1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 //===--------------------------------------------------------------------===//
39 //                        Miscellaneous Helper Methods
40 //===--------------------------------------------------------------------===//
41 
42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
43   unsigned addressSpace =
44     cast<llvm::PointerType>(value->getType())->getAddressSpace();
45 
46   llvm::PointerType *destType = Int8PtrTy;
47   if (addressSpace)
48     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
49 
50   if (value->getType() == destType) return value;
51   return Builder.CreateBitCast(value, destType);
52 }
53 
54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
55 /// block.
56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
57                                                     const Twine &Name) {
58   if (!Builder.isNamePreserving())
59     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
60   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
61 }
62 
63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
64                                      llvm::Value *Init) {
65   auto *Store = new llvm::StoreInst(Init, Var);
66   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
67   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
68 }
69 
70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
71                                                 const Twine &Name) {
72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
73   // FIXME: Should we prefer the preferred type alignment here?
74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
75   Alloc->setAlignment(Align.getQuantity());
76   return Alloc;
77 }
78 
79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
80                                                  const Twine &Name) {
81   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
82   // FIXME: Should we prefer the preferred type alignment here?
83   CharUnits Align = getContext().getTypeAlignInChars(Ty);
84   Alloc->setAlignment(Align.getQuantity());
85   return Alloc;
86 }
87 
88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
89 /// expression and compare the result against zero, returning an Int1Ty value.
90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
91   PGO.setCurrentStmt(E);
92   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
93     llvm::Value *MemPtr = EmitScalarExpr(E);
94     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
95   }
96 
97   QualType BoolTy = getContext().BoolTy;
98   if (!E->getType()->isAnyComplexType())
99     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
100 
101   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
102 }
103 
104 /// EmitIgnoredExpr - Emit code to compute the specified expression,
105 /// ignoring the result.
106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
107   if (E->isRValue())
108     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
109 
110   // Just emit it as an l-value and drop the result.
111   EmitLValue(E);
112 }
113 
114 /// EmitAnyExpr - Emit code to compute the specified expression which
115 /// can have any type.  The result is returned as an RValue struct.
116 /// If this is an aggregate expression, AggSlot indicates where the
117 /// result should be returned.
118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
119                                     AggValueSlot aggSlot,
120                                     bool ignoreResult) {
121   switch (getEvaluationKind(E->getType())) {
122   case TEK_Scalar:
123     return RValue::get(EmitScalarExpr(E, ignoreResult));
124   case TEK_Complex:
125     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
126   case TEK_Aggregate:
127     if (!ignoreResult && aggSlot.isIgnored())
128       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
129     EmitAggExpr(E, aggSlot);
130     return aggSlot.asRValue();
131   }
132   llvm_unreachable("bad evaluation kind");
133 }
134 
135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
136 /// always be accessible even if no aggregate location is provided.
137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
138   AggValueSlot AggSlot = AggValueSlot::ignored();
139 
140   if (hasAggregateEvaluationKind(E->getType()))
141     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
142   return EmitAnyExpr(E, AggSlot);
143 }
144 
145 /// EmitAnyExprToMem - Evaluate an expression into a given memory
146 /// location.
147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
148                                        llvm::Value *Location,
149                                        Qualifiers Quals,
150                                        bool IsInit) {
151   // FIXME: This function should take an LValue as an argument.
152   switch (getEvaluationKind(E->getType())) {
153   case TEK_Complex:
154     EmitComplexExprIntoLValue(E,
155                          MakeNaturalAlignAddrLValue(Location, E->getType()),
156                               /*isInit*/ false);
157     return;
158 
159   case TEK_Aggregate: {
160     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
161     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
162                                          AggValueSlot::IsDestructed_t(IsInit),
163                                          AggValueSlot::DoesNotNeedGCBarriers,
164                                          AggValueSlot::IsAliased_t(!IsInit)));
165     return;
166   }
167 
168   case TEK_Scalar: {
169     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
170     LValue LV = MakeAddrLValue(Location, E->getType());
171     EmitStoreThroughLValue(RV, LV);
172     return;
173   }
174   }
175   llvm_unreachable("bad evaluation kind");
176 }
177 
178 static void
179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
180                      const Expr *E, llvm::Value *ReferenceTemporary) {
181   // Objective-C++ ARC:
182   //   If we are binding a reference to a temporary that has ownership, we
183   //   need to perform retain/release operations on the temporary.
184   //
185   // FIXME: This should be looking at E, not M.
186   if (CGF.getLangOpts().ObjCAutoRefCount &&
187       M->getType()->isObjCLifetimeType()) {
188     QualType ObjCARCReferenceLifetimeType = M->getType();
189     switch (Qualifiers::ObjCLifetime Lifetime =
190                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
191     case Qualifiers::OCL_None:
192     case Qualifiers::OCL_ExplicitNone:
193       // Carry on to normal cleanup handling.
194       break;
195 
196     case Qualifiers::OCL_Autoreleasing:
197       // Nothing to do; cleaned up by an autorelease pool.
198       return;
199 
200     case Qualifiers::OCL_Strong:
201     case Qualifiers::OCL_Weak:
202       switch (StorageDuration Duration = M->getStorageDuration()) {
203       case SD_Static:
204         // Note: we intentionally do not register a cleanup to release
205         // the object on program termination.
206         return;
207 
208       case SD_Thread:
209         // FIXME: We should probably register a cleanup in this case.
210         return;
211 
212       case SD_Automatic:
213       case SD_FullExpression:
214         CodeGenFunction::Destroyer *Destroy;
215         CleanupKind CleanupKind;
216         if (Lifetime == Qualifiers::OCL_Strong) {
217           const ValueDecl *VD = M->getExtendingDecl();
218           bool Precise =
219               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
220           CleanupKind = CGF.getARCCleanupKind();
221           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
222                             : &CodeGenFunction::destroyARCStrongImprecise;
223         } else {
224           // __weak objects always get EH cleanups; otherwise, exceptions
225           // could cause really nasty crashes instead of mere leaks.
226           CleanupKind = NormalAndEHCleanup;
227           Destroy = &CodeGenFunction::destroyARCWeak;
228         }
229         if (Duration == SD_FullExpression)
230           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
231                           ObjCARCReferenceLifetimeType, *Destroy,
232                           CleanupKind & EHCleanup);
233         else
234           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
235                                           ObjCARCReferenceLifetimeType,
236                                           *Destroy, CleanupKind & EHCleanup);
237         return;
238 
239       case SD_Dynamic:
240         llvm_unreachable("temporary cannot have dynamic storage duration");
241       }
242       llvm_unreachable("unknown storage duration");
243     }
244   }
245 
246   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
247   if (const RecordType *RT =
248           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
249     // Get the destructor for the reference temporary.
250     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
251     if (!ClassDecl->hasTrivialDestructor())
252       ReferenceTemporaryDtor = ClassDecl->getDestructor();
253   }
254 
255   if (!ReferenceTemporaryDtor)
256     return;
257 
258   // Call the destructor for the temporary.
259   switch (M->getStorageDuration()) {
260   case SD_Static:
261   case SD_Thread: {
262     llvm::Constant *CleanupFn;
263     llvm::Constant *CleanupArg;
264     if (E->getType()->isArrayType()) {
265       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
266           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
267           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
268           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
269       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
270     } else {
271       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
272                                                StructorType::Complete);
273       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
274     }
275     CGF.CGM.getCXXABI().registerGlobalDtor(
276         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
277     break;
278   }
279 
280   case SD_FullExpression:
281     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
282                     CodeGenFunction::destroyCXXObject,
283                     CGF.getLangOpts().Exceptions);
284     break;
285 
286   case SD_Automatic:
287     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
288                                     ReferenceTemporary, E->getType(),
289                                     CodeGenFunction::destroyCXXObject,
290                                     CGF.getLangOpts().Exceptions);
291     break;
292 
293   case SD_Dynamic:
294     llvm_unreachable("temporary cannot have dynamic storage duration");
295   }
296 }
297 
298 static llvm::Value *
299 createReferenceTemporary(CodeGenFunction &CGF,
300                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
301   switch (M->getStorageDuration()) {
302   case SD_FullExpression:
303   case SD_Automatic:
304     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
305 
306   case SD_Thread:
307   case SD_Static:
308     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
309 
310   case SD_Dynamic:
311     llvm_unreachable("temporary can't have dynamic storage duration");
312   }
313   llvm_unreachable("unknown storage duration");
314 }
315 
316 LValue CodeGenFunction::
317 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
318   const Expr *E = M->GetTemporaryExpr();
319 
320     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
321     // as that will cause the lifetime adjustment to be lost for ARC
322   if (getLangOpts().ObjCAutoRefCount &&
323       M->getType()->isObjCLifetimeType() &&
324       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
325       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
326     llvm::Value *Object = createReferenceTemporary(*this, M, E);
327     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
328 
329     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
330       // We should not have emitted the initializer for this temporary as a
331       // constant.
332       assert(!Var->hasInitializer());
333       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
334     }
335 
336     switch (getEvaluationKind(E->getType())) {
337     default: llvm_unreachable("expected scalar or aggregate expression");
338     case TEK_Scalar:
339       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
340       break;
341     case TEK_Aggregate: {
342       CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
343       EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
344                                            E->getType().getQualifiers(),
345                                            AggValueSlot::IsDestructed,
346                                            AggValueSlot::DoesNotNeedGCBarriers,
347                                            AggValueSlot::IsNotAliased));
348       break;
349     }
350     }
351 
352     pushTemporaryCleanup(*this, M, E, Object);
353     return RefTempDst;
354   }
355 
356   SmallVector<const Expr *, 2> CommaLHSs;
357   SmallVector<SubobjectAdjustment, 2> Adjustments;
358   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
359 
360   for (const auto &Ignored : CommaLHSs)
361     EmitIgnoredExpr(Ignored);
362 
363   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
364     if (opaque->getType()->isRecordType()) {
365       assert(Adjustments.empty());
366       return EmitOpaqueValueLValue(opaque);
367     }
368   }
369 
370   // Create and initialize the reference temporary.
371   llvm::Value *Object = createReferenceTemporary(*this, M, E);
372   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
373     // If the temporary is a global and has a constant initializer, we may
374     // have already initialized it.
375     if (!Var->hasInitializer()) {
376       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
377       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
378     }
379   } else {
380     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
381   }
382   pushTemporaryCleanup(*this, M, E, Object);
383 
384   // Perform derived-to-base casts and/or field accesses, to get from the
385   // temporary object we created (and, potentially, for which we extended
386   // the lifetime) to the subobject we're binding the reference to.
387   for (unsigned I = Adjustments.size(); I != 0; --I) {
388     SubobjectAdjustment &Adjustment = Adjustments[I-1];
389     switch (Adjustment.Kind) {
390     case SubobjectAdjustment::DerivedToBaseAdjustment:
391       Object =
392           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
393                                 Adjustment.DerivedToBase.BasePath->path_begin(),
394                                 Adjustment.DerivedToBase.BasePath->path_end(),
395                                 /*NullCheckValue=*/ false, E->getExprLoc());
396       break;
397 
398     case SubobjectAdjustment::FieldAdjustment: {
399       LValue LV = MakeAddrLValue(Object, E->getType());
400       LV = EmitLValueForField(LV, Adjustment.Field);
401       assert(LV.isSimple() &&
402              "materialized temporary field is not a simple lvalue");
403       Object = LV.getAddress();
404       break;
405     }
406 
407     case SubobjectAdjustment::MemberPointerAdjustment: {
408       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
409       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
410           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
411       break;
412     }
413     }
414   }
415 
416   return MakeAddrLValue(Object, M->getType());
417 }
418 
419 RValue
420 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
421   // Emit the expression as an lvalue.
422   LValue LV = EmitLValue(E);
423   assert(LV.isSimple());
424   llvm::Value *Value = LV.getAddress();
425 
426   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
427     // C++11 [dcl.ref]p5 (as amended by core issue 453):
428     //   If a glvalue to which a reference is directly bound designates neither
429     //   an existing object or function of an appropriate type nor a region of
430     //   storage of suitable size and alignment to contain an object of the
431     //   reference's type, the behavior is undefined.
432     QualType Ty = E->getType();
433     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
434   }
435 
436   return RValue::get(Value);
437 }
438 
439 
440 /// getAccessedFieldNo - Given an encoded value and a result number, return the
441 /// input field number being accessed.
442 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
443                                              const llvm::Constant *Elts) {
444   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
445       ->getZExtValue();
446 }
447 
448 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
449 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
450                                     llvm::Value *High) {
451   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
452   llvm::Value *K47 = Builder.getInt64(47);
453   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
454   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
455   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
456   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
457   return Builder.CreateMul(B1, KMul);
458 }
459 
460 bool CodeGenFunction::sanitizePerformTypeCheck() const {
461   return SanOpts.has(SanitizerKind::Null) |
462          SanOpts.has(SanitizerKind::Alignment) |
463          SanOpts.has(SanitizerKind::ObjectSize) |
464          SanOpts.has(SanitizerKind::Vptr);
465 }
466 
467 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
468                                     llvm::Value *Address, QualType Ty,
469                                     CharUnits Alignment, bool SkipNullCheck) {
470   if (!sanitizePerformTypeCheck())
471     return;
472 
473   // Don't check pointers outside the default address space. The null check
474   // isn't correct, the object-size check isn't supported by LLVM, and we can't
475   // communicate the addresses to the runtime handler for the vptr check.
476   if (Address->getType()->getPointerAddressSpace())
477     return;
478 
479   SanitizerScope SanScope(this);
480 
481   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks;
482   llvm::BasicBlock *Done = nullptr;
483 
484   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
485                            TCK == TCK_UpcastToVirtualBase;
486   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
487       !SkipNullCheck) {
488     // The glvalue must not be an empty glvalue.
489     llvm::Value *IsNonNull = Builder.CreateICmpNE(
490         Address, llvm::Constant::getNullValue(Address->getType()));
491 
492     if (AllowNullPointers) {
493       // When performing pointer casts, it's OK if the value is null.
494       // Skip the remaining checks in that case.
495       Done = createBasicBlock("null");
496       llvm::BasicBlock *Rest = createBasicBlock("not.null");
497       Builder.CreateCondBr(IsNonNull, Rest, Done);
498       EmitBlock(Rest);
499     } else {
500       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
501     }
502   }
503 
504   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
505     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
506 
507     // The glvalue must refer to a large enough storage region.
508     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
509     //        to check this.
510     // FIXME: Get object address space
511     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
512     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
513     llvm::Value *Min = Builder.getFalse();
514     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
515     llvm::Value *LargeEnough =
516         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
517                               llvm::ConstantInt::get(IntPtrTy, Size));
518     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
519   }
520 
521   uint64_t AlignVal = 0;
522 
523   if (SanOpts.has(SanitizerKind::Alignment)) {
524     AlignVal = Alignment.getQuantity();
525     if (!Ty->isIncompleteType() && !AlignVal)
526       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
527 
528     // The glvalue must be suitably aligned.
529     if (AlignVal) {
530       llvm::Value *Align =
531           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
532                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
533       llvm::Value *Aligned =
534         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
535       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
536     }
537   }
538 
539   if (Checks.size() > 0) {
540     llvm::Constant *StaticData[] = {
541       EmitCheckSourceLocation(Loc),
542       EmitCheckTypeDescriptor(Ty),
543       llvm::ConstantInt::get(SizeTy, AlignVal),
544       llvm::ConstantInt::get(Int8Ty, TCK)
545     };
546     EmitCheck(Checks, "type_mismatch", StaticData, Address);
547   }
548 
549   // If possible, check that the vptr indicates that there is a subobject of
550   // type Ty at offset zero within this object.
551   //
552   // C++11 [basic.life]p5,6:
553   //   [For storage which does not refer to an object within its lifetime]
554   //   The program has undefined behavior if:
555   //    -- the [pointer or glvalue] is used to access a non-static data member
556   //       or call a non-static member function
557   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
558   if (SanOpts.has(SanitizerKind::Vptr) &&
559       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
560        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
561        TCK == TCK_UpcastToVirtualBase) &&
562       RD && RD->hasDefinition() && RD->isDynamicClass()) {
563     // Compute a hash of the mangled name of the type.
564     //
565     // FIXME: This is not guaranteed to be deterministic! Move to a
566     //        fingerprinting mechanism once LLVM provides one. For the time
567     //        being the implementation happens to be deterministic.
568     SmallString<64> MangledName;
569     llvm::raw_svector_ostream Out(MangledName);
570     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
571                                                      Out);
572 
573     // Blacklist based on the mangled type.
574     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
575             Out.str())) {
576       llvm::hash_code TypeHash = hash_value(Out.str());
577 
578       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
579       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
580       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
581       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
582       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
583       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
584 
585       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
586       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
587 
588       // Look the hash up in our cache.
589       const int CacheSize = 128;
590       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
591       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
592                                                      "__ubsan_vptr_type_cache");
593       llvm::Value *Slot = Builder.CreateAnd(Hash,
594                                             llvm::ConstantInt::get(IntPtrTy,
595                                                                    CacheSize-1));
596       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
597       llvm::Value *CacheVal =
598         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
599 
600       // If the hash isn't in the cache, call a runtime handler to perform the
601       // hard work of checking whether the vptr is for an object of the right
602       // type. This will either fill in the cache and return, or produce a
603       // diagnostic.
604       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
605       llvm::Constant *StaticData[] = {
606         EmitCheckSourceLocation(Loc),
607         EmitCheckTypeDescriptor(Ty),
608         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
609         llvm::ConstantInt::get(Int8Ty, TCK)
610       };
611       llvm::Value *DynamicData[] = { Address, Hash };
612       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
613                 "dynamic_type_cache_miss", StaticData, DynamicData);
614     }
615   }
616 
617   if (Done) {
618     Builder.CreateBr(Done);
619     EmitBlock(Done);
620   }
621 }
622 
623 /// Determine whether this expression refers to a flexible array member in a
624 /// struct. We disable array bounds checks for such members.
625 static bool isFlexibleArrayMemberExpr(const Expr *E) {
626   // For compatibility with existing code, we treat arrays of length 0 or
627   // 1 as flexible array members.
628   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
629   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
630     if (CAT->getSize().ugt(1))
631       return false;
632   } else if (!isa<IncompleteArrayType>(AT))
633     return false;
634 
635   E = E->IgnoreParens();
636 
637   // A flexible array member must be the last member in the class.
638   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
639     // FIXME: If the base type of the member expr is not FD->getParent(),
640     // this should not be treated as a flexible array member access.
641     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
642       RecordDecl::field_iterator FI(
643           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
644       return ++FI == FD->getParent()->field_end();
645     }
646   }
647 
648   return false;
649 }
650 
651 /// If Base is known to point to the start of an array, return the length of
652 /// that array. Return 0 if the length cannot be determined.
653 static llvm::Value *getArrayIndexingBound(
654     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
655   // For the vector indexing extension, the bound is the number of elements.
656   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
657     IndexedType = Base->getType();
658     return CGF.Builder.getInt32(VT->getNumElements());
659   }
660 
661   Base = Base->IgnoreParens();
662 
663   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
664     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
665         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
666       IndexedType = CE->getSubExpr()->getType();
667       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
668       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
669         return CGF.Builder.getInt(CAT->getSize());
670       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
671         return CGF.getVLASize(VAT).first;
672     }
673   }
674 
675   return nullptr;
676 }
677 
678 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
679                                       llvm::Value *Index, QualType IndexType,
680                                       bool Accessed) {
681   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
682          "should not be called unless adding bounds checks");
683   SanitizerScope SanScope(this);
684 
685   QualType IndexedType;
686   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
687   if (!Bound)
688     return;
689 
690   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
691   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
692   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
693 
694   llvm::Constant *StaticData[] = {
695     EmitCheckSourceLocation(E->getExprLoc()),
696     EmitCheckTypeDescriptor(IndexedType),
697     EmitCheckTypeDescriptor(IndexType)
698   };
699   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
700                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
701   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
702             StaticData, Index);
703 }
704 
705 
706 CodeGenFunction::ComplexPairTy CodeGenFunction::
707 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
708                          bool isInc, bool isPre) {
709   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
710 
711   llvm::Value *NextVal;
712   if (isa<llvm::IntegerType>(InVal.first->getType())) {
713     uint64_t AmountVal = isInc ? 1 : -1;
714     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
715 
716     // Add the inc/dec to the real part.
717     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
718   } else {
719     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
720     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
721     if (!isInc)
722       FVal.changeSign();
723     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
724 
725     // Add the inc/dec to the real part.
726     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
727   }
728 
729   ComplexPairTy IncVal(NextVal, InVal.second);
730 
731   // Store the updated result through the lvalue.
732   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
733 
734   // If this is a postinc, return the value read from memory, otherwise use the
735   // updated value.
736   return isPre ? IncVal : InVal;
737 }
738 
739 //===----------------------------------------------------------------------===//
740 //                         LValue Expression Emission
741 //===----------------------------------------------------------------------===//
742 
743 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
744   if (Ty->isVoidType())
745     return RValue::get(nullptr);
746 
747   switch (getEvaluationKind(Ty)) {
748   case TEK_Complex: {
749     llvm::Type *EltTy =
750       ConvertType(Ty->castAs<ComplexType>()->getElementType());
751     llvm::Value *U = llvm::UndefValue::get(EltTy);
752     return RValue::getComplex(std::make_pair(U, U));
753   }
754 
755   // If this is a use of an undefined aggregate type, the aggregate must have an
756   // identifiable address.  Just because the contents of the value are undefined
757   // doesn't mean that the address can't be taken and compared.
758   case TEK_Aggregate: {
759     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
760     return RValue::getAggregate(DestPtr);
761   }
762 
763   case TEK_Scalar:
764     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
765   }
766   llvm_unreachable("bad evaluation kind");
767 }
768 
769 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
770                                               const char *Name) {
771   ErrorUnsupported(E, Name);
772   return GetUndefRValue(E->getType());
773 }
774 
775 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
776                                               const char *Name) {
777   ErrorUnsupported(E, Name);
778   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
779   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
780 }
781 
782 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
783   LValue LV;
784   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
785     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
786   else
787     LV = EmitLValue(E);
788   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
789     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
790                   E->getType(), LV.getAlignment());
791   return LV;
792 }
793 
794 /// EmitLValue - Emit code to compute a designator that specifies the location
795 /// of the expression.
796 ///
797 /// This can return one of two things: a simple address or a bitfield reference.
798 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
799 /// an LLVM pointer type.
800 ///
801 /// If this returns a bitfield reference, nothing about the pointee type of the
802 /// LLVM value is known: For example, it may not be a pointer to an integer.
803 ///
804 /// If this returns a normal address, and if the lvalue's C type is fixed size,
805 /// this method guarantees that the returned pointer type will point to an LLVM
806 /// type of the same size of the lvalue's type.  If the lvalue has a variable
807 /// length type, this is not possible.
808 ///
809 LValue CodeGenFunction::EmitLValue(const Expr *E) {
810   ApplyDebugLocation DL(*this, E);
811   switch (E->getStmtClass()) {
812   default: return EmitUnsupportedLValue(E, "l-value expression");
813 
814   case Expr::ObjCPropertyRefExprClass:
815     llvm_unreachable("cannot emit a property reference directly");
816 
817   case Expr::ObjCSelectorExprClass:
818     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
819   case Expr::ObjCIsaExprClass:
820     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
821   case Expr::BinaryOperatorClass:
822     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
823   case Expr::CompoundAssignOperatorClass:
824     if (!E->getType()->isAnyComplexType())
825       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
826     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
827   case Expr::CallExprClass:
828   case Expr::CXXMemberCallExprClass:
829   case Expr::CXXOperatorCallExprClass:
830   case Expr::UserDefinedLiteralClass:
831     return EmitCallExprLValue(cast<CallExpr>(E));
832   case Expr::VAArgExprClass:
833     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
834   case Expr::DeclRefExprClass:
835     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
836   case Expr::ParenExprClass:
837     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
838   case Expr::GenericSelectionExprClass:
839     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
840   case Expr::PredefinedExprClass:
841     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
842   case Expr::StringLiteralClass:
843     return EmitStringLiteralLValue(cast<StringLiteral>(E));
844   case Expr::ObjCEncodeExprClass:
845     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
846   case Expr::PseudoObjectExprClass:
847     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
848   case Expr::InitListExprClass:
849     return EmitInitListLValue(cast<InitListExpr>(E));
850   case Expr::CXXTemporaryObjectExprClass:
851   case Expr::CXXConstructExprClass:
852     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
853   case Expr::CXXBindTemporaryExprClass:
854     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
855   case Expr::CXXUuidofExprClass:
856     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
857   case Expr::LambdaExprClass:
858     return EmitLambdaLValue(cast<LambdaExpr>(E));
859 
860   case Expr::ExprWithCleanupsClass: {
861     const auto *cleanups = cast<ExprWithCleanups>(E);
862     enterFullExpression(cleanups);
863     RunCleanupsScope Scope(*this);
864     return EmitLValue(cleanups->getSubExpr());
865   }
866 
867   case Expr::CXXDefaultArgExprClass:
868     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
869   case Expr::CXXDefaultInitExprClass: {
870     CXXDefaultInitExprScope Scope(*this);
871     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
872   }
873   case Expr::CXXTypeidExprClass:
874     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
875 
876   case Expr::ObjCMessageExprClass:
877     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
878   case Expr::ObjCIvarRefExprClass:
879     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
880   case Expr::StmtExprClass:
881     return EmitStmtExprLValue(cast<StmtExpr>(E));
882   case Expr::UnaryOperatorClass:
883     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
884   case Expr::ArraySubscriptExprClass:
885     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
886   case Expr::ExtVectorElementExprClass:
887     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
888   case Expr::MemberExprClass:
889     return EmitMemberExpr(cast<MemberExpr>(E));
890   case Expr::CompoundLiteralExprClass:
891     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
892   case Expr::ConditionalOperatorClass:
893     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
894   case Expr::BinaryConditionalOperatorClass:
895     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
896   case Expr::ChooseExprClass:
897     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
898   case Expr::OpaqueValueExprClass:
899     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
900   case Expr::SubstNonTypeTemplateParmExprClass:
901     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
902   case Expr::ImplicitCastExprClass:
903   case Expr::CStyleCastExprClass:
904   case Expr::CXXFunctionalCastExprClass:
905   case Expr::CXXStaticCastExprClass:
906   case Expr::CXXDynamicCastExprClass:
907   case Expr::CXXReinterpretCastExprClass:
908   case Expr::CXXConstCastExprClass:
909   case Expr::ObjCBridgedCastExprClass:
910     return EmitCastLValue(cast<CastExpr>(E));
911 
912   case Expr::MaterializeTemporaryExprClass:
913     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
914   }
915 }
916 
917 /// Given an object of the given canonical type, can we safely copy a
918 /// value out of it based on its initializer?
919 static bool isConstantEmittableObjectType(QualType type) {
920   assert(type.isCanonical());
921   assert(!type->isReferenceType());
922 
923   // Must be const-qualified but non-volatile.
924   Qualifiers qs = type.getLocalQualifiers();
925   if (!qs.hasConst() || qs.hasVolatile()) return false;
926 
927   // Otherwise, all object types satisfy this except C++ classes with
928   // mutable subobjects or non-trivial copy/destroy behavior.
929   if (const auto *RT = dyn_cast<RecordType>(type))
930     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
931       if (RD->hasMutableFields() || !RD->isTrivial())
932         return false;
933 
934   return true;
935 }
936 
937 /// Can we constant-emit a load of a reference to a variable of the
938 /// given type?  This is different from predicates like
939 /// Decl::isUsableInConstantExpressions because we do want it to apply
940 /// in situations that don't necessarily satisfy the language's rules
941 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
942 /// to do this with const float variables even if those variables
943 /// aren't marked 'constexpr'.
944 enum ConstantEmissionKind {
945   CEK_None,
946   CEK_AsReferenceOnly,
947   CEK_AsValueOrReference,
948   CEK_AsValueOnly
949 };
950 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
951   type = type.getCanonicalType();
952   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
953     if (isConstantEmittableObjectType(ref->getPointeeType()))
954       return CEK_AsValueOrReference;
955     return CEK_AsReferenceOnly;
956   }
957   if (isConstantEmittableObjectType(type))
958     return CEK_AsValueOnly;
959   return CEK_None;
960 }
961 
962 /// Try to emit a reference to the given value without producing it as
963 /// an l-value.  This is actually more than an optimization: we can't
964 /// produce an l-value for variables that we never actually captured
965 /// in a block or lambda, which means const int variables or constexpr
966 /// literals or similar.
967 CodeGenFunction::ConstantEmission
968 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
969   ValueDecl *value = refExpr->getDecl();
970 
971   // The value needs to be an enum constant or a constant variable.
972   ConstantEmissionKind CEK;
973   if (isa<ParmVarDecl>(value)) {
974     CEK = CEK_None;
975   } else if (auto *var = dyn_cast<VarDecl>(value)) {
976     CEK = checkVarTypeForConstantEmission(var->getType());
977   } else if (isa<EnumConstantDecl>(value)) {
978     CEK = CEK_AsValueOnly;
979   } else {
980     CEK = CEK_None;
981   }
982   if (CEK == CEK_None) return ConstantEmission();
983 
984   Expr::EvalResult result;
985   bool resultIsReference;
986   QualType resultType;
987 
988   // It's best to evaluate all the way as an r-value if that's permitted.
989   if (CEK != CEK_AsReferenceOnly &&
990       refExpr->EvaluateAsRValue(result, getContext())) {
991     resultIsReference = false;
992     resultType = refExpr->getType();
993 
994   // Otherwise, try to evaluate as an l-value.
995   } else if (CEK != CEK_AsValueOnly &&
996              refExpr->EvaluateAsLValue(result, getContext())) {
997     resultIsReference = true;
998     resultType = value->getType();
999 
1000   // Failure.
1001   } else {
1002     return ConstantEmission();
1003   }
1004 
1005   // In any case, if the initializer has side-effects, abandon ship.
1006   if (result.HasSideEffects)
1007     return ConstantEmission();
1008 
1009   // Emit as a constant.
1010   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1011 
1012   // Make sure we emit a debug reference to the global variable.
1013   // This should probably fire even for
1014   if (isa<VarDecl>(value)) {
1015     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1016       EmitDeclRefExprDbgValue(refExpr, C);
1017   } else {
1018     assert(isa<EnumConstantDecl>(value));
1019     EmitDeclRefExprDbgValue(refExpr, C);
1020   }
1021 
1022   // If we emitted a reference constant, we need to dereference that.
1023   if (resultIsReference)
1024     return ConstantEmission::forReference(C);
1025 
1026   return ConstantEmission::forValue(C);
1027 }
1028 
1029 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1030                                                SourceLocation Loc) {
1031   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1032                           lvalue.getAlignment().getQuantity(),
1033                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1034                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1035 }
1036 
1037 static bool hasBooleanRepresentation(QualType Ty) {
1038   if (Ty->isBooleanType())
1039     return true;
1040 
1041   if (const EnumType *ET = Ty->getAs<EnumType>())
1042     return ET->getDecl()->getIntegerType()->isBooleanType();
1043 
1044   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1045     return hasBooleanRepresentation(AT->getValueType());
1046 
1047   return false;
1048 }
1049 
1050 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1051                             llvm::APInt &Min, llvm::APInt &End,
1052                             bool StrictEnums) {
1053   const EnumType *ET = Ty->getAs<EnumType>();
1054   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1055                                 ET && !ET->getDecl()->isFixed();
1056   bool IsBool = hasBooleanRepresentation(Ty);
1057   if (!IsBool && !IsRegularCPlusPlusEnum)
1058     return false;
1059 
1060   if (IsBool) {
1061     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1062     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1063   } else {
1064     const EnumDecl *ED = ET->getDecl();
1065     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1066     unsigned Bitwidth = LTy->getScalarSizeInBits();
1067     unsigned NumNegativeBits = ED->getNumNegativeBits();
1068     unsigned NumPositiveBits = ED->getNumPositiveBits();
1069 
1070     if (NumNegativeBits) {
1071       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1072       assert(NumBits <= Bitwidth);
1073       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1074       Min = -End;
1075     } else {
1076       assert(NumPositiveBits <= Bitwidth);
1077       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1078       Min = llvm::APInt(Bitwidth, 0);
1079     }
1080   }
1081   return true;
1082 }
1083 
1084 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1085   llvm::APInt Min, End;
1086   if (!getRangeForType(*this, Ty, Min, End,
1087                        CGM.getCodeGenOpts().StrictEnums))
1088     return nullptr;
1089 
1090   llvm::MDBuilder MDHelper(getLLVMContext());
1091   return MDHelper.createRange(Min, End);
1092 }
1093 
1094 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1095                                                unsigned Alignment, QualType Ty,
1096                                                SourceLocation Loc,
1097                                                llvm::MDNode *TBAAInfo,
1098                                                QualType TBAABaseType,
1099                                                uint64_t TBAAOffset) {
1100   // For better performance, handle vector loads differently.
1101   if (Ty->isVectorType()) {
1102     llvm::Value *V;
1103     const llvm::Type *EltTy =
1104     cast<llvm::PointerType>(Addr->getType())->getElementType();
1105 
1106     const auto *VTy = cast<llvm::VectorType>(EltTy);
1107 
1108     // Handle vectors of size 3, like size 4 for better performance.
1109     if (VTy->getNumElements() == 3) {
1110 
1111       // Bitcast to vec4 type.
1112       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1113                                                          4);
1114       llvm::PointerType *ptVec4Ty =
1115       llvm::PointerType::get(vec4Ty,
1116                              (cast<llvm::PointerType>(
1117                                       Addr->getType()))->getAddressSpace());
1118       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1119                                                 "castToVec4");
1120       // Now load value.
1121       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1122 
1123       // Shuffle vector to get vec3.
1124       llvm::Constant *Mask[] = {
1125         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1126         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1127         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1128       };
1129 
1130       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1131       V = Builder.CreateShuffleVector(LoadVal,
1132                                       llvm::UndefValue::get(vec4Ty),
1133                                       MaskV, "extractVec");
1134       return EmitFromMemory(V, Ty);
1135     }
1136   }
1137 
1138   // Atomic operations have to be done on integral types.
1139   if (Ty->isAtomicType()) {
1140     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1141                                      CharUnits::fromQuantity(Alignment),
1142                                      getContext(), TBAAInfo);
1143     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1144   }
1145 
1146   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1147   if (Volatile)
1148     Load->setVolatile(true);
1149   if (Alignment)
1150     Load->setAlignment(Alignment);
1151   if (TBAAInfo) {
1152     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1153                                                       TBAAOffset);
1154     if (TBAAPath)
1155       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1156   }
1157 
1158   bool NeedsBoolCheck =
1159       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1160   bool NeedsEnumCheck =
1161       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1162   if (NeedsBoolCheck || NeedsEnumCheck) {
1163     SanitizerScope SanScope(this);
1164     llvm::APInt Min, End;
1165     if (getRangeForType(*this, Ty, Min, End, true)) {
1166       --End;
1167       llvm::Value *Check;
1168       if (!Min)
1169         Check = Builder.CreateICmpULE(
1170           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1171       else {
1172         llvm::Value *Upper = Builder.CreateICmpSLE(
1173           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1174         llvm::Value *Lower = Builder.CreateICmpSGE(
1175           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1176         Check = Builder.CreateAnd(Upper, Lower);
1177       }
1178       llvm::Constant *StaticArgs[] = {
1179         EmitCheckSourceLocation(Loc),
1180         EmitCheckTypeDescriptor(Ty)
1181       };
1182       SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1183       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1184                 EmitCheckValue(Load));
1185     }
1186   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1187     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1188       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1189 
1190   return EmitFromMemory(Load, Ty);
1191 }
1192 
1193 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1194   // Bool has a different representation in memory than in registers.
1195   if (hasBooleanRepresentation(Ty)) {
1196     // This should really always be an i1, but sometimes it's already
1197     // an i8, and it's awkward to track those cases down.
1198     if (Value->getType()->isIntegerTy(1))
1199       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1200     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1201            "wrong value rep of bool");
1202   }
1203 
1204   return Value;
1205 }
1206 
1207 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1208   // Bool has a different representation in memory than in registers.
1209   if (hasBooleanRepresentation(Ty)) {
1210     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1211            "wrong value rep of bool");
1212     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1213   }
1214 
1215   return Value;
1216 }
1217 
1218 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1219                                         bool Volatile, unsigned Alignment,
1220                                         QualType Ty, llvm::MDNode *TBAAInfo,
1221                                         bool isInit, QualType TBAABaseType,
1222                                         uint64_t TBAAOffset) {
1223 
1224   // Handle vectors differently to get better performance.
1225   if (Ty->isVectorType()) {
1226     llvm::Type *SrcTy = Value->getType();
1227     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1228     // Handle vec3 special.
1229     if (VecTy->getNumElements() == 3) {
1230       llvm::LLVMContext &VMContext = getLLVMContext();
1231 
1232       // Our source is a vec3, do a shuffle vector to make it a vec4.
1233       SmallVector<llvm::Constant*, 4> Mask;
1234       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1235                                             0));
1236       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1237                                             1));
1238       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1239                                             2));
1240       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1241 
1242       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1243       Value = Builder.CreateShuffleVector(Value,
1244                                           llvm::UndefValue::get(VecTy),
1245                                           MaskV, "extractVec");
1246       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1247     }
1248     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1249     if (DstPtr->getElementType() != SrcTy) {
1250       llvm::Type *MemTy =
1251       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1252       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1253     }
1254   }
1255 
1256   Value = EmitToMemory(Value, Ty);
1257 
1258   if (Ty->isAtomicType()) {
1259     EmitAtomicStore(RValue::get(Value),
1260                     LValue::MakeAddr(Addr, Ty,
1261                                      CharUnits::fromQuantity(Alignment),
1262                                      getContext(), TBAAInfo),
1263                     isInit);
1264     return;
1265   }
1266 
1267   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1268   if (Alignment)
1269     Store->setAlignment(Alignment);
1270   if (TBAAInfo) {
1271     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1272                                                       TBAAOffset);
1273     if (TBAAPath)
1274       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1275   }
1276 }
1277 
1278 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1279                                         bool isInit) {
1280   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1281                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1282                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1283                     lvalue.getTBAAOffset());
1284 }
1285 
1286 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1287 /// method emits the address of the lvalue, then loads the result as an rvalue,
1288 /// returning the rvalue.
1289 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1290   if (LV.isObjCWeak()) {
1291     // load of a __weak object.
1292     llvm::Value *AddrWeakObj = LV.getAddress();
1293     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1294                                                              AddrWeakObj));
1295   }
1296   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1297     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1298     Object = EmitObjCConsumeObject(LV.getType(), Object);
1299     return RValue::get(Object);
1300   }
1301 
1302   if (LV.isSimple()) {
1303     assert(!LV.getType()->isFunctionType());
1304 
1305     // Everything needs a load.
1306     return RValue::get(EmitLoadOfScalar(LV, Loc));
1307   }
1308 
1309   if (LV.isVectorElt()) {
1310     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1311                                               LV.isVolatileQualified());
1312     Load->setAlignment(LV.getAlignment().getQuantity());
1313     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1314                                                     "vecext"));
1315   }
1316 
1317   // If this is a reference to a subset of the elements of a vector, either
1318   // shuffle the input or extract/insert them as appropriate.
1319   if (LV.isExtVectorElt())
1320     return EmitLoadOfExtVectorElementLValue(LV);
1321 
1322   // Global Register variables always invoke intrinsics
1323   if (LV.isGlobalReg())
1324     return EmitLoadOfGlobalRegLValue(LV);
1325 
1326   assert(LV.isBitField() && "Unknown LValue type!");
1327   return EmitLoadOfBitfieldLValue(LV);
1328 }
1329 
1330 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1331   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1332 
1333   // Get the output type.
1334   llvm::Type *ResLTy = ConvertType(LV.getType());
1335 
1336   llvm::Value *Ptr = LV.getBitFieldAddr();
1337   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1338                                         "bf.load");
1339   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1340 
1341   if (Info.IsSigned) {
1342     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1343     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1344     if (HighBits)
1345       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1346     if (Info.Offset + HighBits)
1347       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1348   } else {
1349     if (Info.Offset)
1350       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1351     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1352       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1353                                                               Info.Size),
1354                               "bf.clear");
1355   }
1356   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1357 
1358   return RValue::get(Val);
1359 }
1360 
1361 // If this is a reference to a subset of the elements of a vector, create an
1362 // appropriate shufflevector.
1363 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1364   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1365                                             LV.isVolatileQualified());
1366   Load->setAlignment(LV.getAlignment().getQuantity());
1367   llvm::Value *Vec = Load;
1368 
1369   const llvm::Constant *Elts = LV.getExtVectorElts();
1370 
1371   // If the result of the expression is a non-vector type, we must be extracting
1372   // a single element.  Just codegen as an extractelement.
1373   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1374   if (!ExprVT) {
1375     unsigned InIdx = getAccessedFieldNo(0, Elts);
1376     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1377     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1378   }
1379 
1380   // Always use shuffle vector to try to retain the original program structure
1381   unsigned NumResultElts = ExprVT->getNumElements();
1382 
1383   SmallVector<llvm::Constant*, 4> Mask;
1384   for (unsigned i = 0; i != NumResultElts; ++i)
1385     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1386 
1387   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1388   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1389                                     MaskV);
1390   return RValue::get(Vec);
1391 }
1392 
1393 /// @brief Generates lvalue for partial ext_vector access.
1394 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1395   llvm::Value *VectorAddress = LV.getExtVectorAddr();
1396   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1397   QualType EQT = ExprVT->getElementType();
1398   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1399   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1400 
1401   llvm::Value *CastToPointerElement =
1402     Builder.CreateBitCast(VectorAddress,
1403                           VectorElementPtrToTy, "conv.ptr.element");
1404 
1405   const llvm::Constant *Elts = LV.getExtVectorElts();
1406   unsigned ix = getAccessedFieldNo(0, Elts);
1407 
1408   llvm::Value *VectorBasePtrPlusIx =
1409     Builder.CreateInBoundsGEP(CastToPointerElement,
1410                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1411 
1412   return VectorBasePtrPlusIx;
1413 }
1414 
1415 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1416 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1417   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1418          "Bad type for register variable");
1419   llvm::MDNode *RegName = cast<llvm::MDNode>(
1420       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1421 
1422   // We accept integer and pointer types only
1423   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1424   llvm::Type *Ty = OrigTy;
1425   if (OrigTy->isPointerTy())
1426     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1427   llvm::Type *Types[] = { Ty };
1428 
1429   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1430   llvm::Value *Call = Builder.CreateCall(
1431       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1432   if (OrigTy->isPointerTy())
1433     Call = Builder.CreateIntToPtr(Call, OrigTy);
1434   return RValue::get(Call);
1435 }
1436 
1437 
1438 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1439 /// lvalue, where both are guaranteed to the have the same type, and that type
1440 /// is 'Ty'.
1441 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1442                                              bool isInit) {
1443   if (!Dst.isSimple()) {
1444     if (Dst.isVectorElt()) {
1445       // Read/modify/write the vector, inserting the new element.
1446       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1447                                                 Dst.isVolatileQualified());
1448       Load->setAlignment(Dst.getAlignment().getQuantity());
1449       llvm::Value *Vec = Load;
1450       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1451                                         Dst.getVectorIdx(), "vecins");
1452       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1453                                                    Dst.isVolatileQualified());
1454       Store->setAlignment(Dst.getAlignment().getQuantity());
1455       return;
1456     }
1457 
1458     // If this is an update of extended vector elements, insert them as
1459     // appropriate.
1460     if (Dst.isExtVectorElt())
1461       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1462 
1463     if (Dst.isGlobalReg())
1464       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1465 
1466     assert(Dst.isBitField() && "Unknown LValue type");
1467     return EmitStoreThroughBitfieldLValue(Src, Dst);
1468   }
1469 
1470   // There's special magic for assigning into an ARC-qualified l-value.
1471   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1472     switch (Lifetime) {
1473     case Qualifiers::OCL_None:
1474       llvm_unreachable("present but none");
1475 
1476     case Qualifiers::OCL_ExplicitNone:
1477       // nothing special
1478       break;
1479 
1480     case Qualifiers::OCL_Strong:
1481       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1482       return;
1483 
1484     case Qualifiers::OCL_Weak:
1485       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1486       return;
1487 
1488     case Qualifiers::OCL_Autoreleasing:
1489       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1490                                                      Src.getScalarVal()));
1491       // fall into the normal path
1492       break;
1493     }
1494   }
1495 
1496   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1497     // load of a __weak object.
1498     llvm::Value *LvalueDst = Dst.getAddress();
1499     llvm::Value *src = Src.getScalarVal();
1500      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1501     return;
1502   }
1503 
1504   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1505     // load of a __strong object.
1506     llvm::Value *LvalueDst = Dst.getAddress();
1507     llvm::Value *src = Src.getScalarVal();
1508     if (Dst.isObjCIvar()) {
1509       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1510       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1511       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1512       llvm::Value *dst = RHS;
1513       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1514       llvm::Value *LHS =
1515         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1516       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1517       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1518                                               BytesBetween);
1519     } else if (Dst.isGlobalObjCRef()) {
1520       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1521                                                 Dst.isThreadLocalRef());
1522     }
1523     else
1524       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1525     return;
1526   }
1527 
1528   assert(Src.isScalar() && "Can't emit an agg store with this method");
1529   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1530 }
1531 
1532 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1533                                                      llvm::Value **Result) {
1534   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1535   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1536   llvm::Value *Ptr = Dst.getBitFieldAddr();
1537 
1538   // Get the source value, truncated to the width of the bit-field.
1539   llvm::Value *SrcVal = Src.getScalarVal();
1540 
1541   // Cast the source to the storage type and shift it into place.
1542   SrcVal = Builder.CreateIntCast(SrcVal,
1543                                  Ptr->getType()->getPointerElementType(),
1544                                  /*IsSigned=*/false);
1545   llvm::Value *MaskedVal = SrcVal;
1546 
1547   // See if there are other bits in the bitfield's storage we'll need to load
1548   // and mask together with source before storing.
1549   if (Info.StorageSize != Info.Size) {
1550     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1551     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1552                                           "bf.load");
1553     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1554 
1555     // Mask the source value as needed.
1556     if (!hasBooleanRepresentation(Dst.getType()))
1557       SrcVal = Builder.CreateAnd(SrcVal,
1558                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1559                                                             Info.Size),
1560                                  "bf.value");
1561     MaskedVal = SrcVal;
1562     if (Info.Offset)
1563       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1564 
1565     // Mask out the original value.
1566     Val = Builder.CreateAnd(Val,
1567                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1568                                                      Info.Offset,
1569                                                      Info.Offset + Info.Size),
1570                             "bf.clear");
1571 
1572     // Or together the unchanged values and the source value.
1573     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1574   } else {
1575     assert(Info.Offset == 0);
1576   }
1577 
1578   // Write the new value back out.
1579   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1580                                                Dst.isVolatileQualified());
1581   Store->setAlignment(Info.StorageAlignment);
1582 
1583   // Return the new value of the bit-field, if requested.
1584   if (Result) {
1585     llvm::Value *ResultVal = MaskedVal;
1586 
1587     // Sign extend the value if needed.
1588     if (Info.IsSigned) {
1589       assert(Info.Size <= Info.StorageSize);
1590       unsigned HighBits = Info.StorageSize - Info.Size;
1591       if (HighBits) {
1592         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1593         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1594       }
1595     }
1596 
1597     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1598                                       "bf.result.cast");
1599     *Result = EmitFromMemory(ResultVal, Dst.getType());
1600   }
1601 }
1602 
1603 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1604                                                                LValue Dst) {
1605   // This access turns into a read/modify/write of the vector.  Load the input
1606   // value now.
1607   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1608                                             Dst.isVolatileQualified());
1609   Load->setAlignment(Dst.getAlignment().getQuantity());
1610   llvm::Value *Vec = Load;
1611   const llvm::Constant *Elts = Dst.getExtVectorElts();
1612 
1613   llvm::Value *SrcVal = Src.getScalarVal();
1614 
1615   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1616     unsigned NumSrcElts = VTy->getNumElements();
1617     unsigned NumDstElts =
1618        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1619     if (NumDstElts == NumSrcElts) {
1620       // Use shuffle vector is the src and destination are the same number of
1621       // elements and restore the vector mask since it is on the side it will be
1622       // stored.
1623       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1624       for (unsigned i = 0; i != NumSrcElts; ++i)
1625         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1626 
1627       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1628       Vec = Builder.CreateShuffleVector(SrcVal,
1629                                         llvm::UndefValue::get(Vec->getType()),
1630                                         MaskV);
1631     } else if (NumDstElts > NumSrcElts) {
1632       // Extended the source vector to the same length and then shuffle it
1633       // into the destination.
1634       // FIXME: since we're shuffling with undef, can we just use the indices
1635       //        into that?  This could be simpler.
1636       SmallVector<llvm::Constant*, 4> ExtMask;
1637       for (unsigned i = 0; i != NumSrcElts; ++i)
1638         ExtMask.push_back(Builder.getInt32(i));
1639       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1640       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1641       llvm::Value *ExtSrcVal =
1642         Builder.CreateShuffleVector(SrcVal,
1643                                     llvm::UndefValue::get(SrcVal->getType()),
1644                                     ExtMaskV);
1645       // build identity
1646       SmallVector<llvm::Constant*, 4> Mask;
1647       for (unsigned i = 0; i != NumDstElts; ++i)
1648         Mask.push_back(Builder.getInt32(i));
1649 
1650       // When the vector size is odd and .odd or .hi is used, the last element
1651       // of the Elts constant array will be one past the size of the vector.
1652       // Ignore the last element here, if it is greater than the mask size.
1653       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1654         NumSrcElts--;
1655 
1656       // modify when what gets shuffled in
1657       for (unsigned i = 0; i != NumSrcElts; ++i)
1658         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1659       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1660       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1661     } else {
1662       // We should never shorten the vector
1663       llvm_unreachable("unexpected shorten vector length");
1664     }
1665   } else {
1666     // If the Src is a scalar (not a vector) it must be updating one element.
1667     unsigned InIdx = getAccessedFieldNo(0, Elts);
1668     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1669     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1670   }
1671 
1672   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1673                                                Dst.isVolatileQualified());
1674   Store->setAlignment(Dst.getAlignment().getQuantity());
1675 }
1676 
1677 /// @brief Store of global named registers are always calls to intrinsics.
1678 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1679   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1680          "Bad type for register variable");
1681   llvm::MDNode *RegName = cast<llvm::MDNode>(
1682       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1683   assert(RegName && "Register LValue is not metadata");
1684 
1685   // We accept integer and pointer types only
1686   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1687   llvm::Type *Ty = OrigTy;
1688   if (OrigTy->isPointerTy())
1689     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1690   llvm::Type *Types[] = { Ty };
1691 
1692   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1693   llvm::Value *Value = Src.getScalarVal();
1694   if (OrigTy->isPointerTy())
1695     Value = Builder.CreatePtrToInt(Value, Ty);
1696   Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName),
1697                       Value);
1698 }
1699 
1700 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1701 // generating write-barries API. It is currently a global, ivar,
1702 // or neither.
1703 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1704                                  LValue &LV,
1705                                  bool IsMemberAccess=false) {
1706   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1707     return;
1708 
1709   if (isa<ObjCIvarRefExpr>(E)) {
1710     QualType ExpTy = E->getType();
1711     if (IsMemberAccess && ExpTy->isPointerType()) {
1712       // If ivar is a structure pointer, assigning to field of
1713       // this struct follows gcc's behavior and makes it a non-ivar
1714       // writer-barrier conservatively.
1715       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1716       if (ExpTy->isRecordType()) {
1717         LV.setObjCIvar(false);
1718         return;
1719       }
1720     }
1721     LV.setObjCIvar(true);
1722     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1723     LV.setBaseIvarExp(Exp->getBase());
1724     LV.setObjCArray(E->getType()->isArrayType());
1725     return;
1726   }
1727 
1728   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1729     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1730       if (VD->hasGlobalStorage()) {
1731         LV.setGlobalObjCRef(true);
1732         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1733       }
1734     }
1735     LV.setObjCArray(E->getType()->isArrayType());
1736     return;
1737   }
1738 
1739   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1740     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1741     return;
1742   }
1743 
1744   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1745     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1746     if (LV.isObjCIvar()) {
1747       // If cast is to a structure pointer, follow gcc's behavior and make it
1748       // a non-ivar write-barrier.
1749       QualType ExpTy = E->getType();
1750       if (ExpTy->isPointerType())
1751         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1752       if (ExpTy->isRecordType())
1753         LV.setObjCIvar(false);
1754     }
1755     return;
1756   }
1757 
1758   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1759     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1760     return;
1761   }
1762 
1763   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1764     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1765     return;
1766   }
1767 
1768   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1769     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1770     return;
1771   }
1772 
1773   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1774     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1775     return;
1776   }
1777 
1778   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1779     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1780     if (LV.isObjCIvar() && !LV.isObjCArray())
1781       // Using array syntax to assigning to what an ivar points to is not
1782       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1783       LV.setObjCIvar(false);
1784     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1785       // Using array syntax to assigning to what global points to is not
1786       // same as assigning to the global itself. {id *G;} G[i] = 0;
1787       LV.setGlobalObjCRef(false);
1788     return;
1789   }
1790 
1791   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1792     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1793     // We don't know if member is an 'ivar', but this flag is looked at
1794     // only in the context of LV.isObjCIvar().
1795     LV.setObjCArray(E->getType()->isArrayType());
1796     return;
1797   }
1798 }
1799 
1800 static llvm::Value *
1801 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1802                                 llvm::Value *V, llvm::Type *IRType,
1803                                 StringRef Name = StringRef()) {
1804   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1805   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1806 }
1807 
1808 static LValue EmitThreadPrivateVarDeclLValue(
1809     CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
1810     llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
1811   V = CGF.CGM.getOpenMPRuntime().getOMPAddrOfThreadPrivate(CGF, VD, V, Loc);
1812   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1813   return CGF.MakeAddrLValue(V, T, Alignment);
1814 }
1815 
1816 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1817                                       const Expr *E, const VarDecl *VD) {
1818   QualType T = E->getType();
1819 
1820   // If it's thread_local, emit a call to its wrapper function instead.
1821   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1822       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1823     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1824 
1825   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1826   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1827   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1828   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1829   LValue LV;
1830   // Emit reference to the private copy of the variable if it is an OpenMP
1831   // threadprivate variable.
1832   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1833     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
1834                                           E->getExprLoc());
1835   if (VD->getType()->isReferenceType()) {
1836     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1837     LI->setAlignment(Alignment.getQuantity());
1838     V = LI;
1839     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1840   } else {
1841     LV = CGF.MakeAddrLValue(V, T, Alignment);
1842   }
1843   setObjCGCLValueClass(CGF.getContext(), E, LV);
1844   return LV;
1845 }
1846 
1847 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1848                                      const Expr *E, const FunctionDecl *FD) {
1849   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1850   if (!FD->hasPrototype()) {
1851     if (const FunctionProtoType *Proto =
1852             FD->getType()->getAs<FunctionProtoType>()) {
1853       // Ugly case: for a K&R-style definition, the type of the definition
1854       // isn't the same as the type of a use.  Correct for this with a
1855       // bitcast.
1856       QualType NoProtoType =
1857           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1858       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1859       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1860     }
1861   }
1862   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1863   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1864 }
1865 
1866 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1867                                       llvm::Value *ThisValue) {
1868   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1869   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1870   return CGF.EmitLValueForField(LV, FD);
1871 }
1872 
1873 /// Named Registers are named metadata pointing to the register name
1874 /// which will be read from/written to as an argument to the intrinsic
1875 /// @llvm.read/write_register.
1876 /// So far, only the name is being passed down, but other options such as
1877 /// register type, allocation type or even optimization options could be
1878 /// passed down via the metadata node.
1879 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1880                                       CodeGenModule &CGM,
1881                                       CharUnits Alignment) {
1882   SmallString<64> Name("llvm.named.register.");
1883   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1884   assert(Asm->getLabel().size() < 64-Name.size() &&
1885       "Register name too big");
1886   Name.append(Asm->getLabel());
1887   llvm::NamedMDNode *M =
1888     CGM.getModule().getOrInsertNamedMetadata(Name);
1889   if (M->getNumOperands() == 0) {
1890     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1891                                               Asm->getLabel());
1892     llvm::Metadata *Ops[] = {Str};
1893     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1894   }
1895   return LValue::MakeGlobalReg(
1896       llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
1897       VD->getType(), Alignment);
1898 }
1899 
1900 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1901   const NamedDecl *ND = E->getDecl();
1902   CharUnits Alignment = getContext().getDeclAlign(ND);
1903   QualType T = E->getType();
1904 
1905   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1906     // Global Named registers access via intrinsics only
1907     if (VD->getStorageClass() == SC_Register &&
1908         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1909       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1910 
1911     // A DeclRefExpr for a reference initialized by a constant expression can
1912     // appear without being odr-used. Directly emit the constant initializer.
1913     const Expr *Init = VD->getAnyInitializer(VD);
1914     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1915         VD->isUsableInConstantExpressions(getContext()) &&
1916         VD->checkInitIsICE()) {
1917       llvm::Constant *Val =
1918         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1919       assert(Val && "failed to emit reference constant expression");
1920       // FIXME: Eventually we will want to emit vector element references.
1921       return MakeAddrLValue(Val, T, Alignment);
1922     }
1923 
1924     // Check for captured variables.
1925     if (E->refersToEnclosingVariableOrCapture()) {
1926       if (auto *FD = LambdaCaptureFields.lookup(VD))
1927         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1928       else if (CapturedStmtInfo) {
1929         if (auto *V = LocalDeclMap.lookup(VD))
1930           return MakeAddrLValue(V, T, Alignment);
1931         else
1932           return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
1933                                          CapturedStmtInfo->getContextValue());
1934       }
1935       assert(isa<BlockDecl>(CurCodeDecl));
1936       return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
1937                             T, Alignment);
1938     }
1939   }
1940 
1941   // FIXME: We should be able to assert this for FunctionDecls as well!
1942   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1943   // those with a valid source location.
1944   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1945           !E->getLocation().isValid()) &&
1946          "Should not use decl without marking it used!");
1947 
1948   if (ND->hasAttr<WeakRefAttr>()) {
1949     const auto *VD = cast<ValueDecl>(ND);
1950     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1951     return MakeAddrLValue(Aliasee, T, Alignment);
1952   }
1953 
1954   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1955     // Check if this is a global variable.
1956     if (VD->hasLinkage() || VD->isStaticDataMember())
1957       return EmitGlobalVarDeclLValue(*this, E, VD);
1958 
1959     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1960 
1961     llvm::Value *V = LocalDeclMap.lookup(VD);
1962     if (!V && VD->isStaticLocal())
1963       V = CGM.getOrCreateStaticVarDecl(
1964           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1965 
1966     // Check if variable is threadprivate.
1967     if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1968       return EmitThreadPrivateVarDeclLValue(
1969           *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
1970           Alignment, E->getExprLoc());
1971 
1972     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1973 
1974     if (isBlockVariable)
1975       V = BuildBlockByrefAddress(V, VD);
1976 
1977     LValue LV;
1978     if (VD->getType()->isReferenceType()) {
1979       llvm::LoadInst *LI = Builder.CreateLoad(V);
1980       LI->setAlignment(Alignment.getQuantity());
1981       V = LI;
1982       LV = MakeNaturalAlignAddrLValue(V, T);
1983     } else {
1984       LV = MakeAddrLValue(V, T, Alignment);
1985     }
1986 
1987     bool isLocalStorage = VD->hasLocalStorage();
1988 
1989     bool NonGCable = isLocalStorage &&
1990                      !VD->getType()->isReferenceType() &&
1991                      !isBlockVariable;
1992     if (NonGCable) {
1993       LV.getQuals().removeObjCGCAttr();
1994       LV.setNonGC(true);
1995     }
1996 
1997     bool isImpreciseLifetime =
1998       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1999     if (isImpreciseLifetime)
2000       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2001     setObjCGCLValueClass(getContext(), E, LV);
2002     return LV;
2003   }
2004 
2005   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2006     return EmitFunctionDeclLValue(*this, E, FD);
2007 
2008   llvm_unreachable("Unhandled DeclRefExpr");
2009 }
2010 
2011 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2012   // __extension__ doesn't affect lvalue-ness.
2013   if (E->getOpcode() == UO_Extension)
2014     return EmitLValue(E->getSubExpr());
2015 
2016   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2017   switch (E->getOpcode()) {
2018   default: llvm_unreachable("Unknown unary operator lvalue!");
2019   case UO_Deref: {
2020     QualType T = E->getSubExpr()->getType()->getPointeeType();
2021     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2022 
2023     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
2024     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2025 
2026     // We should not generate __weak write barrier on indirect reference
2027     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2028     // But, we continue to generate __strong write barrier on indirect write
2029     // into a pointer to object.
2030     if (getLangOpts().ObjC1 &&
2031         getLangOpts().getGC() != LangOptions::NonGC &&
2032         LV.isObjCWeak())
2033       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2034     return LV;
2035   }
2036   case UO_Real:
2037   case UO_Imag: {
2038     LValue LV = EmitLValue(E->getSubExpr());
2039     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2040     llvm::Value *Addr = LV.getAddress();
2041 
2042     // __real is valid on scalars.  This is a faster way of testing that.
2043     // __imag can only produce an rvalue on scalars.
2044     if (E->getOpcode() == UO_Real &&
2045         !cast<llvm::PointerType>(Addr->getType())
2046            ->getElementType()->isStructTy()) {
2047       assert(E->getSubExpr()->getType()->isArithmeticType());
2048       return LV;
2049     }
2050 
2051     assert(E->getSubExpr()->getType()->isAnyComplexType());
2052 
2053     unsigned Idx = E->getOpcode() == UO_Imag;
2054     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
2055                                                   Idx, "idx"),
2056                           ExprTy);
2057   }
2058   case UO_PreInc:
2059   case UO_PreDec: {
2060     LValue LV = EmitLValue(E->getSubExpr());
2061     bool isInc = E->getOpcode() == UO_PreInc;
2062 
2063     if (E->getType()->isAnyComplexType())
2064       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2065     else
2066       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2067     return LV;
2068   }
2069   }
2070 }
2071 
2072 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2073   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2074                         E->getType());
2075 }
2076 
2077 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2078   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2079                         E->getType());
2080 }
2081 
2082 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2083   auto SL = E->getFunctionName();
2084   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2085   StringRef FnName = CurFn->getName();
2086   if (FnName.startswith("\01"))
2087     FnName = FnName.substr(1);
2088   StringRef NameItems[] = {
2089       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2090   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2091   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2092     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
2093     return MakeAddrLValue(C, E->getType());
2094   }
2095   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2096   return MakeAddrLValue(C, E->getType());
2097 }
2098 
2099 /// Emit a type description suitable for use by a runtime sanitizer library. The
2100 /// format of a type descriptor is
2101 ///
2102 /// \code
2103 ///   { i16 TypeKind, i16 TypeInfo }
2104 /// \endcode
2105 ///
2106 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2107 /// integer, 1 for a floating point value, and -1 for anything else.
2108 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2109   // Only emit each type's descriptor once.
2110   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2111     return C;
2112 
2113   uint16_t TypeKind = -1;
2114   uint16_t TypeInfo = 0;
2115 
2116   if (T->isIntegerType()) {
2117     TypeKind = 0;
2118     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2119                (T->isSignedIntegerType() ? 1 : 0);
2120   } else if (T->isFloatingType()) {
2121     TypeKind = 1;
2122     TypeInfo = getContext().getTypeSize(T);
2123   }
2124 
2125   // Format the type name as if for a diagnostic, including quotes and
2126   // optionally an 'aka'.
2127   SmallString<32> Buffer;
2128   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2129                                     (intptr_t)T.getAsOpaquePtr(),
2130                                     StringRef(), StringRef(), None, Buffer,
2131                                     None);
2132 
2133   llvm::Constant *Components[] = {
2134     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2135     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2136   };
2137   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2138 
2139   auto *GV = new llvm::GlobalVariable(
2140       CGM.getModule(), Descriptor->getType(),
2141       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2142   GV->setUnnamedAddr(true);
2143   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2144 
2145   // Remember the descriptor for this type.
2146   CGM.setTypeDescriptorInMap(T, GV);
2147 
2148   return GV;
2149 }
2150 
2151 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2152   llvm::Type *TargetTy = IntPtrTy;
2153 
2154   // Floating-point types which fit into intptr_t are bitcast to integers
2155   // and then passed directly (after zero-extension, if necessary).
2156   if (V->getType()->isFloatingPointTy()) {
2157     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2158     if (Bits <= TargetTy->getIntegerBitWidth())
2159       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2160                                                          Bits));
2161   }
2162 
2163   // Integers which fit in intptr_t are zero-extended and passed directly.
2164   if (V->getType()->isIntegerTy() &&
2165       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2166     return Builder.CreateZExt(V, TargetTy);
2167 
2168   // Pointers are passed directly, everything else is passed by address.
2169   if (!V->getType()->isPointerTy()) {
2170     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2171     Builder.CreateStore(V, Ptr);
2172     V = Ptr;
2173   }
2174   return Builder.CreatePtrToInt(V, TargetTy);
2175 }
2176 
2177 /// \brief Emit a representation of a SourceLocation for passing to a handler
2178 /// in a sanitizer runtime library. The format for this data is:
2179 /// \code
2180 ///   struct SourceLocation {
2181 ///     const char *Filename;
2182 ///     int32_t Line, Column;
2183 ///   };
2184 /// \endcode
2185 /// For an invalid SourceLocation, the Filename pointer is null.
2186 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2187   llvm::Constant *Filename;
2188   int Line, Column;
2189 
2190   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2191   if (PLoc.isValid()) {
2192     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2193     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2194     Filename = FilenameGV;
2195     Line = PLoc.getLine();
2196     Column = PLoc.getColumn();
2197   } else {
2198     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2199     Line = Column = 0;
2200   }
2201 
2202   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2203                             Builder.getInt32(Column)};
2204 
2205   return llvm::ConstantStruct::getAnon(Data);
2206 }
2207 
2208 namespace {
2209 /// \brief Specify under what conditions this check can be recovered
2210 enum class CheckRecoverableKind {
2211   /// Always terminate program execution if this check fails.
2212   Unrecoverable,
2213   /// Check supports recovering, runtime has both fatal (noreturn) and
2214   /// non-fatal handlers for this check.
2215   Recoverable,
2216   /// Runtime conditionally aborts, always need to support recovery.
2217   AlwaysRecoverable
2218 };
2219 }
2220 
2221 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) {
2222   switch (Kind) {
2223   case SanitizerKind::Vptr:
2224     return CheckRecoverableKind::AlwaysRecoverable;
2225   case SanitizerKind::Return:
2226   case SanitizerKind::Unreachable:
2227     return CheckRecoverableKind::Unrecoverable;
2228   default:
2229     return CheckRecoverableKind::Recoverable;
2230   }
2231 }
2232 
2233 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2234                                  llvm::FunctionType *FnType,
2235                                  ArrayRef<llvm::Value *> FnArgs,
2236                                  StringRef CheckName,
2237                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2238                                  llvm::BasicBlock *ContBB) {
2239   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2240   bool NeedsAbortSuffix =
2241       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2242   std::string FnName = ("__ubsan_handle_" + CheckName +
2243                         (NeedsAbortSuffix ? "_abort" : "")).str();
2244   bool MayReturn =
2245       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2246 
2247   llvm::AttrBuilder B;
2248   if (!MayReturn) {
2249     B.addAttribute(llvm::Attribute::NoReturn)
2250         .addAttribute(llvm::Attribute::NoUnwind);
2251   }
2252   B.addAttribute(llvm::Attribute::UWTable);
2253 
2254   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2255       FnType, FnName,
2256       llvm::AttributeSet::get(CGF.getLLVMContext(),
2257                               llvm::AttributeSet::FunctionIndex, B));
2258   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2259   if (!MayReturn) {
2260     HandlerCall->setDoesNotReturn();
2261     CGF.Builder.CreateUnreachable();
2262   } else {
2263     CGF.Builder.CreateBr(ContBB);
2264   }
2265 }
2266 
2267 void CodeGenFunction::EmitCheck(
2268     ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2269     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2270     ArrayRef<llvm::Value *> DynamicArgs) {
2271   assert(IsSanitizerScope);
2272   assert(Checked.size() > 0);
2273 
2274   llvm::Value *FatalCond = nullptr;
2275   llvm::Value *RecoverableCond = nullptr;
2276   for (int i = 0, n = Checked.size(); i < n; ++i) {
2277     llvm::Value *Check = Checked[i].first;
2278     llvm::Value *&Cond =
2279         CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2280             ? RecoverableCond
2281             : FatalCond;
2282     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2283   }
2284 
2285   llvm::Value *JointCond;
2286   if (FatalCond && RecoverableCond)
2287     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2288   else
2289     JointCond = FatalCond ? FatalCond : RecoverableCond;
2290   assert(JointCond);
2291 
2292   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2293   assert(SanOpts.has(Checked[0].second));
2294 #ifndef NDEBUG
2295   for (int i = 1, n = Checked.size(); i < n; ++i) {
2296     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2297            "All recoverable kinds in a single check must be same!");
2298     assert(SanOpts.has(Checked[i].second));
2299   }
2300 #endif
2301 
2302   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2303     assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
2304            "Runtime call required for AlwaysRecoverable kind!");
2305     // Assume that -fsanitize-undefined-trap-on-error overrides
2306     // -fsanitize-recover= options, as we can only print meaningful error
2307     // message and recover if we have a runtime support.
2308     return EmitTrapCheck(JointCond);
2309   }
2310 
2311   llvm::BasicBlock *Cont = createBasicBlock("cont");
2312   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2313   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2314   // Give hint that we very much don't expect to execute the handler
2315   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2316   llvm::MDBuilder MDHelper(getLLVMContext());
2317   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2318   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2319   EmitBlock(Handlers);
2320 
2321   // Emit handler arguments and create handler function type.
2322   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2323   auto *InfoPtr =
2324       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2325                                llvm::GlobalVariable::PrivateLinkage, Info);
2326   InfoPtr->setUnnamedAddr(true);
2327   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2328 
2329   SmallVector<llvm::Value *, 4> Args;
2330   SmallVector<llvm::Type *, 4> ArgTypes;
2331   Args.reserve(DynamicArgs.size() + 1);
2332   ArgTypes.reserve(DynamicArgs.size() + 1);
2333 
2334   // Handler functions take an i8* pointing to the (handler-specific) static
2335   // information block, followed by a sequence of intptr_t arguments
2336   // representing operand values.
2337   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2338   ArgTypes.push_back(Int8PtrTy);
2339   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2340     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2341     ArgTypes.push_back(IntPtrTy);
2342   }
2343 
2344   llvm::FunctionType *FnType =
2345     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2346 
2347   if (!FatalCond || !RecoverableCond) {
2348     // Simple case: we need to generate a single handler call, either
2349     // fatal, or non-fatal.
2350     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2351                          (FatalCond != nullptr), Cont);
2352   } else {
2353     // Emit two handler calls: first one for set of unrecoverable checks,
2354     // another one for recoverable.
2355     llvm::BasicBlock *NonFatalHandlerBB =
2356         createBasicBlock("non_fatal." + CheckName);
2357     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2358     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2359     EmitBlock(FatalHandlerBB);
2360     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2361                          NonFatalHandlerBB);
2362     EmitBlock(NonFatalHandlerBB);
2363     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2364                          Cont);
2365   }
2366 
2367   EmitBlock(Cont);
2368 }
2369 
2370 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2371   llvm::BasicBlock *Cont = createBasicBlock("cont");
2372 
2373   // If we're optimizing, collapse all calls to trap down to just one per
2374   // function to save on code size.
2375   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2376     TrapBB = createBasicBlock("trap");
2377     Builder.CreateCondBr(Checked, Cont, TrapBB);
2378     EmitBlock(TrapBB);
2379     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2380     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2381     TrapCall->setDoesNotReturn();
2382     TrapCall->setDoesNotThrow();
2383     Builder.CreateUnreachable();
2384   } else {
2385     Builder.CreateCondBr(Checked, Cont, TrapBB);
2386   }
2387 
2388   EmitBlock(Cont);
2389 }
2390 
2391 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2392 /// array to pointer, return the array subexpression.
2393 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2394   // If this isn't just an array->pointer decay, bail out.
2395   const auto *CE = dyn_cast<CastExpr>(E);
2396   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2397     return nullptr;
2398 
2399   // If this is a decay from variable width array, bail out.
2400   const Expr *SubExpr = CE->getSubExpr();
2401   if (SubExpr->getType()->isVariableArrayType())
2402     return nullptr;
2403 
2404   return SubExpr;
2405 }
2406 
2407 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2408                                                bool Accessed) {
2409   // The index must always be an integer, which is not an aggregate.  Emit it.
2410   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2411   QualType IdxTy  = E->getIdx()->getType();
2412   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2413 
2414   if (SanOpts.has(SanitizerKind::ArrayBounds))
2415     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2416 
2417   // If the base is a vector type, then we are forming a vector element lvalue
2418   // with this subscript.
2419   if (E->getBase()->getType()->isVectorType() &&
2420       !isa<ExtVectorElementExpr>(E->getBase())) {
2421     // Emit the vector as an lvalue to get its address.
2422     LValue LHS = EmitLValue(E->getBase());
2423     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2424     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2425                                  E->getBase()->getType(), LHS.getAlignment());
2426   }
2427 
2428   // Extend or truncate the index type to 32 or 64-bits.
2429   if (Idx->getType() != IntPtrTy)
2430     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2431 
2432   // We know that the pointer points to a type of the correct size, unless the
2433   // size is a VLA or Objective-C interface.
2434   llvm::Value *Address = nullptr;
2435   CharUnits ArrayAlignment;
2436   if (isa<ExtVectorElementExpr>(E->getBase())) {
2437     LValue LV = EmitLValue(E->getBase());
2438     Address = EmitExtVectorElementLValue(LV);
2439     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2440     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2441     QualType EQT = ExprVT->getElementType();
2442     return MakeAddrLValue(Address, EQT,
2443                           getContext().getTypeAlignInChars(EQT));
2444   }
2445   else if (const VariableArrayType *vla =
2446            getContext().getAsVariableArrayType(E->getType())) {
2447     // The base must be a pointer, which is not an aggregate.  Emit
2448     // it.  It needs to be emitted first in case it's what captures
2449     // the VLA bounds.
2450     Address = EmitScalarExpr(E->getBase());
2451 
2452     // The element count here is the total number of non-VLA elements.
2453     llvm::Value *numElements = getVLASize(vla).first;
2454 
2455     // Effectively, the multiply by the VLA size is part of the GEP.
2456     // GEP indexes are signed, and scaling an index isn't permitted to
2457     // signed-overflow, so we use the same semantics for our explicit
2458     // multiply.  We suppress this if overflow is not undefined behavior.
2459     if (getLangOpts().isSignedOverflowDefined()) {
2460       Idx = Builder.CreateMul(Idx, numElements);
2461       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2462     } else {
2463       Idx = Builder.CreateNSWMul(Idx, numElements);
2464       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2465     }
2466   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2467     // Indexing over an interface, as in "NSString *P; P[4];"
2468     llvm::Value *InterfaceSize =
2469       llvm::ConstantInt::get(Idx->getType(),
2470           getContext().getTypeSizeInChars(OIT).getQuantity());
2471 
2472     Idx = Builder.CreateMul(Idx, InterfaceSize);
2473 
2474     // The base must be a pointer, which is not an aggregate.  Emit it.
2475     llvm::Value *Base = EmitScalarExpr(E->getBase());
2476     Address = EmitCastToVoidPtr(Base);
2477     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2478     Address = Builder.CreateBitCast(Address, Base->getType());
2479   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2480     // If this is A[i] where A is an array, the frontend will have decayed the
2481     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2482     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2483     // "gep x, i" here.  Emit one "gep A, 0, i".
2484     assert(Array->getType()->isArrayType() &&
2485            "Array to pointer decay must have array source type!");
2486     LValue ArrayLV;
2487     // For simple multidimensional array indexing, set the 'accessed' flag for
2488     // better bounds-checking of the base expression.
2489     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2490       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2491     else
2492       ArrayLV = EmitLValue(Array);
2493     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2494     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2495     llvm::Value *Args[] = { Zero, Idx };
2496 
2497     // Propagate the alignment from the array itself to the result.
2498     ArrayAlignment = ArrayLV.getAlignment();
2499 
2500     if (getLangOpts().isSignedOverflowDefined())
2501       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2502     else
2503       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2504   } else {
2505     // The base must be a pointer, which is not an aggregate.  Emit it.
2506     llvm::Value *Base = EmitScalarExpr(E->getBase());
2507     if (getLangOpts().isSignedOverflowDefined())
2508       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2509     else
2510       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2511   }
2512 
2513   QualType T = E->getBase()->getType()->getPointeeType();
2514   assert(!T.isNull() &&
2515          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2516 
2517 
2518   // Limit the alignment to that of the result type.
2519   LValue LV;
2520   if (!ArrayAlignment.isZero()) {
2521     CharUnits Align = getContext().getTypeAlignInChars(T);
2522     ArrayAlignment = std::min(Align, ArrayAlignment);
2523     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2524   } else {
2525     LV = MakeNaturalAlignAddrLValue(Address, T);
2526   }
2527 
2528   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2529 
2530   if (getLangOpts().ObjC1 &&
2531       getLangOpts().getGC() != LangOptions::NonGC) {
2532     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2533     setObjCGCLValueClass(getContext(), E, LV);
2534   }
2535   return LV;
2536 }
2537 
2538 static
2539 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2540                                        SmallVectorImpl<unsigned> &Elts) {
2541   SmallVector<llvm::Constant*, 4> CElts;
2542   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2543     CElts.push_back(Builder.getInt32(Elts[i]));
2544 
2545   return llvm::ConstantVector::get(CElts);
2546 }
2547 
2548 LValue CodeGenFunction::
2549 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2550   // Emit the base vector as an l-value.
2551   LValue Base;
2552 
2553   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2554   if (E->isArrow()) {
2555     // If it is a pointer to a vector, emit the address and form an lvalue with
2556     // it.
2557     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2558     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2559     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2560     Base.getQuals().removeObjCGCAttr();
2561   } else if (E->getBase()->isGLValue()) {
2562     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2563     // emit the base as an lvalue.
2564     assert(E->getBase()->getType()->isVectorType());
2565     Base = EmitLValue(E->getBase());
2566   } else {
2567     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2568     assert(E->getBase()->getType()->isVectorType() &&
2569            "Result must be a vector");
2570     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2571 
2572     // Store the vector to memory (because LValue wants an address).
2573     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2574     Builder.CreateStore(Vec, VecMem);
2575     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2576   }
2577 
2578   QualType type =
2579     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2580 
2581   // Encode the element access list into a vector of unsigned indices.
2582   SmallVector<unsigned, 4> Indices;
2583   E->getEncodedElementAccess(Indices);
2584 
2585   if (Base.isSimple()) {
2586     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2587     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2588                                     Base.getAlignment());
2589   }
2590   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2591 
2592   llvm::Constant *BaseElts = Base.getExtVectorElts();
2593   SmallVector<llvm::Constant *, 4> CElts;
2594 
2595   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2596     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2597   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2598   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2599                                   Base.getAlignment());
2600 }
2601 
2602 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2603   Expr *BaseExpr = E->getBase();
2604 
2605   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2606   LValue BaseLV;
2607   if (E->isArrow()) {
2608     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2609     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2610     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2611     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2612   } else
2613     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2614 
2615   NamedDecl *ND = E->getMemberDecl();
2616   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2617     LValue LV = EmitLValueForField(BaseLV, Field);
2618     setObjCGCLValueClass(getContext(), E, LV);
2619     return LV;
2620   }
2621 
2622   if (auto *VD = dyn_cast<VarDecl>(ND))
2623     return EmitGlobalVarDeclLValue(*this, E, VD);
2624 
2625   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2626     return EmitFunctionDeclLValue(*this, E, FD);
2627 
2628   llvm_unreachable("Unhandled member declaration!");
2629 }
2630 
2631 /// Given that we are currently emitting a lambda, emit an l-value for
2632 /// one of its members.
2633 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2634   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2635   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2636   QualType LambdaTagType =
2637     getContext().getTagDeclType(Field->getParent());
2638   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2639   return EmitLValueForField(LambdaLV, Field);
2640 }
2641 
2642 LValue CodeGenFunction::EmitLValueForField(LValue base,
2643                                            const FieldDecl *field) {
2644   if (field->isBitField()) {
2645     const CGRecordLayout &RL =
2646       CGM.getTypes().getCGRecordLayout(field->getParent());
2647     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2648     llvm::Value *Addr = base.getAddress();
2649     unsigned Idx = RL.getLLVMFieldNo(field);
2650     if (Idx != 0)
2651       // For structs, we GEP to the field that the record layout suggests.
2652       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2653     // Get the access type.
2654     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2655       getLLVMContext(), Info.StorageSize,
2656       CGM.getContext().getTargetAddressSpace(base.getType()));
2657     if (Addr->getType() != PtrTy)
2658       Addr = Builder.CreateBitCast(Addr, PtrTy);
2659 
2660     QualType fieldType =
2661       field->getType().withCVRQualifiers(base.getVRQualifiers());
2662     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2663   }
2664 
2665   const RecordDecl *rec = field->getParent();
2666   QualType type = field->getType();
2667   CharUnits alignment = getContext().getDeclAlign(field);
2668 
2669   // FIXME: It should be impossible to have an LValue without alignment for a
2670   // complete type.
2671   if (!base.getAlignment().isZero())
2672     alignment = std::min(alignment, base.getAlignment());
2673 
2674   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2675 
2676   llvm::Value *addr = base.getAddress();
2677   unsigned cvr = base.getVRQualifiers();
2678   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2679   if (rec->isUnion()) {
2680     // For unions, there is no pointer adjustment.
2681     assert(!type->isReferenceType() && "union has reference member");
2682     // TODO: handle path-aware TBAA for union.
2683     TBAAPath = false;
2684   } else {
2685     // For structs, we GEP to the field that the record layout suggests.
2686     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2687     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2688 
2689     // If this is a reference field, load the reference right now.
2690     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2691       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2692       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2693       load->setAlignment(alignment.getQuantity());
2694 
2695       // Loading the reference will disable path-aware TBAA.
2696       TBAAPath = false;
2697       if (CGM.shouldUseTBAA()) {
2698         llvm::MDNode *tbaa;
2699         if (mayAlias)
2700           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2701         else
2702           tbaa = CGM.getTBAAInfo(type);
2703         if (tbaa)
2704           CGM.DecorateInstruction(load, tbaa);
2705       }
2706 
2707       addr = load;
2708       mayAlias = false;
2709       type = refType->getPointeeType();
2710       if (type->isIncompleteType())
2711         alignment = CharUnits();
2712       else
2713         alignment = getContext().getTypeAlignInChars(type);
2714       cvr = 0; // qualifiers don't recursively apply to referencee
2715     }
2716   }
2717 
2718   // Make sure that the address is pointing to the right type.  This is critical
2719   // for both unions and structs.  A union needs a bitcast, a struct element
2720   // will need a bitcast if the LLVM type laid out doesn't match the desired
2721   // type.
2722   addr = EmitBitCastOfLValueToProperType(*this, addr,
2723                                          CGM.getTypes().ConvertTypeForMem(type),
2724                                          field->getName());
2725 
2726   if (field->hasAttr<AnnotateAttr>())
2727     addr = EmitFieldAnnotations(field, addr);
2728 
2729   LValue LV = MakeAddrLValue(addr, type, alignment);
2730   LV.getQuals().addCVRQualifiers(cvr);
2731   if (TBAAPath) {
2732     const ASTRecordLayout &Layout =
2733         getContext().getASTRecordLayout(field->getParent());
2734     // Set the base type to be the base type of the base LValue and
2735     // update offset to be relative to the base type.
2736     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2737     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2738                      Layout.getFieldOffset(field->getFieldIndex()) /
2739                                            getContext().getCharWidth());
2740   }
2741 
2742   // __weak attribute on a field is ignored.
2743   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2744     LV.getQuals().removeObjCGCAttr();
2745 
2746   // Fields of may_alias structs act like 'char' for TBAA purposes.
2747   // FIXME: this should get propagated down through anonymous structs
2748   // and unions.
2749   if (mayAlias && LV.getTBAAInfo())
2750     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2751 
2752   return LV;
2753 }
2754 
2755 LValue
2756 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2757                                                   const FieldDecl *Field) {
2758   QualType FieldType = Field->getType();
2759 
2760   if (!FieldType->isReferenceType())
2761     return EmitLValueForField(Base, Field);
2762 
2763   const CGRecordLayout &RL =
2764     CGM.getTypes().getCGRecordLayout(Field->getParent());
2765   unsigned idx = RL.getLLVMFieldNo(Field);
2766   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2767   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2768 
2769   // Make sure that the address is pointing to the right type.  This is critical
2770   // for both unions and structs.  A union needs a bitcast, a struct element
2771   // will need a bitcast if the LLVM type laid out doesn't match the desired
2772   // type.
2773   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2774   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2775 
2776   CharUnits Alignment = getContext().getDeclAlign(Field);
2777 
2778   // FIXME: It should be impossible to have an LValue without alignment for a
2779   // complete type.
2780   if (!Base.getAlignment().isZero())
2781     Alignment = std::min(Alignment, Base.getAlignment());
2782 
2783   return MakeAddrLValue(V, FieldType, Alignment);
2784 }
2785 
2786 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2787   if (E->isFileScope()) {
2788     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2789     return MakeAddrLValue(GlobalPtr, E->getType());
2790   }
2791   if (E->getType()->isVariablyModifiedType())
2792     // make sure to emit the VLA size.
2793     EmitVariablyModifiedType(E->getType());
2794 
2795   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2796   const Expr *InitExpr = E->getInitializer();
2797   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2798 
2799   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2800                    /*Init*/ true);
2801 
2802   return Result;
2803 }
2804 
2805 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2806   if (!E->isGLValue())
2807     // Initializing an aggregate temporary in C++11: T{...}.
2808     return EmitAggExprToLValue(E);
2809 
2810   // An lvalue initializer list must be initializing a reference.
2811   assert(E->getNumInits() == 1 && "reference init with multiple values");
2812   return EmitLValue(E->getInit(0));
2813 }
2814 
2815 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2816 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2817 /// LValue is returned and the current block has been terminated.
2818 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2819                                                     const Expr *Operand) {
2820   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2821     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2822     return None;
2823   }
2824 
2825   return CGF.EmitLValue(Operand);
2826 }
2827 
2828 LValue CodeGenFunction::
2829 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2830   if (!expr->isGLValue()) {
2831     // ?: here should be an aggregate.
2832     assert(hasAggregateEvaluationKind(expr->getType()) &&
2833            "Unexpected conditional operator!");
2834     return EmitAggExprToLValue(expr);
2835   }
2836 
2837   OpaqueValueMapping binding(*this, expr);
2838   RegionCounter Cnt = getPGORegionCounter(expr);
2839 
2840   const Expr *condExpr = expr->getCond();
2841   bool CondExprBool;
2842   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2843     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2844     if (!CondExprBool) std::swap(live, dead);
2845 
2846     if (!ContainsLabel(dead)) {
2847       // If the true case is live, we need to track its region.
2848       if (CondExprBool)
2849         Cnt.beginRegion(Builder);
2850       return EmitLValue(live);
2851     }
2852   }
2853 
2854   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2855   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2856   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2857 
2858   ConditionalEvaluation eval(*this);
2859   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2860 
2861   // Any temporaries created here are conditional.
2862   EmitBlock(lhsBlock);
2863   Cnt.beginRegion(Builder);
2864   eval.begin(*this);
2865   Optional<LValue> lhs =
2866       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2867   eval.end(*this);
2868 
2869   if (lhs && !lhs->isSimple())
2870     return EmitUnsupportedLValue(expr, "conditional operator");
2871 
2872   lhsBlock = Builder.GetInsertBlock();
2873   if (lhs)
2874     Builder.CreateBr(contBlock);
2875 
2876   // Any temporaries created here are conditional.
2877   EmitBlock(rhsBlock);
2878   eval.begin(*this);
2879   Optional<LValue> rhs =
2880       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2881   eval.end(*this);
2882   if (rhs && !rhs->isSimple())
2883     return EmitUnsupportedLValue(expr, "conditional operator");
2884   rhsBlock = Builder.GetInsertBlock();
2885 
2886   EmitBlock(contBlock);
2887 
2888   if (lhs && rhs) {
2889     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2890                                            2, "cond-lvalue");
2891     phi->addIncoming(lhs->getAddress(), lhsBlock);
2892     phi->addIncoming(rhs->getAddress(), rhsBlock);
2893     return MakeAddrLValue(phi, expr->getType());
2894   } else {
2895     assert((lhs || rhs) &&
2896            "both operands of glvalue conditional are throw-expressions?");
2897     return lhs ? *lhs : *rhs;
2898   }
2899 }
2900 
2901 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2902 /// type. If the cast is to a reference, we can have the usual lvalue result,
2903 /// otherwise if a cast is needed by the code generator in an lvalue context,
2904 /// then it must mean that we need the address of an aggregate in order to
2905 /// access one of its members.  This can happen for all the reasons that casts
2906 /// are permitted with aggregate result, including noop aggregate casts, and
2907 /// cast from scalar to union.
2908 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2909   switch (E->getCastKind()) {
2910   case CK_ToVoid:
2911   case CK_BitCast:
2912   case CK_ArrayToPointerDecay:
2913   case CK_FunctionToPointerDecay:
2914   case CK_NullToMemberPointer:
2915   case CK_NullToPointer:
2916   case CK_IntegralToPointer:
2917   case CK_PointerToIntegral:
2918   case CK_PointerToBoolean:
2919   case CK_VectorSplat:
2920   case CK_IntegralCast:
2921   case CK_IntegralToBoolean:
2922   case CK_IntegralToFloating:
2923   case CK_FloatingToIntegral:
2924   case CK_FloatingToBoolean:
2925   case CK_FloatingCast:
2926   case CK_FloatingRealToComplex:
2927   case CK_FloatingComplexToReal:
2928   case CK_FloatingComplexToBoolean:
2929   case CK_FloatingComplexCast:
2930   case CK_FloatingComplexToIntegralComplex:
2931   case CK_IntegralRealToComplex:
2932   case CK_IntegralComplexToReal:
2933   case CK_IntegralComplexToBoolean:
2934   case CK_IntegralComplexCast:
2935   case CK_IntegralComplexToFloatingComplex:
2936   case CK_DerivedToBaseMemberPointer:
2937   case CK_BaseToDerivedMemberPointer:
2938   case CK_MemberPointerToBoolean:
2939   case CK_ReinterpretMemberPointer:
2940   case CK_AnyPointerToBlockPointerCast:
2941   case CK_ARCProduceObject:
2942   case CK_ARCConsumeObject:
2943   case CK_ARCReclaimReturnedObject:
2944   case CK_ARCExtendBlockObject:
2945   case CK_CopyAndAutoreleaseBlockObject:
2946   case CK_AddressSpaceConversion:
2947     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2948 
2949   case CK_Dependent:
2950     llvm_unreachable("dependent cast kind in IR gen!");
2951 
2952   case CK_BuiltinFnToFnPtr:
2953     llvm_unreachable("builtin functions are handled elsewhere");
2954 
2955   // These are never l-values; just use the aggregate emission code.
2956   case CK_NonAtomicToAtomic:
2957   case CK_AtomicToNonAtomic:
2958     return EmitAggExprToLValue(E);
2959 
2960   case CK_Dynamic: {
2961     LValue LV = EmitLValue(E->getSubExpr());
2962     llvm::Value *V = LV.getAddress();
2963     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2964     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2965   }
2966 
2967   case CK_ConstructorConversion:
2968   case CK_UserDefinedConversion:
2969   case CK_CPointerToObjCPointerCast:
2970   case CK_BlockPointerToObjCPointerCast:
2971   case CK_NoOp:
2972   case CK_LValueToRValue:
2973     return EmitLValue(E->getSubExpr());
2974 
2975   case CK_UncheckedDerivedToBase:
2976   case CK_DerivedToBase: {
2977     const RecordType *DerivedClassTy =
2978       E->getSubExpr()->getType()->getAs<RecordType>();
2979     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2980 
2981     LValue LV = EmitLValue(E->getSubExpr());
2982     llvm::Value *This = LV.getAddress();
2983 
2984     // Perform the derived-to-base conversion
2985     llvm::Value *Base = GetAddressOfBaseClass(
2986         This, DerivedClassDecl, E->path_begin(), E->path_end(),
2987         /*NullCheckValue=*/false, E->getExprLoc());
2988 
2989     return MakeAddrLValue(Base, E->getType());
2990   }
2991   case CK_ToUnion:
2992     return EmitAggExprToLValue(E);
2993   case CK_BaseToDerived: {
2994     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2995     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2996 
2997     LValue LV = EmitLValue(E->getSubExpr());
2998 
2999     // Perform the base-to-derived conversion
3000     llvm::Value *Derived =
3001       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3002                                E->path_begin(), E->path_end(),
3003                                /*NullCheckValue=*/false);
3004 
3005     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3006     // performed and the object is not of the derived type.
3007     if (sanitizePerformTypeCheck())
3008       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3009                     Derived, E->getType());
3010 
3011     return MakeAddrLValue(Derived, E->getType());
3012   }
3013   case CK_LValueBitCast: {
3014     // This must be a reinterpret_cast (or c-style equivalent).
3015     const auto *CE = cast<ExplicitCastExpr>(E);
3016 
3017     LValue LV = EmitLValue(E->getSubExpr());
3018     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3019                                            ConvertType(CE->getTypeAsWritten()));
3020     return MakeAddrLValue(V, E->getType());
3021   }
3022   case CK_ObjCObjectLValueCast: {
3023     LValue LV = EmitLValue(E->getSubExpr());
3024     QualType ToType = getContext().getLValueReferenceType(E->getType());
3025     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3026                                            ConvertType(ToType));
3027     return MakeAddrLValue(V, E->getType());
3028   }
3029   case CK_ZeroToOCLEvent:
3030     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3031   }
3032 
3033   llvm_unreachable("Unhandled lvalue cast kind?");
3034 }
3035 
3036 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3037   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3038   return getOpaqueLValueMapping(e);
3039 }
3040 
3041 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3042                                            const FieldDecl *FD,
3043                                            SourceLocation Loc) {
3044   QualType FT = FD->getType();
3045   LValue FieldLV = EmitLValueForField(LV, FD);
3046   switch (getEvaluationKind(FT)) {
3047   case TEK_Complex:
3048     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3049   case TEK_Aggregate:
3050     return FieldLV.asAggregateRValue();
3051   case TEK_Scalar:
3052     return EmitLoadOfLValue(FieldLV, Loc);
3053   }
3054   llvm_unreachable("bad evaluation kind");
3055 }
3056 
3057 //===--------------------------------------------------------------------===//
3058 //                             Expression Emission
3059 //===--------------------------------------------------------------------===//
3060 
3061 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3062                                      ReturnValueSlot ReturnValue) {
3063   // Builtins never have block type.
3064   if (E->getCallee()->getType()->isBlockPointerType())
3065     return EmitBlockCallExpr(E, ReturnValue);
3066 
3067   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3068     return EmitCXXMemberCallExpr(CE, ReturnValue);
3069 
3070   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3071     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3072 
3073   const Decl *TargetDecl = E->getCalleeDecl();
3074   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3075     if (unsigned builtinID = FD->getBuiltinID())
3076       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3077   }
3078 
3079   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3080     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3081       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3082 
3083   if (const auto *PseudoDtor =
3084           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3085     QualType DestroyedType = PseudoDtor->getDestroyedType();
3086     if (getLangOpts().ObjCAutoRefCount &&
3087         DestroyedType->isObjCLifetimeType() &&
3088         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3089          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3090       // Automatic Reference Counting:
3091       //   If the pseudo-expression names a retainable object with weak or
3092       //   strong lifetime, the object shall be released.
3093       Expr *BaseExpr = PseudoDtor->getBase();
3094       llvm::Value *BaseValue = nullptr;
3095       Qualifiers BaseQuals;
3096 
3097       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3098       if (PseudoDtor->isArrow()) {
3099         BaseValue = EmitScalarExpr(BaseExpr);
3100         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3101         BaseQuals = PTy->getPointeeType().getQualifiers();
3102       } else {
3103         LValue BaseLV = EmitLValue(BaseExpr);
3104         BaseValue = BaseLV.getAddress();
3105         QualType BaseTy = BaseExpr->getType();
3106         BaseQuals = BaseTy.getQualifiers();
3107       }
3108 
3109       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3110       case Qualifiers::OCL_None:
3111       case Qualifiers::OCL_ExplicitNone:
3112       case Qualifiers::OCL_Autoreleasing:
3113         break;
3114 
3115       case Qualifiers::OCL_Strong:
3116         EmitARCRelease(Builder.CreateLoad(BaseValue,
3117                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3118                        ARCPreciseLifetime);
3119         break;
3120 
3121       case Qualifiers::OCL_Weak:
3122         EmitARCDestroyWeak(BaseValue);
3123         break;
3124       }
3125     } else {
3126       // C++ [expr.pseudo]p1:
3127       //   The result shall only be used as the operand for the function call
3128       //   operator (), and the result of such a call has type void. The only
3129       //   effect is the evaluation of the postfix-expression before the dot or
3130       //   arrow.
3131       EmitScalarExpr(E->getCallee());
3132     }
3133 
3134     return RValue::get(nullptr);
3135   }
3136 
3137   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3138   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3139                   TargetDecl);
3140 }
3141 
3142 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3143   // Comma expressions just emit their LHS then their RHS as an l-value.
3144   if (E->getOpcode() == BO_Comma) {
3145     EmitIgnoredExpr(E->getLHS());
3146     EnsureInsertPoint();
3147     return EmitLValue(E->getRHS());
3148   }
3149 
3150   if (E->getOpcode() == BO_PtrMemD ||
3151       E->getOpcode() == BO_PtrMemI)
3152     return EmitPointerToDataMemberBinaryExpr(E);
3153 
3154   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3155 
3156   // Note that in all of these cases, __block variables need the RHS
3157   // evaluated first just in case the variable gets moved by the RHS.
3158 
3159   switch (getEvaluationKind(E->getType())) {
3160   case TEK_Scalar: {
3161     switch (E->getLHS()->getType().getObjCLifetime()) {
3162     case Qualifiers::OCL_Strong:
3163       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3164 
3165     case Qualifiers::OCL_Autoreleasing:
3166       return EmitARCStoreAutoreleasing(E).first;
3167 
3168     // No reason to do any of these differently.
3169     case Qualifiers::OCL_None:
3170     case Qualifiers::OCL_ExplicitNone:
3171     case Qualifiers::OCL_Weak:
3172       break;
3173     }
3174 
3175     RValue RV = EmitAnyExpr(E->getRHS());
3176     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3177     EmitStoreThroughLValue(RV, LV);
3178     return LV;
3179   }
3180 
3181   case TEK_Complex:
3182     return EmitComplexAssignmentLValue(E);
3183 
3184   case TEK_Aggregate:
3185     return EmitAggExprToLValue(E);
3186   }
3187   llvm_unreachable("bad evaluation kind");
3188 }
3189 
3190 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3191   RValue RV = EmitCallExpr(E);
3192 
3193   if (!RV.isScalar())
3194     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3195 
3196   assert(E->getCallReturnType()->isReferenceType() &&
3197          "Can't have a scalar return unless the return type is a "
3198          "reference type!");
3199 
3200   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3201 }
3202 
3203 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3204   // FIXME: This shouldn't require another copy.
3205   return EmitAggExprToLValue(E);
3206 }
3207 
3208 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3209   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3210          && "binding l-value to type which needs a temporary");
3211   AggValueSlot Slot = CreateAggTemp(E->getType());
3212   EmitCXXConstructExpr(E, Slot);
3213   return MakeAddrLValue(Slot.getAddr(), E->getType());
3214 }
3215 
3216 LValue
3217 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3218   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3219 }
3220 
3221 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3222   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3223                                ConvertType(E->getType())->getPointerTo());
3224 }
3225 
3226 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3227   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3228 }
3229 
3230 LValue
3231 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3232   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3233   Slot.setExternallyDestructed();
3234   EmitAggExpr(E->getSubExpr(), Slot);
3235   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3236   return MakeAddrLValue(Slot.getAddr(), E->getType());
3237 }
3238 
3239 LValue
3240 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3241   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3242   EmitLambdaExpr(E, Slot);
3243   return MakeAddrLValue(Slot.getAddr(), E->getType());
3244 }
3245 
3246 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3247   RValue RV = EmitObjCMessageExpr(E);
3248 
3249   if (!RV.isScalar())
3250     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3251 
3252   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3253          "Can't have a scalar return unless the return type is a "
3254          "reference type!");
3255 
3256   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3257 }
3258 
3259 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3260   llvm::Value *V =
3261     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3262   return MakeAddrLValue(V, E->getType());
3263 }
3264 
3265 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3266                                              const ObjCIvarDecl *Ivar) {
3267   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3268 }
3269 
3270 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3271                                           llvm::Value *BaseValue,
3272                                           const ObjCIvarDecl *Ivar,
3273                                           unsigned CVRQualifiers) {
3274   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3275                                                    Ivar, CVRQualifiers);
3276 }
3277 
3278 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3279   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3280   llvm::Value *BaseValue = nullptr;
3281   const Expr *BaseExpr = E->getBase();
3282   Qualifiers BaseQuals;
3283   QualType ObjectTy;
3284   if (E->isArrow()) {
3285     BaseValue = EmitScalarExpr(BaseExpr);
3286     ObjectTy = BaseExpr->getType()->getPointeeType();
3287     BaseQuals = ObjectTy.getQualifiers();
3288   } else {
3289     LValue BaseLV = EmitLValue(BaseExpr);
3290     // FIXME: this isn't right for bitfields.
3291     BaseValue = BaseLV.getAddress();
3292     ObjectTy = BaseExpr->getType();
3293     BaseQuals = ObjectTy.getQualifiers();
3294   }
3295 
3296   LValue LV =
3297     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3298                       BaseQuals.getCVRQualifiers());
3299   setObjCGCLValueClass(getContext(), E, LV);
3300   return LV;
3301 }
3302 
3303 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3304   // Can only get l-value for message expression returning aggregate type
3305   RValue RV = EmitAnyExprToTemp(E);
3306   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3307 }
3308 
3309 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3310                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3311                                  const Decl *TargetDecl, llvm::Value *Chain) {
3312   // Get the actual function type. The callee type will always be a pointer to
3313   // function type or a block pointer type.
3314   assert(CalleeType->isFunctionPointerType() &&
3315          "Call must have function pointer type!");
3316 
3317   CalleeType = getContext().getCanonicalType(CalleeType);
3318 
3319   const auto *FnType =
3320       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3321 
3322   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3323       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3324     if (llvm::Constant *PrefixSig =
3325             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3326       SanitizerScope SanScope(this);
3327       llvm::Constant *FTRTTIConst =
3328           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3329       llvm::Type *PrefixStructTyElems[] = {
3330         PrefixSig->getType(),
3331         FTRTTIConst->getType()
3332       };
3333       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3334           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3335 
3336       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3337           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3338       llvm::Value *CalleeSigPtr =
3339           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3340       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3341       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3342 
3343       llvm::BasicBlock *Cont = createBasicBlock("cont");
3344       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3345       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3346 
3347       EmitBlock(TypeCheck);
3348       llvm::Value *CalleeRTTIPtr =
3349           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3350       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3351       llvm::Value *CalleeRTTIMatch =
3352           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3353       llvm::Constant *StaticData[] = {
3354         EmitCheckSourceLocation(E->getLocStart()),
3355         EmitCheckTypeDescriptor(CalleeType)
3356       };
3357       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3358                 "function_type_mismatch", StaticData, Callee);
3359 
3360       Builder.CreateBr(Cont);
3361       EmitBlock(Cont);
3362     }
3363   }
3364 
3365   CallArgList Args;
3366   if (Chain)
3367     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3368              CGM.getContext().VoidPtrTy);
3369   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
3370                E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0);
3371 
3372   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3373       Args, FnType, /*isChainCall=*/Chain);
3374 
3375   // C99 6.5.2.2p6:
3376   //   If the expression that denotes the called function has a type
3377   //   that does not include a prototype, [the default argument
3378   //   promotions are performed]. If the number of arguments does not
3379   //   equal the number of parameters, the behavior is undefined. If
3380   //   the function is defined with a type that includes a prototype,
3381   //   and either the prototype ends with an ellipsis (, ...) or the
3382   //   types of the arguments after promotion are not compatible with
3383   //   the types of the parameters, the behavior is undefined. If the
3384   //   function is defined with a type that does not include a
3385   //   prototype, and the types of the arguments after promotion are
3386   //   not compatible with those of the parameters after promotion,
3387   //   the behavior is undefined [except in some trivial cases].
3388   // That is, in the general case, we should assume that a call
3389   // through an unprototyped function type works like a *non-variadic*
3390   // call.  The way we make this work is to cast to the exact type
3391   // of the promoted arguments.
3392   //
3393   // Chain calls use this same code path to add the invisible chain parameter
3394   // to the function type.
3395   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3396     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3397     CalleeTy = CalleeTy->getPointerTo();
3398     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3399   }
3400 
3401   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3402 }
3403 
3404 LValue CodeGenFunction::
3405 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3406   llvm::Value *BaseV;
3407   if (E->getOpcode() == BO_PtrMemI)
3408     BaseV = EmitScalarExpr(E->getLHS());
3409   else
3410     BaseV = EmitLValue(E->getLHS()).getAddress();
3411 
3412   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3413 
3414   const MemberPointerType *MPT
3415     = E->getRHS()->getType()->getAs<MemberPointerType>();
3416 
3417   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3418       *this, E, BaseV, OffsetV, MPT);
3419 
3420   return MakeAddrLValue(AddV, MPT->getPointeeType());
3421 }
3422 
3423 /// Given the address of a temporary variable, produce an r-value of
3424 /// its type.
3425 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3426                                             QualType type,
3427                                             SourceLocation loc) {
3428   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3429   switch (getEvaluationKind(type)) {
3430   case TEK_Complex:
3431     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3432   case TEK_Aggregate:
3433     return lvalue.asAggregateRValue();
3434   case TEK_Scalar:
3435     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3436   }
3437   llvm_unreachable("bad evaluation kind");
3438 }
3439 
3440 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3441   assert(Val->getType()->isFPOrFPVectorTy());
3442   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3443     return;
3444 
3445   llvm::MDBuilder MDHelper(getLLVMContext());
3446   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3447 
3448   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3449 }
3450 
3451 namespace {
3452   struct LValueOrRValue {
3453     LValue LV;
3454     RValue RV;
3455   };
3456 }
3457 
3458 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3459                                            const PseudoObjectExpr *E,
3460                                            bool forLValue,
3461                                            AggValueSlot slot) {
3462   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3463 
3464   // Find the result expression, if any.
3465   const Expr *resultExpr = E->getResultExpr();
3466   LValueOrRValue result;
3467 
3468   for (PseudoObjectExpr::const_semantics_iterator
3469          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3470     const Expr *semantic = *i;
3471 
3472     // If this semantic expression is an opaque value, bind it
3473     // to the result of its source expression.
3474     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3475 
3476       // If this is the result expression, we may need to evaluate
3477       // directly into the slot.
3478       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3479       OVMA opaqueData;
3480       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3481           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3482         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3483 
3484         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3485         opaqueData = OVMA::bind(CGF, ov, LV);
3486         result.RV = slot.asRValue();
3487 
3488       // Otherwise, emit as normal.
3489       } else {
3490         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3491 
3492         // If this is the result, also evaluate the result now.
3493         if (ov == resultExpr) {
3494           if (forLValue)
3495             result.LV = CGF.EmitLValue(ov);
3496           else
3497             result.RV = CGF.EmitAnyExpr(ov, slot);
3498         }
3499       }
3500 
3501       opaques.push_back(opaqueData);
3502 
3503     // Otherwise, if the expression is the result, evaluate it
3504     // and remember the result.
3505     } else if (semantic == resultExpr) {
3506       if (forLValue)
3507         result.LV = CGF.EmitLValue(semantic);
3508       else
3509         result.RV = CGF.EmitAnyExpr(semantic, slot);
3510 
3511     // Otherwise, evaluate the expression in an ignored context.
3512     } else {
3513       CGF.EmitIgnoredExpr(semantic);
3514     }
3515   }
3516 
3517   // Unbind all the opaques now.
3518   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3519     opaques[i].unbind(CGF);
3520 
3521   return result;
3522 }
3523 
3524 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3525                                                AggValueSlot slot) {
3526   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3527 }
3528 
3529 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3530   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3531 }
3532