1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/ConvertUTF.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/Hashing.h" 27 #include "llvm/DataLayout.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/MDBuilder.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===--------------------------------------------------------------------===// 35 // Miscellaneous Helper Methods 36 //===--------------------------------------------------------------------===// 37 38 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 39 unsigned addressSpace = 40 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 41 42 llvm::PointerType *destType = Int8PtrTy; 43 if (addressSpace) 44 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 45 46 if (value->getType() == destType) return value; 47 return Builder.CreateBitCast(value, destType); 48 } 49 50 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 51 /// block. 52 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 53 const Twine &Name) { 54 if (!Builder.isNamePreserving()) 55 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 56 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 57 } 58 59 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 60 llvm::Value *Init) { 61 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 62 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 63 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 64 } 65 66 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 67 const Twine &Name) { 68 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 69 // FIXME: Should we prefer the preferred type alignment here? 70 CharUnits Align = getContext().getTypeAlignInChars(Ty); 71 Alloc->setAlignment(Align.getQuantity()); 72 return Alloc; 73 } 74 75 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 76 const Twine &Name) { 77 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 78 // FIXME: Should we prefer the preferred type alignment here? 79 CharUnits Align = getContext().getTypeAlignInChars(Ty); 80 Alloc->setAlignment(Align.getQuantity()); 81 return Alloc; 82 } 83 84 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 85 /// expression and compare the result against zero, returning an Int1Ty value. 86 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 87 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 88 llvm::Value *MemPtr = EmitScalarExpr(E); 89 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 90 } 91 92 QualType BoolTy = getContext().BoolTy; 93 if (!E->getType()->isAnyComplexType()) 94 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 95 96 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 97 } 98 99 /// EmitIgnoredExpr - Emit code to compute the specified expression, 100 /// ignoring the result. 101 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 102 if (E->isRValue()) 103 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 104 105 // Just emit it as an l-value and drop the result. 106 EmitLValue(E); 107 } 108 109 /// EmitAnyExpr - Emit code to compute the specified expression which 110 /// can have any type. The result is returned as an RValue struct. 111 /// If this is an aggregate expression, AggSlot indicates where the 112 /// result should be returned. 113 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 114 AggValueSlot aggSlot, 115 bool ignoreResult) { 116 if (!hasAggregateLLVMType(E->getType())) 117 return RValue::get(EmitScalarExpr(E, ignoreResult)); 118 else if (E->getType()->isAnyComplexType()) 119 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 120 121 if (!ignoreResult && aggSlot.isIgnored()) 122 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 123 EmitAggExpr(E, aggSlot); 124 return aggSlot.asRValue(); 125 } 126 127 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 128 /// always be accessible even if no aggregate location is provided. 129 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 130 AggValueSlot AggSlot = AggValueSlot::ignored(); 131 132 if (hasAggregateLLVMType(E->getType()) && 133 !E->getType()->isAnyComplexType()) 134 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 135 return EmitAnyExpr(E, AggSlot); 136 } 137 138 /// EmitAnyExprToMem - Evaluate an expression into a given memory 139 /// location. 140 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 141 llvm::Value *Location, 142 Qualifiers Quals, 143 bool IsInit) { 144 // FIXME: This function should take an LValue as an argument. 145 if (E->getType()->isAnyComplexType()) { 146 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 147 } else if (hasAggregateLLVMType(E->getType())) { 148 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 149 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 150 AggValueSlot::IsDestructed_t(IsInit), 151 AggValueSlot::DoesNotNeedGCBarriers, 152 AggValueSlot::IsAliased_t(!IsInit))); 153 } else { 154 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 155 LValue LV = MakeAddrLValue(Location, E->getType()); 156 EmitStoreThroughLValue(RV, LV); 157 } 158 } 159 160 static llvm::Value * 161 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 162 const NamedDecl *InitializedDecl) { 163 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 164 if (VD->hasGlobalStorage()) { 165 SmallString<256> Name; 166 llvm::raw_svector_ostream Out(Name); 167 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 168 Out.flush(); 169 170 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 171 172 // Create the reference temporary. 173 llvm::GlobalValue *RefTemp = 174 new llvm::GlobalVariable(CGF.CGM.getModule(), 175 RefTempTy, /*isConstant=*/false, 176 llvm::GlobalValue::InternalLinkage, 177 llvm::Constant::getNullValue(RefTempTy), 178 Name.str()); 179 return RefTemp; 180 } 181 } 182 183 return CGF.CreateMemTemp(Type, "ref.tmp"); 184 } 185 186 static llvm::Value * 187 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 188 llvm::Value *&ReferenceTemporary, 189 const CXXDestructorDecl *&ReferenceTemporaryDtor, 190 QualType &ObjCARCReferenceLifetimeType, 191 const NamedDecl *InitializedDecl) { 192 const MaterializeTemporaryExpr *M = NULL; 193 E = E->findMaterializedTemporary(M); 194 // Objective-C++ ARC: 195 // If we are binding a reference to a temporary that has ownership, we 196 // need to perform retain/release operations on the temporary. 197 if (M && CGF.getLangOpts().ObjCAutoRefCount && 198 M->getType()->isObjCLifetimeType() && 199 (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 200 M->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 201 M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 202 ObjCARCReferenceLifetimeType = M->getType(); 203 204 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 205 CGF.enterFullExpression(EWC); 206 CodeGenFunction::RunCleanupsScope Scope(CGF); 207 208 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 209 ReferenceTemporary, 210 ReferenceTemporaryDtor, 211 ObjCARCReferenceLifetimeType, 212 InitializedDecl); 213 } 214 215 RValue RV; 216 if (E->isGLValue()) { 217 // Emit the expression as an lvalue. 218 LValue LV = CGF.EmitLValue(E); 219 220 if (LV.isSimple()) 221 return LV.getAddress(); 222 223 // We have to load the lvalue. 224 RV = CGF.EmitLoadOfLValue(LV); 225 } else { 226 if (!ObjCARCReferenceLifetimeType.isNull()) { 227 ReferenceTemporary = CreateReferenceTemporary(CGF, 228 ObjCARCReferenceLifetimeType, 229 InitializedDecl); 230 231 232 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 233 ObjCARCReferenceLifetimeType); 234 235 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 236 RefTempDst, false); 237 238 bool ExtendsLifeOfTemporary = false; 239 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 240 if (Var->extendsLifetimeOfTemporary()) 241 ExtendsLifeOfTemporary = true; 242 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 243 ExtendsLifeOfTemporary = true; 244 } 245 246 if (!ExtendsLifeOfTemporary) { 247 // Since the lifetime of this temporary isn't going to be extended, 248 // we need to clean it up ourselves at the end of the full expression. 249 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 250 case Qualifiers::OCL_None: 251 case Qualifiers::OCL_ExplicitNone: 252 case Qualifiers::OCL_Autoreleasing: 253 break; 254 255 case Qualifiers::OCL_Strong: { 256 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 257 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 258 CGF.pushDestroy(cleanupKind, 259 ReferenceTemporary, 260 ObjCARCReferenceLifetimeType, 261 CodeGenFunction::destroyARCStrongImprecise, 262 cleanupKind & EHCleanup); 263 break; 264 } 265 266 case Qualifiers::OCL_Weak: 267 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 268 CGF.pushDestroy(NormalAndEHCleanup, 269 ReferenceTemporary, 270 ObjCARCReferenceLifetimeType, 271 CodeGenFunction::destroyARCWeak, 272 /*useEHCleanupForArray*/ true); 273 break; 274 } 275 276 ObjCARCReferenceLifetimeType = QualType(); 277 } 278 279 return ReferenceTemporary; 280 } 281 282 SmallVector<SubobjectAdjustment, 2> Adjustments; 283 E = E->skipRValueSubobjectAdjustments(Adjustments); 284 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 285 if (opaque->getType()->isRecordType()) 286 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 287 288 // Create a reference temporary if necessary. 289 AggValueSlot AggSlot = AggValueSlot::ignored(); 290 if (CGF.hasAggregateLLVMType(E->getType()) && 291 !E->getType()->isAnyComplexType()) { 292 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 293 InitializedDecl); 294 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 295 AggValueSlot::IsDestructed_t isDestructed 296 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 297 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 298 Qualifiers(), isDestructed, 299 AggValueSlot::DoesNotNeedGCBarriers, 300 AggValueSlot::IsNotAliased); 301 } 302 303 if (InitializedDecl) { 304 // Get the destructor for the reference temporary. 305 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 306 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 307 if (!ClassDecl->hasTrivialDestructor()) 308 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 309 } 310 } 311 312 RV = CGF.EmitAnyExpr(E, AggSlot); 313 314 // Check if need to perform derived-to-base casts and/or field accesses, to 315 // get from the temporary object we created (and, potentially, for which we 316 // extended the lifetime) to the subobject we're binding the reference to. 317 if (!Adjustments.empty()) { 318 llvm::Value *Object = RV.getAggregateAddr(); 319 for (unsigned I = Adjustments.size(); I != 0; --I) { 320 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 321 switch (Adjustment.Kind) { 322 case SubobjectAdjustment::DerivedToBaseAdjustment: 323 Object = 324 CGF.GetAddressOfBaseClass(Object, 325 Adjustment.DerivedToBase.DerivedClass, 326 Adjustment.DerivedToBase.BasePath->path_begin(), 327 Adjustment.DerivedToBase.BasePath->path_end(), 328 /*NullCheckValue=*/false); 329 break; 330 331 case SubobjectAdjustment::FieldAdjustment: { 332 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 333 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 334 if (LV.isSimple()) { 335 Object = LV.getAddress(); 336 break; 337 } 338 339 // For non-simple lvalues, we actually have to create a copy of 340 // the object we're binding to. 341 QualType T = Adjustment.Field->getType().getNonReferenceType() 342 .getUnqualifiedType(); 343 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 344 LValue TempLV = CGF.MakeAddrLValue(Object, 345 Adjustment.Field->getType()); 346 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 347 break; 348 } 349 350 case SubobjectAdjustment::MemberPointerAdjustment: { 351 llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS); 352 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 353 CGF, Object, Ptr, Adjustment.Ptr.MPT); 354 break; 355 } 356 } 357 } 358 359 return Object; 360 } 361 } 362 363 if (RV.isAggregate()) 364 return RV.getAggregateAddr(); 365 366 // Create a temporary variable that we can bind the reference to. 367 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 368 InitializedDecl); 369 370 371 unsigned Alignment = 372 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 373 if (RV.isScalar()) 374 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 375 /*Volatile=*/false, Alignment, E->getType()); 376 else 377 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 378 /*Volatile=*/false); 379 return ReferenceTemporary; 380 } 381 382 RValue 383 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 384 const NamedDecl *InitializedDecl) { 385 llvm::Value *ReferenceTemporary = 0; 386 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 387 QualType ObjCARCReferenceLifetimeType; 388 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 389 ReferenceTemporaryDtor, 390 ObjCARCReferenceLifetimeType, 391 InitializedDecl); 392 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 393 // C++11 [dcl.ref]p5 (as amended by core issue 453): 394 // If a glvalue to which a reference is directly bound designates neither 395 // an existing object or function of an appropriate type nor a region of 396 // storage of suitable size and alignment to contain an object of the 397 // reference's type, the behavior is undefined. 398 QualType Ty = E->getType(); 399 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 400 } 401 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 402 return RValue::get(Value); 403 404 // Make sure to call the destructor for the reference temporary. 405 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 406 if (VD && VD->hasGlobalStorage()) { 407 if (ReferenceTemporaryDtor) { 408 llvm::Constant *DtorFn = 409 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 410 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 411 cast<llvm::Constant>(ReferenceTemporary)); 412 } else { 413 assert(!ObjCARCReferenceLifetimeType.isNull()); 414 // Note: We intentionally do not register a global "destructor" to 415 // release the object. 416 } 417 418 return RValue::get(Value); 419 } 420 421 if (ReferenceTemporaryDtor) 422 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 423 else { 424 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 425 case Qualifiers::OCL_None: 426 llvm_unreachable( 427 "Not a reference temporary that needs to be deallocated"); 428 case Qualifiers::OCL_ExplicitNone: 429 case Qualifiers::OCL_Autoreleasing: 430 // Nothing to do. 431 break; 432 433 case Qualifiers::OCL_Strong: { 434 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 435 CleanupKind cleanupKind = getARCCleanupKind(); 436 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 437 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 438 cleanupKind & EHCleanup); 439 break; 440 } 441 442 case Qualifiers::OCL_Weak: { 443 // __weak objects always get EH cleanups; otherwise, exceptions 444 // could cause really nasty crashes instead of mere leaks. 445 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 446 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 447 break; 448 } 449 } 450 } 451 452 return RValue::get(Value); 453 } 454 455 456 /// getAccessedFieldNo - Given an encoded value and a result number, return the 457 /// input field number being accessed. 458 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 459 const llvm::Constant *Elts) { 460 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 461 ->getZExtValue(); 462 } 463 464 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 465 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 466 llvm::Value *High) { 467 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 468 llvm::Value *K47 = Builder.getInt64(47); 469 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 470 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 471 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 472 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 473 return Builder.CreateMul(B1, KMul); 474 } 475 476 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 477 llvm::Value *Address, 478 QualType Ty, CharUnits Alignment) { 479 if (!SanitizePerformTypeCheck) 480 return; 481 482 // Don't check pointers outside the default address space. The null check 483 // isn't correct, the object-size check isn't supported by LLVM, and we can't 484 // communicate the addresses to the runtime handler for the vptr check. 485 if (Address->getType()->getPointerAddressSpace()) 486 return; 487 488 llvm::Value *Cond = 0; 489 490 if (getLangOpts().SanitizeNull) { 491 // The glvalue must not be an empty glvalue. 492 Cond = Builder.CreateICmpNE( 493 Address, llvm::Constant::getNullValue(Address->getType())); 494 } 495 496 if (getLangOpts().SanitizeObjectSize && !Ty->isIncompleteType()) { 497 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 498 499 // The glvalue must refer to a large enough storage region. 500 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 501 // to check this. 502 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 503 llvm::Value *Min = Builder.getFalse(); 504 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 505 llvm::Value *LargeEnough = 506 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 507 llvm::ConstantInt::get(IntPtrTy, Size)); 508 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 509 } 510 511 uint64_t AlignVal = 0; 512 513 if (getLangOpts().SanitizeAlignment) { 514 AlignVal = Alignment.getQuantity(); 515 if (!Ty->isIncompleteType() && !AlignVal) 516 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 517 518 // The glvalue must be suitably aligned. 519 if (AlignVal) { 520 llvm::Value *Align = 521 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 522 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 523 llvm::Value *Aligned = 524 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 525 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 526 } 527 } 528 529 if (Cond) { 530 llvm::Constant *StaticData[] = { 531 EmitCheckSourceLocation(Loc), 532 EmitCheckTypeDescriptor(Ty), 533 llvm::ConstantInt::get(SizeTy, AlignVal), 534 llvm::ConstantInt::get(Int8Ty, TCK) 535 }; 536 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 537 } 538 539 // If possible, check that the vptr indicates that there is a subobject of 540 // type Ty at offset zero within this object. 541 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 542 if (getLangOpts().SanitizeVptr && TCK != TCK_ConstructorCall && 543 RD && RD->hasDefinition() && RD->isDynamicClass()) { 544 // Compute a hash of the mangled name of the type. 545 // 546 // FIXME: This is not guaranteed to be deterministic! Move to a 547 // fingerprinting mechanism once LLVM provides one. For the time 548 // being the implementation happens to be deterministic. 549 llvm::SmallString<64> MangledName; 550 llvm::raw_svector_ostream Out(MangledName); 551 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 552 Out); 553 llvm::hash_code TypeHash = hash_value(Out.str()); 554 555 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 556 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 557 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 558 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 559 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 560 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 561 562 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 563 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 564 565 // Look the hash up in our cache. 566 const int CacheSize = 128; 567 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 568 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 569 "__ubsan_vptr_type_cache"); 570 llvm::Value *Slot = Builder.CreateAnd(Hash, 571 llvm::ConstantInt::get(IntPtrTy, 572 CacheSize-1)); 573 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 574 llvm::Value *CacheVal = 575 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 576 577 // If the hash isn't in the cache, call a runtime handler to perform the 578 // hard work of checking whether the vptr is for an object of the right 579 // type. This will either fill in the cache and return, or produce a 580 // diagnostic. 581 llvm::Constant *StaticData[] = { 582 EmitCheckSourceLocation(Loc), 583 EmitCheckTypeDescriptor(Ty), 584 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 585 llvm::ConstantInt::get(Int8Ty, TCK) 586 }; 587 llvm::Value *DynamicData[] = { Address, Hash }; 588 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 589 "dynamic_type_cache_miss", StaticData, DynamicData, 590 CRK_AlwaysRecoverable); 591 } 592 } 593 594 595 CodeGenFunction::ComplexPairTy CodeGenFunction:: 596 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 597 bool isInc, bool isPre) { 598 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 599 LV.isVolatileQualified()); 600 601 llvm::Value *NextVal; 602 if (isa<llvm::IntegerType>(InVal.first->getType())) { 603 uint64_t AmountVal = isInc ? 1 : -1; 604 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 605 606 // Add the inc/dec to the real part. 607 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 608 } else { 609 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 610 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 611 if (!isInc) 612 FVal.changeSign(); 613 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 614 615 // Add the inc/dec to the real part. 616 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 617 } 618 619 ComplexPairTy IncVal(NextVal, InVal.second); 620 621 // Store the updated result through the lvalue. 622 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 623 624 // If this is a postinc, return the value read from memory, otherwise use the 625 // updated value. 626 return isPre ? IncVal : InVal; 627 } 628 629 630 //===----------------------------------------------------------------------===// 631 // LValue Expression Emission 632 //===----------------------------------------------------------------------===// 633 634 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 635 if (Ty->isVoidType()) 636 return RValue::get(0); 637 638 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 639 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 640 llvm::Value *U = llvm::UndefValue::get(EltTy); 641 return RValue::getComplex(std::make_pair(U, U)); 642 } 643 644 // If this is a use of an undefined aggregate type, the aggregate must have an 645 // identifiable address. Just because the contents of the value are undefined 646 // doesn't mean that the address can't be taken and compared. 647 if (hasAggregateLLVMType(Ty)) { 648 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 649 return RValue::getAggregate(DestPtr); 650 } 651 652 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 653 } 654 655 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 656 const char *Name) { 657 ErrorUnsupported(E, Name); 658 return GetUndefRValue(E->getType()); 659 } 660 661 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 662 const char *Name) { 663 ErrorUnsupported(E, Name); 664 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 665 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 666 } 667 668 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 669 LValue LV = EmitLValue(E); 670 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 671 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 672 E->getType(), LV.getAlignment()); 673 return LV; 674 } 675 676 /// EmitLValue - Emit code to compute a designator that specifies the location 677 /// of the expression. 678 /// 679 /// This can return one of two things: a simple address or a bitfield reference. 680 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 681 /// an LLVM pointer type. 682 /// 683 /// If this returns a bitfield reference, nothing about the pointee type of the 684 /// LLVM value is known: For example, it may not be a pointer to an integer. 685 /// 686 /// If this returns a normal address, and if the lvalue's C type is fixed size, 687 /// this method guarantees that the returned pointer type will point to an LLVM 688 /// type of the same size of the lvalue's type. If the lvalue has a variable 689 /// length type, this is not possible. 690 /// 691 LValue CodeGenFunction::EmitLValue(const Expr *E) { 692 switch (E->getStmtClass()) { 693 default: return EmitUnsupportedLValue(E, "l-value expression"); 694 695 case Expr::ObjCPropertyRefExprClass: 696 llvm_unreachable("cannot emit a property reference directly"); 697 698 case Expr::ObjCSelectorExprClass: 699 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 700 case Expr::ObjCIsaExprClass: 701 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 702 case Expr::BinaryOperatorClass: 703 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 704 case Expr::CompoundAssignOperatorClass: 705 if (!E->getType()->isAnyComplexType()) 706 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 707 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 708 case Expr::CallExprClass: 709 case Expr::CXXMemberCallExprClass: 710 case Expr::CXXOperatorCallExprClass: 711 case Expr::UserDefinedLiteralClass: 712 return EmitCallExprLValue(cast<CallExpr>(E)); 713 case Expr::VAArgExprClass: 714 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 715 case Expr::DeclRefExprClass: 716 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 717 case Expr::ParenExprClass: 718 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 719 case Expr::GenericSelectionExprClass: 720 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 721 case Expr::PredefinedExprClass: 722 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 723 case Expr::StringLiteralClass: 724 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 725 case Expr::ObjCEncodeExprClass: 726 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 727 case Expr::PseudoObjectExprClass: 728 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 729 case Expr::InitListExprClass: 730 return EmitInitListLValue(cast<InitListExpr>(E)); 731 case Expr::CXXTemporaryObjectExprClass: 732 case Expr::CXXConstructExprClass: 733 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 734 case Expr::CXXBindTemporaryExprClass: 735 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 736 case Expr::CXXUuidofExprClass: 737 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 738 case Expr::LambdaExprClass: 739 return EmitLambdaLValue(cast<LambdaExpr>(E)); 740 741 case Expr::ExprWithCleanupsClass: { 742 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 743 enterFullExpression(cleanups); 744 RunCleanupsScope Scope(*this); 745 return EmitLValue(cleanups->getSubExpr()); 746 } 747 748 case Expr::CXXScalarValueInitExprClass: 749 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 750 case Expr::CXXDefaultArgExprClass: 751 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 752 case Expr::CXXTypeidExprClass: 753 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 754 755 case Expr::ObjCMessageExprClass: 756 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 757 case Expr::ObjCIvarRefExprClass: 758 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 759 case Expr::StmtExprClass: 760 return EmitStmtExprLValue(cast<StmtExpr>(E)); 761 case Expr::UnaryOperatorClass: 762 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 763 case Expr::ArraySubscriptExprClass: 764 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 765 case Expr::ExtVectorElementExprClass: 766 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 767 case Expr::MemberExprClass: 768 return EmitMemberExpr(cast<MemberExpr>(E)); 769 case Expr::CompoundLiteralExprClass: 770 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 771 case Expr::ConditionalOperatorClass: 772 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 773 case Expr::BinaryConditionalOperatorClass: 774 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 775 case Expr::ChooseExprClass: 776 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 777 case Expr::OpaqueValueExprClass: 778 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 779 case Expr::SubstNonTypeTemplateParmExprClass: 780 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 781 case Expr::ImplicitCastExprClass: 782 case Expr::CStyleCastExprClass: 783 case Expr::CXXFunctionalCastExprClass: 784 case Expr::CXXStaticCastExprClass: 785 case Expr::CXXDynamicCastExprClass: 786 case Expr::CXXReinterpretCastExprClass: 787 case Expr::CXXConstCastExprClass: 788 case Expr::ObjCBridgedCastExprClass: 789 return EmitCastLValue(cast<CastExpr>(E)); 790 791 case Expr::MaterializeTemporaryExprClass: 792 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 793 } 794 } 795 796 /// Given an object of the given canonical type, can we safely copy a 797 /// value out of it based on its initializer? 798 static bool isConstantEmittableObjectType(QualType type) { 799 assert(type.isCanonical()); 800 assert(!type->isReferenceType()); 801 802 // Must be const-qualified but non-volatile. 803 Qualifiers qs = type.getLocalQualifiers(); 804 if (!qs.hasConst() || qs.hasVolatile()) return false; 805 806 // Otherwise, all object types satisfy this except C++ classes with 807 // mutable subobjects or non-trivial copy/destroy behavior. 808 if (const RecordType *RT = dyn_cast<RecordType>(type)) 809 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 810 if (RD->hasMutableFields() || !RD->isTrivial()) 811 return false; 812 813 return true; 814 } 815 816 /// Can we constant-emit a load of a reference to a variable of the 817 /// given type? This is different from predicates like 818 /// Decl::isUsableInConstantExpressions because we do want it to apply 819 /// in situations that don't necessarily satisfy the language's rules 820 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 821 /// to do this with const float variables even if those variables 822 /// aren't marked 'constexpr'. 823 enum ConstantEmissionKind { 824 CEK_None, 825 CEK_AsReferenceOnly, 826 CEK_AsValueOrReference, 827 CEK_AsValueOnly 828 }; 829 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 830 type = type.getCanonicalType(); 831 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 832 if (isConstantEmittableObjectType(ref->getPointeeType())) 833 return CEK_AsValueOrReference; 834 return CEK_AsReferenceOnly; 835 } 836 if (isConstantEmittableObjectType(type)) 837 return CEK_AsValueOnly; 838 return CEK_None; 839 } 840 841 /// Try to emit a reference to the given value without producing it as 842 /// an l-value. This is actually more than an optimization: we can't 843 /// produce an l-value for variables that we never actually captured 844 /// in a block or lambda, which means const int variables or constexpr 845 /// literals or similar. 846 CodeGenFunction::ConstantEmission 847 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 848 ValueDecl *value = refExpr->getDecl(); 849 850 // The value needs to be an enum constant or a constant variable. 851 ConstantEmissionKind CEK; 852 if (isa<ParmVarDecl>(value)) { 853 CEK = CEK_None; 854 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 855 CEK = checkVarTypeForConstantEmission(var->getType()); 856 } else if (isa<EnumConstantDecl>(value)) { 857 CEK = CEK_AsValueOnly; 858 } else { 859 CEK = CEK_None; 860 } 861 if (CEK == CEK_None) return ConstantEmission(); 862 863 Expr::EvalResult result; 864 bool resultIsReference; 865 QualType resultType; 866 867 // It's best to evaluate all the way as an r-value if that's permitted. 868 if (CEK != CEK_AsReferenceOnly && 869 refExpr->EvaluateAsRValue(result, getContext())) { 870 resultIsReference = false; 871 resultType = refExpr->getType(); 872 873 // Otherwise, try to evaluate as an l-value. 874 } else if (CEK != CEK_AsValueOnly && 875 refExpr->EvaluateAsLValue(result, getContext())) { 876 resultIsReference = true; 877 resultType = value->getType(); 878 879 // Failure. 880 } else { 881 return ConstantEmission(); 882 } 883 884 // In any case, if the initializer has side-effects, abandon ship. 885 if (result.HasSideEffects) 886 return ConstantEmission(); 887 888 // Emit as a constant. 889 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 890 891 // Make sure we emit a debug reference to the global variable. 892 // This should probably fire even for 893 if (isa<VarDecl>(value)) { 894 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 895 EmitDeclRefExprDbgValue(refExpr, C); 896 } else { 897 assert(isa<EnumConstantDecl>(value)); 898 EmitDeclRefExprDbgValue(refExpr, C); 899 } 900 901 // If we emitted a reference constant, we need to dereference that. 902 if (resultIsReference) 903 return ConstantEmission::forReference(C); 904 905 return ConstantEmission::forValue(C); 906 } 907 908 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 909 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 910 lvalue.getAlignment().getQuantity(), 911 lvalue.getType(), lvalue.getTBAAInfo()); 912 } 913 914 static bool hasBooleanRepresentation(QualType Ty) { 915 if (Ty->isBooleanType()) 916 return true; 917 918 if (const EnumType *ET = Ty->getAs<EnumType>()) 919 return ET->getDecl()->getIntegerType()->isBooleanType(); 920 921 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 922 return hasBooleanRepresentation(AT->getValueType()); 923 924 return false; 925 } 926 927 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 928 const EnumType *ET = Ty->getAs<EnumType>(); 929 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 930 CGM.getCodeGenOpts().StrictEnums && 931 !ET->getDecl()->isFixed()); 932 bool IsBool = hasBooleanRepresentation(Ty); 933 if (!IsBool && !IsRegularCPlusPlusEnum) 934 return NULL; 935 936 llvm::APInt Min; 937 llvm::APInt End; 938 if (IsBool) { 939 Min = llvm::APInt(getContext().getTypeSize(Ty), 0); 940 End = llvm::APInt(getContext().getTypeSize(Ty), 2); 941 } else { 942 const EnumDecl *ED = ET->getDecl(); 943 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 944 unsigned Bitwidth = LTy->getScalarSizeInBits(); 945 unsigned NumNegativeBits = ED->getNumNegativeBits(); 946 unsigned NumPositiveBits = ED->getNumPositiveBits(); 947 948 if (NumNegativeBits) { 949 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 950 assert(NumBits <= Bitwidth); 951 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 952 Min = -End; 953 } else { 954 assert(NumPositiveBits <= Bitwidth); 955 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 956 Min = llvm::APInt(Bitwidth, 0); 957 } 958 } 959 960 llvm::MDBuilder MDHelper(getLLVMContext()); 961 return MDHelper.createRange(Min, End); 962 } 963 964 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 965 unsigned Alignment, QualType Ty, 966 llvm::MDNode *TBAAInfo) { 967 968 // For better performance, handle vector loads differently. 969 if (Ty->isVectorType()) { 970 llvm::Value *V; 971 const llvm::Type *EltTy = 972 cast<llvm::PointerType>(Addr->getType())->getElementType(); 973 974 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 975 976 // Handle vectors of size 3, like size 4 for better performance. 977 if (VTy->getNumElements() == 3) { 978 979 // Bitcast to vec4 type. 980 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 981 4); 982 llvm::PointerType *ptVec4Ty = 983 llvm::PointerType::get(vec4Ty, 984 (cast<llvm::PointerType>( 985 Addr->getType()))->getAddressSpace()); 986 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 987 "castToVec4"); 988 // Now load value. 989 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 990 991 // Shuffle vector to get vec3. 992 llvm::SmallVector<llvm::Constant*, 3> Mask; 993 Mask.push_back(llvm::ConstantInt::get( 994 llvm::Type::getInt32Ty(getLLVMContext()), 995 0)); 996 Mask.push_back(llvm::ConstantInt::get( 997 llvm::Type::getInt32Ty(getLLVMContext()), 998 1)); 999 Mask.push_back(llvm::ConstantInt::get( 1000 llvm::Type::getInt32Ty(getLLVMContext()), 1001 2)); 1002 1003 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1004 V = Builder.CreateShuffleVector(LoadVal, 1005 llvm::UndefValue::get(vec4Ty), 1006 MaskV, "extractVec"); 1007 return EmitFromMemory(V, Ty); 1008 } 1009 } 1010 1011 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1012 if (Volatile) 1013 Load->setVolatile(true); 1014 if (Alignment) 1015 Load->setAlignment(Alignment); 1016 if (TBAAInfo) 1017 CGM.DecorateInstruction(Load, TBAAInfo); 1018 // If this is an atomic type, all normal reads must be atomic 1019 if (Ty->isAtomicType()) 1020 Load->setAtomic(llvm::SequentiallyConsistent); 1021 1022 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1023 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1024 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1025 1026 return EmitFromMemory(Load, Ty); 1027 } 1028 1029 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1030 // Bool has a different representation in memory than in registers. 1031 if (hasBooleanRepresentation(Ty)) { 1032 // This should really always be an i1, but sometimes it's already 1033 // an i8, and it's awkward to track those cases down. 1034 if (Value->getType()->isIntegerTy(1)) 1035 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1036 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1037 "wrong value rep of bool"); 1038 } 1039 1040 return Value; 1041 } 1042 1043 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1044 // Bool has a different representation in memory than in registers. 1045 if (hasBooleanRepresentation(Ty)) { 1046 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1047 "wrong value rep of bool"); 1048 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1049 } 1050 1051 return Value; 1052 } 1053 1054 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1055 bool Volatile, unsigned Alignment, 1056 QualType Ty, 1057 llvm::MDNode *TBAAInfo, 1058 bool isInit) { 1059 1060 // Handle vectors differently to get better performance. 1061 if (Ty->isVectorType()) { 1062 llvm::Type *SrcTy = Value->getType(); 1063 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1064 // Handle vec3 special. 1065 if (VecTy->getNumElements() == 3) { 1066 llvm::LLVMContext &VMContext = getLLVMContext(); 1067 1068 // Our source is a vec3, do a shuffle vector to make it a vec4. 1069 llvm::SmallVector<llvm::Constant*, 4> Mask; 1070 Mask.push_back(llvm::ConstantInt::get( 1071 llvm::Type::getInt32Ty(VMContext), 1072 0)); 1073 Mask.push_back(llvm::ConstantInt::get( 1074 llvm::Type::getInt32Ty(VMContext), 1075 1)); 1076 Mask.push_back(llvm::ConstantInt::get( 1077 llvm::Type::getInt32Ty(VMContext), 1078 2)); 1079 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1080 1081 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1082 Value = Builder.CreateShuffleVector(Value, 1083 llvm::UndefValue::get(VecTy), 1084 MaskV, "extractVec"); 1085 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1086 } 1087 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1088 if (DstPtr->getElementType() != SrcTy) { 1089 llvm::Type *MemTy = 1090 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1091 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1092 } 1093 } 1094 1095 Value = EmitToMemory(Value, Ty); 1096 1097 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1098 if (Alignment) 1099 Store->setAlignment(Alignment); 1100 if (TBAAInfo) 1101 CGM.DecorateInstruction(Store, TBAAInfo); 1102 if (!isInit && Ty->isAtomicType()) 1103 Store->setAtomic(llvm::SequentiallyConsistent); 1104 } 1105 1106 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1107 bool isInit) { 1108 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1109 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1110 lvalue.getTBAAInfo(), isInit); 1111 } 1112 1113 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1114 /// method emits the address of the lvalue, then loads the result as an rvalue, 1115 /// returning the rvalue. 1116 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1117 if (LV.isObjCWeak()) { 1118 // load of a __weak object. 1119 llvm::Value *AddrWeakObj = LV.getAddress(); 1120 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1121 AddrWeakObj)); 1122 } 1123 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1124 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1125 Object = EmitObjCConsumeObject(LV.getType(), Object); 1126 return RValue::get(Object); 1127 } 1128 1129 if (LV.isSimple()) { 1130 assert(!LV.getType()->isFunctionType()); 1131 1132 // Everything needs a load. 1133 return RValue::get(EmitLoadOfScalar(LV)); 1134 } 1135 1136 if (LV.isVectorElt()) { 1137 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1138 LV.isVolatileQualified()); 1139 Load->setAlignment(LV.getAlignment().getQuantity()); 1140 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1141 "vecext")); 1142 } 1143 1144 // If this is a reference to a subset of the elements of a vector, either 1145 // shuffle the input or extract/insert them as appropriate. 1146 if (LV.isExtVectorElt()) 1147 return EmitLoadOfExtVectorElementLValue(LV); 1148 1149 assert(LV.isBitField() && "Unknown LValue type!"); 1150 return EmitLoadOfBitfieldLValue(LV); 1151 } 1152 1153 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1154 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1155 1156 // Get the output type. 1157 llvm::Type *ResLTy = ConvertType(LV.getType()); 1158 1159 llvm::Value *Ptr = LV.getBitFieldAddr(); 1160 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1161 "bf.load"); 1162 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1163 1164 if (Info.IsSigned) { 1165 assert((Info.Offset + Info.Size) <= Info.StorageSize); 1166 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1167 if (HighBits) 1168 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1169 if (Info.Offset + HighBits) 1170 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1171 } else { 1172 if (Info.Offset) 1173 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1174 if (Info.Offset + Info.Size < Info.StorageSize) 1175 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1176 Info.Size), 1177 "bf.clear"); 1178 } 1179 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1180 1181 return RValue::get(Val); 1182 } 1183 1184 // If this is a reference to a subset of the elements of a vector, create an 1185 // appropriate shufflevector. 1186 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1187 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1188 LV.isVolatileQualified()); 1189 Load->setAlignment(LV.getAlignment().getQuantity()); 1190 llvm::Value *Vec = Load; 1191 1192 const llvm::Constant *Elts = LV.getExtVectorElts(); 1193 1194 // If the result of the expression is a non-vector type, we must be extracting 1195 // a single element. Just codegen as an extractelement. 1196 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1197 if (!ExprVT) { 1198 unsigned InIdx = getAccessedFieldNo(0, Elts); 1199 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1200 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1201 } 1202 1203 // Always use shuffle vector to try to retain the original program structure 1204 unsigned NumResultElts = ExprVT->getNumElements(); 1205 1206 SmallVector<llvm::Constant*, 4> Mask; 1207 for (unsigned i = 0; i != NumResultElts; ++i) 1208 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1209 1210 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1211 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1212 MaskV); 1213 return RValue::get(Vec); 1214 } 1215 1216 1217 1218 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1219 /// lvalue, where both are guaranteed to the have the same type, and that type 1220 /// is 'Ty'. 1221 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1222 if (!Dst.isSimple()) { 1223 if (Dst.isVectorElt()) { 1224 // Read/modify/write the vector, inserting the new element. 1225 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1226 Dst.isVolatileQualified()); 1227 Load->setAlignment(Dst.getAlignment().getQuantity()); 1228 llvm::Value *Vec = Load; 1229 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1230 Dst.getVectorIdx(), "vecins"); 1231 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1232 Dst.isVolatileQualified()); 1233 Store->setAlignment(Dst.getAlignment().getQuantity()); 1234 return; 1235 } 1236 1237 // If this is an update of extended vector elements, insert them as 1238 // appropriate. 1239 if (Dst.isExtVectorElt()) 1240 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1241 1242 assert(Dst.isBitField() && "Unknown LValue type"); 1243 return EmitStoreThroughBitfieldLValue(Src, Dst); 1244 } 1245 1246 // There's special magic for assigning into an ARC-qualified l-value. 1247 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1248 switch (Lifetime) { 1249 case Qualifiers::OCL_None: 1250 llvm_unreachable("present but none"); 1251 1252 case Qualifiers::OCL_ExplicitNone: 1253 // nothing special 1254 break; 1255 1256 case Qualifiers::OCL_Strong: 1257 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1258 return; 1259 1260 case Qualifiers::OCL_Weak: 1261 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1262 return; 1263 1264 case Qualifiers::OCL_Autoreleasing: 1265 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1266 Src.getScalarVal())); 1267 // fall into the normal path 1268 break; 1269 } 1270 } 1271 1272 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1273 // load of a __weak object. 1274 llvm::Value *LvalueDst = Dst.getAddress(); 1275 llvm::Value *src = Src.getScalarVal(); 1276 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1277 return; 1278 } 1279 1280 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1281 // load of a __strong object. 1282 llvm::Value *LvalueDst = Dst.getAddress(); 1283 llvm::Value *src = Src.getScalarVal(); 1284 if (Dst.isObjCIvar()) { 1285 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1286 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1287 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1288 llvm::Value *dst = RHS; 1289 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1290 llvm::Value *LHS = 1291 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1292 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1293 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1294 BytesBetween); 1295 } else if (Dst.isGlobalObjCRef()) { 1296 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1297 Dst.isThreadLocalRef()); 1298 } 1299 else 1300 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1301 return; 1302 } 1303 1304 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1305 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1306 } 1307 1308 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1309 llvm::Value **Result) { 1310 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1311 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1312 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1313 1314 // Get the source value, truncated to the width of the bit-field. 1315 llvm::Value *SrcVal = Src.getScalarVal(); 1316 1317 // Cast the source to the storage type and shift it into place. 1318 SrcVal = Builder.CreateIntCast(SrcVal, 1319 Ptr->getType()->getPointerElementType(), 1320 /*IsSigned=*/false); 1321 llvm::Value *MaskedVal = SrcVal; 1322 1323 // See if there are other bits in the bitfield's storage we'll need to load 1324 // and mask together with source before storing. 1325 if (Info.StorageSize != Info.Size) { 1326 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1327 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1328 "bf.load"); 1329 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1330 1331 // Mask the source value as needed. 1332 if (!hasBooleanRepresentation(Dst.getType())) 1333 SrcVal = Builder.CreateAnd(SrcVal, 1334 llvm::APInt::getLowBitsSet(Info.StorageSize, 1335 Info.Size), 1336 "bf.value"); 1337 MaskedVal = SrcVal; 1338 if (Info.Offset) 1339 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1340 1341 // Mask out the original value. 1342 Val = Builder.CreateAnd(Val, 1343 ~llvm::APInt::getBitsSet(Info.StorageSize, 1344 Info.Offset, 1345 Info.Offset + Info.Size), 1346 "bf.clear"); 1347 1348 // Or together the unchanged values and the source value. 1349 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1350 } else { 1351 assert(Info.Offset == 0); 1352 } 1353 1354 // Write the new value back out. 1355 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1356 Dst.isVolatileQualified()); 1357 Store->setAlignment(Info.StorageAlignment); 1358 1359 // Return the new value of the bit-field, if requested. 1360 if (Result) { 1361 llvm::Value *ResultVal = MaskedVal; 1362 1363 // Sign extend the value if needed. 1364 if (Info.IsSigned) { 1365 assert(Info.Size <= Info.StorageSize); 1366 unsigned HighBits = Info.StorageSize - Info.Size; 1367 if (HighBits) { 1368 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1369 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1370 } 1371 } 1372 1373 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1374 "bf.result.cast"); 1375 *Result = ResultVal; 1376 } 1377 } 1378 1379 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1380 LValue Dst) { 1381 // This access turns into a read/modify/write of the vector. Load the input 1382 // value now. 1383 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1384 Dst.isVolatileQualified()); 1385 Load->setAlignment(Dst.getAlignment().getQuantity()); 1386 llvm::Value *Vec = Load; 1387 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1388 1389 llvm::Value *SrcVal = Src.getScalarVal(); 1390 1391 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1392 unsigned NumSrcElts = VTy->getNumElements(); 1393 unsigned NumDstElts = 1394 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1395 if (NumDstElts == NumSrcElts) { 1396 // Use shuffle vector is the src and destination are the same number of 1397 // elements and restore the vector mask since it is on the side it will be 1398 // stored. 1399 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1400 for (unsigned i = 0; i != NumSrcElts; ++i) 1401 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1402 1403 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1404 Vec = Builder.CreateShuffleVector(SrcVal, 1405 llvm::UndefValue::get(Vec->getType()), 1406 MaskV); 1407 } else if (NumDstElts > NumSrcElts) { 1408 // Extended the source vector to the same length and then shuffle it 1409 // into the destination. 1410 // FIXME: since we're shuffling with undef, can we just use the indices 1411 // into that? This could be simpler. 1412 SmallVector<llvm::Constant*, 4> ExtMask; 1413 for (unsigned i = 0; i != NumSrcElts; ++i) 1414 ExtMask.push_back(Builder.getInt32(i)); 1415 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1416 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1417 llvm::Value *ExtSrcVal = 1418 Builder.CreateShuffleVector(SrcVal, 1419 llvm::UndefValue::get(SrcVal->getType()), 1420 ExtMaskV); 1421 // build identity 1422 SmallVector<llvm::Constant*, 4> Mask; 1423 for (unsigned i = 0; i != NumDstElts; ++i) 1424 Mask.push_back(Builder.getInt32(i)); 1425 1426 // modify when what gets shuffled in 1427 for (unsigned i = 0; i != NumSrcElts; ++i) 1428 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1429 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1430 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1431 } else { 1432 // We should never shorten the vector 1433 llvm_unreachable("unexpected shorten vector length"); 1434 } 1435 } else { 1436 // If the Src is a scalar (not a vector) it must be updating one element. 1437 unsigned InIdx = getAccessedFieldNo(0, Elts); 1438 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1439 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1440 } 1441 1442 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1443 Dst.isVolatileQualified()); 1444 Store->setAlignment(Dst.getAlignment().getQuantity()); 1445 } 1446 1447 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1448 // generating write-barries API. It is currently a global, ivar, 1449 // or neither. 1450 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1451 LValue &LV, 1452 bool IsMemberAccess=false) { 1453 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1454 return; 1455 1456 if (isa<ObjCIvarRefExpr>(E)) { 1457 QualType ExpTy = E->getType(); 1458 if (IsMemberAccess && ExpTy->isPointerType()) { 1459 // If ivar is a structure pointer, assigning to field of 1460 // this struct follows gcc's behavior and makes it a non-ivar 1461 // writer-barrier conservatively. 1462 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1463 if (ExpTy->isRecordType()) { 1464 LV.setObjCIvar(false); 1465 return; 1466 } 1467 } 1468 LV.setObjCIvar(true); 1469 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1470 LV.setBaseIvarExp(Exp->getBase()); 1471 LV.setObjCArray(E->getType()->isArrayType()); 1472 return; 1473 } 1474 1475 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1476 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1477 if (VD->hasGlobalStorage()) { 1478 LV.setGlobalObjCRef(true); 1479 LV.setThreadLocalRef(VD->isThreadSpecified()); 1480 } 1481 } 1482 LV.setObjCArray(E->getType()->isArrayType()); 1483 return; 1484 } 1485 1486 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1487 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1488 return; 1489 } 1490 1491 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1492 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1493 if (LV.isObjCIvar()) { 1494 // If cast is to a structure pointer, follow gcc's behavior and make it 1495 // a non-ivar write-barrier. 1496 QualType ExpTy = E->getType(); 1497 if (ExpTy->isPointerType()) 1498 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1499 if (ExpTy->isRecordType()) 1500 LV.setObjCIvar(false); 1501 } 1502 return; 1503 } 1504 1505 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1506 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1507 return; 1508 } 1509 1510 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1511 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1512 return; 1513 } 1514 1515 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1516 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1517 return; 1518 } 1519 1520 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1521 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1522 return; 1523 } 1524 1525 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1526 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1527 if (LV.isObjCIvar() && !LV.isObjCArray()) 1528 // Using array syntax to assigning to what an ivar points to is not 1529 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1530 LV.setObjCIvar(false); 1531 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1532 // Using array syntax to assigning to what global points to is not 1533 // same as assigning to the global itself. {id *G;} G[i] = 0; 1534 LV.setGlobalObjCRef(false); 1535 return; 1536 } 1537 1538 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1539 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1540 // We don't know if member is an 'ivar', but this flag is looked at 1541 // only in the context of LV.isObjCIvar(). 1542 LV.setObjCArray(E->getType()->isArrayType()); 1543 return; 1544 } 1545 } 1546 1547 static llvm::Value * 1548 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1549 llvm::Value *V, llvm::Type *IRType, 1550 StringRef Name = StringRef()) { 1551 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1552 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1553 } 1554 1555 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1556 const Expr *E, const VarDecl *VD) { 1557 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1558 "Var decl must have external storage or be a file var decl!"); 1559 1560 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1561 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1562 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1563 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1564 QualType T = E->getType(); 1565 LValue LV; 1566 if (VD->getType()->isReferenceType()) { 1567 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1568 LI->setAlignment(Alignment.getQuantity()); 1569 V = LI; 1570 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1571 } else { 1572 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1573 } 1574 setObjCGCLValueClass(CGF.getContext(), E, LV); 1575 return LV; 1576 } 1577 1578 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1579 const Expr *E, const FunctionDecl *FD) { 1580 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1581 if (!FD->hasPrototype()) { 1582 if (const FunctionProtoType *Proto = 1583 FD->getType()->getAs<FunctionProtoType>()) { 1584 // Ugly case: for a K&R-style definition, the type of the definition 1585 // isn't the same as the type of a use. Correct for this with a 1586 // bitcast. 1587 QualType NoProtoType = 1588 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1589 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1590 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1591 } 1592 } 1593 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1594 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1595 } 1596 1597 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1598 const NamedDecl *ND = E->getDecl(); 1599 CharUnits Alignment = getContext().getDeclAlign(ND); 1600 QualType T = E->getType(); 1601 1602 // A DeclRefExpr for a reference initialized by a constant expression can 1603 // appear without being odr-used. Directly emit the constant initializer. 1604 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1605 const Expr *Init = VD->getAnyInitializer(VD); 1606 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1607 VD->isUsableInConstantExpressions(getContext()) && 1608 VD->checkInitIsICE()) { 1609 llvm::Constant *Val = 1610 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1611 assert(Val && "failed to emit reference constant expression"); 1612 // FIXME: Eventually we will want to emit vector element references. 1613 return MakeAddrLValue(Val, T, Alignment); 1614 } 1615 } 1616 1617 // FIXME: We should be able to assert this for FunctionDecls as well! 1618 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1619 // those with a valid source location. 1620 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1621 !E->getLocation().isValid()) && 1622 "Should not use decl without marking it used!"); 1623 1624 if (ND->hasAttr<WeakRefAttr>()) { 1625 const ValueDecl *VD = cast<ValueDecl>(ND); 1626 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1627 return MakeAddrLValue(Aliasee, T, Alignment); 1628 } 1629 1630 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1631 // Check if this is a global variable. 1632 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1633 return EmitGlobalVarDeclLValue(*this, E, VD); 1634 1635 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1636 1637 bool NonGCable = VD->hasLocalStorage() && 1638 !VD->getType()->isReferenceType() && 1639 !isBlockVariable; 1640 1641 llvm::Value *V = LocalDeclMap[VD]; 1642 if (!V && VD->isStaticLocal()) 1643 V = CGM.getStaticLocalDeclAddress(VD); 1644 1645 // Use special handling for lambdas. 1646 if (!V) { 1647 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1648 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1649 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1650 LambdaTagType); 1651 return EmitLValueForField(LambdaLV, FD); 1652 } 1653 1654 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1655 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1656 T, Alignment); 1657 } 1658 1659 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1660 1661 if (isBlockVariable) 1662 V = BuildBlockByrefAddress(V, VD); 1663 1664 LValue LV; 1665 if (VD->getType()->isReferenceType()) { 1666 llvm::LoadInst *LI = Builder.CreateLoad(V); 1667 LI->setAlignment(Alignment.getQuantity()); 1668 V = LI; 1669 LV = MakeNaturalAlignAddrLValue(V, T); 1670 } else { 1671 LV = MakeAddrLValue(V, T, Alignment); 1672 } 1673 1674 if (NonGCable) { 1675 LV.getQuals().removeObjCGCAttr(); 1676 LV.setNonGC(true); 1677 } 1678 setObjCGCLValueClass(getContext(), E, LV); 1679 return LV; 1680 } 1681 1682 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1683 return EmitFunctionDeclLValue(*this, E, fn); 1684 1685 llvm_unreachable("Unhandled DeclRefExpr"); 1686 } 1687 1688 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1689 // __extension__ doesn't affect lvalue-ness. 1690 if (E->getOpcode() == UO_Extension) 1691 return EmitLValue(E->getSubExpr()); 1692 1693 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1694 switch (E->getOpcode()) { 1695 default: llvm_unreachable("Unknown unary operator lvalue!"); 1696 case UO_Deref: { 1697 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1698 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1699 1700 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1701 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1702 1703 // We should not generate __weak write barrier on indirect reference 1704 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1705 // But, we continue to generate __strong write barrier on indirect write 1706 // into a pointer to object. 1707 if (getLangOpts().ObjC1 && 1708 getLangOpts().getGC() != LangOptions::NonGC && 1709 LV.isObjCWeak()) 1710 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1711 return LV; 1712 } 1713 case UO_Real: 1714 case UO_Imag: { 1715 LValue LV = EmitLValue(E->getSubExpr()); 1716 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1717 llvm::Value *Addr = LV.getAddress(); 1718 1719 // __real is valid on scalars. This is a faster way of testing that. 1720 // __imag can only produce an rvalue on scalars. 1721 if (E->getOpcode() == UO_Real && 1722 !cast<llvm::PointerType>(Addr->getType()) 1723 ->getElementType()->isStructTy()) { 1724 assert(E->getSubExpr()->getType()->isArithmeticType()); 1725 return LV; 1726 } 1727 1728 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1729 1730 unsigned Idx = E->getOpcode() == UO_Imag; 1731 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1732 Idx, "idx"), 1733 ExprTy); 1734 } 1735 case UO_PreInc: 1736 case UO_PreDec: { 1737 LValue LV = EmitLValue(E->getSubExpr()); 1738 bool isInc = E->getOpcode() == UO_PreInc; 1739 1740 if (E->getType()->isAnyComplexType()) 1741 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1742 else 1743 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1744 return LV; 1745 } 1746 } 1747 } 1748 1749 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1750 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1751 E->getType()); 1752 } 1753 1754 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1755 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1756 E->getType()); 1757 } 1758 1759 static llvm::Constant* 1760 GetAddrOfConstantWideString(StringRef Str, 1761 const char *GlobalName, 1762 ASTContext &Context, 1763 QualType Ty, SourceLocation Loc, 1764 CodeGenModule &CGM) { 1765 1766 StringLiteral *SL = StringLiteral::Create(Context, 1767 Str, 1768 StringLiteral::Wide, 1769 /*Pascal = */false, 1770 Ty, Loc); 1771 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1772 llvm::GlobalVariable *GV = 1773 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1774 !CGM.getLangOpts().WritableStrings, 1775 llvm::GlobalValue::PrivateLinkage, 1776 C, GlobalName); 1777 const unsigned WideAlignment = 1778 Context.getTypeAlignInChars(Ty).getQuantity(); 1779 GV->setAlignment(WideAlignment); 1780 return GV; 1781 } 1782 1783 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1784 SmallString<32>& Target) { 1785 Target.resize(CharByteWidth * (Source.size() + 1)); 1786 char *ResultPtr = &Target[0]; 1787 const UTF8 *ErrorPtr; 1788 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1789 (void)success; 1790 assert(success); 1791 Target.resize(ResultPtr - &Target[0]); 1792 } 1793 1794 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1795 switch (E->getIdentType()) { 1796 default: 1797 return EmitUnsupportedLValue(E, "predefined expression"); 1798 1799 case PredefinedExpr::Func: 1800 case PredefinedExpr::Function: 1801 case PredefinedExpr::LFunction: 1802 case PredefinedExpr::PrettyFunction: { 1803 unsigned IdentType = E->getIdentType(); 1804 std::string GlobalVarName; 1805 1806 switch (IdentType) { 1807 default: llvm_unreachable("Invalid type"); 1808 case PredefinedExpr::Func: 1809 GlobalVarName = "__func__."; 1810 break; 1811 case PredefinedExpr::Function: 1812 GlobalVarName = "__FUNCTION__."; 1813 break; 1814 case PredefinedExpr::LFunction: 1815 GlobalVarName = "L__FUNCTION__."; 1816 break; 1817 case PredefinedExpr::PrettyFunction: 1818 GlobalVarName = "__PRETTY_FUNCTION__."; 1819 break; 1820 } 1821 1822 StringRef FnName = CurFn->getName(); 1823 if (FnName.startswith("\01")) 1824 FnName = FnName.substr(1); 1825 GlobalVarName += FnName; 1826 1827 const Decl *CurDecl = CurCodeDecl; 1828 if (CurDecl == 0) 1829 CurDecl = getContext().getTranslationUnitDecl(); 1830 1831 std::string FunctionName = 1832 (isa<BlockDecl>(CurDecl) 1833 ? FnName.str() 1834 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1835 CurDecl)); 1836 1837 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1838 llvm::Constant *C; 1839 if (ElemType->isWideCharType()) { 1840 SmallString<32> RawChars; 1841 ConvertUTF8ToWideString( 1842 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1843 FunctionName, RawChars); 1844 C = GetAddrOfConstantWideString(RawChars, 1845 GlobalVarName.c_str(), 1846 getContext(), 1847 E->getType(), 1848 E->getLocation(), 1849 CGM); 1850 } else { 1851 C = CGM.GetAddrOfConstantCString(FunctionName, 1852 GlobalVarName.c_str(), 1853 1); 1854 } 1855 return MakeAddrLValue(C, E->getType()); 1856 } 1857 } 1858 } 1859 1860 /// Emit a type description suitable for use by a runtime sanitizer library. The 1861 /// format of a type descriptor is 1862 /// 1863 /// \code 1864 /// { i16 TypeKind, i16 TypeInfo } 1865 /// \endcode 1866 /// 1867 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 1868 /// integer, 1 for a floating point value, and -1 for anything else. 1869 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 1870 // FIXME: Only emit each type's descriptor once. 1871 uint16_t TypeKind = -1; 1872 uint16_t TypeInfo = 0; 1873 1874 if (T->isIntegerType()) { 1875 TypeKind = 0; 1876 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 1877 (T->isSignedIntegerType() ? 1 : 0); 1878 } else if (T->isFloatingType()) { 1879 TypeKind = 1; 1880 TypeInfo = getContext().getTypeSize(T); 1881 } 1882 1883 // Format the type name as if for a diagnostic, including quotes and 1884 // optionally an 'aka'. 1885 llvm::SmallString<32> Buffer; 1886 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 1887 (intptr_t)T.getAsOpaquePtr(), 1888 0, 0, 0, 0, 0, 0, Buffer, 1889 ArrayRef<intptr_t>()); 1890 1891 llvm::Constant *Components[] = { 1892 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 1893 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 1894 }; 1895 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 1896 1897 llvm::GlobalVariable *GV = 1898 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 1899 /*isConstant=*/true, 1900 llvm::GlobalVariable::PrivateLinkage, 1901 Descriptor); 1902 GV->setUnnamedAddr(true); 1903 return GV; 1904 } 1905 1906 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 1907 llvm::Type *TargetTy = IntPtrTy; 1908 1909 // Integers which fit in intptr_t are zero-extended and passed directly. 1910 if (V->getType()->isIntegerTy() && 1911 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 1912 return Builder.CreateZExt(V, TargetTy); 1913 1914 // Pointers are passed directly, everything else is passed by address. 1915 if (!V->getType()->isPointerTy()) { 1916 llvm::Value *Ptr = Builder.CreateAlloca(V->getType()); 1917 Builder.CreateStore(V, Ptr); 1918 V = Ptr; 1919 } 1920 return Builder.CreatePtrToInt(V, TargetTy); 1921 } 1922 1923 /// \brief Emit a representation of a SourceLocation for passing to a handler 1924 /// in a sanitizer runtime library. The format for this data is: 1925 /// \code 1926 /// struct SourceLocation { 1927 /// const char *Filename; 1928 /// int32_t Line, Column; 1929 /// }; 1930 /// \endcode 1931 /// For an invalid SourceLocation, the Filename pointer is null. 1932 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 1933 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 1934 1935 llvm::Constant *Data[] = { 1936 // FIXME: Only emit each file name once. 1937 PLoc.isValid() ? cast<llvm::Constant>( 1938 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 1939 : llvm::Constant::getNullValue(Int8PtrTy), 1940 Builder.getInt32(PLoc.getLine()), 1941 Builder.getInt32(PLoc.getColumn()) 1942 }; 1943 1944 return llvm::ConstantStruct::getAnon(Data); 1945 } 1946 1947 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 1948 llvm::ArrayRef<llvm::Constant *> StaticArgs, 1949 llvm::ArrayRef<llvm::Value *> DynamicArgs, 1950 CheckRecoverableKind RecoverKind) { 1951 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1952 1953 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 1954 Builder.CreateCondBr(Checked, Cont, Handler); 1955 EmitBlock(Handler); 1956 1957 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 1958 llvm::GlobalValue *InfoPtr = 1959 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true, 1960 llvm::GlobalVariable::PrivateLinkage, Info); 1961 InfoPtr->setUnnamedAddr(true); 1962 1963 llvm::SmallVector<llvm::Value *, 4> Args; 1964 llvm::SmallVector<llvm::Type *, 4> ArgTypes; 1965 Args.reserve(DynamicArgs.size() + 1); 1966 ArgTypes.reserve(DynamicArgs.size() + 1); 1967 1968 // Handler functions take an i8* pointing to the (handler-specific) static 1969 // information block, followed by a sequence of intptr_t arguments 1970 // representing operand values. 1971 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 1972 ArgTypes.push_back(Int8PtrTy); 1973 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 1974 Args.push_back(EmitCheckValue(DynamicArgs[i])); 1975 ArgTypes.push_back(IntPtrTy); 1976 } 1977 1978 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 1979 ((RecoverKind == CRK_Recoverable) && 1980 CGM.getCodeGenOpts().SanitizeRecover); 1981 1982 llvm::FunctionType *FnType = 1983 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 1984 llvm::AttrBuilder B; 1985 if (!Recover) { 1986 B.addAttribute(llvm::Attributes::NoReturn) 1987 .addAttribute(llvm::Attributes::NoUnwind); 1988 } 1989 B.addAttribute(llvm::Attributes::UWTable); 1990 1991 // Checks that have two variants use a suffix to differentiate them 1992 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 1993 !CGM.getCodeGenOpts().SanitizeRecover; 1994 std::string FunctionName = ("__ubsan_handle_" + CheckName + 1995 (NeedsAbortSuffix? "_abort" : "")).str(); 1996 llvm::Value *Fn = 1997 CGM.CreateRuntimeFunction(FnType, FunctionName, 1998 llvm::Attributes::get(getLLVMContext(), B)); 1999 llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args); 2000 if (Recover) { 2001 Builder.CreateBr(Cont); 2002 } else { 2003 HandlerCall->setDoesNotReturn(); 2004 HandlerCall->setDoesNotThrow(); 2005 Builder.CreateUnreachable(); 2006 } 2007 2008 EmitBlock(Cont); 2009 } 2010 2011 void CodeGenFunction::EmitTrapvCheck(llvm::Value *Checked) { 2012 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2013 2014 // If we're optimizing, collapse all calls to trap down to just one per 2015 // function to save on code size. 2016 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2017 TrapBB = createBasicBlock("trap"); 2018 Builder.CreateCondBr(Checked, Cont, TrapBB); 2019 EmitBlock(TrapBB); 2020 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2021 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2022 TrapCall->setDoesNotReturn(); 2023 TrapCall->setDoesNotThrow(); 2024 Builder.CreateUnreachable(); 2025 } else { 2026 Builder.CreateCondBr(Checked, Cont, TrapBB); 2027 } 2028 2029 EmitBlock(Cont); 2030 } 2031 2032 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2033 /// array to pointer, return the array subexpression. 2034 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2035 // If this isn't just an array->pointer decay, bail out. 2036 const CastExpr *CE = dyn_cast<CastExpr>(E); 2037 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2038 return 0; 2039 2040 // If this is a decay from variable width array, bail out. 2041 const Expr *SubExpr = CE->getSubExpr(); 2042 if (SubExpr->getType()->isVariableArrayType()) 2043 return 0; 2044 2045 return SubExpr; 2046 } 2047 2048 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 2049 // The index must always be an integer, which is not an aggregate. Emit it. 2050 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2051 QualType IdxTy = E->getIdx()->getType(); 2052 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2053 2054 // If the base is a vector type, then we are forming a vector element lvalue 2055 // with this subscript. 2056 if (E->getBase()->getType()->isVectorType()) { 2057 // Emit the vector as an lvalue to get its address. 2058 LValue LHS = EmitLValue(E->getBase()); 2059 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2060 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2061 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2062 E->getBase()->getType(), LHS.getAlignment()); 2063 } 2064 2065 // Extend or truncate the index type to 32 or 64-bits. 2066 if (Idx->getType() != IntPtrTy) 2067 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2068 2069 // We know that the pointer points to a type of the correct size, unless the 2070 // size is a VLA or Objective-C interface. 2071 llvm::Value *Address = 0; 2072 CharUnits ArrayAlignment; 2073 if (const VariableArrayType *vla = 2074 getContext().getAsVariableArrayType(E->getType())) { 2075 // The base must be a pointer, which is not an aggregate. Emit 2076 // it. It needs to be emitted first in case it's what captures 2077 // the VLA bounds. 2078 Address = EmitScalarExpr(E->getBase()); 2079 2080 // The element count here is the total number of non-VLA elements. 2081 llvm::Value *numElements = getVLASize(vla).first; 2082 2083 // Effectively, the multiply by the VLA size is part of the GEP. 2084 // GEP indexes are signed, and scaling an index isn't permitted to 2085 // signed-overflow, so we use the same semantics for our explicit 2086 // multiply. We suppress this if overflow is not undefined behavior. 2087 if (getLangOpts().isSignedOverflowDefined()) { 2088 Idx = Builder.CreateMul(Idx, numElements); 2089 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2090 } else { 2091 Idx = Builder.CreateNSWMul(Idx, numElements); 2092 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2093 } 2094 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2095 // Indexing over an interface, as in "NSString *P; P[4];" 2096 llvm::Value *InterfaceSize = 2097 llvm::ConstantInt::get(Idx->getType(), 2098 getContext().getTypeSizeInChars(OIT).getQuantity()); 2099 2100 Idx = Builder.CreateMul(Idx, InterfaceSize); 2101 2102 // The base must be a pointer, which is not an aggregate. Emit it. 2103 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2104 Address = EmitCastToVoidPtr(Base); 2105 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2106 Address = Builder.CreateBitCast(Address, Base->getType()); 2107 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2108 // If this is A[i] where A is an array, the frontend will have decayed the 2109 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2110 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2111 // "gep x, i" here. Emit one "gep A, 0, i". 2112 assert(Array->getType()->isArrayType() && 2113 "Array to pointer decay must have array source type!"); 2114 LValue ArrayLV = EmitLValue(Array); 2115 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2116 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2117 llvm::Value *Args[] = { Zero, Idx }; 2118 2119 // Propagate the alignment from the array itself to the result. 2120 ArrayAlignment = ArrayLV.getAlignment(); 2121 2122 if (getLangOpts().isSignedOverflowDefined()) 2123 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2124 else 2125 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2126 } else { 2127 // The base must be a pointer, which is not an aggregate. Emit it. 2128 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2129 if (getLangOpts().isSignedOverflowDefined()) 2130 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2131 else 2132 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2133 } 2134 2135 QualType T = E->getBase()->getType()->getPointeeType(); 2136 assert(!T.isNull() && 2137 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2138 2139 2140 // Limit the alignment to that of the result type. 2141 LValue LV; 2142 if (!ArrayAlignment.isZero()) { 2143 CharUnits Align = getContext().getTypeAlignInChars(T); 2144 ArrayAlignment = std::min(Align, ArrayAlignment); 2145 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2146 } else { 2147 LV = MakeNaturalAlignAddrLValue(Address, T); 2148 } 2149 2150 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2151 2152 if (getLangOpts().ObjC1 && 2153 getLangOpts().getGC() != LangOptions::NonGC) { 2154 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2155 setObjCGCLValueClass(getContext(), E, LV); 2156 } 2157 return LV; 2158 } 2159 2160 static 2161 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2162 SmallVector<unsigned, 4> &Elts) { 2163 SmallVector<llvm::Constant*, 4> CElts; 2164 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2165 CElts.push_back(Builder.getInt32(Elts[i])); 2166 2167 return llvm::ConstantVector::get(CElts); 2168 } 2169 2170 LValue CodeGenFunction:: 2171 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2172 // Emit the base vector as an l-value. 2173 LValue Base; 2174 2175 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2176 if (E->isArrow()) { 2177 // If it is a pointer to a vector, emit the address and form an lvalue with 2178 // it. 2179 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2180 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2181 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2182 Base.getQuals().removeObjCGCAttr(); 2183 } else if (E->getBase()->isGLValue()) { 2184 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2185 // emit the base as an lvalue. 2186 assert(E->getBase()->getType()->isVectorType()); 2187 Base = EmitLValue(E->getBase()); 2188 } else { 2189 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2190 assert(E->getBase()->getType()->isVectorType() && 2191 "Result must be a vector"); 2192 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2193 2194 // Store the vector to memory (because LValue wants an address). 2195 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2196 Builder.CreateStore(Vec, VecMem); 2197 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2198 } 2199 2200 QualType type = 2201 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2202 2203 // Encode the element access list into a vector of unsigned indices. 2204 SmallVector<unsigned, 4> Indices; 2205 E->getEncodedElementAccess(Indices); 2206 2207 if (Base.isSimple()) { 2208 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2209 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2210 Base.getAlignment()); 2211 } 2212 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2213 2214 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2215 SmallVector<llvm::Constant *, 4> CElts; 2216 2217 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2218 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2219 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2220 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2221 Base.getAlignment()); 2222 } 2223 2224 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2225 Expr *BaseExpr = E->getBase(); 2226 2227 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2228 LValue BaseLV; 2229 if (E->isArrow()) { 2230 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2231 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2232 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2233 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2234 } else 2235 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2236 2237 NamedDecl *ND = E->getMemberDecl(); 2238 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2239 LValue LV = EmitLValueForField(BaseLV, Field); 2240 setObjCGCLValueClass(getContext(), E, LV); 2241 return LV; 2242 } 2243 2244 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2245 return EmitGlobalVarDeclLValue(*this, E, VD); 2246 2247 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2248 return EmitFunctionDeclLValue(*this, E, FD); 2249 2250 llvm_unreachable("Unhandled member declaration!"); 2251 } 2252 2253 LValue CodeGenFunction::EmitLValueForField(LValue base, 2254 const FieldDecl *field) { 2255 if (field->isBitField()) { 2256 const CGRecordLayout &RL = 2257 CGM.getTypes().getCGRecordLayout(field->getParent()); 2258 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2259 llvm::Value *Addr = base.getAddress(); 2260 unsigned Idx = RL.getLLVMFieldNo(field); 2261 if (Idx != 0) 2262 // For structs, we GEP to the field that the record layout suggests. 2263 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2264 // Get the access type. 2265 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2266 getLLVMContext(), Info.StorageSize, 2267 CGM.getContext().getTargetAddressSpace(base.getType())); 2268 if (Addr->getType() != PtrTy) 2269 Addr = Builder.CreateBitCast(Addr, PtrTy); 2270 2271 QualType fieldType = 2272 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2273 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2274 } 2275 2276 const RecordDecl *rec = field->getParent(); 2277 QualType type = field->getType(); 2278 CharUnits alignment = getContext().getDeclAlign(field); 2279 2280 // FIXME: It should be impossible to have an LValue without alignment for a 2281 // complete type. 2282 if (!base.getAlignment().isZero()) 2283 alignment = std::min(alignment, base.getAlignment()); 2284 2285 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2286 2287 llvm::Value *addr = base.getAddress(); 2288 unsigned cvr = base.getVRQualifiers(); 2289 if (rec->isUnion()) { 2290 // For unions, there is no pointer adjustment. 2291 assert(!type->isReferenceType() && "union has reference member"); 2292 } else { 2293 // For structs, we GEP to the field that the record layout suggests. 2294 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2295 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2296 2297 // If this is a reference field, load the reference right now. 2298 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2299 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2300 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2301 load->setAlignment(alignment.getQuantity()); 2302 2303 if (CGM.shouldUseTBAA()) { 2304 llvm::MDNode *tbaa; 2305 if (mayAlias) 2306 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2307 else 2308 tbaa = CGM.getTBAAInfo(type); 2309 CGM.DecorateInstruction(load, tbaa); 2310 } 2311 2312 addr = load; 2313 mayAlias = false; 2314 type = refType->getPointeeType(); 2315 if (type->isIncompleteType()) 2316 alignment = CharUnits(); 2317 else 2318 alignment = getContext().getTypeAlignInChars(type); 2319 cvr = 0; // qualifiers don't recursively apply to referencee 2320 } 2321 } 2322 2323 // Make sure that the address is pointing to the right type. This is critical 2324 // for both unions and structs. A union needs a bitcast, a struct element 2325 // will need a bitcast if the LLVM type laid out doesn't match the desired 2326 // type. 2327 addr = EmitBitCastOfLValueToProperType(*this, addr, 2328 CGM.getTypes().ConvertTypeForMem(type), 2329 field->getName()); 2330 2331 if (field->hasAttr<AnnotateAttr>()) 2332 addr = EmitFieldAnnotations(field, addr); 2333 2334 LValue LV = MakeAddrLValue(addr, type, alignment); 2335 LV.getQuals().addCVRQualifiers(cvr); 2336 2337 // __weak attribute on a field is ignored. 2338 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2339 LV.getQuals().removeObjCGCAttr(); 2340 2341 // Fields of may_alias structs act like 'char' for TBAA purposes. 2342 // FIXME: this should get propagated down through anonymous structs 2343 // and unions. 2344 if (mayAlias && LV.getTBAAInfo()) 2345 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2346 2347 return LV; 2348 } 2349 2350 LValue 2351 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2352 const FieldDecl *Field) { 2353 QualType FieldType = Field->getType(); 2354 2355 if (!FieldType->isReferenceType()) 2356 return EmitLValueForField(Base, Field); 2357 2358 const CGRecordLayout &RL = 2359 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2360 unsigned idx = RL.getLLVMFieldNo(Field); 2361 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2362 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2363 2364 // Make sure that the address is pointing to the right type. This is critical 2365 // for both unions and structs. A union needs a bitcast, a struct element 2366 // will need a bitcast if the LLVM type laid out doesn't match the desired 2367 // type. 2368 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2369 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2370 2371 CharUnits Alignment = getContext().getDeclAlign(Field); 2372 2373 // FIXME: It should be impossible to have an LValue without alignment for a 2374 // complete type. 2375 if (!Base.getAlignment().isZero()) 2376 Alignment = std::min(Alignment, Base.getAlignment()); 2377 2378 return MakeAddrLValue(V, FieldType, Alignment); 2379 } 2380 2381 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2382 if (E->isFileScope()) { 2383 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2384 return MakeAddrLValue(GlobalPtr, E->getType()); 2385 } 2386 if (E->getType()->isVariablyModifiedType()) 2387 // make sure to emit the VLA size. 2388 EmitVariablyModifiedType(E->getType()); 2389 2390 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2391 const Expr *InitExpr = E->getInitializer(); 2392 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2393 2394 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2395 /*Init*/ true); 2396 2397 return Result; 2398 } 2399 2400 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2401 if (!E->isGLValue()) 2402 // Initializing an aggregate temporary in C++11: T{...}. 2403 return EmitAggExprToLValue(E); 2404 2405 // An lvalue initializer list must be initializing a reference. 2406 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2407 return EmitLValue(E->getInit(0)); 2408 } 2409 2410 LValue CodeGenFunction:: 2411 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2412 if (!expr->isGLValue()) { 2413 // ?: here should be an aggregate. 2414 assert((hasAggregateLLVMType(expr->getType()) && 2415 !expr->getType()->isAnyComplexType()) && 2416 "Unexpected conditional operator!"); 2417 return EmitAggExprToLValue(expr); 2418 } 2419 2420 OpaqueValueMapping binding(*this, expr); 2421 2422 const Expr *condExpr = expr->getCond(); 2423 bool CondExprBool; 2424 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2425 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2426 if (!CondExprBool) std::swap(live, dead); 2427 2428 if (!ContainsLabel(dead)) 2429 return EmitLValue(live); 2430 } 2431 2432 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2433 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2434 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2435 2436 ConditionalEvaluation eval(*this); 2437 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2438 2439 // Any temporaries created here are conditional. 2440 EmitBlock(lhsBlock); 2441 eval.begin(*this); 2442 LValue lhs = EmitLValue(expr->getTrueExpr()); 2443 eval.end(*this); 2444 2445 if (!lhs.isSimple()) 2446 return EmitUnsupportedLValue(expr, "conditional operator"); 2447 2448 lhsBlock = Builder.GetInsertBlock(); 2449 Builder.CreateBr(contBlock); 2450 2451 // Any temporaries created here are conditional. 2452 EmitBlock(rhsBlock); 2453 eval.begin(*this); 2454 LValue rhs = EmitLValue(expr->getFalseExpr()); 2455 eval.end(*this); 2456 if (!rhs.isSimple()) 2457 return EmitUnsupportedLValue(expr, "conditional operator"); 2458 rhsBlock = Builder.GetInsertBlock(); 2459 2460 EmitBlock(contBlock); 2461 2462 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2463 "cond-lvalue"); 2464 phi->addIncoming(lhs.getAddress(), lhsBlock); 2465 phi->addIncoming(rhs.getAddress(), rhsBlock); 2466 return MakeAddrLValue(phi, expr->getType()); 2467 } 2468 2469 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2470 /// type. If the cast is to a reference, we can have the usual lvalue result, 2471 /// otherwise if a cast is needed by the code generator in an lvalue context, 2472 /// then it must mean that we need the address of an aggregate in order to 2473 /// access one of its members. This can happen for all the reasons that casts 2474 /// are permitted with aggregate result, including noop aggregate casts, and 2475 /// cast from scalar to union. 2476 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2477 switch (E->getCastKind()) { 2478 case CK_ToVoid: 2479 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2480 2481 case CK_Dependent: 2482 llvm_unreachable("dependent cast kind in IR gen!"); 2483 2484 case CK_BuiltinFnToFnPtr: 2485 llvm_unreachable("builtin functions are handled elsewhere"); 2486 2487 // These two casts are currently treated as no-ops, although they could 2488 // potentially be real operations depending on the target's ABI. 2489 case CK_NonAtomicToAtomic: 2490 case CK_AtomicToNonAtomic: 2491 2492 case CK_NoOp: 2493 case CK_LValueToRValue: 2494 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2495 || E->getType()->isRecordType()) 2496 return EmitLValue(E->getSubExpr()); 2497 // Fall through to synthesize a temporary. 2498 2499 case CK_BitCast: 2500 case CK_ArrayToPointerDecay: 2501 case CK_FunctionToPointerDecay: 2502 case CK_NullToMemberPointer: 2503 case CK_NullToPointer: 2504 case CK_IntegralToPointer: 2505 case CK_PointerToIntegral: 2506 case CK_PointerToBoolean: 2507 case CK_VectorSplat: 2508 case CK_IntegralCast: 2509 case CK_IntegralToBoolean: 2510 case CK_IntegralToFloating: 2511 case CK_FloatingToIntegral: 2512 case CK_FloatingToBoolean: 2513 case CK_FloatingCast: 2514 case CK_FloatingRealToComplex: 2515 case CK_FloatingComplexToReal: 2516 case CK_FloatingComplexToBoolean: 2517 case CK_FloatingComplexCast: 2518 case CK_FloatingComplexToIntegralComplex: 2519 case CK_IntegralRealToComplex: 2520 case CK_IntegralComplexToReal: 2521 case CK_IntegralComplexToBoolean: 2522 case CK_IntegralComplexCast: 2523 case CK_IntegralComplexToFloatingComplex: 2524 case CK_DerivedToBaseMemberPointer: 2525 case CK_BaseToDerivedMemberPointer: 2526 case CK_MemberPointerToBoolean: 2527 case CK_ReinterpretMemberPointer: 2528 case CK_AnyPointerToBlockPointerCast: 2529 case CK_ARCProduceObject: 2530 case CK_ARCConsumeObject: 2531 case CK_ARCReclaimReturnedObject: 2532 case CK_ARCExtendBlockObject: 2533 case CK_CopyAndAutoreleaseBlockObject: { 2534 // These casts only produce lvalues when we're binding a reference to a 2535 // temporary realized from a (converted) pure rvalue. Emit the expression 2536 // as a value, copy it into a temporary, and return an lvalue referring to 2537 // that temporary. 2538 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2539 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2540 return MakeAddrLValue(V, E->getType()); 2541 } 2542 2543 case CK_Dynamic: { 2544 LValue LV = EmitLValue(E->getSubExpr()); 2545 llvm::Value *V = LV.getAddress(); 2546 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2547 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2548 } 2549 2550 case CK_ConstructorConversion: 2551 case CK_UserDefinedConversion: 2552 case CK_CPointerToObjCPointerCast: 2553 case CK_BlockPointerToObjCPointerCast: 2554 return EmitLValue(E->getSubExpr()); 2555 2556 case CK_UncheckedDerivedToBase: 2557 case CK_DerivedToBase: { 2558 const RecordType *DerivedClassTy = 2559 E->getSubExpr()->getType()->getAs<RecordType>(); 2560 CXXRecordDecl *DerivedClassDecl = 2561 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2562 2563 LValue LV = EmitLValue(E->getSubExpr()); 2564 llvm::Value *This = LV.getAddress(); 2565 2566 // Perform the derived-to-base conversion 2567 llvm::Value *Base = 2568 GetAddressOfBaseClass(This, DerivedClassDecl, 2569 E->path_begin(), E->path_end(), 2570 /*NullCheckValue=*/false); 2571 2572 return MakeAddrLValue(Base, E->getType()); 2573 } 2574 case CK_ToUnion: 2575 return EmitAggExprToLValue(E); 2576 case CK_BaseToDerived: { 2577 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2578 CXXRecordDecl *DerivedClassDecl = 2579 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2580 2581 LValue LV = EmitLValue(E->getSubExpr()); 2582 2583 // Perform the base-to-derived conversion 2584 llvm::Value *Derived = 2585 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2586 E->path_begin(), E->path_end(), 2587 /*NullCheckValue=*/false); 2588 2589 return MakeAddrLValue(Derived, E->getType()); 2590 } 2591 case CK_LValueBitCast: { 2592 // This must be a reinterpret_cast (or c-style equivalent). 2593 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2594 2595 LValue LV = EmitLValue(E->getSubExpr()); 2596 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2597 ConvertType(CE->getTypeAsWritten())); 2598 return MakeAddrLValue(V, E->getType()); 2599 } 2600 case CK_ObjCObjectLValueCast: { 2601 LValue LV = EmitLValue(E->getSubExpr()); 2602 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2603 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2604 ConvertType(ToType)); 2605 return MakeAddrLValue(V, E->getType()); 2606 } 2607 } 2608 2609 llvm_unreachable("Unhandled lvalue cast kind?"); 2610 } 2611 2612 LValue CodeGenFunction::EmitNullInitializationLValue( 2613 const CXXScalarValueInitExpr *E) { 2614 QualType Ty = E->getType(); 2615 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2616 EmitNullInitialization(LV.getAddress(), Ty); 2617 return LV; 2618 } 2619 2620 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2621 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2622 return getOpaqueLValueMapping(e); 2623 } 2624 2625 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2626 const MaterializeTemporaryExpr *E) { 2627 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2628 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2629 } 2630 2631 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2632 const FieldDecl *FD) { 2633 QualType FT = FD->getType(); 2634 LValue FieldLV = EmitLValueForField(LV, FD); 2635 if (FT->isAnyComplexType()) 2636 return RValue::getComplex( 2637 LoadComplexFromAddr(FieldLV.getAddress(), 2638 FieldLV.isVolatileQualified())); 2639 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2640 return FieldLV.asAggregateRValue(); 2641 2642 return EmitLoadOfLValue(FieldLV); 2643 } 2644 2645 //===--------------------------------------------------------------------===// 2646 // Expression Emission 2647 //===--------------------------------------------------------------------===// 2648 2649 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2650 ReturnValueSlot ReturnValue) { 2651 if (CGDebugInfo *DI = getDebugInfo()) 2652 DI->EmitLocation(Builder, E->getLocStart()); 2653 2654 // Builtins never have block type. 2655 if (E->getCallee()->getType()->isBlockPointerType()) 2656 return EmitBlockCallExpr(E, ReturnValue); 2657 2658 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2659 return EmitCXXMemberCallExpr(CE, ReturnValue); 2660 2661 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2662 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2663 2664 const Decl *TargetDecl = E->getCalleeDecl(); 2665 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2666 if (unsigned builtinID = FD->getBuiltinID()) 2667 return EmitBuiltinExpr(FD, builtinID, E); 2668 } 2669 2670 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2671 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2672 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2673 2674 if (const CXXPseudoDestructorExpr *PseudoDtor 2675 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2676 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2677 if (getLangOpts().ObjCAutoRefCount && 2678 DestroyedType->isObjCLifetimeType() && 2679 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2680 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2681 // Automatic Reference Counting: 2682 // If the pseudo-expression names a retainable object with weak or 2683 // strong lifetime, the object shall be released. 2684 Expr *BaseExpr = PseudoDtor->getBase(); 2685 llvm::Value *BaseValue = NULL; 2686 Qualifiers BaseQuals; 2687 2688 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2689 if (PseudoDtor->isArrow()) { 2690 BaseValue = EmitScalarExpr(BaseExpr); 2691 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2692 BaseQuals = PTy->getPointeeType().getQualifiers(); 2693 } else { 2694 LValue BaseLV = EmitLValue(BaseExpr); 2695 BaseValue = BaseLV.getAddress(); 2696 QualType BaseTy = BaseExpr->getType(); 2697 BaseQuals = BaseTy.getQualifiers(); 2698 } 2699 2700 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2701 case Qualifiers::OCL_None: 2702 case Qualifiers::OCL_ExplicitNone: 2703 case Qualifiers::OCL_Autoreleasing: 2704 break; 2705 2706 case Qualifiers::OCL_Strong: 2707 EmitARCRelease(Builder.CreateLoad(BaseValue, 2708 PseudoDtor->getDestroyedType().isVolatileQualified()), 2709 /*precise*/ true); 2710 break; 2711 2712 case Qualifiers::OCL_Weak: 2713 EmitARCDestroyWeak(BaseValue); 2714 break; 2715 } 2716 } else { 2717 // C++ [expr.pseudo]p1: 2718 // The result shall only be used as the operand for the function call 2719 // operator (), and the result of such a call has type void. The only 2720 // effect is the evaluation of the postfix-expression before the dot or 2721 // arrow. 2722 EmitScalarExpr(E->getCallee()); 2723 } 2724 2725 return RValue::get(0); 2726 } 2727 2728 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2729 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2730 E->arg_begin(), E->arg_end(), TargetDecl); 2731 } 2732 2733 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2734 // Comma expressions just emit their LHS then their RHS as an l-value. 2735 if (E->getOpcode() == BO_Comma) { 2736 EmitIgnoredExpr(E->getLHS()); 2737 EnsureInsertPoint(); 2738 return EmitLValue(E->getRHS()); 2739 } 2740 2741 if (E->getOpcode() == BO_PtrMemD || 2742 E->getOpcode() == BO_PtrMemI) 2743 return EmitPointerToDataMemberBinaryExpr(E); 2744 2745 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2746 2747 // Note that in all of these cases, __block variables need the RHS 2748 // evaluated first just in case the variable gets moved by the RHS. 2749 2750 if (!hasAggregateLLVMType(E->getType())) { 2751 switch (E->getLHS()->getType().getObjCLifetime()) { 2752 case Qualifiers::OCL_Strong: 2753 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2754 2755 case Qualifiers::OCL_Autoreleasing: 2756 return EmitARCStoreAutoreleasing(E).first; 2757 2758 // No reason to do any of these differently. 2759 case Qualifiers::OCL_None: 2760 case Qualifiers::OCL_ExplicitNone: 2761 case Qualifiers::OCL_Weak: 2762 break; 2763 } 2764 2765 RValue RV = EmitAnyExpr(E->getRHS()); 2766 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2767 EmitStoreThroughLValue(RV, LV); 2768 return LV; 2769 } 2770 2771 if (E->getType()->isAnyComplexType()) 2772 return EmitComplexAssignmentLValue(E); 2773 2774 return EmitAggExprToLValue(E); 2775 } 2776 2777 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2778 RValue RV = EmitCallExpr(E); 2779 2780 if (!RV.isScalar()) 2781 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2782 2783 assert(E->getCallReturnType()->isReferenceType() && 2784 "Can't have a scalar return unless the return type is a " 2785 "reference type!"); 2786 2787 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2788 } 2789 2790 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2791 // FIXME: This shouldn't require another copy. 2792 return EmitAggExprToLValue(E); 2793 } 2794 2795 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2796 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2797 && "binding l-value to type which needs a temporary"); 2798 AggValueSlot Slot = CreateAggTemp(E->getType()); 2799 EmitCXXConstructExpr(E, Slot); 2800 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2801 } 2802 2803 LValue 2804 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2805 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2806 } 2807 2808 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 2809 return CGM.GetAddrOfUuidDescriptor(E); 2810 } 2811 2812 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 2813 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 2814 } 2815 2816 LValue 2817 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2818 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2819 Slot.setExternallyDestructed(); 2820 EmitAggExpr(E->getSubExpr(), Slot); 2821 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2822 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2823 } 2824 2825 LValue 2826 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2827 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2828 EmitLambdaExpr(E, Slot); 2829 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2830 } 2831 2832 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2833 RValue RV = EmitObjCMessageExpr(E); 2834 2835 if (!RV.isScalar()) 2836 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2837 2838 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2839 "Can't have a scalar return unless the return type is a " 2840 "reference type!"); 2841 2842 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2843 } 2844 2845 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2846 llvm::Value *V = 2847 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2848 return MakeAddrLValue(V, E->getType()); 2849 } 2850 2851 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2852 const ObjCIvarDecl *Ivar) { 2853 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2854 } 2855 2856 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2857 llvm::Value *BaseValue, 2858 const ObjCIvarDecl *Ivar, 2859 unsigned CVRQualifiers) { 2860 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2861 Ivar, CVRQualifiers); 2862 } 2863 2864 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2865 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2866 llvm::Value *BaseValue = 0; 2867 const Expr *BaseExpr = E->getBase(); 2868 Qualifiers BaseQuals; 2869 QualType ObjectTy; 2870 if (E->isArrow()) { 2871 BaseValue = EmitScalarExpr(BaseExpr); 2872 ObjectTy = BaseExpr->getType()->getPointeeType(); 2873 BaseQuals = ObjectTy.getQualifiers(); 2874 } else { 2875 LValue BaseLV = EmitLValue(BaseExpr); 2876 // FIXME: this isn't right for bitfields. 2877 BaseValue = BaseLV.getAddress(); 2878 ObjectTy = BaseExpr->getType(); 2879 BaseQuals = ObjectTy.getQualifiers(); 2880 } 2881 2882 LValue LV = 2883 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2884 BaseQuals.getCVRQualifiers()); 2885 setObjCGCLValueClass(getContext(), E, LV); 2886 return LV; 2887 } 2888 2889 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2890 // Can only get l-value for message expression returning aggregate type 2891 RValue RV = EmitAnyExprToTemp(E); 2892 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2893 } 2894 2895 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2896 ReturnValueSlot ReturnValue, 2897 CallExpr::const_arg_iterator ArgBeg, 2898 CallExpr::const_arg_iterator ArgEnd, 2899 const Decl *TargetDecl) { 2900 // Get the actual function type. The callee type will always be a pointer to 2901 // function type or a block pointer type. 2902 assert(CalleeType->isFunctionPointerType() && 2903 "Call must have function pointer type!"); 2904 2905 CalleeType = getContext().getCanonicalType(CalleeType); 2906 2907 const FunctionType *FnType 2908 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2909 2910 CallArgList Args; 2911 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2912 2913 const CGFunctionInfo &FnInfo = 2914 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 2915 2916 // C99 6.5.2.2p6: 2917 // If the expression that denotes the called function has a type 2918 // that does not include a prototype, [the default argument 2919 // promotions are performed]. If the number of arguments does not 2920 // equal the number of parameters, the behavior is undefined. If 2921 // the function is defined with a type that includes a prototype, 2922 // and either the prototype ends with an ellipsis (, ...) or the 2923 // types of the arguments after promotion are not compatible with 2924 // the types of the parameters, the behavior is undefined. If the 2925 // function is defined with a type that does not include a 2926 // prototype, and the types of the arguments after promotion are 2927 // not compatible with those of the parameters after promotion, 2928 // the behavior is undefined [except in some trivial cases]. 2929 // That is, in the general case, we should assume that a call 2930 // through an unprototyped function type works like a *non-variadic* 2931 // call. The way we make this work is to cast to the exact type 2932 // of the promoted arguments. 2933 if (isa<FunctionNoProtoType>(FnType)) { 2934 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2935 CalleeTy = CalleeTy->getPointerTo(); 2936 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2937 } 2938 2939 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2940 } 2941 2942 LValue CodeGenFunction:: 2943 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2944 llvm::Value *BaseV; 2945 if (E->getOpcode() == BO_PtrMemI) 2946 BaseV = EmitScalarExpr(E->getLHS()); 2947 else 2948 BaseV = EmitLValue(E->getLHS()).getAddress(); 2949 2950 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2951 2952 const MemberPointerType *MPT 2953 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2954 2955 llvm::Value *AddV = 2956 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2957 2958 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2959 } 2960 2961 static void 2962 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2963 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2964 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2965 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2966 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 2967 2968 switch (E->getOp()) { 2969 case AtomicExpr::AO__c11_atomic_init: 2970 llvm_unreachable("Already handled!"); 2971 2972 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2973 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2974 case AtomicExpr::AO__atomic_compare_exchange: 2975 case AtomicExpr::AO__atomic_compare_exchange_n: { 2976 // Note that cmpxchg only supports specifying one ordering and 2977 // doesn't support weak cmpxchg, at least at the moment. 2978 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2979 LoadVal1->setAlignment(Align); 2980 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2981 LoadVal2->setAlignment(Align); 2982 llvm::AtomicCmpXchgInst *CXI = 2983 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2984 CXI->setVolatile(E->isVolatile()); 2985 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2986 StoreVal1->setAlignment(Align); 2987 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2988 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2989 return; 2990 } 2991 2992 case AtomicExpr::AO__c11_atomic_load: 2993 case AtomicExpr::AO__atomic_load_n: 2994 case AtomicExpr::AO__atomic_load: { 2995 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2996 Load->setAtomic(Order); 2997 Load->setAlignment(Size); 2998 Load->setVolatile(E->isVolatile()); 2999 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 3000 StoreDest->setAlignment(Align); 3001 return; 3002 } 3003 3004 case AtomicExpr::AO__c11_atomic_store: 3005 case AtomicExpr::AO__atomic_store: 3006 case AtomicExpr::AO__atomic_store_n: { 3007 assert(!Dest && "Store does not return a value"); 3008 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3009 LoadVal1->setAlignment(Align); 3010 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 3011 Store->setAtomic(Order); 3012 Store->setAlignment(Size); 3013 Store->setVolatile(E->isVolatile()); 3014 return; 3015 } 3016 3017 case AtomicExpr::AO__c11_atomic_exchange: 3018 case AtomicExpr::AO__atomic_exchange_n: 3019 case AtomicExpr::AO__atomic_exchange: 3020 Op = llvm::AtomicRMWInst::Xchg; 3021 break; 3022 3023 case AtomicExpr::AO__atomic_add_fetch: 3024 PostOp = llvm::Instruction::Add; 3025 // Fall through. 3026 case AtomicExpr::AO__c11_atomic_fetch_add: 3027 case AtomicExpr::AO__atomic_fetch_add: 3028 Op = llvm::AtomicRMWInst::Add; 3029 break; 3030 3031 case AtomicExpr::AO__atomic_sub_fetch: 3032 PostOp = llvm::Instruction::Sub; 3033 // Fall through. 3034 case AtomicExpr::AO__c11_atomic_fetch_sub: 3035 case AtomicExpr::AO__atomic_fetch_sub: 3036 Op = llvm::AtomicRMWInst::Sub; 3037 break; 3038 3039 case AtomicExpr::AO__atomic_and_fetch: 3040 PostOp = llvm::Instruction::And; 3041 // Fall through. 3042 case AtomicExpr::AO__c11_atomic_fetch_and: 3043 case AtomicExpr::AO__atomic_fetch_and: 3044 Op = llvm::AtomicRMWInst::And; 3045 break; 3046 3047 case AtomicExpr::AO__atomic_or_fetch: 3048 PostOp = llvm::Instruction::Or; 3049 // Fall through. 3050 case AtomicExpr::AO__c11_atomic_fetch_or: 3051 case AtomicExpr::AO__atomic_fetch_or: 3052 Op = llvm::AtomicRMWInst::Or; 3053 break; 3054 3055 case AtomicExpr::AO__atomic_xor_fetch: 3056 PostOp = llvm::Instruction::Xor; 3057 // Fall through. 3058 case AtomicExpr::AO__c11_atomic_fetch_xor: 3059 case AtomicExpr::AO__atomic_fetch_xor: 3060 Op = llvm::AtomicRMWInst::Xor; 3061 break; 3062 3063 case AtomicExpr::AO__atomic_nand_fetch: 3064 PostOp = llvm::Instruction::And; 3065 // Fall through. 3066 case AtomicExpr::AO__atomic_fetch_nand: 3067 Op = llvm::AtomicRMWInst::Nand; 3068 break; 3069 } 3070 3071 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3072 LoadVal1->setAlignment(Align); 3073 llvm::AtomicRMWInst *RMWI = 3074 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 3075 RMWI->setVolatile(E->isVolatile()); 3076 3077 // For __atomic_*_fetch operations, perform the operation again to 3078 // determine the value which was written. 3079 llvm::Value *Result = RMWI; 3080 if (PostOp) 3081 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 3082 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 3083 Result = CGF.Builder.CreateNot(Result); 3084 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 3085 StoreDest->setAlignment(Align); 3086 } 3087 3088 // This function emits any expression (scalar, complex, or aggregate) 3089 // into a temporary alloca. 3090 static llvm::Value * 3091 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 3092 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 3093 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 3094 /*Init*/ true); 3095 return DeclPtr; 3096 } 3097 3098 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 3099 llvm::Value *Dest) { 3100 if (Ty->isAnyComplexType()) 3101 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 3102 if (CGF.hasAggregateLLVMType(Ty)) 3103 return RValue::getAggregate(Dest); 3104 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 3105 } 3106 3107 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 3108 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 3109 QualType MemTy = AtomicTy; 3110 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 3111 MemTy = AT->getValueType(); 3112 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 3113 uint64_t Size = sizeChars.getQuantity(); 3114 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 3115 unsigned Align = alignChars.getQuantity(); 3116 unsigned MaxInlineWidthInBits = 3117 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 3118 bool UseLibcall = (Size != Align || 3119 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 3120 3121 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 3122 Ptr = EmitScalarExpr(E->getPtr()); 3123 3124 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 3125 assert(!Dest && "Init does not return a value"); 3126 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 3127 QualType PointeeType 3128 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 3129 EmitScalarInit(EmitScalarExpr(E->getVal1()), 3130 LValue::MakeAddr(Ptr, PointeeType, alignChars, 3131 getContext())); 3132 } else if (E->getType()->isAnyComplexType()) { 3133 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 3134 } else { 3135 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 3136 AtomicTy.getQualifiers(), 3137 AggValueSlot::IsNotDestructed, 3138 AggValueSlot::DoesNotNeedGCBarriers, 3139 AggValueSlot::IsNotAliased); 3140 EmitAggExpr(E->getVal1(), Slot); 3141 } 3142 return RValue::get(0); 3143 } 3144 3145 Order = EmitScalarExpr(E->getOrder()); 3146 3147 switch (E->getOp()) { 3148 case AtomicExpr::AO__c11_atomic_init: 3149 llvm_unreachable("Already handled!"); 3150 3151 case AtomicExpr::AO__c11_atomic_load: 3152 case AtomicExpr::AO__atomic_load_n: 3153 break; 3154 3155 case AtomicExpr::AO__atomic_load: 3156 Dest = EmitScalarExpr(E->getVal1()); 3157 break; 3158 3159 case AtomicExpr::AO__atomic_store: 3160 Val1 = EmitScalarExpr(E->getVal1()); 3161 break; 3162 3163 case AtomicExpr::AO__atomic_exchange: 3164 Val1 = EmitScalarExpr(E->getVal1()); 3165 Dest = EmitScalarExpr(E->getVal2()); 3166 break; 3167 3168 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3169 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3170 case AtomicExpr::AO__atomic_compare_exchange_n: 3171 case AtomicExpr::AO__atomic_compare_exchange: 3172 Val1 = EmitScalarExpr(E->getVal1()); 3173 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 3174 Val2 = EmitScalarExpr(E->getVal2()); 3175 else 3176 Val2 = EmitValToTemp(*this, E->getVal2()); 3177 OrderFail = EmitScalarExpr(E->getOrderFail()); 3178 // Evaluate and discard the 'weak' argument. 3179 if (E->getNumSubExprs() == 6) 3180 EmitScalarExpr(E->getWeak()); 3181 break; 3182 3183 case AtomicExpr::AO__c11_atomic_fetch_add: 3184 case AtomicExpr::AO__c11_atomic_fetch_sub: 3185 if (MemTy->isPointerType()) { 3186 // For pointer arithmetic, we're required to do a bit of math: 3187 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 3188 // ... but only for the C11 builtins. The GNU builtins expect the 3189 // user to multiply by sizeof(T). 3190 QualType Val1Ty = E->getVal1()->getType(); 3191 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 3192 CharUnits PointeeIncAmt = 3193 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 3194 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 3195 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 3196 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 3197 break; 3198 } 3199 // Fall through. 3200 case AtomicExpr::AO__atomic_fetch_add: 3201 case AtomicExpr::AO__atomic_fetch_sub: 3202 case AtomicExpr::AO__atomic_add_fetch: 3203 case AtomicExpr::AO__atomic_sub_fetch: 3204 case AtomicExpr::AO__c11_atomic_store: 3205 case AtomicExpr::AO__c11_atomic_exchange: 3206 case AtomicExpr::AO__atomic_store_n: 3207 case AtomicExpr::AO__atomic_exchange_n: 3208 case AtomicExpr::AO__c11_atomic_fetch_and: 3209 case AtomicExpr::AO__c11_atomic_fetch_or: 3210 case AtomicExpr::AO__c11_atomic_fetch_xor: 3211 case AtomicExpr::AO__atomic_fetch_and: 3212 case AtomicExpr::AO__atomic_fetch_or: 3213 case AtomicExpr::AO__atomic_fetch_xor: 3214 case AtomicExpr::AO__atomic_fetch_nand: 3215 case AtomicExpr::AO__atomic_and_fetch: 3216 case AtomicExpr::AO__atomic_or_fetch: 3217 case AtomicExpr::AO__atomic_xor_fetch: 3218 case AtomicExpr::AO__atomic_nand_fetch: 3219 Val1 = EmitValToTemp(*this, E->getVal1()); 3220 break; 3221 } 3222 3223 if (!E->getType()->isVoidType() && !Dest) 3224 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 3225 3226 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 3227 if (UseLibcall) { 3228 3229 llvm::SmallVector<QualType, 5> Params; 3230 CallArgList Args; 3231 // Size is always the first parameter 3232 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 3233 getContext().getSizeType()); 3234 // Atomic address is always the second parameter 3235 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 3236 getContext().VoidPtrTy); 3237 3238 const char* LibCallName; 3239 QualType RetTy = getContext().VoidTy; 3240 switch (E->getOp()) { 3241 // There is only one libcall for compare an exchange, because there is no 3242 // optimisation benefit possible from a libcall version of a weak compare 3243 // and exchange. 3244 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 3245 // void *desired, int success, int failure) 3246 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3247 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3248 case AtomicExpr::AO__atomic_compare_exchange: 3249 case AtomicExpr::AO__atomic_compare_exchange_n: 3250 LibCallName = "__atomic_compare_exchange"; 3251 RetTy = getContext().BoolTy; 3252 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3253 getContext().VoidPtrTy); 3254 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 3255 getContext().VoidPtrTy); 3256 Args.add(RValue::get(Order), 3257 getContext().IntTy); 3258 Order = OrderFail; 3259 break; 3260 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 3261 // int order) 3262 case AtomicExpr::AO__c11_atomic_exchange: 3263 case AtomicExpr::AO__atomic_exchange_n: 3264 case AtomicExpr::AO__atomic_exchange: 3265 LibCallName = "__atomic_exchange"; 3266 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3267 getContext().VoidPtrTy); 3268 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3269 getContext().VoidPtrTy); 3270 break; 3271 // void __atomic_store(size_t size, void *mem, void *val, int order) 3272 case AtomicExpr::AO__c11_atomic_store: 3273 case AtomicExpr::AO__atomic_store: 3274 case AtomicExpr::AO__atomic_store_n: 3275 LibCallName = "__atomic_store"; 3276 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3277 getContext().VoidPtrTy); 3278 break; 3279 // void __atomic_load(size_t size, void *mem, void *return, int order) 3280 case AtomicExpr::AO__c11_atomic_load: 3281 case AtomicExpr::AO__atomic_load: 3282 case AtomicExpr::AO__atomic_load_n: 3283 LibCallName = "__atomic_load"; 3284 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3285 getContext().VoidPtrTy); 3286 break; 3287 #if 0 3288 // These are only defined for 1-16 byte integers. It is not clear what 3289 // their semantics would be on anything else... 3290 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3291 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3292 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3293 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3294 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3295 #endif 3296 default: return EmitUnsupportedRValue(E, "atomic library call"); 3297 } 3298 // order is always the last parameter 3299 Args.add(RValue::get(Order), 3300 getContext().IntTy); 3301 3302 const CGFunctionInfo &FuncInfo = 3303 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, 3304 FunctionType::ExtInfo(), RequiredArgs::All); 3305 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3306 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3307 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3308 if (E->isCmpXChg()) 3309 return Res; 3310 if (E->getType()->isVoidType()) 3311 return RValue::get(0); 3312 return ConvertTempToRValue(*this, E->getType(), Dest); 3313 } 3314 3315 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3316 E->getOp() == AtomicExpr::AO__atomic_store || 3317 E->getOp() == AtomicExpr::AO__atomic_store_n; 3318 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3319 E->getOp() == AtomicExpr::AO__atomic_load || 3320 E->getOp() == AtomicExpr::AO__atomic_load_n; 3321 3322 llvm::Type *IPtrTy = 3323 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3324 llvm::Value *OrigDest = Dest; 3325 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3326 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3327 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3328 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3329 3330 if (isa<llvm::ConstantInt>(Order)) { 3331 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3332 switch (ord) { 3333 case 0: // memory_order_relaxed 3334 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3335 llvm::Monotonic); 3336 break; 3337 case 1: // memory_order_consume 3338 case 2: // memory_order_acquire 3339 if (IsStore) 3340 break; // Avoid crashing on code with undefined behavior 3341 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3342 llvm::Acquire); 3343 break; 3344 case 3: // memory_order_release 3345 if (IsLoad) 3346 break; // Avoid crashing on code with undefined behavior 3347 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3348 llvm::Release); 3349 break; 3350 case 4: // memory_order_acq_rel 3351 if (IsLoad || IsStore) 3352 break; // Avoid crashing on code with undefined behavior 3353 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3354 llvm::AcquireRelease); 3355 break; 3356 case 5: // memory_order_seq_cst 3357 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3358 llvm::SequentiallyConsistent); 3359 break; 3360 default: // invalid order 3361 // We should not ever get here normally, but it's hard to 3362 // enforce that in general. 3363 break; 3364 } 3365 if (E->getType()->isVoidType()) 3366 return RValue::get(0); 3367 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3368 } 3369 3370 // Long case, when Order isn't obviously constant. 3371 3372 // Create all the relevant BB's 3373 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3374 *AcqRelBB = 0, *SeqCstBB = 0; 3375 MonotonicBB = createBasicBlock("monotonic", CurFn); 3376 if (!IsStore) 3377 AcquireBB = createBasicBlock("acquire", CurFn); 3378 if (!IsLoad) 3379 ReleaseBB = createBasicBlock("release", CurFn); 3380 if (!IsLoad && !IsStore) 3381 AcqRelBB = createBasicBlock("acqrel", CurFn); 3382 SeqCstBB = createBasicBlock("seqcst", CurFn); 3383 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3384 3385 // Create the switch for the split 3386 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3387 // doesn't matter unless someone is crazy enough to use something that 3388 // doesn't fold to a constant for the ordering. 3389 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3390 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3391 3392 // Emit all the different atomics 3393 Builder.SetInsertPoint(MonotonicBB); 3394 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3395 llvm::Monotonic); 3396 Builder.CreateBr(ContBB); 3397 if (!IsStore) { 3398 Builder.SetInsertPoint(AcquireBB); 3399 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3400 llvm::Acquire); 3401 Builder.CreateBr(ContBB); 3402 SI->addCase(Builder.getInt32(1), AcquireBB); 3403 SI->addCase(Builder.getInt32(2), AcquireBB); 3404 } 3405 if (!IsLoad) { 3406 Builder.SetInsertPoint(ReleaseBB); 3407 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3408 llvm::Release); 3409 Builder.CreateBr(ContBB); 3410 SI->addCase(Builder.getInt32(3), ReleaseBB); 3411 } 3412 if (!IsLoad && !IsStore) { 3413 Builder.SetInsertPoint(AcqRelBB); 3414 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3415 llvm::AcquireRelease); 3416 Builder.CreateBr(ContBB); 3417 SI->addCase(Builder.getInt32(4), AcqRelBB); 3418 } 3419 Builder.SetInsertPoint(SeqCstBB); 3420 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3421 llvm::SequentiallyConsistent); 3422 Builder.CreateBr(ContBB); 3423 SI->addCase(Builder.getInt32(5), SeqCstBB); 3424 3425 // Cleanup and return 3426 Builder.SetInsertPoint(ContBB); 3427 if (E->getType()->isVoidType()) 3428 return RValue::get(0); 3429 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3430 } 3431 3432 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3433 assert(Val->getType()->isFPOrFPVectorTy()); 3434 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3435 return; 3436 3437 llvm::MDBuilder MDHelper(getLLVMContext()); 3438 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3439 3440 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3441 } 3442 3443 namespace { 3444 struct LValueOrRValue { 3445 LValue LV; 3446 RValue RV; 3447 }; 3448 } 3449 3450 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3451 const PseudoObjectExpr *E, 3452 bool forLValue, 3453 AggValueSlot slot) { 3454 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3455 3456 // Find the result expression, if any. 3457 const Expr *resultExpr = E->getResultExpr(); 3458 LValueOrRValue result; 3459 3460 for (PseudoObjectExpr::const_semantics_iterator 3461 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3462 const Expr *semantic = *i; 3463 3464 // If this semantic expression is an opaque value, bind it 3465 // to the result of its source expression. 3466 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3467 3468 // If this is the result expression, we may need to evaluate 3469 // directly into the slot. 3470 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3471 OVMA opaqueData; 3472 if (ov == resultExpr && ov->isRValue() && !forLValue && 3473 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3474 !ov->getType()->isAnyComplexType()) { 3475 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3476 3477 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3478 opaqueData = OVMA::bind(CGF, ov, LV); 3479 result.RV = slot.asRValue(); 3480 3481 // Otherwise, emit as normal. 3482 } else { 3483 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3484 3485 // If this is the result, also evaluate the result now. 3486 if (ov == resultExpr) { 3487 if (forLValue) 3488 result.LV = CGF.EmitLValue(ov); 3489 else 3490 result.RV = CGF.EmitAnyExpr(ov, slot); 3491 } 3492 } 3493 3494 opaques.push_back(opaqueData); 3495 3496 // Otherwise, if the expression is the result, evaluate it 3497 // and remember the result. 3498 } else if (semantic == resultExpr) { 3499 if (forLValue) 3500 result.LV = CGF.EmitLValue(semantic); 3501 else 3502 result.RV = CGF.EmitAnyExpr(semantic, slot); 3503 3504 // Otherwise, evaluate the expression in an ignored context. 3505 } else { 3506 CGF.EmitIgnoredExpr(semantic); 3507 } 3508 } 3509 3510 // Unbind all the opaques now. 3511 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3512 opaques[i].unbind(CGF); 3513 3514 return result; 3515 } 3516 3517 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3518 AggValueSlot slot) { 3519 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3520 } 3521 3522 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3523 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3524 } 3525