value->getType()->isIntegerTy(1))
1358       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1359     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1360            "wrong value rep of bool");
1361   }
1362 
1363   return Value;
1364 }
1365 
1366 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1367   // Bool has a different representation in memory than in registers.
1368   if (hasBooleanRepresentation(Ty)) {
1369     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1370            "wrong value rep of bool");
1371     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1372   }
1373 
1374   return Value;
1375 }
1376 
1377 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1378                                         bool Volatile, QualType Ty,
1379                                         AlignmentSource AlignSource,
1380                                         llvm::MDNode *TBAAInfo,
1381                                         bool isInit, QualType TBAABaseType,
1382                                         uint64_t TBAAOffset,
1383                                         bool isNontemporal) {
1384 
1385   // Handle vectors differently to get better performance.
1386   if (Ty->isVectorType()) {
1387     llvm::Type *SrcTy = Value->getType();
1388     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1389     // Handle vec3 special.
1390     if (VecTy->getNumElements() == 3) {
1391       // Our source is a vec3, do a shuffle vector to make it a vec4.
1392       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1393                                 Builder.getInt32(2),
1394                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1395       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1396       Value = Builder.CreateShuffleVector(Value,
1397                                           llvm::UndefValue::get(VecTy),
1398                                           MaskV, "extractVec");
1399       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1400     }
1401     if (Addr.getElementType() != SrcTy) {
1402       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1403     }
1404   }
1405 
1406   Value = EmitToMemory(Value, Ty);
1407 
1408   LValue AtomicLValue =
1409       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1410   if (Ty->isAtomicType() ||
1411       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1412     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1413     return;
1414   }
1415 
1416   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1417   if (isNontemporal) {
1418     llvm::MDNode *Node =
1419         llvm::MDNode::get(Store->getContext(),
1420                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1421     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1422   }
1423   if (TBAAInfo) {
1424     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1425                                                       TBAAOffset);
1426     if (TBAAPath)
1427       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1428                                       false /*ConvertTypeToTag*/);
1429   }
1430 }
1431 
1432 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1433                                         bool isInit) {
1434   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1435                     lvalue.getType(), lvalue.getAlignmentSource(),
1436                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1437                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1438 }
1439 
1440 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1441 /// method emits the address of the lvalue, then loads the result as an rvalue,
1442 /// returning the rvalue.
1443 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1444   if (LV.isObjCWeak()) {
1445     // load of a __weak object.
1446     Address AddrWeakObj = LV.getAddress();
1447     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1448                                                              AddrWeakObj));
1449   }
1450   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1451     // In MRC mode, we do a load+autorelease.
1452     if (!getLangOpts().ObjCAutoRefCount) {
1453       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1454     }
1455 
1456     // In ARC mode, we load retained and then consume the value.
1457     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1458     Object = EmitObjCConsumeObject(LV.getType(), Object);
1459     return RValue::get(Object);
1460   }
1461 
1462   if (LV.isSimple()) {
1463     assert(!LV.getType()->isFunctionType());
1464 
1465     // Everything needs a load.
1466     return RValue::get(EmitLoadOfScalar(LV, Loc));
1467   }
1468 
1469   if (LV.isVectorElt()) {
1470     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1471                                               LV.isVolatileQualified());
1472     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1473                                                     "vecext"));
1474   }
1475 
1476   // If this is a reference to a subset of the elements of a vector, either
1477   // shuffle the input or extract/insert them as appropriate.
1478   if (LV.isExtVectorElt())
1479     return EmitLoadOfExtVectorElementLValue(LV);
1480 
1481   // Global Register variables always invoke intrinsics
1482   if (LV.isGlobalReg())
1483     return EmitLoadOfGlobalRegLValue(LV);
1484 
1485   assert(LV.isBitField() && "Unknown LValue type!");
1486   return EmitLoadOfBitfieldLValue(LV);
1487 }
1488 
1489 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1490   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1491 
1492   // Get the output type.
1493   llvm::Type *ResLTy = ConvertType(LV.getType());
1494 
1495   Address Ptr = LV.getBitFieldAddress();
1496   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1497 
1498   if (Info.IsSigned) {
1499     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1500     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1501     if (HighBits)
1502       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1503     if (Info.Offset + HighBits)
1504       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1505   } else {
1506     if (Info.Offset)
1507       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1508     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1509       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1510                                                               Info.Size),
1511                               "bf.clear");
1512   }
1513   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1514 
1515   return RValue::get(Val);
1516 }
1517 
1518 // If this is a reference to a subset of the elements of a vector, create an
1519 // appropriate shufflevector.
1520 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1521   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1522                                         LV.isVolatileQualified());
1523 
1524   const llvm::Constant *Elts = LV.getExtVectorElts();
1525 
1526   // If the result of the expression is a non-vector type, we must be extracting
1527   // a single element.  Just codegen as an extractelement.
1528   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1529   if (!ExprVT) {
1530     unsigned InIdx = getAccessedFieldNo(0, Elts);
1531     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1532     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1533   }
1534 
1535   // Always use shuffle vector to try to retain the original program structure
1536   unsigned NumResultElts = ExprVT->getNumElements();
1537 
1538   SmallVector<llvm::Constant*, 4> Mask;
1539   for (unsigned i = 0; i != NumResultElts; ++i)
1540     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1541 
1542   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1543   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1544                                     MaskV);
1545   return RValue::get(Vec);
1546 }
1547 
1548 /// @brief Generates lvalue for partial ext_vector access.
1549 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1550   Address VectorAddress = LV.getExtVectorAddress();
1551   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1552   QualType EQT = ExprVT->getElementType();
1553   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1554 
1555   Address CastToPointerElement =
1556     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1557                                  "conv.ptr.element");
1558 
1559   const llvm::Constant *Elts = LV.getExtVectorElts();
1560   unsigned ix = getAccessedFieldNo(0, Elts);
1561 
1562   Address VectorBasePtrPlusIx =
1563     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1564                                    getContext().getTypeSizeInChars(EQT),
1565                                    "vector.elt");
1566 
1567   return VectorBasePtrPlusIx;
1568 }
1569 
1570 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1571 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1572   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1573          "Bad type for register variable");
1574   llvm::MDNode *RegName = cast<llvm::MDNode>(
1575       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1576 
1577   // We accept integer and pointer types only
1578   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1579   llvm::Type *Ty = OrigTy;
1580   if (OrigTy->isPointerTy())
1581     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1582   llvm::Type *Types[] = { Ty };
1583 
1584   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1585   llvm::Value *Call = Builder.CreateCall(
1586       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1587   if (OrigTy->isPointerTy())
1588     Call = Builder.CreateIntToPtr(Call, OrigTy);
1589   return RValue::get(Call);
1590 }
1591 
1592 
1593 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1594 /// lvalue, where both are guaranteed to the have the same type, and that type
1595 /// is 'Ty'.
1596 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1597                                              bool isInit) {
1598   if (!Dst.isSimple()) {
1599     if (Dst.isVectorElt()) {
1600       // Read/modify/write the vector, inserting the new element.
1601       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1602                                             Dst.isVolatileQualified());
1603       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1604                                         Dst.getVectorIdx(), "vecins");
1605       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1606                           Dst.isVolatileQualified());
1607       return;
1608     }
1609 
1610     // If this is an update of extended vector elements, insert them as
1611     // appropriate.
1612     if (Dst.isExtVectorElt())
1613       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1614 
1615     if (Dst.isGlobalReg())
1616       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1617 
1618     assert(Dst.isBitField() && "Unknown LValue type");
1619     return EmitStoreThroughBitfieldLValue(Src, Dst);
1620   }
1621 
1622   // There's special magic for assigning into an ARC-qualified l-value.
1623   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1624     switch (Lifetime) {
1625     case Qualifiers::OCL_None:
1626       llvm_unreachable("present but none");
1627 
1628     case Qualifiers::OCL_ExplicitNone:
1629       // nothing special
1630       break;
1631 
1632     case Qualifiers::OCL_Strong:
1633       if (isInit) {
1634         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1635         break;
1636       }
1637       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1638       return;
1639 
1640     case Qualifiers::OCL_Weak:
1641       if (isInit)
1642         // Initialize and then skip the primitive store.
1643         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1644       else
1645         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1646       return;
1647 
1648     case Qualifiers::OCL_Autoreleasing:
1649       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1650                                                      Src.getScalarVal()));
1651       // fall into the normal path
1652       break;
1653     }
1654   }
1655 
1656   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1657     // load of a __weak object.
1658     Address LvalueDst = Dst.getAddress();
1659     llvm::Value *src = Src.getScalarVal();
1660      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1661     return;
1662   }
1663 
1664   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1665     // load of a __strong object.
1666     Address LvalueDst = Dst.getAddress();
1667     llvm::Value *src = Src.getScalarVal();
1668     if (Dst.isObjCIvar()) {
1669       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1670       llvm::Type *ResultType = IntPtrTy;
1671       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1672       llvm::Value *RHS = dst.getPointer();
1673       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1674       llvm::Value *LHS =
1675         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1676                                "sub.ptr.lhs.cast");
1677       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1678       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1679                                               BytesBetween);
1680     } else if (Dst.isGlobalObjCRef()) {
1681       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1682                                                 Dst.isThreadLocalRef());
1683     }
1684     else
1685       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1686     return;
1687   }
1688 
1689   assert(Src.isScalar() && "Can't emit an agg store with this method");
1690   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1691 }
1692 
1693 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1694                                                      llvm::Value **Result) {
1695   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1696   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1697   Address Ptr = Dst.getBitFieldAddress();
1698 
1699   // Get the source value, truncated to the width of the bit-field.
1700   llvm::Value *SrcVal = Src.getScalarVal();
1701 
1702   // Cast the source to the storage type and shift it into place.
1703   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1704                                  /*IsSigned=*/false);
1705   llvm::Value *MaskedVal = SrcVal;
1706 
1707   // See if there are other bits in the bitfield's storage we'll need to load
1708   // and mask together with source before storing.
1709   if (Info.StorageSize != Info.Size) {
1710     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1711     llvm::Value *Val =
1712       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1713 
1714     // Mask the source value as needed.
1715     if (!hasBooleanRepresentation(Dst.getType()))
1716       SrcVal = Builder.CreateAnd(SrcVal,
1717                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1718                                                             Info.Size),
1719                                  "bf.value");
1720     MaskedVal = SrcVal;
1721     if (Info.Offset)
1722       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1723 
1724     // Mask out the original value.
1725     Val = Builder.CreateAnd(Val,
1726                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1727                                                      Info.Offset,
1728                                                      Info.Offset + Info.Size),
1729                             "bf.clear");
1730 
1731     // Or together the unchanged values and the source value.
1732     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1733   } else {
1734     assert(Info.Offset == 0);
1735   }
1736 
1737   // Write the new value back out.
1738   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1739 
1740   // Return the new value of the bit-field, if requested.
1741   if (Result) {
1742     llvm::Value *ResultVal = MaskedVal;
1743 
1744     // Sign extend the value if needed.
1745     if (Info.IsSigned) {
1746       assert(Info.Size <= Info.StorageSize);
1747       unsigned HighBits = Info.StorageSize - Info.Size;
1748       if (HighBits) {
1749         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1750         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1751       }
1752     }
1753 
1754     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1755                                       "bf.result.cast");
1756     *Result = EmitFromMemory(ResultVal, Dst.getType());
1757   }
1758 }
1759 
1760 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1761                                                                LValue Dst) {
1762   // This access turns into a read/modify/write of the vector.  Load the input
1763   // value now.
1764   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1765                                         Dst.isVolatileQualified());
1766   const llvm::Constant *Elts = Dst.getExtVectorElts();
1767 
1768   llvm::Value *SrcVal = Src.getScalarVal();
1769 
1770   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1771     unsigned NumSrcElts = VTy->getNumElements();
1772     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1773     if (NumDstElts == NumSrcElts) {
1774       // Use shuffle vector is the src and destination are the same number of
1775       // elements and restore the vector mask since it is on the side it will be
1776       // stored.
1777       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1778       for (unsigned i = 0; i != NumSrcElts; ++i)
1779         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1780 
1781       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1782       Vec = Builder.CreateShuffleVector(SrcVal,
1783                                         llvm::UndefValue::get(Vec->getType()),
1784                                         MaskV);
1785     } else if (NumDstElts > NumSrcElts) {
1786       // Extended the source vector to the same length and then shuffle it
1787       // into the destination.
1788       // FIXME: since we're shuffling with undef, can we just use the indices
1789       //        into that?  This could be simpler.
1790       SmallVector<llvm::Constant*, 4> ExtMask;
1791       for (unsigned i = 0; i != NumSrcElts; ++i)
1792         ExtMask.push_back(Builder.getInt32(i));
1793       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1794       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1795       llvm::Value *ExtSrcVal =
1796         Builder.CreateShuffleVector(SrcVal,
1797                                     llvm::UndefValue::get(SrcVal->getType()),
1798                                     ExtMaskV);
1799       // build identity
1800       SmallVector<llvm::Constant*, 4> Mask;
1801       for (unsigned i = 0; i != NumDstElts; ++i)
1802         Mask.push_back(Builder.getInt32(i));
1803 
1804       // When the vector size is odd and .odd or .hi is used, the last element
1805       // of the Elts constant array will be one past the size of the vector.
1806       // Ignore the last element here, if it is greater than the mask size.
1807       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1808         NumSrcElts--;
1809 
1810       // modify when what gets shuffled in
1811       for (unsigned i = 0; i != NumSrcElts; ++i)
1812         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1813       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1814       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1815     } else {
1816       // We should never shorten the vector
1817       llvm_unreachable("unexpected shorten vector length");
1818     }
1819   } else {
1820     // If the Src is a scalar (not a vector) it must be updating one element.
1821     unsigned InIdx = getAccessedFieldNo(0, Elts);
1822     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1823     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1824   }
1825 
1826   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1827                       Dst.isVolatileQualified());
1828 }
1829 
1830 /// @brief Store of global named registers are always calls to intrinsics.
1831 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1832   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1833          "Bad type for register variable");
1834   llvm::MDNode *RegName = cast<llvm::MDNode>(
1835       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1836   assert(RegName && "Register LValue is not metadata");
1837 
1838   // We accept integer and pointer types only
1839   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1840   llvm::Type *Ty = OrigTy;
1841   if (OrigTy->isPointerTy())
1842     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1843   llvm::Type *Types[] = { Ty };
1844 
1845   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1846   llvm::Value *Value = Src.getScalarVal();
1847   if (OrigTy->isPointerTy())
1848     Value = Builder.CreatePtrToInt(Value, Ty);
1849   Builder.CreateCall(
1850       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1851 }
1852 
1853 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1854 // generating write-barries API. It is currently a global, ivar,
1855 // or neither.
1856 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1857                                  LValue &LV,
1858                                  bool IsMemberAccess=false) {
1859   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1860     return;
1861 
1862   if (isa<ObjCIvarRefExpr>(E)) {
1863     QualType ExpTy = E->getType();
1864     if (IsMemberAccess && ExpTy->isPointerType()) {
1865       // If ivar is a structure pointer, assigning to field of
1866       // this struct follows gcc's behavior and makes it a non-ivar
1867       // writer-barrier conservatively.
1868       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1869       if (ExpTy->isRecordType()) {
1870         LV.setObjCIvar(false);
1871         return;
1872       }
1873     }
1874     LV.setObjCIvar(true);
1875     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1876     LV.setBaseIvarExp(Exp->getBase());
1877     LV.setObjCArray(E->getType()->isArrayType());
1878     return;
1879   }
1880 
1881   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1882     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1883       if (VD->hasGlobalStorage()) {
1884         LV.setGlobalObjCRef(true);
1885         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1886       }
1887     }
1888     LV.setObjCArray(E->getType()->isArrayType());
1889     return;
1890   }
1891 
1892   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1893     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1894     return;
1895   }
1896 
1897   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1898     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1899     if (LV.isObjCIvar()) {
1900       // If cast is to a structure pointer, follow gcc's behavior and make it
1901       // a non-ivar write-barrier.
1902       QualType ExpTy = E->getType();
1903       if (ExpTy->isPointerType())
1904         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1905       if (ExpTy->isRecordType())
1906         LV.setObjCIvar(false);
1907     }
1908     return;
1909   }
1910 
1911   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1912     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1913     return;
1914   }
1915 
1916   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1917     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1918     return;
1919   }
1920 
1921   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1922     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1923     return;
1924   }
1925 
1926   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1927     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1928     return;
1929   }
1930 
1931   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1932     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1933     if (LV.isObjCIvar() && !LV.isObjCArray())
1934       // Using array syntax to assigning to what an ivar points to is not
1935       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1936       LV.setObjCIvar(false);
1937     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1938       // Using array syntax to assigning to what global points to is not
1939       // same as assigning to the global itself. {id *G;} G[i] = 0;
1940       LV.setGlobalObjCRef(false);
1941     return;
1942   }
1943 
1944   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1945     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1946     // We don't know if member is an 'ivar', but this flag is looked at
1947     // only in the context of LV.isObjCIvar().
1948     LV.setObjCArray(E->getType()->isArrayType());
1949     return;
1950   }
1951 }
1952 
1953 static llvm::Value *
1954 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1955                                 llvm::Value *V, llvm::Type *IRType,
1956                                 StringRef Name = StringRef()) {
1957   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1958   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1959 }
1960 
1961 static LValue EmitThreadPrivateVarDeclLValue(
1962     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1963     llvm::Type *RealVarTy, SourceLocation Loc) {
1964   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1965   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1966   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1967 }
1968 
1969 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1970                                              const ReferenceType *RefTy,
1971                                              AlignmentSource *Source) {
1972   llvm::Value *Ptr = Builder.CreateLoad(Addr);
1973   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1974                                               Source, /*forPointee*/ true));
1975 
1976 }
1977 
1978 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1979                                                   const ReferenceType *RefTy) {
1980   AlignmentSource Source;
1981   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1982   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1983 }
1984 
1985 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
1986                                            const PointerType *PtrTy,
1987                                            AlignmentSource *Source) {
1988   llvm::Value *Addr = Builder.CreateLoad(Ptr);
1989   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source,
1990                                                /*forPointeeType=*/true));
1991 }
1992 
1993 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
1994                                                 const PointerType *PtrTy) {
1995   AlignmentSource Source;
1996   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source);
1997   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source);
1998 }
1999 
2000 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2001                                       const Expr *E, const VarDecl *VD) {
2002   QualType T = E->getType();
2003 
2004   // If it's thread_local, emit a call to its wrapper function instead.
2005   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2006       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2007     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2008 
2009   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2010   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2011   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2012   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2013   Address Addr(V, Alignment);
2014   LValue LV;
2015   // Emit reference to the private copy of the variable if it is an OpenMP
2016   // threadprivate variable.
2017   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2018     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2019                                           E->getExprLoc());
2020   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2021     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2022   } else {
2023     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2024   }
2025   setObjCGCLValueClass(CGF.getContext(), E, LV);
2026   return LV;
2027 }
2028 
2029 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2030                                                const FunctionDecl *FD) {
2031   if (FD->hasAttr<WeakRefAttr>()) {
2032     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2033     return aliasee.getPointer();
2034   }
2035 
2036   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2037   if (!FD->hasPrototype()) {
2038     if (const FunctionProtoType *Proto =
2039             FD->getType()->getAs<FunctionProtoType>()) {
2040       // Ugly case: for a K&R-style definition, the type of the definition
2041       // isn't the same as the type of a use.  Correct for this with a
2042       // bitcast.
2043       QualType NoProtoType =
2044           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2045       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2046       V = llvm::ConstantExpr::getBitCast(V,
2047                                       CGM.getTypes().ConvertType(NoProtoType));
2048     }
2049   }
2050   return V;
2051 }
2052 
2053 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2054                                      const Expr *E, const FunctionDecl *FD) {
2055   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2056   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2057   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
2058 }
2059 
2060 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2061                                       llvm::Value *ThisValue) {
2062   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2063   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2064   return CGF.EmitLValueForField(LV, FD);
2065 }
2066 
2067 /// Named Registers are named metadata pointing to the register name
2068 /// which will be read from/written to as an argument to the intrinsic
2069 /// @llvm.read/write_register.
2070 /// So far, only the name is being passed down, but other options such as
2071 /// register type, allocation type or even optimization options could be
2072 /// passed down via the metadata node.
2073 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2074   SmallString<64> Name("llvm.named.register.");
2075   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2076   assert(Asm->getLabel().size() < 64-Name.size() &&
2077       "Register name too big");
2078   Name.append(Asm->getLabel());
2079   llvm::NamedMDNode *M =
2080     CGM.getModule().getOrInsertNamedMetadata(Name);
2081   if (M->getNumOperands() == 0) {
2082     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2083                                               Asm->getLabel());
2084     llvm::Metadata *Ops[] = {Str};
2085     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2086   }
2087 
2088   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2089 
2090   llvm::Value *Ptr =
2091     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2092   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2093 }
2094 
2095 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2096   const NamedDecl *ND = E->getDecl();
2097   QualType T = E->getType();
2098 
2099   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2100     // Global Named registers access via intrinsics only
2101     if (VD->getStorageClass() == SC_Register &&
2102         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2103       return EmitGlobalNamedRegister(VD, CGM);
2104 
2105     // A DeclRefExpr for a reference initialized by a constant expression can
2106     // appear without being odr-used. Directly emit the constant initializer.
2107     const Expr *Init = VD->getAnyInitializer(VD);
2108     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2109         VD->isUsableInConstantExpressions(getContext()) &&
2110         VD->checkInitIsICE() &&
2111         // Do not emit if it is private OpenMP variable.
2112         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2113           LocalDeclMap.count(VD))) {
2114       llvm::Constant *Val =
2115         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2116       assert(Val && "failed to emit reference constant expression");
2117       // FIXME: Eventually we will want to emit vector element references.
2118 
2119       // Should we be using the alignment of the constant pointer we emitted?
2120       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2121                                                     /*pointee*/ true);
2122 
2123       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2124     }
2125 
2126     // Check for captured variables.
2127     if (E->refersToEnclosingVariableOrCapture()) {
2128       if (auto *FD = LambdaCaptureFields.lookup(VD))
2129         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2130       else if (CapturedStmtInfo) {
2131         auto I = LocalDeclMap.find(VD);
2132         if (I != LocalDeclMap.end()) {
2133           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2134             return EmitLoadOfReferenceLValue(I->second, RefTy);
2135           return MakeAddrLValue(I->second, T);
2136         }
2137         LValue CapLVal =
2138             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2139                                     CapturedStmtInfo->getContextValue());
2140         return MakeAddrLValue(
2141             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2142             CapLVal.getType(), AlignmentSource::Decl);
2143       }
2144 
2145       assert(isa<BlockDecl>(CurCodeDecl));
2146       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2147       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2148     }
2149   }
2150 
2151   // FIXME: We should be able to assert this for FunctionDecls as well!
2152   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2153   // those with a valid source location.
2154   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2155           !E->getLocation().isValid()) &&
2156          "Should not use decl without marking it used!");
2157 
2158   if (ND->hasAttr<WeakRefAttr>()) {
2159     const auto *VD = cast<ValueDecl>(ND);
2160     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2161     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2162   }
2163 
2164   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2165     // Check if this is a global variable.
2166     if (VD->hasLinkage() || VD->isStaticDataMember())
2167       return EmitGlobalVarDeclLValue(*this, E, VD);
2168 
2169     Address addr = Address::invalid();
2170 
2171     // The variable should generally be present in the local decl map.
2172     auto iter = LocalDeclMap.find(VD);
2173     if (iter != LocalDeclMap.end()) {
2174       addr = iter->second;
2175 
2176     // Otherwise, it might be static local we haven't emitted yet for
2177     // some reason; most likely, because it's in an outer function.
2178     } else if (VD->isStaticLocal()) {
2179       addr = Address(CGM.getOrCreateStaticVarDecl(
2180           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2181                      getContext().getDeclAlign(VD));
2182 
2183     // No other cases for now.
2184     } else {
2185       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2186     }
2187 
2188 
2189     // Check for OpenMP threadprivate variables.
2190     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2191       return EmitThreadPrivateVarDeclLValue(
2192           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2193           E->getExprLoc());
2194     }
2195 
2196     // Drill into block byref variables.
2197     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2198     if (isBlockByref) {
2199       addr = emitBlockByrefAddress(addr, VD);
2200     }
2201 
2202     // Drill into reference types.
2203     LValue LV;
2204     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2205       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2206     } else {
2207       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2208     }
2209 
2210     bool isLocalStorage = VD->hasLocalStorage();
2211 
2212     bool NonGCable = isLocalStorage &&
2213                      !VD->getType()->isReferenceType() &&
2214                      !isBlockByref;
2215     if (NonGCable) {
2216       LV.getQuals().removeObjCGCAttr();
2217       LV.setNonGC(true);
2218     }
2219 
2220     bool isImpreciseLifetime =
2221       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2222     if (isImpreciseLifetime)
2223       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2224     setObjCGCLValueClass(getContext(), E, LV);
2225     return LV;
2226   }
2227 
2228   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2229     return EmitFunctionDeclLValue(*this, E, FD);
2230 
2231   // FIXME: While we're emitting a binding from an enclosing scope, all other
2232   // DeclRefExprs we see should be implicitly treated as if they also refer to
2233   // an enclosing scope.
2234   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2235     return EmitLValue(BD->getBinding());
2236 
2237   llvm_unreachable("Unhandled DeclRefExpr");
2238 }
2239 
2240 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2241   // __extension__ doesn't affect lvalue-ness.
2242   if (E->getOpcode() == UO_Extension)
2243     return EmitLValue(E->getSubExpr());
2244 
2245   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2246   switch (E->getOpcode()) {
2247   default: llvm_unreachable("Unknown unary operator lvalue!");
2248   case UO_Deref: {
2249     QualType T = E->getSubExpr()->getType()->getPointeeType();
2250     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2251 
2252     AlignmentSource AlignSource;
2253     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2254     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2255     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2256 
2257     // We should not generate __weak write barrier on indirect reference
2258     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2259     // But, we continue to generate __strong write barrier on indirect write
2260     // into a pointer to object.
2261     if (getLangOpts().ObjC1 &&
2262         getLangOpts().getGC() != LangOptions::NonGC &&
2263         LV.isObjCWeak())
2264       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2265     return LV;
2266   }
2267   case UO_Real:
2268   case UO_Imag: {
2269     LValue LV = EmitLValue(E->getSubExpr());
2270     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2271 
2272     // __real is valid on scalars.  This is a faster way of testing that.
2273     // __imag can only produce an rvalue on scalars.
2274     if (E->getOpcode() == UO_Real &&
2275         !LV.getAddress().getElementType()->isStructTy()) {
2276       assert(E->getSubExpr()->getType()->isArithmeticType());
2277       return LV;
2278     }
2279 
2280     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2281 
2282     Address Component =
2283       (E->getOpcode() == UO_Real
2284          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2285          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2286     LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource());
2287     ElemLV.getQuals().addQualifiers(LV.getQuals());
2288     return ElemLV;
2289   }
2290   case UO_PreInc:
2291   case UO_PreDec: {
2292     LValue LV = EmitLValue(E->getSubExpr());
2293     bool isInc = E->getOpcode() == UO_PreInc;
2294 
2295     if (E->getType()->isAnyComplexType())
2296       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2297     else
2298       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2299     return LV;
2300   }
2301   }
2302 }
2303 
2304 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2305   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2306                         E->getType(), AlignmentSource::Decl);
2307 }
2308 
2309 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2310   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2311                         E->getType(), AlignmentSource::Decl);
2312 }
2313 
2314 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2315   auto SL = E->getFunctionName();
2316   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2317   StringRef FnName = CurFn->getName();
2318   if (FnName.startswith("\01"))
2319     FnName = FnName.substr(1);
2320   StringRef NameItems[] = {
2321       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2322   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2323   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2324     std::string Name = SL->getString();
2325     if (!Name.empty()) {
2326       unsigned Discriminator =
2327           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2328       if (Discriminator)
2329         Name += "_" + Twine(Discriminator + 1).str();
2330       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2331       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2332     } else {
2333       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2334       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2335     }
2336   }
2337   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2338   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2339 }
2340 
2341 /// Emit a type description suitable for use by a runtime sanitizer library. The
2342 /// format of a type descriptor is
2343 ///
2344 /// \code
2345 ///   { i16 TypeKind, i16 TypeInfo }
2346 /// \endcode
2347 ///
2348 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2349 /// integer, 1 for a floating point value, and -1 for anything else.
2350 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2351   // Only emit each type's descriptor once.
2352   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2353     return C;
2354 
2355   uint16_t TypeKind = -1;
2356   uint16_t TypeInfo = 0;
2357 
2358   if (T->isIntegerType()) {
2359     TypeKind = 0;
2360     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2361                (T->isSignedIntegerType() ? 1 : 0);
2362   } else if (T->isFloatingType()) {
2363     TypeKind = 1;
2364     TypeInfo = getContext().getTypeSize(T);
2365   }
2366 
2367   // Format the type name as if for a diagnostic, including quotes and
2368   // optionally an 'aka'.
2369   SmallString<32> Buffer;
2370   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2371                                     (intptr_t)T.getAsOpaquePtr(),
2372                                     StringRef(), StringRef(), None, Buffer,
2373                                     None);
2374 
2375   llvm::Constant *Components[] = {
2376     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2377     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2378   };
2379   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2380 
2381   auto *GV = new llvm::GlobalVariable(
2382       CGM.getModule(), Descriptor->getType(),
2383       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2384   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2385   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2386 
2387   // Remember the descriptor for this type.
2388   CGM.setTypeDescriptorInMap(T, GV);
2389 
2390   return GV;
2391 }
2392 
2393 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2394   llvm::Type *TargetTy = IntPtrTy;
2395 
2396   // Floating-point types which fit into intptr_t are bitcast to integers
2397   // and then passed directly (after zero-extension, if necessary).
2398   if (V->getType()->isFloatingPointTy()) {
2399     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2400     if (Bits <= TargetTy->getIntegerBitWidth())
2401       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2402                                                          Bits));
2403   }
2404 
2405   // Integers which fit in intptr_t are zero-extended and passed directly.
2406   if (V->getType()->isIntegerTy() &&
2407       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2408     return Builder.CreateZExt(V, TargetTy);
2409 
2410   // Pointers are passed directly, everything else is passed by address.
2411   if (!V->getType()->isPointerTy()) {
2412     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2413     Builder.CreateStore(V, Ptr);
2414     V = Ptr.getPointer();
2415   }
2416   return Builder.CreatePtrToInt(V, TargetTy);
2417 }
2418 
2419 /// \brief Emit a representation of a SourceLocation for passing to a handler
2420 /// in a sanitizer runtime library. The format for this data is:
2421 /// \code
2422 ///   struct SourceLocation {
2423 ///     const char *Filename;
2424 ///     int32_t Line, Column;
2425 ///   };
2426 /// \endcode
2427 /// For an invalid SourceLocation, the Filename pointer is null.
2428 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2429   llvm::Constant *Filename;
2430   int Line, Column;
2431 
2432   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2433   if (PLoc.isValid()) {
2434     StringRef FilenameString = PLoc.getFilename();
2435 
2436     int PathComponentsToStrip =
2437         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2438     if (PathComponentsToStrip < 0) {
2439       assert(PathComponentsToStrip != INT_MIN);
2440       int PathComponentsToKeep = -PathComponentsToStrip;
2441       auto I = llvm::sys::path::rbegin(FilenameString);
2442       auto E = llvm::sys::path::rend(FilenameString);
2443       while (I != E && --PathComponentsToKeep)
2444         ++I;
2445 
2446       FilenameString = FilenameString.substr(I - E);
2447     } else if (PathComponentsToStrip > 0) {
2448       auto I = llvm::sys::path::begin(FilenameString);
2449       auto E = llvm::sys::path::end(FilenameString);
2450       while (I != E && PathComponentsToStrip--)
2451         ++I;
2452 
2453       if (I != E)
2454         FilenameString =
2455             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2456       else
2457         FilenameString = llvm::sys::path::filename(FilenameString);
2458     }
2459 
2460     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2461     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2462                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2463     Filename = FilenameGV.getPointer();
2464     Line = PLoc.getLine();
2465     Column = PLoc.getColumn();
2466   } else {
2467     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2468     Line = Column = 0;
2469   }
2470 
2471   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2472                             Builder.getInt32(Column)};
2473 
2474   return llvm::ConstantStruct::getAnon(Data);
2475 }
2476 
2477 namespace {
2478 /// \brief Specify under what conditions this check can be recovered
2479 enum class CheckRecoverableKind {
2480   /// Always terminate program execution if this check fails.
2481   Unrecoverable,
2482   /// Check supports recovering, runtime has both fatal (noreturn) and
2483   /// non-fatal handlers for this check.
2484   Recoverable,
2485   /// Runtime conditionally aborts, always need to support recovery.
2486   AlwaysRecoverable
2487 };
2488 }
2489 
2490 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2491   assert(llvm::countPopulation(Kind) == 1);
2492   switch (Kind) {
2493   case SanitizerKind::Vptr:
2494     return CheckRecoverableKind::AlwaysRecoverable;
2495   case SanitizerKind::Return:
2496   case SanitizerKind::Unreachable:
2497     return CheckRecoverableKind::Unrecoverable;
2498   default:
2499     return CheckRecoverableKind::Recoverable;
2500   }
2501 }
2502 
2503 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2504                                  llvm::FunctionType *FnType,
2505                                  ArrayRef<llvm::Value *> FnArgs,
2506                                  StringRef CheckName,
2507                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2508                                  llvm::BasicBlock *ContBB) {
2509   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2510   bool NeedsAbortSuffix =
2511       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2512   std::string FnName = ("__ubsan_handle_" + CheckName +
2513                         (NeedsAbortSuffix ? "_abort" : "")).str();
2514   bool MayReturn =
2515       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2516 
2517   llvm::AttrBuilder B;
2518   if (!MayReturn) {
2519     B.addAttribute(llvm::Attribute::NoReturn)
2520         .addAttribute(llvm::Attribute::NoUnwind);
2521   }
2522   B.addAttribute(llvm::Attribute::UWTable);
2523 
2524   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2525       FnType, FnName,
2526       llvm::AttributeSet::get(CGF.getLLVMContext(),
2527                               llvm::AttributeSet::FunctionIndex, B));
2528   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2529   if (!MayReturn) {
2530     HandlerCall->setDoesNotReturn();
2531     CGF.Builder.CreateUnreachable();
2532   } else {
2533     CGF.Builder.CreateBr(ContBB);
2534   }
2535 }
2536 
2537 void CodeGenFunction::EmitCheck(
2538     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2539     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2540     ArrayRef<llvm::Value *> DynamicArgs) {
2541   assert(IsSanitizerScope);
2542   assert(Checked.size() > 0);
2543 
2544   llvm::Value *FatalCond = nullptr;
2545   llvm::Value *RecoverableCond = nullptr;
2546   llvm::Value *TrapCond = nullptr;
2547   for (int i = 0, n = Checked.size(); i < n; ++i) {
2548     llvm::Value *Check = Checked[i].first;
2549     // -fsanitize-trap= overrides -fsanitize-recover=.
2550     llvm::Value *&Cond =
2551         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2552             ? TrapCond
2553             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2554                   ? RecoverableCond
2555                   : FatalCond;
2556     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2557   }
2558 
2559   if (TrapCond)
2560     EmitTrapCheck(TrapCond);
2561   if (!FatalCond && !RecoverableCond)
2562     return;
2563 
2564   llvm::Value *JointCond;
2565   if (FatalCond && RecoverableCond)
2566     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2567   else
2568     JointCond = FatalCond ? FatalCond : RecoverableCond;
2569   assert(JointCond);
2570 
2571   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2572   assert(SanOpts.has(Checked[0].second));
2573 #ifndef NDEBUG
2574   for (int i = 1, n = Checked.size(); i < n; ++i) {
2575     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2576            "All recoverable kinds in a single check must be same!");
2577     assert(SanOpts.has(Checked[i].second));
2578   }
2579 #endif
2580 
2581   llvm::BasicBlock *Cont = createBasicBlock("cont");
2582   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2583   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2584   // Give hint that we very much don't expect to execute the handler
2585   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2586   llvm::MDBuilder MDHelper(getLLVMContext());
2587   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2588   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2589   EmitBlock(Handlers);
2590 
2591   // Handler functions take an i8* pointing to the (handler-specific) static
2592   // information block, followed by a sequence of intptr_t arguments
2593   // representing operand values.
2594   SmallVector<llvm::Value *, 4> Args;
2595   SmallVector<llvm::Type *, 4> ArgTypes;
2596   Args.reserve(DynamicArgs.size() + 1);
2597   ArgTypes.reserve(DynamicArgs.size() + 1);
2598 
2599   // Emit handler arguments and create handler function type.
2600   if (!StaticArgs.empty()) {
2601     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2602     auto *InfoPtr =
2603         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2604                                  llvm::GlobalVariable::PrivateLinkage, Info);
2605     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2606     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2607     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2608     ArgTypes.push_back(Int8PtrTy);
2609   }
2610 
2611   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2612     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2613     ArgTypes.push_back(IntPtrTy);
2614   }
2615 
2616   llvm::FunctionType *FnType =
2617     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2618 
2619   if (!FatalCond || !RecoverableCond) {
2620     // Simple case: we need to generate a single handler call, either
2621     // fatal, or non-fatal.
2622     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2623                          (FatalCond != nullptr), Cont);
2624   } else {
2625     // Emit two handler calls: first one for set of unrecoverable checks,
2626     // another one for recoverable.
2627     llvm::BasicBlock *NonFatalHandlerBB =
2628         createBasicBlock("non_fatal." + CheckName);
2629     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2630     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2631     EmitBlock(FatalHandlerBB);
2632     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2633                          NonFatalHandlerBB);
2634     EmitBlock(NonFatalHandlerBB);
2635     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2636                          Cont);
2637   }
2638 
2639   EmitBlock(Cont);
2640 }
2641 
2642 void CodeGenFunction::EmitCfiSlowPathCheck(
2643     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2644     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2645   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2646 
2647   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2648   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2649 
2650   llvm::MDBuilder MDHelper(getLLVMContext());
2651   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2652   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2653 
2654   EmitBlock(CheckBB);
2655 
2656   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2657 
2658   llvm::CallInst *CheckCall;
2659   if (WithDiag) {
2660     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2661     auto *InfoPtr =
2662         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2663                                  llvm::GlobalVariable::PrivateLinkage, Info);
2664     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2665     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2666 
2667     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2668         "__cfi_slowpath_diag",
2669         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2670                                 false));
2671     CheckCall = Builder.CreateCall(
2672         SlowPathDiagFn,
2673         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2674   } else {
2675     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2676         "__cfi_slowpath",
2677         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2678     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2679   }
2680 
2681   CheckCall->setDoesNotThrow();
2682 
2683   EmitBlock(Cont);
2684 }
2685 
2686 // This function is basically a switch over the CFI failure kind, which is
2687 // extracted from CFICheckFailData (1st function argument). Each case is either
2688 // llvm.trap or a call to one of the two runtime handlers, based on
2689 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2690 // failure kind) traps, but this should really never happen.  CFICheckFailData
2691 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2692 // check kind; in this case __cfi_check_fail traps as well.
2693 void CodeGenFunction::EmitCfiCheckFail() {
2694   SanitizerScope SanScope(this);
2695   FunctionArgList Args;
2696   ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr,
2697                             getContext().VoidPtrTy);
2698   ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr,
2699                             getContext().VoidPtrTy);
2700   Args.push_back(&ArgData);
2701   Args.push_back(&ArgAddr);
2702 
2703   const CGFunctionInfo &FI =
2704     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2705 
2706   llvm::Function *F = llvm::Function::Create(
2707       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2708       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2709   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2710 
2711   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2712                 SourceLocation());
2713 
2714   llvm::Value *Data =
2715       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2716                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2717   llvm::Value *Addr =
2718       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2719                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2720 
2721   // Data == nullptr means the calling module has trap behaviour for this check.
2722   llvm::Value *DataIsNotNullPtr =
2723       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2724   EmitTrapCheck(DataIsNotNullPtr);
2725 
2726   llvm::StructType *SourceLocationTy =
2727       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr);
2728   llvm::StructType *CfiCheckFailDataTy =
2729       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr);
2730 
2731   llvm::Value *V = Builder.CreateConstGEP2_32(
2732       CfiCheckFailDataTy,
2733       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2734       0);
2735   Address CheckKindAddr(V, getIntAlign());
2736   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2737 
2738   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2739       CGM.getLLVMContext(),
2740       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2741   llvm::Value *ValidVtable = Builder.CreateZExt(
2742       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2743                          {Addr, AllVtables}),
2744       IntPtrTy);
2745 
2746   const std::pair<int, SanitizerMask> CheckKinds[] = {
2747       {CFITCK_VCall, SanitizerKind::CFIVCall},
2748       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2749       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2750       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2751       {CFITCK_ICall, SanitizerKind::CFIICall}};
2752 
2753   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2754   for (auto CheckKindMaskPair : CheckKinds) {
2755     int Kind = CheckKindMaskPair.first;
2756     SanitizerMask Mask = CheckKindMaskPair.second;
2757     llvm::Value *Cond =
2758         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2759     if (CGM.getLangOpts().Sanitize.has(Mask))
2760       EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {},
2761                 {Data, Addr, ValidVtable});
2762     else
2763       EmitTrapCheck(Cond);
2764   }
2765 
2766   FinishFunction();
2767   // The only reference to this function will be created during LTO link.
2768   // Make sure it survives until then.
2769   CGM.addUsedGlobal(F);
2770 }
2771 
2772 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2773   llvm::BasicBlock *Cont = createBasicBlock("cont");
2774 
2775   // If we're optimizing, collapse all calls to trap down to just one per
2776   // function to save on code size.
2777   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2778     TrapBB = createBasicBlock("trap");
2779     Builder.CreateCondBr(Checked, Cont, TrapBB);
2780     EmitBlock(TrapBB);
2781     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2782     TrapCall->setDoesNotReturn();
2783     TrapCall->setDoesNotThrow();
2784     Builder.CreateUnreachable();
2785   } else {
2786     Builder.CreateCondBr(Checked, Cont, TrapBB);
2787   }
2788 
2789   EmitBlock(Cont);
2790 }
2791 
2792 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2793   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2794 
2795   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
2796     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
2797                                   CGM.getCodeGenOpts().TrapFuncName);
2798     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A);
2799   }
2800 
2801   return TrapCall;
2802 }
2803 
2804 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2805                                                  AlignmentSource *AlignSource) {
2806   assert(E->getType()->isArrayType() &&
2807          "Array to pointer decay must have array source type!");
2808 
2809   // Expressions of array type can't be bitfields or vector elements.
2810   LValue LV = EmitLValue(E);
2811   Address Addr = LV.getAddress();
2812   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2813 
2814   // If the array type was an incomplete type, we need to make sure
2815   // the decay ends up being the right type.
2816   llvm::Type *NewTy = ConvertType(E->getType());
2817   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2818 
2819   // Note that VLA pointers are always decayed, so we don't need to do
2820   // anything here.
2821   if (!E->getType()->isVariableArrayType()) {
2822     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2823            "Expected pointer to array");
2824     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2825   }
2826 
2827   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2828   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2829 }
2830 
2831 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2832 /// array to pointer, return the array subexpression.
2833 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2834   // If this isn't just an array->pointer decay, bail out.
2835   const auto *CE = dyn_cast<CastExpr>(E);
2836   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2837     return nullptr;
2838 
2839   // If this is a decay from variable width array, bail out.
2840   const Expr *SubExpr = CE->getSubExpr();
2841   if (SubExpr->getType()->isVariableArrayType())
2842     return nullptr;
2843 
2844   return SubExpr;
2845 }
2846 
2847 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2848                                           llvm::Value *ptr,
2849                                           ArrayRef<llvm::Value*> indices,
2850                                           bool inbounds,
2851                                     const llvm::Twine &name = "arrayidx") {
2852   if (inbounds) {
2853     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2854   } else {
2855     return CGF.Builder.CreateGEP(ptr, indices, name);
2856   }
2857 }
2858 
2859 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2860                                       llvm::Value *idx,
2861                                       CharUnits eltSize) {
2862   // If we have a constant index, we can use the exact offset of the
2863   // element we're accessing.
2864   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2865     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2866     return arrayAlign.alignmentAtOffset(offset);
2867 
2868   // Otherwise, use the worst-case alignment for any element.
2869   } else {
2870     return arrayAlign.alignmentOfArrayElement(eltSize);
2871   }
2872 }
2873 
2874 static QualType getFixedSizeElementType(const ASTContext &ctx,
2875                                         const VariableArrayType *vla) {
2876   QualType eltType;
2877   do {
2878     eltType = vla->getElementType();
2879   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2880   return eltType;
2881 }
2882 
2883 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2884                                      ArrayRef<llvm::Value*> indices,
2885                                      QualType eltType, bool inbounds,
2886                                      const llvm::Twine &name = "arrayidx") {
2887   // All the indices except that last must be zero.
2888 #ifndef NDEBUG
2889   for (auto idx : indices.drop_back())
2890     assert(isa<llvm::ConstantInt>(idx) &&
2891            cast<llvm::ConstantInt>(idx)->isZero());
2892 #endif
2893 
2894   // Determine the element size of the statically-sized base.  This is
2895   // the thing that the indices are expressed in terms of.
2896   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2897     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2898   }
2899 
2900   // We can use that to compute the best alignment of the element.
2901   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2902   CharUnits eltAlign =
2903     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2904 
2905   llvm::Value *eltPtr =
2906     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2907   return Address(eltPtr, eltAlign);
2908 }
2909 
2910 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2911                                                bool Accessed) {
2912   // The index must always be an integer, which is not an aggregate.  Emit it
2913   // in lexical order (this complexity is, sadly, required by C++17).
2914   llvm::Value *IdxPre =
2915       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
2916   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
2917     auto *Idx = IdxPre;
2918     if (E->getLHS() != E->getIdx()) {
2919       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
2920       Idx = EmitScalarExpr(E->getIdx());
2921     }
2922 
2923     QualType IdxTy = E->getIdx()->getType();
2924     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2925 
2926     if (SanOpts.has(SanitizerKind::ArrayBounds))
2927       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2928 
2929     // Extend or truncate the index type to 32 or 64-bits.
2930     if (Promote && Idx->getType() != IntPtrTy)
2931       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2932 
2933     return Idx;
2934   };
2935   IdxPre = nullptr;
2936 
2937   // If the base is a vector type, then we are forming a vector element lvalue
2938   // with this subscript.
2939   if (E->getBase()->getType()->isVectorType() &&
2940       !isa<ExtVectorElementExpr>(E->getBase())) {
2941     // Emit the vector as an lvalue to get its address.
2942     LValue LHS = EmitLValue(E->getBase());
2943     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
2944     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2945     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2946                                  E->getBase()->getType(),
2947                                  LHS.getAlignmentSource());
2948   }
2949 
2950   // All the other cases basically behave like simple offsetting.
2951 
2952   // Handle the extvector case we ignored above.
2953   if (isa<ExtVectorElementExpr>(E->getBase())) {
2954     LValue LV = EmitLValue(E->getBase());
2955     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
2956     Address Addr = EmitExtVectorElementLValue(LV);
2957 
2958     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2959     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2960     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2961   }
2962 
2963   AlignmentSource AlignSource;
2964   Address Addr = Address::invalid();
2965   if (const VariableArrayType *vla =
2966            getContext().getAsVariableArrayType(E->getType())) {
2967     // The base must be a pointer, which is not an aggregate.  Emit
2968     // it.  It needs to be emitted first in case it's what captures
2969     // the VLA bounds.
2970     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2971     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
2972 
2973     // The element count here is the total number of non-VLA elements.
2974     llvm::Value *numElements = getVLASize(vla).first;
2975 
2976     // Effectively, the multiply by the VLA size is part of the GEP.
2977     // GEP indexes are signed, and scaling an index isn't permitted to
2978     // signed-overflow, so we use the same semantics for our explicit
2979     // multiply.  We suppress this if overflow is not undefined behavior.
2980     if (getLangOpts().isSignedOverflowDefined()) {
2981       Idx = Builder.CreateMul(Idx, numElements);
2982     } else {
2983       Idx = Builder.CreateNSWMul(Idx, numElements);
2984     }
2985 
2986     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2987                                  !getLangOpts().isSignedOverflowDefined());
2988 
2989   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2990     // Indexing over an interface, as in "NSString *P; P[4];"
2991 
2992     // Emit the base pointer.
2993     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2994     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
2995 
2996     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2997     llvm::Value *InterfaceSizeVal =
2998         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
2999 
3000     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3001 
3002     // We don't necessarily build correct LLVM struct types for ObjC
3003     // interfaces, so we can't rely on GEP to do this scaling
3004     // correctly, so we need to cast to i8*.  FIXME: is this actually
3005     // true?  A lot of other things in the fragile ABI would break...
3006     llvm::Type *OrigBaseTy = Addr.getType();
3007     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3008 
3009     // Do the GEP.
3010     CharUnits EltAlign =
3011       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3012     llvm::Value *EltPtr =
3013       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
3014     Addr = Address(EltPtr, EltAlign);
3015 
3016     // Cast back.
3017     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3018   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3019     // If this is A[i] where A is an array, the frontend will have decayed the
3020     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3021     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3022     // "gep x, i" here.  Emit one "gep A, 0, i".
3023     assert(Array->getType()->isArrayType() &&
3024            "Array to pointer decay must have array source type!");
3025     LValue ArrayLV;
3026     // For simple multidimensional array indexing, set the 'accessed' flag for
3027     // better bounds-checking of the base expression.
3028     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3029       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3030     else
3031       ArrayLV = EmitLValue(Array);
3032     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3033 
3034     // Propagate the alignment from the array itself to the result.
3035     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
3036                                  {CGM.getSize(CharUnits::Zero()), Idx},
3037                                  E->getType(),
3038                                  !getLangOpts().isSignedOverflowDefined());
3039     AlignSource = ArrayLV.getAlignmentSource();
3040   } else {
3041     // The base must be a pointer; emit it with an estimate of its alignment.
3042     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3043     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3044     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3045                                  !getLangOpts().isSignedOverflowDefined());
3046   }
3047 
3048   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
3049 
3050   // TODO: Preserve/extend path TBAA metadata?
3051 
3052   if (getLangOpts().ObjC1 &&
3053       getLangOpts().getGC() != LangOptions::NonGC) {
3054     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3055     setObjCGCLValueClass(getContext(), E, LV);
3056   }
3057   return LV;
3058 }
3059 
3060 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3061                                        AlignmentSource &AlignSource,
3062                                        QualType BaseTy, QualType ElTy,
3063                                        bool IsLowerBound) {
3064   LValue BaseLVal;
3065   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3066     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3067     if (BaseTy->isArrayType()) {
3068       Address Addr = BaseLVal.getAddress();
3069       AlignSource = BaseLVal.getAlignmentSource();
3070 
3071       // If the array type was an incomplete type, we need to make sure
3072       // the decay ends up being the right type.
3073       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3074       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3075 
3076       // Note that VLA pointers are always decayed, so we don't need to do
3077       // anything here.
3078       if (!BaseTy->isVariableArrayType()) {
3079         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3080                "Expected pointer to array");
3081         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3082                                            "arraydecay");
3083       }
3084 
3085       return CGF.Builder.CreateElementBitCast(Addr,
3086                                               CGF.ConvertTypeForMem(ElTy));
3087     }
3088     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource);
3089     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3090   }
3091   return CGF.EmitPointerWithAlignment(Base, &AlignSource);
3092 }
3093 
3094 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3095                                                 bool IsLowerBound) {
3096   QualType BaseTy;
3097   if (auto *ASE =
3098           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3099     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3100   else
3101     BaseTy = E->getBase()->getType();
3102   QualType ResultExprTy;
3103   if (auto *AT = getContext().getAsArrayType(BaseTy))
3104     ResultExprTy = AT->getElementType();
3105   else
3106     ResultExprTy = BaseTy->getPointeeType();
3107   llvm::Value *Idx = nullptr;
3108   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3109     // Requesting lower bound or upper bound, but without provided length and
3110     // without ':' symbol for the default length -> length = 1.
3111     // Idx = LowerBound ?: 0;
3112     if (auto *LowerBound = E->getLowerBound()) {
3113       Idx = Builder.CreateIntCast(
3114           EmitScalarExpr(LowerBound), IntPtrTy,
3115           LowerBound->getType()->hasSignedIntegerRepresentation());
3116     } else
3117       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3118   } else {
3119     // Try to emit length or lower bound as constant. If this is possible, 1
3120     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3121     // IR (LB + Len) - 1.
3122     auto &C = CGM.getContext();
3123     auto *Length = E->getLength();
3124     llvm::APSInt ConstLength;
3125     if (Length) {
3126       // Idx = LowerBound + Length - 1;
3127       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3128         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3129         Length = nullptr;
3130       }
3131       auto *LowerBound = E->getLowerBound();
3132       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3133       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3134         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3135         LowerBound = nullptr;
3136       }
3137       if (!Length)
3138         --ConstLength;
3139       else if (!LowerBound)
3140         --ConstLowerBound;
3141 
3142       if (Length || LowerBound) {
3143         auto *LowerBoundVal =
3144             LowerBound
3145                 ? Builder.CreateIntCast(
3146                       EmitScalarExpr(LowerBound), IntPtrTy,
3147                       LowerBound->getType()->hasSignedIntegerRepresentation())
3148                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3149         auto *LengthVal =
3150             Length
3151                 ? Builder.CreateIntCast(
3152                       EmitScalarExpr(Length), IntPtrTy,
3153                       Length->getType()->hasSignedIntegerRepresentation())
3154                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3155         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3156                                 /*HasNUW=*/false,
3157                                 !getLangOpts().isSignedOverflowDefined());
3158         if (Length && LowerBound) {
3159           Idx = Builder.CreateSub(
3160               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3161               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3162         }
3163       } else
3164         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3165     } else {
3166       // Idx = ArraySize - 1;
3167       QualType ArrayTy = BaseTy->isPointerType()
3168                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3169                              : BaseTy;
3170       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3171         Length = VAT->getSizeExpr();
3172         if (Length->isIntegerConstantExpr(ConstLength, C))
3173           Length = nullptr;
3174       } else {
3175         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3176         ConstLength = CAT->getSize();
3177       }
3178       if (Length) {
3179         auto *LengthVal = Builder.CreateIntCast(
3180             EmitScalarExpr(Length), IntPtrTy,
3181             Length->getType()->hasSignedIntegerRepresentation());
3182         Idx = Builder.CreateSub(
3183             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3184             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3185       } else {
3186         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3187         --ConstLength;
3188         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3189       }
3190     }
3191   }
3192   assert(Idx);
3193 
3194   Address EltPtr = Address::invalid();
3195   AlignmentSource AlignSource;
3196   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3197     // The base must be a pointer, which is not an aggregate.  Emit
3198     // it.  It needs to be emitted first in case it's what captures
3199     // the VLA bounds.
3200     Address Base =
3201         emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy,
3202                                 VLA->getElementType(), IsLowerBound);
3203     // The element count here is the total number of non-VLA elements.
3204     llvm::Value *NumElements = getVLASize(VLA).first;
3205 
3206     // Effectively, the multiply by the VLA size is part of the GEP.
3207     // GEP indexes are signed, and scaling an index isn't permitted to
3208     // signed-overflow, so we use the same semantics for our explicit
3209     // multiply.  We suppress this if overflow is not undefined behavior.
3210     if (getLangOpts().isSignedOverflowDefined())
3211       Idx = Builder.CreateMul(Idx, NumElements);
3212     else
3213       Idx = Builder.CreateNSWMul(Idx, NumElements);
3214     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3215                                    !getLangOpts().isSignedOverflowDefined());
3216   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3217     // If this is A[i] where A is an array, the frontend will have decayed the
3218     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3219     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3220     // "gep x, i" here.  Emit one "gep A, 0, i".
3221     assert(Array->getType()->isArrayType() &&
3222            "Array to pointer decay must have array source type!");
3223     LValue ArrayLV;
3224     // For simple multidimensional array indexing, set the 'accessed' flag for
3225     // better bounds-checking of the base expression.
3226     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3227       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3228     else
3229       ArrayLV = EmitLValue(Array);
3230 
3231     // Propagate the alignment from the array itself to the result.
3232     EltPtr = emitArraySubscriptGEP(
3233         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3234         ResultExprTy, !getLangOpts().isSignedOverflowDefined());
3235     AlignSource = ArrayLV.getAlignmentSource();
3236   } else {
3237     Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource,
3238                                            BaseTy, ResultExprTy, IsLowerBound);
3239     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3240                                    !getLangOpts().isSignedOverflowDefined());
3241   }
3242 
3243   return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource);
3244 }
3245 
3246 LValue CodeGenFunction::
3247 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3248   // Emit the base vector as an l-value.
3249   LValue Base;
3250 
3251   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3252   if (E->isArrow()) {
3253     // If it is a pointer to a vector, emit the address and form an lvalue with
3254     // it.
3255     AlignmentSource AlignSource;
3256     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3257     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3258     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
3259     Base.getQuals().removeObjCGCAttr();
3260   } else if (E->getBase()->isGLValue()) {
3261     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3262     // emit the base as an lvalue.
3263     assert(E->getBase()->getType()->isVectorType());
3264     Base = EmitLValue(E->getBase());
3265   } else {
3266     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3267     assert(E->getBase()->getType()->isVectorType() &&
3268            "Result must be a vector");
3269     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3270 
3271     // Store the vector to memory (because LValue wants an address).
3272     Address VecMem = CreateMemTemp(E->getBase()->getType());
3273     Builder.CreateStore(Vec, VecMem);
3274     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3275                           AlignmentSource::Decl);
3276   }
3277 
3278   QualType type =
3279     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3280 
3281   // Encode the element access list into a vector of unsigned indices.
3282   SmallVector<uint32_t, 4> Indices;
3283   E->getEncodedElementAccess(Indices);
3284 
3285   if (Base.isSimple()) {
3286     llvm::Constant *CV =
3287         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3288     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3289                                     Base.getAlignmentSource());
3290   }
3291   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3292 
3293   llvm::Constant *BaseElts = Base.getExtVectorElts();
3294   SmallVector<llvm::Constant *, 4> CElts;
3295 
3296   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3297     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3298   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3299   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3300                                   Base.getAlignmentSource());
3301 }
3302 
3303 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3304   Expr *BaseExpr = E->getBase();
3305 
3306   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3307   LValue BaseLV;
3308   if (E->isArrow()) {
3309     AlignmentSource AlignSource;
3310     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3311     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3312     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3313     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3314   } else
3315     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3316 
3317   NamedDecl *ND = E->getMemberDecl();
3318   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3319     LValue LV = EmitLValueForField(BaseLV, Field);
3320     setObjCGCLValueClass(getContext(), E, LV);
3321     return LV;
3322   }
3323 
3324   if (auto *VD = dyn_cast<VarDecl>(ND))
3325     return EmitGlobalVarDeclLValue(*this, E, VD);
3326 
3327   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3328     return EmitFunctionDeclLValue(*this, E, FD);
3329 
3330   llvm_unreachable("Unhandled member declaration!");
3331 }
3332 
3333 /// Given that we are currently emitting a lambda, emit an l-value for
3334 /// one of its members.
3335 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3336   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3337   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3338   QualType LambdaTagType =
3339     getContext().getTagDeclType(Field->getParent());
3340   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3341   return EmitLValueForField(LambdaLV, Field);
3342 }
3343 
3344 /// Drill down to the storage of a field without walking into
3345 /// reference types.
3346 ///
3347 /// The resulting address doesn't necessarily have the right type.
3348 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3349                                       const FieldDecl *field) {
3350   const RecordDecl *rec = field->getParent();
3351 
3352   unsigned idx =
3353     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3354 
3355   CharUnits offset;
3356   // Adjust the alignment down to the given offset.
3357   // As a special case, if the LLVM field index is 0, we know that this
3358   // is zero.
3359   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3360                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3361          "LLVM field at index zero had non-zero offset?");
3362   if (idx != 0) {
3363     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3364     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3365     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3366   }
3367 
3368   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3369 }
3370 
3371 LValue CodeGenFunction::EmitLValueForField(LValue base,
3372                                            const FieldDecl *field) {
3373   AlignmentSource fieldAlignSource =
3374     getFieldAlignmentSource(base.getAlignmentSource());
3375 
3376   if (field->isBitField()) {
3377     const CGRecordLayout &RL =
3378       CGM.getTypes().getCGRecordLayout(field->getParent());
3379     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3380     Address Addr = base.getAddress();
3381     unsigned Idx = RL.getLLVMFieldNo(field);
3382     if (Idx != 0)
3383       // For structs, we GEP to the field that the record layout suggests.
3384       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3385                                      field->getName());
3386     // Get the access type.
3387     llvm::Type *FieldIntTy =
3388       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3389     if (Addr.getElementType() != FieldIntTy)
3390       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3391 
3392     QualType fieldType =
3393       field->getType().withCVRQualifiers(base.getVRQualifiers());
3394     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3395   }
3396 
3397   const RecordDecl *rec = field->getParent();
3398   QualType type = field->getType();
3399 
3400   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3401 
3402   Address addr = base.getAddress();
3403   unsigned cvr = base.getVRQualifiers();
3404   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3405   if (rec->isUnion()) {
3406     // For unions, there is no pointer adjustment.
3407     assert(!type->isReferenceType() && "union has reference member");
3408     // TODO: handle path-aware TBAA for union.
3409     TBAAPath = false;
3410   } else {
3411     // For structs, we GEP to the field that the record layout suggests.
3412     addr = emitAddrOfFieldStorage(*this, addr, field);
3413 
3414     // If this is a reference field, load the reference right now.
3415     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3416       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3417       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3418 
3419       // Loading the reference will disable path-aware TBAA.
3420       TBAAPath = false;
3421       if (CGM.shouldUseTBAA()) {
3422         llvm::MDNode *tbaa;
3423         if (mayAlias)
3424           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3425         else
3426           tbaa = CGM.getTBAAInfo(type);
3427         if (tbaa)
3428           CGM.DecorateInstructionWithTBAA(load, tbaa);
3429       }
3430 
3431       mayAlias = false;
3432       type = refType->getPointeeType();
3433 
3434       CharUnits alignment =
3435         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3436       addr = Address(load, alignment);
3437 
3438       // Qualifiers on the struct don't apply to the referencee, and
3439       // we'll pick up CVR from the actual type later, so reset these
3440       // additional qualifiers now.
3441       cvr = 0;
3442     }
3443   }
3444 
3445   // Make sure that the address is pointing to the right type.  This is critical
3446   // for both unions and structs.  A union needs a bitcast, a struct element
3447   // will need a bitcast if the LLVM type laid out doesn't match the desired
3448   // type.
3449   addr = Builder.CreateElementBitCast(addr,
3450                                       CGM.getTypes().ConvertTypeForMem(type),
3451                                       field->getName());
3452 
3453   if (field->hasAttr<AnnotateAttr>())
3454     addr = EmitFieldAnnotations(field, addr);
3455 
3456   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3457   LV.getQuals().addCVRQualifiers(cvr);
3458   if (TBAAPath) {
3459     const ASTRecordLayout &Layout =
3460         getContext().getASTRecordLayout(field->getParent());
3461     // Set the base type to be the base type of the base LValue and
3462     // update offset to be relative to the base type.
3463     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3464     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3465                      Layout.getFieldOffset(field->getFieldIndex()) /
3466                                            getContext().getCharWidth());
3467   }
3468 
3469   // __weak attribute on a field is ignored.
3470   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3471     LV.getQuals().removeObjCGCAttr();
3472 
3473   // Fields of may_alias structs act like 'char' for TBAA purposes.
3474   // FIXME: this should get propagated down through anonymous structs
3475   // and unions.
3476   if (mayAlias && LV.getTBAAInfo())
3477     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3478 
3479   return LV;
3480 }
3481 
3482 LValue
3483 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3484                                                   const FieldDecl *Field) {
3485   QualType FieldType = Field->getType();
3486 
3487   if (!FieldType->isReferenceType())
3488     return EmitLValueForField(Base, Field);
3489 
3490   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3491 
3492   // Make sure that the address is pointing to the right type.
3493   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3494   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3495 
3496   // TODO: access-path TBAA?
3497   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3498   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3499 }
3500 
3501 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3502   if (E->isFileScope()) {
3503     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3504     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3505   }
3506   if (E->getType()->isVariablyModifiedType())
3507     // make sure to emit the VLA size.
3508     EmitVariablyModifiedType(E->getType());
3509 
3510   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3511   const Expr *InitExpr = E->getInitializer();
3512   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3513 
3514   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3515                    /*Init*/ true);
3516 
3517   return Result;
3518 }
3519 
3520 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3521   if (!E->isGLValue())
3522     // Initializing an aggregate temporary in C++11: T{...}.
3523     return EmitAggExprToLValue(E);
3524 
3525   // An lvalue initializer list must be initializing a reference.
3526   assert(E->isTransparent() && "non-transparent glvalue init list");
3527   return EmitLValue(E->getInit(0));
3528 }
3529 
3530 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3531 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3532 /// LValue is returned and the current block has been terminated.
3533 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3534                                                     const Expr *Operand) {
3535   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3536     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3537     return None;
3538   }
3539 
3540   return CGF.EmitLValue(Operand);
3541 }
3542 
3543 LValue CodeGenFunction::
3544 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3545   if (!expr->isGLValue()) {
3546     // ?: here should be an aggregate.
3547     assert(hasAggregateEvaluationKind(expr->getType()) &&
3548            "Unexpected conditional operator!");
3549     return EmitAggExprToLValue(expr);
3550   }
3551 
3552   OpaqueValueMapping binding(*this, expr);
3553 
3554   const Expr *condExpr = expr->getCond();
3555   bool CondExprBool;
3556   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3557     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3558     if (!CondExprBool) std::swap(live, dead);
3559 
3560     if (!ContainsLabel(dead)) {
3561       // If the true case is live, we need to track its region.
3562       if (CondExprBool)
3563         incrementProfileCounter(expr);
3564       return EmitLValue(live);
3565     }
3566   }
3567 
3568   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3569   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3570   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3571 
3572   ConditionalEvaluation eval(*this);
3573   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3574 
3575   // Any temporaries created here are conditional.
3576   EmitBlock(lhsBlock);
3577   incrementProfileCounter(expr);
3578   eval.begin(*this);
3579   Optional<LValue> lhs =
3580       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3581   eval.end(*this);
3582 
3583   if (lhs && !lhs->isSimple())
3584     return EmitUnsupportedLValue(expr, "conditional operator");
3585 
3586   lhsBlock = Builder.GetInsertBlock();
3587   if (lhs)
3588     Builder.CreateBr(contBlock);
3589 
3590   // Any temporaries created here are conditional.
3591   EmitBlock(rhsBlock);
3592   eval.begin(*this);
3593   Optional<LValue> rhs =
3594       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3595   eval.end(*this);
3596   if (rhs && !rhs->isSimple())
3597     return EmitUnsupportedLValue(expr, "conditional operator");
3598   rhsBlock = Builder.GetInsertBlock();
3599 
3600   EmitBlock(contBlock);
3601 
3602   if (lhs && rhs) {
3603     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3604                                            2, "cond-lvalue");
3605     phi->addIncoming(lhs->getPointer(), lhsBlock);
3606     phi->addIncoming(rhs->getPointer(), rhsBlock);
3607     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3608     AlignmentSource alignSource =
3609       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3610     return MakeAddrLValue(result, expr->getType(), alignSource);
3611   } else {
3612     assert((lhs || rhs) &&
3613            "both operands of glvalue conditional are throw-expressions?");
3614     return lhs ? *lhs : *rhs;
3615   }
3616 }
3617 
3618 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3619 /// type. If the cast is to a reference, we can have the usual lvalue result,
3620 /// otherwise if a cast is needed by the code generator in an lvalue context,
3621 /// then it must mean that we need the address of an aggregate in order to
3622 /// access one of its members.  This can happen for all the reasons that casts
3623 /// are permitted with aggregate result, including noop aggregate casts, and
3624 /// cast from scalar to union.
3625 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3626   switch (E->getCastKind()) {
3627   case CK_ToVoid:
3628   case CK_BitCast:
3629   case CK_ArrayToPointerDecay:
3630   case CK_FunctionToPointerDecay:
3631   case CK_NullToMemberPointer:
3632   case CK_NullToPointer:
3633   case CK_IntegralToPointer:
3634   case CK_PointerToIntegral:
3635   case CK_PointerToBoolean:
3636   case CK_VectorSplat:
3637   case CK_IntegralCast:
3638   case CK_BooleanToSignedIntegral:
3639   case CK_IntegralToBoolean:
3640   case CK_IntegralToFloating:
3641   case CK_FloatingToIntegral:
3642   case CK_FloatingToBoolean:
3643   case CK_FloatingCast:
3644   case CK_FloatingRealToComplex:
3645   case CK_FloatingComplexToReal:
3646   case CK_FloatingComplexToBoolean:
3647   case CK_FloatingComplexCast:
3648   case CK_FloatingComplexToIntegralComplex:
3649   case CK_IntegralRealToComplex:
3650   case CK_IntegralComplexToReal:
3651   case CK_IntegralComplexToBoolean:
3652   case CK_IntegralComplexCast:
3653   case CK_IntegralComplexToFloatingComplex:
3654   case CK_DerivedToBaseMemberPointer:
3655   case CK_BaseToDerivedMemberPointer:
3656   case CK_MemberPointerToBoolean:
3657   case CK_ReinterpretMemberPointer:
3658   case CK_AnyPointerToBlockPointerCast:
3659   case CK_ARCProduceObject:
3660   case CK_ARCConsumeObject:
3661   case CK_ARCReclaimReturnedObject:
3662   case CK_ARCExtendBlockObject:
3663   case CK_CopyAndAutoreleaseBlockObject:
3664   case CK_AddressSpaceConversion:
3665   case CK_IntToOCLSampler:
3666     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3667 
3668   case CK_Dependent:
3669     llvm_unreachable("dependent cast kind in IR gen!");
3670 
3671   case CK_BuiltinFnToFnPtr:
3672     llvm_unreachable("builtin functions are handled elsewhere");
3673 
3674   // These are never l-values; just use the aggregate emission code.
3675   case CK_NonAtomicToAtomic:
3676   case CK_AtomicToNonAtomic:
3677     return EmitAggExprToLValue(E);
3678 
3679   case CK_Dynamic: {
3680     LValue LV = EmitLValue(E->getSubExpr());
3681     Address V = LV.getAddress();
3682     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3683     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3684   }
3685 
3686   case CK_ConstructorConversion:
3687   case CK_UserDefinedConversion:
3688   case CK_CPointerToObjCPointerCast:
3689   case CK_BlockPointerToObjCPointerCast:
3690   case CK_NoOp:
3691   case CK_LValueToRValue:
3692     return EmitLValue(E->getSubExpr());
3693 
3694   case CK_UncheckedDerivedToBase:
3695   case CK_DerivedToBase: {
3696     const RecordType *DerivedClassTy =
3697       E->getSubExpr()->getType()->getAs<RecordType>();
3698     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3699 
3700     LValue LV = EmitLValue(E->getSubExpr());
3701     Address This = LV.getAddress();
3702 
3703     // Perform the derived-to-base conversion
3704     Address Base = GetAddressOfBaseClass(
3705         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3706         /*NullCheckValue=*/false, E->getExprLoc());
3707 
3708     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3709   }
3710   case CK_ToUnion:
3711     return EmitAggExprToLValue(E);
3712   case CK_BaseToDerived: {
3713     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3714     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3715 
3716     LValue LV = EmitLValue(E->getSubExpr());
3717 
3718     // Perform the base-to-derived conversion
3719     Address Derived =
3720       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3721                                E->path_begin(), E->path_end(),
3722                                /*NullCheckValue=*/false);
3723 
3724     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3725     // performed and the object is not of the derived type.
3726     if (sanitizePerformTypeCheck())
3727       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3728                     Derived.getPointer(), E->getType());
3729 
3730     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3731       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3732                                 /*MayBeNull=*/false,
3733                                 CFITCK_DerivedCast, E->getLocStart());
3734 
3735     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3736   }
3737   case CK_LValueBitCast: {
3738     // This must be a reinterpret_cast (or c-style equivalent).
3739     const auto *CE = cast<ExplicitCastExpr>(E);
3740 
3741     CGM.EmitExplicitCastExprType(CE, this);
3742     LValue LV = EmitLValue(E->getSubExpr());
3743     Address V = Builder.CreateBitCast(LV.getAddress(),
3744                                       ConvertType(CE->getTypeAsWritten()));
3745 
3746     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3747       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3748                                 /*MayBeNull=*/false,
3749                                 CFITCK_UnrelatedCast, E->getLocStart());
3750 
3751     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3752   }
3753   case CK_ObjCObjectLValueCast: {
3754     LValue LV = EmitLValue(E->getSubExpr());
3755     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3756                                              ConvertType(E->getType()));
3757     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3758   }
3759   case CK_ZeroToOCLEvent:
3760     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3761   }
3762 
3763   llvm_unreachable("Unhandled lvalue cast kind?");
3764 }
3765 
3766 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3767   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3768   return getOpaqueLValueMapping(e);
3769 }
3770 
3771 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3772                                            const FieldDecl *FD,
3773                                            SourceLocation Loc) {
3774   QualType FT = FD->getType();
3775   LValue FieldLV = EmitLValueForField(LV, FD);
3776   switch (getEvaluationKind(FT)) {
3777   case TEK_Complex:
3778     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3779   case TEK_Aggregate:
3780     return FieldLV.asAggregateRValue();
3781   case TEK_Scalar:
3782     // This routine is used to load fields one-by-one to perform a copy, so
3783     // don't load reference fields.
3784     if (FD->getType()->isReferenceType())
3785       return RValue::get(FieldLV.getPointer());
3786     return EmitLoadOfLValue(FieldLV, Loc);
3787   }
3788   llvm_unreachable("bad evaluation kind");
3789 }
3790 
3791 //===--------------------------------------------------------------------===//
3792 //                             Expression Emission
3793 //===--------------------------------------------------------------------===//
3794 
3795 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3796                                      ReturnValueSlot ReturnValue) {
3797   // Builtins never have block type.
3798   if (E->getCallee()->getType()->isBlockPointerType())
3799     return EmitBlockCallExpr(E, ReturnValue);
3800 
3801   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3802     return EmitCXXMemberCallExpr(CE, ReturnValue);
3803 
3804   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3805     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3806 
3807   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3808     if (const CXXMethodDecl *MD =
3809           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
3810       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3811 
3812   CGCallee callee = EmitCallee(E->getCallee());
3813 
3814   if (callee.isBuiltin()) {
3815     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
3816                            E, ReturnValue);
3817   }
3818 
3819   if (callee.isPseudoDestructor()) {
3820     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
3821   }
3822 
3823   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
3824 }
3825 
3826 /// Emit a CallExpr without considering whether it might be a subclass.
3827 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
3828                                            ReturnValueSlot ReturnValue) {
3829   CGCallee Callee = EmitCallee(E->getCallee());
3830   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
3831 }
3832 
3833 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
3834   if (auto builtinID = FD->getBuiltinID()) {
3835     return CGCallee::forBuiltin(builtinID, FD);
3836   }
3837 
3838   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
3839   return CGCallee::forDirect(calleePtr, FD);
3840 }
3841 
3842 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
3843   E = E->IgnoreParens();
3844 
3845   // Look through function-to-pointer decay.
3846   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
3847     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
3848         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
3849       return EmitCallee(ICE->getSubExpr());
3850     }
3851 
3852   // Resolve direct calls.
3853   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
3854     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3855       return EmitDirectCallee(*this, FD);
3856     }
3857   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
3858     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
3859       EmitIgnoredExpr(ME->getBase());
3860       return EmitDirectCallee(*this, FD);
3861     }
3862 
3863   // Look through template substitutions.
3864   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
3865     return EmitCallee(NTTP->getReplacement());
3866 
3867   // Treat pseudo-destructor calls differently.
3868   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
3869     return CGCallee::forPseudoDestructor(PDE);
3870   }
3871 
3872   // Otherwise, we have an indirect reference.
3873   llvm::Value *calleePtr;
3874   QualType functionType;
3875   if (auto ptrType = E->getType()->getAs<PointerType>()) {
3876     calleePtr = EmitScalarExpr(E);
3877     functionType = ptrType->getPointeeType();
3878   } else {
3879     functionType = E->getType();
3880     calleePtr = EmitLValue(E).getPointer();
3881   }
3882   assert(functionType->isFunctionType());
3883   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
3884                           E->getReferencedDeclOfCallee());
3885   CGCallee callee(calleeInfo, calleePtr);
3886   return callee;
3887 }
3888 
3889 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3890   // Comma expressions just emit their LHS then their RHS as an l-value.
3891   if (E->getOpcode() == BO_Comma) {
3892     EmitIgnoredExpr(E->getLHS());
3893     EnsureInsertPoint();
3894     return EmitLValue(E->getRHS());
3895   }
3896 
3897   if (E->getOpcode() == BO_PtrMemD ||
3898       E->getOpcode() == BO_PtrMemI)
3899     return EmitPointerToDataMemberBinaryExpr(E);
3900 
3901   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3902 
3903   // Note that in all of these cases, __block variables need the RHS
3904   // evaluated first just in case the variable gets moved by the RHS.
3905 
3906   switch (getEvaluationKind(E->getType())) {
3907   case TEK_Scalar: {
3908     switch (E->getLHS()->getType().getObjCLifetime()) {
3909     case Qualifiers::OCL_Strong:
3910       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3911 
3912     case Qualifiers::OCL_Autoreleasing:
3913       return EmitARCStoreAutoreleasing(E).first;
3914 
3915     // No reason to do any of these differently.
3916     case Qualifiers::OCL_None:
3917     case Qualifiers::OCL_ExplicitNone:
3918     case Qualifiers::OCL_Weak:
3919       break;
3920     }
3921 
3922     RValue RV = EmitAnyExpr(E->getRHS());
3923     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3924     EmitStoreThroughLValue(RV, LV);
3925     return LV;
3926   }
3927 
3928   case TEK_Complex:
3929     return EmitComplexAssignmentLValue(E);
3930 
3931   case TEK_Aggregate:
3932     return EmitAggExprToLValue(E);
3933   }
3934   llvm_unreachable("bad evaluation kind");
3935 }
3936 
3937 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3938   RValue RV = EmitCallExpr(E);
3939 
3940   if (!RV.isScalar())
3941     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3942                           AlignmentSource::Decl);
3943 
3944   assert(E->getCallReturnType(getContext())->isReferenceType() &&
3945          "Can't have a scalar return unless the return type is a "
3946          "reference type!");
3947 
3948   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3949 }
3950 
3951 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3952   // FIXME: This shouldn't require another copy.
3953   return EmitAggExprToLValue(E);
3954 }
3955 
3956 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3957   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3958          && "binding l-value to type which needs a temporary");
3959   AggValueSlot Slot = CreateAggTemp(E->getType());
3960   EmitCXXConstructExpr(E, Slot);
3961   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3962                         AlignmentSource::Decl);
3963 }
3964 
3965 LValue
3966 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3967   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3968 }
3969 
3970 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3971   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3972                                       ConvertType(E->getType()));
3973 }
3974 
3975 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3976   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3977                         AlignmentSource::Decl);
3978 }
3979 
3980 LValue
3981 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3982   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3983   Slot.setExternallyDestructed();
3984   EmitAggExpr(E->getSubExpr(), Slot);
3985   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3986   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3987                         AlignmentSource::Decl);
3988 }
3989 
3990 LValue
3991 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3992   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3993   EmitLambdaExpr(E, Slot);
3994   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3995                         AlignmentSource::Decl);
3996 }
3997 
3998 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3999   RValue RV = EmitObjCMessageExpr(E);
4000 
4001   if (!RV.isScalar())
4002     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4003                           AlignmentSource::Decl);
4004 
4005   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4006          "Can't have a scalar return unless the return type is a "
4007          "reference type!");
4008 
4009   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4010 }
4011 
4012 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4013   Address V =
4014     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4015   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4016 }
4017 
4018 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4019                                              const ObjCIvarDecl *Ivar) {
4020   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4021 }
4022 
4023 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4024                                           llvm::Value *BaseValue,
4025                                           const ObjCIvarDecl *Ivar,
4026                                           unsigned CVRQualifiers) {
4027   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4028                                                    Ivar, CVRQualifiers);
4029 }
4030 
4031 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4032   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4033   llvm::Value *BaseValue = nullptr;
4034   const Expr *BaseExpr = E->getBase();
4035   Qualifiers BaseQuals;
4036   QualType ObjectTy;
4037   if (E->isArrow()) {
4038     BaseValue = EmitScalarExpr(BaseExpr);
4039     ObjectTy = BaseExpr->getType()->getPointeeType();
4040     BaseQuals = ObjectTy.getQualifiers();
4041   } else {
4042     LValue BaseLV = EmitLValue(BaseExpr);
4043     BaseValue = BaseLV.getPointer();
4044     ObjectTy = BaseExpr->getType();
4045     BaseQuals = ObjectTy.getQualifiers();
4046   }
4047 
4048   LValue LV =
4049     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4050                       BaseQuals.getCVRQualifiers());
4051   setObjCGCLValueClass(getContext(), E, LV);
4052   return LV;
4053 }
4054 
4055 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4056   // Can only get l-value for message expression returning aggregate type
4057   RValue RV = EmitAnyExprToTemp(E);
4058   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4059                         AlignmentSource::Decl);
4060 }
4061 
4062 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4063                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4064                                  llvm::Value *Chain) {
4065   // Get the actual function type. The callee type will always be a pointer to
4066   // function type or a block pointer type.
4067   assert(CalleeType->isFunctionPointerType() &&
4068          "Call must have function pointer type!");
4069 
4070   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4071 
4072   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4073     // We can only guarantee that a function is called from the correct
4074     // context/function based on the appropriate target attributes,
4075     // so only check in the case where we have both always_inline and target
4076     // since otherwise we could be making a conditional call after a check for
4077     // the proper cpu features (and it won't cause code generation issues due to
4078     // function based code generation).
4079     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4080         TargetDecl->hasAttr<TargetAttr>())
4081       checkTargetFeatures(E, FD);
4082 
4083   CalleeType = getContext().getCanonicalType(CalleeType);
4084 
4085   const auto *FnType =
4086       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4087 
4088   CGCallee Callee = OrigCallee;
4089 
4090   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4091       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4092     if (llvm::Constant *PrefixSig =
4093             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4094       SanitizerScope SanScope(this);
4095       llvm::Constant *FTRTTIConst =
4096           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4097       llvm::Type *PrefixStructTyElems[] = {
4098         PrefixSig->getType(),
4099         FTRTTIConst->getType()
4100       };
4101       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4102           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4103 
4104       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4105 
4106       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4107           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4108       llvm::Value *CalleeSigPtr =
4109           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4110       llvm::Value *CalleeSig =
4111           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4112       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4113 
4114       llvm::BasicBlock *Cont = createBasicBlock("cont");
4115       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4116       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4117 
4118       EmitBlock(TypeCheck);
4119       llvm::Value *CalleeRTTIPtr =
4120           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4121       llvm::Value *CalleeRTTI =
4122           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4123       llvm::Value *CalleeRTTIMatch =
4124           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4125       llvm::Constant *StaticData[] = {
4126         EmitCheckSourceLocation(E->getLocStart()),
4127         EmitCheckTypeDescriptor(CalleeType)
4128       };
4129       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4130                 "function_type_mismatch", StaticData, CalleePtr);
4131 
4132       Builder.CreateBr(Cont);
4133       EmitBlock(Cont);
4134     }
4135   }
4136 
4137   // If we are checking indirect calls and this call is indirect, check that the
4138   // function pointer is a member of the bit set for the function type.
4139   if (SanOpts.has(SanitizerKind::CFIICall) &&
4140       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4141     SanitizerScope SanScope(this);
4142     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4143 
4144     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4145     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4146 
4147     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4148     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4149     llvm::Value *TypeTest = Builder.CreateCall(
4150         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4151 
4152     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4153     llvm::Constant *StaticData[] = {
4154         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4155         EmitCheckSourceLocation(E->getLocStart()),
4156         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4157     };
4158     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4159       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4160                            CastedCallee, StaticData);
4161     } else {
4162       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4163                 "cfi_check_fail", StaticData,
4164                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4165     }
4166   }
4167 
4168   CallArgList Args;
4169   if (Chain)
4170     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4171              CGM.getContext().VoidPtrTy);
4172 
4173   // C++17 requires that we evaluate arguments to a call using assignment syntax
4174   // right-to-left, and that we evaluate arguments to certain other operators
4175   // left-to-right. Note that we allow this to override the order dictated by
4176   // the calling convention on the MS ABI, which means that parameter
4177   // destruction order is not necessarily reverse construction order.
4178   // FIXME: Revisit this based on C++ committee response to unimplementability.
4179   EvaluationOrder Order = EvaluationOrder::Default;
4180   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4181     if (OCE->isAssignmentOp())
4182       Order = EvaluationOrder::ForceRightToLeft;
4183     else {
4184       switch (OCE->getOperator()) {
4185       case OO_LessLess:
4186       case OO_GreaterGreater:
4187       case OO_AmpAmp:
4188       case OO_PipePipe:
4189       case OO_Comma:
4190       case OO_ArrowStar:
4191         Order = EvaluationOrder::ForceLeftToRight;
4192         break;
4193       default:
4194         break;
4195       }
4196     }
4197   }
4198 
4199   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4200                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4201 
4202   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4203       Args, FnType, /*isChainCall=*/Chain);
4204 
4205   // C99 6.5.2.2p6:
4206   //   If the expression that denotes the called function has a type
4207   //   that does not include a prototype, [the default argument
4208   //   promotions are performed]. If the number of arguments does not
4209   //   equal the number of parameters, the behavior is undefined. If
4210   //   the function is defined with a type that includes a prototype,
4211   //   and either the prototype ends with an ellipsis (, ...) or the
4212   //   types of the arguments after promotion are not compatible with
4213   //   the types of the parameters, the behavior is undefined. If the
4214   //   function is defined with a type that does not include a
4215   //   prototype, and the types of the arguments after promotion are
4216   //   not compatible with those of the parameters after promotion,
4217   //   the behavior is undefined [except in some trivial cases].
4218   // That is, in the general case, we should assume that a call
4219   // through an unprototyped function type works like a *non-variadic*
4220   // call.  The way we make this work is to cast to the exact type
4221   // of the promoted arguments.
4222   //
4223   // Chain calls use this same code path to add the invisible chain parameter
4224   // to the function type.
4225   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4226     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4227     CalleeTy = CalleeTy->getPointerTo();
4228 
4229     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4230     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4231     Callee.setFunctionPointer(CalleePtr);
4232   }
4233 
4234   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4235 }
4236 
4237 LValue CodeGenFunction::
4238 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4239   Address BaseAddr = Address::invalid();
4240   if (E->getOpcode() == BO_PtrMemI) {
4241     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4242   } else {
4243     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4244   }
4245 
4246   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4247 
4248   const MemberPointerType *MPT
4249     = E->getRHS()->getType()->getAs<MemberPointerType>();
4250 
4251   AlignmentSource AlignSource;
4252   Address MemberAddr =
4253     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
4254                                     &AlignSource);
4255 
4256   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
4257 }
4258 
4259 /// Given the address of a temporary variable, produce an r-value of
4260 /// its type.
4261 RValue CodeGenFunction::convertTempToRValue(Address addr,
4262                                             QualType type,
4263                                             SourceLocation loc) {
4264   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4265   switch (getEvaluationKind(type)) {
4266   case TEK_Complex:
4267     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4268   case TEK_Aggregate:
4269     return lvalue.asAggregateRValue();
4270   case TEK_Scalar:
4271     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4272   }
4273   llvm_unreachable("bad evaluation kind");
4274 }
4275 
4276 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4277   assert(Val->getType()->isFPOrFPVectorTy());
4278   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4279     return;
4280 
4281   llvm::MDBuilder MDHelper(getLLVMContext());
4282   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4283 
4284   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4285 }
4286 
4287 namespace {
4288   struct LValueOrRValue {
4289     LValue LV;
4290     RValue RV;
4291   };
4292 }
4293 
4294 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4295                                            const PseudoObjectExpr *E,
4296                                            bool forLValue,
4297                                            AggValueSlot slot) {
4298   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4299 
4300   // Find the result expression, if any.
4301   const Expr *resultExpr = E->getResultExpr();
4302   LValueOrRValue result;
4303 
4304   for (PseudoObjectExpr::const_semantics_iterator
4305          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4306     const Expr *semantic = *i;
4307 
4308     // If this semantic expression is an opaque value, bind it
4309     // to the result of its source expression.
4310     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4311 
4312       // If this is the result expression, we may need to evaluate
4313       // directly into the slot.
4314       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4315       OVMA opaqueData;
4316       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4317           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4318         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4319 
4320         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4321                                        AlignmentSource::Decl);
4322         opaqueData = OVMA::bind(CGF, ov, LV);
4323         result.RV = slot.asRValue();
4324 
4325       // Otherwise, emit as normal.
4326       } else {
4327         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4328 
4329         // If this is the result, also evaluate the result now.
4330         if (ov == resultExpr) {
4331           if (forLValue)
4332             result.LV = CGF.EmitLValue(ov);
4333           else
4334             result.RV = CGF.EmitAnyExpr(ov, slot);
4335         }
4336       }
4337 
4338       opaques.push_back(opaqueData);
4339 
4340     // Otherwise, if the expression is the result, evaluate it
4341     // and remember the result.
4342     } else if (semantic == resultExpr) {
4343       if (forLValue)
4344         result.LV = CGF.EmitLValue(semantic);
4345       else
4346         result.RV = CGF.EmitAnyExpr(semantic, slot);
4347 
4348     // Otherwise, evaluate the expression in an ignored context.
4349     } else {
4350       CGF.EmitIgnoredExpr(semantic);
4351     }
4352   }
4353 
4354   // Unbind all the opaques now.
4355   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4356     opaques[i].unbind(CGF);
4357 
4358   return result;
4359 }
4360 
4361 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4362                                                AggValueSlot slot) {
4363   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4364 }
4365 
4366 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4367   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4368 }
4369