1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/ConvertUTF.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/DataLayout.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/LLVMContext.h"
30 #include "llvm/MDBuilder.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===--------------------------------------------------------------------===//
35 //                        Miscellaneous Helper Methods
36 //===--------------------------------------------------------------------===//
37 
38 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
39   unsigned addressSpace =
40     cast<llvm::PointerType>(value->getType())->getAddressSpace();
41 
42   llvm::PointerType *destType = Int8PtrTy;
43   if (addressSpace)
44     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
45 
46   if (value->getType() == destType) return value;
47   return Builder.CreateBitCast(value, destType);
48 }
49 
50 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
51 /// block.
52 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
53                                                     const Twine &Name) {
54   if (!Builder.isNamePreserving())
55     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
56   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
57 }
58 
59 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
60                                      llvm::Value *Init) {
61   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
62   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
63   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
64 }
65 
66 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
67                                                 const Twine &Name) {
68   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
69   // FIXME: Should we prefer the preferred type alignment here?
70   CharUnits Align = getContext().getTypeAlignInChars(Ty);
71   Alloc->setAlignment(Align.getQuantity());
72   return Alloc;
73 }
74 
75 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
76                                                  const Twine &Name) {
77   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
78   // FIXME: Should we prefer the preferred type alignment here?
79   CharUnits Align = getContext().getTypeAlignInChars(Ty);
80   Alloc->setAlignment(Align.getQuantity());
81   return Alloc;
82 }
83 
84 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
85 /// expression and compare the result against zero, returning an Int1Ty value.
86 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
87   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
88     llvm::Value *MemPtr = EmitScalarExpr(E);
89     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
90   }
91 
92   QualType BoolTy = getContext().BoolTy;
93   if (!E->getType()->isAnyComplexType())
94     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
95 
96   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
97 }
98 
99 /// EmitIgnoredExpr - Emit code to compute the specified expression,
100 /// ignoring the result.
101 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
102   if (E->isRValue())
103     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
104 
105   // Just emit it as an l-value and drop the result.
106   EmitLValue(E);
107 }
108 
109 /// EmitAnyExpr - Emit code to compute the specified expression which
110 /// can have any type.  The result is returned as an RValue struct.
111 /// If this is an aggregate expression, AggSlot indicates where the
112 /// result should be returned.
113 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
114                                     AggValueSlot aggSlot,
115                                     bool ignoreResult) {
116   if (!hasAggregateLLVMType(E->getType()))
117     return RValue::get(EmitScalarExpr(E, ignoreResult));
118   else if (E->getType()->isAnyComplexType())
119     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
120 
121   if (!ignoreResult && aggSlot.isIgnored())
122     aggSlot = CreateAggTemp(E->getType(), "agg-temp");
123   EmitAggExpr(E, aggSlot);
124   return aggSlot.asRValue();
125 }
126 
127 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
128 /// always be accessible even if no aggregate location is provided.
129 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
130   AggValueSlot AggSlot = AggValueSlot::ignored();
131 
132   if (hasAggregateLLVMType(E->getType()) &&
133       !E->getType()->isAnyComplexType())
134     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
135   return EmitAnyExpr(E, AggSlot);
136 }
137 
138 /// EmitAnyExprToMem - Evaluate an expression into a given memory
139 /// location.
140 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
141                                        llvm::Value *Location,
142                                        Qualifiers Quals,
143                                        bool IsInit) {
144   // FIXME: This function should take an LValue as an argument.
145   if (E->getType()->isAnyComplexType()) {
146     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
147   } else if (hasAggregateLLVMType(E->getType())) {
148     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
149     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
150                                          AggValueSlot::IsDestructed_t(IsInit),
151                                          AggValueSlot::DoesNotNeedGCBarriers,
152                                          AggValueSlot::IsAliased_t(!IsInit)));
153   } else {
154     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
155     LValue LV = MakeAddrLValue(Location, E->getType());
156     EmitStoreThroughLValue(RV, LV);
157   }
158 }
159 
160 static llvm::Value *
161 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
162                          const NamedDecl *InitializedDecl) {
163   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
164     if (VD->hasGlobalStorage()) {
165       SmallString<256> Name;
166       llvm::raw_svector_ostream Out(Name);
167       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
168       Out.flush();
169 
170       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
171 
172       // Create the reference temporary.
173       llvm::GlobalValue *RefTemp =
174         new llvm::GlobalVariable(CGF.CGM.getModule(),
175                                  RefTempTy, /*isConstant=*/false,
176                                  llvm::GlobalValue::InternalLinkage,
177                                  llvm::Constant::getNullValue(RefTempTy),
178                                  Name.str());
179       return RefTemp;
180     }
181   }
182 
183   return CGF.CreateMemTemp(Type, "ref.tmp");
184 }
185 
186 static llvm::Value *
187 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
188                             llvm::Value *&ReferenceTemporary,
189                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
190                             QualType &ObjCARCReferenceLifetimeType,
191                             const NamedDecl *InitializedDecl) {
192   const MaterializeTemporaryExpr *M = NULL;
193   E = E->findMaterializedTemporary(M);
194   // Objective-C++ ARC:
195   //   If we are binding a reference to a temporary that has ownership, we
196   //   need to perform retain/release operations on the temporary.
197   if (M && CGF.getLangOpts().ObjCAutoRefCount &&
198       M->getType()->isObjCLifetimeType() &&
199       (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
200        M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
201        M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
202     ObjCARCReferenceLifetimeType = M->getType();
203 
204   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
205     CGF.enterFullExpression(EWC);
206     CodeGenFunction::RunCleanupsScope Scope(CGF);
207 
208     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
209                                        ReferenceTemporary,
210                                        ReferenceTemporaryDtor,
211                                        ObjCARCReferenceLifetimeType,
212                                        InitializedDecl);
213   }
214 
215   RValue RV;
216   if (E->isGLValue()) {
217     // Emit the expression as an lvalue.
218     LValue LV = CGF.EmitLValue(E);
219 
220     if (LV.isSimple())
221       return LV.getAddress();
222 
223     // We have to load the lvalue.
224     RV = CGF.EmitLoadOfLValue(LV);
225   } else {
226     if (!ObjCARCReferenceLifetimeType.isNull()) {
227       ReferenceTemporary = CreateReferenceTemporary(CGF,
228                                                   ObjCARCReferenceLifetimeType,
229                                                     InitializedDecl);
230 
231 
232       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
233                                              ObjCARCReferenceLifetimeType);
234 
235       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
236                          RefTempDst, false);
237 
238       bool ExtendsLifeOfTemporary = false;
239       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
240         if (Var->extendsLifetimeOfTemporary())
241           ExtendsLifeOfTemporary = true;
242       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
243         ExtendsLifeOfTemporary = true;
244       }
245 
246       if (!ExtendsLifeOfTemporary) {
247         // Since the lifetime of this temporary isn't going to be extended,
248         // we need to clean it up ourselves at the end of the full expression.
249         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
250         case Qualifiers::OCL_None:
251         case Qualifiers::OCL_ExplicitNone:
252         case Qualifiers::OCL_Autoreleasing:
253           break;
254 
255         case Qualifiers::OCL_Strong: {
256           assert(!ObjCARCReferenceLifetimeType->isArrayType());
257           CleanupKind cleanupKind = CGF.getARCCleanupKind();
258           CGF.pushDestroy(cleanupKind,
259                           ReferenceTemporary,
260                           ObjCARCReferenceLifetimeType,
261                           CodeGenFunction::destroyARCStrongImprecise,
262                           cleanupKind & EHCleanup);
263           break;
264         }
265 
266         case Qualifiers::OCL_Weak:
267           assert(!ObjCARCReferenceLifetimeType->isArrayType());
268           CGF.pushDestroy(NormalAndEHCleanup,
269                           ReferenceTemporary,
270                           ObjCARCReferenceLifetimeType,
271                           CodeGenFunction::destroyARCWeak,
272                           /*useEHCleanupForArray*/ true);
273           break;
274         }
275 
276         ObjCARCReferenceLifetimeType = QualType();
277       }
278 
279       return ReferenceTemporary;
280     }
281 
282     SmallVector<SubobjectAdjustment, 2> Adjustments;
283     E = E->skipRValueSubobjectAdjustments(Adjustments);
284     if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
285       if (opaque->getType()->isRecordType())
286         return CGF.EmitOpaqueValueLValue(opaque).getAddress();
287 
288     // Create a reference temporary if necessary.
289     AggValueSlot AggSlot = AggValueSlot::ignored();
290     if (CGF.hasAggregateLLVMType(E->getType()) &&
291         !E->getType()->isAnyComplexType()) {
292       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
293                                                     InitializedDecl);
294       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
295       AggValueSlot::IsDestructed_t isDestructed
296         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
297       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
298                                       Qualifiers(), isDestructed,
299                                       AggValueSlot::DoesNotNeedGCBarriers,
300                                       AggValueSlot::IsNotAliased);
301     }
302 
303     if (InitializedDecl) {
304       // Get the destructor for the reference temporary.
305       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
306         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
307         if (!ClassDecl->hasTrivialDestructor())
308           ReferenceTemporaryDtor = ClassDecl->getDestructor();
309       }
310     }
311 
312     RV = CGF.EmitAnyExpr(E, AggSlot);
313 
314     // Check if need to perform derived-to-base casts and/or field accesses, to
315     // get from the temporary object we created (and, potentially, for which we
316     // extended the lifetime) to the subobject we're binding the reference to.
317     if (!Adjustments.empty()) {
318       llvm::Value *Object = RV.getAggregateAddr();
319       for (unsigned I = Adjustments.size(); I != 0; --I) {
320         SubobjectAdjustment &Adjustment = Adjustments[I-1];
321         switch (Adjustment.Kind) {
322         case SubobjectAdjustment::DerivedToBaseAdjustment:
323           Object =
324               CGF.GetAddressOfBaseClass(Object,
325                                         Adjustment.DerivedToBase.DerivedClass,
326                               Adjustment.DerivedToBase.BasePath->path_begin(),
327                               Adjustment.DerivedToBase.BasePath->path_end(),
328                                         /*NullCheckValue=*/false);
329           break;
330 
331         case SubobjectAdjustment::FieldAdjustment: {
332           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
333           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
334           if (LV.isSimple()) {
335             Object = LV.getAddress();
336             break;
337           }
338 
339           // For non-simple lvalues, we actually have to create a copy of
340           // the object we're binding to.
341           QualType T = Adjustment.Field->getType().getNonReferenceType()
342                                                   .getUnqualifiedType();
343           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
344           LValue TempLV = CGF.MakeAddrLValue(Object,
345                                              Adjustment.Field->getType());
346           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
347           break;
348         }
349 
350         case SubobjectAdjustment::MemberPointerAdjustment: {
351           llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
352           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
353                         CGF, Object, Ptr, Adjustment.Ptr.MPT);
354           break;
355         }
356         }
357       }
358 
359       return Object;
360     }
361   }
362 
363   if (RV.isAggregate())
364     return RV.getAggregateAddr();
365 
366   // Create a temporary variable that we can bind the reference to.
367   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
368                                                 InitializedDecl);
369 
370 
371   unsigned Alignment =
372     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
373   if (RV.isScalar())
374     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
375                           /*Volatile=*/false, Alignment, E->getType());
376   else
377     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
378                            /*Volatile=*/false);
379   return ReferenceTemporary;
380 }
381 
382 RValue
383 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
384                                             const NamedDecl *InitializedDecl) {
385   llvm::Value *ReferenceTemporary = 0;
386   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
387   QualType ObjCARCReferenceLifetimeType;
388   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
389                                                    ReferenceTemporaryDtor,
390                                                    ObjCARCReferenceLifetimeType,
391                                                    InitializedDecl);
392   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
393     // C++11 [dcl.ref]p5 (as amended by core issue 453):
394     //   If a glvalue to which a reference is directly bound designates neither
395     //   an existing object or function of an appropriate type nor a region of
396     //   storage of suitable size and alignment to contain an object of the
397     //   reference's type, the behavior is undefined.
398     QualType Ty = E->getType();
399     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
400   }
401   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
402     return RValue::get(Value);
403 
404   // Make sure to call the destructor for the reference temporary.
405   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
406   if (VD && VD->hasGlobalStorage()) {
407     if (ReferenceTemporaryDtor) {
408       llvm::Constant *DtorFn =
409         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
410       CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
411                                     cast<llvm::Constant>(ReferenceTemporary));
412     } else {
413       assert(!ObjCARCReferenceLifetimeType.isNull());
414       // Note: We intentionally do not register a global "destructor" to
415       // release the object.
416     }
417 
418     return RValue::get(Value);
419   }
420 
421   if (ReferenceTemporaryDtor)
422     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
423   else {
424     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
425     case Qualifiers::OCL_None:
426       llvm_unreachable(
427                       "Not a reference temporary that needs to be deallocated");
428     case Qualifiers::OCL_ExplicitNone:
429     case Qualifiers::OCL_Autoreleasing:
430       // Nothing to do.
431       break;
432 
433     case Qualifiers::OCL_Strong: {
434       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
435       CleanupKind cleanupKind = getARCCleanupKind();
436       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
437                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
438                   cleanupKind & EHCleanup);
439       break;
440     }
441 
442     case Qualifiers::OCL_Weak: {
443       // __weak objects always get EH cleanups; otherwise, exceptions
444       // could cause really nasty crashes instead of mere leaks.
445       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
446                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
447       break;
448     }
449     }
450   }
451 
452   return RValue::get(Value);
453 }
454 
455 
456 /// getAccessedFieldNo - Given an encoded value and a result number, return the
457 /// input field number being accessed.
458 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
459                                              const llvm::Constant *Elts) {
460   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
461       ->getZExtValue();
462 }
463 
464 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
465 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
466                                     llvm::Value *High) {
467   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
468   llvm::Value *K47 = Builder.getInt64(47);
469   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
470   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
471   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
472   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
473   return Builder.CreateMul(B1, KMul);
474 }
475 
476 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
477                                     llvm::Value *Address,
478                                     QualType Ty, CharUnits Alignment) {
479   if (!SanitizePerformTypeCheck)
480     return;
481 
482   // Don't check pointers outside the default address space. The null check
483   // isn't correct, the object-size check isn't supported by LLVM, and we can't
484   // communicate the addresses to the runtime handler for the vptr check.
485   if (Address->getType()->getPointerAddressSpace())
486     return;
487 
488   llvm::Value *Cond = 0;
489 
490   if (getLangOpts().SanitizeNull) {
491     // The glvalue must not be an empty glvalue.
492     Cond = Builder.CreateICmpNE(
493         Address, llvm::Constant::getNullValue(Address->getType()));
494   }
495 
496   if (getLangOpts().SanitizeObjectSize && !Ty->isIncompleteType()) {
497     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
498 
499     // The glvalue must refer to a large enough storage region.
500     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
501     //        to check this.
502     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
503     llvm::Value *Min = Builder.getFalse();
504     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
505     llvm::Value *LargeEnough =
506         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
507                               llvm::ConstantInt::get(IntPtrTy, Size));
508     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
509   }
510 
511   uint64_t AlignVal = 0;
512 
513   if (getLangOpts().SanitizeAlignment) {
514     AlignVal = Alignment.getQuantity();
515     if (!Ty->isIncompleteType() && !AlignVal)
516       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
517 
518     // The glvalue must be suitably aligned.
519     if (AlignVal) {
520       llvm::Value *Align =
521           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
522                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
523       llvm::Value *Aligned =
524         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
525       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
526     }
527   }
528 
529   if (Cond) {
530     llvm::Constant *StaticData[] = {
531       EmitCheckSourceLocation(Loc),
532       EmitCheckTypeDescriptor(Ty),
533       llvm::ConstantInt::get(SizeTy, AlignVal),
534       llvm::ConstantInt::get(Int8Ty, TCK)
535     };
536     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
537   }
538 
539   // If possible, check that the vptr indicates that there is a subobject of
540   // type Ty at offset zero within this object.
541   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
542   if (getLangOpts().SanitizeVptr && TCK != TCK_ConstructorCall &&
543       RD && RD->hasDefinition() && RD->isDynamicClass()) {
544     // Compute a hash of the mangled name of the type.
545     //
546     // FIXME: This is not guaranteed to be deterministic! Move to a
547     //        fingerprinting mechanism once LLVM provides one. For the time
548     //        being the implementation happens to be deterministic.
549     llvm::SmallString<64> MangledName;
550     llvm::raw_svector_ostream Out(MangledName);
551     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
552                                                      Out);
553     llvm::hash_code TypeHash = hash_value(Out.str());
554 
555     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
556     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
557     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
558     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
559     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
560     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
561 
562     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
563     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
564 
565     // Look the hash up in our cache.
566     const int CacheSize = 128;
567     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
568     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
569                                                    "__ubsan_vptr_type_cache");
570     llvm::Value *Slot = Builder.CreateAnd(Hash,
571                                           llvm::ConstantInt::get(IntPtrTy,
572                                                                  CacheSize-1));
573     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
574     llvm::Value *CacheVal =
575       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
576 
577     // If the hash isn't in the cache, call a runtime handler to perform the
578     // hard work of checking whether the vptr is for an object of the right
579     // type. This will either fill in the cache and return, or produce a
580     // diagnostic.
581     llvm::Constant *StaticData[] = {
582       EmitCheckSourceLocation(Loc),
583       EmitCheckTypeDescriptor(Ty),
584       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
585       llvm::ConstantInt::get(Int8Ty, TCK)
586     };
587     llvm::Value *DynamicData[] = { Address, Hash };
588     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
589               "dynamic_type_cache_miss", StaticData, DynamicData,
590               CRK_AlwaysRecoverable);
591   }
592 }
593 
594 
595 CodeGenFunction::ComplexPairTy CodeGenFunction::
596 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
597                          bool isInc, bool isPre) {
598   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
599                                             LV.isVolatileQualified());
600 
601   llvm::Value *NextVal;
602   if (isa<llvm::IntegerType>(InVal.first->getType())) {
603     uint64_t AmountVal = isInc ? 1 : -1;
604     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
605 
606     // Add the inc/dec to the real part.
607     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
608   } else {
609     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
610     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
611     if (!isInc)
612       FVal.changeSign();
613     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
614 
615     // Add the inc/dec to the real part.
616     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
617   }
618 
619   ComplexPairTy IncVal(NextVal, InVal.second);
620 
621   // Store the updated result through the lvalue.
622   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
623 
624   // If this is a postinc, return the value read from memory, otherwise use the
625   // updated value.
626   return isPre ? IncVal : InVal;
627 }
628 
629 
630 //===----------------------------------------------------------------------===//
631 //                         LValue Expression Emission
632 //===----------------------------------------------------------------------===//
633 
634 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
635   if (Ty->isVoidType())
636     return RValue::get(0);
637 
638   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
639     llvm::Type *EltTy = ConvertType(CTy->getElementType());
640     llvm::Value *U = llvm::UndefValue::get(EltTy);
641     return RValue::getComplex(std::make_pair(U, U));
642   }
643 
644   // If this is a use of an undefined aggregate type, the aggregate must have an
645   // identifiable address.  Just because the contents of the value are undefined
646   // doesn't mean that the address can't be taken and compared.
647   if (hasAggregateLLVMType(Ty)) {
648     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
649     return RValue::getAggregate(DestPtr);
650   }
651 
652   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
653 }
654 
655 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
656                                               const char *Name) {
657   ErrorUnsupported(E, Name);
658   return GetUndefRValue(E->getType());
659 }
660 
661 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
662                                               const char *Name) {
663   ErrorUnsupported(E, Name);
664   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
665   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
666 }
667 
668 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
669   LValue LV = EmitLValue(E);
670   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
671     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
672                   E->getType(), LV.getAlignment());
673   return LV;
674 }
675 
676 /// EmitLValue - Emit code to compute a designator that specifies the location
677 /// of the expression.
678 ///
679 /// This can return one of two things: a simple address or a bitfield reference.
680 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
681 /// an LLVM pointer type.
682 ///
683 /// If this returns a bitfield reference, nothing about the pointee type of the
684 /// LLVM value is known: For example, it may not be a pointer to an integer.
685 ///
686 /// If this returns a normal address, and if the lvalue's C type is fixed size,
687 /// this method guarantees that the returned pointer type will point to an LLVM
688 /// type of the same size of the lvalue's type.  If the lvalue has a variable
689 /// length type, this is not possible.
690 ///
691 LValue CodeGenFunction::EmitLValue(const Expr *E) {
692   switch (E->getStmtClass()) {
693   default: return EmitUnsupportedLValue(E, "l-value expression");
694 
695   case Expr::ObjCPropertyRefExprClass:
696     llvm_unreachable("cannot emit a property reference directly");
697 
698   case Expr::ObjCSelectorExprClass:
699     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
700   case Expr::ObjCIsaExprClass:
701     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
702   case Expr::BinaryOperatorClass:
703     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
704   case Expr::CompoundAssignOperatorClass:
705     if (!E->getType()->isAnyComplexType())
706       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
707     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
708   case Expr::CallExprClass:
709   case Expr::CXXMemberCallExprClass:
710   case Expr::CXXOperatorCallExprClass:
711   case Expr::UserDefinedLiteralClass:
712     return EmitCallExprLValue(cast<CallExpr>(E));
713   case Expr::VAArgExprClass:
714     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
715   case Expr::DeclRefExprClass:
716     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
717   case Expr::ParenExprClass:
718     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
719   case Expr::GenericSelectionExprClass:
720     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
721   case Expr::PredefinedExprClass:
722     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
723   case Expr::StringLiteralClass:
724     return EmitStringLiteralLValue(cast<StringLiteral>(E));
725   case Expr::ObjCEncodeExprClass:
726     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
727   case Expr::PseudoObjectExprClass:
728     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
729   case Expr::InitListExprClass:
730     return EmitInitListLValue(cast<InitListExpr>(E));
731   case Expr::CXXTemporaryObjectExprClass:
732   case Expr::CXXConstructExprClass:
733     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
734   case Expr::CXXBindTemporaryExprClass:
735     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
736   case Expr::CXXUuidofExprClass:
737     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
738   case Expr::LambdaExprClass:
739     return EmitLambdaLValue(cast<LambdaExpr>(E));
740 
741   case Expr::ExprWithCleanupsClass: {
742     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
743     enterFullExpression(cleanups);
744     RunCleanupsScope Scope(*this);
745     return EmitLValue(cleanups->getSubExpr());
746   }
747 
748   case Expr::CXXScalarValueInitExprClass:
749     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
750   case Expr::CXXDefaultArgExprClass:
751     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
752   case Expr::CXXTypeidExprClass:
753     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
754 
755   case Expr::ObjCMessageExprClass:
756     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
757   case Expr::ObjCIvarRefExprClass:
758     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
759   case Expr::StmtExprClass:
760     return EmitStmtExprLValue(cast<StmtExpr>(E));
761   case Expr::UnaryOperatorClass:
762     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
763   case Expr::ArraySubscriptExprClass:
764     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
765   case Expr::ExtVectorElementExprClass:
766     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
767   case Expr::MemberExprClass:
768     return EmitMemberExpr(cast<MemberExpr>(E));
769   case Expr::CompoundLiteralExprClass:
770     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
771   case Expr::ConditionalOperatorClass:
772     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
773   case Expr::BinaryConditionalOperatorClass:
774     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
775   case Expr::ChooseExprClass:
776     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
777   case Expr::OpaqueValueExprClass:
778     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
779   case Expr::SubstNonTypeTemplateParmExprClass:
780     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
781   case Expr::ImplicitCastExprClass:
782   case Expr::CStyleCastExprClass:
783   case Expr::CXXFunctionalCastExprClass:
784   case Expr::CXXStaticCastExprClass:
785   case Expr::CXXDynamicCastExprClass:
786   case Expr::CXXReinterpretCastExprClass:
787   case Expr::CXXConstCastExprClass:
788   case Expr::ObjCBridgedCastExprClass:
789     return EmitCastLValue(cast<CastExpr>(E));
790 
791   case Expr::MaterializeTemporaryExprClass:
792     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
793   }
794 }
795 
796 /// Given an object of the given canonical type, can we safely copy a
797 /// value out of it based on its initializer?
798 static bool isConstantEmittableObjectType(QualType type) {
799   assert(type.isCanonical());
800   assert(!type->isReferenceType());
801 
802   // Must be const-qualified but non-volatile.
803   Qualifiers qs = type.getLocalQualifiers();
804   if (!qs.hasConst() || qs.hasVolatile()) return false;
805 
806   // Otherwise, all object types satisfy this except C++ classes with
807   // mutable subobjects or non-trivial copy/destroy behavior.
808   if (const RecordType *RT = dyn_cast<RecordType>(type))
809     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
810       if (RD->hasMutableFields() || !RD->isTrivial())
811         return false;
812 
813   return true;
814 }
815 
816 /// Can we constant-emit a load of a reference to a variable of the
817 /// given type?  This is different from predicates like
818 /// Decl::isUsableInConstantExpressions because we do want it to apply
819 /// in situations that don't necessarily satisfy the language's rules
820 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
821 /// to do this with const float variables even if those variables
822 /// aren't marked 'constexpr'.
823 enum ConstantEmissionKind {
824   CEK_None,
825   CEK_AsReferenceOnly,
826   CEK_AsValueOrReference,
827   CEK_AsValueOnly
828 };
829 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
830   type = type.getCanonicalType();
831   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
832     if (isConstantEmittableObjectType(ref->getPointeeType()))
833       return CEK_AsValueOrReference;
834     return CEK_AsReferenceOnly;
835   }
836   if (isConstantEmittableObjectType(type))
837     return CEK_AsValueOnly;
838   return CEK_None;
839 }
840 
841 /// Try to emit a reference to the given value without producing it as
842 /// an l-value.  This is actually more than an optimization: we can't
843 /// produce an l-value for variables that we never actually captured
844 /// in a block or lambda, which means const int variables or constexpr
845 /// literals or similar.
846 CodeGenFunction::ConstantEmission
847 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
848   ValueDecl *value = refExpr->getDecl();
849 
850   // The value needs to be an enum constant or a constant variable.
851   ConstantEmissionKind CEK;
852   if (isa<ParmVarDecl>(value)) {
853     CEK = CEK_None;
854   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
855     CEK = checkVarTypeForConstantEmission(var->getType());
856   } else if (isa<EnumConstantDecl>(value)) {
857     CEK = CEK_AsValueOnly;
858   } else {
859     CEK = CEK_None;
860   }
861   if (CEK == CEK_None) return ConstantEmission();
862 
863   Expr::EvalResult result;
864   bool resultIsReference;
865   QualType resultType;
866 
867   // It's best to evaluate all the way as an r-value if that's permitted.
868   if (CEK != CEK_AsReferenceOnly &&
869       refExpr->EvaluateAsRValue(result, getContext())) {
870     resultIsReference = false;
871     resultType = refExpr->getType();
872 
873   // Otherwise, try to evaluate as an l-value.
874   } else if (CEK != CEK_AsValueOnly &&
875              refExpr->EvaluateAsLValue(result, getContext())) {
876     resultIsReference = true;
877     resultType = value->getType();
878 
879   // Failure.
880   } else {
881     return ConstantEmission();
882   }
883 
884   // In any case, if the initializer has side-effects, abandon ship.
885   if (result.HasSideEffects)
886     return ConstantEmission();
887 
888   // Emit as a constant.
889   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
890 
891   // Make sure we emit a debug reference to the global variable.
892   // This should probably fire even for
893   if (isa<VarDecl>(value)) {
894     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
895       EmitDeclRefExprDbgValue(refExpr, C);
896   } else {
897     assert(isa<EnumConstantDecl>(value));
898     EmitDeclRefExprDbgValue(refExpr, C);
899   }
900 
901   // If we emitted a reference constant, we need to dereference that.
902   if (resultIsReference)
903     return ConstantEmission::forReference(C);
904 
905   return ConstantEmission::forValue(C);
906 }
907 
908 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
909   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
910                           lvalue.getAlignment().getQuantity(),
911                           lvalue.getType(), lvalue.getTBAAInfo());
912 }
913 
914 static bool hasBooleanRepresentation(QualType Ty) {
915   if (Ty->isBooleanType())
916     return true;
917 
918   if (const EnumType *ET = Ty->getAs<EnumType>())
919     return ET->getDecl()->getIntegerType()->isBooleanType();
920 
921   if (const AtomicType *AT = Ty->getAs<AtomicType>())
922     return hasBooleanRepresentation(AT->getValueType());
923 
924   return false;
925 }
926 
927 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
928   const EnumType *ET = Ty->getAs<EnumType>();
929   bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
930                                  CGM.getCodeGenOpts().StrictEnums &&
931                                  !ET->getDecl()->isFixed());
932   bool IsBool = hasBooleanRepresentation(Ty);
933   if (!IsBool && !IsRegularCPlusPlusEnum)
934     return NULL;
935 
936   llvm::APInt Min;
937   llvm::APInt End;
938   if (IsBool) {
939     Min = llvm::APInt(getContext().getTypeSize(Ty), 0);
940     End = llvm::APInt(getContext().getTypeSize(Ty), 2);
941   } else {
942     const EnumDecl *ED = ET->getDecl();
943     llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
944     unsigned Bitwidth = LTy->getScalarSizeInBits();
945     unsigned NumNegativeBits = ED->getNumNegativeBits();
946     unsigned NumPositiveBits = ED->getNumPositiveBits();
947 
948     if (NumNegativeBits) {
949       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
950       assert(NumBits <= Bitwidth);
951       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
952       Min = -End;
953     } else {
954       assert(NumPositiveBits <= Bitwidth);
955       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
956       Min = llvm::APInt(Bitwidth, 0);
957     }
958   }
959 
960   llvm::MDBuilder MDHelper(getLLVMContext());
961   return MDHelper.createRange(Min, End);
962 }
963 
964 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
965                                               unsigned Alignment, QualType Ty,
966                                               llvm::MDNode *TBAAInfo) {
967 
968   // For better performance, handle vector loads differently.
969   if (Ty->isVectorType()) {
970     llvm::Value *V;
971     const llvm::Type *EltTy =
972     cast<llvm::PointerType>(Addr->getType())->getElementType();
973 
974     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
975 
976     // Handle vectors of size 3, like size 4 for better performance.
977     if (VTy->getNumElements() == 3) {
978 
979       // Bitcast to vec4 type.
980       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
981                                                          4);
982       llvm::PointerType *ptVec4Ty =
983       llvm::PointerType::get(vec4Ty,
984                              (cast<llvm::PointerType>(
985                                       Addr->getType()))->getAddressSpace());
986       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
987                                                 "castToVec4");
988       // Now load value.
989       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
990 
991       // Shuffle vector to get vec3.
992       llvm::SmallVector<llvm::Constant*, 3> Mask;
993       Mask.push_back(llvm::ConstantInt::get(
994                                     llvm::Type::getInt32Ty(getLLVMContext()),
995                                             0));
996       Mask.push_back(llvm::ConstantInt::get(
997                                     llvm::Type::getInt32Ty(getLLVMContext()),
998                                             1));
999       Mask.push_back(llvm::ConstantInt::get(
1000                                      llvm::Type::getInt32Ty(getLLVMContext()),
1001                                             2));
1002 
1003       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1004       V = Builder.CreateShuffleVector(LoadVal,
1005                                       llvm::UndefValue::get(vec4Ty),
1006                                       MaskV, "extractVec");
1007       return EmitFromMemory(V, Ty);
1008     }
1009   }
1010 
1011   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1012   if (Volatile)
1013     Load->setVolatile(true);
1014   if (Alignment)
1015     Load->setAlignment(Alignment);
1016   if (TBAAInfo)
1017     CGM.DecorateInstruction(Load, TBAAInfo);
1018   // If this is an atomic type, all normal reads must be atomic
1019   if (Ty->isAtomicType())
1020     Load->setAtomic(llvm::SequentiallyConsistent);
1021 
1022   if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1023     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1024       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1025 
1026   return EmitFromMemory(Load, Ty);
1027 }
1028 
1029 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1030   // Bool has a different representation in memory than in registers.
1031   if (hasBooleanRepresentation(Ty)) {
1032     // This should really always be an i1, but sometimes it's already
1033     // an i8, and it's awkward to track those cases down.
1034     if (Value->getType()->isIntegerTy(1))
1035       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1036     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1037            "wrong value rep of bool");
1038   }
1039 
1040   return Value;
1041 }
1042 
1043 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1044   // Bool has a different representation in memory than in registers.
1045   if (hasBooleanRepresentation(Ty)) {
1046     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1047            "wrong value rep of bool");
1048     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1049   }
1050 
1051   return Value;
1052 }
1053 
1054 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1055                                         bool Volatile, unsigned Alignment,
1056                                         QualType Ty,
1057                                         llvm::MDNode *TBAAInfo,
1058                                         bool isInit) {
1059 
1060   // Handle vectors differently to get better performance.
1061   if (Ty->isVectorType()) {
1062     llvm::Type *SrcTy = Value->getType();
1063     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1064     // Handle vec3 special.
1065     if (VecTy->getNumElements() == 3) {
1066       llvm::LLVMContext &VMContext = getLLVMContext();
1067 
1068       // Our source is a vec3, do a shuffle vector to make it a vec4.
1069       llvm::SmallVector<llvm::Constant*, 4> Mask;
1070       Mask.push_back(llvm::ConstantInt::get(
1071                                             llvm::Type::getInt32Ty(VMContext),
1072                                             0));
1073       Mask.push_back(llvm::ConstantInt::get(
1074                                             llvm::Type::getInt32Ty(VMContext),
1075                                             1));
1076       Mask.push_back(llvm::ConstantInt::get(
1077                                             llvm::Type::getInt32Ty(VMContext),
1078                                             2));
1079       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1080 
1081       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1082       Value = Builder.CreateShuffleVector(Value,
1083                                           llvm::UndefValue::get(VecTy),
1084                                           MaskV, "extractVec");
1085       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1086     }
1087     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1088     if (DstPtr->getElementType() != SrcTy) {
1089       llvm::Type *MemTy =
1090       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1091       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1092     }
1093   }
1094 
1095   Value = EmitToMemory(Value, Ty);
1096 
1097   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1098   if (Alignment)
1099     Store->setAlignment(Alignment);
1100   if (TBAAInfo)
1101     CGM.DecorateInstruction(Store, TBAAInfo);
1102   if (!isInit && Ty->isAtomicType())
1103     Store->setAtomic(llvm::SequentiallyConsistent);
1104 }
1105 
1106 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1107     bool isInit) {
1108   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1109                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1110                     lvalue.getTBAAInfo(), isInit);
1111 }
1112 
1113 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1114 /// method emits the address of the lvalue, then loads the result as an rvalue,
1115 /// returning the rvalue.
1116 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1117   if (LV.isObjCWeak()) {
1118     // load of a __weak object.
1119     llvm::Value *AddrWeakObj = LV.getAddress();
1120     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1121                                                              AddrWeakObj));
1122   }
1123   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1124     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1125     Object = EmitObjCConsumeObject(LV.getType(), Object);
1126     return RValue::get(Object);
1127   }
1128 
1129   if (LV.isSimple()) {
1130     assert(!LV.getType()->isFunctionType());
1131 
1132     // Everything needs a load.
1133     return RValue::get(EmitLoadOfScalar(LV));
1134   }
1135 
1136   if (LV.isVectorElt()) {
1137     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1138                                               LV.isVolatileQualified());
1139     Load->setAlignment(LV.getAlignment().getQuantity());
1140     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1141                                                     "vecext"));
1142   }
1143 
1144   // If this is a reference to a subset of the elements of a vector, either
1145   // shuffle the input or extract/insert them as appropriate.
1146   if (LV.isExtVectorElt())
1147     return EmitLoadOfExtVectorElementLValue(LV);
1148 
1149   assert(LV.isBitField() && "Unknown LValue type!");
1150   return EmitLoadOfBitfieldLValue(LV);
1151 }
1152 
1153 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1154   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1155 
1156   // Get the output type.
1157   llvm::Type *ResLTy = ConvertType(LV.getType());
1158 
1159   llvm::Value *Ptr = LV.getBitFieldAddr();
1160   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1161                                         "bf.load");
1162   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1163 
1164   if (Info.IsSigned) {
1165     assert((Info.Offset + Info.Size) <= Info.StorageSize);
1166     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1167     if (HighBits)
1168       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1169     if (Info.Offset + HighBits)
1170       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1171   } else {
1172     if (Info.Offset)
1173       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1174     if (Info.Offset + Info.Size < Info.StorageSize)
1175       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1176                                                               Info.Size),
1177                               "bf.clear");
1178   }
1179   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1180 
1181   return RValue::get(Val);
1182 }
1183 
1184 // If this is a reference to a subset of the elements of a vector, create an
1185 // appropriate shufflevector.
1186 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1187   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1188                                             LV.isVolatileQualified());
1189   Load->setAlignment(LV.getAlignment().getQuantity());
1190   llvm::Value *Vec = Load;
1191 
1192   const llvm::Constant *Elts = LV.getExtVectorElts();
1193 
1194   // If the result of the expression is a non-vector type, we must be extracting
1195   // a single element.  Just codegen as an extractelement.
1196   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1197   if (!ExprVT) {
1198     unsigned InIdx = getAccessedFieldNo(0, Elts);
1199     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1200     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1201   }
1202 
1203   // Always use shuffle vector to try to retain the original program structure
1204   unsigned NumResultElts = ExprVT->getNumElements();
1205 
1206   SmallVector<llvm::Constant*, 4> Mask;
1207   for (unsigned i = 0; i != NumResultElts; ++i)
1208     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1209 
1210   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1211   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1212                                     MaskV);
1213   return RValue::get(Vec);
1214 }
1215 
1216 
1217 
1218 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1219 /// lvalue, where both are guaranteed to the have the same type, and that type
1220 /// is 'Ty'.
1221 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1222   if (!Dst.isSimple()) {
1223     if (Dst.isVectorElt()) {
1224       // Read/modify/write the vector, inserting the new element.
1225       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1226                                                 Dst.isVolatileQualified());
1227       Load->setAlignment(Dst.getAlignment().getQuantity());
1228       llvm::Value *Vec = Load;
1229       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1230                                         Dst.getVectorIdx(), "vecins");
1231       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1232                                                    Dst.isVolatileQualified());
1233       Store->setAlignment(Dst.getAlignment().getQuantity());
1234       return;
1235     }
1236 
1237     // If this is an update of extended vector elements, insert them as
1238     // appropriate.
1239     if (Dst.isExtVectorElt())
1240       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1241 
1242     assert(Dst.isBitField() && "Unknown LValue type");
1243     return EmitStoreThroughBitfieldLValue(Src, Dst);
1244   }
1245 
1246   // There's special magic for assigning into an ARC-qualified l-value.
1247   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1248     switch (Lifetime) {
1249     case Qualifiers::OCL_None:
1250       llvm_unreachable("present but none");
1251 
1252     case Qualifiers::OCL_ExplicitNone:
1253       // nothing special
1254       break;
1255 
1256     case Qualifiers::OCL_Strong:
1257       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1258       return;
1259 
1260     case Qualifiers::OCL_Weak:
1261       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1262       return;
1263 
1264     case Qualifiers::OCL_Autoreleasing:
1265       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1266                                                      Src.getScalarVal()));
1267       // fall into the normal path
1268       break;
1269     }
1270   }
1271 
1272   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1273     // load of a __weak object.
1274     llvm::Value *LvalueDst = Dst.getAddress();
1275     llvm::Value *src = Src.getScalarVal();
1276      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1277     return;
1278   }
1279 
1280   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1281     // load of a __strong object.
1282     llvm::Value *LvalueDst = Dst.getAddress();
1283     llvm::Value *src = Src.getScalarVal();
1284     if (Dst.isObjCIvar()) {
1285       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1286       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1287       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1288       llvm::Value *dst = RHS;
1289       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1290       llvm::Value *LHS =
1291         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1292       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1293       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1294                                               BytesBetween);
1295     } else if (Dst.isGlobalObjCRef()) {
1296       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1297                                                 Dst.isThreadLocalRef());
1298     }
1299     else
1300       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1301     return;
1302   }
1303 
1304   assert(Src.isScalar() && "Can't emit an agg store with this method");
1305   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1306 }
1307 
1308 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1309                                                      llvm::Value **Result) {
1310   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1311   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1312   llvm::Value *Ptr = Dst.getBitFieldAddr();
1313 
1314   // Get the source value, truncated to the width of the bit-field.
1315   llvm::Value *SrcVal = Src.getScalarVal();
1316 
1317   // Cast the source to the storage type and shift it into place.
1318   SrcVal = Builder.CreateIntCast(SrcVal,
1319                                  Ptr->getType()->getPointerElementType(),
1320                                  /*IsSigned=*/false);
1321   llvm::Value *MaskedVal = SrcVal;
1322 
1323   // See if there are other bits in the bitfield's storage we'll need to load
1324   // and mask together with source before storing.
1325   if (Info.StorageSize != Info.Size) {
1326     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1327     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1328                                           "bf.load");
1329     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1330 
1331     // Mask the source value as needed.
1332     if (!hasBooleanRepresentation(Dst.getType()))
1333       SrcVal = Builder.CreateAnd(SrcVal,
1334                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1335                                                             Info.Size),
1336                                  "bf.value");
1337     MaskedVal = SrcVal;
1338     if (Info.Offset)
1339       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1340 
1341     // Mask out the original value.
1342     Val = Builder.CreateAnd(Val,
1343                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1344                                                      Info.Offset,
1345                                                      Info.Offset + Info.Size),
1346                             "bf.clear");
1347 
1348     // Or together the unchanged values and the source value.
1349     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1350   } else {
1351     assert(Info.Offset == 0);
1352   }
1353 
1354   // Write the new value back out.
1355   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1356                                                Dst.isVolatileQualified());
1357   Store->setAlignment(Info.StorageAlignment);
1358 
1359   // Return the new value of the bit-field, if requested.
1360   if (Result) {
1361     llvm::Value *ResultVal = MaskedVal;
1362 
1363     // Sign extend the value if needed.
1364     if (Info.IsSigned) {
1365       assert(Info.Size <= Info.StorageSize);
1366       unsigned HighBits = Info.StorageSize - Info.Size;
1367       if (HighBits) {
1368         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1369         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1370       }
1371     }
1372 
1373     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1374                                       "bf.result.cast");
1375     *Result = ResultVal;
1376   }
1377 }
1378 
1379 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1380                                                                LValue Dst) {
1381   // This access turns into a read/modify/write of the vector.  Load the input
1382   // value now.
1383   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1384                                             Dst.isVolatileQualified());
1385   Load->setAlignment(Dst.getAlignment().getQuantity());
1386   llvm::Value *Vec = Load;
1387   const llvm::Constant *Elts = Dst.getExtVectorElts();
1388 
1389   llvm::Value *SrcVal = Src.getScalarVal();
1390 
1391   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1392     unsigned NumSrcElts = VTy->getNumElements();
1393     unsigned NumDstElts =
1394        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1395     if (NumDstElts == NumSrcElts) {
1396       // Use shuffle vector is the src and destination are the same number of
1397       // elements and restore the vector mask since it is on the side it will be
1398       // stored.
1399       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1400       for (unsigned i = 0; i != NumSrcElts; ++i)
1401         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1402 
1403       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1404       Vec = Builder.CreateShuffleVector(SrcVal,
1405                                         llvm::UndefValue::get(Vec->getType()),
1406                                         MaskV);
1407     } else if (NumDstElts > NumSrcElts) {
1408       // Extended the source vector to the same length and then shuffle it
1409       // into the destination.
1410       // FIXME: since we're shuffling with undef, can we just use the indices
1411       //        into that?  This could be simpler.
1412       SmallVector<llvm::Constant*, 4> ExtMask;
1413       for (unsigned i = 0; i != NumSrcElts; ++i)
1414         ExtMask.push_back(Builder.getInt32(i));
1415       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1416       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1417       llvm::Value *ExtSrcVal =
1418         Builder.CreateShuffleVector(SrcVal,
1419                                     llvm::UndefValue::get(SrcVal->getType()),
1420                                     ExtMaskV);
1421       // build identity
1422       SmallVector<llvm::Constant*, 4> Mask;
1423       for (unsigned i = 0; i != NumDstElts; ++i)
1424         Mask.push_back(Builder.getInt32(i));
1425 
1426       // modify when what gets shuffled in
1427       for (unsigned i = 0; i != NumSrcElts; ++i)
1428         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1429       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1430       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1431     } else {
1432       // We should never shorten the vector
1433       llvm_unreachable("unexpected shorten vector length");
1434     }
1435   } else {
1436     // If the Src is a scalar (not a vector) it must be updating one element.
1437     unsigned InIdx = getAccessedFieldNo(0, Elts);
1438     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1439     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1440   }
1441 
1442   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1443                                                Dst.isVolatileQualified());
1444   Store->setAlignment(Dst.getAlignment().getQuantity());
1445 }
1446 
1447 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1448 // generating write-barries API. It is currently a global, ivar,
1449 // or neither.
1450 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1451                                  LValue &LV,
1452                                  bool IsMemberAccess=false) {
1453   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1454     return;
1455 
1456   if (isa<ObjCIvarRefExpr>(E)) {
1457     QualType ExpTy = E->getType();
1458     if (IsMemberAccess && ExpTy->isPointerType()) {
1459       // If ivar is a structure pointer, assigning to field of
1460       // this struct follows gcc's behavior and makes it a non-ivar
1461       // writer-barrier conservatively.
1462       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1463       if (ExpTy->isRecordType()) {
1464         LV.setObjCIvar(false);
1465         return;
1466       }
1467     }
1468     LV.setObjCIvar(true);
1469     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1470     LV.setBaseIvarExp(Exp->getBase());
1471     LV.setObjCArray(E->getType()->isArrayType());
1472     return;
1473   }
1474 
1475   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1476     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1477       if (VD->hasGlobalStorage()) {
1478         LV.setGlobalObjCRef(true);
1479         LV.setThreadLocalRef(VD->isThreadSpecified());
1480       }
1481     }
1482     LV.setObjCArray(E->getType()->isArrayType());
1483     return;
1484   }
1485 
1486   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1487     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1488     return;
1489   }
1490 
1491   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1492     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1493     if (LV.isObjCIvar()) {
1494       // If cast is to a structure pointer, follow gcc's behavior and make it
1495       // a non-ivar write-barrier.
1496       QualType ExpTy = E->getType();
1497       if (ExpTy->isPointerType())
1498         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1499       if (ExpTy->isRecordType())
1500         LV.setObjCIvar(false);
1501     }
1502     return;
1503   }
1504 
1505   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1506     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1507     return;
1508   }
1509 
1510   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1511     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1512     return;
1513   }
1514 
1515   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1516     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1517     return;
1518   }
1519 
1520   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1521     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1522     return;
1523   }
1524 
1525   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1526     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1527     if (LV.isObjCIvar() && !LV.isObjCArray())
1528       // Using array syntax to assigning to what an ivar points to is not
1529       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1530       LV.setObjCIvar(false);
1531     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1532       // Using array syntax to assigning to what global points to is not
1533       // same as assigning to the global itself. {id *G;} G[i] = 0;
1534       LV.setGlobalObjCRef(false);
1535     return;
1536   }
1537 
1538   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1539     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1540     // We don't know if member is an 'ivar', but this flag is looked at
1541     // only in the context of LV.isObjCIvar().
1542     LV.setObjCArray(E->getType()->isArrayType());
1543     return;
1544   }
1545 }
1546 
1547 static llvm::Value *
1548 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1549                                 llvm::Value *V, llvm::Type *IRType,
1550                                 StringRef Name = StringRef()) {
1551   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1552   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1553 }
1554 
1555 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1556                                       const Expr *E, const VarDecl *VD) {
1557   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1558          "Var decl must have external storage or be a file var decl!");
1559 
1560   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1561   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1562   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1563   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1564   QualType T = E->getType();
1565   LValue LV;
1566   if (VD->getType()->isReferenceType()) {
1567     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1568     LI->setAlignment(Alignment.getQuantity());
1569     V = LI;
1570     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1571   } else {
1572     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1573   }
1574   setObjCGCLValueClass(CGF.getContext(), E, LV);
1575   return LV;
1576 }
1577 
1578 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1579                                      const Expr *E, const FunctionDecl *FD) {
1580   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1581   if (!FD->hasPrototype()) {
1582     if (const FunctionProtoType *Proto =
1583             FD->getType()->getAs<FunctionProtoType>()) {
1584       // Ugly case: for a K&R-style definition, the type of the definition
1585       // isn't the same as the type of a use.  Correct for this with a
1586       // bitcast.
1587       QualType NoProtoType =
1588           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1589       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1590       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1591     }
1592   }
1593   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1594   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1595 }
1596 
1597 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1598   const NamedDecl *ND = E->getDecl();
1599   CharUnits Alignment = getContext().getDeclAlign(ND);
1600   QualType T = E->getType();
1601 
1602   // A DeclRefExpr for a reference initialized by a constant expression can
1603   // appear without being odr-used. Directly emit the constant initializer.
1604   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1605     const Expr *Init = VD->getAnyInitializer(VD);
1606     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1607         VD->isUsableInConstantExpressions(getContext()) &&
1608         VD->checkInitIsICE()) {
1609       llvm::Constant *Val =
1610         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1611       assert(Val && "failed to emit reference constant expression");
1612       // FIXME: Eventually we will want to emit vector element references.
1613       return MakeAddrLValue(Val, T, Alignment);
1614     }
1615   }
1616 
1617   // FIXME: We should be able to assert this for FunctionDecls as well!
1618   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1619   // those with a valid source location.
1620   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1621           !E->getLocation().isValid()) &&
1622          "Should not use decl without marking it used!");
1623 
1624   if (ND->hasAttr<WeakRefAttr>()) {
1625     const ValueDecl *VD = cast<ValueDecl>(ND);
1626     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1627     return MakeAddrLValue(Aliasee, T, Alignment);
1628   }
1629 
1630   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1631     // Check if this is a global variable.
1632     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1633       return EmitGlobalVarDeclLValue(*this, E, VD);
1634 
1635     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1636 
1637     bool NonGCable = VD->hasLocalStorage() &&
1638                      !VD->getType()->isReferenceType() &&
1639                      !isBlockVariable;
1640 
1641     llvm::Value *V = LocalDeclMap[VD];
1642     if (!V && VD->isStaticLocal())
1643       V = CGM.getStaticLocalDeclAddress(VD);
1644 
1645     // Use special handling for lambdas.
1646     if (!V) {
1647       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1648         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1649         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1650                                                      LambdaTagType);
1651         return EmitLValueForField(LambdaLV, FD);
1652       }
1653 
1654       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1655       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1656                             T, Alignment);
1657     }
1658 
1659     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1660 
1661     if (isBlockVariable)
1662       V = BuildBlockByrefAddress(V, VD);
1663 
1664     LValue LV;
1665     if (VD->getType()->isReferenceType()) {
1666       llvm::LoadInst *LI = Builder.CreateLoad(V);
1667       LI->setAlignment(Alignment.getQuantity());
1668       V = LI;
1669       LV = MakeNaturalAlignAddrLValue(V, T);
1670     } else {
1671       LV = MakeAddrLValue(V, T, Alignment);
1672     }
1673 
1674     if (NonGCable) {
1675       LV.getQuals().removeObjCGCAttr();
1676       LV.setNonGC(true);
1677     }
1678     setObjCGCLValueClass(getContext(), E, LV);
1679     return LV;
1680   }
1681 
1682   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1683     return EmitFunctionDeclLValue(*this, E, fn);
1684 
1685   llvm_unreachable("Unhandled DeclRefExpr");
1686 }
1687 
1688 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1689   // __extension__ doesn't affect lvalue-ness.
1690   if (E->getOpcode() == UO_Extension)
1691     return EmitLValue(E->getSubExpr());
1692 
1693   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1694   switch (E->getOpcode()) {
1695   default: llvm_unreachable("Unknown unary operator lvalue!");
1696   case UO_Deref: {
1697     QualType T = E->getSubExpr()->getType()->getPointeeType();
1698     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1699 
1700     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1701     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1702 
1703     // We should not generate __weak write barrier on indirect reference
1704     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1705     // But, we continue to generate __strong write barrier on indirect write
1706     // into a pointer to object.
1707     if (getLangOpts().ObjC1 &&
1708         getLangOpts().getGC() != LangOptions::NonGC &&
1709         LV.isObjCWeak())
1710       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1711     return LV;
1712   }
1713   case UO_Real:
1714   case UO_Imag: {
1715     LValue LV = EmitLValue(E->getSubExpr());
1716     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1717     llvm::Value *Addr = LV.getAddress();
1718 
1719     // __real is valid on scalars.  This is a faster way of testing that.
1720     // __imag can only produce an rvalue on scalars.
1721     if (E->getOpcode() == UO_Real &&
1722         !cast<llvm::PointerType>(Addr->getType())
1723            ->getElementType()->isStructTy()) {
1724       assert(E->getSubExpr()->getType()->isArithmeticType());
1725       return LV;
1726     }
1727 
1728     assert(E->getSubExpr()->getType()->isAnyComplexType());
1729 
1730     unsigned Idx = E->getOpcode() == UO_Imag;
1731     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1732                                                   Idx, "idx"),
1733                           ExprTy);
1734   }
1735   case UO_PreInc:
1736   case UO_PreDec: {
1737     LValue LV = EmitLValue(E->getSubExpr());
1738     bool isInc = E->getOpcode() == UO_PreInc;
1739 
1740     if (E->getType()->isAnyComplexType())
1741       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1742     else
1743       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1744     return LV;
1745   }
1746   }
1747 }
1748 
1749 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1750   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1751                         E->getType());
1752 }
1753 
1754 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1755   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1756                         E->getType());
1757 }
1758 
1759 static llvm::Constant*
1760 GetAddrOfConstantWideString(StringRef Str,
1761                             const char *GlobalName,
1762                             ASTContext &Context,
1763                             QualType Ty, SourceLocation Loc,
1764                             CodeGenModule &CGM) {
1765 
1766   StringLiteral *SL = StringLiteral::Create(Context,
1767                                             Str,
1768                                             StringLiteral::Wide,
1769                                             /*Pascal = */false,
1770                                             Ty, Loc);
1771   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1772   llvm::GlobalVariable *GV =
1773     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1774                              !CGM.getLangOpts().WritableStrings,
1775                              llvm::GlobalValue::PrivateLinkage,
1776                              C, GlobalName);
1777   const unsigned WideAlignment =
1778     Context.getTypeAlignInChars(Ty).getQuantity();
1779   GV->setAlignment(WideAlignment);
1780   return GV;
1781 }
1782 
1783 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1784                                     SmallString<32>& Target) {
1785   Target.resize(CharByteWidth * (Source.size() + 1));
1786   char *ResultPtr = &Target[0];
1787   const UTF8 *ErrorPtr;
1788   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1789   (void)success;
1790   assert(success);
1791   Target.resize(ResultPtr - &Target[0]);
1792 }
1793 
1794 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1795   switch (E->getIdentType()) {
1796   default:
1797     return EmitUnsupportedLValue(E, "predefined expression");
1798 
1799   case PredefinedExpr::Func:
1800   case PredefinedExpr::Function:
1801   case PredefinedExpr::LFunction:
1802   case PredefinedExpr::PrettyFunction: {
1803     unsigned IdentType = E->getIdentType();
1804     std::string GlobalVarName;
1805 
1806     switch (IdentType) {
1807     default: llvm_unreachable("Invalid type");
1808     case PredefinedExpr::Func:
1809       GlobalVarName = "__func__.";
1810       break;
1811     case PredefinedExpr::Function:
1812       GlobalVarName = "__FUNCTION__.";
1813       break;
1814     case PredefinedExpr::LFunction:
1815       GlobalVarName = "L__FUNCTION__.";
1816       break;
1817     case PredefinedExpr::PrettyFunction:
1818       GlobalVarName = "__PRETTY_FUNCTION__.";
1819       break;
1820     }
1821 
1822     StringRef FnName = CurFn->getName();
1823     if (FnName.startswith("\01"))
1824       FnName = FnName.substr(1);
1825     GlobalVarName += FnName;
1826 
1827     const Decl *CurDecl = CurCodeDecl;
1828     if (CurDecl == 0)
1829       CurDecl = getContext().getTranslationUnitDecl();
1830 
1831     std::string FunctionName =
1832         (isa<BlockDecl>(CurDecl)
1833          ? FnName.str()
1834          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1835                                        CurDecl));
1836 
1837     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1838     llvm::Constant *C;
1839     if (ElemType->isWideCharType()) {
1840       SmallString<32> RawChars;
1841       ConvertUTF8ToWideString(
1842           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1843           FunctionName, RawChars);
1844       C = GetAddrOfConstantWideString(RawChars,
1845                                       GlobalVarName.c_str(),
1846                                       getContext(),
1847                                       E->getType(),
1848                                       E->getLocation(),
1849                                       CGM);
1850     } else {
1851       C = CGM.GetAddrOfConstantCString(FunctionName,
1852                                        GlobalVarName.c_str(),
1853                                        1);
1854     }
1855     return MakeAddrLValue(C, E->getType());
1856   }
1857   }
1858 }
1859 
1860 /// Emit a type description suitable for use by a runtime sanitizer library. The
1861 /// format of a type descriptor is
1862 ///
1863 /// \code
1864 ///   { i16 TypeKind, i16 TypeInfo }
1865 /// \endcode
1866 ///
1867 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
1868 /// integer, 1 for a floating point value, and -1 for anything else.
1869 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
1870   // FIXME: Only emit each type's descriptor once.
1871   uint16_t TypeKind = -1;
1872   uint16_t TypeInfo = 0;
1873 
1874   if (T->isIntegerType()) {
1875     TypeKind = 0;
1876     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
1877                (T->isSignedIntegerType() ? 1 : 0);
1878   } else if (T->isFloatingType()) {
1879     TypeKind = 1;
1880     TypeInfo = getContext().getTypeSize(T);
1881   }
1882 
1883   // Format the type name as if for a diagnostic, including quotes and
1884   // optionally an 'aka'.
1885   llvm::SmallString<32> Buffer;
1886   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
1887                                     (intptr_t)T.getAsOpaquePtr(),
1888                                     0, 0, 0, 0, 0, 0, Buffer,
1889                                     ArrayRef<intptr_t>());
1890 
1891   llvm::Constant *Components[] = {
1892     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
1893     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
1894   };
1895   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
1896 
1897   llvm::GlobalVariable *GV =
1898     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
1899                              /*isConstant=*/true,
1900                              llvm::GlobalVariable::PrivateLinkage,
1901                              Descriptor);
1902   GV->setUnnamedAddr(true);
1903   return GV;
1904 }
1905 
1906 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
1907   llvm::Type *TargetTy = IntPtrTy;
1908 
1909   // Integers which fit in intptr_t are zero-extended and passed directly.
1910   if (V->getType()->isIntegerTy() &&
1911       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
1912     return Builder.CreateZExt(V, TargetTy);
1913 
1914   // Pointers are passed directly, everything else is passed by address.
1915   if (!V->getType()->isPointerTy()) {
1916     llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
1917     Builder.CreateStore(V, Ptr);
1918     V = Ptr;
1919   }
1920   return Builder.CreatePtrToInt(V, TargetTy);
1921 }
1922 
1923 /// \brief Emit a representation of a SourceLocation for passing to a handler
1924 /// in a sanitizer runtime library. The format for this data is:
1925 /// \code
1926 ///   struct SourceLocation {
1927 ///     const char *Filename;
1928 ///     int32_t Line, Column;
1929 ///   };
1930 /// \endcode
1931 /// For an invalid SourceLocation, the Filename pointer is null.
1932 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
1933   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
1934 
1935   llvm::Constant *Data[] = {
1936     // FIXME: Only emit each file name once.
1937     PLoc.isValid() ? cast<llvm::Constant>(
1938                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
1939                    : llvm::Constant::getNullValue(Int8PtrTy),
1940     Builder.getInt32(PLoc.getLine()),
1941     Builder.getInt32(PLoc.getColumn())
1942   };
1943 
1944   return llvm::ConstantStruct::getAnon(Data);
1945 }
1946 
1947 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
1948                                 llvm::ArrayRef<llvm::Constant *> StaticArgs,
1949                                 llvm::ArrayRef<llvm::Value *> DynamicArgs,
1950                                 CheckRecoverableKind RecoverKind) {
1951   llvm::BasicBlock *Cont = createBasicBlock("cont");
1952 
1953   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
1954   Builder.CreateCondBr(Checked, Cont, Handler);
1955   EmitBlock(Handler);
1956 
1957   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
1958   llvm::GlobalValue *InfoPtr =
1959       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true,
1960                                llvm::GlobalVariable::PrivateLinkage, Info);
1961   InfoPtr->setUnnamedAddr(true);
1962 
1963   llvm::SmallVector<llvm::Value *, 4> Args;
1964   llvm::SmallVector<llvm::Type *, 4> ArgTypes;
1965   Args.reserve(DynamicArgs.size() + 1);
1966   ArgTypes.reserve(DynamicArgs.size() + 1);
1967 
1968   // Handler functions take an i8* pointing to the (handler-specific) static
1969   // information block, followed by a sequence of intptr_t arguments
1970   // representing operand values.
1971   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
1972   ArgTypes.push_back(Int8PtrTy);
1973   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
1974     Args.push_back(EmitCheckValue(DynamicArgs[i]));
1975     ArgTypes.push_back(IntPtrTy);
1976   }
1977 
1978   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
1979                  ((RecoverKind == CRK_Recoverable) &&
1980                    CGM.getCodeGenOpts().SanitizeRecover);
1981 
1982   llvm::FunctionType *FnType =
1983     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
1984   llvm::AttrBuilder B;
1985   if (!Recover) {
1986     B.addAttribute(llvm::Attributes::NoReturn)
1987      .addAttribute(llvm::Attributes::NoUnwind);
1988   }
1989   B.addAttribute(llvm::Attributes::UWTable);
1990 
1991   // Checks that have two variants use a suffix to differentiate them
1992   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
1993                            !CGM.getCodeGenOpts().SanitizeRecover;
1994   std::string FunctionName = ("__ubsan_handle_" + CheckName +
1995                               (NeedsAbortSuffix? "_abort" : "")).str();
1996   llvm::Value *Fn =
1997     CGM.CreateRuntimeFunction(FnType, FunctionName,
1998                               llvm::Attributes::get(getLLVMContext(), B));
1999   llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args);
2000   if (Recover) {
2001     Builder.CreateBr(Cont);
2002   } else {
2003     HandlerCall->setDoesNotReturn();
2004     HandlerCall->setDoesNotThrow();
2005     Builder.CreateUnreachable();
2006   }
2007 
2008   EmitBlock(Cont);
2009 }
2010 
2011 void CodeGenFunction::EmitTrapvCheck(llvm::Value *Checked) {
2012   llvm::BasicBlock *Cont = createBasicBlock("cont");
2013 
2014   // If we're optimizing, collapse all calls to trap down to just one per
2015   // function to save on code size.
2016   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2017     TrapBB = createBasicBlock("trap");
2018     Builder.CreateCondBr(Checked, Cont, TrapBB);
2019     EmitBlock(TrapBB);
2020     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2021     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2022     TrapCall->setDoesNotReturn();
2023     TrapCall->setDoesNotThrow();
2024     Builder.CreateUnreachable();
2025   } else {
2026     Builder.CreateCondBr(Checked, Cont, TrapBB);
2027   }
2028 
2029   EmitBlock(Cont);
2030 }
2031 
2032 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2033 /// array to pointer, return the array subexpression.
2034 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2035   // If this isn't just an array->pointer decay, bail out.
2036   const CastExpr *CE = dyn_cast<CastExpr>(E);
2037   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2038     return 0;
2039 
2040   // If this is a decay from variable width array, bail out.
2041   const Expr *SubExpr = CE->getSubExpr();
2042   if (SubExpr->getType()->isVariableArrayType())
2043     return 0;
2044 
2045   return SubExpr;
2046 }
2047 
2048 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2049   // The index must always be an integer, which is not an aggregate.  Emit it.
2050   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2051   QualType IdxTy  = E->getIdx()->getType();
2052   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2053 
2054   // If the base is a vector type, then we are forming a vector element lvalue
2055   // with this subscript.
2056   if (E->getBase()->getType()->isVectorType()) {
2057     // Emit the vector as an lvalue to get its address.
2058     LValue LHS = EmitLValue(E->getBase());
2059     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2060     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2061     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2062                                  E->getBase()->getType(), LHS.getAlignment());
2063   }
2064 
2065   // Extend or truncate the index type to 32 or 64-bits.
2066   if (Idx->getType() != IntPtrTy)
2067     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2068 
2069   // We know that the pointer points to a type of the correct size, unless the
2070   // size is a VLA or Objective-C interface.
2071   llvm::Value *Address = 0;
2072   CharUnits ArrayAlignment;
2073   if (const VariableArrayType *vla =
2074         getContext().getAsVariableArrayType(E->getType())) {
2075     // The base must be a pointer, which is not an aggregate.  Emit
2076     // it.  It needs to be emitted first in case it's what captures
2077     // the VLA bounds.
2078     Address = EmitScalarExpr(E->getBase());
2079 
2080     // The element count here is the total number of non-VLA elements.
2081     llvm::Value *numElements = getVLASize(vla).first;
2082 
2083     // Effectively, the multiply by the VLA size is part of the GEP.
2084     // GEP indexes are signed, and scaling an index isn't permitted to
2085     // signed-overflow, so we use the same semantics for our explicit
2086     // multiply.  We suppress this if overflow is not undefined behavior.
2087     if (getLangOpts().isSignedOverflowDefined()) {
2088       Idx = Builder.CreateMul(Idx, numElements);
2089       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2090     } else {
2091       Idx = Builder.CreateNSWMul(Idx, numElements);
2092       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2093     }
2094   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2095     // Indexing over an interface, as in "NSString *P; P[4];"
2096     llvm::Value *InterfaceSize =
2097       llvm::ConstantInt::get(Idx->getType(),
2098           getContext().getTypeSizeInChars(OIT).getQuantity());
2099 
2100     Idx = Builder.CreateMul(Idx, InterfaceSize);
2101 
2102     // The base must be a pointer, which is not an aggregate.  Emit it.
2103     llvm::Value *Base = EmitScalarExpr(E->getBase());
2104     Address = EmitCastToVoidPtr(Base);
2105     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2106     Address = Builder.CreateBitCast(Address, Base->getType());
2107   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2108     // If this is A[i] where A is an array, the frontend will have decayed the
2109     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2110     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2111     // "gep x, i" here.  Emit one "gep A, 0, i".
2112     assert(Array->getType()->isArrayType() &&
2113            "Array to pointer decay must have array source type!");
2114     LValue ArrayLV = EmitLValue(Array);
2115     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2116     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2117     llvm::Value *Args[] = { Zero, Idx };
2118 
2119     // Propagate the alignment from the array itself to the result.
2120     ArrayAlignment = ArrayLV.getAlignment();
2121 
2122     if (getLangOpts().isSignedOverflowDefined())
2123       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2124     else
2125       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2126   } else {
2127     // The base must be a pointer, which is not an aggregate.  Emit it.
2128     llvm::Value *Base = EmitScalarExpr(E->getBase());
2129     if (getLangOpts().isSignedOverflowDefined())
2130       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2131     else
2132       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2133   }
2134 
2135   QualType T = E->getBase()->getType()->getPointeeType();
2136   assert(!T.isNull() &&
2137          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2138 
2139 
2140   // Limit the alignment to that of the result type.
2141   LValue LV;
2142   if (!ArrayAlignment.isZero()) {
2143     CharUnits Align = getContext().getTypeAlignInChars(T);
2144     ArrayAlignment = std::min(Align, ArrayAlignment);
2145     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2146   } else {
2147     LV = MakeNaturalAlignAddrLValue(Address, T);
2148   }
2149 
2150   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2151 
2152   if (getLangOpts().ObjC1 &&
2153       getLangOpts().getGC() != LangOptions::NonGC) {
2154     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2155     setObjCGCLValueClass(getContext(), E, LV);
2156   }
2157   return LV;
2158 }
2159 
2160 static
2161 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2162                                        SmallVector<unsigned, 4> &Elts) {
2163   SmallVector<llvm::Constant*, 4> CElts;
2164   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2165     CElts.push_back(Builder.getInt32(Elts[i]));
2166 
2167   return llvm::ConstantVector::get(CElts);
2168 }
2169 
2170 LValue CodeGenFunction::
2171 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2172   // Emit the base vector as an l-value.
2173   LValue Base;
2174 
2175   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2176   if (E->isArrow()) {
2177     // If it is a pointer to a vector, emit the address and form an lvalue with
2178     // it.
2179     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2180     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2181     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2182     Base.getQuals().removeObjCGCAttr();
2183   } else if (E->getBase()->isGLValue()) {
2184     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2185     // emit the base as an lvalue.
2186     assert(E->getBase()->getType()->isVectorType());
2187     Base = EmitLValue(E->getBase());
2188   } else {
2189     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2190     assert(E->getBase()->getType()->isVectorType() &&
2191            "Result must be a vector");
2192     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2193 
2194     // Store the vector to memory (because LValue wants an address).
2195     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2196     Builder.CreateStore(Vec, VecMem);
2197     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2198   }
2199 
2200   QualType type =
2201     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2202 
2203   // Encode the element access list into a vector of unsigned indices.
2204   SmallVector<unsigned, 4> Indices;
2205   E->getEncodedElementAccess(Indices);
2206 
2207   if (Base.isSimple()) {
2208     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2209     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2210                                     Base.getAlignment());
2211   }
2212   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2213 
2214   llvm::Constant *BaseElts = Base.getExtVectorElts();
2215   SmallVector<llvm::Constant *, 4> CElts;
2216 
2217   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2218     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2219   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2220   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2221                                   Base.getAlignment());
2222 }
2223 
2224 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2225   Expr *BaseExpr = E->getBase();
2226 
2227   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2228   LValue BaseLV;
2229   if (E->isArrow()) {
2230     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2231     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2232     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2233     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2234   } else
2235     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2236 
2237   NamedDecl *ND = E->getMemberDecl();
2238   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2239     LValue LV = EmitLValueForField(BaseLV, Field);
2240     setObjCGCLValueClass(getContext(), E, LV);
2241     return LV;
2242   }
2243 
2244   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2245     return EmitGlobalVarDeclLValue(*this, E, VD);
2246 
2247   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2248     return EmitFunctionDeclLValue(*this, E, FD);
2249 
2250   llvm_unreachable("Unhandled member declaration!");
2251 }
2252 
2253 LValue CodeGenFunction::EmitLValueForField(LValue base,
2254                                            const FieldDecl *field) {
2255   if (field->isBitField()) {
2256     const CGRecordLayout &RL =
2257       CGM.getTypes().getCGRecordLayout(field->getParent());
2258     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2259     llvm::Value *Addr = base.getAddress();
2260     unsigned Idx = RL.getLLVMFieldNo(field);
2261     if (Idx != 0)
2262       // For structs, we GEP to the field that the record layout suggests.
2263       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2264     // Get the access type.
2265     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2266       getLLVMContext(), Info.StorageSize,
2267       CGM.getContext().getTargetAddressSpace(base.getType()));
2268     if (Addr->getType() != PtrTy)
2269       Addr = Builder.CreateBitCast(Addr, PtrTy);
2270 
2271     QualType fieldType =
2272       field->getType().withCVRQualifiers(base.getVRQualifiers());
2273     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2274   }
2275 
2276   const RecordDecl *rec = field->getParent();
2277   QualType type = field->getType();
2278   CharUnits alignment = getContext().getDeclAlign(field);
2279 
2280   // FIXME: It should be impossible to have an LValue without alignment for a
2281   // complete type.
2282   if (!base.getAlignment().isZero())
2283     alignment = std::min(alignment, base.getAlignment());
2284 
2285   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2286 
2287   llvm::Value *addr = base.getAddress();
2288   unsigned cvr = base.getVRQualifiers();
2289   if (rec->isUnion()) {
2290     // For unions, there is no pointer adjustment.
2291     assert(!type->isReferenceType() && "union has reference member");
2292   } else {
2293     // For structs, we GEP to the field that the record layout suggests.
2294     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2295     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2296 
2297     // If this is a reference field, load the reference right now.
2298     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2299       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2300       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2301       load->setAlignment(alignment.getQuantity());
2302 
2303       if (CGM.shouldUseTBAA()) {
2304         llvm::MDNode *tbaa;
2305         if (mayAlias)
2306           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2307         else
2308           tbaa = CGM.getTBAAInfo(type);
2309         CGM.DecorateInstruction(load, tbaa);
2310       }
2311 
2312       addr = load;
2313       mayAlias = false;
2314       type = refType->getPointeeType();
2315       if (type->isIncompleteType())
2316         alignment = CharUnits();
2317       else
2318         alignment = getContext().getTypeAlignInChars(type);
2319       cvr = 0; // qualifiers don't recursively apply to referencee
2320     }
2321   }
2322 
2323   // Make sure that the address is pointing to the right type.  This is critical
2324   // for both unions and structs.  A union needs a bitcast, a struct element
2325   // will need a bitcast if the LLVM type laid out doesn't match the desired
2326   // type.
2327   addr = EmitBitCastOfLValueToProperType(*this, addr,
2328                                          CGM.getTypes().ConvertTypeForMem(type),
2329                                          field->getName());
2330 
2331   if (field->hasAttr<AnnotateAttr>())
2332     addr = EmitFieldAnnotations(field, addr);
2333 
2334   LValue LV = MakeAddrLValue(addr, type, alignment);
2335   LV.getQuals().addCVRQualifiers(cvr);
2336 
2337   // __weak attribute on a field is ignored.
2338   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2339     LV.getQuals().removeObjCGCAttr();
2340 
2341   // Fields of may_alias structs act like 'char' for TBAA purposes.
2342   // FIXME: this should get propagated down through anonymous structs
2343   // and unions.
2344   if (mayAlias && LV.getTBAAInfo())
2345     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2346 
2347   return LV;
2348 }
2349 
2350 LValue
2351 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2352                                                   const FieldDecl *Field) {
2353   QualType FieldType = Field->getType();
2354 
2355   if (!FieldType->isReferenceType())
2356     return EmitLValueForField(Base, Field);
2357 
2358   const CGRecordLayout &RL =
2359     CGM.getTypes().getCGRecordLayout(Field->getParent());
2360   unsigned idx = RL.getLLVMFieldNo(Field);
2361   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2362   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2363 
2364   // Make sure that the address is pointing to the right type.  This is critical
2365   // for both unions and structs.  A union needs a bitcast, a struct element
2366   // will need a bitcast if the LLVM type laid out doesn't match the desired
2367   // type.
2368   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2369   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2370 
2371   CharUnits Alignment = getContext().getDeclAlign(Field);
2372 
2373   // FIXME: It should be impossible to have an LValue without alignment for a
2374   // complete type.
2375   if (!Base.getAlignment().isZero())
2376     Alignment = std::min(Alignment, Base.getAlignment());
2377 
2378   return MakeAddrLValue(V, FieldType, Alignment);
2379 }
2380 
2381 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2382   if (E->isFileScope()) {
2383     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2384     return MakeAddrLValue(GlobalPtr, E->getType());
2385   }
2386   if (E->getType()->isVariablyModifiedType())
2387     // make sure to emit the VLA size.
2388     EmitVariablyModifiedType(E->getType());
2389 
2390   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2391   const Expr *InitExpr = E->getInitializer();
2392   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2393 
2394   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2395                    /*Init*/ true);
2396 
2397   return Result;
2398 }
2399 
2400 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2401   if (!E->isGLValue())
2402     // Initializing an aggregate temporary in C++11: T{...}.
2403     return EmitAggExprToLValue(E);
2404 
2405   // An lvalue initializer list must be initializing a reference.
2406   assert(E->getNumInits() == 1 && "reference init with multiple values");
2407   return EmitLValue(E->getInit(0));
2408 }
2409 
2410 LValue CodeGenFunction::
2411 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2412   if (!expr->isGLValue()) {
2413     // ?: here should be an aggregate.
2414     assert((hasAggregateLLVMType(expr->getType()) &&
2415             !expr->getType()->isAnyComplexType()) &&
2416            "Unexpected conditional operator!");
2417     return EmitAggExprToLValue(expr);
2418   }
2419 
2420   OpaqueValueMapping binding(*this, expr);
2421 
2422   const Expr *condExpr = expr->getCond();
2423   bool CondExprBool;
2424   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2425     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2426     if (!CondExprBool) std::swap(live, dead);
2427 
2428     if (!ContainsLabel(dead))
2429       return EmitLValue(live);
2430   }
2431 
2432   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2433   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2434   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2435 
2436   ConditionalEvaluation eval(*this);
2437   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2438 
2439   // Any temporaries created here are conditional.
2440   EmitBlock(lhsBlock);
2441   eval.begin(*this);
2442   LValue lhs = EmitLValue(expr->getTrueExpr());
2443   eval.end(*this);
2444 
2445   if (!lhs.isSimple())
2446     return EmitUnsupportedLValue(expr, "conditional operator");
2447 
2448   lhsBlock = Builder.GetInsertBlock();
2449   Builder.CreateBr(contBlock);
2450 
2451   // Any temporaries created here are conditional.
2452   EmitBlock(rhsBlock);
2453   eval.begin(*this);
2454   LValue rhs = EmitLValue(expr->getFalseExpr());
2455   eval.end(*this);
2456   if (!rhs.isSimple())
2457     return EmitUnsupportedLValue(expr, "conditional operator");
2458   rhsBlock = Builder.GetInsertBlock();
2459 
2460   EmitBlock(contBlock);
2461 
2462   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2463                                          "cond-lvalue");
2464   phi->addIncoming(lhs.getAddress(), lhsBlock);
2465   phi->addIncoming(rhs.getAddress(), rhsBlock);
2466   return MakeAddrLValue(phi, expr->getType());
2467 }
2468 
2469 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2470 /// type. If the cast is to a reference, we can have the usual lvalue result,
2471 /// otherwise if a cast is needed by the code generator in an lvalue context,
2472 /// then it must mean that we need the address of an aggregate in order to
2473 /// access one of its members.  This can happen for all the reasons that casts
2474 /// are permitted with aggregate result, including noop aggregate casts, and
2475 /// cast from scalar to union.
2476 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2477   switch (E->getCastKind()) {
2478   case CK_ToVoid:
2479     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2480 
2481   case CK_Dependent:
2482     llvm_unreachable("dependent cast kind in IR gen!");
2483 
2484   case CK_BuiltinFnToFnPtr:
2485     llvm_unreachable("builtin functions are handled elsewhere");
2486 
2487   // These two casts are currently treated as no-ops, although they could
2488   // potentially be real operations depending on the target's ABI.
2489   case CK_NonAtomicToAtomic:
2490   case CK_AtomicToNonAtomic:
2491 
2492   case CK_NoOp:
2493   case CK_LValueToRValue:
2494     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2495         || E->getType()->isRecordType())
2496       return EmitLValue(E->getSubExpr());
2497     // Fall through to synthesize a temporary.
2498 
2499   case CK_BitCast:
2500   case CK_ArrayToPointerDecay:
2501   case CK_FunctionToPointerDecay:
2502   case CK_NullToMemberPointer:
2503   case CK_NullToPointer:
2504   case CK_IntegralToPointer:
2505   case CK_PointerToIntegral:
2506   case CK_PointerToBoolean:
2507   case CK_VectorSplat:
2508   case CK_IntegralCast:
2509   case CK_IntegralToBoolean:
2510   case CK_IntegralToFloating:
2511   case CK_FloatingToIntegral:
2512   case CK_FloatingToBoolean:
2513   case CK_FloatingCast:
2514   case CK_FloatingRealToComplex:
2515   case CK_FloatingComplexToReal:
2516   case CK_FloatingComplexToBoolean:
2517   case CK_FloatingComplexCast:
2518   case CK_FloatingComplexToIntegralComplex:
2519   case CK_IntegralRealToComplex:
2520   case CK_IntegralComplexToReal:
2521   case CK_IntegralComplexToBoolean:
2522   case CK_IntegralComplexCast:
2523   case CK_IntegralComplexToFloatingComplex:
2524   case CK_DerivedToBaseMemberPointer:
2525   case CK_BaseToDerivedMemberPointer:
2526   case CK_MemberPointerToBoolean:
2527   case CK_ReinterpretMemberPointer:
2528   case CK_AnyPointerToBlockPointerCast:
2529   case CK_ARCProduceObject:
2530   case CK_ARCConsumeObject:
2531   case CK_ARCReclaimReturnedObject:
2532   case CK_ARCExtendBlockObject:
2533   case CK_CopyAndAutoreleaseBlockObject: {
2534     // These casts only produce lvalues when we're binding a reference to a
2535     // temporary realized from a (converted) pure rvalue. Emit the expression
2536     // as a value, copy it into a temporary, and return an lvalue referring to
2537     // that temporary.
2538     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2539     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2540     return MakeAddrLValue(V, E->getType());
2541   }
2542 
2543   case CK_Dynamic: {
2544     LValue LV = EmitLValue(E->getSubExpr());
2545     llvm::Value *V = LV.getAddress();
2546     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2547     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2548   }
2549 
2550   case CK_ConstructorConversion:
2551   case CK_UserDefinedConversion:
2552   case CK_CPointerToObjCPointerCast:
2553   case CK_BlockPointerToObjCPointerCast:
2554     return EmitLValue(E->getSubExpr());
2555 
2556   case CK_UncheckedDerivedToBase:
2557   case CK_DerivedToBase: {
2558     const RecordType *DerivedClassTy =
2559       E->getSubExpr()->getType()->getAs<RecordType>();
2560     CXXRecordDecl *DerivedClassDecl =
2561       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2562 
2563     LValue LV = EmitLValue(E->getSubExpr());
2564     llvm::Value *This = LV.getAddress();
2565 
2566     // Perform the derived-to-base conversion
2567     llvm::Value *Base =
2568       GetAddressOfBaseClass(This, DerivedClassDecl,
2569                             E->path_begin(), E->path_end(),
2570                             /*NullCheckValue=*/false);
2571 
2572     return MakeAddrLValue(Base, E->getType());
2573   }
2574   case CK_ToUnion:
2575     return EmitAggExprToLValue(E);
2576   case CK_BaseToDerived: {
2577     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2578     CXXRecordDecl *DerivedClassDecl =
2579       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2580 
2581     LValue LV = EmitLValue(E->getSubExpr());
2582 
2583     // Perform the base-to-derived conversion
2584     llvm::Value *Derived =
2585       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2586                                E->path_begin(), E->path_end(),
2587                                /*NullCheckValue=*/false);
2588 
2589     return MakeAddrLValue(Derived, E->getType());
2590   }
2591   case CK_LValueBitCast: {
2592     // This must be a reinterpret_cast (or c-style equivalent).
2593     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2594 
2595     LValue LV = EmitLValue(E->getSubExpr());
2596     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2597                                            ConvertType(CE->getTypeAsWritten()));
2598     return MakeAddrLValue(V, E->getType());
2599   }
2600   case CK_ObjCObjectLValueCast: {
2601     LValue LV = EmitLValue(E->getSubExpr());
2602     QualType ToType = getContext().getLValueReferenceType(E->getType());
2603     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2604                                            ConvertType(ToType));
2605     return MakeAddrLValue(V, E->getType());
2606   }
2607   }
2608 
2609   llvm_unreachable("Unhandled lvalue cast kind?");
2610 }
2611 
2612 LValue CodeGenFunction::EmitNullInitializationLValue(
2613                                               const CXXScalarValueInitExpr *E) {
2614   QualType Ty = E->getType();
2615   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2616   EmitNullInitialization(LV.getAddress(), Ty);
2617   return LV;
2618 }
2619 
2620 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2621   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2622   return getOpaqueLValueMapping(e);
2623 }
2624 
2625 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2626                                            const MaterializeTemporaryExpr *E) {
2627   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2628   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2629 }
2630 
2631 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2632                                            const FieldDecl *FD) {
2633   QualType FT = FD->getType();
2634   LValue FieldLV = EmitLValueForField(LV, FD);
2635   if (FT->isAnyComplexType())
2636     return RValue::getComplex(
2637         LoadComplexFromAddr(FieldLV.getAddress(),
2638                             FieldLV.isVolatileQualified()));
2639   else if (CodeGenFunction::hasAggregateLLVMType(FT))
2640     return FieldLV.asAggregateRValue();
2641 
2642   return EmitLoadOfLValue(FieldLV);
2643 }
2644 
2645 //===--------------------------------------------------------------------===//
2646 //                             Expression Emission
2647 //===--------------------------------------------------------------------===//
2648 
2649 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2650                                      ReturnValueSlot ReturnValue) {
2651   if (CGDebugInfo *DI = getDebugInfo())
2652     DI->EmitLocation(Builder, E->getLocStart());
2653 
2654   // Builtins never have block type.
2655   if (E->getCallee()->getType()->isBlockPointerType())
2656     return EmitBlockCallExpr(E, ReturnValue);
2657 
2658   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2659     return EmitCXXMemberCallExpr(CE, ReturnValue);
2660 
2661   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2662     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2663 
2664   const Decl *TargetDecl = E->getCalleeDecl();
2665   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2666     if (unsigned builtinID = FD->getBuiltinID())
2667       return EmitBuiltinExpr(FD, builtinID, E);
2668   }
2669 
2670   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2671     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2672       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2673 
2674   if (const CXXPseudoDestructorExpr *PseudoDtor
2675           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2676     QualType DestroyedType = PseudoDtor->getDestroyedType();
2677     if (getLangOpts().ObjCAutoRefCount &&
2678         DestroyedType->isObjCLifetimeType() &&
2679         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2680          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2681       // Automatic Reference Counting:
2682       //   If the pseudo-expression names a retainable object with weak or
2683       //   strong lifetime, the object shall be released.
2684       Expr *BaseExpr = PseudoDtor->getBase();
2685       llvm::Value *BaseValue = NULL;
2686       Qualifiers BaseQuals;
2687 
2688       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2689       if (PseudoDtor->isArrow()) {
2690         BaseValue = EmitScalarExpr(BaseExpr);
2691         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2692         BaseQuals = PTy->getPointeeType().getQualifiers();
2693       } else {
2694         LValue BaseLV = EmitLValue(BaseExpr);
2695         BaseValue = BaseLV.getAddress();
2696         QualType BaseTy = BaseExpr->getType();
2697         BaseQuals = BaseTy.getQualifiers();
2698       }
2699 
2700       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2701       case Qualifiers::OCL_None:
2702       case Qualifiers::OCL_ExplicitNone:
2703       case Qualifiers::OCL_Autoreleasing:
2704         break;
2705 
2706       case Qualifiers::OCL_Strong:
2707         EmitARCRelease(Builder.CreateLoad(BaseValue,
2708                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2709                        /*precise*/ true);
2710         break;
2711 
2712       case Qualifiers::OCL_Weak:
2713         EmitARCDestroyWeak(BaseValue);
2714         break;
2715       }
2716     } else {
2717       // C++ [expr.pseudo]p1:
2718       //   The result shall only be used as the operand for the function call
2719       //   operator (), and the result of such a call has type void. The only
2720       //   effect is the evaluation of the postfix-expression before the dot or
2721       //   arrow.
2722       EmitScalarExpr(E->getCallee());
2723     }
2724 
2725     return RValue::get(0);
2726   }
2727 
2728   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2729   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2730                   E->arg_begin(), E->arg_end(), TargetDecl);
2731 }
2732 
2733 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2734   // Comma expressions just emit their LHS then their RHS as an l-value.
2735   if (E->getOpcode() == BO_Comma) {
2736     EmitIgnoredExpr(E->getLHS());
2737     EnsureInsertPoint();
2738     return EmitLValue(E->getRHS());
2739   }
2740 
2741   if (E->getOpcode() == BO_PtrMemD ||
2742       E->getOpcode() == BO_PtrMemI)
2743     return EmitPointerToDataMemberBinaryExpr(E);
2744 
2745   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2746 
2747   // Note that in all of these cases, __block variables need the RHS
2748   // evaluated first just in case the variable gets moved by the RHS.
2749 
2750   if (!hasAggregateLLVMType(E->getType())) {
2751     switch (E->getLHS()->getType().getObjCLifetime()) {
2752     case Qualifiers::OCL_Strong:
2753       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2754 
2755     case Qualifiers::OCL_Autoreleasing:
2756       return EmitARCStoreAutoreleasing(E).first;
2757 
2758     // No reason to do any of these differently.
2759     case Qualifiers::OCL_None:
2760     case Qualifiers::OCL_ExplicitNone:
2761     case Qualifiers::OCL_Weak:
2762       break;
2763     }
2764 
2765     RValue RV = EmitAnyExpr(E->getRHS());
2766     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2767     EmitStoreThroughLValue(RV, LV);
2768     return LV;
2769   }
2770 
2771   if (E->getType()->isAnyComplexType())
2772     return EmitComplexAssignmentLValue(E);
2773 
2774   return EmitAggExprToLValue(E);
2775 }
2776 
2777 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2778   RValue RV = EmitCallExpr(E);
2779 
2780   if (!RV.isScalar())
2781     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2782 
2783   assert(E->getCallReturnType()->isReferenceType() &&
2784          "Can't have a scalar return unless the return type is a "
2785          "reference type!");
2786 
2787   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2788 }
2789 
2790 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2791   // FIXME: This shouldn't require another copy.
2792   return EmitAggExprToLValue(E);
2793 }
2794 
2795 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2796   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2797          && "binding l-value to type which needs a temporary");
2798   AggValueSlot Slot = CreateAggTemp(E->getType());
2799   EmitCXXConstructExpr(E, Slot);
2800   return MakeAddrLValue(Slot.getAddr(), E->getType());
2801 }
2802 
2803 LValue
2804 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2805   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2806 }
2807 
2808 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2809   return CGM.GetAddrOfUuidDescriptor(E);
2810 }
2811 
2812 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
2813   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
2814 }
2815 
2816 LValue
2817 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2818   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2819   Slot.setExternallyDestructed();
2820   EmitAggExpr(E->getSubExpr(), Slot);
2821   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2822   return MakeAddrLValue(Slot.getAddr(), E->getType());
2823 }
2824 
2825 LValue
2826 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2827   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2828   EmitLambdaExpr(E, Slot);
2829   return MakeAddrLValue(Slot.getAddr(), E->getType());
2830 }
2831 
2832 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2833   RValue RV = EmitObjCMessageExpr(E);
2834 
2835   if (!RV.isScalar())
2836     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2837 
2838   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2839          "Can't have a scalar return unless the return type is a "
2840          "reference type!");
2841 
2842   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2843 }
2844 
2845 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2846   llvm::Value *V =
2847     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2848   return MakeAddrLValue(V, E->getType());
2849 }
2850 
2851 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2852                                              const ObjCIvarDecl *Ivar) {
2853   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2854 }
2855 
2856 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2857                                           llvm::Value *BaseValue,
2858                                           const ObjCIvarDecl *Ivar,
2859                                           unsigned CVRQualifiers) {
2860   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2861                                                    Ivar, CVRQualifiers);
2862 }
2863 
2864 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2865   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2866   llvm::Value *BaseValue = 0;
2867   const Expr *BaseExpr = E->getBase();
2868   Qualifiers BaseQuals;
2869   QualType ObjectTy;
2870   if (E->isArrow()) {
2871     BaseValue = EmitScalarExpr(BaseExpr);
2872     ObjectTy = BaseExpr->getType()->getPointeeType();
2873     BaseQuals = ObjectTy.getQualifiers();
2874   } else {
2875     LValue BaseLV = EmitLValue(BaseExpr);
2876     // FIXME: this isn't right for bitfields.
2877     BaseValue = BaseLV.getAddress();
2878     ObjectTy = BaseExpr->getType();
2879     BaseQuals = ObjectTy.getQualifiers();
2880   }
2881 
2882   LValue LV =
2883     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2884                       BaseQuals.getCVRQualifiers());
2885   setObjCGCLValueClass(getContext(), E, LV);
2886   return LV;
2887 }
2888 
2889 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2890   // Can only get l-value for message expression returning aggregate type
2891   RValue RV = EmitAnyExprToTemp(E);
2892   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2893 }
2894 
2895 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2896                                  ReturnValueSlot ReturnValue,
2897                                  CallExpr::const_arg_iterator ArgBeg,
2898                                  CallExpr::const_arg_iterator ArgEnd,
2899                                  const Decl *TargetDecl) {
2900   // Get the actual function type. The callee type will always be a pointer to
2901   // function type or a block pointer type.
2902   assert(CalleeType->isFunctionPointerType() &&
2903          "Call must have function pointer type!");
2904 
2905   CalleeType = getContext().getCanonicalType(CalleeType);
2906 
2907   const FunctionType *FnType
2908     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2909 
2910   CallArgList Args;
2911   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2912 
2913   const CGFunctionInfo &FnInfo =
2914     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2915 
2916   // C99 6.5.2.2p6:
2917   //   If the expression that denotes the called function has a type
2918   //   that does not include a prototype, [the default argument
2919   //   promotions are performed]. If the number of arguments does not
2920   //   equal the number of parameters, the behavior is undefined. If
2921   //   the function is defined with a type that includes a prototype,
2922   //   and either the prototype ends with an ellipsis (, ...) or the
2923   //   types of the arguments after promotion are not compatible with
2924   //   the types of the parameters, the behavior is undefined. If the
2925   //   function is defined with a type that does not include a
2926   //   prototype, and the types of the arguments after promotion are
2927   //   not compatible with those of the parameters after promotion,
2928   //   the behavior is undefined [except in some trivial cases].
2929   // That is, in the general case, we should assume that a call
2930   // through an unprototyped function type works like a *non-variadic*
2931   // call.  The way we make this work is to cast to the exact type
2932   // of the promoted arguments.
2933   if (isa<FunctionNoProtoType>(FnType)) {
2934     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2935     CalleeTy = CalleeTy->getPointerTo();
2936     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2937   }
2938 
2939   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2940 }
2941 
2942 LValue CodeGenFunction::
2943 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2944   llvm::Value *BaseV;
2945   if (E->getOpcode() == BO_PtrMemI)
2946     BaseV = EmitScalarExpr(E->getLHS());
2947   else
2948     BaseV = EmitLValue(E->getLHS()).getAddress();
2949 
2950   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2951 
2952   const MemberPointerType *MPT
2953     = E->getRHS()->getType()->getAs<MemberPointerType>();
2954 
2955   llvm::Value *AddV =
2956     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2957 
2958   return MakeAddrLValue(AddV, MPT->getPointeeType());
2959 }
2960 
2961 static void
2962 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2963              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2964              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2965   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2966   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2967 
2968   switch (E->getOp()) {
2969   case AtomicExpr::AO__c11_atomic_init:
2970     llvm_unreachable("Already handled!");
2971 
2972   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2973   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2974   case AtomicExpr::AO__atomic_compare_exchange:
2975   case AtomicExpr::AO__atomic_compare_exchange_n: {
2976     // Note that cmpxchg only supports specifying one ordering and
2977     // doesn't support weak cmpxchg, at least at the moment.
2978     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2979     LoadVal1->setAlignment(Align);
2980     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2981     LoadVal2->setAlignment(Align);
2982     llvm::AtomicCmpXchgInst *CXI =
2983         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2984     CXI->setVolatile(E->isVolatile());
2985     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2986     StoreVal1->setAlignment(Align);
2987     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2988     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2989     return;
2990   }
2991 
2992   case AtomicExpr::AO__c11_atomic_load:
2993   case AtomicExpr::AO__atomic_load_n:
2994   case AtomicExpr::AO__atomic_load: {
2995     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2996     Load->setAtomic(Order);
2997     Load->setAlignment(Size);
2998     Load->setVolatile(E->isVolatile());
2999     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
3000     StoreDest->setAlignment(Align);
3001     return;
3002   }
3003 
3004   case AtomicExpr::AO__c11_atomic_store:
3005   case AtomicExpr::AO__atomic_store:
3006   case AtomicExpr::AO__atomic_store_n: {
3007     assert(!Dest && "Store does not return a value");
3008     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3009     LoadVal1->setAlignment(Align);
3010     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
3011     Store->setAtomic(Order);
3012     Store->setAlignment(Size);
3013     Store->setVolatile(E->isVolatile());
3014     return;
3015   }
3016 
3017   case AtomicExpr::AO__c11_atomic_exchange:
3018   case AtomicExpr::AO__atomic_exchange_n:
3019   case AtomicExpr::AO__atomic_exchange:
3020     Op = llvm::AtomicRMWInst::Xchg;
3021     break;
3022 
3023   case AtomicExpr::AO__atomic_add_fetch:
3024     PostOp = llvm::Instruction::Add;
3025     // Fall through.
3026   case AtomicExpr::AO__c11_atomic_fetch_add:
3027   case AtomicExpr::AO__atomic_fetch_add:
3028     Op = llvm::AtomicRMWInst::Add;
3029     break;
3030 
3031   case AtomicExpr::AO__atomic_sub_fetch:
3032     PostOp = llvm::Instruction::Sub;
3033     // Fall through.
3034   case AtomicExpr::AO__c11_atomic_fetch_sub:
3035   case AtomicExpr::AO__atomic_fetch_sub:
3036     Op = llvm::AtomicRMWInst::Sub;
3037     break;
3038 
3039   case AtomicExpr::AO__atomic_and_fetch:
3040     PostOp = llvm::Instruction::And;
3041     // Fall through.
3042   case AtomicExpr::AO__c11_atomic_fetch_and:
3043   case AtomicExpr::AO__atomic_fetch_and:
3044     Op = llvm::AtomicRMWInst::And;
3045     break;
3046 
3047   case AtomicExpr::AO__atomic_or_fetch:
3048     PostOp = llvm::Instruction::Or;
3049     // Fall through.
3050   case AtomicExpr::AO__c11_atomic_fetch_or:
3051   case AtomicExpr::AO__atomic_fetch_or:
3052     Op = llvm::AtomicRMWInst::Or;
3053     break;
3054 
3055   case AtomicExpr::AO__atomic_xor_fetch:
3056     PostOp = llvm::Instruction::Xor;
3057     // Fall through.
3058   case AtomicExpr::AO__c11_atomic_fetch_xor:
3059   case AtomicExpr::AO__atomic_fetch_xor:
3060     Op = llvm::AtomicRMWInst::Xor;
3061     break;
3062 
3063   case AtomicExpr::AO__atomic_nand_fetch:
3064     PostOp = llvm::Instruction::And;
3065     // Fall through.
3066   case AtomicExpr::AO__atomic_fetch_nand:
3067     Op = llvm::AtomicRMWInst::Nand;
3068     break;
3069   }
3070 
3071   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3072   LoadVal1->setAlignment(Align);
3073   llvm::AtomicRMWInst *RMWI =
3074       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
3075   RMWI->setVolatile(E->isVolatile());
3076 
3077   // For __atomic_*_fetch operations, perform the operation again to
3078   // determine the value which was written.
3079   llvm::Value *Result = RMWI;
3080   if (PostOp)
3081     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
3082   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
3083     Result = CGF.Builder.CreateNot(Result);
3084   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
3085   StoreDest->setAlignment(Align);
3086 }
3087 
3088 // This function emits any expression (scalar, complex, or aggregate)
3089 // into a temporary alloca.
3090 static llvm::Value *
3091 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
3092   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
3093   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3094                        /*Init*/ true);
3095   return DeclPtr;
3096 }
3097 
3098 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3099                                   llvm::Value *Dest) {
3100   if (Ty->isAnyComplexType())
3101     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3102   if (CGF.hasAggregateLLVMType(Ty))
3103     return RValue::getAggregate(Dest);
3104   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3105 }
3106 
3107 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3108   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3109   QualType MemTy = AtomicTy;
3110   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3111     MemTy = AT->getValueType();
3112   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3113   uint64_t Size = sizeChars.getQuantity();
3114   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3115   unsigned Align = alignChars.getQuantity();
3116   unsigned MaxInlineWidthInBits =
3117     getContext().getTargetInfo().getMaxAtomicInlineWidth();
3118   bool UseLibcall = (Size != Align ||
3119                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
3120 
3121   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3122   Ptr = EmitScalarExpr(E->getPtr());
3123 
3124   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3125     assert(!Dest && "Init does not return a value");
3126     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3127       QualType PointeeType
3128         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3129       EmitScalarInit(EmitScalarExpr(E->getVal1()),
3130                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
3131                                       getContext()));
3132     } else if (E->getType()->isAnyComplexType()) {
3133       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3134     } else {
3135       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3136                                         AtomicTy.getQualifiers(),
3137                                         AggValueSlot::IsNotDestructed,
3138                                         AggValueSlot::DoesNotNeedGCBarriers,
3139                                         AggValueSlot::IsNotAliased);
3140       EmitAggExpr(E->getVal1(), Slot);
3141     }
3142     return RValue::get(0);
3143   }
3144 
3145   Order = EmitScalarExpr(E->getOrder());
3146 
3147   switch (E->getOp()) {
3148   case AtomicExpr::AO__c11_atomic_init:
3149     llvm_unreachable("Already handled!");
3150 
3151   case AtomicExpr::AO__c11_atomic_load:
3152   case AtomicExpr::AO__atomic_load_n:
3153     break;
3154 
3155   case AtomicExpr::AO__atomic_load:
3156     Dest = EmitScalarExpr(E->getVal1());
3157     break;
3158 
3159   case AtomicExpr::AO__atomic_store:
3160     Val1 = EmitScalarExpr(E->getVal1());
3161     break;
3162 
3163   case AtomicExpr::AO__atomic_exchange:
3164     Val1 = EmitScalarExpr(E->getVal1());
3165     Dest = EmitScalarExpr(E->getVal2());
3166     break;
3167 
3168   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3169   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3170   case AtomicExpr::AO__atomic_compare_exchange_n:
3171   case AtomicExpr::AO__atomic_compare_exchange:
3172     Val1 = EmitScalarExpr(E->getVal1());
3173     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3174       Val2 = EmitScalarExpr(E->getVal2());
3175     else
3176       Val2 = EmitValToTemp(*this, E->getVal2());
3177     OrderFail = EmitScalarExpr(E->getOrderFail());
3178     // Evaluate and discard the 'weak' argument.
3179     if (E->getNumSubExprs() == 6)
3180       EmitScalarExpr(E->getWeak());
3181     break;
3182 
3183   case AtomicExpr::AO__c11_atomic_fetch_add:
3184   case AtomicExpr::AO__c11_atomic_fetch_sub:
3185     if (MemTy->isPointerType()) {
3186       // For pointer arithmetic, we're required to do a bit of math:
3187       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3188       // ... but only for the C11 builtins. The GNU builtins expect the
3189       // user to multiply by sizeof(T).
3190       QualType Val1Ty = E->getVal1()->getType();
3191       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3192       CharUnits PointeeIncAmt =
3193           getContext().getTypeSizeInChars(MemTy->getPointeeType());
3194       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3195       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3196       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3197       break;
3198     }
3199     // Fall through.
3200   case AtomicExpr::AO__atomic_fetch_add:
3201   case AtomicExpr::AO__atomic_fetch_sub:
3202   case AtomicExpr::AO__atomic_add_fetch:
3203   case AtomicExpr::AO__atomic_sub_fetch:
3204   case AtomicExpr::AO__c11_atomic_store:
3205   case AtomicExpr::AO__c11_atomic_exchange:
3206   case AtomicExpr::AO__atomic_store_n:
3207   case AtomicExpr::AO__atomic_exchange_n:
3208   case AtomicExpr::AO__c11_atomic_fetch_and:
3209   case AtomicExpr::AO__c11_atomic_fetch_or:
3210   case AtomicExpr::AO__c11_atomic_fetch_xor:
3211   case AtomicExpr::AO__atomic_fetch_and:
3212   case AtomicExpr::AO__atomic_fetch_or:
3213   case AtomicExpr::AO__atomic_fetch_xor:
3214   case AtomicExpr::AO__atomic_fetch_nand:
3215   case AtomicExpr::AO__atomic_and_fetch:
3216   case AtomicExpr::AO__atomic_or_fetch:
3217   case AtomicExpr::AO__atomic_xor_fetch:
3218   case AtomicExpr::AO__atomic_nand_fetch:
3219     Val1 = EmitValToTemp(*this, E->getVal1());
3220     break;
3221   }
3222 
3223   if (!E->getType()->isVoidType() && !Dest)
3224     Dest = CreateMemTemp(E->getType(), ".atomicdst");
3225 
3226   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3227   if (UseLibcall) {
3228 
3229     llvm::SmallVector<QualType, 5> Params;
3230     CallArgList Args;
3231     // Size is always the first parameter
3232     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3233              getContext().getSizeType());
3234     // Atomic address is always the second parameter
3235     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3236              getContext().VoidPtrTy);
3237 
3238     const char* LibCallName;
3239     QualType RetTy = getContext().VoidTy;
3240     switch (E->getOp()) {
3241     // There is only one libcall for compare an exchange, because there is no
3242     // optimisation benefit possible from a libcall version of a weak compare
3243     // and exchange.
3244     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3245     //                                void *desired, int success, int failure)
3246     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3247     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3248     case AtomicExpr::AO__atomic_compare_exchange:
3249     case AtomicExpr::AO__atomic_compare_exchange_n:
3250       LibCallName = "__atomic_compare_exchange";
3251       RetTy = getContext().BoolTy;
3252       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3253                getContext().VoidPtrTy);
3254       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3255                getContext().VoidPtrTy);
3256       Args.add(RValue::get(Order),
3257                getContext().IntTy);
3258       Order = OrderFail;
3259       break;
3260     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3261     //                        int order)
3262     case AtomicExpr::AO__c11_atomic_exchange:
3263     case AtomicExpr::AO__atomic_exchange_n:
3264     case AtomicExpr::AO__atomic_exchange:
3265       LibCallName = "__atomic_exchange";
3266       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3267                getContext().VoidPtrTy);
3268       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3269                getContext().VoidPtrTy);
3270       break;
3271     // void __atomic_store(size_t size, void *mem, void *val, int order)
3272     case AtomicExpr::AO__c11_atomic_store:
3273     case AtomicExpr::AO__atomic_store:
3274     case AtomicExpr::AO__atomic_store_n:
3275       LibCallName = "__atomic_store";
3276       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3277                getContext().VoidPtrTy);
3278       break;
3279     // void __atomic_load(size_t size, void *mem, void *return, int order)
3280     case AtomicExpr::AO__c11_atomic_load:
3281     case AtomicExpr::AO__atomic_load:
3282     case AtomicExpr::AO__atomic_load_n:
3283       LibCallName = "__atomic_load";
3284       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3285                getContext().VoidPtrTy);
3286       break;
3287 #if 0
3288     // These are only defined for 1-16 byte integers.  It is not clear what
3289     // their semantics would be on anything else...
3290     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3291     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3292     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3293     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3294     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3295 #endif
3296     default: return EmitUnsupportedRValue(E, "atomic library call");
3297     }
3298     // order is always the last parameter
3299     Args.add(RValue::get(Order),
3300              getContext().IntTy);
3301 
3302     const CGFunctionInfo &FuncInfo =
3303         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3304             FunctionType::ExtInfo(), RequiredArgs::All);
3305     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3306     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3307     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3308     if (E->isCmpXChg())
3309       return Res;
3310     if (E->getType()->isVoidType())
3311       return RValue::get(0);
3312     return ConvertTempToRValue(*this, E->getType(), Dest);
3313   }
3314 
3315   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3316                  E->getOp() == AtomicExpr::AO__atomic_store ||
3317                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3318   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3319                 E->getOp() == AtomicExpr::AO__atomic_load ||
3320                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3321 
3322   llvm::Type *IPtrTy =
3323       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3324   llvm::Value *OrigDest = Dest;
3325   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3326   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3327   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3328   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3329 
3330   if (isa<llvm::ConstantInt>(Order)) {
3331     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3332     switch (ord) {
3333     case 0:  // memory_order_relaxed
3334       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3335                    llvm::Monotonic);
3336       break;
3337     case 1:  // memory_order_consume
3338     case 2:  // memory_order_acquire
3339       if (IsStore)
3340         break; // Avoid crashing on code with undefined behavior
3341       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3342                    llvm::Acquire);
3343       break;
3344     case 3:  // memory_order_release
3345       if (IsLoad)
3346         break; // Avoid crashing on code with undefined behavior
3347       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3348                    llvm::Release);
3349       break;
3350     case 4:  // memory_order_acq_rel
3351       if (IsLoad || IsStore)
3352         break; // Avoid crashing on code with undefined behavior
3353       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3354                    llvm::AcquireRelease);
3355       break;
3356     case 5:  // memory_order_seq_cst
3357       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3358                    llvm::SequentiallyConsistent);
3359       break;
3360     default: // invalid order
3361       // We should not ever get here normally, but it's hard to
3362       // enforce that in general.
3363       break;
3364     }
3365     if (E->getType()->isVoidType())
3366       return RValue::get(0);
3367     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3368   }
3369 
3370   // Long case, when Order isn't obviously constant.
3371 
3372   // Create all the relevant BB's
3373   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3374                    *AcqRelBB = 0, *SeqCstBB = 0;
3375   MonotonicBB = createBasicBlock("monotonic", CurFn);
3376   if (!IsStore)
3377     AcquireBB = createBasicBlock("acquire", CurFn);
3378   if (!IsLoad)
3379     ReleaseBB = createBasicBlock("release", CurFn);
3380   if (!IsLoad && !IsStore)
3381     AcqRelBB = createBasicBlock("acqrel", CurFn);
3382   SeqCstBB = createBasicBlock("seqcst", CurFn);
3383   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3384 
3385   // Create the switch for the split
3386   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3387   // doesn't matter unless someone is crazy enough to use something that
3388   // doesn't fold to a constant for the ordering.
3389   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3390   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3391 
3392   // Emit all the different atomics
3393   Builder.SetInsertPoint(MonotonicBB);
3394   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3395                llvm::Monotonic);
3396   Builder.CreateBr(ContBB);
3397   if (!IsStore) {
3398     Builder.SetInsertPoint(AcquireBB);
3399     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3400                  llvm::Acquire);
3401     Builder.CreateBr(ContBB);
3402     SI->addCase(Builder.getInt32(1), AcquireBB);
3403     SI->addCase(Builder.getInt32(2), AcquireBB);
3404   }
3405   if (!IsLoad) {
3406     Builder.SetInsertPoint(ReleaseBB);
3407     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3408                  llvm::Release);
3409     Builder.CreateBr(ContBB);
3410     SI->addCase(Builder.getInt32(3), ReleaseBB);
3411   }
3412   if (!IsLoad && !IsStore) {
3413     Builder.SetInsertPoint(AcqRelBB);
3414     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3415                  llvm::AcquireRelease);
3416     Builder.CreateBr(ContBB);
3417     SI->addCase(Builder.getInt32(4), AcqRelBB);
3418   }
3419   Builder.SetInsertPoint(SeqCstBB);
3420   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3421                llvm::SequentiallyConsistent);
3422   Builder.CreateBr(ContBB);
3423   SI->addCase(Builder.getInt32(5), SeqCstBB);
3424 
3425   // Cleanup and return
3426   Builder.SetInsertPoint(ContBB);
3427   if (E->getType()->isVoidType())
3428     return RValue::get(0);
3429   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3430 }
3431 
3432 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3433   assert(Val->getType()->isFPOrFPVectorTy());
3434   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3435     return;
3436 
3437   llvm::MDBuilder MDHelper(getLLVMContext());
3438   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3439 
3440   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3441 }
3442 
3443 namespace {
3444   struct LValueOrRValue {
3445     LValue LV;
3446     RValue RV;
3447   };
3448 }
3449 
3450 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3451                                            const PseudoObjectExpr *E,
3452                                            bool forLValue,
3453                                            AggValueSlot slot) {
3454   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3455 
3456   // Find the result expression, if any.
3457   const Expr *resultExpr = E->getResultExpr();
3458   LValueOrRValue result;
3459 
3460   for (PseudoObjectExpr::const_semantics_iterator
3461          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3462     const Expr *semantic = *i;
3463 
3464     // If this semantic expression is an opaque value, bind it
3465     // to the result of its source expression.
3466     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3467 
3468       // If this is the result expression, we may need to evaluate
3469       // directly into the slot.
3470       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3471       OVMA opaqueData;
3472       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3473           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3474           !ov->getType()->isAnyComplexType()) {
3475         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3476 
3477         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3478         opaqueData = OVMA::bind(CGF, ov, LV);
3479         result.RV = slot.asRValue();
3480 
3481       // Otherwise, emit as normal.
3482       } else {
3483         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3484 
3485         // If this is the result, also evaluate the result now.
3486         if (ov == resultExpr) {
3487           if (forLValue)
3488             result.LV = CGF.EmitLValue(ov);
3489           else
3490             result.RV = CGF.EmitAnyExpr(ov, slot);
3491         }
3492       }
3493 
3494       opaques.push_back(opaqueData);
3495 
3496     // Otherwise, if the expression is the result, evaluate it
3497     // and remember the result.
3498     } else if (semantic == resultExpr) {
3499       if (forLValue)
3500         result.LV = CGF.EmitLValue(semantic);
3501       else
3502         result.RV = CGF.EmitAnyExpr(semantic, slot);
3503 
3504     // Otherwise, evaluate the expression in an ignored context.
3505     } else {
3506       CGF.EmitIgnoredExpr(semantic);
3507     }
3508   }
3509 
3510   // Unbind all the opaques now.
3511   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3512     opaques[i].unbind(CGF);
3513 
3514   return result;
3515 }
3516 
3517 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3518                                                AggValueSlot slot) {
3519   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3520 }
3521 
3522 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3523   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3524 }
3525