1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/ConvertUTF.h" 34 #include "llvm/Support/MathExtras.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===--------------------------------------------------------------------===// 40 // Miscellaneous Helper Methods 41 //===--------------------------------------------------------------------===// 42 43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 44 unsigned addressSpace = 45 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 46 47 llvm::PointerType *destType = Int8PtrTy; 48 if (addressSpace) 49 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 50 51 if (value->getType() == destType) return value; 52 return Builder.CreateBitCast(value, destType); 53 } 54 55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 56 /// block. 57 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 58 const Twine &Name) { 59 if (!Builder.isNamePreserving()) 60 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 61 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 62 } 63 64 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 65 llvm::Value *Init) { 66 auto *Store = new llvm::StoreInst(Init, Var); 67 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 68 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 69 } 70 71 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 72 const Twine &Name) { 73 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 74 // FIXME: Should we prefer the preferred type alignment here? 75 CharUnits Align = getContext().getTypeAlignInChars(Ty); 76 Alloc->setAlignment(Align.getQuantity()); 77 return Alloc; 78 } 79 80 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 81 const Twine &Name) { 82 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 83 // FIXME: Should we prefer the preferred type alignment here? 84 CharUnits Align = getContext().getTypeAlignInChars(Ty); 85 Alloc->setAlignment(Align.getQuantity()); 86 return Alloc; 87 } 88 89 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 90 /// expression and compare the result against zero, returning an Int1Ty value. 91 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 92 PGO.setCurrentStmt(E); 93 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 94 llvm::Value *MemPtr = EmitScalarExpr(E); 95 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 96 } 97 98 QualType BoolTy = getContext().BoolTy; 99 if (!E->getType()->isAnyComplexType()) 100 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 101 102 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 103 } 104 105 /// EmitIgnoredExpr - Emit code to compute the specified expression, 106 /// ignoring the result. 107 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 108 if (E->isRValue()) 109 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 110 111 // Just emit it as an l-value and drop the result. 112 EmitLValue(E); 113 } 114 115 /// EmitAnyExpr - Emit code to compute the specified expression which 116 /// can have any type. The result is returned as an RValue struct. 117 /// If this is an aggregate expression, AggSlot indicates where the 118 /// result should be returned. 119 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 120 AggValueSlot aggSlot, 121 bool ignoreResult) { 122 switch (getEvaluationKind(E->getType())) { 123 case TEK_Scalar: 124 return RValue::get(EmitScalarExpr(E, ignoreResult)); 125 case TEK_Complex: 126 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 127 case TEK_Aggregate: 128 if (!ignoreResult && aggSlot.isIgnored()) 129 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 130 EmitAggExpr(E, aggSlot); 131 return aggSlot.asRValue(); 132 } 133 llvm_unreachable("bad evaluation kind"); 134 } 135 136 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 137 /// always be accessible even if no aggregate location is provided. 138 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 139 AggValueSlot AggSlot = AggValueSlot::ignored(); 140 141 if (hasAggregateEvaluationKind(E->getType())) 142 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 143 return EmitAnyExpr(E, AggSlot); 144 } 145 146 /// EmitAnyExprToMem - Evaluate an expression into a given memory 147 /// location. 148 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 149 llvm::Value *Location, 150 Qualifiers Quals, 151 bool IsInit) { 152 // FIXME: This function should take an LValue as an argument. 153 switch (getEvaluationKind(E->getType())) { 154 case TEK_Complex: 155 EmitComplexExprIntoLValue(E, 156 MakeNaturalAlignAddrLValue(Location, E->getType()), 157 /*isInit*/ false); 158 return; 159 160 case TEK_Aggregate: { 161 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 162 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 163 AggValueSlot::IsDestructed_t(IsInit), 164 AggValueSlot::DoesNotNeedGCBarriers, 165 AggValueSlot::IsAliased_t(!IsInit))); 166 return; 167 } 168 169 case TEK_Scalar: { 170 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 171 LValue LV = MakeAddrLValue(Location, E->getType()); 172 EmitStoreThroughLValue(RV, LV); 173 return; 174 } 175 } 176 llvm_unreachable("bad evaluation kind"); 177 } 178 179 static void 180 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 181 const Expr *E, llvm::Value *ReferenceTemporary) { 182 // Objective-C++ ARC: 183 // If we are binding a reference to a temporary that has ownership, we 184 // need to perform retain/release operations on the temporary. 185 // 186 // FIXME: This should be looking at E, not M. 187 if (CGF.getLangOpts().ObjCAutoRefCount && 188 M->getType()->isObjCLifetimeType()) { 189 QualType ObjCARCReferenceLifetimeType = M->getType(); 190 switch (Qualifiers::ObjCLifetime Lifetime = 191 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 192 case Qualifiers::OCL_None: 193 case Qualifiers::OCL_ExplicitNone: 194 // Carry on to normal cleanup handling. 195 break; 196 197 case Qualifiers::OCL_Autoreleasing: 198 // Nothing to do; cleaned up by an autorelease pool. 199 return; 200 201 case Qualifiers::OCL_Strong: 202 case Qualifiers::OCL_Weak: 203 switch (StorageDuration Duration = M->getStorageDuration()) { 204 case SD_Static: 205 // Note: we intentionally do not register a cleanup to release 206 // the object on program termination. 207 return; 208 209 case SD_Thread: 210 // FIXME: We should probably register a cleanup in this case. 211 return; 212 213 case SD_Automatic: 214 case SD_FullExpression: 215 CodeGenFunction::Destroyer *Destroy; 216 CleanupKind CleanupKind; 217 if (Lifetime == Qualifiers::OCL_Strong) { 218 const ValueDecl *VD = M->getExtendingDecl(); 219 bool Precise = 220 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 221 CleanupKind = CGF.getARCCleanupKind(); 222 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 223 : &CodeGenFunction::destroyARCStrongImprecise; 224 } else { 225 // __weak objects always get EH cleanups; otherwise, exceptions 226 // could cause really nasty crashes instead of mere leaks. 227 CleanupKind = NormalAndEHCleanup; 228 Destroy = &CodeGenFunction::destroyARCWeak; 229 } 230 if (Duration == SD_FullExpression) 231 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 232 ObjCARCReferenceLifetimeType, *Destroy, 233 CleanupKind & EHCleanup); 234 else 235 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 236 ObjCARCReferenceLifetimeType, 237 *Destroy, CleanupKind & EHCleanup); 238 return; 239 240 case SD_Dynamic: 241 llvm_unreachable("temporary cannot have dynamic storage duration"); 242 } 243 llvm_unreachable("unknown storage duration"); 244 } 245 } 246 247 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 248 if (const RecordType *RT = 249 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 250 // Get the destructor for the reference temporary. 251 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 252 if (!ClassDecl->hasTrivialDestructor()) 253 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 254 } 255 256 if (!ReferenceTemporaryDtor) 257 return; 258 259 // Call the destructor for the temporary. 260 switch (M->getStorageDuration()) { 261 case SD_Static: 262 case SD_Thread: { 263 llvm::Constant *CleanupFn; 264 llvm::Constant *CleanupArg; 265 if (E->getType()->isArrayType()) { 266 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 267 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 268 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 269 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 270 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 271 } else { 272 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 273 StructorType::Complete); 274 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 275 } 276 CGF.CGM.getCXXABI().registerGlobalDtor( 277 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 278 break; 279 } 280 281 case SD_FullExpression: 282 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 283 CodeGenFunction::destroyCXXObject, 284 CGF.getLangOpts().Exceptions); 285 break; 286 287 case SD_Automatic: 288 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 289 ReferenceTemporary, E->getType(), 290 CodeGenFunction::destroyCXXObject, 291 CGF.getLangOpts().Exceptions); 292 break; 293 294 case SD_Dynamic: 295 llvm_unreachable("temporary cannot have dynamic storage duration"); 296 } 297 } 298 299 static llvm::Value * 300 createReferenceTemporary(CodeGenFunction &CGF, 301 const MaterializeTemporaryExpr *M, const Expr *Inner) { 302 switch (M->getStorageDuration()) { 303 case SD_FullExpression: 304 case SD_Automatic: { 305 // If we have a constant temporary array or record try to promote it into a 306 // constant global under the same rules a normal constant would've been 307 // promoted. This is easier on the optimizer and generally emits fewer 308 // instructions. 309 QualType Ty = Inner->getType(); 310 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 311 (Ty->isArrayType() || Ty->isRecordType()) && 312 CGF.CGM.isTypeConstant(Ty, true)) 313 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 314 auto *GV = new llvm::GlobalVariable( 315 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 316 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 317 GV->setAlignment( 318 CGF.getContext().getTypeAlignInChars(Ty).getQuantity()); 319 // FIXME: Should we put the new global into a COMDAT? 320 return GV; 321 } 322 return CGF.CreateMemTemp(Ty, "ref.tmp"); 323 } 324 case SD_Thread: 325 case SD_Static: 326 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 327 328 case SD_Dynamic: 329 llvm_unreachable("temporary can't have dynamic storage duration"); 330 } 331 llvm_unreachable("unknown storage duration"); 332 } 333 334 LValue CodeGenFunction:: 335 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 336 const Expr *E = M->GetTemporaryExpr(); 337 338 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 339 // as that will cause the lifetime adjustment to be lost for ARC 340 if (getLangOpts().ObjCAutoRefCount && 341 M->getType()->isObjCLifetimeType() && 342 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 343 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 344 llvm::Value *Object = createReferenceTemporary(*this, M, E); 345 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 346 Object = llvm::ConstantExpr::getBitCast( 347 Var, ConvertTypeForMem(E->getType())->getPointerTo()); 348 // We should not have emitted the initializer for this temporary as a 349 // constant. 350 assert(!Var->hasInitializer()); 351 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 352 } 353 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 354 355 switch (getEvaluationKind(E->getType())) { 356 default: llvm_unreachable("expected scalar or aggregate expression"); 357 case TEK_Scalar: 358 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 359 break; 360 case TEK_Aggregate: { 361 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 362 EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment, 363 E->getType().getQualifiers(), 364 AggValueSlot::IsDestructed, 365 AggValueSlot::DoesNotNeedGCBarriers, 366 AggValueSlot::IsNotAliased)); 367 break; 368 } 369 } 370 371 pushTemporaryCleanup(*this, M, E, Object); 372 return RefTempDst; 373 } 374 375 SmallVector<const Expr *, 2> CommaLHSs; 376 SmallVector<SubobjectAdjustment, 2> Adjustments; 377 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 378 379 for (const auto &Ignored : CommaLHSs) 380 EmitIgnoredExpr(Ignored); 381 382 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 383 if (opaque->getType()->isRecordType()) { 384 assert(Adjustments.empty()); 385 return EmitOpaqueValueLValue(opaque); 386 } 387 } 388 389 // Create and initialize the reference temporary. 390 llvm::Value *Object = createReferenceTemporary(*this, M, E); 391 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 392 Object = llvm::ConstantExpr::getBitCast( 393 Var, ConvertTypeForMem(E->getType())->getPointerTo()); 394 // If the temporary is a global and has a constant initializer or is a 395 // constant temporary that we promoted to a global, we may have already 396 // initialized it. 397 if (!Var->hasInitializer()) { 398 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 399 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 400 } 401 } else { 402 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 403 } 404 pushTemporaryCleanup(*this, M, E, Object); 405 406 // Perform derived-to-base casts and/or field accesses, to get from the 407 // temporary object we created (and, potentially, for which we extended 408 // the lifetime) to the subobject we're binding the reference to. 409 for (unsigned I = Adjustments.size(); I != 0; --I) { 410 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 411 switch (Adjustment.Kind) { 412 case SubobjectAdjustment::DerivedToBaseAdjustment: 413 Object = 414 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 415 Adjustment.DerivedToBase.BasePath->path_begin(), 416 Adjustment.DerivedToBase.BasePath->path_end(), 417 /*NullCheckValue=*/ false, E->getExprLoc()); 418 break; 419 420 case SubobjectAdjustment::FieldAdjustment: { 421 LValue LV = MakeAddrLValue(Object, E->getType()); 422 LV = EmitLValueForField(LV, Adjustment.Field); 423 assert(LV.isSimple() && 424 "materialized temporary field is not a simple lvalue"); 425 Object = LV.getAddress(); 426 break; 427 } 428 429 case SubobjectAdjustment::MemberPointerAdjustment: { 430 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 431 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 432 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 433 break; 434 } 435 } 436 } 437 438 return MakeAddrLValue(Object, M->getType()); 439 } 440 441 RValue 442 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 443 // Emit the expression as an lvalue. 444 LValue LV = EmitLValue(E); 445 assert(LV.isSimple()); 446 llvm::Value *Value = LV.getAddress(); 447 448 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 449 // C++11 [dcl.ref]p5 (as amended by core issue 453): 450 // If a glvalue to which a reference is directly bound designates neither 451 // an existing object or function of an appropriate type nor a region of 452 // storage of suitable size and alignment to contain an object of the 453 // reference's type, the behavior is undefined. 454 QualType Ty = E->getType(); 455 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 456 } 457 458 return RValue::get(Value); 459 } 460 461 462 /// getAccessedFieldNo - Given an encoded value and a result number, return the 463 /// input field number being accessed. 464 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 465 const llvm::Constant *Elts) { 466 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 467 ->getZExtValue(); 468 } 469 470 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 471 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 472 llvm::Value *High) { 473 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 474 llvm::Value *K47 = Builder.getInt64(47); 475 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 476 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 477 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 478 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 479 return Builder.CreateMul(B1, KMul); 480 } 481 482 bool CodeGenFunction::sanitizePerformTypeCheck() const { 483 return SanOpts.has(SanitizerKind::Null) | 484 SanOpts.has(SanitizerKind::Alignment) | 485 SanOpts.has(SanitizerKind::ObjectSize) | 486 SanOpts.has(SanitizerKind::Vptr); 487 } 488 489 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 490 llvm::Value *Address, QualType Ty, 491 CharUnits Alignment, bool SkipNullCheck) { 492 if (!sanitizePerformTypeCheck()) 493 return; 494 495 // Don't check pointers outside the default address space. The null check 496 // isn't correct, the object-size check isn't supported by LLVM, and we can't 497 // communicate the addresses to the runtime handler for the vptr check. 498 if (Address->getType()->getPointerAddressSpace()) 499 return; 500 501 SanitizerScope SanScope(this); 502 503 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 504 llvm::BasicBlock *Done = nullptr; 505 506 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 507 TCK == TCK_UpcastToVirtualBase; 508 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 509 !SkipNullCheck) { 510 // The glvalue must not be an empty glvalue. 511 llvm::Value *IsNonNull = Builder.CreateICmpNE( 512 Address, llvm::Constant::getNullValue(Address->getType())); 513 514 if (AllowNullPointers) { 515 // When performing pointer casts, it's OK if the value is null. 516 // Skip the remaining checks in that case. 517 Done = createBasicBlock("null"); 518 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 519 Builder.CreateCondBr(IsNonNull, Rest, Done); 520 EmitBlock(Rest); 521 } else { 522 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 523 } 524 } 525 526 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 527 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 528 529 // The glvalue must refer to a large enough storage region. 530 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 531 // to check this. 532 // FIXME: Get object address space 533 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 534 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 535 llvm::Value *Min = Builder.getFalse(); 536 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 537 llvm::Value *LargeEnough = 538 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 539 llvm::ConstantInt::get(IntPtrTy, Size)); 540 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 541 } 542 543 uint64_t AlignVal = 0; 544 545 if (SanOpts.has(SanitizerKind::Alignment)) { 546 AlignVal = Alignment.getQuantity(); 547 if (!Ty->isIncompleteType() && !AlignVal) 548 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 549 550 // The glvalue must be suitably aligned. 551 if (AlignVal) { 552 llvm::Value *Align = 553 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 554 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 555 llvm::Value *Aligned = 556 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 557 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 558 } 559 } 560 561 if (Checks.size() > 0) { 562 llvm::Constant *StaticData[] = { 563 EmitCheckSourceLocation(Loc), 564 EmitCheckTypeDescriptor(Ty), 565 llvm::ConstantInt::get(SizeTy, AlignVal), 566 llvm::ConstantInt::get(Int8Ty, TCK) 567 }; 568 EmitCheck(Checks, "type_mismatch", StaticData, Address); 569 } 570 571 // If possible, check that the vptr indicates that there is a subobject of 572 // type Ty at offset zero within this object. 573 // 574 // C++11 [basic.life]p5,6: 575 // [For storage which does not refer to an object within its lifetime] 576 // The program has undefined behavior if: 577 // -- the [pointer or glvalue] is used to access a non-static data member 578 // or call a non-static member function 579 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 580 if (SanOpts.has(SanitizerKind::Vptr) && 581 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 582 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 583 TCK == TCK_UpcastToVirtualBase) && 584 RD && RD->hasDefinition() && RD->isDynamicClass()) { 585 // Compute a hash of the mangled name of the type. 586 // 587 // FIXME: This is not guaranteed to be deterministic! Move to a 588 // fingerprinting mechanism once LLVM provides one. For the time 589 // being the implementation happens to be deterministic. 590 SmallString<64> MangledName; 591 llvm::raw_svector_ostream Out(MangledName); 592 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 593 Out); 594 595 // Blacklist based on the mangled type. 596 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 597 Out.str())) { 598 llvm::hash_code TypeHash = hash_value(Out.str()); 599 600 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 601 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 602 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 603 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 604 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 605 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 606 607 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 608 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 609 610 // Look the hash up in our cache. 611 const int CacheSize = 128; 612 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 613 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 614 "__ubsan_vptr_type_cache"); 615 llvm::Value *Slot = Builder.CreateAnd(Hash, 616 llvm::ConstantInt::get(IntPtrTy, 617 CacheSize-1)); 618 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 619 llvm::Value *CacheVal = 620 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 621 622 // If the hash isn't in the cache, call a runtime handler to perform the 623 // hard work of checking whether the vptr is for an object of the right 624 // type. This will either fill in the cache and return, or produce a 625 // diagnostic. 626 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 627 llvm::Constant *StaticData[] = { 628 EmitCheckSourceLocation(Loc), 629 EmitCheckTypeDescriptor(Ty), 630 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 631 llvm::ConstantInt::get(Int8Ty, TCK) 632 }; 633 llvm::Value *DynamicData[] = { Address, Hash }; 634 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 635 "dynamic_type_cache_miss", StaticData, DynamicData); 636 } 637 } 638 639 if (Done) { 640 Builder.CreateBr(Done); 641 EmitBlock(Done); 642 } 643 } 644 645 /// Determine whether this expression refers to a flexible array member in a 646 /// struct. We disable array bounds checks for such members. 647 static bool isFlexibleArrayMemberExpr(const Expr *E) { 648 // For compatibility with existing code, we treat arrays of length 0 or 649 // 1 as flexible array members. 650 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 651 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 652 if (CAT->getSize().ugt(1)) 653 return false; 654 } else if (!isa<IncompleteArrayType>(AT)) 655 return false; 656 657 E = E->IgnoreParens(); 658 659 // A flexible array member must be the last member in the class. 660 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 661 // FIXME: If the base type of the member expr is not FD->getParent(), 662 // this should not be treated as a flexible array member access. 663 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 664 RecordDecl::field_iterator FI( 665 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 666 return ++FI == FD->getParent()->field_end(); 667 } 668 } 669 670 return false; 671 } 672 673 /// If Base is known to point to the start of an array, return the length of 674 /// that array. Return 0 if the length cannot be determined. 675 static llvm::Value *getArrayIndexingBound( 676 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 677 // For the vector indexing extension, the bound is the number of elements. 678 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 679 IndexedType = Base->getType(); 680 return CGF.Builder.getInt32(VT->getNumElements()); 681 } 682 683 Base = Base->IgnoreParens(); 684 685 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 686 if (CE->getCastKind() == CK_ArrayToPointerDecay && 687 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 688 IndexedType = CE->getSubExpr()->getType(); 689 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 690 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 691 return CGF.Builder.getInt(CAT->getSize()); 692 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 693 return CGF.getVLASize(VAT).first; 694 } 695 } 696 697 return nullptr; 698 } 699 700 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 701 llvm::Value *Index, QualType IndexType, 702 bool Accessed) { 703 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 704 "should not be called unless adding bounds checks"); 705 SanitizerScope SanScope(this); 706 707 QualType IndexedType; 708 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 709 if (!Bound) 710 return; 711 712 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 713 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 714 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 715 716 llvm::Constant *StaticData[] = { 717 EmitCheckSourceLocation(E->getExprLoc()), 718 EmitCheckTypeDescriptor(IndexedType), 719 EmitCheckTypeDescriptor(IndexType) 720 }; 721 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 722 : Builder.CreateICmpULE(IndexVal, BoundVal); 723 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 724 StaticData, Index); 725 } 726 727 728 CodeGenFunction::ComplexPairTy CodeGenFunction:: 729 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 730 bool isInc, bool isPre) { 731 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 732 733 llvm::Value *NextVal; 734 if (isa<llvm::IntegerType>(InVal.first->getType())) { 735 uint64_t AmountVal = isInc ? 1 : -1; 736 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 737 738 // Add the inc/dec to the real part. 739 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 740 } else { 741 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 742 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 743 if (!isInc) 744 FVal.changeSign(); 745 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 746 747 // Add the inc/dec to the real part. 748 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 749 } 750 751 ComplexPairTy IncVal(NextVal, InVal.second); 752 753 // Store the updated result through the lvalue. 754 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 755 756 // If this is a postinc, return the value read from memory, otherwise use the 757 // updated value. 758 return isPre ? IncVal : InVal; 759 } 760 761 //===----------------------------------------------------------------------===// 762 // LValue Expression Emission 763 //===----------------------------------------------------------------------===// 764 765 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 766 if (Ty->isVoidType()) 767 return RValue::get(nullptr); 768 769 switch (getEvaluationKind(Ty)) { 770 case TEK_Complex: { 771 llvm::Type *EltTy = 772 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 773 llvm::Value *U = llvm::UndefValue::get(EltTy); 774 return RValue::getComplex(std::make_pair(U, U)); 775 } 776 777 // If this is a use of an undefined aggregate type, the aggregate must have an 778 // identifiable address. Just because the contents of the value are undefined 779 // doesn't mean that the address can't be taken and compared. 780 case TEK_Aggregate: { 781 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 782 return RValue::getAggregate(DestPtr); 783 } 784 785 case TEK_Scalar: 786 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 787 } 788 llvm_unreachable("bad evaluation kind"); 789 } 790 791 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 792 const char *Name) { 793 ErrorUnsupported(E, Name); 794 return GetUndefRValue(E->getType()); 795 } 796 797 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 798 const char *Name) { 799 ErrorUnsupported(E, Name); 800 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 801 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 802 } 803 804 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 805 LValue LV; 806 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 807 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 808 else 809 LV = EmitLValue(E); 810 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 811 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 812 E->getType(), LV.getAlignment()); 813 return LV; 814 } 815 816 /// EmitLValue - Emit code to compute a designator that specifies the location 817 /// of the expression. 818 /// 819 /// This can return one of two things: a simple address or a bitfield reference. 820 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 821 /// an LLVM pointer type. 822 /// 823 /// If this returns a bitfield reference, nothing about the pointee type of the 824 /// LLVM value is known: For example, it may not be a pointer to an integer. 825 /// 826 /// If this returns a normal address, and if the lvalue's C type is fixed size, 827 /// this method guarantees that the returned pointer type will point to an LLVM 828 /// type of the same size of the lvalue's type. If the lvalue has a variable 829 /// length type, this is not possible. 830 /// 831 LValue CodeGenFunction::EmitLValue(const Expr *E) { 832 ApplyDebugLocation DL(*this, E); 833 switch (E->getStmtClass()) { 834 default: return EmitUnsupportedLValue(E, "l-value expression"); 835 836 case Expr::ObjCPropertyRefExprClass: 837 llvm_unreachable("cannot emit a property reference directly"); 838 839 case Expr::ObjCSelectorExprClass: 840 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 841 case Expr::ObjCIsaExprClass: 842 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 843 case Expr::BinaryOperatorClass: 844 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 845 case Expr::CompoundAssignOperatorClass: { 846 QualType Ty = E->getType(); 847 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 848 Ty = AT->getValueType(); 849 if (!Ty->isAnyComplexType()) 850 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 851 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 852 } 853 case Expr::CallExprClass: 854 case Expr::CXXMemberCallExprClass: 855 case Expr::CXXOperatorCallExprClass: 856 case Expr::UserDefinedLiteralClass: 857 return EmitCallExprLValue(cast<CallExpr>(E)); 858 case Expr::VAArgExprClass: 859 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 860 case Expr::DeclRefExprClass: 861 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 862 case Expr::ParenExprClass: 863 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 864 case Expr::GenericSelectionExprClass: 865 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 866 case Expr::PredefinedExprClass: 867 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 868 case Expr::StringLiteralClass: 869 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 870 case Expr::ObjCEncodeExprClass: 871 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 872 case Expr::PseudoObjectExprClass: 873 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 874 case Expr::InitListExprClass: 875 return EmitInitListLValue(cast<InitListExpr>(E)); 876 case Expr::CXXTemporaryObjectExprClass: 877 case Expr::CXXConstructExprClass: 878 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 879 case Expr::CXXBindTemporaryExprClass: 880 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 881 case Expr::CXXUuidofExprClass: 882 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 883 case Expr::LambdaExprClass: 884 return EmitLambdaLValue(cast<LambdaExpr>(E)); 885 886 case Expr::ExprWithCleanupsClass: { 887 const auto *cleanups = cast<ExprWithCleanups>(E); 888 enterFullExpression(cleanups); 889 RunCleanupsScope Scope(*this); 890 return EmitLValue(cleanups->getSubExpr()); 891 } 892 893 case Expr::CXXDefaultArgExprClass: 894 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 895 case Expr::CXXDefaultInitExprClass: { 896 CXXDefaultInitExprScope Scope(*this); 897 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 898 } 899 case Expr::CXXTypeidExprClass: 900 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 901 902 case Expr::ObjCMessageExprClass: 903 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 904 case Expr::ObjCIvarRefExprClass: 905 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 906 case Expr::StmtExprClass: 907 return EmitStmtExprLValue(cast<StmtExpr>(E)); 908 case Expr::UnaryOperatorClass: 909 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 910 case Expr::ArraySubscriptExprClass: 911 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 912 case Expr::ExtVectorElementExprClass: 913 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 914 case Expr::MemberExprClass: 915 return EmitMemberExpr(cast<MemberExpr>(E)); 916 case Expr::CompoundLiteralExprClass: 917 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 918 case Expr::ConditionalOperatorClass: 919 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 920 case Expr::BinaryConditionalOperatorClass: 921 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 922 case Expr::ChooseExprClass: 923 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 924 case Expr::OpaqueValueExprClass: 925 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 926 case Expr::SubstNonTypeTemplateParmExprClass: 927 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 928 case Expr::ImplicitCastExprClass: 929 case Expr::CStyleCastExprClass: 930 case Expr::CXXFunctionalCastExprClass: 931 case Expr::CXXStaticCastExprClass: 932 case Expr::CXXDynamicCastExprClass: 933 case Expr::CXXReinterpretCastExprClass: 934 case Expr::CXXConstCastExprClass: 935 case Expr::ObjCBridgedCastExprClass: 936 return EmitCastLValue(cast<CastExpr>(E)); 937 938 case Expr::MaterializeTemporaryExprClass: 939 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 940 } 941 } 942 943 /// Given an object of the given canonical type, can we safely copy a 944 /// value out of it based on its initializer? 945 static bool isConstantEmittableObjectType(QualType type) { 946 assert(type.isCanonical()); 947 assert(!type->isReferenceType()); 948 949 // Must be const-qualified but non-volatile. 950 Qualifiers qs = type.getLocalQualifiers(); 951 if (!qs.hasConst() || qs.hasVolatile()) return false; 952 953 // Otherwise, all object types satisfy this except C++ classes with 954 // mutable subobjects or non-trivial copy/destroy behavior. 955 if (const auto *RT = dyn_cast<RecordType>(type)) 956 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 957 if (RD->hasMutableFields() || !RD->isTrivial()) 958 return false; 959 960 return true; 961 } 962 963 /// Can we constant-emit a load of a reference to a variable of the 964 /// given type? This is different from predicates like 965 /// Decl::isUsableInConstantExpressions because we do want it to apply 966 /// in situations that don't necessarily satisfy the language's rules 967 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 968 /// to do this with const float variables even if those variables 969 /// aren't marked 'constexpr'. 970 enum ConstantEmissionKind { 971 CEK_None, 972 CEK_AsReferenceOnly, 973 CEK_AsValueOrReference, 974 CEK_AsValueOnly 975 }; 976 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 977 type = type.getCanonicalType(); 978 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 979 if (isConstantEmittableObjectType(ref->getPointeeType())) 980 return CEK_AsValueOrReference; 981 return CEK_AsReferenceOnly; 982 } 983 if (isConstantEmittableObjectType(type)) 984 return CEK_AsValueOnly; 985 return CEK_None; 986 } 987 988 /// Try to emit a reference to the given value without producing it as 989 /// an l-value. This is actually more than an optimization: we can't 990 /// produce an l-value for variables that we never actually captured 991 /// in a block or lambda, which means const int variables or constexpr 992 /// literals or similar. 993 CodeGenFunction::ConstantEmission 994 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 995 ValueDecl *value = refExpr->getDecl(); 996 997 // The value needs to be an enum constant or a constant variable. 998 ConstantEmissionKind CEK; 999 if (isa<ParmVarDecl>(value)) { 1000 CEK = CEK_None; 1001 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1002 CEK = checkVarTypeForConstantEmission(var->getType()); 1003 } else if (isa<EnumConstantDecl>(value)) { 1004 CEK = CEK_AsValueOnly; 1005 } else { 1006 CEK = CEK_None; 1007 } 1008 if (CEK == CEK_None) return ConstantEmission(); 1009 1010 Expr::EvalResult result; 1011 bool resultIsReference; 1012 QualType resultType; 1013 1014 // It's best to evaluate all the way as an r-value if that's permitted. 1015 if (CEK != CEK_AsReferenceOnly && 1016 refExpr->EvaluateAsRValue(result, getContext())) { 1017 resultIsReference = false; 1018 resultType = refExpr->getType(); 1019 1020 // Otherwise, try to evaluate as an l-value. 1021 } else if (CEK != CEK_AsValueOnly && 1022 refExpr->EvaluateAsLValue(result, getContext())) { 1023 resultIsReference = true; 1024 resultType = value->getType(); 1025 1026 // Failure. 1027 } else { 1028 return ConstantEmission(); 1029 } 1030 1031 // In any case, if the initializer has side-effects, abandon ship. 1032 if (result.HasSideEffects) 1033 return ConstantEmission(); 1034 1035 // Emit as a constant. 1036 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1037 1038 // Make sure we emit a debug reference to the global variable. 1039 // This should probably fire even for 1040 if (isa<VarDecl>(value)) { 1041 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1042 EmitDeclRefExprDbgValue(refExpr, C); 1043 } else { 1044 assert(isa<EnumConstantDecl>(value)); 1045 EmitDeclRefExprDbgValue(refExpr, C); 1046 } 1047 1048 // If we emitted a reference constant, we need to dereference that. 1049 if (resultIsReference) 1050 return ConstantEmission::forReference(C); 1051 1052 return ConstantEmission::forValue(C); 1053 } 1054 1055 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1056 SourceLocation Loc) { 1057 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1058 lvalue.getAlignment().getQuantity(), 1059 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1060 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1061 } 1062 1063 static bool hasBooleanRepresentation(QualType Ty) { 1064 if (Ty->isBooleanType()) 1065 return true; 1066 1067 if (const EnumType *ET = Ty->getAs<EnumType>()) 1068 return ET->getDecl()->getIntegerType()->isBooleanType(); 1069 1070 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1071 return hasBooleanRepresentation(AT->getValueType()); 1072 1073 return false; 1074 } 1075 1076 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1077 llvm::APInt &Min, llvm::APInt &End, 1078 bool StrictEnums) { 1079 const EnumType *ET = Ty->getAs<EnumType>(); 1080 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1081 ET && !ET->getDecl()->isFixed(); 1082 bool IsBool = hasBooleanRepresentation(Ty); 1083 if (!IsBool && !IsRegularCPlusPlusEnum) 1084 return false; 1085 1086 if (IsBool) { 1087 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1088 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1089 } else { 1090 const EnumDecl *ED = ET->getDecl(); 1091 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1092 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1093 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1094 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1095 1096 if (NumNegativeBits) { 1097 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1098 assert(NumBits <= Bitwidth); 1099 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1100 Min = -End; 1101 } else { 1102 assert(NumPositiveBits <= Bitwidth); 1103 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1104 Min = llvm::APInt(Bitwidth, 0); 1105 } 1106 } 1107 return true; 1108 } 1109 1110 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1111 llvm::APInt Min, End; 1112 if (!getRangeForType(*this, Ty, Min, End, 1113 CGM.getCodeGenOpts().StrictEnums)) 1114 return nullptr; 1115 1116 llvm::MDBuilder MDHelper(getLLVMContext()); 1117 return MDHelper.createRange(Min, End); 1118 } 1119 1120 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1121 unsigned Alignment, QualType Ty, 1122 SourceLocation Loc, 1123 llvm::MDNode *TBAAInfo, 1124 QualType TBAABaseType, 1125 uint64_t TBAAOffset) { 1126 // For better performance, handle vector loads differently. 1127 if (Ty->isVectorType()) { 1128 llvm::Value *V; 1129 const llvm::Type *EltTy = 1130 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1131 1132 const auto *VTy = cast<llvm::VectorType>(EltTy); 1133 1134 // Handle vectors of size 3, like size 4 for better performance. 1135 if (VTy->getNumElements() == 3) { 1136 1137 // Bitcast to vec4 type. 1138 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1139 4); 1140 llvm::PointerType *ptVec4Ty = 1141 llvm::PointerType::get(vec4Ty, 1142 (cast<llvm::PointerType>( 1143 Addr->getType()))->getAddressSpace()); 1144 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1145 "castToVec4"); 1146 // Now load value. 1147 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1148 1149 // Shuffle vector to get vec3. 1150 llvm::Constant *Mask[] = { 1151 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1152 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1153 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1154 }; 1155 1156 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1157 V = Builder.CreateShuffleVector(LoadVal, 1158 llvm::UndefValue::get(vec4Ty), 1159 MaskV, "extractVec"); 1160 return EmitFromMemory(V, Ty); 1161 } 1162 } 1163 1164 // Atomic operations have to be done on integral types. 1165 if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) { 1166 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1167 CharUnits::fromQuantity(Alignment), 1168 getContext(), TBAAInfo); 1169 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1170 } 1171 1172 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1173 if (Volatile) 1174 Load->setVolatile(true); 1175 if (Alignment) 1176 Load->setAlignment(Alignment); 1177 if (TBAAInfo) { 1178 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1179 TBAAOffset); 1180 if (TBAAPath) 1181 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1182 } 1183 1184 bool NeedsBoolCheck = 1185 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1186 bool NeedsEnumCheck = 1187 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1188 if (NeedsBoolCheck || NeedsEnumCheck) { 1189 SanitizerScope SanScope(this); 1190 llvm::APInt Min, End; 1191 if (getRangeForType(*this, Ty, Min, End, true)) { 1192 --End; 1193 llvm::Value *Check; 1194 if (!Min) 1195 Check = Builder.CreateICmpULE( 1196 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1197 else { 1198 llvm::Value *Upper = Builder.CreateICmpSLE( 1199 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1200 llvm::Value *Lower = Builder.CreateICmpSGE( 1201 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1202 Check = Builder.CreateAnd(Upper, Lower); 1203 } 1204 llvm::Constant *StaticArgs[] = { 1205 EmitCheckSourceLocation(Loc), 1206 EmitCheckTypeDescriptor(Ty) 1207 }; 1208 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1209 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1210 EmitCheckValue(Load)); 1211 } 1212 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1213 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1214 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1215 1216 return EmitFromMemory(Load, Ty); 1217 } 1218 1219 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1220 // Bool has a different representation in memory than in registers. 1221 if (hasBooleanRepresentation(Ty)) { 1222 // This should really always be an i1, but sometimes it's already 1223 // an i8, and it's awkward to track those cases down. 1224 if (Value->getType()->isIntegerTy(1)) 1225 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1226 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1227 "wrong value rep of bool"); 1228 } 1229 1230 return Value; 1231 } 1232 1233 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1234 // Bool has a different representation in memory than in registers. 1235 if (hasBooleanRepresentation(Ty)) { 1236 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1237 "wrong value rep of bool"); 1238 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1239 } 1240 1241 return Value; 1242 } 1243 1244 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1245 bool Volatile, unsigned Alignment, 1246 QualType Ty, llvm::MDNode *TBAAInfo, 1247 bool isInit, QualType TBAABaseType, 1248 uint64_t TBAAOffset) { 1249 1250 // Handle vectors differently to get better performance. 1251 if (Ty->isVectorType()) { 1252 llvm::Type *SrcTy = Value->getType(); 1253 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1254 // Handle vec3 special. 1255 if (VecTy->getNumElements() == 3) { 1256 llvm::LLVMContext &VMContext = getLLVMContext(); 1257 1258 // Our source is a vec3, do a shuffle vector to make it a vec4. 1259 SmallVector<llvm::Constant*, 4> Mask; 1260 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1261 0)); 1262 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1263 1)); 1264 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1265 2)); 1266 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1267 1268 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1269 Value = Builder.CreateShuffleVector(Value, 1270 llvm::UndefValue::get(VecTy), 1271 MaskV, "extractVec"); 1272 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1273 } 1274 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1275 if (DstPtr->getElementType() != SrcTy) { 1276 llvm::Type *MemTy = 1277 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1278 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1279 } 1280 } 1281 1282 Value = EmitToMemory(Value, Ty); 1283 1284 if (Ty->isAtomicType() || 1285 (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) { 1286 EmitAtomicStore(RValue::get(Value), 1287 LValue::MakeAddr(Addr, Ty, 1288 CharUnits::fromQuantity(Alignment), 1289 getContext(), TBAAInfo), 1290 isInit); 1291 return; 1292 } 1293 1294 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1295 if (Alignment) 1296 Store->setAlignment(Alignment); 1297 if (TBAAInfo) { 1298 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1299 TBAAOffset); 1300 if (TBAAPath) 1301 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1302 } 1303 } 1304 1305 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1306 bool isInit) { 1307 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1308 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1309 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1310 lvalue.getTBAAOffset()); 1311 } 1312 1313 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1314 /// method emits the address of the lvalue, then loads the result as an rvalue, 1315 /// returning the rvalue. 1316 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1317 if (LV.isObjCWeak()) { 1318 // load of a __weak object. 1319 llvm::Value *AddrWeakObj = LV.getAddress(); 1320 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1321 AddrWeakObj)); 1322 } 1323 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1324 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1325 Object = EmitObjCConsumeObject(LV.getType(), Object); 1326 return RValue::get(Object); 1327 } 1328 1329 if (LV.isSimple()) { 1330 assert(!LV.getType()->isFunctionType()); 1331 1332 // Everything needs a load. 1333 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1334 } 1335 1336 if (LV.isVectorElt()) { 1337 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1338 LV.isVolatileQualified()); 1339 Load->setAlignment(LV.getAlignment().getQuantity()); 1340 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1341 "vecext")); 1342 } 1343 1344 // If this is a reference to a subset of the elements of a vector, either 1345 // shuffle the input or extract/insert them as appropriate. 1346 if (LV.isExtVectorElt()) 1347 return EmitLoadOfExtVectorElementLValue(LV); 1348 1349 // Global Register variables always invoke intrinsics 1350 if (LV.isGlobalReg()) 1351 return EmitLoadOfGlobalRegLValue(LV); 1352 1353 assert(LV.isBitField() && "Unknown LValue type!"); 1354 return EmitLoadOfBitfieldLValue(LV); 1355 } 1356 1357 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1358 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1359 1360 // Get the output type. 1361 llvm::Type *ResLTy = ConvertType(LV.getType()); 1362 1363 llvm::Value *Ptr = LV.getBitFieldAddr(); 1364 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1365 "bf.load"); 1366 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1367 1368 if (Info.IsSigned) { 1369 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1370 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1371 if (HighBits) 1372 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1373 if (Info.Offset + HighBits) 1374 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1375 } else { 1376 if (Info.Offset) 1377 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1378 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1379 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1380 Info.Size), 1381 "bf.clear"); 1382 } 1383 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1384 1385 return RValue::get(Val); 1386 } 1387 1388 // If this is a reference to a subset of the elements of a vector, create an 1389 // appropriate shufflevector. 1390 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1391 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1392 LV.isVolatileQualified()); 1393 Load->setAlignment(LV.getAlignment().getQuantity()); 1394 llvm::Value *Vec = Load; 1395 1396 const llvm::Constant *Elts = LV.getExtVectorElts(); 1397 1398 // If the result of the expression is a non-vector type, we must be extracting 1399 // a single element. Just codegen as an extractelement. 1400 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1401 if (!ExprVT) { 1402 unsigned InIdx = getAccessedFieldNo(0, Elts); 1403 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1404 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1405 } 1406 1407 // Always use shuffle vector to try to retain the original program structure 1408 unsigned NumResultElts = ExprVT->getNumElements(); 1409 1410 SmallVector<llvm::Constant*, 4> Mask; 1411 for (unsigned i = 0; i != NumResultElts; ++i) 1412 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1413 1414 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1415 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1416 MaskV); 1417 return RValue::get(Vec); 1418 } 1419 1420 /// @brief Generates lvalue for partial ext_vector access. 1421 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1422 llvm::Value *VectorAddress = LV.getExtVectorAddr(); 1423 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1424 QualType EQT = ExprVT->getElementType(); 1425 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1426 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo(); 1427 1428 llvm::Value *CastToPointerElement = 1429 Builder.CreateBitCast(VectorAddress, 1430 VectorElementPtrToTy, "conv.ptr.element"); 1431 1432 const llvm::Constant *Elts = LV.getExtVectorElts(); 1433 unsigned ix = getAccessedFieldNo(0, Elts); 1434 1435 llvm::Value *VectorBasePtrPlusIx = 1436 Builder.CreateInBoundsGEP(CastToPointerElement, 1437 llvm::ConstantInt::get(SizeTy, ix), "add.ptr"); 1438 1439 return VectorBasePtrPlusIx; 1440 } 1441 1442 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1443 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1444 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1445 "Bad type for register variable"); 1446 llvm::MDNode *RegName = cast<llvm::MDNode>( 1447 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1448 1449 // We accept integer and pointer types only 1450 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1451 llvm::Type *Ty = OrigTy; 1452 if (OrigTy->isPointerTy()) 1453 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1454 llvm::Type *Types[] = { Ty }; 1455 1456 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1457 llvm::Value *Call = Builder.CreateCall( 1458 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1459 if (OrigTy->isPointerTy()) 1460 Call = Builder.CreateIntToPtr(Call, OrigTy); 1461 return RValue::get(Call); 1462 } 1463 1464 1465 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1466 /// lvalue, where both are guaranteed to the have the same type, and that type 1467 /// is 'Ty'. 1468 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1469 bool isInit) { 1470 if (!Dst.isSimple()) { 1471 if (Dst.isVectorElt()) { 1472 // Read/modify/write the vector, inserting the new element. 1473 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1474 Dst.isVolatileQualified()); 1475 Load->setAlignment(Dst.getAlignment().getQuantity()); 1476 llvm::Value *Vec = Load; 1477 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1478 Dst.getVectorIdx(), "vecins"); 1479 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1480 Dst.isVolatileQualified()); 1481 Store->setAlignment(Dst.getAlignment().getQuantity()); 1482 return; 1483 } 1484 1485 // If this is an update of extended vector elements, insert them as 1486 // appropriate. 1487 if (Dst.isExtVectorElt()) 1488 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1489 1490 if (Dst.isGlobalReg()) 1491 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1492 1493 assert(Dst.isBitField() && "Unknown LValue type"); 1494 return EmitStoreThroughBitfieldLValue(Src, Dst); 1495 } 1496 1497 // There's special magic for assigning into an ARC-qualified l-value. 1498 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1499 switch (Lifetime) { 1500 case Qualifiers::OCL_None: 1501 llvm_unreachable("present but none"); 1502 1503 case Qualifiers::OCL_ExplicitNone: 1504 // nothing special 1505 break; 1506 1507 case Qualifiers::OCL_Strong: 1508 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1509 return; 1510 1511 case Qualifiers::OCL_Weak: 1512 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1513 return; 1514 1515 case Qualifiers::OCL_Autoreleasing: 1516 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1517 Src.getScalarVal())); 1518 // fall into the normal path 1519 break; 1520 } 1521 } 1522 1523 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1524 // load of a __weak object. 1525 llvm::Value *LvalueDst = Dst.getAddress(); 1526 llvm::Value *src = Src.getScalarVal(); 1527 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1528 return; 1529 } 1530 1531 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1532 // load of a __strong object. 1533 llvm::Value *LvalueDst = Dst.getAddress(); 1534 llvm::Value *src = Src.getScalarVal(); 1535 if (Dst.isObjCIvar()) { 1536 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1537 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1538 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1539 llvm::Value *dst = RHS; 1540 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1541 llvm::Value *LHS = 1542 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1543 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1544 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1545 BytesBetween); 1546 } else if (Dst.isGlobalObjCRef()) { 1547 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1548 Dst.isThreadLocalRef()); 1549 } 1550 else 1551 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1552 return; 1553 } 1554 1555 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1556 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1557 } 1558 1559 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1560 llvm::Value **Result) { 1561 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1562 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1563 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1564 1565 // Get the source value, truncated to the width of the bit-field. 1566 llvm::Value *SrcVal = Src.getScalarVal(); 1567 1568 // Cast the source to the storage type and shift it into place. 1569 SrcVal = Builder.CreateIntCast(SrcVal, 1570 Ptr->getType()->getPointerElementType(), 1571 /*IsSigned=*/false); 1572 llvm::Value *MaskedVal = SrcVal; 1573 1574 // See if there are other bits in the bitfield's storage we'll need to load 1575 // and mask together with source before storing. 1576 if (Info.StorageSize != Info.Size) { 1577 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1578 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1579 "bf.load"); 1580 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1581 1582 // Mask the source value as needed. 1583 if (!hasBooleanRepresentation(Dst.getType())) 1584 SrcVal = Builder.CreateAnd(SrcVal, 1585 llvm::APInt::getLowBitsSet(Info.StorageSize, 1586 Info.Size), 1587 "bf.value"); 1588 MaskedVal = SrcVal; 1589 if (Info.Offset) 1590 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1591 1592 // Mask out the original value. 1593 Val = Builder.CreateAnd(Val, 1594 ~llvm::APInt::getBitsSet(Info.StorageSize, 1595 Info.Offset, 1596 Info.Offset + Info.Size), 1597 "bf.clear"); 1598 1599 // Or together the unchanged values and the source value. 1600 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1601 } else { 1602 assert(Info.Offset == 0); 1603 } 1604 1605 // Write the new value back out. 1606 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1607 Dst.isVolatileQualified()); 1608 Store->setAlignment(Info.StorageAlignment); 1609 1610 // Return the new value of the bit-field, if requested. 1611 if (Result) { 1612 llvm::Value *ResultVal = MaskedVal; 1613 1614 // Sign extend the value if needed. 1615 if (Info.IsSigned) { 1616 assert(Info.Size <= Info.StorageSize); 1617 unsigned HighBits = Info.StorageSize - Info.Size; 1618 if (HighBits) { 1619 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1620 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1621 } 1622 } 1623 1624 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1625 "bf.result.cast"); 1626 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1627 } 1628 } 1629 1630 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1631 LValue Dst) { 1632 // This access turns into a read/modify/write of the vector. Load the input 1633 // value now. 1634 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1635 Dst.isVolatileQualified()); 1636 Load->setAlignment(Dst.getAlignment().getQuantity()); 1637 llvm::Value *Vec = Load; 1638 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1639 1640 llvm::Value *SrcVal = Src.getScalarVal(); 1641 1642 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1643 unsigned NumSrcElts = VTy->getNumElements(); 1644 unsigned NumDstElts = 1645 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1646 if (NumDstElts == NumSrcElts) { 1647 // Use shuffle vector is the src and destination are the same number of 1648 // elements and restore the vector mask since it is on the side it will be 1649 // stored. 1650 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1651 for (unsigned i = 0; i != NumSrcElts; ++i) 1652 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1653 1654 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1655 Vec = Builder.CreateShuffleVector(SrcVal, 1656 llvm::UndefValue::get(Vec->getType()), 1657 MaskV); 1658 } else if (NumDstElts > NumSrcElts) { 1659 // Extended the source vector to the same length and then shuffle it 1660 // into the destination. 1661 // FIXME: since we're shuffling with undef, can we just use the indices 1662 // into that? This could be simpler. 1663 SmallVector<llvm::Constant*, 4> ExtMask; 1664 for (unsigned i = 0; i != NumSrcElts; ++i) 1665 ExtMask.push_back(Builder.getInt32(i)); 1666 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1667 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1668 llvm::Value *ExtSrcVal = 1669 Builder.CreateShuffleVector(SrcVal, 1670 llvm::UndefValue::get(SrcVal->getType()), 1671 ExtMaskV); 1672 // build identity 1673 SmallVector<llvm::Constant*, 4> Mask; 1674 for (unsigned i = 0; i != NumDstElts; ++i) 1675 Mask.push_back(Builder.getInt32(i)); 1676 1677 // When the vector size is odd and .odd or .hi is used, the last element 1678 // of the Elts constant array will be one past the size of the vector. 1679 // Ignore the last element here, if it is greater than the mask size. 1680 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1681 NumSrcElts--; 1682 1683 // modify when what gets shuffled in 1684 for (unsigned i = 0; i != NumSrcElts; ++i) 1685 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1686 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1687 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1688 } else { 1689 // We should never shorten the vector 1690 llvm_unreachable("unexpected shorten vector length"); 1691 } 1692 } else { 1693 // If the Src is a scalar (not a vector) it must be updating one element. 1694 unsigned InIdx = getAccessedFieldNo(0, Elts); 1695 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1696 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1697 } 1698 1699 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1700 Dst.isVolatileQualified()); 1701 Store->setAlignment(Dst.getAlignment().getQuantity()); 1702 } 1703 1704 /// @brief Store of global named registers are always calls to intrinsics. 1705 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1706 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1707 "Bad type for register variable"); 1708 llvm::MDNode *RegName = cast<llvm::MDNode>( 1709 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1710 assert(RegName && "Register LValue is not metadata"); 1711 1712 // We accept integer and pointer types only 1713 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1714 llvm::Type *Ty = OrigTy; 1715 if (OrigTy->isPointerTy()) 1716 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1717 llvm::Type *Types[] = { Ty }; 1718 1719 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1720 llvm::Value *Value = Src.getScalarVal(); 1721 if (OrigTy->isPointerTy()) 1722 Value = Builder.CreatePtrToInt(Value, Ty); 1723 Builder.CreateCall( 1724 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1725 } 1726 1727 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1728 // generating write-barries API. It is currently a global, ivar, 1729 // or neither. 1730 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1731 LValue &LV, 1732 bool IsMemberAccess=false) { 1733 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1734 return; 1735 1736 if (isa<ObjCIvarRefExpr>(E)) { 1737 QualType ExpTy = E->getType(); 1738 if (IsMemberAccess && ExpTy->isPointerType()) { 1739 // If ivar is a structure pointer, assigning to field of 1740 // this struct follows gcc's behavior and makes it a non-ivar 1741 // writer-barrier conservatively. 1742 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1743 if (ExpTy->isRecordType()) { 1744 LV.setObjCIvar(false); 1745 return; 1746 } 1747 } 1748 LV.setObjCIvar(true); 1749 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1750 LV.setBaseIvarExp(Exp->getBase()); 1751 LV.setObjCArray(E->getType()->isArrayType()); 1752 return; 1753 } 1754 1755 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1756 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1757 if (VD->hasGlobalStorage()) { 1758 LV.setGlobalObjCRef(true); 1759 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1760 } 1761 } 1762 LV.setObjCArray(E->getType()->isArrayType()); 1763 return; 1764 } 1765 1766 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1767 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1768 return; 1769 } 1770 1771 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1772 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1773 if (LV.isObjCIvar()) { 1774 // If cast is to a structure pointer, follow gcc's behavior and make it 1775 // a non-ivar write-barrier. 1776 QualType ExpTy = E->getType(); 1777 if (ExpTy->isPointerType()) 1778 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1779 if (ExpTy->isRecordType()) 1780 LV.setObjCIvar(false); 1781 } 1782 return; 1783 } 1784 1785 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1786 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1787 return; 1788 } 1789 1790 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1791 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1792 return; 1793 } 1794 1795 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1796 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1797 return; 1798 } 1799 1800 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1801 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1802 return; 1803 } 1804 1805 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1806 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1807 if (LV.isObjCIvar() && !LV.isObjCArray()) 1808 // Using array syntax to assigning to what an ivar points to is not 1809 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1810 LV.setObjCIvar(false); 1811 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1812 // Using array syntax to assigning to what global points to is not 1813 // same as assigning to the global itself. {id *G;} G[i] = 0; 1814 LV.setGlobalObjCRef(false); 1815 return; 1816 } 1817 1818 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1819 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1820 // We don't know if member is an 'ivar', but this flag is looked at 1821 // only in the context of LV.isObjCIvar(). 1822 LV.setObjCArray(E->getType()->isArrayType()); 1823 return; 1824 } 1825 } 1826 1827 static llvm::Value * 1828 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1829 llvm::Value *V, llvm::Type *IRType, 1830 StringRef Name = StringRef()) { 1831 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1832 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1833 } 1834 1835 static LValue EmitThreadPrivateVarDeclLValue( 1836 CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V, 1837 llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) { 1838 V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc); 1839 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1840 return CGF.MakeAddrLValue(V, T, Alignment); 1841 } 1842 1843 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1844 const Expr *E, const VarDecl *VD) { 1845 QualType T = E->getType(); 1846 1847 // If it's thread_local, emit a call to its wrapper function instead. 1848 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1849 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1850 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1851 1852 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1853 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1854 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1855 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1856 LValue LV; 1857 // Emit reference to the private copy of the variable if it is an OpenMP 1858 // threadprivate variable. 1859 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1860 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment, 1861 E->getExprLoc()); 1862 if (VD->getType()->isReferenceType()) { 1863 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1864 LI->setAlignment(Alignment.getQuantity()); 1865 V = LI; 1866 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1867 } else { 1868 LV = CGF.MakeAddrLValue(V, T, Alignment); 1869 } 1870 setObjCGCLValueClass(CGF.getContext(), E, LV); 1871 return LV; 1872 } 1873 1874 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1875 const Expr *E, const FunctionDecl *FD) { 1876 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1877 if (!FD->hasPrototype()) { 1878 if (const FunctionProtoType *Proto = 1879 FD->getType()->getAs<FunctionProtoType>()) { 1880 // Ugly case: for a K&R-style definition, the type of the definition 1881 // isn't the same as the type of a use. Correct for this with a 1882 // bitcast. 1883 QualType NoProtoType = 1884 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1885 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1886 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1887 } 1888 } 1889 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1890 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1891 } 1892 1893 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1894 llvm::Value *ThisValue) { 1895 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1896 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1897 return CGF.EmitLValueForField(LV, FD); 1898 } 1899 1900 /// Named Registers are named metadata pointing to the register name 1901 /// which will be read from/written to as an argument to the intrinsic 1902 /// @llvm.read/write_register. 1903 /// So far, only the name is being passed down, but other options such as 1904 /// register type, allocation type or even optimization options could be 1905 /// passed down via the metadata node. 1906 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1907 CodeGenModule &CGM, 1908 CharUnits Alignment) { 1909 SmallString<64> Name("llvm.named.register."); 1910 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1911 assert(Asm->getLabel().size() < 64-Name.size() && 1912 "Register name too big"); 1913 Name.append(Asm->getLabel()); 1914 llvm::NamedMDNode *M = 1915 CGM.getModule().getOrInsertNamedMetadata(Name); 1916 if (M->getNumOperands() == 0) { 1917 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1918 Asm->getLabel()); 1919 llvm::Metadata *Ops[] = {Str}; 1920 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1921 } 1922 return LValue::MakeGlobalReg( 1923 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)), 1924 VD->getType(), Alignment); 1925 } 1926 1927 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1928 const NamedDecl *ND = E->getDecl(); 1929 CharUnits Alignment = getContext().getDeclAlign(ND); 1930 QualType T = E->getType(); 1931 1932 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1933 // Global Named registers access via intrinsics only 1934 if (VD->getStorageClass() == SC_Register && 1935 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1936 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1937 1938 // A DeclRefExpr for a reference initialized by a constant expression can 1939 // appear without being odr-used. Directly emit the constant initializer. 1940 const Expr *Init = VD->getAnyInitializer(VD); 1941 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1942 VD->isUsableInConstantExpressions(getContext()) && 1943 VD->checkInitIsICE()) { 1944 llvm::Constant *Val = 1945 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1946 assert(Val && "failed to emit reference constant expression"); 1947 // FIXME: Eventually we will want to emit vector element references. 1948 return MakeAddrLValue(Val, T, Alignment); 1949 } 1950 1951 // Check for captured variables. 1952 if (E->refersToEnclosingVariableOrCapture()) { 1953 if (auto *FD = LambdaCaptureFields.lookup(VD)) 1954 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1955 else if (CapturedStmtInfo) { 1956 if (auto *V = LocalDeclMap.lookup(VD)) 1957 return MakeAddrLValue(V, T, Alignment); 1958 else 1959 return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 1960 CapturedStmtInfo->getContextValue()); 1961 } 1962 assert(isa<BlockDecl>(CurCodeDecl)); 1963 return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()), 1964 T, Alignment); 1965 } 1966 } 1967 1968 // FIXME: We should be able to assert this for FunctionDecls as well! 1969 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1970 // those with a valid source location. 1971 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1972 !E->getLocation().isValid()) && 1973 "Should not use decl without marking it used!"); 1974 1975 if (ND->hasAttr<WeakRefAttr>()) { 1976 const auto *VD = cast<ValueDecl>(ND); 1977 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1978 return MakeAddrLValue(Aliasee, T, Alignment); 1979 } 1980 1981 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1982 // Check if this is a global variable. 1983 if (VD->hasLinkage() || VD->isStaticDataMember()) 1984 return EmitGlobalVarDeclLValue(*this, E, VD); 1985 1986 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1987 1988 llvm::Value *V = LocalDeclMap.lookup(VD); 1989 if (!V && VD->isStaticLocal()) 1990 V = CGM.getOrCreateStaticVarDecl( 1991 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1992 1993 // Check if variable is threadprivate. 1994 if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1995 return EmitThreadPrivateVarDeclLValue( 1996 *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()), 1997 Alignment, E->getExprLoc()); 1998 1999 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 2000 2001 if (isBlockVariable) 2002 V = BuildBlockByrefAddress(V, VD); 2003 2004 LValue LV; 2005 if (VD->getType()->isReferenceType()) { 2006 llvm::LoadInst *LI = Builder.CreateLoad(V); 2007 LI->setAlignment(Alignment.getQuantity()); 2008 V = LI; 2009 LV = MakeNaturalAlignAddrLValue(V, T); 2010 } else { 2011 LV = MakeAddrLValue(V, T, Alignment); 2012 } 2013 2014 bool isLocalStorage = VD->hasLocalStorage(); 2015 2016 bool NonGCable = isLocalStorage && 2017 !VD->getType()->isReferenceType() && 2018 !isBlockVariable; 2019 if (NonGCable) { 2020 LV.getQuals().removeObjCGCAttr(); 2021 LV.setNonGC(true); 2022 } 2023 2024 bool isImpreciseLifetime = 2025 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2026 if (isImpreciseLifetime) 2027 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2028 setObjCGCLValueClass(getContext(), E, LV); 2029 return LV; 2030 } 2031 2032 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2033 return EmitFunctionDeclLValue(*this, E, FD); 2034 2035 llvm_unreachable("Unhandled DeclRefExpr"); 2036 } 2037 2038 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2039 // __extension__ doesn't affect lvalue-ness. 2040 if (E->getOpcode() == UO_Extension) 2041 return EmitLValue(E->getSubExpr()); 2042 2043 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2044 switch (E->getOpcode()) { 2045 default: llvm_unreachable("Unknown unary operator lvalue!"); 2046 case UO_Deref: { 2047 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2048 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2049 2050 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 2051 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2052 2053 // We should not generate __weak write barrier on indirect reference 2054 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2055 // But, we continue to generate __strong write barrier on indirect write 2056 // into a pointer to object. 2057 if (getLangOpts().ObjC1 && 2058 getLangOpts().getGC() != LangOptions::NonGC && 2059 LV.isObjCWeak()) 2060 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2061 return LV; 2062 } 2063 case UO_Real: 2064 case UO_Imag: { 2065 LValue LV = EmitLValue(E->getSubExpr()); 2066 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2067 llvm::Value *Addr = LV.getAddress(); 2068 2069 // __real is valid on scalars. This is a faster way of testing that. 2070 // __imag can only produce an rvalue on scalars. 2071 if (E->getOpcode() == UO_Real && 2072 !cast<llvm::PointerType>(Addr->getType()) 2073 ->getElementType()->isStructTy()) { 2074 assert(E->getSubExpr()->getType()->isArithmeticType()); 2075 return LV; 2076 } 2077 2078 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2079 2080 unsigned Idx = E->getOpcode() == UO_Imag; 2081 return MakeAddrLValue( 2082 Builder.CreateStructGEP(nullptr, LV.getAddress(), Idx, "idx"), ExprTy); 2083 } 2084 case UO_PreInc: 2085 case UO_PreDec: { 2086 LValue LV = EmitLValue(E->getSubExpr()); 2087 bool isInc = E->getOpcode() == UO_PreInc; 2088 2089 if (E->getType()->isAnyComplexType()) 2090 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2091 else 2092 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2093 return LV; 2094 } 2095 } 2096 } 2097 2098 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2099 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2100 E->getType()); 2101 } 2102 2103 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2104 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2105 E->getType()); 2106 } 2107 2108 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2109 auto SL = E->getFunctionName(); 2110 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2111 StringRef FnName = CurFn->getName(); 2112 if (FnName.startswith("\01")) 2113 FnName = FnName.substr(1); 2114 StringRef NameItems[] = { 2115 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2116 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2117 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2118 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1); 2119 return MakeAddrLValue(C, E->getType()); 2120 } 2121 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2122 return MakeAddrLValue(C, E->getType()); 2123 } 2124 2125 /// Emit a type description suitable for use by a runtime sanitizer library. The 2126 /// format of a type descriptor is 2127 /// 2128 /// \code 2129 /// { i16 TypeKind, i16 TypeInfo } 2130 /// \endcode 2131 /// 2132 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2133 /// integer, 1 for a floating point value, and -1 for anything else. 2134 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2135 // Only emit each type's descriptor once. 2136 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2137 return C; 2138 2139 uint16_t TypeKind = -1; 2140 uint16_t TypeInfo = 0; 2141 2142 if (T->isIntegerType()) { 2143 TypeKind = 0; 2144 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2145 (T->isSignedIntegerType() ? 1 : 0); 2146 } else if (T->isFloatingType()) { 2147 TypeKind = 1; 2148 TypeInfo = getContext().getTypeSize(T); 2149 } 2150 2151 // Format the type name as if for a diagnostic, including quotes and 2152 // optionally an 'aka'. 2153 SmallString<32> Buffer; 2154 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2155 (intptr_t)T.getAsOpaquePtr(), 2156 StringRef(), StringRef(), None, Buffer, 2157 None); 2158 2159 llvm::Constant *Components[] = { 2160 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2161 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2162 }; 2163 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2164 2165 auto *GV = new llvm::GlobalVariable( 2166 CGM.getModule(), Descriptor->getType(), 2167 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2168 GV->setUnnamedAddr(true); 2169 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2170 2171 // Remember the descriptor for this type. 2172 CGM.setTypeDescriptorInMap(T, GV); 2173 2174 return GV; 2175 } 2176 2177 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2178 llvm::Type *TargetTy = IntPtrTy; 2179 2180 // Floating-point types which fit into intptr_t are bitcast to integers 2181 // and then passed directly (after zero-extension, if necessary). 2182 if (V->getType()->isFloatingPointTy()) { 2183 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2184 if (Bits <= TargetTy->getIntegerBitWidth()) 2185 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2186 Bits)); 2187 } 2188 2189 // Integers which fit in intptr_t are zero-extended and passed directly. 2190 if (V->getType()->isIntegerTy() && 2191 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2192 return Builder.CreateZExt(V, TargetTy); 2193 2194 // Pointers are passed directly, everything else is passed by address. 2195 if (!V->getType()->isPointerTy()) { 2196 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2197 Builder.CreateStore(V, Ptr); 2198 V = Ptr; 2199 } 2200 return Builder.CreatePtrToInt(V, TargetTy); 2201 } 2202 2203 /// \brief Emit a representation of a SourceLocation for passing to a handler 2204 /// in a sanitizer runtime library. The format for this data is: 2205 /// \code 2206 /// struct SourceLocation { 2207 /// const char *Filename; 2208 /// int32_t Line, Column; 2209 /// }; 2210 /// \endcode 2211 /// For an invalid SourceLocation, the Filename pointer is null. 2212 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2213 llvm::Constant *Filename; 2214 int Line, Column; 2215 2216 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2217 if (PLoc.isValid()) { 2218 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2219 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV); 2220 Filename = FilenameGV; 2221 Line = PLoc.getLine(); 2222 Column = PLoc.getColumn(); 2223 } else { 2224 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2225 Line = Column = 0; 2226 } 2227 2228 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2229 Builder.getInt32(Column)}; 2230 2231 return llvm::ConstantStruct::getAnon(Data); 2232 } 2233 2234 namespace { 2235 /// \brief Specify under what conditions this check can be recovered 2236 enum class CheckRecoverableKind { 2237 /// Always terminate program execution if this check fails. 2238 Unrecoverable, 2239 /// Check supports recovering, runtime has both fatal (noreturn) and 2240 /// non-fatal handlers for this check. 2241 Recoverable, 2242 /// Runtime conditionally aborts, always need to support recovery. 2243 AlwaysRecoverable 2244 }; 2245 } 2246 2247 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2248 assert(llvm::countPopulation(Kind) == 1); 2249 switch (Kind) { 2250 case SanitizerKind::Vptr: 2251 return CheckRecoverableKind::AlwaysRecoverable; 2252 case SanitizerKind::Return: 2253 case SanitizerKind::Unreachable: 2254 return CheckRecoverableKind::Unrecoverable; 2255 default: 2256 return CheckRecoverableKind::Recoverable; 2257 } 2258 } 2259 2260 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2261 llvm::FunctionType *FnType, 2262 ArrayRef<llvm::Value *> FnArgs, 2263 StringRef CheckName, 2264 CheckRecoverableKind RecoverKind, bool IsFatal, 2265 llvm::BasicBlock *ContBB) { 2266 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2267 bool NeedsAbortSuffix = 2268 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2269 std::string FnName = ("__ubsan_handle_" + CheckName + 2270 (NeedsAbortSuffix ? "_abort" : "")).str(); 2271 bool MayReturn = 2272 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2273 2274 llvm::AttrBuilder B; 2275 if (!MayReturn) { 2276 B.addAttribute(llvm::Attribute::NoReturn) 2277 .addAttribute(llvm::Attribute::NoUnwind); 2278 } 2279 B.addAttribute(llvm::Attribute::UWTable); 2280 2281 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2282 FnType, FnName, 2283 llvm::AttributeSet::get(CGF.getLLVMContext(), 2284 llvm::AttributeSet::FunctionIndex, B)); 2285 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2286 if (!MayReturn) { 2287 HandlerCall->setDoesNotReturn(); 2288 CGF.Builder.CreateUnreachable(); 2289 } else { 2290 CGF.Builder.CreateBr(ContBB); 2291 } 2292 } 2293 2294 void CodeGenFunction::EmitCheck( 2295 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2296 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2297 ArrayRef<llvm::Value *> DynamicArgs) { 2298 assert(IsSanitizerScope); 2299 assert(Checked.size() > 0); 2300 2301 llvm::Value *FatalCond = nullptr; 2302 llvm::Value *RecoverableCond = nullptr; 2303 for (int i = 0, n = Checked.size(); i < n; ++i) { 2304 llvm::Value *Check = Checked[i].first; 2305 llvm::Value *&Cond = 2306 CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2307 ? RecoverableCond 2308 : FatalCond; 2309 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2310 } 2311 2312 llvm::Value *JointCond; 2313 if (FatalCond && RecoverableCond) 2314 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2315 else 2316 JointCond = FatalCond ? FatalCond : RecoverableCond; 2317 assert(JointCond); 2318 2319 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2320 assert(SanOpts.has(Checked[0].second)); 2321 #ifndef NDEBUG 2322 for (int i = 1, n = Checked.size(); i < n; ++i) { 2323 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2324 "All recoverable kinds in a single check must be same!"); 2325 assert(SanOpts.has(Checked[i].second)); 2326 } 2327 #endif 2328 2329 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2330 assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable && 2331 "Runtime call required for AlwaysRecoverable kind!"); 2332 // Assume that -fsanitize-undefined-trap-on-error overrides 2333 // -fsanitize-recover= options, as we can only print meaningful error 2334 // message and recover if we have a runtime support. 2335 return EmitTrapCheck(JointCond); 2336 } 2337 2338 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2339 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2340 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2341 // Give hint that we very much don't expect to execute the handler 2342 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2343 llvm::MDBuilder MDHelper(getLLVMContext()); 2344 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2345 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2346 EmitBlock(Handlers); 2347 2348 // Emit handler arguments and create handler function type. 2349 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2350 auto *InfoPtr = 2351 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2352 llvm::GlobalVariable::PrivateLinkage, Info); 2353 InfoPtr->setUnnamedAddr(true); 2354 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2355 2356 SmallVector<llvm::Value *, 4> Args; 2357 SmallVector<llvm::Type *, 4> ArgTypes; 2358 Args.reserve(DynamicArgs.size() + 1); 2359 ArgTypes.reserve(DynamicArgs.size() + 1); 2360 2361 // Handler functions take an i8* pointing to the (handler-specific) static 2362 // information block, followed by a sequence of intptr_t arguments 2363 // representing operand values. 2364 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2365 ArgTypes.push_back(Int8PtrTy); 2366 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2367 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2368 ArgTypes.push_back(IntPtrTy); 2369 } 2370 2371 llvm::FunctionType *FnType = 2372 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2373 2374 if (!FatalCond || !RecoverableCond) { 2375 // Simple case: we need to generate a single handler call, either 2376 // fatal, or non-fatal. 2377 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2378 (FatalCond != nullptr), Cont); 2379 } else { 2380 // Emit two handler calls: first one for set of unrecoverable checks, 2381 // another one for recoverable. 2382 llvm::BasicBlock *NonFatalHandlerBB = 2383 createBasicBlock("non_fatal." + CheckName); 2384 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2385 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2386 EmitBlock(FatalHandlerBB); 2387 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2388 NonFatalHandlerBB); 2389 EmitBlock(NonFatalHandlerBB); 2390 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2391 Cont); 2392 } 2393 2394 EmitBlock(Cont); 2395 } 2396 2397 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2398 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2399 2400 // If we're optimizing, collapse all calls to trap down to just one per 2401 // function to save on code size. 2402 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2403 TrapBB = createBasicBlock("trap"); 2404 Builder.CreateCondBr(Checked, Cont, TrapBB); 2405 EmitBlock(TrapBB); 2406 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2407 llvm::CallInst *TrapCall = Builder.CreateCall(F, {}); 2408 TrapCall->setDoesNotReturn(); 2409 TrapCall->setDoesNotThrow(); 2410 Builder.CreateUnreachable(); 2411 } else { 2412 Builder.CreateCondBr(Checked, Cont, TrapBB); 2413 } 2414 2415 EmitBlock(Cont); 2416 } 2417 2418 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2419 /// array to pointer, return the array subexpression. 2420 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2421 // If this isn't just an array->pointer decay, bail out. 2422 const auto *CE = dyn_cast<CastExpr>(E); 2423 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2424 return nullptr; 2425 2426 // If this is a decay from variable width array, bail out. 2427 const Expr *SubExpr = CE->getSubExpr(); 2428 if (SubExpr->getType()->isVariableArrayType()) 2429 return nullptr; 2430 2431 return SubExpr; 2432 } 2433 2434 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2435 bool Accessed) { 2436 // The index must always be an integer, which is not an aggregate. Emit it. 2437 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2438 QualType IdxTy = E->getIdx()->getType(); 2439 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2440 2441 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2442 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2443 2444 // If the base is a vector type, then we are forming a vector element lvalue 2445 // with this subscript. 2446 if (E->getBase()->getType()->isVectorType() && 2447 !isa<ExtVectorElementExpr>(E->getBase())) { 2448 // Emit the vector as an lvalue to get its address. 2449 LValue LHS = EmitLValue(E->getBase()); 2450 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2451 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2452 E->getBase()->getType(), LHS.getAlignment()); 2453 } 2454 2455 // Extend or truncate the index type to 32 or 64-bits. 2456 if (Idx->getType() != IntPtrTy) 2457 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2458 2459 // We know that the pointer points to a type of the correct size, unless the 2460 // size is a VLA or Objective-C interface. 2461 llvm::Value *Address = nullptr; 2462 CharUnits ArrayAlignment; 2463 if (isa<ExtVectorElementExpr>(E->getBase())) { 2464 LValue LV = EmitLValue(E->getBase()); 2465 Address = EmitExtVectorElementLValue(LV); 2466 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2467 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2468 QualType EQT = ExprVT->getElementType(); 2469 return MakeAddrLValue(Address, EQT, 2470 getContext().getTypeAlignInChars(EQT)); 2471 } 2472 else if (const VariableArrayType *vla = 2473 getContext().getAsVariableArrayType(E->getType())) { 2474 // The base must be a pointer, which is not an aggregate. Emit 2475 // it. It needs to be emitted first in case it's what captures 2476 // the VLA bounds. 2477 Address = EmitScalarExpr(E->getBase()); 2478 2479 // The element count here is the total number of non-VLA elements. 2480 llvm::Value *numElements = getVLASize(vla).first; 2481 2482 // Effectively, the multiply by the VLA size is part of the GEP. 2483 // GEP indexes are signed, and scaling an index isn't permitted to 2484 // signed-overflow, so we use the same semantics for our explicit 2485 // multiply. We suppress this if overflow is not undefined behavior. 2486 if (getLangOpts().isSignedOverflowDefined()) { 2487 Idx = Builder.CreateMul(Idx, numElements); 2488 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2489 } else { 2490 Idx = Builder.CreateNSWMul(Idx, numElements); 2491 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2492 } 2493 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2494 // Indexing over an interface, as in "NSString *P; P[4];" 2495 llvm::Value *InterfaceSize = 2496 llvm::ConstantInt::get(Idx->getType(), 2497 getContext().getTypeSizeInChars(OIT).getQuantity()); 2498 2499 Idx = Builder.CreateMul(Idx, InterfaceSize); 2500 2501 // The base must be a pointer, which is not an aggregate. Emit it. 2502 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2503 Address = EmitCastToVoidPtr(Base); 2504 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2505 Address = Builder.CreateBitCast(Address, Base->getType()); 2506 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2507 // If this is A[i] where A is an array, the frontend will have decayed the 2508 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2509 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2510 // "gep x, i" here. Emit one "gep A, 0, i". 2511 assert(Array->getType()->isArrayType() && 2512 "Array to pointer decay must have array source type!"); 2513 LValue ArrayLV; 2514 // For simple multidimensional array indexing, set the 'accessed' flag for 2515 // better bounds-checking of the base expression. 2516 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2517 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2518 else 2519 ArrayLV = EmitLValue(Array); 2520 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2521 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2522 llvm::Value *Args[] = { Zero, Idx }; 2523 2524 // Propagate the alignment from the array itself to the result. 2525 ArrayAlignment = ArrayLV.getAlignment(); 2526 2527 if (getLangOpts().isSignedOverflowDefined()) 2528 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2529 else 2530 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2531 } else { 2532 // The base must be a pointer, which is not an aggregate. Emit it. 2533 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2534 if (getLangOpts().isSignedOverflowDefined()) 2535 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2536 else 2537 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2538 } 2539 2540 QualType T = E->getBase()->getType()->getPointeeType(); 2541 assert(!T.isNull() && 2542 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2543 2544 2545 // Limit the alignment to that of the result type. 2546 LValue LV; 2547 if (!ArrayAlignment.isZero()) { 2548 CharUnits Align = getContext().getTypeAlignInChars(T); 2549 ArrayAlignment = std::min(Align, ArrayAlignment); 2550 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2551 } else { 2552 LV = MakeNaturalAlignAddrLValue(Address, T); 2553 } 2554 2555 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2556 2557 if (getLangOpts().ObjC1 && 2558 getLangOpts().getGC() != LangOptions::NonGC) { 2559 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2560 setObjCGCLValueClass(getContext(), E, LV); 2561 } 2562 return LV; 2563 } 2564 2565 static 2566 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2567 SmallVectorImpl<unsigned> &Elts) { 2568 SmallVector<llvm::Constant*, 4> CElts; 2569 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2570 CElts.push_back(Builder.getInt32(Elts[i])); 2571 2572 return llvm::ConstantVector::get(CElts); 2573 } 2574 2575 LValue CodeGenFunction:: 2576 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2577 // Emit the base vector as an l-value. 2578 LValue Base; 2579 2580 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2581 if (E->isArrow()) { 2582 // If it is a pointer to a vector, emit the address and form an lvalue with 2583 // it. 2584 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2585 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2586 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2587 Base.getQuals().removeObjCGCAttr(); 2588 } else if (E->getBase()->isGLValue()) { 2589 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2590 // emit the base as an lvalue. 2591 assert(E->getBase()->getType()->isVectorType()); 2592 Base = EmitLValue(E->getBase()); 2593 } else { 2594 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2595 assert(E->getBase()->getType()->isVectorType() && 2596 "Result must be a vector"); 2597 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2598 2599 // Store the vector to memory (because LValue wants an address). 2600 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2601 Builder.CreateStore(Vec, VecMem); 2602 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2603 } 2604 2605 QualType type = 2606 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2607 2608 // Encode the element access list into a vector of unsigned indices. 2609 SmallVector<unsigned, 4> Indices; 2610 E->getEncodedElementAccess(Indices); 2611 2612 if (Base.isSimple()) { 2613 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2614 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2615 Base.getAlignment()); 2616 } 2617 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2618 2619 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2620 SmallVector<llvm::Constant *, 4> CElts; 2621 2622 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2623 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2624 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2625 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2626 Base.getAlignment()); 2627 } 2628 2629 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2630 Expr *BaseExpr = E->getBase(); 2631 2632 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2633 LValue BaseLV; 2634 if (E->isArrow()) { 2635 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2636 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2637 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2638 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2639 } else 2640 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2641 2642 NamedDecl *ND = E->getMemberDecl(); 2643 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2644 LValue LV = EmitLValueForField(BaseLV, Field); 2645 setObjCGCLValueClass(getContext(), E, LV); 2646 return LV; 2647 } 2648 2649 if (auto *VD = dyn_cast<VarDecl>(ND)) 2650 return EmitGlobalVarDeclLValue(*this, E, VD); 2651 2652 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2653 return EmitFunctionDeclLValue(*this, E, FD); 2654 2655 llvm_unreachable("Unhandled member declaration!"); 2656 } 2657 2658 /// Given that we are currently emitting a lambda, emit an l-value for 2659 /// one of its members. 2660 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2661 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2662 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2663 QualType LambdaTagType = 2664 getContext().getTagDeclType(Field->getParent()); 2665 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2666 return EmitLValueForField(LambdaLV, Field); 2667 } 2668 2669 LValue CodeGenFunction::EmitLValueForField(LValue base, 2670 const FieldDecl *field) { 2671 if (field->isBitField()) { 2672 const CGRecordLayout &RL = 2673 CGM.getTypes().getCGRecordLayout(field->getParent()); 2674 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2675 llvm::Value *Addr = base.getAddress(); 2676 unsigned Idx = RL.getLLVMFieldNo(field); 2677 if (Idx != 0) 2678 // For structs, we GEP to the field that the record layout suggests. 2679 Addr = Builder.CreateStructGEP(nullptr, Addr, Idx, field->getName()); 2680 // Get the access type. 2681 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2682 getLLVMContext(), Info.StorageSize, 2683 CGM.getContext().getTargetAddressSpace(base.getType())); 2684 if (Addr->getType() != PtrTy) 2685 Addr = Builder.CreateBitCast(Addr, PtrTy); 2686 2687 QualType fieldType = 2688 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2689 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2690 } 2691 2692 const RecordDecl *rec = field->getParent(); 2693 QualType type = field->getType(); 2694 CharUnits alignment = getContext().getDeclAlign(field); 2695 2696 // FIXME: It should be impossible to have an LValue without alignment for a 2697 // complete type. 2698 if (!base.getAlignment().isZero()) 2699 alignment = std::min(alignment, base.getAlignment()); 2700 2701 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2702 2703 llvm::Value *addr = base.getAddress(); 2704 unsigned cvr = base.getVRQualifiers(); 2705 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2706 if (rec->isUnion()) { 2707 // For unions, there is no pointer adjustment. 2708 assert(!type->isReferenceType() && "union has reference member"); 2709 // TODO: handle path-aware TBAA for union. 2710 TBAAPath = false; 2711 } else { 2712 // For structs, we GEP to the field that the record layout suggests. 2713 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2714 addr = Builder.CreateStructGEP(nullptr, addr, idx, field->getName()); 2715 2716 // If this is a reference field, load the reference right now. 2717 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2718 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2719 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2720 load->setAlignment(alignment.getQuantity()); 2721 2722 // Loading the reference will disable path-aware TBAA. 2723 TBAAPath = false; 2724 if (CGM.shouldUseTBAA()) { 2725 llvm::MDNode *tbaa; 2726 if (mayAlias) 2727 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2728 else 2729 tbaa = CGM.getTBAAInfo(type); 2730 if (tbaa) 2731 CGM.DecorateInstruction(load, tbaa); 2732 } 2733 2734 addr = load; 2735 mayAlias = false; 2736 type = refType->getPointeeType(); 2737 if (type->isIncompleteType()) 2738 alignment = CharUnits(); 2739 else 2740 alignment = getContext().getTypeAlignInChars(type); 2741 cvr = 0; // qualifiers don't recursively apply to referencee 2742 } 2743 } 2744 2745 // Make sure that the address is pointing to the right type. This is critical 2746 // for both unions and structs. A union needs a bitcast, a struct element 2747 // will need a bitcast if the LLVM type laid out doesn't match the desired 2748 // type. 2749 addr = EmitBitCastOfLValueToProperType(*this, addr, 2750 CGM.getTypes().ConvertTypeForMem(type), 2751 field->getName()); 2752 2753 if (field->hasAttr<AnnotateAttr>()) 2754 addr = EmitFieldAnnotations(field, addr); 2755 2756 LValue LV = MakeAddrLValue(addr, type, alignment); 2757 LV.getQuals().addCVRQualifiers(cvr); 2758 if (TBAAPath) { 2759 const ASTRecordLayout &Layout = 2760 getContext().getASTRecordLayout(field->getParent()); 2761 // Set the base type to be the base type of the base LValue and 2762 // update offset to be relative to the base type. 2763 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2764 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2765 Layout.getFieldOffset(field->getFieldIndex()) / 2766 getContext().getCharWidth()); 2767 } 2768 2769 // __weak attribute on a field is ignored. 2770 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2771 LV.getQuals().removeObjCGCAttr(); 2772 2773 // Fields of may_alias structs act like 'char' for TBAA purposes. 2774 // FIXME: this should get propagated down through anonymous structs 2775 // and unions. 2776 if (mayAlias && LV.getTBAAInfo()) 2777 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2778 2779 return LV; 2780 } 2781 2782 LValue 2783 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2784 const FieldDecl *Field) { 2785 QualType FieldType = Field->getType(); 2786 2787 if (!FieldType->isReferenceType()) 2788 return EmitLValueForField(Base, Field); 2789 2790 const CGRecordLayout &RL = 2791 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2792 unsigned idx = RL.getLLVMFieldNo(Field); 2793 llvm::Value *V = Builder.CreateStructGEP(nullptr, Base.getAddress(), idx); 2794 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2795 2796 // Make sure that the address is pointing to the right type. This is critical 2797 // for both unions and structs. A union needs a bitcast, a struct element 2798 // will need a bitcast if the LLVM type laid out doesn't match the desired 2799 // type. 2800 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2801 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2802 2803 CharUnits Alignment = getContext().getDeclAlign(Field); 2804 2805 // FIXME: It should be impossible to have an LValue without alignment for a 2806 // complete type. 2807 if (!Base.getAlignment().isZero()) 2808 Alignment = std::min(Alignment, Base.getAlignment()); 2809 2810 return MakeAddrLValue(V, FieldType, Alignment); 2811 } 2812 2813 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2814 if (E->isFileScope()) { 2815 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2816 return MakeAddrLValue(GlobalPtr, E->getType()); 2817 } 2818 if (E->getType()->isVariablyModifiedType()) 2819 // make sure to emit the VLA size. 2820 EmitVariablyModifiedType(E->getType()); 2821 2822 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2823 const Expr *InitExpr = E->getInitializer(); 2824 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2825 2826 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2827 /*Init*/ true); 2828 2829 return Result; 2830 } 2831 2832 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2833 if (!E->isGLValue()) 2834 // Initializing an aggregate temporary in C++11: T{...}. 2835 return EmitAggExprToLValue(E); 2836 2837 // An lvalue initializer list must be initializing a reference. 2838 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2839 return EmitLValue(E->getInit(0)); 2840 } 2841 2842 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2843 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2844 /// LValue is returned and the current block has been terminated. 2845 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2846 const Expr *Operand) { 2847 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2848 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2849 return None; 2850 } 2851 2852 return CGF.EmitLValue(Operand); 2853 } 2854 2855 LValue CodeGenFunction:: 2856 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2857 if (!expr->isGLValue()) { 2858 // ?: here should be an aggregate. 2859 assert(hasAggregateEvaluationKind(expr->getType()) && 2860 "Unexpected conditional operator!"); 2861 return EmitAggExprToLValue(expr); 2862 } 2863 2864 OpaqueValueMapping binding(*this, expr); 2865 2866 const Expr *condExpr = expr->getCond(); 2867 bool CondExprBool; 2868 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2869 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2870 if (!CondExprBool) std::swap(live, dead); 2871 2872 if (!ContainsLabel(dead)) { 2873 // If the true case is live, we need to track its region. 2874 if (CondExprBool) 2875 incrementProfileCounter(expr); 2876 return EmitLValue(live); 2877 } 2878 } 2879 2880 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2881 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2882 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2883 2884 ConditionalEvaluation eval(*this); 2885 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 2886 2887 // Any temporaries created here are conditional. 2888 EmitBlock(lhsBlock); 2889 incrementProfileCounter(expr); 2890 eval.begin(*this); 2891 Optional<LValue> lhs = 2892 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2893 eval.end(*this); 2894 2895 if (lhs && !lhs->isSimple()) 2896 return EmitUnsupportedLValue(expr, "conditional operator"); 2897 2898 lhsBlock = Builder.GetInsertBlock(); 2899 if (lhs) 2900 Builder.CreateBr(contBlock); 2901 2902 // Any temporaries created here are conditional. 2903 EmitBlock(rhsBlock); 2904 eval.begin(*this); 2905 Optional<LValue> rhs = 2906 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2907 eval.end(*this); 2908 if (rhs && !rhs->isSimple()) 2909 return EmitUnsupportedLValue(expr, "conditional operator"); 2910 rhsBlock = Builder.GetInsertBlock(); 2911 2912 EmitBlock(contBlock); 2913 2914 if (lhs && rhs) { 2915 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2916 2, "cond-lvalue"); 2917 phi->addIncoming(lhs->getAddress(), lhsBlock); 2918 phi->addIncoming(rhs->getAddress(), rhsBlock); 2919 return MakeAddrLValue(phi, expr->getType()); 2920 } else { 2921 assert((lhs || rhs) && 2922 "both operands of glvalue conditional are throw-expressions?"); 2923 return lhs ? *lhs : *rhs; 2924 } 2925 } 2926 2927 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2928 /// type. If the cast is to a reference, we can have the usual lvalue result, 2929 /// otherwise if a cast is needed by the code generator in an lvalue context, 2930 /// then it must mean that we need the address of an aggregate in order to 2931 /// access one of its members. This can happen for all the reasons that casts 2932 /// are permitted with aggregate result, including noop aggregate casts, and 2933 /// cast from scalar to union. 2934 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2935 switch (E->getCastKind()) { 2936 case CK_ToVoid: 2937 case CK_BitCast: 2938 case CK_ArrayToPointerDecay: 2939 case CK_FunctionToPointerDecay: 2940 case CK_NullToMemberPointer: 2941 case CK_NullToPointer: 2942 case CK_IntegralToPointer: 2943 case CK_PointerToIntegral: 2944 case CK_PointerToBoolean: 2945 case CK_VectorSplat: 2946 case CK_IntegralCast: 2947 case CK_IntegralToBoolean: 2948 case CK_IntegralToFloating: 2949 case CK_FloatingToIntegral: 2950 case CK_FloatingToBoolean: 2951 case CK_FloatingCast: 2952 case CK_FloatingRealToComplex: 2953 case CK_FloatingComplexToReal: 2954 case CK_FloatingComplexToBoolean: 2955 case CK_FloatingComplexCast: 2956 case CK_FloatingComplexToIntegralComplex: 2957 case CK_IntegralRealToComplex: 2958 case CK_IntegralComplexToReal: 2959 case CK_IntegralComplexToBoolean: 2960 case CK_IntegralComplexCast: 2961 case CK_IntegralComplexToFloatingComplex: 2962 case CK_DerivedToBaseMemberPointer: 2963 case CK_BaseToDerivedMemberPointer: 2964 case CK_MemberPointerToBoolean: 2965 case CK_ReinterpretMemberPointer: 2966 case CK_AnyPointerToBlockPointerCast: 2967 case CK_ARCProduceObject: 2968 case CK_ARCConsumeObject: 2969 case CK_ARCReclaimReturnedObject: 2970 case CK_ARCExtendBlockObject: 2971 case CK_CopyAndAutoreleaseBlockObject: 2972 case CK_AddressSpaceConversion: 2973 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2974 2975 case CK_Dependent: 2976 llvm_unreachable("dependent cast kind in IR gen!"); 2977 2978 case CK_BuiltinFnToFnPtr: 2979 llvm_unreachable("builtin functions are handled elsewhere"); 2980 2981 // These are never l-values; just use the aggregate emission code. 2982 case CK_NonAtomicToAtomic: 2983 case CK_AtomicToNonAtomic: 2984 return EmitAggExprToLValue(E); 2985 2986 case CK_Dynamic: { 2987 LValue LV = EmitLValue(E->getSubExpr()); 2988 llvm::Value *V = LV.getAddress(); 2989 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2990 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2991 } 2992 2993 case CK_ConstructorConversion: 2994 case CK_UserDefinedConversion: 2995 case CK_CPointerToObjCPointerCast: 2996 case CK_BlockPointerToObjCPointerCast: 2997 case CK_NoOp: 2998 case CK_LValueToRValue: 2999 return EmitLValue(E->getSubExpr()); 3000 3001 case CK_UncheckedDerivedToBase: 3002 case CK_DerivedToBase: { 3003 const RecordType *DerivedClassTy = 3004 E->getSubExpr()->getType()->getAs<RecordType>(); 3005 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3006 3007 LValue LV = EmitLValue(E->getSubExpr()); 3008 llvm::Value *This = LV.getAddress(); 3009 3010 // Perform the derived-to-base conversion 3011 llvm::Value *Base = GetAddressOfBaseClass( 3012 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3013 /*NullCheckValue=*/false, E->getExprLoc()); 3014 3015 return MakeAddrLValue(Base, E->getType()); 3016 } 3017 case CK_ToUnion: 3018 return EmitAggExprToLValue(E); 3019 case CK_BaseToDerived: { 3020 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3021 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3022 3023 LValue LV = EmitLValue(E->getSubExpr()); 3024 3025 // Perform the base-to-derived conversion 3026 llvm::Value *Derived = 3027 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3028 E->path_begin(), E->path_end(), 3029 /*NullCheckValue=*/false); 3030 3031 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3032 // performed and the object is not of the derived type. 3033 if (sanitizePerformTypeCheck()) 3034 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3035 Derived, E->getType()); 3036 3037 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3038 EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false); 3039 3040 return MakeAddrLValue(Derived, E->getType()); 3041 } 3042 case CK_LValueBitCast: { 3043 // This must be a reinterpret_cast (or c-style equivalent). 3044 const auto *CE = cast<ExplicitCastExpr>(E); 3045 3046 LValue LV = EmitLValue(E->getSubExpr()); 3047 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3048 ConvertType(CE->getTypeAsWritten())); 3049 3050 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3051 EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false); 3052 3053 return MakeAddrLValue(V, E->getType()); 3054 } 3055 case CK_ObjCObjectLValueCast: { 3056 LValue LV = EmitLValue(E->getSubExpr()); 3057 QualType ToType = getContext().getLValueReferenceType(E->getType()); 3058 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3059 ConvertType(ToType)); 3060 return MakeAddrLValue(V, E->getType()); 3061 } 3062 case CK_ZeroToOCLEvent: 3063 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3064 } 3065 3066 llvm_unreachable("Unhandled lvalue cast kind?"); 3067 } 3068 3069 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3070 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3071 return getOpaqueLValueMapping(e); 3072 } 3073 3074 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3075 const FieldDecl *FD, 3076 SourceLocation Loc) { 3077 QualType FT = FD->getType(); 3078 LValue FieldLV = EmitLValueForField(LV, FD); 3079 switch (getEvaluationKind(FT)) { 3080 case TEK_Complex: 3081 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3082 case TEK_Aggregate: 3083 return FieldLV.asAggregateRValue(); 3084 case TEK_Scalar: 3085 return EmitLoadOfLValue(FieldLV, Loc); 3086 } 3087 llvm_unreachable("bad evaluation kind"); 3088 } 3089 3090 //===--------------------------------------------------------------------===// 3091 // Expression Emission 3092 //===--------------------------------------------------------------------===// 3093 3094 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3095 ReturnValueSlot ReturnValue) { 3096 // Builtins never have block type. 3097 if (E->getCallee()->getType()->isBlockPointerType()) 3098 return EmitBlockCallExpr(E, ReturnValue); 3099 3100 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3101 return EmitCXXMemberCallExpr(CE, ReturnValue); 3102 3103 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3104 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3105 3106 const Decl *TargetDecl = E->getCalleeDecl(); 3107 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3108 if (unsigned builtinID = FD->getBuiltinID()) 3109 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3110 } 3111 3112 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3113 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3114 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3115 3116 if (const auto *PseudoDtor = 3117 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3118 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3119 if (getLangOpts().ObjCAutoRefCount && 3120 DestroyedType->isObjCLifetimeType() && 3121 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 3122 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 3123 // Automatic Reference Counting: 3124 // If the pseudo-expression names a retainable object with weak or 3125 // strong lifetime, the object shall be released. 3126 Expr *BaseExpr = PseudoDtor->getBase(); 3127 llvm::Value *BaseValue = nullptr; 3128 Qualifiers BaseQuals; 3129 3130 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3131 if (PseudoDtor->isArrow()) { 3132 BaseValue = EmitScalarExpr(BaseExpr); 3133 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3134 BaseQuals = PTy->getPointeeType().getQualifiers(); 3135 } else { 3136 LValue BaseLV = EmitLValue(BaseExpr); 3137 BaseValue = BaseLV.getAddress(); 3138 QualType BaseTy = BaseExpr->getType(); 3139 BaseQuals = BaseTy.getQualifiers(); 3140 } 3141 3142 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3143 case Qualifiers::OCL_None: 3144 case Qualifiers::OCL_ExplicitNone: 3145 case Qualifiers::OCL_Autoreleasing: 3146 break; 3147 3148 case Qualifiers::OCL_Strong: 3149 EmitARCRelease(Builder.CreateLoad(BaseValue, 3150 PseudoDtor->getDestroyedType().isVolatileQualified()), 3151 ARCPreciseLifetime); 3152 break; 3153 3154 case Qualifiers::OCL_Weak: 3155 EmitARCDestroyWeak(BaseValue); 3156 break; 3157 } 3158 } else { 3159 // C++ [expr.pseudo]p1: 3160 // The result shall only be used as the operand for the function call 3161 // operator (), and the result of such a call has type void. The only 3162 // effect is the evaluation of the postfix-expression before the dot or 3163 // arrow. 3164 EmitScalarExpr(E->getCallee()); 3165 } 3166 3167 return RValue::get(nullptr); 3168 } 3169 3170 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3171 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3172 TargetDecl); 3173 } 3174 3175 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3176 // Comma expressions just emit their LHS then their RHS as an l-value. 3177 if (E->getOpcode() == BO_Comma) { 3178 EmitIgnoredExpr(E->getLHS()); 3179 EnsureInsertPoint(); 3180 return EmitLValue(E->getRHS()); 3181 } 3182 3183 if (E->getOpcode() == BO_PtrMemD || 3184 E->getOpcode() == BO_PtrMemI) 3185 return EmitPointerToDataMemberBinaryExpr(E); 3186 3187 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3188 3189 // Note that in all of these cases, __block variables need the RHS 3190 // evaluated first just in case the variable gets moved by the RHS. 3191 3192 switch (getEvaluationKind(E->getType())) { 3193 case TEK_Scalar: { 3194 switch (E->getLHS()->getType().getObjCLifetime()) { 3195 case Qualifiers::OCL_Strong: 3196 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3197 3198 case Qualifiers::OCL_Autoreleasing: 3199 return EmitARCStoreAutoreleasing(E).first; 3200 3201 // No reason to do any of these differently. 3202 case Qualifiers::OCL_None: 3203 case Qualifiers::OCL_ExplicitNone: 3204 case Qualifiers::OCL_Weak: 3205 break; 3206 } 3207 3208 RValue RV = EmitAnyExpr(E->getRHS()); 3209 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3210 EmitStoreThroughLValue(RV, LV); 3211 return LV; 3212 } 3213 3214 case TEK_Complex: 3215 return EmitComplexAssignmentLValue(E); 3216 3217 case TEK_Aggregate: 3218 return EmitAggExprToLValue(E); 3219 } 3220 llvm_unreachable("bad evaluation kind"); 3221 } 3222 3223 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3224 RValue RV = EmitCallExpr(E); 3225 3226 if (!RV.isScalar()) 3227 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3228 3229 assert(E->getCallReturnType(getContext())->isReferenceType() && 3230 "Can't have a scalar return unless the return type is a " 3231 "reference type!"); 3232 3233 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3234 } 3235 3236 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3237 // FIXME: This shouldn't require another copy. 3238 return EmitAggExprToLValue(E); 3239 } 3240 3241 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3242 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3243 && "binding l-value to type which needs a temporary"); 3244 AggValueSlot Slot = CreateAggTemp(E->getType()); 3245 EmitCXXConstructExpr(E, Slot); 3246 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3247 } 3248 3249 LValue 3250 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3251 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3252 } 3253 3254 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3255 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3256 ConvertType(E->getType())->getPointerTo()); 3257 } 3258 3259 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3260 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3261 } 3262 3263 LValue 3264 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3265 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3266 Slot.setExternallyDestructed(); 3267 EmitAggExpr(E->getSubExpr(), Slot); 3268 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3269 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3270 } 3271 3272 LValue 3273 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3274 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3275 EmitLambdaExpr(E, Slot); 3276 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3277 } 3278 3279 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3280 RValue RV = EmitObjCMessageExpr(E); 3281 3282 if (!RV.isScalar()) 3283 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3284 3285 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3286 "Can't have a scalar return unless the return type is a " 3287 "reference type!"); 3288 3289 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3290 } 3291 3292 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3293 llvm::Value *V = 3294 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3295 return MakeAddrLValue(V, E->getType()); 3296 } 3297 3298 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3299 const ObjCIvarDecl *Ivar) { 3300 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3301 } 3302 3303 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3304 llvm::Value *BaseValue, 3305 const ObjCIvarDecl *Ivar, 3306 unsigned CVRQualifiers) { 3307 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3308 Ivar, CVRQualifiers); 3309 } 3310 3311 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3312 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3313 llvm::Value *BaseValue = nullptr; 3314 const Expr *BaseExpr = E->getBase(); 3315 Qualifiers BaseQuals; 3316 QualType ObjectTy; 3317 if (E->isArrow()) { 3318 BaseValue = EmitScalarExpr(BaseExpr); 3319 ObjectTy = BaseExpr->getType()->getPointeeType(); 3320 BaseQuals = ObjectTy.getQualifiers(); 3321 } else { 3322 LValue BaseLV = EmitLValue(BaseExpr); 3323 // FIXME: this isn't right for bitfields. 3324 BaseValue = BaseLV.getAddress(); 3325 ObjectTy = BaseExpr->getType(); 3326 BaseQuals = ObjectTy.getQualifiers(); 3327 } 3328 3329 LValue LV = 3330 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3331 BaseQuals.getCVRQualifiers()); 3332 setObjCGCLValueClass(getContext(), E, LV); 3333 return LV; 3334 } 3335 3336 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3337 // Can only get l-value for message expression returning aggregate type 3338 RValue RV = EmitAnyExprToTemp(E); 3339 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3340 } 3341 3342 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3343 const CallExpr *E, ReturnValueSlot ReturnValue, 3344 const Decl *TargetDecl, llvm::Value *Chain) { 3345 // Get the actual function type. The callee type will always be a pointer to 3346 // function type or a block pointer type. 3347 assert(CalleeType->isFunctionPointerType() && 3348 "Call must have function pointer type!"); 3349 3350 CalleeType = getContext().getCanonicalType(CalleeType); 3351 3352 const auto *FnType = 3353 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3354 3355 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 3356 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3357 if (llvm::Constant *PrefixSig = 3358 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3359 SanitizerScope SanScope(this); 3360 llvm::Constant *FTRTTIConst = 3361 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3362 llvm::Type *PrefixStructTyElems[] = { 3363 PrefixSig->getType(), 3364 FTRTTIConst->getType() 3365 }; 3366 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3367 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3368 3369 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3370 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3371 llvm::Value *CalleeSigPtr = 3372 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 3373 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3374 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3375 3376 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3377 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3378 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3379 3380 EmitBlock(TypeCheck); 3381 llvm::Value *CalleeRTTIPtr = 3382 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 3383 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3384 llvm::Value *CalleeRTTIMatch = 3385 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3386 llvm::Constant *StaticData[] = { 3387 EmitCheckSourceLocation(E->getLocStart()), 3388 EmitCheckTypeDescriptor(CalleeType) 3389 }; 3390 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 3391 "function_type_mismatch", StaticData, Callee); 3392 3393 Builder.CreateBr(Cont); 3394 EmitBlock(Cont); 3395 } 3396 } 3397 3398 CallArgList Args; 3399 if (Chain) 3400 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 3401 CGM.getContext().VoidPtrTy); 3402 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(), 3403 E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0); 3404 3405 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 3406 Args, FnType, /*isChainCall=*/Chain); 3407 3408 // C99 6.5.2.2p6: 3409 // If the expression that denotes the called function has a type 3410 // that does not include a prototype, [the default argument 3411 // promotions are performed]. If the number of arguments does not 3412 // equal the number of parameters, the behavior is undefined. If 3413 // the function is defined with a type that includes a prototype, 3414 // and either the prototype ends with an ellipsis (, ...) or the 3415 // types of the arguments after promotion are not compatible with 3416 // the types of the parameters, the behavior is undefined. If the 3417 // function is defined with a type that does not include a 3418 // prototype, and the types of the arguments after promotion are 3419 // not compatible with those of the parameters after promotion, 3420 // the behavior is undefined [except in some trivial cases]. 3421 // That is, in the general case, we should assume that a call 3422 // through an unprototyped function type works like a *non-variadic* 3423 // call. The way we make this work is to cast to the exact type 3424 // of the promoted arguments. 3425 // 3426 // Chain calls use this same code path to add the invisible chain parameter 3427 // to the function type. 3428 if (isa<FunctionNoProtoType>(FnType) || Chain) { 3429 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3430 CalleeTy = CalleeTy->getPointerTo(); 3431 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3432 } 3433 3434 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3435 } 3436 3437 LValue CodeGenFunction:: 3438 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3439 llvm::Value *BaseV; 3440 if (E->getOpcode() == BO_PtrMemI) 3441 BaseV = EmitScalarExpr(E->getLHS()); 3442 else 3443 BaseV = EmitLValue(E->getLHS()).getAddress(); 3444 3445 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3446 3447 const MemberPointerType *MPT 3448 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3449 3450 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3451 *this, E, BaseV, OffsetV, MPT); 3452 3453 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3454 } 3455 3456 /// Given the address of a temporary variable, produce an r-value of 3457 /// its type. 3458 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3459 QualType type, 3460 SourceLocation loc) { 3461 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3462 switch (getEvaluationKind(type)) { 3463 case TEK_Complex: 3464 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3465 case TEK_Aggregate: 3466 return lvalue.asAggregateRValue(); 3467 case TEK_Scalar: 3468 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3469 } 3470 llvm_unreachable("bad evaluation kind"); 3471 } 3472 3473 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3474 assert(Val->getType()->isFPOrFPVectorTy()); 3475 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3476 return; 3477 3478 llvm::MDBuilder MDHelper(getLLVMContext()); 3479 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3480 3481 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3482 } 3483 3484 namespace { 3485 struct LValueOrRValue { 3486 LValue LV; 3487 RValue RV; 3488 }; 3489 } 3490 3491 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3492 const PseudoObjectExpr *E, 3493 bool forLValue, 3494 AggValueSlot slot) { 3495 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3496 3497 // Find the result expression, if any. 3498 const Expr *resultExpr = E->getResultExpr(); 3499 LValueOrRValue result; 3500 3501 for (PseudoObjectExpr::const_semantics_iterator 3502 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3503 const Expr *semantic = *i; 3504 3505 // If this semantic expression is an opaque value, bind it 3506 // to the result of its source expression. 3507 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3508 3509 // If this is the result expression, we may need to evaluate 3510 // directly into the slot. 3511 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3512 OVMA opaqueData; 3513 if (ov == resultExpr && ov->isRValue() && !forLValue && 3514 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3515 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3516 3517 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3518 opaqueData = OVMA::bind(CGF, ov, LV); 3519 result.RV = slot.asRValue(); 3520 3521 // Otherwise, emit as normal. 3522 } else { 3523 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3524 3525 // If this is the result, also evaluate the result now. 3526 if (ov == resultExpr) { 3527 if (forLValue) 3528 result.LV = CGF.EmitLValue(ov); 3529 else 3530 result.RV = CGF.EmitAnyExpr(ov, slot); 3531 } 3532 } 3533 3534 opaques.push_back(opaqueData); 3535 3536 // Otherwise, if the expression is the result, evaluate it 3537 // and remember the result. 3538 } else if (semantic == resultExpr) { 3539 if (forLValue) 3540 result.LV = CGF.EmitLValue(semantic); 3541 else 3542 result.RV = CGF.EmitAnyExpr(semantic, slot); 3543 3544 // Otherwise, evaluate the expression in an ignored context. 3545 } else { 3546 CGF.EmitIgnoredExpr(semantic); 3547 } 3548 } 3549 3550 // Unbind all the opaques now. 3551 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3552 opaques[i].unbind(CGF); 3553 3554 return result; 3555 } 3556 3557 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3558 AggValueSlot slot) { 3559 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3560 } 3561 3562 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3563 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3564 } 3565