1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::FunctionCallee CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
343           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297   case Expr::LambdaExprClass:
1298     return EmitAggExprToLValue(E);
1299 
1300   case Expr::ExprWithCleanupsClass: {
1301     const auto *cleanups = cast<ExprWithCleanups>(E);
1302     enterFullExpression(cleanups);
1303     RunCleanupsScope Scope(*this);
1304     LValue LV = EmitLValue(cleanups->getSubExpr());
1305     if (LV.isSimple()) {
1306       // Defend against branches out of gnu statement expressions surrounded by
1307       // cleanups.
1308       llvm::Value *V = LV.getPointer();
1309       Scope.ForceCleanup({&V});
1310       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1311                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1312     }
1313     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1314     // bitfield lvalue or some other non-simple lvalue?
1315     return LV;
1316   }
1317 
1318   case Expr::CXXDefaultArgExprClass:
1319     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1320   case Expr::CXXDefaultInitExprClass: {
1321     CXXDefaultInitExprScope Scope(*this);
1322     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1323   }
1324   case Expr::CXXTypeidExprClass:
1325     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1326 
1327   case Expr::ObjCMessageExprClass:
1328     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1329   case Expr::ObjCIvarRefExprClass:
1330     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1331   case Expr::StmtExprClass:
1332     return EmitStmtExprLValue(cast<StmtExpr>(E));
1333   case Expr::UnaryOperatorClass:
1334     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1335   case Expr::ArraySubscriptExprClass:
1336     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1337   case Expr::OMPArraySectionExprClass:
1338     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1339   case Expr::ExtVectorElementExprClass:
1340     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1341   case Expr::MemberExprClass:
1342     return EmitMemberExpr(cast<MemberExpr>(E));
1343   case Expr::CompoundLiteralExprClass:
1344     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1345   case Expr::ConditionalOperatorClass:
1346     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1347   case Expr::BinaryConditionalOperatorClass:
1348     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1349   case Expr::ChooseExprClass:
1350     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1351   case Expr::OpaqueValueExprClass:
1352     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1353   case Expr::SubstNonTypeTemplateParmExprClass:
1354     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1355   case Expr::ImplicitCastExprClass:
1356   case Expr::CStyleCastExprClass:
1357   case Expr::CXXFunctionalCastExprClass:
1358   case Expr::CXXStaticCastExprClass:
1359   case Expr::CXXDynamicCastExprClass:
1360   case Expr::CXXReinterpretCastExprClass:
1361   case Expr::CXXConstCastExprClass:
1362   case Expr::ObjCBridgedCastExprClass:
1363     return EmitCastLValue(cast<CastExpr>(E));
1364 
1365   case Expr::MaterializeTemporaryExprClass:
1366     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1367 
1368   case Expr::CoawaitExprClass:
1369     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1370   case Expr::CoyieldExprClass:
1371     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1372   }
1373 }
1374 
1375 /// Given an object of the given canonical type, can we safely copy a
1376 /// value out of it based on its initializer?
1377 static bool isConstantEmittableObjectType(QualType type) {
1378   assert(type.isCanonical());
1379   assert(!type->isReferenceType());
1380 
1381   // Must be const-qualified but non-volatile.
1382   Qualifiers qs = type.getLocalQualifiers();
1383   if (!qs.hasConst() || qs.hasVolatile()) return false;
1384 
1385   // Otherwise, all object types satisfy this except C++ classes with
1386   // mutable subobjects or non-trivial copy/destroy behavior.
1387   if (const auto *RT = dyn_cast<RecordType>(type))
1388     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1389       if (RD->hasMutableFields() || !RD->isTrivial())
1390         return false;
1391 
1392   return true;
1393 }
1394 
1395 /// Can we constant-emit a load of a reference to a variable of the
1396 /// given type?  This is different from predicates like
1397 /// Decl::isUsableInConstantExpressions because we do want it to apply
1398 /// in situations that don't necessarily satisfy the language's rules
1399 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1400 /// to do this with const float variables even if those variables
1401 /// aren't marked 'constexpr'.
1402 enum ConstantEmissionKind {
1403   CEK_None,
1404   CEK_AsReferenceOnly,
1405   CEK_AsValueOrReference,
1406   CEK_AsValueOnly
1407 };
1408 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1409   type = type.getCanonicalType();
1410   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1411     if (isConstantEmittableObjectType(ref->getPointeeType()))
1412       return CEK_AsValueOrReference;
1413     return CEK_AsReferenceOnly;
1414   }
1415   if (isConstantEmittableObjectType(type))
1416     return CEK_AsValueOnly;
1417   return CEK_None;
1418 }
1419 
1420 /// Try to emit a reference to the given value without producing it as
1421 /// an l-value.  This is actually more than an optimization: we can't
1422 /// produce an l-value for variables that we never actually captured
1423 /// in a block or lambda, which means const int variables or constexpr
1424 /// literals or similar.
1425 CodeGenFunction::ConstantEmission
1426 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1427   ValueDecl *value = refExpr->getDecl();
1428 
1429   // The value needs to be an enum constant or a constant variable.
1430   ConstantEmissionKind CEK;
1431   if (isa<ParmVarDecl>(value)) {
1432     CEK = CEK_None;
1433   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1434     CEK = checkVarTypeForConstantEmission(var->getType());
1435   } else if (isa<EnumConstantDecl>(value)) {
1436     CEK = CEK_AsValueOnly;
1437   } else {
1438     CEK = CEK_None;
1439   }
1440   if (CEK == CEK_None) return ConstantEmission();
1441 
1442   Expr::EvalResult result;
1443   bool resultIsReference;
1444   QualType resultType;
1445 
1446   // It's best to evaluate all the way as an r-value if that's permitted.
1447   if (CEK != CEK_AsReferenceOnly &&
1448       refExpr->EvaluateAsRValue(result, getContext())) {
1449     resultIsReference = false;
1450     resultType = refExpr->getType();
1451 
1452   // Otherwise, try to evaluate as an l-value.
1453   } else if (CEK != CEK_AsValueOnly &&
1454              refExpr->EvaluateAsLValue(result, getContext())) {
1455     resultIsReference = true;
1456     resultType = value->getType();
1457 
1458   // Failure.
1459   } else {
1460     return ConstantEmission();
1461   }
1462 
1463   // In any case, if the initializer has side-effects, abandon ship.
1464   if (result.HasSideEffects)
1465     return ConstantEmission();
1466 
1467   // Emit as a constant.
1468   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1469                                                result.Val, resultType);
1470 
1471   // Make sure we emit a debug reference to the global variable.
1472   // This should probably fire even for
1473   if (isa<VarDecl>(value)) {
1474     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1475       EmitDeclRefExprDbgValue(refExpr, result.Val);
1476   } else {
1477     assert(isa<EnumConstantDecl>(value));
1478     EmitDeclRefExprDbgValue(refExpr, result.Val);
1479   }
1480 
1481   // If we emitted a reference constant, we need to dereference that.
1482   if (resultIsReference)
1483     return ConstantEmission::forReference(C);
1484 
1485   return ConstantEmission::forValue(C);
1486 }
1487 
1488 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1489                                                         const MemberExpr *ME) {
1490   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1491     // Try to emit static variable member expressions as DREs.
1492     return DeclRefExpr::Create(
1493         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1494         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1495         ME->getType(), ME->getValueKind());
1496   }
1497   return nullptr;
1498 }
1499 
1500 CodeGenFunction::ConstantEmission
1501 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1502   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1503     return tryEmitAsConstant(DRE);
1504   return ConstantEmission();
1505 }
1506 
1507 llvm::Value *CodeGenFunction::emitScalarConstant(
1508     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1509   assert(Constant && "not a constant");
1510   if (Constant.isReference())
1511     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1512                             E->getExprLoc())
1513         .getScalarVal();
1514   return Constant.getValue();
1515 }
1516 
1517 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1518                                                SourceLocation Loc) {
1519   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1520                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1521                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1522 }
1523 
1524 static bool hasBooleanRepresentation(QualType Ty) {
1525   if (Ty->isBooleanType())
1526     return true;
1527 
1528   if (const EnumType *ET = Ty->getAs<EnumType>())
1529     return ET->getDecl()->getIntegerType()->isBooleanType();
1530 
1531   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1532     return hasBooleanRepresentation(AT->getValueType());
1533 
1534   return false;
1535 }
1536 
1537 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1538                             llvm::APInt &Min, llvm::APInt &End,
1539                             bool StrictEnums, bool IsBool) {
1540   const EnumType *ET = Ty->getAs<EnumType>();
1541   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1542                                 ET && !ET->getDecl()->isFixed();
1543   if (!IsBool && !IsRegularCPlusPlusEnum)
1544     return false;
1545 
1546   if (IsBool) {
1547     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1548     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1549   } else {
1550     const EnumDecl *ED = ET->getDecl();
1551     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1552     unsigned Bitwidth = LTy->getScalarSizeInBits();
1553     unsigned NumNegativeBits = ED->getNumNegativeBits();
1554     unsigned NumPositiveBits = ED->getNumPositiveBits();
1555 
1556     if (NumNegativeBits) {
1557       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1558       assert(NumBits <= Bitwidth);
1559       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1560       Min = -End;
1561     } else {
1562       assert(NumPositiveBits <= Bitwidth);
1563       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1564       Min = llvm::APInt(Bitwidth, 0);
1565     }
1566   }
1567   return true;
1568 }
1569 
1570 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1571   llvm::APInt Min, End;
1572   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1573                        hasBooleanRepresentation(Ty)))
1574     return nullptr;
1575 
1576   llvm::MDBuilder MDHelper(getLLVMContext());
1577   return MDHelper.createRange(Min, End);
1578 }
1579 
1580 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1581                                            SourceLocation Loc) {
1582   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1583   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1584   if (!HasBoolCheck && !HasEnumCheck)
1585     return false;
1586 
1587   bool IsBool = hasBooleanRepresentation(Ty) ||
1588                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1589   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1590   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1591   if (!NeedsBoolCheck && !NeedsEnumCheck)
1592     return false;
1593 
1594   // Single-bit booleans don't need to be checked. Special-case this to avoid
1595   // a bit width mismatch when handling bitfield values. This is handled by
1596   // EmitFromMemory for the non-bitfield case.
1597   if (IsBool &&
1598       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1599     return false;
1600 
1601   llvm::APInt Min, End;
1602   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1603     return true;
1604 
1605   auto &Ctx = getLLVMContext();
1606   SanitizerScope SanScope(this);
1607   llvm::Value *Check;
1608   --End;
1609   if (!Min) {
1610     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1611   } else {
1612     llvm::Value *Upper =
1613         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1614     llvm::Value *Lower =
1615         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1616     Check = Builder.CreateAnd(Upper, Lower);
1617   }
1618   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1619                                   EmitCheckTypeDescriptor(Ty)};
1620   SanitizerMask Kind =
1621       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1622   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1623             StaticArgs, EmitCheckValue(Value));
1624   return true;
1625 }
1626 
1627 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1628                                                QualType Ty,
1629                                                SourceLocation Loc,
1630                                                LValueBaseInfo BaseInfo,
1631                                                TBAAAccessInfo TBAAInfo,
1632                                                bool isNontemporal) {
1633   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1634     // For better performance, handle vector loads differently.
1635     if (Ty->isVectorType()) {
1636       const llvm::Type *EltTy = Addr.getElementType();
1637 
1638       const auto *VTy = cast<llvm::VectorType>(EltTy);
1639 
1640       // Handle vectors of size 3 like size 4 for better performance.
1641       if (VTy->getNumElements() == 3) {
1642 
1643         // Bitcast to vec4 type.
1644         llvm::VectorType *vec4Ty =
1645             llvm::VectorType::get(VTy->getElementType(), 4);
1646         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1647         // Now load value.
1648         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1649 
1650         // Shuffle vector to get vec3.
1651         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1652                                         {0, 1, 2}, "extractVec");
1653         return EmitFromMemory(V, Ty);
1654       }
1655     }
1656   }
1657 
1658   // Atomic operations have to be done on integral types.
1659   LValue AtomicLValue =
1660       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1661   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1662     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1663   }
1664 
1665   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1666   if (isNontemporal) {
1667     llvm::MDNode *Node = llvm::MDNode::get(
1668         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1669     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1670   }
1671 
1672   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1673 
1674   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1675     // In order to prevent the optimizer from throwing away the check, don't
1676     // attach range metadata to the load.
1677   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1678     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1679       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1680 
1681   return EmitFromMemory(Load, Ty);
1682 }
1683 
1684 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1685   // Bool has a different representation in memory than in registers.
1686   if (hasBooleanRepresentation(Ty)) {
1687     // This should really always be an i1, but sometimes it's already
1688     // an i8, and it's awkward to track those cases down.
1689     if (Value->getType()->isIntegerTy(1))
1690       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1691     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1692            "wrong value rep of bool");
1693   }
1694 
1695   return Value;
1696 }
1697 
1698 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1699   // Bool has a different representation in memory than in registers.
1700   if (hasBooleanRepresentation(Ty)) {
1701     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1702            "wrong value rep of bool");
1703     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1704   }
1705 
1706   return Value;
1707 }
1708 
1709 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1710                                         bool Volatile, QualType Ty,
1711                                         LValueBaseInfo BaseInfo,
1712                                         TBAAAccessInfo TBAAInfo,
1713                                         bool isInit, bool isNontemporal) {
1714   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1715     // Handle vectors differently to get better performance.
1716     if (Ty->isVectorType()) {
1717       llvm::Type *SrcTy = Value->getType();
1718       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1719       // Handle vec3 special.
1720       if (VecTy && VecTy->getNumElements() == 3) {
1721         // Our source is a vec3, do a shuffle vector to make it a vec4.
1722         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1723                                   Builder.getInt32(2),
1724                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1725         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1726         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1727                                             MaskV, "extractVec");
1728         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1729       }
1730       if (Addr.getElementType() != SrcTy) {
1731         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1732       }
1733     }
1734   }
1735 
1736   Value = EmitToMemory(Value, Ty);
1737 
1738   LValue AtomicLValue =
1739       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1740   if (Ty->isAtomicType() ||
1741       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1742     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1743     return;
1744   }
1745 
1746   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1747   if (isNontemporal) {
1748     llvm::MDNode *Node =
1749         llvm::MDNode::get(Store->getContext(),
1750                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1751     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1752   }
1753 
1754   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1755 }
1756 
1757 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1758                                         bool isInit) {
1759   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1760                     lvalue.getType(), lvalue.getBaseInfo(),
1761                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1762 }
1763 
1764 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1765 /// method emits the address of the lvalue, then loads the result as an rvalue,
1766 /// returning the rvalue.
1767 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1768   if (LV.isObjCWeak()) {
1769     // load of a __weak object.
1770     Address AddrWeakObj = LV.getAddress();
1771     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1772                                                              AddrWeakObj));
1773   }
1774   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1775     // In MRC mode, we do a load+autorelease.
1776     if (!getLangOpts().ObjCAutoRefCount) {
1777       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1778     }
1779 
1780     // In ARC mode, we load retained and then consume the value.
1781     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1782     Object = EmitObjCConsumeObject(LV.getType(), Object);
1783     return RValue::get(Object);
1784   }
1785 
1786   if (LV.isSimple()) {
1787     assert(!LV.getType()->isFunctionType());
1788 
1789     // Everything needs a load.
1790     return RValue::get(EmitLoadOfScalar(LV, Loc));
1791   }
1792 
1793   if (LV.isVectorElt()) {
1794     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1795                                               LV.isVolatileQualified());
1796     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1797                                                     "vecext"));
1798   }
1799 
1800   // If this is a reference to a subset of the elements of a vector, either
1801   // shuffle the input or extract/insert them as appropriate.
1802   if (LV.isExtVectorElt())
1803     return EmitLoadOfExtVectorElementLValue(LV);
1804 
1805   // Global Register variables always invoke intrinsics
1806   if (LV.isGlobalReg())
1807     return EmitLoadOfGlobalRegLValue(LV);
1808 
1809   assert(LV.isBitField() && "Unknown LValue type!");
1810   return EmitLoadOfBitfieldLValue(LV, Loc);
1811 }
1812 
1813 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1814                                                  SourceLocation Loc) {
1815   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1816 
1817   // Get the output type.
1818   llvm::Type *ResLTy = ConvertType(LV.getType());
1819 
1820   Address Ptr = LV.getBitFieldAddress();
1821   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1822 
1823   if (Info.IsSigned) {
1824     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1825     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1826     if (HighBits)
1827       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1828     if (Info.Offset + HighBits)
1829       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1830   } else {
1831     if (Info.Offset)
1832       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1833     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1834       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1835                                                               Info.Size),
1836                               "bf.clear");
1837   }
1838   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1839   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1840   return RValue::get(Val);
1841 }
1842 
1843 // If this is a reference to a subset of the elements of a vector, create an
1844 // appropriate shufflevector.
1845 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1846   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1847                                         LV.isVolatileQualified());
1848 
1849   const llvm::Constant *Elts = LV.getExtVectorElts();
1850 
1851   // If the result of the expression is a non-vector type, we must be extracting
1852   // a single element.  Just codegen as an extractelement.
1853   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1854   if (!ExprVT) {
1855     unsigned InIdx = getAccessedFieldNo(0, Elts);
1856     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1857     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1858   }
1859 
1860   // Always use shuffle vector to try to retain the original program structure
1861   unsigned NumResultElts = ExprVT->getNumElements();
1862 
1863   SmallVector<llvm::Constant*, 4> Mask;
1864   for (unsigned i = 0; i != NumResultElts; ++i)
1865     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1866 
1867   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1868   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1869                                     MaskV);
1870   return RValue::get(Vec);
1871 }
1872 
1873 /// Generates lvalue for partial ext_vector access.
1874 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1875   Address VectorAddress = LV.getExtVectorAddress();
1876   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1877   QualType EQT = ExprVT->getElementType();
1878   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1879 
1880   Address CastToPointerElement =
1881     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1882                                  "conv.ptr.element");
1883 
1884   const llvm::Constant *Elts = LV.getExtVectorElts();
1885   unsigned ix = getAccessedFieldNo(0, Elts);
1886 
1887   Address VectorBasePtrPlusIx =
1888     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1889                                    "vector.elt");
1890 
1891   return VectorBasePtrPlusIx;
1892 }
1893 
1894 /// Load of global gamed gegisters are always calls to intrinsics.
1895 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1896   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1897          "Bad type for register variable");
1898   llvm::MDNode *RegName = cast<llvm::MDNode>(
1899       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1900 
1901   // We accept integer and pointer types only
1902   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1903   llvm::Type *Ty = OrigTy;
1904   if (OrigTy->isPointerTy())
1905     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1906   llvm::Type *Types[] = { Ty };
1907 
1908   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1909   llvm::Value *Call = Builder.CreateCall(
1910       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1911   if (OrigTy->isPointerTy())
1912     Call = Builder.CreateIntToPtr(Call, OrigTy);
1913   return RValue::get(Call);
1914 }
1915 
1916 
1917 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1918 /// lvalue, where both are guaranteed to the have the same type, and that type
1919 /// is 'Ty'.
1920 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1921                                              bool isInit) {
1922   if (!Dst.isSimple()) {
1923     if (Dst.isVectorElt()) {
1924       // Read/modify/write the vector, inserting the new element.
1925       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1926                                             Dst.isVolatileQualified());
1927       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1928                                         Dst.getVectorIdx(), "vecins");
1929       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1930                           Dst.isVolatileQualified());
1931       return;
1932     }
1933 
1934     // If this is an update of extended vector elements, insert them as
1935     // appropriate.
1936     if (Dst.isExtVectorElt())
1937       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1938 
1939     if (Dst.isGlobalReg())
1940       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1941 
1942     assert(Dst.isBitField() && "Unknown LValue type");
1943     return EmitStoreThroughBitfieldLValue(Src, Dst);
1944   }
1945 
1946   // There's special magic for assigning into an ARC-qualified l-value.
1947   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1948     switch (Lifetime) {
1949     case Qualifiers::OCL_None:
1950       llvm_unreachable("present but none");
1951 
1952     case Qualifiers::OCL_ExplicitNone:
1953       // nothing special
1954       break;
1955 
1956     case Qualifiers::OCL_Strong:
1957       if (isInit) {
1958         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1959         break;
1960       }
1961       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1962       return;
1963 
1964     case Qualifiers::OCL_Weak:
1965       if (isInit)
1966         // Initialize and then skip the primitive store.
1967         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1968       else
1969         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1970       return;
1971 
1972     case Qualifiers::OCL_Autoreleasing:
1973       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1974                                                      Src.getScalarVal()));
1975       // fall into the normal path
1976       break;
1977     }
1978   }
1979 
1980   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1981     // load of a __weak object.
1982     Address LvalueDst = Dst.getAddress();
1983     llvm::Value *src = Src.getScalarVal();
1984      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1985     return;
1986   }
1987 
1988   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1989     // load of a __strong object.
1990     Address LvalueDst = Dst.getAddress();
1991     llvm::Value *src = Src.getScalarVal();
1992     if (Dst.isObjCIvar()) {
1993       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1994       llvm::Type *ResultType = IntPtrTy;
1995       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1996       llvm::Value *RHS = dst.getPointer();
1997       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1998       llvm::Value *LHS =
1999         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2000                                "sub.ptr.lhs.cast");
2001       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2002       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2003                                               BytesBetween);
2004     } else if (Dst.isGlobalObjCRef()) {
2005       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2006                                                 Dst.isThreadLocalRef());
2007     }
2008     else
2009       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2010     return;
2011   }
2012 
2013   assert(Src.isScalar() && "Can't emit an agg store with this method");
2014   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2015 }
2016 
2017 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2018                                                      llvm::Value **Result) {
2019   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2020   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2021   Address Ptr = Dst.getBitFieldAddress();
2022 
2023   // Get the source value, truncated to the width of the bit-field.
2024   llvm::Value *SrcVal = Src.getScalarVal();
2025 
2026   // Cast the source to the storage type and shift it into place.
2027   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2028                                  /*IsSigned=*/false);
2029   llvm::Value *MaskedVal = SrcVal;
2030 
2031   // See if there are other bits in the bitfield's storage we'll need to load
2032   // and mask together with source before storing.
2033   if (Info.StorageSize != Info.Size) {
2034     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2035     llvm::Value *Val =
2036       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2037 
2038     // Mask the source value as needed.
2039     if (!hasBooleanRepresentation(Dst.getType()))
2040       SrcVal = Builder.CreateAnd(SrcVal,
2041                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2042                                                             Info.Size),
2043                                  "bf.value");
2044     MaskedVal = SrcVal;
2045     if (Info.Offset)
2046       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2047 
2048     // Mask out the original value.
2049     Val = Builder.CreateAnd(Val,
2050                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2051                                                      Info.Offset,
2052                                                      Info.Offset + Info.Size),
2053                             "bf.clear");
2054 
2055     // Or together the unchanged values and the source value.
2056     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2057   } else {
2058     assert(Info.Offset == 0);
2059   }
2060 
2061   // Write the new value back out.
2062   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2063 
2064   // Return the new value of the bit-field, if requested.
2065   if (Result) {
2066     llvm::Value *ResultVal = MaskedVal;
2067 
2068     // Sign extend the value if needed.
2069     if (Info.IsSigned) {
2070       assert(Info.Size <= Info.StorageSize);
2071       unsigned HighBits = Info.StorageSize - Info.Size;
2072       if (HighBits) {
2073         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2074         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2075       }
2076     }
2077 
2078     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2079                                       "bf.result.cast");
2080     *Result = EmitFromMemory(ResultVal, Dst.getType());
2081   }
2082 }
2083 
2084 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2085                                                                LValue Dst) {
2086   // This access turns into a read/modify/write of the vector.  Load the input
2087   // value now.
2088   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2089                                         Dst.isVolatileQualified());
2090   const llvm::Constant *Elts = Dst.getExtVectorElts();
2091 
2092   llvm::Value *SrcVal = Src.getScalarVal();
2093 
2094   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2095     unsigned NumSrcElts = VTy->getNumElements();
2096     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2097     if (NumDstElts == NumSrcElts) {
2098       // Use shuffle vector is the src and destination are the same number of
2099       // elements and restore the vector mask since it is on the side it will be
2100       // stored.
2101       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2102       for (unsigned i = 0; i != NumSrcElts; ++i)
2103         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2104 
2105       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2106       Vec = Builder.CreateShuffleVector(SrcVal,
2107                                         llvm::UndefValue::get(Vec->getType()),
2108                                         MaskV);
2109     } else if (NumDstElts > NumSrcElts) {
2110       // Extended the source vector to the same length and then shuffle it
2111       // into the destination.
2112       // FIXME: since we're shuffling with undef, can we just use the indices
2113       //        into that?  This could be simpler.
2114       SmallVector<llvm::Constant*, 4> ExtMask;
2115       for (unsigned i = 0; i != NumSrcElts; ++i)
2116         ExtMask.push_back(Builder.getInt32(i));
2117       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2118       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2119       llvm::Value *ExtSrcVal =
2120         Builder.CreateShuffleVector(SrcVal,
2121                                     llvm::UndefValue::get(SrcVal->getType()),
2122                                     ExtMaskV);
2123       // build identity
2124       SmallVector<llvm::Constant*, 4> Mask;
2125       for (unsigned i = 0; i != NumDstElts; ++i)
2126         Mask.push_back(Builder.getInt32(i));
2127 
2128       // When the vector size is odd and .odd or .hi is used, the last element
2129       // of the Elts constant array will be one past the size of the vector.
2130       // Ignore the last element here, if it is greater than the mask size.
2131       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2132         NumSrcElts--;
2133 
2134       // modify when what gets shuffled in
2135       for (unsigned i = 0; i != NumSrcElts; ++i)
2136         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2137       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2138       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2139     } else {
2140       // We should never shorten the vector
2141       llvm_unreachable("unexpected shorten vector length");
2142     }
2143   } else {
2144     // If the Src is a scalar (not a vector) it must be updating one element.
2145     unsigned InIdx = getAccessedFieldNo(0, Elts);
2146     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2147     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2148   }
2149 
2150   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2151                       Dst.isVolatileQualified());
2152 }
2153 
2154 /// Store of global named registers are always calls to intrinsics.
2155 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2156   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2157          "Bad type for register variable");
2158   llvm::MDNode *RegName = cast<llvm::MDNode>(
2159       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2160   assert(RegName && "Register LValue is not metadata");
2161 
2162   // We accept integer and pointer types only
2163   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2164   llvm::Type *Ty = OrigTy;
2165   if (OrigTy->isPointerTy())
2166     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2167   llvm::Type *Types[] = { Ty };
2168 
2169   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2170   llvm::Value *Value = Src.getScalarVal();
2171   if (OrigTy->isPointerTy())
2172     Value = Builder.CreatePtrToInt(Value, Ty);
2173   Builder.CreateCall(
2174       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2175 }
2176 
2177 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2178 // generating write-barries API. It is currently a global, ivar,
2179 // or neither.
2180 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2181                                  LValue &LV,
2182                                  bool IsMemberAccess=false) {
2183   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2184     return;
2185 
2186   if (isa<ObjCIvarRefExpr>(E)) {
2187     QualType ExpTy = E->getType();
2188     if (IsMemberAccess && ExpTy->isPointerType()) {
2189       // If ivar is a structure pointer, assigning to field of
2190       // this struct follows gcc's behavior and makes it a non-ivar
2191       // writer-barrier conservatively.
2192       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2193       if (ExpTy->isRecordType()) {
2194         LV.setObjCIvar(false);
2195         return;
2196       }
2197     }
2198     LV.setObjCIvar(true);
2199     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2200     LV.setBaseIvarExp(Exp->getBase());
2201     LV.setObjCArray(E->getType()->isArrayType());
2202     return;
2203   }
2204 
2205   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2206     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2207       if (VD->hasGlobalStorage()) {
2208         LV.setGlobalObjCRef(true);
2209         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2210       }
2211     }
2212     LV.setObjCArray(E->getType()->isArrayType());
2213     return;
2214   }
2215 
2216   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2217     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2218     return;
2219   }
2220 
2221   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2222     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2223     if (LV.isObjCIvar()) {
2224       // If cast is to a structure pointer, follow gcc's behavior and make it
2225       // a non-ivar write-barrier.
2226       QualType ExpTy = E->getType();
2227       if (ExpTy->isPointerType())
2228         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2229       if (ExpTy->isRecordType())
2230         LV.setObjCIvar(false);
2231     }
2232     return;
2233   }
2234 
2235   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2236     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2237     return;
2238   }
2239 
2240   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2241     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2242     return;
2243   }
2244 
2245   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2246     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2247     return;
2248   }
2249 
2250   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2251     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2252     return;
2253   }
2254 
2255   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2256     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2257     if (LV.isObjCIvar() && !LV.isObjCArray())
2258       // Using array syntax to assigning to what an ivar points to is not
2259       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2260       LV.setObjCIvar(false);
2261     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2262       // Using array syntax to assigning to what global points to is not
2263       // same as assigning to the global itself. {id *G;} G[i] = 0;
2264       LV.setGlobalObjCRef(false);
2265     return;
2266   }
2267 
2268   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2269     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2270     // We don't know if member is an 'ivar', but this flag is looked at
2271     // only in the context of LV.isObjCIvar().
2272     LV.setObjCArray(E->getType()->isArrayType());
2273     return;
2274   }
2275 }
2276 
2277 static llvm::Value *
2278 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2279                                 llvm::Value *V, llvm::Type *IRType,
2280                                 StringRef Name = StringRef()) {
2281   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2282   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2283 }
2284 
2285 static LValue EmitThreadPrivateVarDeclLValue(
2286     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2287     llvm::Type *RealVarTy, SourceLocation Loc) {
2288   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2289   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2290   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2291 }
2292 
2293 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2294                                                const VarDecl *VD, QualType T) {
2295   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2296       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2297   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2298     return Address::invalid();
2299   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2300   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2301   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2302   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2303 }
2304 
2305 Address
2306 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2307                                      LValueBaseInfo *PointeeBaseInfo,
2308                                      TBAAAccessInfo *PointeeTBAAInfo) {
2309   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2310                                             RefLVal.isVolatile());
2311   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2312 
2313   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2314                                             PointeeBaseInfo, PointeeTBAAInfo,
2315                                             /* forPointeeType= */ true);
2316   return Address(Load, Align);
2317 }
2318 
2319 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2320   LValueBaseInfo PointeeBaseInfo;
2321   TBAAAccessInfo PointeeTBAAInfo;
2322   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2323                                             &PointeeTBAAInfo);
2324   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2325                         PointeeBaseInfo, PointeeTBAAInfo);
2326 }
2327 
2328 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2329                                            const PointerType *PtrTy,
2330                                            LValueBaseInfo *BaseInfo,
2331                                            TBAAAccessInfo *TBAAInfo) {
2332   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2333   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2334                                                BaseInfo, TBAAInfo,
2335                                                /*forPointeeType=*/true));
2336 }
2337 
2338 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2339                                                 const PointerType *PtrTy) {
2340   LValueBaseInfo BaseInfo;
2341   TBAAAccessInfo TBAAInfo;
2342   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2343   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2344 }
2345 
2346 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2347                                       const Expr *E, const VarDecl *VD) {
2348   QualType T = E->getType();
2349 
2350   // If it's thread_local, emit a call to its wrapper function instead.
2351   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2352       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2353     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2354   // Check if the variable is marked as declare target with link clause in
2355   // device codegen.
2356   if (CGF.getLangOpts().OpenMPIsDevice) {
2357     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2358     if (Addr.isValid())
2359       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2360   }
2361 
2362   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2363   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2364   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2365   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2366   Address Addr(V, Alignment);
2367   // Emit reference to the private copy of the variable if it is an OpenMP
2368   // threadprivate variable.
2369   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2370       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2371     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2372                                           E->getExprLoc());
2373   }
2374   LValue LV = VD->getType()->isReferenceType() ?
2375       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2376                                     AlignmentSource::Decl) :
2377       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2378   setObjCGCLValueClass(CGF.getContext(), E, LV);
2379   return LV;
2380 }
2381 
2382 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2383                                                const FunctionDecl *FD) {
2384   if (FD->hasAttr<WeakRefAttr>()) {
2385     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2386     return aliasee.getPointer();
2387   }
2388 
2389   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2390   if (!FD->hasPrototype()) {
2391     if (const FunctionProtoType *Proto =
2392             FD->getType()->getAs<FunctionProtoType>()) {
2393       // Ugly case: for a K&R-style definition, the type of the definition
2394       // isn't the same as the type of a use.  Correct for this with a
2395       // bitcast.
2396       QualType NoProtoType =
2397           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2398       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2399       V = llvm::ConstantExpr::getBitCast(V,
2400                                       CGM.getTypes().ConvertType(NoProtoType));
2401     }
2402   }
2403   return V;
2404 }
2405 
2406 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2407                                      const Expr *E, const FunctionDecl *FD) {
2408   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2409   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2410   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2411                             AlignmentSource::Decl);
2412 }
2413 
2414 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2415                                       llvm::Value *ThisValue) {
2416   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2417   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2418   return CGF.EmitLValueForField(LV, FD);
2419 }
2420 
2421 /// Named Registers are named metadata pointing to the register name
2422 /// which will be read from/written to as an argument to the intrinsic
2423 /// @llvm.read/write_register.
2424 /// So far, only the name is being passed down, but other options such as
2425 /// register type, allocation type or even optimization options could be
2426 /// passed down via the metadata node.
2427 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2428   SmallString<64> Name("llvm.named.register.");
2429   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2430   assert(Asm->getLabel().size() < 64-Name.size() &&
2431       "Register name too big");
2432   Name.append(Asm->getLabel());
2433   llvm::NamedMDNode *M =
2434     CGM.getModule().getOrInsertNamedMetadata(Name);
2435   if (M->getNumOperands() == 0) {
2436     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2437                                               Asm->getLabel());
2438     llvm::Metadata *Ops[] = {Str};
2439     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2440   }
2441 
2442   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2443 
2444   llvm::Value *Ptr =
2445     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2446   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2447 }
2448 
2449 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2450   const NamedDecl *ND = E->getDecl();
2451   QualType T = E->getType();
2452 
2453   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2454     // Global Named registers access via intrinsics only
2455     if (VD->getStorageClass() == SC_Register &&
2456         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2457       return EmitGlobalNamedRegister(VD, CGM);
2458 
2459     // A DeclRefExpr for a reference initialized by a constant expression can
2460     // appear without being odr-used. Directly emit the constant initializer.
2461     const Expr *Init = VD->getAnyInitializer(VD);
2462     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2463     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2464         VD->isUsableInConstantExpressions(getContext()) &&
2465         VD->checkInitIsICE() &&
2466         // Do not emit if it is private OpenMP variable.
2467         !(E->refersToEnclosingVariableOrCapture() &&
2468           ((CapturedStmtInfo &&
2469             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2470              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2471            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2472            (BD && BD->capturesVariable(VD))))) {
2473       llvm::Constant *Val =
2474         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2475                                             *VD->evaluateValue(),
2476                                             VD->getType());
2477       assert(Val && "failed to emit reference constant expression");
2478       // FIXME: Eventually we will want to emit vector element references.
2479 
2480       // Should we be using the alignment of the constant pointer we emitted?
2481       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2482                                                     /* BaseInfo= */ nullptr,
2483                                                     /* TBAAInfo= */ nullptr,
2484                                                     /* forPointeeType= */ true);
2485       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2486     }
2487 
2488     // Check for captured variables.
2489     if (E->refersToEnclosingVariableOrCapture()) {
2490       VD = VD->getCanonicalDecl();
2491       if (auto *FD = LambdaCaptureFields.lookup(VD))
2492         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2493       else if (CapturedStmtInfo) {
2494         auto I = LocalDeclMap.find(VD);
2495         if (I != LocalDeclMap.end()) {
2496           if (VD->getType()->isReferenceType())
2497             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2498                                              AlignmentSource::Decl);
2499           return MakeAddrLValue(I->second, T);
2500         }
2501         LValue CapLVal =
2502             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2503                                     CapturedStmtInfo->getContextValue());
2504         return MakeAddrLValue(
2505             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2506             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2507             CapLVal.getTBAAInfo());
2508       }
2509 
2510       assert(isa<BlockDecl>(CurCodeDecl));
2511       Address addr = GetAddrOfBlockDecl(VD);
2512       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2513     }
2514   }
2515 
2516   // FIXME: We should be able to assert this for FunctionDecls as well!
2517   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2518   // those with a valid source location.
2519   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2520           !E->getLocation().isValid()) &&
2521          "Should not use decl without marking it used!");
2522 
2523   if (ND->hasAttr<WeakRefAttr>()) {
2524     const auto *VD = cast<ValueDecl>(ND);
2525     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2526     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2527   }
2528 
2529   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2530     // Check if this is a global variable.
2531     if (VD->hasLinkage() || VD->isStaticDataMember())
2532       return EmitGlobalVarDeclLValue(*this, E, VD);
2533 
2534     Address addr = Address::invalid();
2535 
2536     // The variable should generally be present in the local decl map.
2537     auto iter = LocalDeclMap.find(VD);
2538     if (iter != LocalDeclMap.end()) {
2539       addr = iter->second;
2540 
2541     // Otherwise, it might be static local we haven't emitted yet for
2542     // some reason; most likely, because it's in an outer function.
2543     } else if (VD->isStaticLocal()) {
2544       addr = Address(CGM.getOrCreateStaticVarDecl(
2545           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2546                      getContext().getDeclAlign(VD));
2547 
2548     // No other cases for now.
2549     } else {
2550       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2551     }
2552 
2553 
2554     // Check for OpenMP threadprivate variables.
2555     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2556         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2557       return EmitThreadPrivateVarDeclLValue(
2558           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2559           E->getExprLoc());
2560     }
2561 
2562     // Drill into block byref variables.
2563     bool isBlockByref = VD->isEscapingByref();
2564     if (isBlockByref) {
2565       addr = emitBlockByrefAddress(addr, VD);
2566     }
2567 
2568     // Drill into reference types.
2569     LValue LV = VD->getType()->isReferenceType() ?
2570         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2571         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2572 
2573     bool isLocalStorage = VD->hasLocalStorage();
2574 
2575     bool NonGCable = isLocalStorage &&
2576                      !VD->getType()->isReferenceType() &&
2577                      !isBlockByref;
2578     if (NonGCable) {
2579       LV.getQuals().removeObjCGCAttr();
2580       LV.setNonGC(true);
2581     }
2582 
2583     bool isImpreciseLifetime =
2584       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2585     if (isImpreciseLifetime)
2586       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2587     setObjCGCLValueClass(getContext(), E, LV);
2588     return LV;
2589   }
2590 
2591   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2592     return EmitFunctionDeclLValue(*this, E, FD);
2593 
2594   // FIXME: While we're emitting a binding from an enclosing scope, all other
2595   // DeclRefExprs we see should be implicitly treated as if they also refer to
2596   // an enclosing scope.
2597   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2598     return EmitLValue(BD->getBinding());
2599 
2600   llvm_unreachable("Unhandled DeclRefExpr");
2601 }
2602 
2603 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2604   // __extension__ doesn't affect lvalue-ness.
2605   if (E->getOpcode() == UO_Extension)
2606     return EmitLValue(E->getSubExpr());
2607 
2608   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2609   switch (E->getOpcode()) {
2610   default: llvm_unreachable("Unknown unary operator lvalue!");
2611   case UO_Deref: {
2612     QualType T = E->getSubExpr()->getType()->getPointeeType();
2613     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2614 
2615     LValueBaseInfo BaseInfo;
2616     TBAAAccessInfo TBAAInfo;
2617     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2618                                             &TBAAInfo);
2619     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2620     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2621 
2622     // We should not generate __weak write barrier on indirect reference
2623     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2624     // But, we continue to generate __strong write barrier on indirect write
2625     // into a pointer to object.
2626     if (getLangOpts().ObjC &&
2627         getLangOpts().getGC() != LangOptions::NonGC &&
2628         LV.isObjCWeak())
2629       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2630     return LV;
2631   }
2632   case UO_Real:
2633   case UO_Imag: {
2634     LValue LV = EmitLValue(E->getSubExpr());
2635     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2636 
2637     // __real is valid on scalars.  This is a faster way of testing that.
2638     // __imag can only produce an rvalue on scalars.
2639     if (E->getOpcode() == UO_Real &&
2640         !LV.getAddress().getElementType()->isStructTy()) {
2641       assert(E->getSubExpr()->getType()->isArithmeticType());
2642       return LV;
2643     }
2644 
2645     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2646 
2647     Address Component =
2648       (E->getOpcode() == UO_Real
2649          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2650          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2651     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2652                                    CGM.getTBAAInfoForSubobject(LV, T));
2653     ElemLV.getQuals().addQualifiers(LV.getQuals());
2654     return ElemLV;
2655   }
2656   case UO_PreInc:
2657   case UO_PreDec: {
2658     LValue LV = EmitLValue(E->getSubExpr());
2659     bool isInc = E->getOpcode() == UO_PreInc;
2660 
2661     if (E->getType()->isAnyComplexType())
2662       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2663     else
2664       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2665     return LV;
2666   }
2667   }
2668 }
2669 
2670 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2671   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2672                         E->getType(), AlignmentSource::Decl);
2673 }
2674 
2675 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2676   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2677                         E->getType(), AlignmentSource::Decl);
2678 }
2679 
2680 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2681   auto SL = E->getFunctionName();
2682   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2683   StringRef FnName = CurFn->getName();
2684   if (FnName.startswith("\01"))
2685     FnName = FnName.substr(1);
2686   StringRef NameItems[] = {
2687       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2688   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2689   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2690     std::string Name = SL->getString();
2691     if (!Name.empty()) {
2692       unsigned Discriminator =
2693           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2694       if (Discriminator)
2695         Name += "_" + Twine(Discriminator + 1).str();
2696       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2697       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2698     } else {
2699       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2700       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2701     }
2702   }
2703   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2704   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2705 }
2706 
2707 /// Emit a type description suitable for use by a runtime sanitizer library. The
2708 /// format of a type descriptor is
2709 ///
2710 /// \code
2711 ///   { i16 TypeKind, i16 TypeInfo }
2712 /// \endcode
2713 ///
2714 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2715 /// integer, 1 for a floating point value, and -1 for anything else.
2716 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2717   // Only emit each type's descriptor once.
2718   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2719     return C;
2720 
2721   uint16_t TypeKind = -1;
2722   uint16_t TypeInfo = 0;
2723 
2724   if (T->isIntegerType()) {
2725     TypeKind = 0;
2726     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2727                (T->isSignedIntegerType() ? 1 : 0);
2728   } else if (T->isFloatingType()) {
2729     TypeKind = 1;
2730     TypeInfo = getContext().getTypeSize(T);
2731   }
2732 
2733   // Format the type name as if for a diagnostic, including quotes and
2734   // optionally an 'aka'.
2735   SmallString<32> Buffer;
2736   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2737                                     (intptr_t)T.getAsOpaquePtr(),
2738                                     StringRef(), StringRef(), None, Buffer,
2739                                     None);
2740 
2741   llvm::Constant *Components[] = {
2742     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2743     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2744   };
2745   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2746 
2747   auto *GV = new llvm::GlobalVariable(
2748       CGM.getModule(), Descriptor->getType(),
2749       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2750   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2751   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2752 
2753   // Remember the descriptor for this type.
2754   CGM.setTypeDescriptorInMap(T, GV);
2755 
2756   return GV;
2757 }
2758 
2759 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2760   llvm::Type *TargetTy = IntPtrTy;
2761 
2762   if (V->getType() == TargetTy)
2763     return V;
2764 
2765   // Floating-point types which fit into intptr_t are bitcast to integers
2766   // and then passed directly (after zero-extension, if necessary).
2767   if (V->getType()->isFloatingPointTy()) {
2768     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2769     if (Bits <= TargetTy->getIntegerBitWidth())
2770       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2771                                                          Bits));
2772   }
2773 
2774   // Integers which fit in intptr_t are zero-extended and passed directly.
2775   if (V->getType()->isIntegerTy() &&
2776       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2777     return Builder.CreateZExt(V, TargetTy);
2778 
2779   // Pointers are passed directly, everything else is passed by address.
2780   if (!V->getType()->isPointerTy()) {
2781     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2782     Builder.CreateStore(V, Ptr);
2783     V = Ptr.getPointer();
2784   }
2785   return Builder.CreatePtrToInt(V, TargetTy);
2786 }
2787 
2788 /// Emit a representation of a SourceLocation for passing to a handler
2789 /// in a sanitizer runtime library. The format for this data is:
2790 /// \code
2791 ///   struct SourceLocation {
2792 ///     const char *Filename;
2793 ///     int32_t Line, Column;
2794 ///   };
2795 /// \endcode
2796 /// For an invalid SourceLocation, the Filename pointer is null.
2797 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2798   llvm::Constant *Filename;
2799   int Line, Column;
2800 
2801   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2802   if (PLoc.isValid()) {
2803     StringRef FilenameString = PLoc.getFilename();
2804 
2805     int PathComponentsToStrip =
2806         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2807     if (PathComponentsToStrip < 0) {
2808       assert(PathComponentsToStrip != INT_MIN);
2809       int PathComponentsToKeep = -PathComponentsToStrip;
2810       auto I = llvm::sys::path::rbegin(FilenameString);
2811       auto E = llvm::sys::path::rend(FilenameString);
2812       while (I != E && --PathComponentsToKeep)
2813         ++I;
2814 
2815       FilenameString = FilenameString.substr(I - E);
2816     } else if (PathComponentsToStrip > 0) {
2817       auto I = llvm::sys::path::begin(FilenameString);
2818       auto E = llvm::sys::path::end(FilenameString);
2819       while (I != E && PathComponentsToStrip--)
2820         ++I;
2821 
2822       if (I != E)
2823         FilenameString =
2824             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2825       else
2826         FilenameString = llvm::sys::path::filename(FilenameString);
2827     }
2828 
2829     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2830     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2831                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2832     Filename = FilenameGV.getPointer();
2833     Line = PLoc.getLine();
2834     Column = PLoc.getColumn();
2835   } else {
2836     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2837     Line = Column = 0;
2838   }
2839 
2840   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2841                             Builder.getInt32(Column)};
2842 
2843   return llvm::ConstantStruct::getAnon(Data);
2844 }
2845 
2846 namespace {
2847 /// Specify under what conditions this check can be recovered
2848 enum class CheckRecoverableKind {
2849   /// Always terminate program execution if this check fails.
2850   Unrecoverable,
2851   /// Check supports recovering, runtime has both fatal (noreturn) and
2852   /// non-fatal handlers for this check.
2853   Recoverable,
2854   /// Runtime conditionally aborts, always need to support recovery.
2855   AlwaysRecoverable
2856 };
2857 }
2858 
2859 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2860   assert(Kind.countPopulation() == 1);
2861   if (Kind == SanitizerKind::Vptr)
2862     return CheckRecoverableKind::AlwaysRecoverable;
2863   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2864     return CheckRecoverableKind::Unrecoverable;
2865   else
2866     return CheckRecoverableKind::Recoverable;
2867 }
2868 
2869 namespace {
2870 struct SanitizerHandlerInfo {
2871   char const *const Name;
2872   unsigned Version;
2873 };
2874 }
2875 
2876 const SanitizerHandlerInfo SanitizerHandlers[] = {
2877 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2878     LIST_SANITIZER_CHECKS
2879 #undef SANITIZER_CHECK
2880 };
2881 
2882 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2883                                  llvm::FunctionType *FnType,
2884                                  ArrayRef<llvm::Value *> FnArgs,
2885                                  SanitizerHandler CheckHandler,
2886                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2887                                  llvm::BasicBlock *ContBB) {
2888   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2889   Optional<ApplyDebugLocation> DL;
2890   if (!CGF.Builder.getCurrentDebugLocation()) {
2891     // Ensure that the call has at least an artificial debug location.
2892     DL.emplace(CGF, SourceLocation());
2893   }
2894   bool NeedsAbortSuffix =
2895       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2896   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2897   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2898   const StringRef CheckName = CheckInfo.Name;
2899   std::string FnName = "__ubsan_handle_" + CheckName.str();
2900   if (CheckInfo.Version && !MinimalRuntime)
2901     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2902   if (MinimalRuntime)
2903     FnName += "_minimal";
2904   if (NeedsAbortSuffix)
2905     FnName += "_abort";
2906   bool MayReturn =
2907       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2908 
2909   llvm::AttrBuilder B;
2910   if (!MayReturn) {
2911     B.addAttribute(llvm::Attribute::NoReturn)
2912         .addAttribute(llvm::Attribute::NoUnwind);
2913   }
2914   B.addAttribute(llvm::Attribute::UWTable);
2915 
2916   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2917       FnType, FnName,
2918       llvm::AttributeList::get(CGF.getLLVMContext(),
2919                                llvm::AttributeList::FunctionIndex, B),
2920       /*Local=*/true);
2921   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2922   if (!MayReturn) {
2923     HandlerCall->setDoesNotReturn();
2924     CGF.Builder.CreateUnreachable();
2925   } else {
2926     CGF.Builder.CreateBr(ContBB);
2927   }
2928 }
2929 
2930 void CodeGenFunction::EmitCheck(
2931     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2932     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2933     ArrayRef<llvm::Value *> DynamicArgs) {
2934   assert(IsSanitizerScope);
2935   assert(Checked.size() > 0);
2936   assert(CheckHandler >= 0 &&
2937          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2938   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2939 
2940   llvm::Value *FatalCond = nullptr;
2941   llvm::Value *RecoverableCond = nullptr;
2942   llvm::Value *TrapCond = nullptr;
2943   for (int i = 0, n = Checked.size(); i < n; ++i) {
2944     llvm::Value *Check = Checked[i].first;
2945     // -fsanitize-trap= overrides -fsanitize-recover=.
2946     llvm::Value *&Cond =
2947         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2948             ? TrapCond
2949             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2950                   ? RecoverableCond
2951                   : FatalCond;
2952     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2953   }
2954 
2955   if (TrapCond)
2956     EmitTrapCheck(TrapCond);
2957   if (!FatalCond && !RecoverableCond)
2958     return;
2959 
2960   llvm::Value *JointCond;
2961   if (FatalCond && RecoverableCond)
2962     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2963   else
2964     JointCond = FatalCond ? FatalCond : RecoverableCond;
2965   assert(JointCond);
2966 
2967   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2968   assert(SanOpts.has(Checked[0].second));
2969 #ifndef NDEBUG
2970   for (int i = 1, n = Checked.size(); i < n; ++i) {
2971     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2972            "All recoverable kinds in a single check must be same!");
2973     assert(SanOpts.has(Checked[i].second));
2974   }
2975 #endif
2976 
2977   llvm::BasicBlock *Cont = createBasicBlock("cont");
2978   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2979   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2980   // Give hint that we very much don't expect to execute the handler
2981   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2982   llvm::MDBuilder MDHelper(getLLVMContext());
2983   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2984   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2985   EmitBlock(Handlers);
2986 
2987   // Handler functions take an i8* pointing to the (handler-specific) static
2988   // information block, followed by a sequence of intptr_t arguments
2989   // representing operand values.
2990   SmallVector<llvm::Value *, 4> Args;
2991   SmallVector<llvm::Type *, 4> ArgTypes;
2992   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2993     Args.reserve(DynamicArgs.size() + 1);
2994     ArgTypes.reserve(DynamicArgs.size() + 1);
2995 
2996     // Emit handler arguments and create handler function type.
2997     if (!StaticArgs.empty()) {
2998       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2999       auto *InfoPtr =
3000           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3001                                    llvm::GlobalVariable::PrivateLinkage, Info);
3002       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3003       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3004       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3005       ArgTypes.push_back(Int8PtrTy);
3006     }
3007 
3008     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3009       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3010       ArgTypes.push_back(IntPtrTy);
3011     }
3012   }
3013 
3014   llvm::FunctionType *FnType =
3015     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3016 
3017   if (!FatalCond || !RecoverableCond) {
3018     // Simple case: we need to generate a single handler call, either
3019     // fatal, or non-fatal.
3020     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3021                          (FatalCond != nullptr), Cont);
3022   } else {
3023     // Emit two handler calls: first one for set of unrecoverable checks,
3024     // another one for recoverable.
3025     llvm::BasicBlock *NonFatalHandlerBB =
3026         createBasicBlock("non_fatal." + CheckName);
3027     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3028     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3029     EmitBlock(FatalHandlerBB);
3030     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3031                          NonFatalHandlerBB);
3032     EmitBlock(NonFatalHandlerBB);
3033     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3034                          Cont);
3035   }
3036 
3037   EmitBlock(Cont);
3038 }
3039 
3040 void CodeGenFunction::EmitCfiSlowPathCheck(
3041     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3042     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3043   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3044 
3045   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3046   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3047 
3048   llvm::MDBuilder MDHelper(getLLVMContext());
3049   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3050   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3051 
3052   EmitBlock(CheckBB);
3053 
3054   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3055 
3056   llvm::CallInst *CheckCall;
3057   llvm::FunctionCallee SlowPathFn;
3058   if (WithDiag) {
3059     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3060     auto *InfoPtr =
3061         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3062                                  llvm::GlobalVariable::PrivateLinkage, Info);
3063     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3064     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3065 
3066     SlowPathFn = CGM.getModule().getOrInsertFunction(
3067         "__cfi_slowpath_diag",
3068         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3069                                 false));
3070     CheckCall = Builder.CreateCall(
3071         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3072   } else {
3073     SlowPathFn = CGM.getModule().getOrInsertFunction(
3074         "__cfi_slowpath",
3075         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3076     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3077   }
3078 
3079   CGM.setDSOLocal(
3080       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3081   CheckCall->setDoesNotThrow();
3082 
3083   EmitBlock(Cont);
3084 }
3085 
3086 // Emit a stub for __cfi_check function so that the linker knows about this
3087 // symbol in LTO mode.
3088 void CodeGenFunction::EmitCfiCheckStub() {
3089   llvm::Module *M = &CGM.getModule();
3090   auto &Ctx = M->getContext();
3091   llvm::Function *F = llvm::Function::Create(
3092       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3093       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3094   CGM.setDSOLocal(F);
3095   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3096   // FIXME: consider emitting an intrinsic call like
3097   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3098   // which can be lowered in CrossDSOCFI pass to the actual contents of
3099   // __cfi_check. This would allow inlining of __cfi_check calls.
3100   llvm::CallInst::Create(
3101       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3102   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3103 }
3104 
3105 // This function is basically a switch over the CFI failure kind, which is
3106 // extracted from CFICheckFailData (1st function argument). Each case is either
3107 // llvm.trap or a call to one of the two runtime handlers, based on
3108 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3109 // failure kind) traps, but this should really never happen.  CFICheckFailData
3110 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3111 // check kind; in this case __cfi_check_fail traps as well.
3112 void CodeGenFunction::EmitCfiCheckFail() {
3113   SanitizerScope SanScope(this);
3114   FunctionArgList Args;
3115   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3116                             ImplicitParamDecl::Other);
3117   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3118                             ImplicitParamDecl::Other);
3119   Args.push_back(&ArgData);
3120   Args.push_back(&ArgAddr);
3121 
3122   const CGFunctionInfo &FI =
3123     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3124 
3125   llvm::Function *F = llvm::Function::Create(
3126       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3127       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3128   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3129 
3130   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3131                 SourceLocation());
3132 
3133   // This function should not be affected by blacklist. This function does
3134   // not have a source location, but "src:*" would still apply. Revert any
3135   // changes to SanOpts made in StartFunction.
3136   SanOpts = CGM.getLangOpts().Sanitize;
3137 
3138   llvm::Value *Data =
3139       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3140                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3141   llvm::Value *Addr =
3142       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3143                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3144 
3145   // Data == nullptr means the calling module has trap behaviour for this check.
3146   llvm::Value *DataIsNotNullPtr =
3147       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3148   EmitTrapCheck(DataIsNotNullPtr);
3149 
3150   llvm::StructType *SourceLocationTy =
3151       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3152   llvm::StructType *CfiCheckFailDataTy =
3153       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3154 
3155   llvm::Value *V = Builder.CreateConstGEP2_32(
3156       CfiCheckFailDataTy,
3157       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3158       0);
3159   Address CheckKindAddr(V, getIntAlign());
3160   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3161 
3162   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3163       CGM.getLLVMContext(),
3164       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3165   llvm::Value *ValidVtable = Builder.CreateZExt(
3166       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3167                          {Addr, AllVtables}),
3168       IntPtrTy);
3169 
3170   const std::pair<int, SanitizerMask> CheckKinds[] = {
3171       {CFITCK_VCall, SanitizerKind::CFIVCall},
3172       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3173       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3174       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3175       {CFITCK_ICall, SanitizerKind::CFIICall}};
3176 
3177   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3178   for (auto CheckKindMaskPair : CheckKinds) {
3179     int Kind = CheckKindMaskPair.first;
3180     SanitizerMask Mask = CheckKindMaskPair.second;
3181     llvm::Value *Cond =
3182         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3183     if (CGM.getLangOpts().Sanitize.has(Mask))
3184       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3185                 {Data, Addr, ValidVtable});
3186     else
3187       EmitTrapCheck(Cond);
3188   }
3189 
3190   FinishFunction();
3191   // The only reference to this function will be created during LTO link.
3192   // Make sure it survives until then.
3193   CGM.addUsedGlobal(F);
3194 }
3195 
3196 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3197   if (SanOpts.has(SanitizerKind::Unreachable)) {
3198     SanitizerScope SanScope(this);
3199     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3200                              SanitizerKind::Unreachable),
3201               SanitizerHandler::BuiltinUnreachable,
3202               EmitCheckSourceLocation(Loc), None);
3203   }
3204   Builder.CreateUnreachable();
3205 }
3206 
3207 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3208   llvm::BasicBlock *Cont = createBasicBlock("cont");
3209 
3210   // If we're optimizing, collapse all calls to trap down to just one per
3211   // function to save on code size.
3212   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3213     TrapBB = createBasicBlock("trap");
3214     Builder.CreateCondBr(Checked, Cont, TrapBB);
3215     EmitBlock(TrapBB);
3216     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3217     TrapCall->setDoesNotReturn();
3218     TrapCall->setDoesNotThrow();
3219     Builder.CreateUnreachable();
3220   } else {
3221     Builder.CreateCondBr(Checked, Cont, TrapBB);
3222   }
3223 
3224   EmitBlock(Cont);
3225 }
3226 
3227 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3228   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3229 
3230   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3231     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3232                                   CGM.getCodeGenOpts().TrapFuncName);
3233     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3234   }
3235 
3236   return TrapCall;
3237 }
3238 
3239 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3240                                                  LValueBaseInfo *BaseInfo,
3241                                                  TBAAAccessInfo *TBAAInfo) {
3242   assert(E->getType()->isArrayType() &&
3243          "Array to pointer decay must have array source type!");
3244 
3245   // Expressions of array type can't be bitfields or vector elements.
3246   LValue LV = EmitLValue(E);
3247   Address Addr = LV.getAddress();
3248 
3249   // If the array type was an incomplete type, we need to make sure
3250   // the decay ends up being the right type.
3251   llvm::Type *NewTy = ConvertType(E->getType());
3252   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3253 
3254   // Note that VLA pointers are always decayed, so we don't need to do
3255   // anything here.
3256   if (!E->getType()->isVariableArrayType()) {
3257     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3258            "Expected pointer to array");
3259     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3260   }
3261 
3262   // The result of this decay conversion points to an array element within the
3263   // base lvalue. However, since TBAA currently does not support representing
3264   // accesses to elements of member arrays, we conservatively represent accesses
3265   // to the pointee object as if it had no any base lvalue specified.
3266   // TODO: Support TBAA for member arrays.
3267   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3268   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3269   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3270 
3271   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3272 }
3273 
3274 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3275 /// array to pointer, return the array subexpression.
3276 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3277   // If this isn't just an array->pointer decay, bail out.
3278   const auto *CE = dyn_cast<CastExpr>(E);
3279   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3280     return nullptr;
3281 
3282   // If this is a decay from variable width array, bail out.
3283   const Expr *SubExpr = CE->getSubExpr();
3284   if (SubExpr->getType()->isVariableArrayType())
3285     return nullptr;
3286 
3287   return SubExpr;
3288 }
3289 
3290 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3291                                           llvm::Value *ptr,
3292                                           ArrayRef<llvm::Value*> indices,
3293                                           bool inbounds,
3294                                           bool signedIndices,
3295                                           SourceLocation loc,
3296                                     const llvm::Twine &name = "arrayidx") {
3297   if (inbounds) {
3298     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3299                                       CodeGenFunction::NotSubtraction, loc,
3300                                       name);
3301   } else {
3302     return CGF.Builder.CreateGEP(ptr, indices, name);
3303   }
3304 }
3305 
3306 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3307                                       llvm::Value *idx,
3308                                       CharUnits eltSize) {
3309   // If we have a constant index, we can use the exact offset of the
3310   // element we're accessing.
3311   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3312     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3313     return arrayAlign.alignmentAtOffset(offset);
3314 
3315   // Otherwise, use the worst-case alignment for any element.
3316   } else {
3317     return arrayAlign.alignmentOfArrayElement(eltSize);
3318   }
3319 }
3320 
3321 static QualType getFixedSizeElementType(const ASTContext &ctx,
3322                                         const VariableArrayType *vla) {
3323   QualType eltType;
3324   do {
3325     eltType = vla->getElementType();
3326   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3327   return eltType;
3328 }
3329 
3330 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3331                                      ArrayRef<llvm::Value *> indices,
3332                                      QualType eltType, bool inbounds,
3333                                      bool signedIndices, SourceLocation loc,
3334                                      const llvm::Twine &name = "arrayidx") {
3335   // All the indices except that last must be zero.
3336 #ifndef NDEBUG
3337   for (auto idx : indices.drop_back())
3338     assert(isa<llvm::ConstantInt>(idx) &&
3339            cast<llvm::ConstantInt>(idx)->isZero());
3340 #endif
3341 
3342   // Determine the element size of the statically-sized base.  This is
3343   // the thing that the indices are expressed in terms of.
3344   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3345     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3346   }
3347 
3348   // We can use that to compute the best alignment of the element.
3349   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3350   CharUnits eltAlign =
3351     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3352 
3353   llvm::Value *eltPtr = emitArraySubscriptGEP(
3354       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3355   return Address(eltPtr, eltAlign);
3356 }
3357 
3358 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3359                                                bool Accessed) {
3360   // The index must always be an integer, which is not an aggregate.  Emit it
3361   // in lexical order (this complexity is, sadly, required by C++17).
3362   llvm::Value *IdxPre =
3363       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3364   bool SignedIndices = false;
3365   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3366     auto *Idx = IdxPre;
3367     if (E->getLHS() != E->getIdx()) {
3368       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3369       Idx = EmitScalarExpr(E->getIdx());
3370     }
3371 
3372     QualType IdxTy = E->getIdx()->getType();
3373     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3374     SignedIndices |= IdxSigned;
3375 
3376     if (SanOpts.has(SanitizerKind::ArrayBounds))
3377       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3378 
3379     // Extend or truncate the index type to 32 or 64-bits.
3380     if (Promote && Idx->getType() != IntPtrTy)
3381       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3382 
3383     return Idx;
3384   };
3385   IdxPre = nullptr;
3386 
3387   // If the base is a vector type, then we are forming a vector element lvalue
3388   // with this subscript.
3389   if (E->getBase()->getType()->isVectorType() &&
3390       !isa<ExtVectorElementExpr>(E->getBase())) {
3391     // Emit the vector as an lvalue to get its address.
3392     LValue LHS = EmitLValue(E->getBase());
3393     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3394     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3395     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3396                                  LHS.getBaseInfo(), TBAAAccessInfo());
3397   }
3398 
3399   // All the other cases basically behave like simple offsetting.
3400 
3401   // Handle the extvector case we ignored above.
3402   if (isa<ExtVectorElementExpr>(E->getBase())) {
3403     LValue LV = EmitLValue(E->getBase());
3404     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3405     Address Addr = EmitExtVectorElementLValue(LV);
3406 
3407     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3408     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3409                                  SignedIndices, E->getExprLoc());
3410     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3411                           CGM.getTBAAInfoForSubobject(LV, EltType));
3412   }
3413 
3414   LValueBaseInfo EltBaseInfo;
3415   TBAAAccessInfo EltTBAAInfo;
3416   Address Addr = Address::invalid();
3417   if (const VariableArrayType *vla =
3418            getContext().getAsVariableArrayType(E->getType())) {
3419     // The base must be a pointer, which is not an aggregate.  Emit
3420     // it.  It needs to be emitted first in case it's what captures
3421     // the VLA bounds.
3422     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3423     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3424 
3425     // The element count here is the total number of non-VLA elements.
3426     llvm::Value *numElements = getVLASize(vla).NumElts;
3427 
3428     // Effectively, the multiply by the VLA size is part of the GEP.
3429     // GEP indexes are signed, and scaling an index isn't permitted to
3430     // signed-overflow, so we use the same semantics for our explicit
3431     // multiply.  We suppress this if overflow is not undefined behavior.
3432     if (getLangOpts().isSignedOverflowDefined()) {
3433       Idx = Builder.CreateMul(Idx, numElements);
3434     } else {
3435       Idx = Builder.CreateNSWMul(Idx, numElements);
3436     }
3437 
3438     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3439                                  !getLangOpts().isSignedOverflowDefined(),
3440                                  SignedIndices, E->getExprLoc());
3441 
3442   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3443     // Indexing over an interface, as in "NSString *P; P[4];"
3444 
3445     // Emit the base pointer.
3446     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3447     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3448 
3449     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3450     llvm::Value *InterfaceSizeVal =
3451         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3452 
3453     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3454 
3455     // We don't necessarily build correct LLVM struct types for ObjC
3456     // interfaces, so we can't rely on GEP to do this scaling
3457     // correctly, so we need to cast to i8*.  FIXME: is this actually
3458     // true?  A lot of other things in the fragile ABI would break...
3459     llvm::Type *OrigBaseTy = Addr.getType();
3460     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3461 
3462     // Do the GEP.
3463     CharUnits EltAlign =
3464       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3465     llvm::Value *EltPtr =
3466         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3467                               SignedIndices, E->getExprLoc());
3468     Addr = Address(EltPtr, EltAlign);
3469 
3470     // Cast back.
3471     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3472   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3473     // If this is A[i] where A is an array, the frontend will have decayed the
3474     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3475     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3476     // "gep x, i" here.  Emit one "gep A, 0, i".
3477     assert(Array->getType()->isArrayType() &&
3478            "Array to pointer decay must have array source type!");
3479     LValue ArrayLV;
3480     // For simple multidimensional array indexing, set the 'accessed' flag for
3481     // better bounds-checking of the base expression.
3482     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3483       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3484     else
3485       ArrayLV = EmitLValue(Array);
3486     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3487 
3488     // Propagate the alignment from the array itself to the result.
3489     Addr = emitArraySubscriptGEP(
3490         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3491         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3492         E->getExprLoc());
3493     EltBaseInfo = ArrayLV.getBaseInfo();
3494     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3495   } else {
3496     // The base must be a pointer; emit it with an estimate of its alignment.
3497     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3498     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3499     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3500                                  !getLangOpts().isSignedOverflowDefined(),
3501                                  SignedIndices, E->getExprLoc());
3502   }
3503 
3504   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3505 
3506   if (getLangOpts().ObjC &&
3507       getLangOpts().getGC() != LangOptions::NonGC) {
3508     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3509     setObjCGCLValueClass(getContext(), E, LV);
3510   }
3511   return LV;
3512 }
3513 
3514 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3515                                        LValueBaseInfo &BaseInfo,
3516                                        TBAAAccessInfo &TBAAInfo,
3517                                        QualType BaseTy, QualType ElTy,
3518                                        bool IsLowerBound) {
3519   LValue BaseLVal;
3520   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3521     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3522     if (BaseTy->isArrayType()) {
3523       Address Addr = BaseLVal.getAddress();
3524       BaseInfo = BaseLVal.getBaseInfo();
3525 
3526       // If the array type was an incomplete type, we need to make sure
3527       // the decay ends up being the right type.
3528       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3529       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3530 
3531       // Note that VLA pointers are always decayed, so we don't need to do
3532       // anything here.
3533       if (!BaseTy->isVariableArrayType()) {
3534         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3535                "Expected pointer to array");
3536         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3537       }
3538 
3539       return CGF.Builder.CreateElementBitCast(Addr,
3540                                               CGF.ConvertTypeForMem(ElTy));
3541     }
3542     LValueBaseInfo TypeBaseInfo;
3543     TBAAAccessInfo TypeTBAAInfo;
3544     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3545                                                   &TypeTBAAInfo);
3546     BaseInfo.mergeForCast(TypeBaseInfo);
3547     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3548     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3549   }
3550   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3551 }
3552 
3553 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3554                                                 bool IsLowerBound) {
3555   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3556   QualType ResultExprTy;
3557   if (auto *AT = getContext().getAsArrayType(BaseTy))
3558     ResultExprTy = AT->getElementType();
3559   else
3560     ResultExprTy = BaseTy->getPointeeType();
3561   llvm::Value *Idx = nullptr;
3562   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3563     // Requesting lower bound or upper bound, but without provided length and
3564     // without ':' symbol for the default length -> length = 1.
3565     // Idx = LowerBound ?: 0;
3566     if (auto *LowerBound = E->getLowerBound()) {
3567       Idx = Builder.CreateIntCast(
3568           EmitScalarExpr(LowerBound), IntPtrTy,
3569           LowerBound->getType()->hasSignedIntegerRepresentation());
3570     } else
3571       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3572   } else {
3573     // Try to emit length or lower bound as constant. If this is possible, 1
3574     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3575     // IR (LB + Len) - 1.
3576     auto &C = CGM.getContext();
3577     auto *Length = E->getLength();
3578     llvm::APSInt ConstLength;
3579     if (Length) {
3580       // Idx = LowerBound + Length - 1;
3581       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3582         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3583         Length = nullptr;
3584       }
3585       auto *LowerBound = E->getLowerBound();
3586       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3587       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3588         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3589         LowerBound = nullptr;
3590       }
3591       if (!Length)
3592         --ConstLength;
3593       else if (!LowerBound)
3594         --ConstLowerBound;
3595 
3596       if (Length || LowerBound) {
3597         auto *LowerBoundVal =
3598             LowerBound
3599                 ? Builder.CreateIntCast(
3600                       EmitScalarExpr(LowerBound), IntPtrTy,
3601                       LowerBound->getType()->hasSignedIntegerRepresentation())
3602                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3603         auto *LengthVal =
3604             Length
3605                 ? Builder.CreateIntCast(
3606                       EmitScalarExpr(Length), IntPtrTy,
3607                       Length->getType()->hasSignedIntegerRepresentation())
3608                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3609         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3610                                 /*HasNUW=*/false,
3611                                 !getLangOpts().isSignedOverflowDefined());
3612         if (Length && LowerBound) {
3613           Idx = Builder.CreateSub(
3614               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3615               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3616         }
3617       } else
3618         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3619     } else {
3620       // Idx = ArraySize - 1;
3621       QualType ArrayTy = BaseTy->isPointerType()
3622                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3623                              : BaseTy;
3624       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3625         Length = VAT->getSizeExpr();
3626         if (Length->isIntegerConstantExpr(ConstLength, C))
3627           Length = nullptr;
3628       } else {
3629         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3630         ConstLength = CAT->getSize();
3631       }
3632       if (Length) {
3633         auto *LengthVal = Builder.CreateIntCast(
3634             EmitScalarExpr(Length), IntPtrTy,
3635             Length->getType()->hasSignedIntegerRepresentation());
3636         Idx = Builder.CreateSub(
3637             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3638             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3639       } else {
3640         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3641         --ConstLength;
3642         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3643       }
3644     }
3645   }
3646   assert(Idx);
3647 
3648   Address EltPtr = Address::invalid();
3649   LValueBaseInfo BaseInfo;
3650   TBAAAccessInfo TBAAInfo;
3651   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3652     // The base must be a pointer, which is not an aggregate.  Emit
3653     // it.  It needs to be emitted first in case it's what captures
3654     // the VLA bounds.
3655     Address Base =
3656         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3657                                 BaseTy, VLA->getElementType(), IsLowerBound);
3658     // The element count here is the total number of non-VLA elements.
3659     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3660 
3661     // Effectively, the multiply by the VLA size is part of the GEP.
3662     // GEP indexes are signed, and scaling an index isn't permitted to
3663     // signed-overflow, so we use the same semantics for our explicit
3664     // multiply.  We suppress this if overflow is not undefined behavior.
3665     if (getLangOpts().isSignedOverflowDefined())
3666       Idx = Builder.CreateMul(Idx, NumElements);
3667     else
3668       Idx = Builder.CreateNSWMul(Idx, NumElements);
3669     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3670                                    !getLangOpts().isSignedOverflowDefined(),
3671                                    /*SignedIndices=*/false, E->getExprLoc());
3672   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3673     // If this is A[i] where A is an array, the frontend will have decayed the
3674     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3675     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3676     // "gep x, i" here.  Emit one "gep A, 0, i".
3677     assert(Array->getType()->isArrayType() &&
3678            "Array to pointer decay must have array source type!");
3679     LValue ArrayLV;
3680     // For simple multidimensional array indexing, set the 'accessed' flag for
3681     // better bounds-checking of the base expression.
3682     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3683       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3684     else
3685       ArrayLV = EmitLValue(Array);
3686 
3687     // Propagate the alignment from the array itself to the result.
3688     EltPtr = emitArraySubscriptGEP(
3689         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3690         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3691         /*SignedIndices=*/false, E->getExprLoc());
3692     BaseInfo = ArrayLV.getBaseInfo();
3693     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3694   } else {
3695     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3696                                            TBAAInfo, BaseTy, ResultExprTy,
3697                                            IsLowerBound);
3698     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3699                                    !getLangOpts().isSignedOverflowDefined(),
3700                                    /*SignedIndices=*/false, E->getExprLoc());
3701   }
3702 
3703   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3704 }
3705 
3706 LValue CodeGenFunction::
3707 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3708   // Emit the base vector as an l-value.
3709   LValue Base;
3710 
3711   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3712   if (E->isArrow()) {
3713     // If it is a pointer to a vector, emit the address and form an lvalue with
3714     // it.
3715     LValueBaseInfo BaseInfo;
3716     TBAAAccessInfo TBAAInfo;
3717     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3718     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3719     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3720     Base.getQuals().removeObjCGCAttr();
3721   } else if (E->getBase()->isGLValue()) {
3722     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3723     // emit the base as an lvalue.
3724     assert(E->getBase()->getType()->isVectorType());
3725     Base = EmitLValue(E->getBase());
3726   } else {
3727     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3728     assert(E->getBase()->getType()->isVectorType() &&
3729            "Result must be a vector");
3730     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3731 
3732     // Store the vector to memory (because LValue wants an address).
3733     Address VecMem = CreateMemTemp(E->getBase()->getType());
3734     Builder.CreateStore(Vec, VecMem);
3735     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3736                           AlignmentSource::Decl);
3737   }
3738 
3739   QualType type =
3740     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3741 
3742   // Encode the element access list into a vector of unsigned indices.
3743   SmallVector<uint32_t, 4> Indices;
3744   E->getEncodedElementAccess(Indices);
3745 
3746   if (Base.isSimple()) {
3747     llvm::Constant *CV =
3748         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3749     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3750                                     Base.getBaseInfo(), TBAAAccessInfo());
3751   }
3752   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3753 
3754   llvm::Constant *BaseElts = Base.getExtVectorElts();
3755   SmallVector<llvm::Constant *, 4> CElts;
3756 
3757   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3758     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3759   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3760   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3761                                   Base.getBaseInfo(), TBAAAccessInfo());
3762 }
3763 
3764 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3765   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3766     EmitIgnoredExpr(E->getBase());
3767     return EmitDeclRefLValue(DRE);
3768   }
3769 
3770   Expr *BaseExpr = E->getBase();
3771   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3772   LValue BaseLV;
3773   if (E->isArrow()) {
3774     LValueBaseInfo BaseInfo;
3775     TBAAAccessInfo TBAAInfo;
3776     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3777     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3778     SanitizerSet SkippedChecks;
3779     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3780     if (IsBaseCXXThis)
3781       SkippedChecks.set(SanitizerKind::Alignment, true);
3782     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3783       SkippedChecks.set(SanitizerKind::Null, true);
3784     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3785                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3786     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3787   } else
3788     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3789 
3790   NamedDecl *ND = E->getMemberDecl();
3791   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3792     LValue LV = EmitLValueForField(BaseLV, Field);
3793     setObjCGCLValueClass(getContext(), E, LV);
3794     return LV;
3795   }
3796 
3797   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3798     return EmitFunctionDeclLValue(*this, E, FD);
3799 
3800   llvm_unreachable("Unhandled member declaration!");
3801 }
3802 
3803 /// Given that we are currently emitting a lambda, emit an l-value for
3804 /// one of its members.
3805 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3806   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3807   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3808   QualType LambdaTagType =
3809     getContext().getTagDeclType(Field->getParent());
3810   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3811   return EmitLValueForField(LambdaLV, Field);
3812 }
3813 
3814 /// Drill down to the storage of a field without walking into
3815 /// reference types.
3816 ///
3817 /// The resulting address doesn't necessarily have the right type.
3818 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3819                                       const FieldDecl *field) {
3820   const RecordDecl *rec = field->getParent();
3821 
3822   unsigned idx =
3823     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3824 
3825   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3826 }
3827 
3828 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3829   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3830   if (!RD)
3831     return false;
3832 
3833   if (RD->isDynamicClass())
3834     return true;
3835 
3836   for (const auto &Base : RD->bases())
3837     if (hasAnyVptr(Base.getType(), Context))
3838       return true;
3839 
3840   for (const FieldDecl *Field : RD->fields())
3841     if (hasAnyVptr(Field->getType(), Context))
3842       return true;
3843 
3844   return false;
3845 }
3846 
3847 LValue CodeGenFunction::EmitLValueForField(LValue base,
3848                                            const FieldDecl *field) {
3849   LValueBaseInfo BaseInfo = base.getBaseInfo();
3850 
3851   if (field->isBitField()) {
3852     const CGRecordLayout &RL =
3853       CGM.getTypes().getCGRecordLayout(field->getParent());
3854     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3855     Address Addr = base.getAddress();
3856     unsigned Idx = RL.getLLVMFieldNo(field);
3857     if (Idx != 0)
3858       // For structs, we GEP to the field that the record layout suggests.
3859       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3860     // Get the access type.
3861     llvm::Type *FieldIntTy =
3862       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3863     if (Addr.getElementType() != FieldIntTy)
3864       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3865 
3866     QualType fieldType =
3867       field->getType().withCVRQualifiers(base.getVRQualifiers());
3868     // TODO: Support TBAA for bit fields.
3869     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3870     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3871                                 TBAAAccessInfo());
3872   }
3873 
3874   // Fields of may-alias structures are may-alias themselves.
3875   // FIXME: this should get propagated down through anonymous structs
3876   // and unions.
3877   QualType FieldType = field->getType();
3878   const RecordDecl *rec = field->getParent();
3879   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3880   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3881   TBAAAccessInfo FieldTBAAInfo;
3882   if (base.getTBAAInfo().isMayAlias() ||
3883           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3884     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3885   } else if (rec->isUnion()) {
3886     // TODO: Support TBAA for unions.
3887     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3888   } else {
3889     // If no base type been assigned for the base access, then try to generate
3890     // one for this base lvalue.
3891     FieldTBAAInfo = base.getTBAAInfo();
3892     if (!FieldTBAAInfo.BaseType) {
3893         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3894         assert(!FieldTBAAInfo.Offset &&
3895                "Nonzero offset for an access with no base type!");
3896     }
3897 
3898     // Adjust offset to be relative to the base type.
3899     const ASTRecordLayout &Layout =
3900         getContext().getASTRecordLayout(field->getParent());
3901     unsigned CharWidth = getContext().getCharWidth();
3902     if (FieldTBAAInfo.BaseType)
3903       FieldTBAAInfo.Offset +=
3904           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3905 
3906     // Update the final access type and size.
3907     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3908     FieldTBAAInfo.Size =
3909         getContext().getTypeSizeInChars(FieldType).getQuantity();
3910   }
3911 
3912   Address addr = base.getAddress();
3913   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3914     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3915         ClassDef->isDynamicClass()) {
3916       // Getting to any field of dynamic object requires stripping dynamic
3917       // information provided by invariant.group.  This is because accessing
3918       // fields may leak the real address of dynamic object, which could result
3919       // in miscompilation when leaked pointer would be compared.
3920       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3921       addr = Address(stripped, addr.getAlignment());
3922     }
3923   }
3924 
3925   unsigned RecordCVR = base.getVRQualifiers();
3926   if (rec->isUnion()) {
3927     // For unions, there is no pointer adjustment.
3928     assert(!FieldType->isReferenceType() && "union has reference member");
3929     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3930         hasAnyVptr(FieldType, getContext()))
3931       // Because unions can easily skip invariant.barriers, we need to add
3932       // a barrier every time CXXRecord field with vptr is referenced.
3933       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3934                      addr.getAlignment());
3935   } else {
3936     // For structs, we GEP to the field that the record layout suggests.
3937     addr = emitAddrOfFieldStorage(*this, addr, field);
3938 
3939     // If this is a reference field, load the reference right now.
3940     if (FieldType->isReferenceType()) {
3941       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3942                                       FieldTBAAInfo);
3943       if (RecordCVR & Qualifiers::Volatile)
3944         RefLVal.getQuals().addVolatile();
3945       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3946 
3947       // Qualifiers on the struct don't apply to the referencee.
3948       RecordCVR = 0;
3949       FieldType = FieldType->getPointeeType();
3950     }
3951   }
3952 
3953   // Make sure that the address is pointing to the right type.  This is critical
3954   // for both unions and structs.  A union needs a bitcast, a struct element
3955   // will need a bitcast if the LLVM type laid out doesn't match the desired
3956   // type.
3957   addr = Builder.CreateElementBitCast(
3958       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3959 
3960   if (field->hasAttr<AnnotateAttr>())
3961     addr = EmitFieldAnnotations(field, addr);
3962 
3963   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3964   LV.getQuals().addCVRQualifiers(RecordCVR);
3965 
3966   // __weak attribute on a field is ignored.
3967   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3968     LV.getQuals().removeObjCGCAttr();
3969 
3970   return LV;
3971 }
3972 
3973 LValue
3974 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3975                                                   const FieldDecl *Field) {
3976   QualType FieldType = Field->getType();
3977 
3978   if (!FieldType->isReferenceType())
3979     return EmitLValueForField(Base, Field);
3980 
3981   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3982 
3983   // Make sure that the address is pointing to the right type.
3984   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3985   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3986 
3987   // TODO: Generate TBAA information that describes this access as a structure
3988   // member access and not just an access to an object of the field's type. This
3989   // should be similar to what we do in EmitLValueForField().
3990   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3991   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3992   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3993   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3994                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3995 }
3996 
3997 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3998   if (E->isFileScope()) {
3999     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4000     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4001   }
4002   if (E->getType()->isVariablyModifiedType())
4003     // make sure to emit the VLA size.
4004     EmitVariablyModifiedType(E->getType());
4005 
4006   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4007   const Expr *InitExpr = E->getInitializer();
4008   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4009 
4010   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4011                    /*Init*/ true);
4012 
4013   return Result;
4014 }
4015 
4016 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4017   if (!E->isGLValue())
4018     // Initializing an aggregate temporary in C++11: T{...}.
4019     return EmitAggExprToLValue(E);
4020 
4021   // An lvalue initializer list must be initializing a reference.
4022   assert(E->isTransparent() && "non-transparent glvalue init list");
4023   return EmitLValue(E->getInit(0));
4024 }
4025 
4026 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4027 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4028 /// LValue is returned and the current block has been terminated.
4029 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4030                                                     const Expr *Operand) {
4031   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4032     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4033     return None;
4034   }
4035 
4036   return CGF.EmitLValue(Operand);
4037 }
4038 
4039 LValue CodeGenFunction::
4040 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4041   if (!expr->isGLValue()) {
4042     // ?: here should be an aggregate.
4043     assert(hasAggregateEvaluationKind(expr->getType()) &&
4044            "Unexpected conditional operator!");
4045     return EmitAggExprToLValue(expr);
4046   }
4047 
4048   OpaqueValueMapping binding(*this, expr);
4049 
4050   const Expr *condExpr = expr->getCond();
4051   bool CondExprBool;
4052   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4053     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4054     if (!CondExprBool) std::swap(live, dead);
4055 
4056     if (!ContainsLabel(dead)) {
4057       // If the true case is live, we need to track its region.
4058       if (CondExprBool)
4059         incrementProfileCounter(expr);
4060       return EmitLValue(live);
4061     }
4062   }
4063 
4064   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4065   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4066   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4067 
4068   ConditionalEvaluation eval(*this);
4069   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4070 
4071   // Any temporaries created here are conditional.
4072   EmitBlock(lhsBlock);
4073   incrementProfileCounter(expr);
4074   eval.begin(*this);
4075   Optional<LValue> lhs =
4076       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4077   eval.end(*this);
4078 
4079   if (lhs && !lhs->isSimple())
4080     return EmitUnsupportedLValue(expr, "conditional operator");
4081 
4082   lhsBlock = Builder.GetInsertBlock();
4083   if (lhs)
4084     Builder.CreateBr(contBlock);
4085 
4086   // Any temporaries created here are conditional.
4087   EmitBlock(rhsBlock);
4088   eval.begin(*this);
4089   Optional<LValue> rhs =
4090       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4091   eval.end(*this);
4092   if (rhs && !rhs->isSimple())
4093     return EmitUnsupportedLValue(expr, "conditional operator");
4094   rhsBlock = Builder.GetInsertBlock();
4095 
4096   EmitBlock(contBlock);
4097 
4098   if (lhs && rhs) {
4099     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4100                                            2, "cond-lvalue");
4101     phi->addIncoming(lhs->getPointer(), lhsBlock);
4102     phi->addIncoming(rhs->getPointer(), rhsBlock);
4103     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4104     AlignmentSource alignSource =
4105       std::max(lhs->getBaseInfo().getAlignmentSource(),
4106                rhs->getBaseInfo().getAlignmentSource());
4107     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4108         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4109     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4110                           TBAAInfo);
4111   } else {
4112     assert((lhs || rhs) &&
4113            "both operands of glvalue conditional are throw-expressions?");
4114     return lhs ? *lhs : *rhs;
4115   }
4116 }
4117 
4118 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4119 /// type. If the cast is to a reference, we can have the usual lvalue result,
4120 /// otherwise if a cast is needed by the code generator in an lvalue context,
4121 /// then it must mean that we need the address of an aggregate in order to
4122 /// access one of its members.  This can happen for all the reasons that casts
4123 /// are permitted with aggregate result, including noop aggregate casts, and
4124 /// cast from scalar to union.
4125 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4126   switch (E->getCastKind()) {
4127   case CK_ToVoid:
4128   case CK_BitCast:
4129   case CK_ArrayToPointerDecay:
4130   case CK_FunctionToPointerDecay:
4131   case CK_NullToMemberPointer:
4132   case CK_NullToPointer:
4133   case CK_IntegralToPointer:
4134   case CK_PointerToIntegral:
4135   case CK_PointerToBoolean:
4136   case CK_VectorSplat:
4137   case CK_IntegralCast:
4138   case CK_BooleanToSignedIntegral:
4139   case CK_IntegralToBoolean:
4140   case CK_IntegralToFloating:
4141   case CK_FloatingToIntegral:
4142   case CK_FloatingToBoolean:
4143   case CK_FloatingCast:
4144   case CK_FloatingRealToComplex:
4145   case CK_FloatingComplexToReal:
4146   case CK_FloatingComplexToBoolean:
4147   case CK_FloatingComplexCast:
4148   case CK_FloatingComplexToIntegralComplex:
4149   case CK_IntegralRealToComplex:
4150   case CK_IntegralComplexToReal:
4151   case CK_IntegralComplexToBoolean:
4152   case CK_IntegralComplexCast:
4153   case CK_IntegralComplexToFloatingComplex:
4154   case CK_DerivedToBaseMemberPointer:
4155   case CK_BaseToDerivedMemberPointer:
4156   case CK_MemberPointerToBoolean:
4157   case CK_ReinterpretMemberPointer:
4158   case CK_AnyPointerToBlockPointerCast:
4159   case CK_ARCProduceObject:
4160   case CK_ARCConsumeObject:
4161   case CK_ARCReclaimReturnedObject:
4162   case CK_ARCExtendBlockObject:
4163   case CK_CopyAndAutoreleaseBlockObject:
4164   case CK_IntToOCLSampler:
4165   case CK_FixedPointCast:
4166   case CK_FixedPointToBoolean:
4167   case CK_FixedPointToIntegral:
4168   case CK_IntegralToFixedPoint:
4169     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4170 
4171   case CK_Dependent:
4172     llvm_unreachable("dependent cast kind in IR gen!");
4173 
4174   case CK_BuiltinFnToFnPtr:
4175     llvm_unreachable("builtin functions are handled elsewhere");
4176 
4177   // These are never l-values; just use the aggregate emission code.
4178   case CK_NonAtomicToAtomic:
4179   case CK_AtomicToNonAtomic:
4180     return EmitAggExprToLValue(E);
4181 
4182   case CK_Dynamic: {
4183     LValue LV = EmitLValue(E->getSubExpr());
4184     Address V = LV.getAddress();
4185     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4186     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4187   }
4188 
4189   case CK_ConstructorConversion:
4190   case CK_UserDefinedConversion:
4191   case CK_CPointerToObjCPointerCast:
4192   case CK_BlockPointerToObjCPointerCast:
4193   case CK_NoOp:
4194   case CK_LValueToRValue:
4195     return EmitLValue(E->getSubExpr());
4196 
4197   case CK_UncheckedDerivedToBase:
4198   case CK_DerivedToBase: {
4199     const RecordType *DerivedClassTy =
4200       E->getSubExpr()->getType()->getAs<RecordType>();
4201     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4202 
4203     LValue LV = EmitLValue(E->getSubExpr());
4204     Address This = LV.getAddress();
4205 
4206     // Perform the derived-to-base conversion
4207     Address Base = GetAddressOfBaseClass(
4208         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4209         /*NullCheckValue=*/false, E->getExprLoc());
4210 
4211     // TODO: Support accesses to members of base classes in TBAA. For now, we
4212     // conservatively pretend that the complete object is of the base class
4213     // type.
4214     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4215                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4216   }
4217   case CK_ToUnion:
4218     return EmitAggExprToLValue(E);
4219   case CK_BaseToDerived: {
4220     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4221     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4222 
4223     LValue LV = EmitLValue(E->getSubExpr());
4224 
4225     // Perform the base-to-derived conversion
4226     Address Derived =
4227       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4228                                E->path_begin(), E->path_end(),
4229                                /*NullCheckValue=*/false);
4230 
4231     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4232     // performed and the object is not of the derived type.
4233     if (sanitizePerformTypeCheck())
4234       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4235                     Derived.getPointer(), E->getType());
4236 
4237     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4238       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4239                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4240                                 E->getBeginLoc());
4241 
4242     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4243                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4244   }
4245   case CK_LValueBitCast: {
4246     // This must be a reinterpret_cast (or c-style equivalent).
4247     const auto *CE = cast<ExplicitCastExpr>(E);
4248 
4249     CGM.EmitExplicitCastExprType(CE, this);
4250     LValue LV = EmitLValue(E->getSubExpr());
4251     Address V = Builder.CreateBitCast(LV.getAddress(),
4252                                       ConvertType(CE->getTypeAsWritten()));
4253 
4254     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4255       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4256                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4257                                 E->getBeginLoc());
4258 
4259     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4260                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4261   }
4262   case CK_AddressSpaceConversion: {
4263     LValue LV = EmitLValue(E->getSubExpr());
4264     QualType DestTy = getContext().getPointerType(E->getType());
4265     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4266         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4267         E->getType().getAddressSpace(), ConvertType(DestTy));
4268     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4269                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4270   }
4271   case CK_ObjCObjectLValueCast: {
4272     LValue LV = EmitLValue(E->getSubExpr());
4273     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4274                                              ConvertType(E->getType()));
4275     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4276                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4277   }
4278   case CK_ZeroToOCLOpaqueType:
4279     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4280   }
4281 
4282   llvm_unreachable("Unhandled lvalue cast kind?");
4283 }
4284 
4285 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4286   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4287   return getOrCreateOpaqueLValueMapping(e);
4288 }
4289 
4290 LValue
4291 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4292   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4293 
4294   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4295       it = OpaqueLValues.find(e);
4296 
4297   if (it != OpaqueLValues.end())
4298     return it->second;
4299 
4300   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4301   return EmitLValue(e->getSourceExpr());
4302 }
4303 
4304 RValue
4305 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4306   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4307 
4308   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4309       it = OpaqueRValues.find(e);
4310 
4311   if (it != OpaqueRValues.end())
4312     return it->second;
4313 
4314   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4315   return EmitAnyExpr(e->getSourceExpr());
4316 }
4317 
4318 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4319                                            const FieldDecl *FD,
4320                                            SourceLocation Loc) {
4321   QualType FT = FD->getType();
4322   LValue FieldLV = EmitLValueForField(LV, FD);
4323   switch (getEvaluationKind(FT)) {
4324   case TEK_Complex:
4325     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4326   case TEK_Aggregate:
4327     return FieldLV.asAggregateRValue();
4328   case TEK_Scalar:
4329     // This routine is used to load fields one-by-one to perform a copy, so
4330     // don't load reference fields.
4331     if (FD->getType()->isReferenceType())
4332       return RValue::get(FieldLV.getPointer());
4333     return EmitLoadOfLValue(FieldLV, Loc);
4334   }
4335   llvm_unreachable("bad evaluation kind");
4336 }
4337 
4338 //===--------------------------------------------------------------------===//
4339 //                             Expression Emission
4340 //===--------------------------------------------------------------------===//
4341 
4342 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4343                                      ReturnValueSlot ReturnValue) {
4344   // Builtins never have block type.
4345   if (E->getCallee()->getType()->isBlockPointerType())
4346     return EmitBlockCallExpr(E, ReturnValue);
4347 
4348   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4349     return EmitCXXMemberCallExpr(CE, ReturnValue);
4350 
4351   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4352     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4353 
4354   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4355     if (const CXXMethodDecl *MD =
4356           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4357       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4358 
4359   CGCallee callee = EmitCallee(E->getCallee());
4360 
4361   if (callee.isBuiltin()) {
4362     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4363                            E, ReturnValue);
4364   }
4365 
4366   if (callee.isPseudoDestructor()) {
4367     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4368   }
4369 
4370   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4371 }
4372 
4373 /// Emit a CallExpr without considering whether it might be a subclass.
4374 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4375                                            ReturnValueSlot ReturnValue) {
4376   CGCallee Callee = EmitCallee(E->getCallee());
4377   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4378 }
4379 
4380 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4381   if (auto builtinID = FD->getBuiltinID()) {
4382     return CGCallee::forBuiltin(builtinID, FD);
4383   }
4384 
4385   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4386   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4387 }
4388 
4389 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4390   E = E->IgnoreParens();
4391 
4392   // Look through function-to-pointer decay.
4393   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4394     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4395         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4396       return EmitCallee(ICE->getSubExpr());
4397     }
4398 
4399   // Resolve direct calls.
4400   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4401     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4402       return EmitDirectCallee(*this, FD);
4403     }
4404   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4405     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4406       EmitIgnoredExpr(ME->getBase());
4407       return EmitDirectCallee(*this, FD);
4408     }
4409 
4410   // Look through template substitutions.
4411   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4412     return EmitCallee(NTTP->getReplacement());
4413 
4414   // Treat pseudo-destructor calls differently.
4415   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4416     return CGCallee::forPseudoDestructor(PDE);
4417   }
4418 
4419   // Otherwise, we have an indirect reference.
4420   llvm::Value *calleePtr;
4421   QualType functionType;
4422   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4423     calleePtr = EmitScalarExpr(E);
4424     functionType = ptrType->getPointeeType();
4425   } else {
4426     functionType = E->getType();
4427     calleePtr = EmitLValue(E).getPointer();
4428   }
4429   assert(functionType->isFunctionType());
4430 
4431   GlobalDecl GD;
4432   if (const auto *VD =
4433           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4434     GD = GlobalDecl(VD);
4435 
4436   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4437   CGCallee callee(calleeInfo, calleePtr);
4438   return callee;
4439 }
4440 
4441 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4442   // Comma expressions just emit their LHS then their RHS as an l-value.
4443   if (E->getOpcode() == BO_Comma) {
4444     EmitIgnoredExpr(E->getLHS());
4445     EnsureInsertPoint();
4446     return EmitLValue(E->getRHS());
4447   }
4448 
4449   if (E->getOpcode() == BO_PtrMemD ||
4450       E->getOpcode() == BO_PtrMemI)
4451     return EmitPointerToDataMemberBinaryExpr(E);
4452 
4453   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4454 
4455   // Note that in all of these cases, __block variables need the RHS
4456   // evaluated first just in case the variable gets moved by the RHS.
4457 
4458   switch (getEvaluationKind(E->getType())) {
4459   case TEK_Scalar: {
4460     switch (E->getLHS()->getType().getObjCLifetime()) {
4461     case Qualifiers::OCL_Strong:
4462       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4463 
4464     case Qualifiers::OCL_Autoreleasing:
4465       return EmitARCStoreAutoreleasing(E).first;
4466 
4467     // No reason to do any of these differently.
4468     case Qualifiers::OCL_None:
4469     case Qualifiers::OCL_ExplicitNone:
4470     case Qualifiers::OCL_Weak:
4471       break;
4472     }
4473 
4474     RValue RV = EmitAnyExpr(E->getRHS());
4475     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4476     if (RV.isScalar())
4477       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4478     EmitStoreThroughLValue(RV, LV);
4479     return LV;
4480   }
4481 
4482   case TEK_Complex:
4483     return EmitComplexAssignmentLValue(E);
4484 
4485   case TEK_Aggregate:
4486     return EmitAggExprToLValue(E);
4487   }
4488   llvm_unreachable("bad evaluation kind");
4489 }
4490 
4491 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4492   RValue RV = EmitCallExpr(E);
4493 
4494   if (!RV.isScalar())
4495     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4496                           AlignmentSource::Decl);
4497 
4498   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4499          "Can't have a scalar return unless the return type is a "
4500          "reference type!");
4501 
4502   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4503 }
4504 
4505 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4506   // FIXME: This shouldn't require another copy.
4507   return EmitAggExprToLValue(E);
4508 }
4509 
4510 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4511   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4512          && "binding l-value to type which needs a temporary");
4513   AggValueSlot Slot = CreateAggTemp(E->getType());
4514   EmitCXXConstructExpr(E, Slot);
4515   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4516 }
4517 
4518 LValue
4519 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4520   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4521 }
4522 
4523 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4524   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4525                                       ConvertType(E->getType()));
4526 }
4527 
4528 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4529   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4530                         AlignmentSource::Decl);
4531 }
4532 
4533 LValue
4534 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4535   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4536   Slot.setExternallyDestructed();
4537   EmitAggExpr(E->getSubExpr(), Slot);
4538   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4539   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4540 }
4541 
4542 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4543   RValue RV = EmitObjCMessageExpr(E);
4544 
4545   if (!RV.isScalar())
4546     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4547                           AlignmentSource::Decl);
4548 
4549   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4550          "Can't have a scalar return unless the return type is a "
4551          "reference type!");
4552 
4553   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4554 }
4555 
4556 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4557   Address V =
4558     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4559   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4560 }
4561 
4562 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4563                                              const ObjCIvarDecl *Ivar) {
4564   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4565 }
4566 
4567 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4568                                           llvm::Value *BaseValue,
4569                                           const ObjCIvarDecl *Ivar,
4570                                           unsigned CVRQualifiers) {
4571   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4572                                                    Ivar, CVRQualifiers);
4573 }
4574 
4575 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4576   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4577   llvm::Value *BaseValue = nullptr;
4578   const Expr *BaseExpr = E->getBase();
4579   Qualifiers BaseQuals;
4580   QualType ObjectTy;
4581   if (E->isArrow()) {
4582     BaseValue = EmitScalarExpr(BaseExpr);
4583     ObjectTy = BaseExpr->getType()->getPointeeType();
4584     BaseQuals = ObjectTy.getQualifiers();
4585   } else {
4586     LValue BaseLV = EmitLValue(BaseExpr);
4587     BaseValue = BaseLV.getPointer();
4588     ObjectTy = BaseExpr->getType();
4589     BaseQuals = ObjectTy.getQualifiers();
4590   }
4591 
4592   LValue LV =
4593     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4594                       BaseQuals.getCVRQualifiers());
4595   setObjCGCLValueClass(getContext(), E, LV);
4596   return LV;
4597 }
4598 
4599 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4600   // Can only get l-value for message expression returning aggregate type
4601   RValue RV = EmitAnyExprToTemp(E);
4602   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4603                         AlignmentSource::Decl);
4604 }
4605 
4606 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4607                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4608                                  llvm::Value *Chain) {
4609   // Get the actual function type. The callee type will always be a pointer to
4610   // function type or a block pointer type.
4611   assert(CalleeType->isFunctionPointerType() &&
4612          "Call must have function pointer type!");
4613 
4614   const Decl *TargetDecl =
4615       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4616 
4617   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4618     // We can only guarantee that a function is called from the correct
4619     // context/function based on the appropriate target attributes,
4620     // so only check in the case where we have both always_inline and target
4621     // since otherwise we could be making a conditional call after a check for
4622     // the proper cpu features (and it won't cause code generation issues due to
4623     // function based code generation).
4624     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4625         TargetDecl->hasAttr<TargetAttr>())
4626       checkTargetFeatures(E, FD);
4627 
4628   CalleeType = getContext().getCanonicalType(CalleeType);
4629 
4630   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4631 
4632   CGCallee Callee = OrigCallee;
4633 
4634   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4635       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4636     if (llvm::Constant *PrefixSig =
4637             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4638       SanitizerScope SanScope(this);
4639       // Remove any (C++17) exception specifications, to allow calling e.g. a
4640       // noexcept function through a non-noexcept pointer.
4641       auto ProtoTy =
4642         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4643       llvm::Constant *FTRTTIConst =
4644           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4645       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4646       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4647           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4648 
4649       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4650 
4651       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4652           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4653       llvm::Value *CalleeSigPtr =
4654           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4655       llvm::Value *CalleeSig =
4656           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4657       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4658 
4659       llvm::BasicBlock *Cont = createBasicBlock("cont");
4660       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4661       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4662 
4663       EmitBlock(TypeCheck);
4664       llvm::Value *CalleeRTTIPtr =
4665           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4666       llvm::Value *CalleeRTTIEncoded =
4667           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4668       llvm::Value *CalleeRTTI =
4669           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4670       llvm::Value *CalleeRTTIMatch =
4671           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4672       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4673                                       EmitCheckTypeDescriptor(CalleeType)};
4674       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4675                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4676 
4677       Builder.CreateBr(Cont);
4678       EmitBlock(Cont);
4679     }
4680   }
4681 
4682   const auto *FnType = cast<FunctionType>(PointeeType);
4683 
4684   // If we are checking indirect calls and this call is indirect, check that the
4685   // function pointer is a member of the bit set for the function type.
4686   if (SanOpts.has(SanitizerKind::CFIICall) &&
4687       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4688     SanitizerScope SanScope(this);
4689     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4690 
4691     llvm::Metadata *MD;
4692     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4693       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4694     else
4695       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4696 
4697     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4698 
4699     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4700     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4701     llvm::Value *TypeTest = Builder.CreateCall(
4702         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4703 
4704     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4705     llvm::Constant *StaticData[] = {
4706         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4707         EmitCheckSourceLocation(E->getBeginLoc()),
4708         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4709     };
4710     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4711       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4712                            CastedCallee, StaticData);
4713     } else {
4714       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4715                 SanitizerHandler::CFICheckFail, StaticData,
4716                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4717     }
4718   }
4719 
4720   CallArgList Args;
4721   if (Chain)
4722     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4723              CGM.getContext().VoidPtrTy);
4724 
4725   // C++17 requires that we evaluate arguments to a call using assignment syntax
4726   // right-to-left, and that we evaluate arguments to certain other operators
4727   // left-to-right. Note that we allow this to override the order dictated by
4728   // the calling convention on the MS ABI, which means that parameter
4729   // destruction order is not necessarily reverse construction order.
4730   // FIXME: Revisit this based on C++ committee response to unimplementability.
4731   EvaluationOrder Order = EvaluationOrder::Default;
4732   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4733     if (OCE->isAssignmentOp())
4734       Order = EvaluationOrder::ForceRightToLeft;
4735     else {
4736       switch (OCE->getOperator()) {
4737       case OO_LessLess:
4738       case OO_GreaterGreater:
4739       case OO_AmpAmp:
4740       case OO_PipePipe:
4741       case OO_Comma:
4742       case OO_ArrowStar:
4743         Order = EvaluationOrder::ForceLeftToRight;
4744         break;
4745       default:
4746         break;
4747       }
4748     }
4749   }
4750 
4751   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4752                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4753 
4754   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4755       Args, FnType, /*isChainCall=*/Chain);
4756 
4757   // C99 6.5.2.2p6:
4758   //   If the expression that denotes the called function has a type
4759   //   that does not include a prototype, [the default argument
4760   //   promotions are performed]. If the number of arguments does not
4761   //   equal the number of parameters, the behavior is undefined. If
4762   //   the function is defined with a type that includes a prototype,
4763   //   and either the prototype ends with an ellipsis (, ...) or the
4764   //   types of the arguments after promotion are not compatible with
4765   //   the types of the parameters, the behavior is undefined. If the
4766   //   function is defined with a type that does not include a
4767   //   prototype, and the types of the arguments after promotion are
4768   //   not compatible with those of the parameters after promotion,
4769   //   the behavior is undefined [except in some trivial cases].
4770   // That is, in the general case, we should assume that a call
4771   // through an unprototyped function type works like a *non-variadic*
4772   // call.  The way we make this work is to cast to the exact type
4773   // of the promoted arguments.
4774   //
4775   // Chain calls use this same code path to add the invisible chain parameter
4776   // to the function type.
4777   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4778     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4779     CalleeTy = CalleeTy->getPointerTo();
4780 
4781     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4782     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4783     Callee.setFunctionPointer(CalleePtr);
4784   }
4785 
4786   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4787 }
4788 
4789 LValue CodeGenFunction::
4790 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4791   Address BaseAddr = Address::invalid();
4792   if (E->getOpcode() == BO_PtrMemI) {
4793     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4794   } else {
4795     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4796   }
4797 
4798   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4799 
4800   const MemberPointerType *MPT
4801     = E->getRHS()->getType()->getAs<MemberPointerType>();
4802 
4803   LValueBaseInfo BaseInfo;
4804   TBAAAccessInfo TBAAInfo;
4805   Address MemberAddr =
4806     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4807                                     &TBAAInfo);
4808 
4809   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4810 }
4811 
4812 /// Given the address of a temporary variable, produce an r-value of
4813 /// its type.
4814 RValue CodeGenFunction::convertTempToRValue(Address addr,
4815                                             QualType type,
4816                                             SourceLocation loc) {
4817   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4818   switch (getEvaluationKind(type)) {
4819   case TEK_Complex:
4820     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4821   case TEK_Aggregate:
4822     return lvalue.asAggregateRValue();
4823   case TEK_Scalar:
4824     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4825   }
4826   llvm_unreachable("bad evaluation kind");
4827 }
4828 
4829 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4830   assert(Val->getType()->isFPOrFPVectorTy());
4831   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4832     return;
4833 
4834   llvm::MDBuilder MDHelper(getLLVMContext());
4835   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4836 
4837   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4838 }
4839 
4840 namespace {
4841   struct LValueOrRValue {
4842     LValue LV;
4843     RValue RV;
4844   };
4845 }
4846 
4847 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4848                                            const PseudoObjectExpr *E,
4849                                            bool forLValue,
4850                                            AggValueSlot slot) {
4851   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4852 
4853   // Find the result expression, if any.
4854   const Expr *resultExpr = E->getResultExpr();
4855   LValueOrRValue result;
4856 
4857   for (PseudoObjectExpr::const_semantics_iterator
4858          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4859     const Expr *semantic = *i;
4860 
4861     // If this semantic expression is an opaque value, bind it
4862     // to the result of its source expression.
4863     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4864       // Skip unique OVEs.
4865       if (ov->isUnique()) {
4866         assert(ov != resultExpr &&
4867                "A unique OVE cannot be used as the result expression");
4868         continue;
4869       }
4870 
4871       // If this is the result expression, we may need to evaluate
4872       // directly into the slot.
4873       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4874       OVMA opaqueData;
4875       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4876           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4877         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4878         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4879                                        AlignmentSource::Decl);
4880         opaqueData = OVMA::bind(CGF, ov, LV);
4881         result.RV = slot.asRValue();
4882 
4883       // Otherwise, emit as normal.
4884       } else {
4885         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4886 
4887         // If this is the result, also evaluate the result now.
4888         if (ov == resultExpr) {
4889           if (forLValue)
4890             result.LV = CGF.EmitLValue(ov);
4891           else
4892             result.RV = CGF.EmitAnyExpr(ov, slot);
4893         }
4894       }
4895 
4896       opaques.push_back(opaqueData);
4897 
4898     // Otherwise, if the expression is the result, evaluate it
4899     // and remember the result.
4900     } else if (semantic == resultExpr) {
4901       if (forLValue)
4902         result.LV = CGF.EmitLValue(semantic);
4903       else
4904         result.RV = CGF.EmitAnyExpr(semantic, slot);
4905 
4906     // Otherwise, evaluate the expression in an ignored context.
4907     } else {
4908       CGF.EmitIgnoredExpr(semantic);
4909     }
4910   }
4911 
4912   // Unbind all the opaques now.
4913   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4914     opaques[i].unbind(CGF);
4915 
4916   return result;
4917 }
4918 
4919 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4920                                                AggValueSlot slot) {
4921   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4922 }
4923 
4924 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4925   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4926 }
4927