1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/ConvertUTF.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===--------------------------------------------------------------------===// 39 // Miscellaneous Helper Methods 40 //===--------------------------------------------------------------------===// 41 42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 43 unsigned addressSpace = 44 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 45 46 llvm::PointerType *destType = Int8PtrTy; 47 if (addressSpace) 48 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 49 50 if (value->getType() == destType) return value; 51 return Builder.CreateBitCast(value, destType); 52 } 53 54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 55 /// block. 56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 57 const Twine &Name) { 58 if (!Builder.isNamePreserving()) 59 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 60 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 61 } 62 63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 64 llvm::Value *Init) { 65 auto *Store = new llvm::StoreInst(Init, Var); 66 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 67 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 68 } 69 70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 71 const Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77 } 78 79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 80 const Twine &Name) { 81 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 82 // FIXME: Should we prefer the preferred type alignment here? 83 CharUnits Align = getContext().getTypeAlignInChars(Ty); 84 Alloc->setAlignment(Align.getQuantity()); 85 return Alloc; 86 } 87 88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 89 /// expression and compare the result against zero, returning an Int1Ty value. 90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 91 PGO.setCurrentStmt(E); 92 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 93 llvm::Value *MemPtr = EmitScalarExpr(E); 94 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 95 } 96 97 QualType BoolTy = getContext().BoolTy; 98 if (!E->getType()->isAnyComplexType()) 99 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 100 101 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 102 } 103 104 /// EmitIgnoredExpr - Emit code to compute the specified expression, 105 /// ignoring the result. 106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 107 if (E->isRValue()) 108 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 109 110 // Just emit it as an l-value and drop the result. 111 EmitLValue(E); 112 } 113 114 /// EmitAnyExpr - Emit code to compute the specified expression which 115 /// can have any type. The result is returned as an RValue struct. 116 /// If this is an aggregate expression, AggSlot indicates where the 117 /// result should be returned. 118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 119 AggValueSlot aggSlot, 120 bool ignoreResult) { 121 switch (getEvaluationKind(E->getType())) { 122 case TEK_Scalar: 123 return RValue::get(EmitScalarExpr(E, ignoreResult)); 124 case TEK_Complex: 125 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 126 case TEK_Aggregate: 127 if (!ignoreResult && aggSlot.isIgnored()) 128 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 129 EmitAggExpr(E, aggSlot); 130 return aggSlot.asRValue(); 131 } 132 llvm_unreachable("bad evaluation kind"); 133 } 134 135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 136 /// always be accessible even if no aggregate location is provided. 137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 138 AggValueSlot AggSlot = AggValueSlot::ignored(); 139 140 if (hasAggregateEvaluationKind(E->getType())) 141 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 142 return EmitAnyExpr(E, AggSlot); 143 } 144 145 /// EmitAnyExprToMem - Evaluate an expression into a given memory 146 /// location. 147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 148 llvm::Value *Location, 149 Qualifiers Quals, 150 bool IsInit) { 151 // FIXME: This function should take an LValue as an argument. 152 switch (getEvaluationKind(E->getType())) { 153 case TEK_Complex: 154 EmitComplexExprIntoLValue(E, 155 MakeNaturalAlignAddrLValue(Location, E->getType()), 156 /*isInit*/ false); 157 return; 158 159 case TEK_Aggregate: { 160 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 161 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 162 AggValueSlot::IsDestructed_t(IsInit), 163 AggValueSlot::DoesNotNeedGCBarriers, 164 AggValueSlot::IsAliased_t(!IsInit))); 165 return; 166 } 167 168 case TEK_Scalar: { 169 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 170 LValue LV = MakeAddrLValue(Location, E->getType()); 171 EmitStoreThroughLValue(RV, LV); 172 return; 173 } 174 } 175 llvm_unreachable("bad evaluation kind"); 176 } 177 178 static void 179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 180 const Expr *E, llvm::Value *ReferenceTemporary) { 181 // Objective-C++ ARC: 182 // If we are binding a reference to a temporary that has ownership, we 183 // need to perform retain/release operations on the temporary. 184 // 185 // FIXME: This should be looking at E, not M. 186 if (CGF.getLangOpts().ObjCAutoRefCount && 187 M->getType()->isObjCLifetimeType()) { 188 QualType ObjCARCReferenceLifetimeType = M->getType(); 189 switch (Qualifiers::ObjCLifetime Lifetime = 190 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 191 case Qualifiers::OCL_None: 192 case Qualifiers::OCL_ExplicitNone: 193 // Carry on to normal cleanup handling. 194 break; 195 196 case Qualifiers::OCL_Autoreleasing: 197 // Nothing to do; cleaned up by an autorelease pool. 198 return; 199 200 case Qualifiers::OCL_Strong: 201 case Qualifiers::OCL_Weak: 202 switch (StorageDuration Duration = M->getStorageDuration()) { 203 case SD_Static: 204 // Note: we intentionally do not register a cleanup to release 205 // the object on program termination. 206 return; 207 208 case SD_Thread: 209 // FIXME: We should probably register a cleanup in this case. 210 return; 211 212 case SD_Automatic: 213 case SD_FullExpression: 214 CodeGenFunction::Destroyer *Destroy; 215 CleanupKind CleanupKind; 216 if (Lifetime == Qualifiers::OCL_Strong) { 217 const ValueDecl *VD = M->getExtendingDecl(); 218 bool Precise = 219 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 220 CleanupKind = CGF.getARCCleanupKind(); 221 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 222 : &CodeGenFunction::destroyARCStrongImprecise; 223 } else { 224 // __weak objects always get EH cleanups; otherwise, exceptions 225 // could cause really nasty crashes instead of mere leaks. 226 CleanupKind = NormalAndEHCleanup; 227 Destroy = &CodeGenFunction::destroyARCWeak; 228 } 229 if (Duration == SD_FullExpression) 230 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 231 ObjCARCReferenceLifetimeType, *Destroy, 232 CleanupKind & EHCleanup); 233 else 234 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 235 ObjCARCReferenceLifetimeType, 236 *Destroy, CleanupKind & EHCleanup); 237 return; 238 239 case SD_Dynamic: 240 llvm_unreachable("temporary cannot have dynamic storage duration"); 241 } 242 llvm_unreachable("unknown storage duration"); 243 } 244 } 245 246 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 247 if (const RecordType *RT = 248 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 249 // Get the destructor for the reference temporary. 250 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 251 if (!ClassDecl->hasTrivialDestructor()) 252 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 253 } 254 255 if (!ReferenceTemporaryDtor) 256 return; 257 258 // Call the destructor for the temporary. 259 switch (M->getStorageDuration()) { 260 case SD_Static: 261 case SD_Thread: { 262 llvm::Constant *CleanupFn; 263 llvm::Constant *CleanupArg; 264 if (E->getType()->isArrayType()) { 265 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 266 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 267 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 268 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 269 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 270 } else { 271 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 272 StructorType::Complete); 273 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 274 } 275 CGF.CGM.getCXXABI().registerGlobalDtor( 276 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 277 break; 278 } 279 280 case SD_FullExpression: 281 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 282 CodeGenFunction::destroyCXXObject, 283 CGF.getLangOpts().Exceptions); 284 break; 285 286 case SD_Automatic: 287 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 288 ReferenceTemporary, E->getType(), 289 CodeGenFunction::destroyCXXObject, 290 CGF.getLangOpts().Exceptions); 291 break; 292 293 case SD_Dynamic: 294 llvm_unreachable("temporary cannot have dynamic storage duration"); 295 } 296 } 297 298 static llvm::Value * 299 createReferenceTemporary(CodeGenFunction &CGF, 300 const MaterializeTemporaryExpr *M, const Expr *Inner) { 301 switch (M->getStorageDuration()) { 302 case SD_FullExpression: 303 case SD_Automatic: 304 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 305 306 case SD_Thread: 307 case SD_Static: 308 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary can't have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 316 LValue CodeGenFunction:: 317 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 318 const Expr *E = M->GetTemporaryExpr(); 319 320 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 321 // as that will cause the lifetime adjustment to be lost for ARC 322 if (getLangOpts().ObjCAutoRefCount && 323 M->getType()->isObjCLifetimeType() && 324 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 325 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 326 llvm::Value *Object = createReferenceTemporary(*this, M, E); 327 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 328 329 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 330 // We should not have emitted the initializer for this temporary as a 331 // constant. 332 assert(!Var->hasInitializer()); 333 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 334 } 335 336 switch (getEvaluationKind(E->getType())) { 337 default: llvm_unreachable("expected scalar or aggregate expression"); 338 case TEK_Scalar: 339 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 340 break; 341 case TEK_Aggregate: { 342 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 343 EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment, 344 E->getType().getQualifiers(), 345 AggValueSlot::IsDestructed, 346 AggValueSlot::DoesNotNeedGCBarriers, 347 AggValueSlot::IsNotAliased)); 348 break; 349 } 350 } 351 352 pushTemporaryCleanup(*this, M, E, Object); 353 return RefTempDst; 354 } 355 356 SmallVector<const Expr *, 2> CommaLHSs; 357 SmallVector<SubobjectAdjustment, 2> Adjustments; 358 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 359 360 for (const auto &Ignored : CommaLHSs) 361 EmitIgnoredExpr(Ignored); 362 363 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 364 if (opaque->getType()->isRecordType()) { 365 assert(Adjustments.empty()); 366 return EmitOpaqueValueLValue(opaque); 367 } 368 } 369 370 // Create and initialize the reference temporary. 371 llvm::Value *Object = createReferenceTemporary(*this, M, E); 372 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 373 // If the temporary is a global and has a constant initializer, we may 374 // have already initialized it. 375 if (!Var->hasInitializer()) { 376 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 377 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 378 } 379 } else { 380 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 381 } 382 pushTemporaryCleanup(*this, M, E, Object); 383 384 // Perform derived-to-base casts and/or field accesses, to get from the 385 // temporary object we created (and, potentially, for which we extended 386 // the lifetime) to the subobject we're binding the reference to. 387 for (unsigned I = Adjustments.size(); I != 0; --I) { 388 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 389 switch (Adjustment.Kind) { 390 case SubobjectAdjustment::DerivedToBaseAdjustment: 391 Object = 392 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 393 Adjustment.DerivedToBase.BasePath->path_begin(), 394 Adjustment.DerivedToBase.BasePath->path_end(), 395 /*NullCheckValue=*/ false, E->getExprLoc()); 396 break; 397 398 case SubobjectAdjustment::FieldAdjustment: { 399 LValue LV = MakeAddrLValue(Object, E->getType()); 400 LV = EmitLValueForField(LV, Adjustment.Field); 401 assert(LV.isSimple() && 402 "materialized temporary field is not a simple lvalue"); 403 Object = LV.getAddress(); 404 break; 405 } 406 407 case SubobjectAdjustment::MemberPointerAdjustment: { 408 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 409 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 410 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 411 break; 412 } 413 } 414 } 415 416 return MakeAddrLValue(Object, M->getType()); 417 } 418 419 RValue 420 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 421 // Emit the expression as an lvalue. 422 LValue LV = EmitLValue(E); 423 assert(LV.isSimple()); 424 llvm::Value *Value = LV.getAddress(); 425 426 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 427 // C++11 [dcl.ref]p5 (as amended by core issue 453): 428 // If a glvalue to which a reference is directly bound designates neither 429 // an existing object or function of an appropriate type nor a region of 430 // storage of suitable size and alignment to contain an object of the 431 // reference's type, the behavior is undefined. 432 QualType Ty = E->getType(); 433 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 434 } 435 436 return RValue::get(Value); 437 } 438 439 440 /// getAccessedFieldNo - Given an encoded value and a result number, return the 441 /// input field number being accessed. 442 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 443 const llvm::Constant *Elts) { 444 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 445 ->getZExtValue(); 446 } 447 448 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 449 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 450 llvm::Value *High) { 451 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 452 llvm::Value *K47 = Builder.getInt64(47); 453 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 454 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 455 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 456 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 457 return Builder.CreateMul(B1, KMul); 458 } 459 460 bool CodeGenFunction::sanitizePerformTypeCheck() const { 461 return SanOpts.has(SanitizerKind::Null) | 462 SanOpts.has(SanitizerKind::Alignment) | 463 SanOpts.has(SanitizerKind::ObjectSize) | 464 SanOpts.has(SanitizerKind::Vptr); 465 } 466 467 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 468 llvm::Value *Address, QualType Ty, 469 CharUnits Alignment, bool SkipNullCheck) { 470 if (!sanitizePerformTypeCheck()) 471 return; 472 473 // Don't check pointers outside the default address space. The null check 474 // isn't correct, the object-size check isn't supported by LLVM, and we can't 475 // communicate the addresses to the runtime handler for the vptr check. 476 if (Address->getType()->getPointerAddressSpace()) 477 return; 478 479 SanitizerScope SanScope(this); 480 481 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks; 482 llvm::BasicBlock *Done = nullptr; 483 484 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 485 TCK == TCK_UpcastToVirtualBase; 486 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 487 !SkipNullCheck) { 488 // The glvalue must not be an empty glvalue. 489 llvm::Value *IsNonNull = Builder.CreateICmpNE( 490 Address, llvm::Constant::getNullValue(Address->getType())); 491 492 if (AllowNullPointers) { 493 // When performing pointer casts, it's OK if the value is null. 494 // Skip the remaining checks in that case. 495 Done = createBasicBlock("null"); 496 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 497 Builder.CreateCondBr(IsNonNull, Rest, Done); 498 EmitBlock(Rest); 499 } else { 500 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 501 } 502 } 503 504 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 505 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 506 507 // The glvalue must refer to a large enough storage region. 508 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 509 // to check this. 510 // FIXME: Get object address space 511 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 512 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 513 llvm::Value *Min = Builder.getFalse(); 514 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 515 llvm::Value *LargeEnough = 516 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 517 llvm::ConstantInt::get(IntPtrTy, Size)); 518 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 519 } 520 521 uint64_t AlignVal = 0; 522 523 if (SanOpts.has(SanitizerKind::Alignment)) { 524 AlignVal = Alignment.getQuantity(); 525 if (!Ty->isIncompleteType() && !AlignVal) 526 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 527 528 // The glvalue must be suitably aligned. 529 if (AlignVal) { 530 llvm::Value *Align = 531 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 532 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 533 llvm::Value *Aligned = 534 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 535 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 536 } 537 } 538 539 if (Checks.size() > 0) { 540 llvm::Constant *StaticData[] = { 541 EmitCheckSourceLocation(Loc), 542 EmitCheckTypeDescriptor(Ty), 543 llvm::ConstantInt::get(SizeTy, AlignVal), 544 llvm::ConstantInt::get(Int8Ty, TCK) 545 }; 546 EmitCheck(Checks, "type_mismatch", StaticData, Address); 547 } 548 549 // If possible, check that the vptr indicates that there is a subobject of 550 // type Ty at offset zero within this object. 551 // 552 // C++11 [basic.life]p5,6: 553 // [For storage which does not refer to an object within its lifetime] 554 // The program has undefined behavior if: 555 // -- the [pointer or glvalue] is used to access a non-static data member 556 // or call a non-static member function 557 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 558 if (SanOpts.has(SanitizerKind::Vptr) && 559 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 560 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 561 TCK == TCK_UpcastToVirtualBase) && 562 RD && RD->hasDefinition() && RD->isDynamicClass()) { 563 // Compute a hash of the mangled name of the type. 564 // 565 // FIXME: This is not guaranteed to be deterministic! Move to a 566 // fingerprinting mechanism once LLVM provides one. For the time 567 // being the implementation happens to be deterministic. 568 SmallString<64> MangledName; 569 llvm::raw_svector_ostream Out(MangledName); 570 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 571 Out); 572 573 // Blacklist based on the mangled type. 574 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 575 Out.str())) { 576 llvm::hash_code TypeHash = hash_value(Out.str()); 577 578 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 579 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 580 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 581 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 582 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 583 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 584 585 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 586 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 587 588 // Look the hash up in our cache. 589 const int CacheSize = 128; 590 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 591 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 592 "__ubsan_vptr_type_cache"); 593 llvm::Value *Slot = Builder.CreateAnd(Hash, 594 llvm::ConstantInt::get(IntPtrTy, 595 CacheSize-1)); 596 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 597 llvm::Value *CacheVal = 598 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 599 600 // If the hash isn't in the cache, call a runtime handler to perform the 601 // hard work of checking whether the vptr is for an object of the right 602 // type. This will either fill in the cache and return, or produce a 603 // diagnostic. 604 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 605 llvm::Constant *StaticData[] = { 606 EmitCheckSourceLocation(Loc), 607 EmitCheckTypeDescriptor(Ty), 608 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 609 llvm::ConstantInt::get(Int8Ty, TCK) 610 }; 611 llvm::Value *DynamicData[] = { Address, Hash }; 612 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 613 "dynamic_type_cache_miss", StaticData, DynamicData); 614 } 615 } 616 617 if (Done) { 618 Builder.CreateBr(Done); 619 EmitBlock(Done); 620 } 621 } 622 623 /// Determine whether this expression refers to a flexible array member in a 624 /// struct. We disable array bounds checks for such members. 625 static bool isFlexibleArrayMemberExpr(const Expr *E) { 626 // For compatibility with existing code, we treat arrays of length 0 or 627 // 1 as flexible array members. 628 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 629 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 630 if (CAT->getSize().ugt(1)) 631 return false; 632 } else if (!isa<IncompleteArrayType>(AT)) 633 return false; 634 635 E = E->IgnoreParens(); 636 637 // A flexible array member must be the last member in the class. 638 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 639 // FIXME: If the base type of the member expr is not FD->getParent(), 640 // this should not be treated as a flexible array member access. 641 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 642 RecordDecl::field_iterator FI( 643 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 644 return ++FI == FD->getParent()->field_end(); 645 } 646 } 647 648 return false; 649 } 650 651 /// If Base is known to point to the start of an array, return the length of 652 /// that array. Return 0 if the length cannot be determined. 653 static llvm::Value *getArrayIndexingBound( 654 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 655 // For the vector indexing extension, the bound is the number of elements. 656 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 657 IndexedType = Base->getType(); 658 return CGF.Builder.getInt32(VT->getNumElements()); 659 } 660 661 Base = Base->IgnoreParens(); 662 663 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 664 if (CE->getCastKind() == CK_ArrayToPointerDecay && 665 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 666 IndexedType = CE->getSubExpr()->getType(); 667 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 668 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 669 return CGF.Builder.getInt(CAT->getSize()); 670 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 671 return CGF.getVLASize(VAT).first; 672 } 673 } 674 675 return nullptr; 676 } 677 678 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 679 llvm::Value *Index, QualType IndexType, 680 bool Accessed) { 681 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 682 "should not be called unless adding bounds checks"); 683 SanitizerScope SanScope(this); 684 685 QualType IndexedType; 686 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 687 if (!Bound) 688 return; 689 690 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 691 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 692 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 693 694 llvm::Constant *StaticData[] = { 695 EmitCheckSourceLocation(E->getExprLoc()), 696 EmitCheckTypeDescriptor(IndexedType), 697 EmitCheckTypeDescriptor(IndexType) 698 }; 699 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 700 : Builder.CreateICmpULE(IndexVal, BoundVal); 701 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 702 StaticData, Index); 703 } 704 705 706 CodeGenFunction::ComplexPairTy CodeGenFunction:: 707 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 708 bool isInc, bool isPre) { 709 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 710 711 llvm::Value *NextVal; 712 if (isa<llvm::IntegerType>(InVal.first->getType())) { 713 uint64_t AmountVal = isInc ? 1 : -1; 714 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 715 716 // Add the inc/dec to the real part. 717 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 718 } else { 719 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 720 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 721 if (!isInc) 722 FVal.changeSign(); 723 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 724 725 // Add the inc/dec to the real part. 726 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 727 } 728 729 ComplexPairTy IncVal(NextVal, InVal.second); 730 731 // Store the updated result through the lvalue. 732 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 733 734 // If this is a postinc, return the value read from memory, otherwise use the 735 // updated value. 736 return isPre ? IncVal : InVal; 737 } 738 739 //===----------------------------------------------------------------------===// 740 // LValue Expression Emission 741 //===----------------------------------------------------------------------===// 742 743 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 744 if (Ty->isVoidType()) 745 return RValue::get(nullptr); 746 747 switch (getEvaluationKind(Ty)) { 748 case TEK_Complex: { 749 llvm::Type *EltTy = 750 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 751 llvm::Value *U = llvm::UndefValue::get(EltTy); 752 return RValue::getComplex(std::make_pair(U, U)); 753 } 754 755 // If this is a use of an undefined aggregate type, the aggregate must have an 756 // identifiable address. Just because the contents of the value are undefined 757 // doesn't mean that the address can't be taken and compared. 758 case TEK_Aggregate: { 759 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 760 return RValue::getAggregate(DestPtr); 761 } 762 763 case TEK_Scalar: 764 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 765 } 766 llvm_unreachable("bad evaluation kind"); 767 } 768 769 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 770 const char *Name) { 771 ErrorUnsupported(E, Name); 772 return GetUndefRValue(E->getType()); 773 } 774 775 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 776 const char *Name) { 777 ErrorUnsupported(E, Name); 778 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 779 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 780 } 781 782 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 783 LValue LV; 784 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 785 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 786 else 787 LV = EmitLValue(E); 788 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 789 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 790 E->getType(), LV.getAlignment()); 791 return LV; 792 } 793 794 /// EmitLValue - Emit code to compute a designator that specifies the location 795 /// of the expression. 796 /// 797 /// This can return one of two things: a simple address or a bitfield reference. 798 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 799 /// an LLVM pointer type. 800 /// 801 /// If this returns a bitfield reference, nothing about the pointee type of the 802 /// LLVM value is known: For example, it may not be a pointer to an integer. 803 /// 804 /// If this returns a normal address, and if the lvalue's C type is fixed size, 805 /// this method guarantees that the returned pointer type will point to an LLVM 806 /// type of the same size of the lvalue's type. If the lvalue has a variable 807 /// length type, this is not possible. 808 /// 809 LValue CodeGenFunction::EmitLValue(const Expr *E) { 810 ApplyDebugLocation DL(*this, E); 811 switch (E->getStmtClass()) { 812 default: return EmitUnsupportedLValue(E, "l-value expression"); 813 814 case Expr::ObjCPropertyRefExprClass: 815 llvm_unreachable("cannot emit a property reference directly"); 816 817 case Expr::ObjCSelectorExprClass: 818 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 819 case Expr::ObjCIsaExprClass: 820 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 821 case Expr::BinaryOperatorClass: 822 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 823 case Expr::CompoundAssignOperatorClass: 824 if (!E->getType()->isAnyComplexType()) 825 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 826 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 827 case Expr::CallExprClass: 828 case Expr::CXXMemberCallExprClass: 829 case Expr::CXXOperatorCallExprClass: 830 case Expr::UserDefinedLiteralClass: 831 return EmitCallExprLValue(cast<CallExpr>(E)); 832 case Expr::VAArgExprClass: 833 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 834 case Expr::DeclRefExprClass: 835 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 836 case Expr::ParenExprClass: 837 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 838 case Expr::GenericSelectionExprClass: 839 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 840 case Expr::PredefinedExprClass: 841 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 842 case Expr::StringLiteralClass: 843 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 844 case Expr::ObjCEncodeExprClass: 845 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 846 case Expr::PseudoObjectExprClass: 847 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 848 case Expr::InitListExprClass: 849 return EmitInitListLValue(cast<InitListExpr>(E)); 850 case Expr::CXXTemporaryObjectExprClass: 851 case Expr::CXXConstructExprClass: 852 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 853 case Expr::CXXBindTemporaryExprClass: 854 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 855 case Expr::CXXUuidofExprClass: 856 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 857 case Expr::LambdaExprClass: 858 return EmitLambdaLValue(cast<LambdaExpr>(E)); 859 860 case Expr::ExprWithCleanupsClass: { 861 const auto *cleanups = cast<ExprWithCleanups>(E); 862 enterFullExpression(cleanups); 863 RunCleanupsScope Scope(*this); 864 return EmitLValue(cleanups->getSubExpr()); 865 } 866 867 case Expr::CXXDefaultArgExprClass: 868 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 869 case Expr::CXXDefaultInitExprClass: { 870 CXXDefaultInitExprScope Scope(*this); 871 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 872 } 873 case Expr::CXXTypeidExprClass: 874 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 875 876 case Expr::ObjCMessageExprClass: 877 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 878 case Expr::ObjCIvarRefExprClass: 879 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 880 case Expr::StmtExprClass: 881 return EmitStmtExprLValue(cast<StmtExpr>(E)); 882 case Expr::UnaryOperatorClass: 883 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 884 case Expr::ArraySubscriptExprClass: 885 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 886 case Expr::ExtVectorElementExprClass: 887 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 888 case Expr::MemberExprClass: 889 return EmitMemberExpr(cast<MemberExpr>(E)); 890 case Expr::CompoundLiteralExprClass: 891 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 892 case Expr::ConditionalOperatorClass: 893 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 894 case Expr::BinaryConditionalOperatorClass: 895 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 896 case Expr::ChooseExprClass: 897 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 898 case Expr::OpaqueValueExprClass: 899 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 900 case Expr::SubstNonTypeTemplateParmExprClass: 901 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 902 case Expr::ImplicitCastExprClass: 903 case Expr::CStyleCastExprClass: 904 case Expr::CXXFunctionalCastExprClass: 905 case Expr::CXXStaticCastExprClass: 906 case Expr::CXXDynamicCastExprClass: 907 case Expr::CXXReinterpretCastExprClass: 908 case Expr::CXXConstCastExprClass: 909 case Expr::ObjCBridgedCastExprClass: 910 return EmitCastLValue(cast<CastExpr>(E)); 911 912 case Expr::MaterializeTemporaryExprClass: 913 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 914 } 915 } 916 917 /// Given an object of the given canonical type, can we safely copy a 918 /// value out of it based on its initializer? 919 static bool isConstantEmittableObjectType(QualType type) { 920 assert(type.isCanonical()); 921 assert(!type->isReferenceType()); 922 923 // Must be const-qualified but non-volatile. 924 Qualifiers qs = type.getLocalQualifiers(); 925 if (!qs.hasConst() || qs.hasVolatile()) return false; 926 927 // Otherwise, all object types satisfy this except C++ classes with 928 // mutable subobjects or non-trivial copy/destroy behavior. 929 if (const auto *RT = dyn_cast<RecordType>(type)) 930 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 931 if (RD->hasMutableFields() || !RD->isTrivial()) 932 return false; 933 934 return true; 935 } 936 937 /// Can we constant-emit a load of a reference to a variable of the 938 /// given type? This is different from predicates like 939 /// Decl::isUsableInConstantExpressions because we do want it to apply 940 /// in situations that don't necessarily satisfy the language's rules 941 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 942 /// to do this with const float variables even if those variables 943 /// aren't marked 'constexpr'. 944 enum ConstantEmissionKind { 945 CEK_None, 946 CEK_AsReferenceOnly, 947 CEK_AsValueOrReference, 948 CEK_AsValueOnly 949 }; 950 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 951 type = type.getCanonicalType(); 952 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 953 if (isConstantEmittableObjectType(ref->getPointeeType())) 954 return CEK_AsValueOrReference; 955 return CEK_AsReferenceOnly; 956 } 957 if (isConstantEmittableObjectType(type)) 958 return CEK_AsValueOnly; 959 return CEK_None; 960 } 961 962 /// Try to emit a reference to the given value without producing it as 963 /// an l-value. This is actually more than an optimization: we can't 964 /// produce an l-value for variables that we never actually captured 965 /// in a block or lambda, which means const int variables or constexpr 966 /// literals or similar. 967 CodeGenFunction::ConstantEmission 968 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 969 ValueDecl *value = refExpr->getDecl(); 970 971 // The value needs to be an enum constant or a constant variable. 972 ConstantEmissionKind CEK; 973 if (isa<ParmVarDecl>(value)) { 974 CEK = CEK_None; 975 } else if (auto *var = dyn_cast<VarDecl>(value)) { 976 CEK = checkVarTypeForConstantEmission(var->getType()); 977 } else if (isa<EnumConstantDecl>(value)) { 978 CEK = CEK_AsValueOnly; 979 } else { 980 CEK = CEK_None; 981 } 982 if (CEK == CEK_None) return ConstantEmission(); 983 984 Expr::EvalResult result; 985 bool resultIsReference; 986 QualType resultType; 987 988 // It's best to evaluate all the way as an r-value if that's permitted. 989 if (CEK != CEK_AsReferenceOnly && 990 refExpr->EvaluateAsRValue(result, getContext())) { 991 resultIsReference = false; 992 resultType = refExpr->getType(); 993 994 // Otherwise, try to evaluate as an l-value. 995 } else if (CEK != CEK_AsValueOnly && 996 refExpr->EvaluateAsLValue(result, getContext())) { 997 resultIsReference = true; 998 resultType = value->getType(); 999 1000 // Failure. 1001 } else { 1002 return ConstantEmission(); 1003 } 1004 1005 // In any case, if the initializer has side-effects, abandon ship. 1006 if (result.HasSideEffects) 1007 return ConstantEmission(); 1008 1009 // Emit as a constant. 1010 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1011 1012 // Make sure we emit a debug reference to the global variable. 1013 // This should probably fire even for 1014 if (isa<VarDecl>(value)) { 1015 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1016 EmitDeclRefExprDbgValue(refExpr, C); 1017 } else { 1018 assert(isa<EnumConstantDecl>(value)); 1019 EmitDeclRefExprDbgValue(refExpr, C); 1020 } 1021 1022 // If we emitted a reference constant, we need to dereference that. 1023 if (resultIsReference) 1024 return ConstantEmission::forReference(C); 1025 1026 return ConstantEmission::forValue(C); 1027 } 1028 1029 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1030 SourceLocation Loc) { 1031 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1032 lvalue.getAlignment().getQuantity(), 1033 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1034 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1035 } 1036 1037 static bool hasBooleanRepresentation(QualType Ty) { 1038 if (Ty->isBooleanType()) 1039 return true; 1040 1041 if (const EnumType *ET = Ty->getAs<EnumType>()) 1042 return ET->getDecl()->getIntegerType()->isBooleanType(); 1043 1044 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1045 return hasBooleanRepresentation(AT->getValueType()); 1046 1047 return false; 1048 } 1049 1050 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1051 llvm::APInt &Min, llvm::APInt &End, 1052 bool StrictEnums) { 1053 const EnumType *ET = Ty->getAs<EnumType>(); 1054 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1055 ET && !ET->getDecl()->isFixed(); 1056 bool IsBool = hasBooleanRepresentation(Ty); 1057 if (!IsBool && !IsRegularCPlusPlusEnum) 1058 return false; 1059 1060 if (IsBool) { 1061 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1062 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1063 } else { 1064 const EnumDecl *ED = ET->getDecl(); 1065 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1066 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1067 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1068 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1069 1070 if (NumNegativeBits) { 1071 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1072 assert(NumBits <= Bitwidth); 1073 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1074 Min = -End; 1075 } else { 1076 assert(NumPositiveBits <= Bitwidth); 1077 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1078 Min = llvm::APInt(Bitwidth, 0); 1079 } 1080 } 1081 return true; 1082 } 1083 1084 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1085 llvm::APInt Min, End; 1086 if (!getRangeForType(*this, Ty, Min, End, 1087 CGM.getCodeGenOpts().StrictEnums)) 1088 return nullptr; 1089 1090 llvm::MDBuilder MDHelper(getLLVMContext()); 1091 return MDHelper.createRange(Min, End); 1092 } 1093 1094 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1095 unsigned Alignment, QualType Ty, 1096 SourceLocation Loc, 1097 llvm::MDNode *TBAAInfo, 1098 QualType TBAABaseType, 1099 uint64_t TBAAOffset) { 1100 // For better performance, handle vector loads differently. 1101 if (Ty->isVectorType()) { 1102 llvm::Value *V; 1103 const llvm::Type *EltTy = 1104 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1105 1106 const auto *VTy = cast<llvm::VectorType>(EltTy); 1107 1108 // Handle vectors of size 3, like size 4 for better performance. 1109 if (VTy->getNumElements() == 3) { 1110 1111 // Bitcast to vec4 type. 1112 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1113 4); 1114 llvm::PointerType *ptVec4Ty = 1115 llvm::PointerType::get(vec4Ty, 1116 (cast<llvm::PointerType>( 1117 Addr->getType()))->getAddressSpace()); 1118 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1119 "castToVec4"); 1120 // Now load value. 1121 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1122 1123 // Shuffle vector to get vec3. 1124 llvm::Constant *Mask[] = { 1125 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1126 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1127 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1128 }; 1129 1130 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1131 V = Builder.CreateShuffleVector(LoadVal, 1132 llvm::UndefValue::get(vec4Ty), 1133 MaskV, "extractVec"); 1134 return EmitFromMemory(V, Ty); 1135 } 1136 } 1137 1138 // Atomic operations have to be done on integral types. 1139 if (Ty->isAtomicType()) { 1140 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1141 CharUnits::fromQuantity(Alignment), 1142 getContext(), TBAAInfo); 1143 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1144 } 1145 1146 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1147 if (Volatile) 1148 Load->setVolatile(true); 1149 if (Alignment) 1150 Load->setAlignment(Alignment); 1151 if (TBAAInfo) { 1152 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1153 TBAAOffset); 1154 if (TBAAPath) 1155 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1156 } 1157 1158 bool NeedsBoolCheck = 1159 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1160 bool NeedsEnumCheck = 1161 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1162 if (NeedsBoolCheck || NeedsEnumCheck) { 1163 SanitizerScope SanScope(this); 1164 llvm::APInt Min, End; 1165 if (getRangeForType(*this, Ty, Min, End, true)) { 1166 --End; 1167 llvm::Value *Check; 1168 if (!Min) 1169 Check = Builder.CreateICmpULE( 1170 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1171 else { 1172 llvm::Value *Upper = Builder.CreateICmpSLE( 1173 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1174 llvm::Value *Lower = Builder.CreateICmpSGE( 1175 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1176 Check = Builder.CreateAnd(Upper, Lower); 1177 } 1178 llvm::Constant *StaticArgs[] = { 1179 EmitCheckSourceLocation(Loc), 1180 EmitCheckTypeDescriptor(Ty) 1181 }; 1182 SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1183 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1184 EmitCheckValue(Load)); 1185 } 1186 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1187 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1188 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1189 1190 return EmitFromMemory(Load, Ty); 1191 } 1192 1193 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1194 // Bool has a different representation in memory than in registers. 1195 if (hasBooleanRepresentation(Ty)) { 1196 // This should really always be an i1, but sometimes it's already 1197 // an i8, and it's awkward to track those cases down. 1198 if (Value->getType()->isIntegerTy(1)) 1199 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1200 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1201 "wrong value rep of bool"); 1202 } 1203 1204 return Value; 1205 } 1206 1207 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1208 // Bool has a different representation in memory than in registers. 1209 if (hasBooleanRepresentation(Ty)) { 1210 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1211 "wrong value rep of bool"); 1212 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1213 } 1214 1215 return Value; 1216 } 1217 1218 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1219 bool Volatile, unsigned Alignment, 1220 QualType Ty, llvm::MDNode *TBAAInfo, 1221 bool isInit, QualType TBAABaseType, 1222 uint64_t TBAAOffset) { 1223 1224 // Handle vectors differently to get better performance. 1225 if (Ty->isVectorType()) { 1226 llvm::Type *SrcTy = Value->getType(); 1227 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1228 // Handle vec3 special. 1229 if (VecTy->getNumElements() == 3) { 1230 llvm::LLVMContext &VMContext = getLLVMContext(); 1231 1232 // Our source is a vec3, do a shuffle vector to make it a vec4. 1233 SmallVector<llvm::Constant*, 4> Mask; 1234 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1235 0)); 1236 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1237 1)); 1238 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1239 2)); 1240 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1241 1242 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1243 Value = Builder.CreateShuffleVector(Value, 1244 llvm::UndefValue::get(VecTy), 1245 MaskV, "extractVec"); 1246 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1247 } 1248 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1249 if (DstPtr->getElementType() != SrcTy) { 1250 llvm::Type *MemTy = 1251 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1252 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1253 } 1254 } 1255 1256 Value = EmitToMemory(Value, Ty); 1257 1258 if (Ty->isAtomicType()) { 1259 EmitAtomicStore(RValue::get(Value), 1260 LValue::MakeAddr(Addr, Ty, 1261 CharUnits::fromQuantity(Alignment), 1262 getContext(), TBAAInfo), 1263 isInit); 1264 return; 1265 } 1266 1267 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1268 if (Alignment) 1269 Store->setAlignment(Alignment); 1270 if (TBAAInfo) { 1271 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1272 TBAAOffset); 1273 if (TBAAPath) 1274 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1275 } 1276 } 1277 1278 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1279 bool isInit) { 1280 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1281 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1282 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1283 lvalue.getTBAAOffset()); 1284 } 1285 1286 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1287 /// method emits the address of the lvalue, then loads the result as an rvalue, 1288 /// returning the rvalue. 1289 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1290 if (LV.isObjCWeak()) { 1291 // load of a __weak object. 1292 llvm::Value *AddrWeakObj = LV.getAddress(); 1293 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1294 AddrWeakObj)); 1295 } 1296 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1297 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1298 Object = EmitObjCConsumeObject(LV.getType(), Object); 1299 return RValue::get(Object); 1300 } 1301 1302 if (LV.isSimple()) { 1303 assert(!LV.getType()->isFunctionType()); 1304 1305 // Everything needs a load. 1306 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1307 } 1308 1309 if (LV.isVectorElt()) { 1310 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1311 LV.isVolatileQualified()); 1312 Load->setAlignment(LV.getAlignment().getQuantity()); 1313 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1314 "vecext")); 1315 } 1316 1317 // If this is a reference to a subset of the elements of a vector, either 1318 // shuffle the input or extract/insert them as appropriate. 1319 if (LV.isExtVectorElt()) 1320 return EmitLoadOfExtVectorElementLValue(LV); 1321 1322 // Global Register variables always invoke intrinsics 1323 if (LV.isGlobalReg()) 1324 return EmitLoadOfGlobalRegLValue(LV); 1325 1326 assert(LV.isBitField() && "Unknown LValue type!"); 1327 return EmitLoadOfBitfieldLValue(LV); 1328 } 1329 1330 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1331 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1332 1333 // Get the output type. 1334 llvm::Type *ResLTy = ConvertType(LV.getType()); 1335 1336 llvm::Value *Ptr = LV.getBitFieldAddr(); 1337 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1338 "bf.load"); 1339 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1340 1341 if (Info.IsSigned) { 1342 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1343 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1344 if (HighBits) 1345 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1346 if (Info.Offset + HighBits) 1347 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1348 } else { 1349 if (Info.Offset) 1350 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1351 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1352 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1353 Info.Size), 1354 "bf.clear"); 1355 } 1356 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1357 1358 return RValue::get(Val); 1359 } 1360 1361 // If this is a reference to a subset of the elements of a vector, create an 1362 // appropriate shufflevector. 1363 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1364 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1365 LV.isVolatileQualified()); 1366 Load->setAlignment(LV.getAlignment().getQuantity()); 1367 llvm::Value *Vec = Load; 1368 1369 const llvm::Constant *Elts = LV.getExtVectorElts(); 1370 1371 // If the result of the expression is a non-vector type, we must be extracting 1372 // a single element. Just codegen as an extractelement. 1373 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1374 if (!ExprVT) { 1375 unsigned InIdx = getAccessedFieldNo(0, Elts); 1376 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1377 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1378 } 1379 1380 // Always use shuffle vector to try to retain the original program structure 1381 unsigned NumResultElts = ExprVT->getNumElements(); 1382 1383 SmallVector<llvm::Constant*, 4> Mask; 1384 for (unsigned i = 0; i != NumResultElts; ++i) 1385 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1386 1387 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1388 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1389 MaskV); 1390 return RValue::get(Vec); 1391 } 1392 1393 /// @brief Generates lvalue for partial ext_vector access. 1394 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1395 llvm::Value *VectorAddress = LV.getExtVectorAddr(); 1396 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1397 QualType EQT = ExprVT->getElementType(); 1398 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1399 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo(); 1400 1401 llvm::Value *CastToPointerElement = 1402 Builder.CreateBitCast(VectorAddress, 1403 VectorElementPtrToTy, "conv.ptr.element"); 1404 1405 const llvm::Constant *Elts = LV.getExtVectorElts(); 1406 unsigned ix = getAccessedFieldNo(0, Elts); 1407 1408 llvm::Value *VectorBasePtrPlusIx = 1409 Builder.CreateInBoundsGEP(CastToPointerElement, 1410 llvm::ConstantInt::get(SizeTy, ix), "add.ptr"); 1411 1412 return VectorBasePtrPlusIx; 1413 } 1414 1415 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1416 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1417 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1418 "Bad type for register variable"); 1419 llvm::MDNode *RegName = cast<llvm::MDNode>( 1420 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1421 1422 // We accept integer and pointer types only 1423 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1424 llvm::Type *Ty = OrigTy; 1425 if (OrigTy->isPointerTy()) 1426 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1427 llvm::Type *Types[] = { Ty }; 1428 1429 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1430 llvm::Value *Call = Builder.CreateCall( 1431 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1432 if (OrigTy->isPointerTy()) 1433 Call = Builder.CreateIntToPtr(Call, OrigTy); 1434 return RValue::get(Call); 1435 } 1436 1437 1438 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1439 /// lvalue, where both are guaranteed to the have the same type, and that type 1440 /// is 'Ty'. 1441 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1442 bool isInit) { 1443 if (!Dst.isSimple()) { 1444 if (Dst.isVectorElt()) { 1445 // Read/modify/write the vector, inserting the new element. 1446 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1447 Dst.isVolatileQualified()); 1448 Load->setAlignment(Dst.getAlignment().getQuantity()); 1449 llvm::Value *Vec = Load; 1450 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1451 Dst.getVectorIdx(), "vecins"); 1452 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1453 Dst.isVolatileQualified()); 1454 Store->setAlignment(Dst.getAlignment().getQuantity()); 1455 return; 1456 } 1457 1458 // If this is an update of extended vector elements, insert them as 1459 // appropriate. 1460 if (Dst.isExtVectorElt()) 1461 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1462 1463 if (Dst.isGlobalReg()) 1464 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1465 1466 assert(Dst.isBitField() && "Unknown LValue type"); 1467 return EmitStoreThroughBitfieldLValue(Src, Dst); 1468 } 1469 1470 // There's special magic for assigning into an ARC-qualified l-value. 1471 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1472 switch (Lifetime) { 1473 case Qualifiers::OCL_None: 1474 llvm_unreachable("present but none"); 1475 1476 case Qualifiers::OCL_ExplicitNone: 1477 // nothing special 1478 break; 1479 1480 case Qualifiers::OCL_Strong: 1481 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1482 return; 1483 1484 case Qualifiers::OCL_Weak: 1485 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1486 return; 1487 1488 case Qualifiers::OCL_Autoreleasing: 1489 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1490 Src.getScalarVal())); 1491 // fall into the normal path 1492 break; 1493 } 1494 } 1495 1496 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1497 // load of a __weak object. 1498 llvm::Value *LvalueDst = Dst.getAddress(); 1499 llvm::Value *src = Src.getScalarVal(); 1500 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1501 return; 1502 } 1503 1504 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1505 // load of a __strong object. 1506 llvm::Value *LvalueDst = Dst.getAddress(); 1507 llvm::Value *src = Src.getScalarVal(); 1508 if (Dst.isObjCIvar()) { 1509 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1510 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1511 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1512 llvm::Value *dst = RHS; 1513 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1514 llvm::Value *LHS = 1515 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1516 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1517 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1518 BytesBetween); 1519 } else if (Dst.isGlobalObjCRef()) { 1520 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1521 Dst.isThreadLocalRef()); 1522 } 1523 else 1524 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1525 return; 1526 } 1527 1528 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1529 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1530 } 1531 1532 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1533 llvm::Value **Result) { 1534 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1535 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1536 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1537 1538 // Get the source value, truncated to the width of the bit-field. 1539 llvm::Value *SrcVal = Src.getScalarVal(); 1540 1541 // Cast the source to the storage type and shift it into place. 1542 SrcVal = Builder.CreateIntCast(SrcVal, 1543 Ptr->getType()->getPointerElementType(), 1544 /*IsSigned=*/false); 1545 llvm::Value *MaskedVal = SrcVal; 1546 1547 // See if there are other bits in the bitfield's storage we'll need to load 1548 // and mask together with source before storing. 1549 if (Info.StorageSize != Info.Size) { 1550 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1551 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1552 "bf.load"); 1553 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1554 1555 // Mask the source value as needed. 1556 if (!hasBooleanRepresentation(Dst.getType())) 1557 SrcVal = Builder.CreateAnd(SrcVal, 1558 llvm::APInt::getLowBitsSet(Info.StorageSize, 1559 Info.Size), 1560 "bf.value"); 1561 MaskedVal = SrcVal; 1562 if (Info.Offset) 1563 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1564 1565 // Mask out the original value. 1566 Val = Builder.CreateAnd(Val, 1567 ~llvm::APInt::getBitsSet(Info.StorageSize, 1568 Info.Offset, 1569 Info.Offset + Info.Size), 1570 "bf.clear"); 1571 1572 // Or together the unchanged values and the source value. 1573 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1574 } else { 1575 assert(Info.Offset == 0); 1576 } 1577 1578 // Write the new value back out. 1579 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1580 Dst.isVolatileQualified()); 1581 Store->setAlignment(Info.StorageAlignment); 1582 1583 // Return the new value of the bit-field, if requested. 1584 if (Result) { 1585 llvm::Value *ResultVal = MaskedVal; 1586 1587 // Sign extend the value if needed. 1588 if (Info.IsSigned) { 1589 assert(Info.Size <= Info.StorageSize); 1590 unsigned HighBits = Info.StorageSize - Info.Size; 1591 if (HighBits) { 1592 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1593 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1594 } 1595 } 1596 1597 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1598 "bf.result.cast"); 1599 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1600 } 1601 } 1602 1603 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1604 LValue Dst) { 1605 // This access turns into a read/modify/write of the vector. Load the input 1606 // value now. 1607 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1608 Dst.isVolatileQualified()); 1609 Load->setAlignment(Dst.getAlignment().getQuantity()); 1610 llvm::Value *Vec = Load; 1611 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1612 1613 llvm::Value *SrcVal = Src.getScalarVal(); 1614 1615 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1616 unsigned NumSrcElts = VTy->getNumElements(); 1617 unsigned NumDstElts = 1618 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1619 if (NumDstElts == NumSrcElts) { 1620 // Use shuffle vector is the src and destination are the same number of 1621 // elements and restore the vector mask since it is on the side it will be 1622 // stored. 1623 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1624 for (unsigned i = 0; i != NumSrcElts; ++i) 1625 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1626 1627 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1628 Vec = Builder.CreateShuffleVector(SrcVal, 1629 llvm::UndefValue::get(Vec->getType()), 1630 MaskV); 1631 } else if (NumDstElts > NumSrcElts) { 1632 // Extended the source vector to the same length and then shuffle it 1633 // into the destination. 1634 // FIXME: since we're shuffling with undef, can we just use the indices 1635 // into that? This could be simpler. 1636 SmallVector<llvm::Constant*, 4> ExtMask; 1637 for (unsigned i = 0; i != NumSrcElts; ++i) 1638 ExtMask.push_back(Builder.getInt32(i)); 1639 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1640 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1641 llvm::Value *ExtSrcVal = 1642 Builder.CreateShuffleVector(SrcVal, 1643 llvm::UndefValue::get(SrcVal->getType()), 1644 ExtMaskV); 1645 // build identity 1646 SmallVector<llvm::Constant*, 4> Mask; 1647 for (unsigned i = 0; i != NumDstElts; ++i) 1648 Mask.push_back(Builder.getInt32(i)); 1649 1650 // When the vector size is odd and .odd or .hi is used, the last element 1651 // of the Elts constant array will be one past the size of the vector. 1652 // Ignore the last element here, if it is greater than the mask size. 1653 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1654 NumSrcElts--; 1655 1656 // modify when what gets shuffled in 1657 for (unsigned i = 0; i != NumSrcElts; ++i) 1658 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1659 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1660 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1661 } else { 1662 // We should never shorten the vector 1663 llvm_unreachable("unexpected shorten vector length"); 1664 } 1665 } else { 1666 // If the Src is a scalar (not a vector) it must be updating one element. 1667 unsigned InIdx = getAccessedFieldNo(0, Elts); 1668 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1669 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1670 } 1671 1672 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1673 Dst.isVolatileQualified()); 1674 Store->setAlignment(Dst.getAlignment().getQuantity()); 1675 } 1676 1677 /// @brief Store of global named registers are always calls to intrinsics. 1678 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1679 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1680 "Bad type for register variable"); 1681 llvm::MDNode *RegName = cast<llvm::MDNode>( 1682 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1683 assert(RegName && "Register LValue is not metadata"); 1684 1685 // We accept integer and pointer types only 1686 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1687 llvm::Type *Ty = OrigTy; 1688 if (OrigTy->isPointerTy()) 1689 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1690 llvm::Type *Types[] = { Ty }; 1691 1692 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1693 llvm::Value *Value = Src.getScalarVal(); 1694 if (OrigTy->isPointerTy()) 1695 Value = Builder.CreatePtrToInt(Value, Ty); 1696 Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName), 1697 Value); 1698 } 1699 1700 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1701 // generating write-barries API. It is currently a global, ivar, 1702 // or neither. 1703 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1704 LValue &LV, 1705 bool IsMemberAccess=false) { 1706 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1707 return; 1708 1709 if (isa<ObjCIvarRefExpr>(E)) { 1710 QualType ExpTy = E->getType(); 1711 if (IsMemberAccess && ExpTy->isPointerType()) { 1712 // If ivar is a structure pointer, assigning to field of 1713 // this struct follows gcc's behavior and makes it a non-ivar 1714 // writer-barrier conservatively. 1715 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1716 if (ExpTy->isRecordType()) { 1717 LV.setObjCIvar(false); 1718 return; 1719 } 1720 } 1721 LV.setObjCIvar(true); 1722 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1723 LV.setBaseIvarExp(Exp->getBase()); 1724 LV.setObjCArray(E->getType()->isArrayType()); 1725 return; 1726 } 1727 1728 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1729 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1730 if (VD->hasGlobalStorage()) { 1731 LV.setGlobalObjCRef(true); 1732 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1733 } 1734 } 1735 LV.setObjCArray(E->getType()->isArrayType()); 1736 return; 1737 } 1738 1739 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1740 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1741 return; 1742 } 1743 1744 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1745 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1746 if (LV.isObjCIvar()) { 1747 // If cast is to a structure pointer, follow gcc's behavior and make it 1748 // a non-ivar write-barrier. 1749 QualType ExpTy = E->getType(); 1750 if (ExpTy->isPointerType()) 1751 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1752 if (ExpTy->isRecordType()) 1753 LV.setObjCIvar(false); 1754 } 1755 return; 1756 } 1757 1758 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1759 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1760 return; 1761 } 1762 1763 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1764 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1765 return; 1766 } 1767 1768 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1769 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1770 return; 1771 } 1772 1773 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1774 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1775 return; 1776 } 1777 1778 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1779 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1780 if (LV.isObjCIvar() && !LV.isObjCArray()) 1781 // Using array syntax to assigning to what an ivar points to is not 1782 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1783 LV.setObjCIvar(false); 1784 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1785 // Using array syntax to assigning to what global points to is not 1786 // same as assigning to the global itself. {id *G;} G[i] = 0; 1787 LV.setGlobalObjCRef(false); 1788 return; 1789 } 1790 1791 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1792 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1793 // We don't know if member is an 'ivar', but this flag is looked at 1794 // only in the context of LV.isObjCIvar(). 1795 LV.setObjCArray(E->getType()->isArrayType()); 1796 return; 1797 } 1798 } 1799 1800 static llvm::Value * 1801 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1802 llvm::Value *V, llvm::Type *IRType, 1803 StringRef Name = StringRef()) { 1804 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1805 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1806 } 1807 1808 static LValue EmitThreadPrivateVarDeclLValue( 1809 CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V, 1810 llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) { 1811 V = CGF.CGM.getOpenMPRuntime().getOMPAddrOfThreadPrivate(CGF, VD, V, Loc); 1812 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1813 return CGF.MakeAddrLValue(V, T, Alignment); 1814 } 1815 1816 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1817 const Expr *E, const VarDecl *VD) { 1818 QualType T = E->getType(); 1819 1820 // If it's thread_local, emit a call to its wrapper function instead. 1821 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1822 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1823 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1824 1825 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1826 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1827 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1828 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1829 LValue LV; 1830 // Emit reference to the private copy of the variable if it is an OpenMP 1831 // threadprivate variable. 1832 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1833 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment, 1834 E->getExprLoc()); 1835 if (VD->getType()->isReferenceType()) { 1836 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1837 LI->setAlignment(Alignment.getQuantity()); 1838 V = LI; 1839 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1840 } else { 1841 LV = CGF.MakeAddrLValue(V, T, Alignment); 1842 } 1843 setObjCGCLValueClass(CGF.getContext(), E, LV); 1844 return LV; 1845 } 1846 1847 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1848 const Expr *E, const FunctionDecl *FD) { 1849 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1850 if (!FD->hasPrototype()) { 1851 if (const FunctionProtoType *Proto = 1852 FD->getType()->getAs<FunctionProtoType>()) { 1853 // Ugly case: for a K&R-style definition, the type of the definition 1854 // isn't the same as the type of a use. Correct for this with a 1855 // bitcast. 1856 QualType NoProtoType = 1857 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1858 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1859 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1860 } 1861 } 1862 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1863 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1864 } 1865 1866 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1867 llvm::Value *ThisValue) { 1868 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1869 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1870 return CGF.EmitLValueForField(LV, FD); 1871 } 1872 1873 /// Named Registers are named metadata pointing to the register name 1874 /// which will be read from/written to as an argument to the intrinsic 1875 /// @llvm.read/write_register. 1876 /// So far, only the name is being passed down, but other options such as 1877 /// register type, allocation type or even optimization options could be 1878 /// passed down via the metadata node. 1879 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1880 CodeGenModule &CGM, 1881 CharUnits Alignment) { 1882 SmallString<64> Name("llvm.named.register."); 1883 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1884 assert(Asm->getLabel().size() < 64-Name.size() && 1885 "Register name too big"); 1886 Name.append(Asm->getLabel()); 1887 llvm::NamedMDNode *M = 1888 CGM.getModule().getOrInsertNamedMetadata(Name); 1889 if (M->getNumOperands() == 0) { 1890 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1891 Asm->getLabel()); 1892 llvm::Metadata *Ops[] = {Str}; 1893 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1894 } 1895 return LValue::MakeGlobalReg( 1896 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)), 1897 VD->getType(), Alignment); 1898 } 1899 1900 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1901 const NamedDecl *ND = E->getDecl(); 1902 CharUnits Alignment = getContext().getDeclAlign(ND); 1903 QualType T = E->getType(); 1904 1905 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1906 // Global Named registers access via intrinsics only 1907 if (VD->getStorageClass() == SC_Register && 1908 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1909 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1910 1911 // A DeclRefExpr for a reference initialized by a constant expression can 1912 // appear without being odr-used. Directly emit the constant initializer. 1913 const Expr *Init = VD->getAnyInitializer(VD); 1914 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1915 VD->isUsableInConstantExpressions(getContext()) && 1916 VD->checkInitIsICE()) { 1917 llvm::Constant *Val = 1918 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1919 assert(Val && "failed to emit reference constant expression"); 1920 // FIXME: Eventually we will want to emit vector element references. 1921 return MakeAddrLValue(Val, T, Alignment); 1922 } 1923 1924 // Check for captured variables. 1925 if (E->refersToEnclosingVariableOrCapture()) { 1926 if (auto *FD = LambdaCaptureFields.lookup(VD)) 1927 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1928 else if (CapturedStmtInfo) { 1929 if (auto *V = LocalDeclMap.lookup(VD)) 1930 return MakeAddrLValue(V, T, Alignment); 1931 else 1932 return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 1933 CapturedStmtInfo->getContextValue()); 1934 } 1935 assert(isa<BlockDecl>(CurCodeDecl)); 1936 return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()), 1937 T, Alignment); 1938 } 1939 } 1940 1941 // FIXME: We should be able to assert this for FunctionDecls as well! 1942 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1943 // those with a valid source location. 1944 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1945 !E->getLocation().isValid()) && 1946 "Should not use decl without marking it used!"); 1947 1948 if (ND->hasAttr<WeakRefAttr>()) { 1949 const auto *VD = cast<ValueDecl>(ND); 1950 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1951 return MakeAddrLValue(Aliasee, T, Alignment); 1952 } 1953 1954 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1955 // Check if this is a global variable. 1956 if (VD->hasLinkage() || VD->isStaticDataMember()) 1957 return EmitGlobalVarDeclLValue(*this, E, VD); 1958 1959 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1960 1961 llvm::Value *V = LocalDeclMap.lookup(VD); 1962 if (!V && VD->isStaticLocal()) 1963 V = CGM.getOrCreateStaticVarDecl( 1964 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1965 1966 // Check if variable is threadprivate. 1967 if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1968 return EmitThreadPrivateVarDeclLValue( 1969 *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()), 1970 Alignment, E->getExprLoc()); 1971 1972 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1973 1974 if (isBlockVariable) 1975 V = BuildBlockByrefAddress(V, VD); 1976 1977 LValue LV; 1978 if (VD->getType()->isReferenceType()) { 1979 llvm::LoadInst *LI = Builder.CreateLoad(V); 1980 LI->setAlignment(Alignment.getQuantity()); 1981 V = LI; 1982 LV = MakeNaturalAlignAddrLValue(V, T); 1983 } else { 1984 LV = MakeAddrLValue(V, T, Alignment); 1985 } 1986 1987 bool isLocalStorage = VD->hasLocalStorage(); 1988 1989 bool NonGCable = isLocalStorage && 1990 !VD->getType()->isReferenceType() && 1991 !isBlockVariable; 1992 if (NonGCable) { 1993 LV.getQuals().removeObjCGCAttr(); 1994 LV.setNonGC(true); 1995 } 1996 1997 bool isImpreciseLifetime = 1998 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1999 if (isImpreciseLifetime) 2000 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2001 setObjCGCLValueClass(getContext(), E, LV); 2002 return LV; 2003 } 2004 2005 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2006 return EmitFunctionDeclLValue(*this, E, FD); 2007 2008 llvm_unreachable("Unhandled DeclRefExpr"); 2009 } 2010 2011 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2012 // __extension__ doesn't affect lvalue-ness. 2013 if (E->getOpcode() == UO_Extension) 2014 return EmitLValue(E->getSubExpr()); 2015 2016 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2017 switch (E->getOpcode()) { 2018 default: llvm_unreachable("Unknown unary operator lvalue!"); 2019 case UO_Deref: { 2020 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2021 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2022 2023 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 2024 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2025 2026 // We should not generate __weak write barrier on indirect reference 2027 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2028 // But, we continue to generate __strong write barrier on indirect write 2029 // into a pointer to object. 2030 if (getLangOpts().ObjC1 && 2031 getLangOpts().getGC() != LangOptions::NonGC && 2032 LV.isObjCWeak()) 2033 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2034 return LV; 2035 } 2036 case UO_Real: 2037 case UO_Imag: { 2038 LValue LV = EmitLValue(E->getSubExpr()); 2039 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2040 llvm::Value *Addr = LV.getAddress(); 2041 2042 // __real is valid on scalars. This is a faster way of testing that. 2043 // __imag can only produce an rvalue on scalars. 2044 if (E->getOpcode() == UO_Real && 2045 !cast<llvm::PointerType>(Addr->getType()) 2046 ->getElementType()->isStructTy()) { 2047 assert(E->getSubExpr()->getType()->isArithmeticType()); 2048 return LV; 2049 } 2050 2051 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2052 2053 unsigned Idx = E->getOpcode() == UO_Imag; 2054 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 2055 Idx, "idx"), 2056 ExprTy); 2057 } 2058 case UO_PreInc: 2059 case UO_PreDec: { 2060 LValue LV = EmitLValue(E->getSubExpr()); 2061 bool isInc = E->getOpcode() == UO_PreInc; 2062 2063 if (E->getType()->isAnyComplexType()) 2064 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2065 else 2066 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2067 return LV; 2068 } 2069 } 2070 } 2071 2072 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2073 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2074 E->getType()); 2075 } 2076 2077 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2078 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2079 E->getType()); 2080 } 2081 2082 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2083 auto SL = E->getFunctionName(); 2084 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2085 StringRef FnName = CurFn->getName(); 2086 if (FnName.startswith("\01")) 2087 FnName = FnName.substr(1); 2088 StringRef NameItems[] = { 2089 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2090 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2091 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2092 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1); 2093 return MakeAddrLValue(C, E->getType()); 2094 } 2095 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2096 return MakeAddrLValue(C, E->getType()); 2097 } 2098 2099 /// Emit a type description suitable for use by a runtime sanitizer library. The 2100 /// format of a type descriptor is 2101 /// 2102 /// \code 2103 /// { i16 TypeKind, i16 TypeInfo } 2104 /// \endcode 2105 /// 2106 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2107 /// integer, 1 for a floating point value, and -1 for anything else. 2108 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2109 // Only emit each type's descriptor once. 2110 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2111 return C; 2112 2113 uint16_t TypeKind = -1; 2114 uint16_t TypeInfo = 0; 2115 2116 if (T->isIntegerType()) { 2117 TypeKind = 0; 2118 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2119 (T->isSignedIntegerType() ? 1 : 0); 2120 } else if (T->isFloatingType()) { 2121 TypeKind = 1; 2122 TypeInfo = getContext().getTypeSize(T); 2123 } 2124 2125 // Format the type name as if for a diagnostic, including quotes and 2126 // optionally an 'aka'. 2127 SmallString<32> Buffer; 2128 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2129 (intptr_t)T.getAsOpaquePtr(), 2130 StringRef(), StringRef(), None, Buffer, 2131 None); 2132 2133 llvm::Constant *Components[] = { 2134 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2135 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2136 }; 2137 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2138 2139 auto *GV = new llvm::GlobalVariable( 2140 CGM.getModule(), Descriptor->getType(), 2141 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2142 GV->setUnnamedAddr(true); 2143 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2144 2145 // Remember the descriptor for this type. 2146 CGM.setTypeDescriptorInMap(T, GV); 2147 2148 return GV; 2149 } 2150 2151 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2152 llvm::Type *TargetTy = IntPtrTy; 2153 2154 // Floating-point types which fit into intptr_t are bitcast to integers 2155 // and then passed directly (after zero-extension, if necessary). 2156 if (V->getType()->isFloatingPointTy()) { 2157 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2158 if (Bits <= TargetTy->getIntegerBitWidth()) 2159 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2160 Bits)); 2161 } 2162 2163 // Integers which fit in intptr_t are zero-extended and passed directly. 2164 if (V->getType()->isIntegerTy() && 2165 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2166 return Builder.CreateZExt(V, TargetTy); 2167 2168 // Pointers are passed directly, everything else is passed by address. 2169 if (!V->getType()->isPointerTy()) { 2170 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2171 Builder.CreateStore(V, Ptr); 2172 V = Ptr; 2173 } 2174 return Builder.CreatePtrToInt(V, TargetTy); 2175 } 2176 2177 /// \brief Emit a representation of a SourceLocation for passing to a handler 2178 /// in a sanitizer runtime library. The format for this data is: 2179 /// \code 2180 /// struct SourceLocation { 2181 /// const char *Filename; 2182 /// int32_t Line, Column; 2183 /// }; 2184 /// \endcode 2185 /// For an invalid SourceLocation, the Filename pointer is null. 2186 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2187 llvm::Constant *Filename; 2188 int Line, Column; 2189 2190 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2191 if (PLoc.isValid()) { 2192 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2193 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV); 2194 Filename = FilenameGV; 2195 Line = PLoc.getLine(); 2196 Column = PLoc.getColumn(); 2197 } else { 2198 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2199 Line = Column = 0; 2200 } 2201 2202 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2203 Builder.getInt32(Column)}; 2204 2205 return llvm::ConstantStruct::getAnon(Data); 2206 } 2207 2208 namespace { 2209 /// \brief Specify under what conditions this check can be recovered 2210 enum class CheckRecoverableKind { 2211 /// Always terminate program execution if this check fails. 2212 Unrecoverable, 2213 /// Check supports recovering, runtime has both fatal (noreturn) and 2214 /// non-fatal handlers for this check. 2215 Recoverable, 2216 /// Runtime conditionally aborts, always need to support recovery. 2217 AlwaysRecoverable 2218 }; 2219 } 2220 2221 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) { 2222 switch (Kind) { 2223 case SanitizerKind::Vptr: 2224 return CheckRecoverableKind::AlwaysRecoverable; 2225 case SanitizerKind::Return: 2226 case SanitizerKind::Unreachable: 2227 return CheckRecoverableKind::Unrecoverable; 2228 default: 2229 return CheckRecoverableKind::Recoverable; 2230 } 2231 } 2232 2233 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2234 llvm::FunctionType *FnType, 2235 ArrayRef<llvm::Value *> FnArgs, 2236 StringRef CheckName, 2237 CheckRecoverableKind RecoverKind, bool IsFatal, 2238 llvm::BasicBlock *ContBB) { 2239 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2240 bool NeedsAbortSuffix = 2241 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2242 std::string FnName = ("__ubsan_handle_" + CheckName + 2243 (NeedsAbortSuffix ? "_abort" : "")).str(); 2244 bool MayReturn = 2245 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2246 2247 llvm::AttrBuilder B; 2248 if (!MayReturn) { 2249 B.addAttribute(llvm::Attribute::NoReturn) 2250 .addAttribute(llvm::Attribute::NoUnwind); 2251 } 2252 B.addAttribute(llvm::Attribute::UWTable); 2253 2254 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2255 FnType, FnName, 2256 llvm::AttributeSet::get(CGF.getLLVMContext(), 2257 llvm::AttributeSet::FunctionIndex, B)); 2258 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2259 if (!MayReturn) { 2260 HandlerCall->setDoesNotReturn(); 2261 CGF.Builder.CreateUnreachable(); 2262 } else { 2263 CGF.Builder.CreateBr(ContBB); 2264 } 2265 } 2266 2267 void CodeGenFunction::EmitCheck( 2268 ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked, 2269 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2270 ArrayRef<llvm::Value *> DynamicArgs) { 2271 assert(IsSanitizerScope); 2272 assert(Checked.size() > 0); 2273 2274 llvm::Value *FatalCond = nullptr; 2275 llvm::Value *RecoverableCond = nullptr; 2276 for (int i = 0, n = Checked.size(); i < n; ++i) { 2277 llvm::Value *Check = Checked[i].first; 2278 llvm::Value *&Cond = 2279 CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2280 ? RecoverableCond 2281 : FatalCond; 2282 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2283 } 2284 2285 llvm::Value *JointCond; 2286 if (FatalCond && RecoverableCond) 2287 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2288 else 2289 JointCond = FatalCond ? FatalCond : RecoverableCond; 2290 assert(JointCond); 2291 2292 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2293 assert(SanOpts.has(Checked[0].second)); 2294 #ifndef NDEBUG 2295 for (int i = 1, n = Checked.size(); i < n; ++i) { 2296 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2297 "All recoverable kinds in a single check must be same!"); 2298 assert(SanOpts.has(Checked[i].second)); 2299 } 2300 #endif 2301 2302 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2303 assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable && 2304 "Runtime call required for AlwaysRecoverable kind!"); 2305 // Assume that -fsanitize-undefined-trap-on-error overrides 2306 // -fsanitize-recover= options, as we can only print meaningful error 2307 // message and recover if we have a runtime support. 2308 return EmitTrapCheck(JointCond); 2309 } 2310 2311 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2312 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2313 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2314 // Give hint that we very much don't expect to execute the handler 2315 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2316 llvm::MDBuilder MDHelper(getLLVMContext()); 2317 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2318 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2319 EmitBlock(Handlers); 2320 2321 // Emit handler arguments and create handler function type. 2322 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2323 auto *InfoPtr = 2324 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2325 llvm::GlobalVariable::PrivateLinkage, Info); 2326 InfoPtr->setUnnamedAddr(true); 2327 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2328 2329 SmallVector<llvm::Value *, 4> Args; 2330 SmallVector<llvm::Type *, 4> ArgTypes; 2331 Args.reserve(DynamicArgs.size() + 1); 2332 ArgTypes.reserve(DynamicArgs.size() + 1); 2333 2334 // Handler functions take an i8* pointing to the (handler-specific) static 2335 // information block, followed by a sequence of intptr_t arguments 2336 // representing operand values. 2337 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2338 ArgTypes.push_back(Int8PtrTy); 2339 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2340 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2341 ArgTypes.push_back(IntPtrTy); 2342 } 2343 2344 llvm::FunctionType *FnType = 2345 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2346 2347 if (!FatalCond || !RecoverableCond) { 2348 // Simple case: we need to generate a single handler call, either 2349 // fatal, or non-fatal. 2350 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2351 (FatalCond != nullptr), Cont); 2352 } else { 2353 // Emit two handler calls: first one for set of unrecoverable checks, 2354 // another one for recoverable. 2355 llvm::BasicBlock *NonFatalHandlerBB = 2356 createBasicBlock("non_fatal." + CheckName); 2357 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2358 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2359 EmitBlock(FatalHandlerBB); 2360 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2361 NonFatalHandlerBB); 2362 EmitBlock(NonFatalHandlerBB); 2363 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2364 Cont); 2365 } 2366 2367 EmitBlock(Cont); 2368 } 2369 2370 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2371 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2372 2373 // If we're optimizing, collapse all calls to trap down to just one per 2374 // function to save on code size. 2375 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2376 TrapBB = createBasicBlock("trap"); 2377 Builder.CreateCondBr(Checked, Cont, TrapBB); 2378 EmitBlock(TrapBB); 2379 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2380 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2381 TrapCall->setDoesNotReturn(); 2382 TrapCall->setDoesNotThrow(); 2383 Builder.CreateUnreachable(); 2384 } else { 2385 Builder.CreateCondBr(Checked, Cont, TrapBB); 2386 } 2387 2388 EmitBlock(Cont); 2389 } 2390 2391 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2392 /// array to pointer, return the array subexpression. 2393 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2394 // If this isn't just an array->pointer decay, bail out. 2395 const auto *CE = dyn_cast<CastExpr>(E); 2396 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2397 return nullptr; 2398 2399 // If this is a decay from variable width array, bail out. 2400 const Expr *SubExpr = CE->getSubExpr(); 2401 if (SubExpr->getType()->isVariableArrayType()) 2402 return nullptr; 2403 2404 return SubExpr; 2405 } 2406 2407 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2408 bool Accessed) { 2409 // The index must always be an integer, which is not an aggregate. Emit it. 2410 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2411 QualType IdxTy = E->getIdx()->getType(); 2412 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2413 2414 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2415 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2416 2417 // If the base is a vector type, then we are forming a vector element lvalue 2418 // with this subscript. 2419 if (E->getBase()->getType()->isVectorType() && 2420 !isa<ExtVectorElementExpr>(E->getBase())) { 2421 // Emit the vector as an lvalue to get its address. 2422 LValue LHS = EmitLValue(E->getBase()); 2423 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2424 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2425 E->getBase()->getType(), LHS.getAlignment()); 2426 } 2427 2428 // Extend or truncate the index type to 32 or 64-bits. 2429 if (Idx->getType() != IntPtrTy) 2430 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2431 2432 // We know that the pointer points to a type of the correct size, unless the 2433 // size is a VLA or Objective-C interface. 2434 llvm::Value *Address = nullptr; 2435 CharUnits ArrayAlignment; 2436 if (isa<ExtVectorElementExpr>(E->getBase())) { 2437 LValue LV = EmitLValue(E->getBase()); 2438 Address = EmitExtVectorElementLValue(LV); 2439 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2440 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2441 QualType EQT = ExprVT->getElementType(); 2442 return MakeAddrLValue(Address, EQT, 2443 getContext().getTypeAlignInChars(EQT)); 2444 } 2445 else if (const VariableArrayType *vla = 2446 getContext().getAsVariableArrayType(E->getType())) { 2447 // The base must be a pointer, which is not an aggregate. Emit 2448 // it. It needs to be emitted first in case it's what captures 2449 // the VLA bounds. 2450 Address = EmitScalarExpr(E->getBase()); 2451 2452 // The element count here is the total number of non-VLA elements. 2453 llvm::Value *numElements = getVLASize(vla).first; 2454 2455 // Effectively, the multiply by the VLA size is part of the GEP. 2456 // GEP indexes are signed, and scaling an index isn't permitted to 2457 // signed-overflow, so we use the same semantics for our explicit 2458 // multiply. We suppress this if overflow is not undefined behavior. 2459 if (getLangOpts().isSignedOverflowDefined()) { 2460 Idx = Builder.CreateMul(Idx, numElements); 2461 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2462 } else { 2463 Idx = Builder.CreateNSWMul(Idx, numElements); 2464 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2465 } 2466 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2467 // Indexing over an interface, as in "NSString *P; P[4];" 2468 llvm::Value *InterfaceSize = 2469 llvm::ConstantInt::get(Idx->getType(), 2470 getContext().getTypeSizeInChars(OIT).getQuantity()); 2471 2472 Idx = Builder.CreateMul(Idx, InterfaceSize); 2473 2474 // The base must be a pointer, which is not an aggregate. Emit it. 2475 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2476 Address = EmitCastToVoidPtr(Base); 2477 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2478 Address = Builder.CreateBitCast(Address, Base->getType()); 2479 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2480 // If this is A[i] where A is an array, the frontend will have decayed the 2481 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2482 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2483 // "gep x, i" here. Emit one "gep A, 0, i". 2484 assert(Array->getType()->isArrayType() && 2485 "Array to pointer decay must have array source type!"); 2486 LValue ArrayLV; 2487 // For simple multidimensional array indexing, set the 'accessed' flag for 2488 // better bounds-checking of the base expression. 2489 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2490 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2491 else 2492 ArrayLV = EmitLValue(Array); 2493 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2494 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2495 llvm::Value *Args[] = { Zero, Idx }; 2496 2497 // Propagate the alignment from the array itself to the result. 2498 ArrayAlignment = ArrayLV.getAlignment(); 2499 2500 if (getLangOpts().isSignedOverflowDefined()) 2501 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2502 else 2503 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2504 } else { 2505 // The base must be a pointer, which is not an aggregate. Emit it. 2506 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2507 if (getLangOpts().isSignedOverflowDefined()) 2508 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2509 else 2510 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2511 } 2512 2513 QualType T = E->getBase()->getType()->getPointeeType(); 2514 assert(!T.isNull() && 2515 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2516 2517 2518 // Limit the alignment to that of the result type. 2519 LValue LV; 2520 if (!ArrayAlignment.isZero()) { 2521 CharUnits Align = getContext().getTypeAlignInChars(T); 2522 ArrayAlignment = std::min(Align, ArrayAlignment); 2523 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2524 } else { 2525 LV = MakeNaturalAlignAddrLValue(Address, T); 2526 } 2527 2528 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2529 2530 if (getLangOpts().ObjC1 && 2531 getLangOpts().getGC() != LangOptions::NonGC) { 2532 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2533 setObjCGCLValueClass(getContext(), E, LV); 2534 } 2535 return LV; 2536 } 2537 2538 static 2539 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2540 SmallVectorImpl<unsigned> &Elts) { 2541 SmallVector<llvm::Constant*, 4> CElts; 2542 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2543 CElts.push_back(Builder.getInt32(Elts[i])); 2544 2545 return llvm::ConstantVector::get(CElts); 2546 } 2547 2548 LValue CodeGenFunction:: 2549 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2550 // Emit the base vector as an l-value. 2551 LValue Base; 2552 2553 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2554 if (E->isArrow()) { 2555 // If it is a pointer to a vector, emit the address and form an lvalue with 2556 // it. 2557 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2558 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2559 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2560 Base.getQuals().removeObjCGCAttr(); 2561 } else if (E->getBase()->isGLValue()) { 2562 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2563 // emit the base as an lvalue. 2564 assert(E->getBase()->getType()->isVectorType()); 2565 Base = EmitLValue(E->getBase()); 2566 } else { 2567 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2568 assert(E->getBase()->getType()->isVectorType() && 2569 "Result must be a vector"); 2570 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2571 2572 // Store the vector to memory (because LValue wants an address). 2573 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2574 Builder.CreateStore(Vec, VecMem); 2575 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2576 } 2577 2578 QualType type = 2579 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2580 2581 // Encode the element access list into a vector of unsigned indices. 2582 SmallVector<unsigned, 4> Indices; 2583 E->getEncodedElementAccess(Indices); 2584 2585 if (Base.isSimple()) { 2586 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2587 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2588 Base.getAlignment()); 2589 } 2590 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2591 2592 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2593 SmallVector<llvm::Constant *, 4> CElts; 2594 2595 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2596 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2597 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2598 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2599 Base.getAlignment()); 2600 } 2601 2602 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2603 Expr *BaseExpr = E->getBase(); 2604 2605 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2606 LValue BaseLV; 2607 if (E->isArrow()) { 2608 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2609 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2610 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2611 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2612 } else 2613 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2614 2615 NamedDecl *ND = E->getMemberDecl(); 2616 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2617 LValue LV = EmitLValueForField(BaseLV, Field); 2618 setObjCGCLValueClass(getContext(), E, LV); 2619 return LV; 2620 } 2621 2622 if (auto *VD = dyn_cast<VarDecl>(ND)) 2623 return EmitGlobalVarDeclLValue(*this, E, VD); 2624 2625 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2626 return EmitFunctionDeclLValue(*this, E, FD); 2627 2628 llvm_unreachable("Unhandled member declaration!"); 2629 } 2630 2631 /// Given that we are currently emitting a lambda, emit an l-value for 2632 /// one of its members. 2633 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2634 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2635 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2636 QualType LambdaTagType = 2637 getContext().getTagDeclType(Field->getParent()); 2638 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2639 return EmitLValueForField(LambdaLV, Field); 2640 } 2641 2642 LValue CodeGenFunction::EmitLValueForField(LValue base, 2643 const FieldDecl *field) { 2644 if (field->isBitField()) { 2645 const CGRecordLayout &RL = 2646 CGM.getTypes().getCGRecordLayout(field->getParent()); 2647 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2648 llvm::Value *Addr = base.getAddress(); 2649 unsigned Idx = RL.getLLVMFieldNo(field); 2650 if (Idx != 0) 2651 // For structs, we GEP to the field that the record layout suggests. 2652 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2653 // Get the access type. 2654 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2655 getLLVMContext(), Info.StorageSize, 2656 CGM.getContext().getTargetAddressSpace(base.getType())); 2657 if (Addr->getType() != PtrTy) 2658 Addr = Builder.CreateBitCast(Addr, PtrTy); 2659 2660 QualType fieldType = 2661 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2662 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2663 } 2664 2665 const RecordDecl *rec = field->getParent(); 2666 QualType type = field->getType(); 2667 CharUnits alignment = getContext().getDeclAlign(field); 2668 2669 // FIXME: It should be impossible to have an LValue without alignment for a 2670 // complete type. 2671 if (!base.getAlignment().isZero()) 2672 alignment = std::min(alignment, base.getAlignment()); 2673 2674 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2675 2676 llvm::Value *addr = base.getAddress(); 2677 unsigned cvr = base.getVRQualifiers(); 2678 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2679 if (rec->isUnion()) { 2680 // For unions, there is no pointer adjustment. 2681 assert(!type->isReferenceType() && "union has reference member"); 2682 // TODO: handle path-aware TBAA for union. 2683 TBAAPath = false; 2684 } else { 2685 // For structs, we GEP to the field that the record layout suggests. 2686 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2687 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2688 2689 // If this is a reference field, load the reference right now. 2690 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2691 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2692 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2693 load->setAlignment(alignment.getQuantity()); 2694 2695 // Loading the reference will disable path-aware TBAA. 2696 TBAAPath = false; 2697 if (CGM.shouldUseTBAA()) { 2698 llvm::MDNode *tbaa; 2699 if (mayAlias) 2700 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2701 else 2702 tbaa = CGM.getTBAAInfo(type); 2703 if (tbaa) 2704 CGM.DecorateInstruction(load, tbaa); 2705 } 2706 2707 addr = load; 2708 mayAlias = false; 2709 type = refType->getPointeeType(); 2710 if (type->isIncompleteType()) 2711 alignment = CharUnits(); 2712 else 2713 alignment = getContext().getTypeAlignInChars(type); 2714 cvr = 0; // qualifiers don't recursively apply to referencee 2715 } 2716 } 2717 2718 // Make sure that the address is pointing to the right type. This is critical 2719 // for both unions and structs. A union needs a bitcast, a struct element 2720 // will need a bitcast if the LLVM type laid out doesn't match the desired 2721 // type. 2722 addr = EmitBitCastOfLValueToProperType(*this, addr, 2723 CGM.getTypes().ConvertTypeForMem(type), 2724 field->getName()); 2725 2726 if (field->hasAttr<AnnotateAttr>()) 2727 addr = EmitFieldAnnotations(field, addr); 2728 2729 LValue LV = MakeAddrLValue(addr, type, alignment); 2730 LV.getQuals().addCVRQualifiers(cvr); 2731 if (TBAAPath) { 2732 const ASTRecordLayout &Layout = 2733 getContext().getASTRecordLayout(field->getParent()); 2734 // Set the base type to be the base type of the base LValue and 2735 // update offset to be relative to the base type. 2736 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2737 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2738 Layout.getFieldOffset(field->getFieldIndex()) / 2739 getContext().getCharWidth()); 2740 } 2741 2742 // __weak attribute on a field is ignored. 2743 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2744 LV.getQuals().removeObjCGCAttr(); 2745 2746 // Fields of may_alias structs act like 'char' for TBAA purposes. 2747 // FIXME: this should get propagated down through anonymous structs 2748 // and unions. 2749 if (mayAlias && LV.getTBAAInfo()) 2750 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2751 2752 return LV; 2753 } 2754 2755 LValue 2756 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2757 const FieldDecl *Field) { 2758 QualType FieldType = Field->getType(); 2759 2760 if (!FieldType->isReferenceType()) 2761 return EmitLValueForField(Base, Field); 2762 2763 const CGRecordLayout &RL = 2764 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2765 unsigned idx = RL.getLLVMFieldNo(Field); 2766 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2767 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2768 2769 // Make sure that the address is pointing to the right type. This is critical 2770 // for both unions and structs. A union needs a bitcast, a struct element 2771 // will need a bitcast if the LLVM type laid out doesn't match the desired 2772 // type. 2773 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2774 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2775 2776 CharUnits Alignment = getContext().getDeclAlign(Field); 2777 2778 // FIXME: It should be impossible to have an LValue without alignment for a 2779 // complete type. 2780 if (!Base.getAlignment().isZero()) 2781 Alignment = std::min(Alignment, Base.getAlignment()); 2782 2783 return MakeAddrLValue(V, FieldType, Alignment); 2784 } 2785 2786 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2787 if (E->isFileScope()) { 2788 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2789 return MakeAddrLValue(GlobalPtr, E->getType()); 2790 } 2791 if (E->getType()->isVariablyModifiedType()) 2792 // make sure to emit the VLA size. 2793 EmitVariablyModifiedType(E->getType()); 2794 2795 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2796 const Expr *InitExpr = E->getInitializer(); 2797 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2798 2799 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2800 /*Init*/ true); 2801 2802 return Result; 2803 } 2804 2805 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2806 if (!E->isGLValue()) 2807 // Initializing an aggregate temporary in C++11: T{...}. 2808 return EmitAggExprToLValue(E); 2809 2810 // An lvalue initializer list must be initializing a reference. 2811 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2812 return EmitLValue(E->getInit(0)); 2813 } 2814 2815 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2816 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2817 /// LValue is returned and the current block has been terminated. 2818 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2819 const Expr *Operand) { 2820 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2821 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2822 return None; 2823 } 2824 2825 return CGF.EmitLValue(Operand); 2826 } 2827 2828 LValue CodeGenFunction:: 2829 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2830 if (!expr->isGLValue()) { 2831 // ?: here should be an aggregate. 2832 assert(hasAggregateEvaluationKind(expr->getType()) && 2833 "Unexpected conditional operator!"); 2834 return EmitAggExprToLValue(expr); 2835 } 2836 2837 OpaqueValueMapping binding(*this, expr); 2838 RegionCounter Cnt = getPGORegionCounter(expr); 2839 2840 const Expr *condExpr = expr->getCond(); 2841 bool CondExprBool; 2842 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2843 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2844 if (!CondExprBool) std::swap(live, dead); 2845 2846 if (!ContainsLabel(dead)) { 2847 // If the true case is live, we need to track its region. 2848 if (CondExprBool) 2849 Cnt.beginRegion(Builder); 2850 return EmitLValue(live); 2851 } 2852 } 2853 2854 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2855 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2856 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2857 2858 ConditionalEvaluation eval(*this); 2859 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2860 2861 // Any temporaries created here are conditional. 2862 EmitBlock(lhsBlock); 2863 Cnt.beginRegion(Builder); 2864 eval.begin(*this); 2865 Optional<LValue> lhs = 2866 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2867 eval.end(*this); 2868 2869 if (lhs && !lhs->isSimple()) 2870 return EmitUnsupportedLValue(expr, "conditional operator"); 2871 2872 lhsBlock = Builder.GetInsertBlock(); 2873 if (lhs) 2874 Builder.CreateBr(contBlock); 2875 2876 // Any temporaries created here are conditional. 2877 EmitBlock(rhsBlock); 2878 eval.begin(*this); 2879 Optional<LValue> rhs = 2880 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2881 eval.end(*this); 2882 if (rhs && !rhs->isSimple()) 2883 return EmitUnsupportedLValue(expr, "conditional operator"); 2884 rhsBlock = Builder.GetInsertBlock(); 2885 2886 EmitBlock(contBlock); 2887 2888 if (lhs && rhs) { 2889 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2890 2, "cond-lvalue"); 2891 phi->addIncoming(lhs->getAddress(), lhsBlock); 2892 phi->addIncoming(rhs->getAddress(), rhsBlock); 2893 return MakeAddrLValue(phi, expr->getType()); 2894 } else { 2895 assert((lhs || rhs) && 2896 "both operands of glvalue conditional are throw-expressions?"); 2897 return lhs ? *lhs : *rhs; 2898 } 2899 } 2900 2901 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2902 /// type. If the cast is to a reference, we can have the usual lvalue result, 2903 /// otherwise if a cast is needed by the code generator in an lvalue context, 2904 /// then it must mean that we need the address of an aggregate in order to 2905 /// access one of its members. This can happen for all the reasons that casts 2906 /// are permitted with aggregate result, including noop aggregate casts, and 2907 /// cast from scalar to union. 2908 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2909 switch (E->getCastKind()) { 2910 case CK_ToVoid: 2911 case CK_BitCast: 2912 case CK_ArrayToPointerDecay: 2913 case CK_FunctionToPointerDecay: 2914 case CK_NullToMemberPointer: 2915 case CK_NullToPointer: 2916 case CK_IntegralToPointer: 2917 case CK_PointerToIntegral: 2918 case CK_PointerToBoolean: 2919 case CK_VectorSplat: 2920 case CK_IntegralCast: 2921 case CK_IntegralToBoolean: 2922 case CK_IntegralToFloating: 2923 case CK_FloatingToIntegral: 2924 case CK_FloatingToBoolean: 2925 case CK_FloatingCast: 2926 case CK_FloatingRealToComplex: 2927 case CK_FloatingComplexToReal: 2928 case CK_FloatingComplexToBoolean: 2929 case CK_FloatingComplexCast: 2930 case CK_FloatingComplexToIntegralComplex: 2931 case CK_IntegralRealToComplex: 2932 case CK_IntegralComplexToReal: 2933 case CK_IntegralComplexToBoolean: 2934 case CK_IntegralComplexCast: 2935 case CK_IntegralComplexToFloatingComplex: 2936 case CK_DerivedToBaseMemberPointer: 2937 case CK_BaseToDerivedMemberPointer: 2938 case CK_MemberPointerToBoolean: 2939 case CK_ReinterpretMemberPointer: 2940 case CK_AnyPointerToBlockPointerCast: 2941 case CK_ARCProduceObject: 2942 case CK_ARCConsumeObject: 2943 case CK_ARCReclaimReturnedObject: 2944 case CK_ARCExtendBlockObject: 2945 case CK_CopyAndAutoreleaseBlockObject: 2946 case CK_AddressSpaceConversion: 2947 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2948 2949 case CK_Dependent: 2950 llvm_unreachable("dependent cast kind in IR gen!"); 2951 2952 case CK_BuiltinFnToFnPtr: 2953 llvm_unreachable("builtin functions are handled elsewhere"); 2954 2955 // These are never l-values; just use the aggregate emission code. 2956 case CK_NonAtomicToAtomic: 2957 case CK_AtomicToNonAtomic: 2958 return EmitAggExprToLValue(E); 2959 2960 case CK_Dynamic: { 2961 LValue LV = EmitLValue(E->getSubExpr()); 2962 llvm::Value *V = LV.getAddress(); 2963 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2964 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2965 } 2966 2967 case CK_ConstructorConversion: 2968 case CK_UserDefinedConversion: 2969 case CK_CPointerToObjCPointerCast: 2970 case CK_BlockPointerToObjCPointerCast: 2971 case CK_NoOp: 2972 case CK_LValueToRValue: 2973 return EmitLValue(E->getSubExpr()); 2974 2975 case CK_UncheckedDerivedToBase: 2976 case CK_DerivedToBase: { 2977 const RecordType *DerivedClassTy = 2978 E->getSubExpr()->getType()->getAs<RecordType>(); 2979 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2980 2981 LValue LV = EmitLValue(E->getSubExpr()); 2982 llvm::Value *This = LV.getAddress(); 2983 2984 // Perform the derived-to-base conversion 2985 llvm::Value *Base = GetAddressOfBaseClass( 2986 This, DerivedClassDecl, E->path_begin(), E->path_end(), 2987 /*NullCheckValue=*/false, E->getExprLoc()); 2988 2989 return MakeAddrLValue(Base, E->getType()); 2990 } 2991 case CK_ToUnion: 2992 return EmitAggExprToLValue(E); 2993 case CK_BaseToDerived: { 2994 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2995 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2996 2997 LValue LV = EmitLValue(E->getSubExpr()); 2998 2999 // Perform the base-to-derived conversion 3000 llvm::Value *Derived = 3001 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3002 E->path_begin(), E->path_end(), 3003 /*NullCheckValue=*/false); 3004 3005 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3006 // performed and the object is not of the derived type. 3007 if (sanitizePerformTypeCheck()) 3008 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3009 Derived, E->getType()); 3010 3011 return MakeAddrLValue(Derived, E->getType()); 3012 } 3013 case CK_LValueBitCast: { 3014 // This must be a reinterpret_cast (or c-style equivalent). 3015 const auto *CE = cast<ExplicitCastExpr>(E); 3016 3017 LValue LV = EmitLValue(E->getSubExpr()); 3018 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3019 ConvertType(CE->getTypeAsWritten())); 3020 return MakeAddrLValue(V, E->getType()); 3021 } 3022 case CK_ObjCObjectLValueCast: { 3023 LValue LV = EmitLValue(E->getSubExpr()); 3024 QualType ToType = getContext().getLValueReferenceType(E->getType()); 3025 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3026 ConvertType(ToType)); 3027 return MakeAddrLValue(V, E->getType()); 3028 } 3029 case CK_ZeroToOCLEvent: 3030 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3031 } 3032 3033 llvm_unreachable("Unhandled lvalue cast kind?"); 3034 } 3035 3036 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3037 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3038 return getOpaqueLValueMapping(e); 3039 } 3040 3041 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3042 const FieldDecl *FD, 3043 SourceLocation Loc) { 3044 QualType FT = FD->getType(); 3045 LValue FieldLV = EmitLValueForField(LV, FD); 3046 switch (getEvaluationKind(FT)) { 3047 case TEK_Complex: 3048 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3049 case TEK_Aggregate: 3050 return FieldLV.asAggregateRValue(); 3051 case TEK_Scalar: 3052 return EmitLoadOfLValue(FieldLV, Loc); 3053 } 3054 llvm_unreachable("bad evaluation kind"); 3055 } 3056 3057 //===--------------------------------------------------------------------===// 3058 // Expression Emission 3059 //===--------------------------------------------------------------------===// 3060 3061 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3062 ReturnValueSlot ReturnValue) { 3063 // Builtins never have block type. 3064 if (E->getCallee()->getType()->isBlockPointerType()) 3065 return EmitBlockCallExpr(E, ReturnValue); 3066 3067 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3068 return EmitCXXMemberCallExpr(CE, ReturnValue); 3069 3070 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3071 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3072 3073 const Decl *TargetDecl = E->getCalleeDecl(); 3074 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3075 if (unsigned builtinID = FD->getBuiltinID()) 3076 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3077 } 3078 3079 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3080 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3081 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3082 3083 if (const auto *PseudoDtor = 3084 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3085 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3086 if (getLangOpts().ObjCAutoRefCount && 3087 DestroyedType->isObjCLifetimeType() && 3088 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 3089 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 3090 // Automatic Reference Counting: 3091 // If the pseudo-expression names a retainable object with weak or 3092 // strong lifetime, the object shall be released. 3093 Expr *BaseExpr = PseudoDtor->getBase(); 3094 llvm::Value *BaseValue = nullptr; 3095 Qualifiers BaseQuals; 3096 3097 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3098 if (PseudoDtor->isArrow()) { 3099 BaseValue = EmitScalarExpr(BaseExpr); 3100 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3101 BaseQuals = PTy->getPointeeType().getQualifiers(); 3102 } else { 3103 LValue BaseLV = EmitLValue(BaseExpr); 3104 BaseValue = BaseLV.getAddress(); 3105 QualType BaseTy = BaseExpr->getType(); 3106 BaseQuals = BaseTy.getQualifiers(); 3107 } 3108 3109 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3110 case Qualifiers::OCL_None: 3111 case Qualifiers::OCL_ExplicitNone: 3112 case Qualifiers::OCL_Autoreleasing: 3113 break; 3114 3115 case Qualifiers::OCL_Strong: 3116 EmitARCRelease(Builder.CreateLoad(BaseValue, 3117 PseudoDtor->getDestroyedType().isVolatileQualified()), 3118 ARCPreciseLifetime); 3119 break; 3120 3121 case Qualifiers::OCL_Weak: 3122 EmitARCDestroyWeak(BaseValue); 3123 break; 3124 } 3125 } else { 3126 // C++ [expr.pseudo]p1: 3127 // The result shall only be used as the operand for the function call 3128 // operator (), and the result of such a call has type void. The only 3129 // effect is the evaluation of the postfix-expression before the dot or 3130 // arrow. 3131 EmitScalarExpr(E->getCallee()); 3132 } 3133 3134 return RValue::get(nullptr); 3135 } 3136 3137 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3138 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3139 TargetDecl); 3140 } 3141 3142 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3143 // Comma expressions just emit their LHS then their RHS as an l-value. 3144 if (E->getOpcode() == BO_Comma) { 3145 EmitIgnoredExpr(E->getLHS()); 3146 EnsureInsertPoint(); 3147 return EmitLValue(E->getRHS()); 3148 } 3149 3150 if (E->getOpcode() == BO_PtrMemD || 3151 E->getOpcode() == BO_PtrMemI) 3152 return EmitPointerToDataMemberBinaryExpr(E); 3153 3154 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3155 3156 // Note that in all of these cases, __block variables need the RHS 3157 // evaluated first just in case the variable gets moved by the RHS. 3158 3159 switch (getEvaluationKind(E->getType())) { 3160 case TEK_Scalar: { 3161 switch (E->getLHS()->getType().getObjCLifetime()) { 3162 case Qualifiers::OCL_Strong: 3163 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3164 3165 case Qualifiers::OCL_Autoreleasing: 3166 return EmitARCStoreAutoreleasing(E).first; 3167 3168 // No reason to do any of these differently. 3169 case Qualifiers::OCL_None: 3170 case Qualifiers::OCL_ExplicitNone: 3171 case Qualifiers::OCL_Weak: 3172 break; 3173 } 3174 3175 RValue RV = EmitAnyExpr(E->getRHS()); 3176 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3177 EmitStoreThroughLValue(RV, LV); 3178 return LV; 3179 } 3180 3181 case TEK_Complex: 3182 return EmitComplexAssignmentLValue(E); 3183 3184 case TEK_Aggregate: 3185 return EmitAggExprToLValue(E); 3186 } 3187 llvm_unreachable("bad evaluation kind"); 3188 } 3189 3190 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3191 RValue RV = EmitCallExpr(E); 3192 3193 if (!RV.isScalar()) 3194 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3195 3196 assert(E->getCallReturnType()->isReferenceType() && 3197 "Can't have a scalar return unless the return type is a " 3198 "reference type!"); 3199 3200 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3201 } 3202 3203 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3204 // FIXME: This shouldn't require another copy. 3205 return EmitAggExprToLValue(E); 3206 } 3207 3208 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3209 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3210 && "binding l-value to type which needs a temporary"); 3211 AggValueSlot Slot = CreateAggTemp(E->getType()); 3212 EmitCXXConstructExpr(E, Slot); 3213 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3214 } 3215 3216 LValue 3217 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3218 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3219 } 3220 3221 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3222 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3223 ConvertType(E->getType())->getPointerTo()); 3224 } 3225 3226 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3227 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3228 } 3229 3230 LValue 3231 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3232 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3233 Slot.setExternallyDestructed(); 3234 EmitAggExpr(E->getSubExpr(), Slot); 3235 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3236 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3237 } 3238 3239 LValue 3240 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3241 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3242 EmitLambdaExpr(E, Slot); 3243 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3244 } 3245 3246 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3247 RValue RV = EmitObjCMessageExpr(E); 3248 3249 if (!RV.isScalar()) 3250 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3251 3252 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3253 "Can't have a scalar return unless the return type is a " 3254 "reference type!"); 3255 3256 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3257 } 3258 3259 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3260 llvm::Value *V = 3261 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3262 return MakeAddrLValue(V, E->getType()); 3263 } 3264 3265 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3266 const ObjCIvarDecl *Ivar) { 3267 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3268 } 3269 3270 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3271 llvm::Value *BaseValue, 3272 const ObjCIvarDecl *Ivar, 3273 unsigned CVRQualifiers) { 3274 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3275 Ivar, CVRQualifiers); 3276 } 3277 3278 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3279 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3280 llvm::Value *BaseValue = nullptr; 3281 const Expr *BaseExpr = E->getBase(); 3282 Qualifiers BaseQuals; 3283 QualType ObjectTy; 3284 if (E->isArrow()) { 3285 BaseValue = EmitScalarExpr(BaseExpr); 3286 ObjectTy = BaseExpr->getType()->getPointeeType(); 3287 BaseQuals = ObjectTy.getQualifiers(); 3288 } else { 3289 LValue BaseLV = EmitLValue(BaseExpr); 3290 // FIXME: this isn't right for bitfields. 3291 BaseValue = BaseLV.getAddress(); 3292 ObjectTy = BaseExpr->getType(); 3293 BaseQuals = ObjectTy.getQualifiers(); 3294 } 3295 3296 LValue LV = 3297 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3298 BaseQuals.getCVRQualifiers()); 3299 setObjCGCLValueClass(getContext(), E, LV); 3300 return LV; 3301 } 3302 3303 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3304 // Can only get l-value for message expression returning aggregate type 3305 RValue RV = EmitAnyExprToTemp(E); 3306 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3307 } 3308 3309 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3310 const CallExpr *E, ReturnValueSlot ReturnValue, 3311 const Decl *TargetDecl, llvm::Value *Chain) { 3312 // Get the actual function type. The callee type will always be a pointer to 3313 // function type or a block pointer type. 3314 assert(CalleeType->isFunctionPointerType() && 3315 "Call must have function pointer type!"); 3316 3317 CalleeType = getContext().getCanonicalType(CalleeType); 3318 3319 const auto *FnType = 3320 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3321 3322 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 3323 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3324 if (llvm::Constant *PrefixSig = 3325 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3326 SanitizerScope SanScope(this); 3327 llvm::Constant *FTRTTIConst = 3328 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3329 llvm::Type *PrefixStructTyElems[] = { 3330 PrefixSig->getType(), 3331 FTRTTIConst->getType() 3332 }; 3333 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3334 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3335 3336 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3337 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3338 llvm::Value *CalleeSigPtr = 3339 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3340 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3341 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3342 3343 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3344 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3345 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3346 3347 EmitBlock(TypeCheck); 3348 llvm::Value *CalleeRTTIPtr = 3349 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3350 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3351 llvm::Value *CalleeRTTIMatch = 3352 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3353 llvm::Constant *StaticData[] = { 3354 EmitCheckSourceLocation(E->getLocStart()), 3355 EmitCheckTypeDescriptor(CalleeType) 3356 }; 3357 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 3358 "function_type_mismatch", StaticData, Callee); 3359 3360 Builder.CreateBr(Cont); 3361 EmitBlock(Cont); 3362 } 3363 } 3364 3365 CallArgList Args; 3366 if (Chain) 3367 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 3368 CGM.getContext().VoidPtrTy); 3369 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(), 3370 E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0); 3371 3372 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 3373 Args, FnType, /*isChainCall=*/Chain); 3374 3375 // C99 6.5.2.2p6: 3376 // If the expression that denotes the called function has a type 3377 // that does not include a prototype, [the default argument 3378 // promotions are performed]. If the number of arguments does not 3379 // equal the number of parameters, the behavior is undefined. If 3380 // the function is defined with a type that includes a prototype, 3381 // and either the prototype ends with an ellipsis (, ...) or the 3382 // types of the arguments after promotion are not compatible with 3383 // the types of the parameters, the behavior is undefined. If the 3384 // function is defined with a type that does not include a 3385 // prototype, and the types of the arguments after promotion are 3386 // not compatible with those of the parameters after promotion, 3387 // the behavior is undefined [except in some trivial cases]. 3388 // That is, in the general case, we should assume that a call 3389 // through an unprototyped function type works like a *non-variadic* 3390 // call. The way we make this work is to cast to the exact type 3391 // of the promoted arguments. 3392 // 3393 // Chain calls use this same code path to add the invisible chain parameter 3394 // to the function type. 3395 if (isa<FunctionNoProtoType>(FnType) || Chain) { 3396 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3397 CalleeTy = CalleeTy->getPointerTo(); 3398 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3399 } 3400 3401 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3402 } 3403 3404 LValue CodeGenFunction:: 3405 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3406 llvm::Value *BaseV; 3407 if (E->getOpcode() == BO_PtrMemI) 3408 BaseV = EmitScalarExpr(E->getLHS()); 3409 else 3410 BaseV = EmitLValue(E->getLHS()).getAddress(); 3411 3412 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3413 3414 const MemberPointerType *MPT 3415 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3416 3417 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3418 *this, E, BaseV, OffsetV, MPT); 3419 3420 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3421 } 3422 3423 /// Given the address of a temporary variable, produce an r-value of 3424 /// its type. 3425 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3426 QualType type, 3427 SourceLocation loc) { 3428 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3429 switch (getEvaluationKind(type)) { 3430 case TEK_Complex: 3431 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3432 case TEK_Aggregate: 3433 return lvalue.asAggregateRValue(); 3434 case TEK_Scalar: 3435 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3436 } 3437 llvm_unreachable("bad evaluation kind"); 3438 } 3439 3440 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3441 assert(Val->getType()->isFPOrFPVectorTy()); 3442 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3443 return; 3444 3445 llvm::MDBuilder MDHelper(getLLVMContext()); 3446 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3447 3448 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3449 } 3450 3451 namespace { 3452 struct LValueOrRValue { 3453 LValue LV; 3454 RValue RV; 3455 }; 3456 } 3457 3458 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3459 const PseudoObjectExpr *E, 3460 bool forLValue, 3461 AggValueSlot slot) { 3462 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3463 3464 // Find the result expression, if any. 3465 const Expr *resultExpr = E->getResultExpr(); 3466 LValueOrRValue result; 3467 3468 for (PseudoObjectExpr::const_semantics_iterator 3469 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3470 const Expr *semantic = *i; 3471 3472 // If this semantic expression is an opaque value, bind it 3473 // to the result of its source expression. 3474 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3475 3476 // If this is the result expression, we may need to evaluate 3477 // directly into the slot. 3478 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3479 OVMA opaqueData; 3480 if (ov == resultExpr && ov->isRValue() && !forLValue && 3481 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3482 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3483 3484 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3485 opaqueData = OVMA::bind(CGF, ov, LV); 3486 result.RV = slot.asRValue(); 3487 3488 // Otherwise, emit as normal. 3489 } else { 3490 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3491 3492 // If this is the result, also evaluate the result now. 3493 if (ov == resultExpr) { 3494 if (forLValue) 3495 result.LV = CGF.EmitLValue(ov); 3496 else 3497 result.RV = CGF.EmitAnyExpr(ov, slot); 3498 } 3499 } 3500 3501 opaques.push_back(opaqueData); 3502 3503 // Otherwise, if the expression is the result, evaluate it 3504 // and remember the result. 3505 } else if (semantic == resultExpr) { 3506 if (forLValue) 3507 result.LV = CGF.EmitLValue(semantic); 3508 else 3509 result.RV = CGF.EmitAnyExpr(semantic, slot); 3510 3511 // Otherwise, evaluate the expression in an ignored context. 3512 } else { 3513 CGF.EmitIgnoredExpr(semantic); 3514 } 3515 } 3516 3517 // Unbind all the opaques now. 3518 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3519 opaques[i].unbind(CGF); 3520 3521 return result; 3522 } 3523 3524 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3525 AggValueSlot slot) { 3526 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3527 } 3528 3529 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3530 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3531 } 3532