1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 64 CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 return Address(Alloca, Align); 70 } 71 72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 73 /// block. The alloca is casted to default address space if necessary. 74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 75 const Twine &Name, 76 llvm::Value *ArraySize, 77 Address *AllocaAddr) { 78 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 79 if (AllocaAddr) 80 *AllocaAddr = Alloca; 81 llvm::Value *V = Alloca.getPointer(); 82 // Alloca always returns a pointer in alloca address space, which may 83 // be different from the type defined by the language. For example, 84 // in C++ the auto variables are in the default address space. Therefore 85 // cast alloca to the default address space when necessary. 86 if (getASTAllocaAddressSpace() != LangAS::Default) { 87 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 88 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 89 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 90 // otherwise alloca is inserted at the current insertion point of the 91 // builder. 92 if (!ArraySize) 93 Builder.SetInsertPoint(AllocaInsertPt); 94 V = getTargetHooks().performAddrSpaceCast( 95 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 96 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 97 } 98 99 return Address(V, Align); 100 } 101 102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 104 /// insertion point of the builder. 105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 106 const Twine &Name, 107 llvm::Value *ArraySize) { 108 if (ArraySize) 109 return Builder.CreateAlloca(Ty, ArraySize, Name); 110 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 111 ArraySize, Name, AllocaInsertPt); 112 } 113 114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 115 /// default alignment of the corresponding LLVM type, which is *not* 116 /// guaranteed to be related in any way to the expected alignment of 117 /// an AST type that might have been lowered to Ty. 118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 119 const Twine &Name) { 120 CharUnits Align = 121 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 122 return CreateTempAlloca(Ty, Align, Name); 123 } 124 125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 126 assert(isa<llvm::AllocaInst>(Var.getPointer())); 127 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 128 Store->setAlignment(Var.getAlignment().getQuantity()); 129 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 130 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 131 } 132 133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 134 CharUnits Align = getContext().getTypeAlignInChars(Ty); 135 return CreateTempAlloca(ConvertType(Ty), Align, Name); 136 } 137 138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 139 Address *Alloca) { 140 // FIXME: Should we prefer the preferred type alignment here? 141 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 142 } 143 144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 145 const Twine &Name, Address *Alloca) { 146 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 147 /*ArraySize=*/nullptr, Alloca); 148 } 149 150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 151 const Twine &Name) { 152 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 153 } 154 155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 156 const Twine &Name) { 157 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 158 Name); 159 } 160 161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 162 /// expression and compare the result against zero, returning an Int1Ty value. 163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 164 PGO.setCurrentStmt(E); 165 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 166 llvm::Value *MemPtr = EmitScalarExpr(E); 167 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 168 } 169 170 QualType BoolTy = getContext().BoolTy; 171 SourceLocation Loc = E->getExprLoc(); 172 if (!E->getType()->isAnyComplexType()) 173 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 174 175 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 176 Loc); 177 } 178 179 /// EmitIgnoredExpr - Emit code to compute the specified expression, 180 /// ignoring the result. 181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 182 if (E->isRValue()) 183 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 184 185 // Just emit it as an l-value and drop the result. 186 EmitLValue(E); 187 } 188 189 /// EmitAnyExpr - Emit code to compute the specified expression which 190 /// can have any type. The result is returned as an RValue struct. 191 /// If this is an aggregate expression, AggSlot indicates where the 192 /// result should be returned. 193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 194 AggValueSlot aggSlot, 195 bool ignoreResult) { 196 switch (getEvaluationKind(E->getType())) { 197 case TEK_Scalar: 198 return RValue::get(EmitScalarExpr(E, ignoreResult)); 199 case TEK_Complex: 200 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 201 case TEK_Aggregate: 202 if (!ignoreResult && aggSlot.isIgnored()) 203 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 204 EmitAggExpr(E, aggSlot); 205 return aggSlot.asRValue(); 206 } 207 llvm_unreachable("bad evaluation kind"); 208 } 209 210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 211 /// always be accessible even if no aggregate location is provided. 212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 213 AggValueSlot AggSlot = AggValueSlot::ignored(); 214 215 if (hasAggregateEvaluationKind(E->getType())) 216 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 217 return EmitAnyExpr(E, AggSlot); 218 } 219 220 /// EmitAnyExprToMem - Evaluate an expression into a given memory 221 /// location. 222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 223 Address Location, 224 Qualifiers Quals, 225 bool IsInit) { 226 // FIXME: This function should take an LValue as an argument. 227 switch (getEvaluationKind(E->getType())) { 228 case TEK_Complex: 229 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 230 /*isInit*/ false); 231 return; 232 233 case TEK_Aggregate: { 234 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 235 AggValueSlot::IsDestructed_t(IsInit), 236 AggValueSlot::DoesNotNeedGCBarriers, 237 AggValueSlot::IsAliased_t(!IsInit), 238 AggValueSlot::MayOverlap)); 239 return; 240 } 241 242 case TEK_Scalar: { 243 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 244 LValue LV = MakeAddrLValue(Location, E->getType()); 245 EmitStoreThroughLValue(RV, LV); 246 return; 247 } 248 } 249 llvm_unreachable("bad evaluation kind"); 250 } 251 252 static void 253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 254 const Expr *E, Address ReferenceTemporary) { 255 // Objective-C++ ARC: 256 // If we are binding a reference to a temporary that has ownership, we 257 // need to perform retain/release operations on the temporary. 258 // 259 // FIXME: This should be looking at E, not M. 260 if (auto Lifetime = M->getType().getObjCLifetime()) { 261 switch (Lifetime) { 262 case Qualifiers::OCL_None: 263 case Qualifiers::OCL_ExplicitNone: 264 // Carry on to normal cleanup handling. 265 break; 266 267 case Qualifiers::OCL_Autoreleasing: 268 // Nothing to do; cleaned up by an autorelease pool. 269 return; 270 271 case Qualifiers::OCL_Strong: 272 case Qualifiers::OCL_Weak: 273 switch (StorageDuration Duration = M->getStorageDuration()) { 274 case SD_Static: 275 // Note: we intentionally do not register a cleanup to release 276 // the object on program termination. 277 return; 278 279 case SD_Thread: 280 // FIXME: We should probably register a cleanup in this case. 281 return; 282 283 case SD_Automatic: 284 case SD_FullExpression: 285 CodeGenFunction::Destroyer *Destroy; 286 CleanupKind CleanupKind; 287 if (Lifetime == Qualifiers::OCL_Strong) { 288 const ValueDecl *VD = M->getExtendingDecl(); 289 bool Precise = 290 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 291 CleanupKind = CGF.getARCCleanupKind(); 292 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 293 : &CodeGenFunction::destroyARCStrongImprecise; 294 } else { 295 // __weak objects always get EH cleanups; otherwise, exceptions 296 // could cause really nasty crashes instead of mere leaks. 297 CleanupKind = NormalAndEHCleanup; 298 Destroy = &CodeGenFunction::destroyARCWeak; 299 } 300 if (Duration == SD_FullExpression) 301 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 302 M->getType(), *Destroy, 303 CleanupKind & EHCleanup); 304 else 305 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 306 M->getType(), 307 *Destroy, CleanupKind & EHCleanup); 308 return; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 } 316 317 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 318 if (const RecordType *RT = 319 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 320 // Get the destructor for the reference temporary. 321 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 322 if (!ClassDecl->hasTrivialDestructor()) 323 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 324 } 325 326 if (!ReferenceTemporaryDtor) 327 return; 328 329 // Call the destructor for the temporary. 330 switch (M->getStorageDuration()) { 331 case SD_Static: 332 case SD_Thread: { 333 llvm::FunctionCallee CleanupFn; 334 llvm::Constant *CleanupArg; 335 if (E->getType()->isArrayType()) { 336 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 337 ReferenceTemporary, E->getType(), 338 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 339 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 340 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 341 } else { 342 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 343 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 344 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 345 } 346 CGF.CGM.getCXXABI().registerGlobalDtor( 347 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 348 break; 349 } 350 351 case SD_FullExpression: 352 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 353 CodeGenFunction::destroyCXXObject, 354 CGF.getLangOpts().Exceptions); 355 break; 356 357 case SD_Automatic: 358 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 359 ReferenceTemporary, E->getType(), 360 CodeGenFunction::destroyCXXObject, 361 CGF.getLangOpts().Exceptions); 362 break; 363 364 case SD_Dynamic: 365 llvm_unreachable("temporary cannot have dynamic storage duration"); 366 } 367 } 368 369 static Address createReferenceTemporary(CodeGenFunction &CGF, 370 const MaterializeTemporaryExpr *M, 371 const Expr *Inner, 372 Address *Alloca = nullptr) { 373 auto &TCG = CGF.getTargetHooks(); 374 switch (M->getStorageDuration()) { 375 case SD_FullExpression: 376 case SD_Automatic: { 377 // If we have a constant temporary array or record try to promote it into a 378 // constant global under the same rules a normal constant would've been 379 // promoted. This is easier on the optimizer and generally emits fewer 380 // instructions. 381 QualType Ty = Inner->getType(); 382 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 383 (Ty->isArrayType() || Ty->isRecordType()) && 384 CGF.CGM.isTypeConstant(Ty, true)) 385 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 386 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 387 auto AS = AddrSpace.getValue(); 388 auto *GV = new llvm::GlobalVariable( 389 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 390 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 391 llvm::GlobalValue::NotThreadLocal, 392 CGF.getContext().getTargetAddressSpace(AS)); 393 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 394 GV->setAlignment(alignment.getQuantity()); 395 llvm::Constant *C = GV; 396 if (AS != LangAS::Default) 397 C = TCG.performAddrSpaceCast( 398 CGF.CGM, GV, AS, LangAS::Default, 399 GV->getValueType()->getPointerTo( 400 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 401 // FIXME: Should we put the new global into a COMDAT? 402 return Address(C, alignment); 403 } 404 } 405 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 406 } 407 case SD_Thread: 408 case SD_Static: 409 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 410 411 case SD_Dynamic: 412 llvm_unreachable("temporary can't have dynamic storage duration"); 413 } 414 llvm_unreachable("unknown storage duration"); 415 } 416 417 LValue CodeGenFunction:: 418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 419 const Expr *E = M->GetTemporaryExpr(); 420 421 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 422 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 423 "Reference should never be pseudo-strong!"); 424 425 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 426 // as that will cause the lifetime adjustment to be lost for ARC 427 auto ownership = M->getType().getObjCLifetime(); 428 if (ownership != Qualifiers::OCL_None && 429 ownership != Qualifiers::OCL_ExplicitNone) { 430 Address Object = createReferenceTemporary(*this, M, E); 431 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 432 Object = Address(llvm::ConstantExpr::getBitCast(Var, 433 ConvertTypeForMem(E->getType()) 434 ->getPointerTo(Object.getAddressSpace())), 435 Object.getAlignment()); 436 437 // createReferenceTemporary will promote the temporary to a global with a 438 // constant initializer if it can. It can only do this to a value of 439 // ARC-manageable type if the value is global and therefore "immune" to 440 // ref-counting operations. Therefore we have no need to emit either a 441 // dynamic initialization or a cleanup and we can just return the address 442 // of the temporary. 443 if (Var->hasInitializer()) 444 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 445 446 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 447 } 448 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 449 AlignmentSource::Decl); 450 451 switch (getEvaluationKind(E->getType())) { 452 default: llvm_unreachable("expected scalar or aggregate expression"); 453 case TEK_Scalar: 454 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 455 break; 456 case TEK_Aggregate: { 457 EmitAggExpr(E, AggValueSlot::forAddr(Object, 458 E->getType().getQualifiers(), 459 AggValueSlot::IsDestructed, 460 AggValueSlot::DoesNotNeedGCBarriers, 461 AggValueSlot::IsNotAliased, 462 AggValueSlot::DoesNotOverlap)); 463 break; 464 } 465 } 466 467 pushTemporaryCleanup(*this, M, E, Object); 468 return RefTempDst; 469 } 470 471 SmallVector<const Expr *, 2> CommaLHSs; 472 SmallVector<SubobjectAdjustment, 2> Adjustments; 473 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 474 475 for (const auto &Ignored : CommaLHSs) 476 EmitIgnoredExpr(Ignored); 477 478 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 479 if (opaque->getType()->isRecordType()) { 480 assert(Adjustments.empty()); 481 return EmitOpaqueValueLValue(opaque); 482 } 483 } 484 485 // Create and initialize the reference temporary. 486 Address Alloca = Address::invalid(); 487 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 488 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 489 Object.getPointer()->stripPointerCasts())) { 490 Object = Address(llvm::ConstantExpr::getBitCast( 491 cast<llvm::Constant>(Object.getPointer()), 492 ConvertTypeForMem(E->getType())->getPointerTo()), 493 Object.getAlignment()); 494 // If the temporary is a global and has a constant initializer or is a 495 // constant temporary that we promoted to a global, we may have already 496 // initialized it. 497 if (!Var->hasInitializer()) { 498 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 499 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 500 } 501 } else { 502 switch (M->getStorageDuration()) { 503 case SD_Automatic: 504 if (auto *Size = EmitLifetimeStart( 505 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 506 Alloca.getPointer())) { 507 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 508 Alloca, Size); 509 } 510 break; 511 512 case SD_FullExpression: { 513 if (!ShouldEmitLifetimeMarkers) 514 break; 515 516 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 517 // marker. Instead, start the lifetime of a conditional temporary earlier 518 // so that it's unconditional. Don't do this in ASan's use-after-scope 519 // mode so that it gets the more precise lifetime marks. If the type has 520 // a non-trivial destructor, we'll have a cleanup block for it anyway, 521 // so this typically doesn't help; skip it in that case. 522 ConditionalEvaluation *OldConditional = nullptr; 523 CGBuilderTy::InsertPoint OldIP; 524 if (isInConditionalBranch() && !E->getType().isDestructedType() && 525 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 526 OldConditional = OutermostConditional; 527 OutermostConditional = nullptr; 528 529 OldIP = Builder.saveIP(); 530 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 531 Builder.restoreIP(CGBuilderTy::InsertPoint( 532 Block, llvm::BasicBlock::iterator(Block->back()))); 533 } 534 535 if (auto *Size = EmitLifetimeStart( 536 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 537 Alloca.getPointer())) { 538 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 539 Size); 540 } 541 542 if (OldConditional) { 543 OutermostConditional = OldConditional; 544 Builder.restoreIP(OldIP); 545 } 546 break; 547 } 548 549 default: 550 break; 551 } 552 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 553 } 554 pushTemporaryCleanup(*this, M, E, Object); 555 556 // Perform derived-to-base casts and/or field accesses, to get from the 557 // temporary object we created (and, potentially, for which we extended 558 // the lifetime) to the subobject we're binding the reference to. 559 for (unsigned I = Adjustments.size(); I != 0; --I) { 560 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 561 switch (Adjustment.Kind) { 562 case SubobjectAdjustment::DerivedToBaseAdjustment: 563 Object = 564 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 565 Adjustment.DerivedToBase.BasePath->path_begin(), 566 Adjustment.DerivedToBase.BasePath->path_end(), 567 /*NullCheckValue=*/ false, E->getExprLoc()); 568 break; 569 570 case SubobjectAdjustment::FieldAdjustment: { 571 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 572 LV = EmitLValueForField(LV, Adjustment.Field); 573 assert(LV.isSimple() && 574 "materialized temporary field is not a simple lvalue"); 575 Object = LV.getAddress(); 576 break; 577 } 578 579 case SubobjectAdjustment::MemberPointerAdjustment: { 580 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 581 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 582 Adjustment.Ptr.MPT); 583 break; 584 } 585 } 586 } 587 588 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 589 } 590 591 RValue 592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 593 // Emit the expression as an lvalue. 594 LValue LV = EmitLValue(E); 595 assert(LV.isSimple()); 596 llvm::Value *Value = LV.getPointer(); 597 598 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 599 // C++11 [dcl.ref]p5 (as amended by core issue 453): 600 // If a glvalue to which a reference is directly bound designates neither 601 // an existing object or function of an appropriate type nor a region of 602 // storage of suitable size and alignment to contain an object of the 603 // reference's type, the behavior is undefined. 604 QualType Ty = E->getType(); 605 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 606 } 607 608 return RValue::get(Value); 609 } 610 611 612 /// getAccessedFieldNo - Given an encoded value and a result number, return the 613 /// input field number being accessed. 614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 615 const llvm::Constant *Elts) { 616 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 617 ->getZExtValue(); 618 } 619 620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 622 llvm::Value *High) { 623 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 624 llvm::Value *K47 = Builder.getInt64(47); 625 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 626 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 627 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 628 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 629 return Builder.CreateMul(B1, KMul); 630 } 631 632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 633 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 634 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 635 } 636 637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 638 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 639 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 640 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 641 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 642 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 643 } 644 645 bool CodeGenFunction::sanitizePerformTypeCheck() const { 646 return SanOpts.has(SanitizerKind::Null) | 647 SanOpts.has(SanitizerKind::Alignment) | 648 SanOpts.has(SanitizerKind::ObjectSize) | 649 SanOpts.has(SanitizerKind::Vptr); 650 } 651 652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 653 llvm::Value *Ptr, QualType Ty, 654 CharUnits Alignment, 655 SanitizerSet SkippedChecks, 656 llvm::Value *ArraySize) { 657 if (!sanitizePerformTypeCheck()) 658 return; 659 660 // Don't check pointers outside the default address space. The null check 661 // isn't correct, the object-size check isn't supported by LLVM, and we can't 662 // communicate the addresses to the runtime handler for the vptr check. 663 if (Ptr->getType()->getPointerAddressSpace()) 664 return; 665 666 // Don't check pointers to volatile data. The behavior here is implementation- 667 // defined. 668 if (Ty.isVolatileQualified()) 669 return; 670 671 SanitizerScope SanScope(this); 672 673 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 674 llvm::BasicBlock *Done = nullptr; 675 676 // Quickly determine whether we have a pointer to an alloca. It's possible 677 // to skip null checks, and some alignment checks, for these pointers. This 678 // can reduce compile-time significantly. 679 auto PtrToAlloca = 680 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 716 if (ArraySize) 717 Size = Builder.CreateMul(Size, ArraySize); 718 719 // Degenerate case: new X[0] does not need an objectsize check. 720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 721 if (!ConstantSize || !ConstantSize->isNullValue()) { 722 // The glvalue must refer to a large enough storage region. 723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 724 // to check this. 725 // FIXME: Get object address space 726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 728 llvm::Value *Min = Builder.getFalse(); 729 llvm::Value *NullIsUnknown = Builder.getFalse(); 730 llvm::Value *Dynamic = Builder.getFalse(); 731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 732 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 735 } 736 } 737 738 uint64_t AlignVal = 0; 739 llvm::Value *PtrAsInt = nullptr; 740 741 if (SanOpts.has(SanitizerKind::Alignment) && 742 !SkippedChecks.has(SanitizerKind::Alignment)) { 743 AlignVal = Alignment.getQuantity(); 744 if (!Ty->isIncompleteType() && !AlignVal) 745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 746 747 // The glvalue must be suitably aligned. 748 if (AlignVal > 1 && 749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 751 llvm::Value *Align = Builder.CreateAnd( 752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 753 llvm::Value *Aligned = 754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 755 if (Aligned != True) 756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 757 } 758 } 759 760 if (Checks.size() > 0) { 761 // Make sure we're not losing information. Alignment needs to be a power of 762 // 2 763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 767 llvm::ConstantInt::get(Int8Ty, TCK)}; 768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 769 PtrAsInt ? PtrAsInt : Ptr); 770 } 771 772 // If possible, check that the vptr indicates that there is a subobject of 773 // type Ty at offset zero within this object. 774 // 775 // C++11 [basic.life]p5,6: 776 // [For storage which does not refer to an object within its lifetime] 777 // The program has undefined behavior if: 778 // -- the [pointer or glvalue] is used to access a non-static data member 779 // or call a non-static member function 780 if (SanOpts.has(SanitizerKind::Vptr) && 781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 782 // Ensure that the pointer is non-null before loading it. If there is no 783 // compile-time guarantee, reuse the run-time null check or emit a new one. 784 if (!IsGuaranteedNonNull) { 785 if (!IsNonNull) 786 IsNonNull = Builder.CreateIsNotNull(Ptr); 787 if (!Done) 788 Done = createBasicBlock("vptr.null"); 789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 791 EmitBlock(VptrNotNull); 792 } 793 794 // Compute a hash of the mangled name of the type. 795 // 796 // FIXME: This is not guaranteed to be deterministic! Move to a 797 // fingerprinting mechanism once LLVM provides one. For the time 798 // being the implementation happens to be deterministic. 799 SmallString<64> MangledName; 800 llvm::raw_svector_ostream Out(MangledName); 801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 802 Out); 803 804 // Blacklist based on the mangled type. 805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 806 SanitizerKind::Vptr, Out.str())) { 807 llvm::hash_code TypeHash = hash_value(Out.str()); 808 809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 815 816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 817 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 818 819 // Look the hash up in our cache. 820 const int CacheSize = 128; 821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 823 "__ubsan_vptr_type_cache"); 824 llvm::Value *Slot = Builder.CreateAnd(Hash, 825 llvm::ConstantInt::get(IntPtrTy, 826 CacheSize-1)); 827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 828 llvm::Value *CacheVal = 829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 830 getPointerAlign()); 831 832 // If the hash isn't in the cache, call a runtime handler to perform the 833 // hard work of checking whether the vptr is for an object of the right 834 // type. This will either fill in the cache and return, or produce a 835 // diagnostic. 836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 837 llvm::Constant *StaticData[] = { 838 EmitCheckSourceLocation(Loc), 839 EmitCheckTypeDescriptor(Ty), 840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 841 llvm::ConstantInt::get(Int8Ty, TCK) 842 }; 843 llvm::Value *DynamicData[] = { Ptr, Hash }; 844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 845 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 846 DynamicData); 847 } 848 } 849 850 if (Done) { 851 Builder.CreateBr(Done); 852 EmitBlock(Done); 853 } 854 } 855 856 /// Determine whether this expression refers to a flexible array member in a 857 /// struct. We disable array bounds checks for such members. 858 static bool isFlexibleArrayMemberExpr(const Expr *E) { 859 // For compatibility with existing code, we treat arrays of length 0 or 860 // 1 as flexible array members. 861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 863 if (CAT->getSize().ugt(1)) 864 return false; 865 } else if (!isa<IncompleteArrayType>(AT)) 866 return false; 867 868 E = E->IgnoreParens(); 869 870 // A flexible array member must be the last member in the class. 871 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 872 // FIXME: If the base type of the member expr is not FD->getParent(), 873 // this should not be treated as a flexible array member access. 874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 875 RecordDecl::field_iterator FI( 876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 877 return ++FI == FD->getParent()->field_end(); 878 } 879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 880 return IRE->getDecl()->getNextIvar() == nullptr; 881 } 882 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 887 QualType EltTy) { 888 ASTContext &C = getContext(); 889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 890 if (!EltSize) 891 return nullptr; 892 893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 894 if (!ArrayDeclRef) 895 return nullptr; 896 897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 898 if (!ParamDecl) 899 return nullptr; 900 901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 902 if (!POSAttr) 903 return nullptr; 904 905 // Don't load the size if it's a lower bound. 906 int POSType = POSAttr->getType(); 907 if (POSType != 0 && POSType != 1) 908 return nullptr; 909 910 // Find the implicit size parameter. 911 auto PassedSizeIt = SizeArguments.find(ParamDecl); 912 if (PassedSizeIt == SizeArguments.end()) 913 return nullptr; 914 915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 919 C.getSizeType(), E->getExprLoc()); 920 llvm::Value *SizeOfElement = 921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 923 } 924 925 /// If Base is known to point to the start of an array, return the length of 926 /// that array. Return 0 if the length cannot be determined. 927 static llvm::Value *getArrayIndexingBound( 928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 929 // For the vector indexing extension, the bound is the number of elements. 930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 931 IndexedType = Base->getType(); 932 return CGF.Builder.getInt32(VT->getNumElements()); 933 } 934 935 Base = Base->IgnoreParens(); 936 937 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 938 if (CE->getCastKind() == CK_ArrayToPointerDecay && 939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 940 IndexedType = CE->getSubExpr()->getType(); 941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 943 return CGF.Builder.getInt(CAT->getSize()); 944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 945 return CGF.getVLASize(VAT).NumElts; 946 // Ignore pass_object_size here. It's not applicable on decayed pointers. 947 } 948 } 949 950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 952 IndexedType = Base->getType(); 953 return POS; 954 } 955 956 return nullptr; 957 } 958 959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 960 llvm::Value *Index, QualType IndexType, 961 bool Accessed) { 962 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 963 "should not be called unless adding bounds checks"); 964 SanitizerScope SanScope(this); 965 966 QualType IndexedType; 967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 968 if (!Bound) 969 return; 970 971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 974 975 llvm::Constant *StaticData[] = { 976 EmitCheckSourceLocation(E->getExprLoc()), 977 EmitCheckTypeDescriptor(IndexedType), 978 EmitCheckTypeDescriptor(IndexType) 979 }; 980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 981 : Builder.CreateICmpULE(IndexVal, BoundVal); 982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 983 SanitizerHandler::OutOfBounds, StaticData, Index); 984 } 985 986 987 CodeGenFunction::ComplexPairTy CodeGenFunction:: 988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 989 bool isInc, bool isPre) { 990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 991 992 llvm::Value *NextVal; 993 if (isa<llvm::IntegerType>(InVal.first->getType())) { 994 uint64_t AmountVal = isInc ? 1 : -1; 995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 996 997 // Add the inc/dec to the real part. 998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 999 } else { 1000 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1002 if (!isInc) 1003 FVal.changeSign(); 1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1005 1006 // Add the inc/dec to the real part. 1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1008 } 1009 1010 ComplexPairTy IncVal(NextVal, InVal.second); 1011 1012 // Store the updated result through the lvalue. 1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1014 1015 // If this is a postinc, return the value read from memory, otherwise use the 1016 // updated value. 1017 return isPre ? IncVal : InVal; 1018 } 1019 1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1021 CodeGenFunction *CGF) { 1022 // Bind VLAs in the cast type. 1023 if (CGF && E->getType()->isVariablyModifiedType()) 1024 CGF->EmitVariablyModifiedType(E->getType()); 1025 1026 if (CGDebugInfo *DI = getModuleDebugInfo()) 1027 DI->EmitExplicitCastType(E->getType()); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // LValue Expression Emission 1032 //===----------------------------------------------------------------------===// 1033 1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1035 /// derive a more accurate bound on the alignment of the pointer. 1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1037 LValueBaseInfo *BaseInfo, 1038 TBAAAccessInfo *TBAAInfo) { 1039 // We allow this with ObjC object pointers because of fragile ABIs. 1040 assert(E->getType()->isPointerType() || 1041 E->getType()->isObjCObjectPointerType()); 1042 E = E->IgnoreParens(); 1043 1044 // Casts: 1045 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1046 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1047 CGM.EmitExplicitCastExprType(ECE, this); 1048 1049 switch (CE->getCastKind()) { 1050 // Non-converting casts (but not C's implicit conversion from void*). 1051 case CK_BitCast: 1052 case CK_NoOp: 1053 case CK_AddressSpaceConversion: 1054 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1055 if (PtrTy->getPointeeType()->isVoidType()) 1056 break; 1057 1058 LValueBaseInfo InnerBaseInfo; 1059 TBAAAccessInfo InnerTBAAInfo; 1060 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1061 &InnerBaseInfo, 1062 &InnerTBAAInfo); 1063 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1064 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1065 1066 if (isa<ExplicitCastExpr>(CE)) { 1067 LValueBaseInfo TargetTypeBaseInfo; 1068 TBAAAccessInfo TargetTypeTBAAInfo; 1069 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1070 &TargetTypeBaseInfo, 1071 &TargetTypeTBAAInfo); 1072 if (TBAAInfo) 1073 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1074 TargetTypeTBAAInfo); 1075 // If the source l-value is opaque, honor the alignment of the 1076 // casted-to type. 1077 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1078 if (BaseInfo) 1079 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1080 Addr = Address(Addr.getPointer(), Align); 1081 } 1082 } 1083 1084 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1085 CE->getCastKind() == CK_BitCast) { 1086 if (auto PT = E->getType()->getAs<PointerType>()) 1087 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1088 /*MayBeNull=*/true, 1089 CodeGenFunction::CFITCK_UnrelatedCast, 1090 CE->getBeginLoc()); 1091 } 1092 return CE->getCastKind() != CK_AddressSpaceConversion 1093 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1094 : Builder.CreateAddrSpaceCast(Addr, 1095 ConvertType(E->getType())); 1096 } 1097 break; 1098 1099 // Array-to-pointer decay. 1100 case CK_ArrayToPointerDecay: 1101 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1102 1103 // Derived-to-base conversions. 1104 case CK_UncheckedDerivedToBase: 1105 case CK_DerivedToBase: { 1106 // TODO: Support accesses to members of base classes in TBAA. For now, we 1107 // conservatively pretend that the complete object is of the base class 1108 // type. 1109 if (TBAAInfo) 1110 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1111 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1112 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1113 return GetAddressOfBaseClass(Addr, Derived, 1114 CE->path_begin(), CE->path_end(), 1115 ShouldNullCheckClassCastValue(CE), 1116 CE->getExprLoc()); 1117 } 1118 1119 // TODO: Is there any reason to treat base-to-derived conversions 1120 // specially? 1121 default: 1122 break; 1123 } 1124 } 1125 1126 // Unary &. 1127 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1128 if (UO->getOpcode() == UO_AddrOf) { 1129 LValue LV = EmitLValue(UO->getSubExpr()); 1130 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1131 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1132 return LV.getAddress(); 1133 } 1134 } 1135 1136 // TODO: conditional operators, comma. 1137 1138 // Otherwise, use the alignment of the type. 1139 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1140 TBAAInfo); 1141 return Address(EmitScalarExpr(E), Align); 1142 } 1143 1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1145 if (Ty->isVoidType()) 1146 return RValue::get(nullptr); 1147 1148 switch (getEvaluationKind(Ty)) { 1149 case TEK_Complex: { 1150 llvm::Type *EltTy = 1151 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1152 llvm::Value *U = llvm::UndefValue::get(EltTy); 1153 return RValue::getComplex(std::make_pair(U, U)); 1154 } 1155 1156 // If this is a use of an undefined aggregate type, the aggregate must have an 1157 // identifiable address. Just because the contents of the value are undefined 1158 // doesn't mean that the address can't be taken and compared. 1159 case TEK_Aggregate: { 1160 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1161 return RValue::getAggregate(DestPtr); 1162 } 1163 1164 case TEK_Scalar: 1165 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1166 } 1167 llvm_unreachable("bad evaluation kind"); 1168 } 1169 1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1171 const char *Name) { 1172 ErrorUnsupported(E, Name); 1173 return GetUndefRValue(E->getType()); 1174 } 1175 1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1177 const char *Name) { 1178 ErrorUnsupported(E, Name); 1179 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1180 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1181 E->getType()); 1182 } 1183 1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1185 const Expr *Base = Obj; 1186 while (!isa<CXXThisExpr>(Base)) { 1187 // The result of a dynamic_cast can be null. 1188 if (isa<CXXDynamicCastExpr>(Base)) 1189 return false; 1190 1191 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1192 Base = CE->getSubExpr(); 1193 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1194 Base = PE->getSubExpr(); 1195 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1196 if (UO->getOpcode() == UO_Extension) 1197 Base = UO->getSubExpr(); 1198 else 1199 return false; 1200 } else { 1201 return false; 1202 } 1203 } 1204 return true; 1205 } 1206 1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1208 LValue LV; 1209 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1210 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1211 else 1212 LV = EmitLValue(E); 1213 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1214 SanitizerSet SkippedChecks; 1215 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1216 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1217 if (IsBaseCXXThis) 1218 SkippedChecks.set(SanitizerKind::Alignment, true); 1219 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1220 SkippedChecks.set(SanitizerKind::Null, true); 1221 } 1222 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1223 E->getType(), LV.getAlignment(), SkippedChecks); 1224 } 1225 return LV; 1226 } 1227 1228 /// EmitLValue - Emit code to compute a designator that specifies the location 1229 /// of the expression. 1230 /// 1231 /// This can return one of two things: a simple address or a bitfield reference. 1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1233 /// an LLVM pointer type. 1234 /// 1235 /// If this returns a bitfield reference, nothing about the pointee type of the 1236 /// LLVM value is known: For example, it may not be a pointer to an integer. 1237 /// 1238 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1239 /// this method guarantees that the returned pointer type will point to an LLVM 1240 /// type of the same size of the lvalue's type. If the lvalue has a variable 1241 /// length type, this is not possible. 1242 /// 1243 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1244 ApplyDebugLocation DL(*this, E); 1245 switch (E->getStmtClass()) { 1246 default: return EmitUnsupportedLValue(E, "l-value expression"); 1247 1248 case Expr::ObjCPropertyRefExprClass: 1249 llvm_unreachable("cannot emit a property reference directly"); 1250 1251 case Expr::ObjCSelectorExprClass: 1252 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1253 case Expr::ObjCIsaExprClass: 1254 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1255 case Expr::BinaryOperatorClass: 1256 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1257 case Expr::CompoundAssignOperatorClass: { 1258 QualType Ty = E->getType(); 1259 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1260 Ty = AT->getValueType(); 1261 if (!Ty->isAnyComplexType()) 1262 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1263 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1264 } 1265 case Expr::CallExprClass: 1266 case Expr::CXXMemberCallExprClass: 1267 case Expr::CXXOperatorCallExprClass: 1268 case Expr::UserDefinedLiteralClass: 1269 return EmitCallExprLValue(cast<CallExpr>(E)); 1270 case Expr::VAArgExprClass: 1271 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1272 case Expr::DeclRefExprClass: 1273 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1274 case Expr::ConstantExprClass: 1275 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1276 case Expr::ParenExprClass: 1277 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1278 case Expr::GenericSelectionExprClass: 1279 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1280 case Expr::PredefinedExprClass: 1281 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1282 case Expr::StringLiteralClass: 1283 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1284 case Expr::ObjCEncodeExprClass: 1285 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1286 case Expr::PseudoObjectExprClass: 1287 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1288 case Expr::InitListExprClass: 1289 return EmitInitListLValue(cast<InitListExpr>(E)); 1290 case Expr::CXXTemporaryObjectExprClass: 1291 case Expr::CXXConstructExprClass: 1292 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1293 case Expr::CXXBindTemporaryExprClass: 1294 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1295 case Expr::CXXUuidofExprClass: 1296 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1297 case Expr::LambdaExprClass: 1298 return EmitAggExprToLValue(E); 1299 1300 case Expr::ExprWithCleanupsClass: { 1301 const auto *cleanups = cast<ExprWithCleanups>(E); 1302 enterFullExpression(cleanups); 1303 RunCleanupsScope Scope(*this); 1304 LValue LV = EmitLValue(cleanups->getSubExpr()); 1305 if (LV.isSimple()) { 1306 // Defend against branches out of gnu statement expressions surrounded by 1307 // cleanups. 1308 llvm::Value *V = LV.getPointer(); 1309 Scope.ForceCleanup({&V}); 1310 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1311 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1312 } 1313 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1314 // bitfield lvalue or some other non-simple lvalue? 1315 return LV; 1316 } 1317 1318 case Expr::CXXDefaultArgExprClass: 1319 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1320 case Expr::CXXDefaultInitExprClass: { 1321 CXXDefaultInitExprScope Scope(*this); 1322 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1323 } 1324 case Expr::CXXTypeidExprClass: 1325 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1326 1327 case Expr::ObjCMessageExprClass: 1328 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1329 case Expr::ObjCIvarRefExprClass: 1330 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1331 case Expr::StmtExprClass: 1332 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1333 case Expr::UnaryOperatorClass: 1334 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1335 case Expr::ArraySubscriptExprClass: 1336 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1337 case Expr::OMPArraySectionExprClass: 1338 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1339 case Expr::ExtVectorElementExprClass: 1340 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1341 case Expr::MemberExprClass: 1342 return EmitMemberExpr(cast<MemberExpr>(E)); 1343 case Expr::CompoundLiteralExprClass: 1344 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1345 case Expr::ConditionalOperatorClass: 1346 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1347 case Expr::BinaryConditionalOperatorClass: 1348 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1349 case Expr::ChooseExprClass: 1350 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1351 case Expr::OpaqueValueExprClass: 1352 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1353 case Expr::SubstNonTypeTemplateParmExprClass: 1354 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1355 case Expr::ImplicitCastExprClass: 1356 case Expr::CStyleCastExprClass: 1357 case Expr::CXXFunctionalCastExprClass: 1358 case Expr::CXXStaticCastExprClass: 1359 case Expr::CXXDynamicCastExprClass: 1360 case Expr::CXXReinterpretCastExprClass: 1361 case Expr::CXXConstCastExprClass: 1362 case Expr::ObjCBridgedCastExprClass: 1363 return EmitCastLValue(cast<CastExpr>(E)); 1364 1365 case Expr::MaterializeTemporaryExprClass: 1366 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1367 1368 case Expr::CoawaitExprClass: 1369 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1370 case Expr::CoyieldExprClass: 1371 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1372 } 1373 } 1374 1375 /// Given an object of the given canonical type, can we safely copy a 1376 /// value out of it based on its initializer? 1377 static bool isConstantEmittableObjectType(QualType type) { 1378 assert(type.isCanonical()); 1379 assert(!type->isReferenceType()); 1380 1381 // Must be const-qualified but non-volatile. 1382 Qualifiers qs = type.getLocalQualifiers(); 1383 if (!qs.hasConst() || qs.hasVolatile()) return false; 1384 1385 // Otherwise, all object types satisfy this except C++ classes with 1386 // mutable subobjects or non-trivial copy/destroy behavior. 1387 if (const auto *RT = dyn_cast<RecordType>(type)) 1388 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1389 if (RD->hasMutableFields() || !RD->isTrivial()) 1390 return false; 1391 1392 return true; 1393 } 1394 1395 /// Can we constant-emit a load of a reference to a variable of the 1396 /// given type? This is different from predicates like 1397 /// Decl::isUsableInConstantExpressions because we do want it to apply 1398 /// in situations that don't necessarily satisfy the language's rules 1399 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1400 /// to do this with const float variables even if those variables 1401 /// aren't marked 'constexpr'. 1402 enum ConstantEmissionKind { 1403 CEK_None, 1404 CEK_AsReferenceOnly, 1405 CEK_AsValueOrReference, 1406 CEK_AsValueOnly 1407 }; 1408 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1409 type = type.getCanonicalType(); 1410 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1411 if (isConstantEmittableObjectType(ref->getPointeeType())) 1412 return CEK_AsValueOrReference; 1413 return CEK_AsReferenceOnly; 1414 } 1415 if (isConstantEmittableObjectType(type)) 1416 return CEK_AsValueOnly; 1417 return CEK_None; 1418 } 1419 1420 /// Try to emit a reference to the given value without producing it as 1421 /// an l-value. This is actually more than an optimization: we can't 1422 /// produce an l-value for variables that we never actually captured 1423 /// in a block or lambda, which means const int variables or constexpr 1424 /// literals or similar. 1425 CodeGenFunction::ConstantEmission 1426 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1427 ValueDecl *value = refExpr->getDecl(); 1428 1429 // The value needs to be an enum constant or a constant variable. 1430 ConstantEmissionKind CEK; 1431 if (isa<ParmVarDecl>(value)) { 1432 CEK = CEK_None; 1433 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1434 CEK = checkVarTypeForConstantEmission(var->getType()); 1435 } else if (isa<EnumConstantDecl>(value)) { 1436 CEK = CEK_AsValueOnly; 1437 } else { 1438 CEK = CEK_None; 1439 } 1440 if (CEK == CEK_None) return ConstantEmission(); 1441 1442 Expr::EvalResult result; 1443 bool resultIsReference; 1444 QualType resultType; 1445 1446 // It's best to evaluate all the way as an r-value if that's permitted. 1447 if (CEK != CEK_AsReferenceOnly && 1448 refExpr->EvaluateAsRValue(result, getContext())) { 1449 resultIsReference = false; 1450 resultType = refExpr->getType(); 1451 1452 // Otherwise, try to evaluate as an l-value. 1453 } else if (CEK != CEK_AsValueOnly && 1454 refExpr->EvaluateAsLValue(result, getContext())) { 1455 resultIsReference = true; 1456 resultType = value->getType(); 1457 1458 // Failure. 1459 } else { 1460 return ConstantEmission(); 1461 } 1462 1463 // In any case, if the initializer has side-effects, abandon ship. 1464 if (result.HasSideEffects) 1465 return ConstantEmission(); 1466 1467 // Emit as a constant. 1468 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1469 result.Val, resultType); 1470 1471 // Make sure we emit a debug reference to the global variable. 1472 // This should probably fire even for 1473 if (isa<VarDecl>(value)) { 1474 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1475 EmitDeclRefExprDbgValue(refExpr, result.Val); 1476 } else { 1477 assert(isa<EnumConstantDecl>(value)); 1478 EmitDeclRefExprDbgValue(refExpr, result.Val); 1479 } 1480 1481 // If we emitted a reference constant, we need to dereference that. 1482 if (resultIsReference) 1483 return ConstantEmission::forReference(C); 1484 1485 return ConstantEmission::forValue(C); 1486 } 1487 1488 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1489 const MemberExpr *ME) { 1490 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1491 // Try to emit static variable member expressions as DREs. 1492 return DeclRefExpr::Create( 1493 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1494 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1495 ME->getType(), ME->getValueKind()); 1496 } 1497 return nullptr; 1498 } 1499 1500 CodeGenFunction::ConstantEmission 1501 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1502 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1503 return tryEmitAsConstant(DRE); 1504 return ConstantEmission(); 1505 } 1506 1507 llvm::Value *CodeGenFunction::emitScalarConstant( 1508 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1509 assert(Constant && "not a constant"); 1510 if (Constant.isReference()) 1511 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1512 E->getExprLoc()) 1513 .getScalarVal(); 1514 return Constant.getValue(); 1515 } 1516 1517 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1518 SourceLocation Loc) { 1519 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1520 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1521 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1522 } 1523 1524 static bool hasBooleanRepresentation(QualType Ty) { 1525 if (Ty->isBooleanType()) 1526 return true; 1527 1528 if (const EnumType *ET = Ty->getAs<EnumType>()) 1529 return ET->getDecl()->getIntegerType()->isBooleanType(); 1530 1531 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1532 return hasBooleanRepresentation(AT->getValueType()); 1533 1534 return false; 1535 } 1536 1537 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1538 llvm::APInt &Min, llvm::APInt &End, 1539 bool StrictEnums, bool IsBool) { 1540 const EnumType *ET = Ty->getAs<EnumType>(); 1541 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1542 ET && !ET->getDecl()->isFixed(); 1543 if (!IsBool && !IsRegularCPlusPlusEnum) 1544 return false; 1545 1546 if (IsBool) { 1547 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1548 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1549 } else { 1550 const EnumDecl *ED = ET->getDecl(); 1551 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1552 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1553 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1554 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1555 1556 if (NumNegativeBits) { 1557 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1558 assert(NumBits <= Bitwidth); 1559 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1560 Min = -End; 1561 } else { 1562 assert(NumPositiveBits <= Bitwidth); 1563 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1564 Min = llvm::APInt(Bitwidth, 0); 1565 } 1566 } 1567 return true; 1568 } 1569 1570 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1571 llvm::APInt Min, End; 1572 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1573 hasBooleanRepresentation(Ty))) 1574 return nullptr; 1575 1576 llvm::MDBuilder MDHelper(getLLVMContext()); 1577 return MDHelper.createRange(Min, End); 1578 } 1579 1580 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1581 SourceLocation Loc) { 1582 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1583 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1584 if (!HasBoolCheck && !HasEnumCheck) 1585 return false; 1586 1587 bool IsBool = hasBooleanRepresentation(Ty) || 1588 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1589 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1590 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1591 if (!NeedsBoolCheck && !NeedsEnumCheck) 1592 return false; 1593 1594 // Single-bit booleans don't need to be checked. Special-case this to avoid 1595 // a bit width mismatch when handling bitfield values. This is handled by 1596 // EmitFromMemory for the non-bitfield case. 1597 if (IsBool && 1598 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1599 return false; 1600 1601 llvm::APInt Min, End; 1602 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1603 return true; 1604 1605 auto &Ctx = getLLVMContext(); 1606 SanitizerScope SanScope(this); 1607 llvm::Value *Check; 1608 --End; 1609 if (!Min) { 1610 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1611 } else { 1612 llvm::Value *Upper = 1613 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1614 llvm::Value *Lower = 1615 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1616 Check = Builder.CreateAnd(Upper, Lower); 1617 } 1618 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1619 EmitCheckTypeDescriptor(Ty)}; 1620 SanitizerMask Kind = 1621 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1622 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1623 StaticArgs, EmitCheckValue(Value)); 1624 return true; 1625 } 1626 1627 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1628 QualType Ty, 1629 SourceLocation Loc, 1630 LValueBaseInfo BaseInfo, 1631 TBAAAccessInfo TBAAInfo, 1632 bool isNontemporal) { 1633 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1634 // For better performance, handle vector loads differently. 1635 if (Ty->isVectorType()) { 1636 const llvm::Type *EltTy = Addr.getElementType(); 1637 1638 const auto *VTy = cast<llvm::VectorType>(EltTy); 1639 1640 // Handle vectors of size 3 like size 4 for better performance. 1641 if (VTy->getNumElements() == 3) { 1642 1643 // Bitcast to vec4 type. 1644 llvm::VectorType *vec4Ty = 1645 llvm::VectorType::get(VTy->getElementType(), 4); 1646 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1647 // Now load value. 1648 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1649 1650 // Shuffle vector to get vec3. 1651 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1652 {0, 1, 2}, "extractVec"); 1653 return EmitFromMemory(V, Ty); 1654 } 1655 } 1656 } 1657 1658 // Atomic operations have to be done on integral types. 1659 LValue AtomicLValue = 1660 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1661 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1662 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1663 } 1664 1665 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1666 if (isNontemporal) { 1667 llvm::MDNode *Node = llvm::MDNode::get( 1668 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1669 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1670 } 1671 1672 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1673 1674 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1675 // In order to prevent the optimizer from throwing away the check, don't 1676 // attach range metadata to the load. 1677 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1678 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1679 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1680 1681 return EmitFromMemory(Load, Ty); 1682 } 1683 1684 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1685 // Bool has a different representation in memory than in registers. 1686 if (hasBooleanRepresentation(Ty)) { 1687 // This should really always be an i1, but sometimes it's already 1688 // an i8, and it's awkward to track those cases down. 1689 if (Value->getType()->isIntegerTy(1)) 1690 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1691 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1692 "wrong value rep of bool"); 1693 } 1694 1695 return Value; 1696 } 1697 1698 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1699 // Bool has a different representation in memory than in registers. 1700 if (hasBooleanRepresentation(Ty)) { 1701 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1702 "wrong value rep of bool"); 1703 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1704 } 1705 1706 return Value; 1707 } 1708 1709 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1710 bool Volatile, QualType Ty, 1711 LValueBaseInfo BaseInfo, 1712 TBAAAccessInfo TBAAInfo, 1713 bool isInit, bool isNontemporal) { 1714 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1715 // Handle vectors differently to get better performance. 1716 if (Ty->isVectorType()) { 1717 llvm::Type *SrcTy = Value->getType(); 1718 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1719 // Handle vec3 special. 1720 if (VecTy && VecTy->getNumElements() == 3) { 1721 // Our source is a vec3, do a shuffle vector to make it a vec4. 1722 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1723 Builder.getInt32(2), 1724 llvm::UndefValue::get(Builder.getInt32Ty())}; 1725 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1726 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1727 MaskV, "extractVec"); 1728 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1729 } 1730 if (Addr.getElementType() != SrcTy) { 1731 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1732 } 1733 } 1734 } 1735 1736 Value = EmitToMemory(Value, Ty); 1737 1738 LValue AtomicLValue = 1739 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1740 if (Ty->isAtomicType() || 1741 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1742 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1743 return; 1744 } 1745 1746 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1747 if (isNontemporal) { 1748 llvm::MDNode *Node = 1749 llvm::MDNode::get(Store->getContext(), 1750 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1751 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1752 } 1753 1754 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1755 } 1756 1757 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1758 bool isInit) { 1759 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1760 lvalue.getType(), lvalue.getBaseInfo(), 1761 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1762 } 1763 1764 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1765 /// method emits the address of the lvalue, then loads the result as an rvalue, 1766 /// returning the rvalue. 1767 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1768 if (LV.isObjCWeak()) { 1769 // load of a __weak object. 1770 Address AddrWeakObj = LV.getAddress(); 1771 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1772 AddrWeakObj)); 1773 } 1774 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1775 // In MRC mode, we do a load+autorelease. 1776 if (!getLangOpts().ObjCAutoRefCount) { 1777 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1778 } 1779 1780 // In ARC mode, we load retained and then consume the value. 1781 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1782 Object = EmitObjCConsumeObject(LV.getType(), Object); 1783 return RValue::get(Object); 1784 } 1785 1786 if (LV.isSimple()) { 1787 assert(!LV.getType()->isFunctionType()); 1788 1789 // Everything needs a load. 1790 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1791 } 1792 1793 if (LV.isVectorElt()) { 1794 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1795 LV.isVolatileQualified()); 1796 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1797 "vecext")); 1798 } 1799 1800 // If this is a reference to a subset of the elements of a vector, either 1801 // shuffle the input or extract/insert them as appropriate. 1802 if (LV.isExtVectorElt()) 1803 return EmitLoadOfExtVectorElementLValue(LV); 1804 1805 // Global Register variables always invoke intrinsics 1806 if (LV.isGlobalReg()) 1807 return EmitLoadOfGlobalRegLValue(LV); 1808 1809 assert(LV.isBitField() && "Unknown LValue type!"); 1810 return EmitLoadOfBitfieldLValue(LV, Loc); 1811 } 1812 1813 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1814 SourceLocation Loc) { 1815 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1816 1817 // Get the output type. 1818 llvm::Type *ResLTy = ConvertType(LV.getType()); 1819 1820 Address Ptr = LV.getBitFieldAddress(); 1821 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1822 1823 if (Info.IsSigned) { 1824 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1825 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1826 if (HighBits) 1827 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1828 if (Info.Offset + HighBits) 1829 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1830 } else { 1831 if (Info.Offset) 1832 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1833 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1834 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1835 Info.Size), 1836 "bf.clear"); 1837 } 1838 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1839 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1840 return RValue::get(Val); 1841 } 1842 1843 // If this is a reference to a subset of the elements of a vector, create an 1844 // appropriate shufflevector. 1845 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1846 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1847 LV.isVolatileQualified()); 1848 1849 const llvm::Constant *Elts = LV.getExtVectorElts(); 1850 1851 // If the result of the expression is a non-vector type, we must be extracting 1852 // a single element. Just codegen as an extractelement. 1853 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1854 if (!ExprVT) { 1855 unsigned InIdx = getAccessedFieldNo(0, Elts); 1856 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1857 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1858 } 1859 1860 // Always use shuffle vector to try to retain the original program structure 1861 unsigned NumResultElts = ExprVT->getNumElements(); 1862 1863 SmallVector<llvm::Constant*, 4> Mask; 1864 for (unsigned i = 0; i != NumResultElts; ++i) 1865 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1866 1867 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1868 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1869 MaskV); 1870 return RValue::get(Vec); 1871 } 1872 1873 /// Generates lvalue for partial ext_vector access. 1874 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1875 Address VectorAddress = LV.getExtVectorAddress(); 1876 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1877 QualType EQT = ExprVT->getElementType(); 1878 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1879 1880 Address CastToPointerElement = 1881 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1882 "conv.ptr.element"); 1883 1884 const llvm::Constant *Elts = LV.getExtVectorElts(); 1885 unsigned ix = getAccessedFieldNo(0, Elts); 1886 1887 Address VectorBasePtrPlusIx = 1888 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1889 "vector.elt"); 1890 1891 return VectorBasePtrPlusIx; 1892 } 1893 1894 /// Load of global gamed gegisters are always calls to intrinsics. 1895 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1896 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1897 "Bad type for register variable"); 1898 llvm::MDNode *RegName = cast<llvm::MDNode>( 1899 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1900 1901 // We accept integer and pointer types only 1902 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1903 llvm::Type *Ty = OrigTy; 1904 if (OrigTy->isPointerTy()) 1905 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1906 llvm::Type *Types[] = { Ty }; 1907 1908 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1909 llvm::Value *Call = Builder.CreateCall( 1910 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1911 if (OrigTy->isPointerTy()) 1912 Call = Builder.CreateIntToPtr(Call, OrigTy); 1913 return RValue::get(Call); 1914 } 1915 1916 1917 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1918 /// lvalue, where both are guaranteed to the have the same type, and that type 1919 /// is 'Ty'. 1920 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1921 bool isInit) { 1922 if (!Dst.isSimple()) { 1923 if (Dst.isVectorElt()) { 1924 // Read/modify/write the vector, inserting the new element. 1925 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1926 Dst.isVolatileQualified()); 1927 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1928 Dst.getVectorIdx(), "vecins"); 1929 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1930 Dst.isVolatileQualified()); 1931 return; 1932 } 1933 1934 // If this is an update of extended vector elements, insert them as 1935 // appropriate. 1936 if (Dst.isExtVectorElt()) 1937 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1938 1939 if (Dst.isGlobalReg()) 1940 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1941 1942 assert(Dst.isBitField() && "Unknown LValue type"); 1943 return EmitStoreThroughBitfieldLValue(Src, Dst); 1944 } 1945 1946 // There's special magic for assigning into an ARC-qualified l-value. 1947 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1948 switch (Lifetime) { 1949 case Qualifiers::OCL_None: 1950 llvm_unreachable("present but none"); 1951 1952 case Qualifiers::OCL_ExplicitNone: 1953 // nothing special 1954 break; 1955 1956 case Qualifiers::OCL_Strong: 1957 if (isInit) { 1958 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1959 break; 1960 } 1961 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1962 return; 1963 1964 case Qualifiers::OCL_Weak: 1965 if (isInit) 1966 // Initialize and then skip the primitive store. 1967 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1968 else 1969 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1970 return; 1971 1972 case Qualifiers::OCL_Autoreleasing: 1973 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1974 Src.getScalarVal())); 1975 // fall into the normal path 1976 break; 1977 } 1978 } 1979 1980 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1981 // load of a __weak object. 1982 Address LvalueDst = Dst.getAddress(); 1983 llvm::Value *src = Src.getScalarVal(); 1984 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1985 return; 1986 } 1987 1988 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1989 // load of a __strong object. 1990 Address LvalueDst = Dst.getAddress(); 1991 llvm::Value *src = Src.getScalarVal(); 1992 if (Dst.isObjCIvar()) { 1993 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1994 llvm::Type *ResultType = IntPtrTy; 1995 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1996 llvm::Value *RHS = dst.getPointer(); 1997 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1998 llvm::Value *LHS = 1999 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2000 "sub.ptr.lhs.cast"); 2001 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2002 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2003 BytesBetween); 2004 } else if (Dst.isGlobalObjCRef()) { 2005 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2006 Dst.isThreadLocalRef()); 2007 } 2008 else 2009 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2010 return; 2011 } 2012 2013 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2014 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2015 } 2016 2017 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2018 llvm::Value **Result) { 2019 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2020 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2021 Address Ptr = Dst.getBitFieldAddress(); 2022 2023 // Get the source value, truncated to the width of the bit-field. 2024 llvm::Value *SrcVal = Src.getScalarVal(); 2025 2026 // Cast the source to the storage type and shift it into place. 2027 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2028 /*IsSigned=*/false); 2029 llvm::Value *MaskedVal = SrcVal; 2030 2031 // See if there are other bits in the bitfield's storage we'll need to load 2032 // and mask together with source before storing. 2033 if (Info.StorageSize != Info.Size) { 2034 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2035 llvm::Value *Val = 2036 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2037 2038 // Mask the source value as needed. 2039 if (!hasBooleanRepresentation(Dst.getType())) 2040 SrcVal = Builder.CreateAnd(SrcVal, 2041 llvm::APInt::getLowBitsSet(Info.StorageSize, 2042 Info.Size), 2043 "bf.value"); 2044 MaskedVal = SrcVal; 2045 if (Info.Offset) 2046 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2047 2048 // Mask out the original value. 2049 Val = Builder.CreateAnd(Val, 2050 ~llvm::APInt::getBitsSet(Info.StorageSize, 2051 Info.Offset, 2052 Info.Offset + Info.Size), 2053 "bf.clear"); 2054 2055 // Or together the unchanged values and the source value. 2056 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2057 } else { 2058 assert(Info.Offset == 0); 2059 } 2060 2061 // Write the new value back out. 2062 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2063 2064 // Return the new value of the bit-field, if requested. 2065 if (Result) { 2066 llvm::Value *ResultVal = MaskedVal; 2067 2068 // Sign extend the value if needed. 2069 if (Info.IsSigned) { 2070 assert(Info.Size <= Info.StorageSize); 2071 unsigned HighBits = Info.StorageSize - Info.Size; 2072 if (HighBits) { 2073 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2074 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2075 } 2076 } 2077 2078 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2079 "bf.result.cast"); 2080 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2081 } 2082 } 2083 2084 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2085 LValue Dst) { 2086 // This access turns into a read/modify/write of the vector. Load the input 2087 // value now. 2088 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2089 Dst.isVolatileQualified()); 2090 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2091 2092 llvm::Value *SrcVal = Src.getScalarVal(); 2093 2094 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2095 unsigned NumSrcElts = VTy->getNumElements(); 2096 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2097 if (NumDstElts == NumSrcElts) { 2098 // Use shuffle vector is the src and destination are the same number of 2099 // elements and restore the vector mask since it is on the side it will be 2100 // stored. 2101 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2102 for (unsigned i = 0; i != NumSrcElts; ++i) 2103 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2104 2105 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2106 Vec = Builder.CreateShuffleVector(SrcVal, 2107 llvm::UndefValue::get(Vec->getType()), 2108 MaskV); 2109 } else if (NumDstElts > NumSrcElts) { 2110 // Extended the source vector to the same length and then shuffle it 2111 // into the destination. 2112 // FIXME: since we're shuffling with undef, can we just use the indices 2113 // into that? This could be simpler. 2114 SmallVector<llvm::Constant*, 4> ExtMask; 2115 for (unsigned i = 0; i != NumSrcElts; ++i) 2116 ExtMask.push_back(Builder.getInt32(i)); 2117 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2118 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2119 llvm::Value *ExtSrcVal = 2120 Builder.CreateShuffleVector(SrcVal, 2121 llvm::UndefValue::get(SrcVal->getType()), 2122 ExtMaskV); 2123 // build identity 2124 SmallVector<llvm::Constant*, 4> Mask; 2125 for (unsigned i = 0; i != NumDstElts; ++i) 2126 Mask.push_back(Builder.getInt32(i)); 2127 2128 // When the vector size is odd and .odd or .hi is used, the last element 2129 // of the Elts constant array will be one past the size of the vector. 2130 // Ignore the last element here, if it is greater than the mask size. 2131 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2132 NumSrcElts--; 2133 2134 // modify when what gets shuffled in 2135 for (unsigned i = 0; i != NumSrcElts; ++i) 2136 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2137 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2138 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2139 } else { 2140 // We should never shorten the vector 2141 llvm_unreachable("unexpected shorten vector length"); 2142 } 2143 } else { 2144 // If the Src is a scalar (not a vector) it must be updating one element. 2145 unsigned InIdx = getAccessedFieldNo(0, Elts); 2146 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2147 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2148 } 2149 2150 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2151 Dst.isVolatileQualified()); 2152 } 2153 2154 /// Store of global named registers are always calls to intrinsics. 2155 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2156 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2157 "Bad type for register variable"); 2158 llvm::MDNode *RegName = cast<llvm::MDNode>( 2159 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2160 assert(RegName && "Register LValue is not metadata"); 2161 2162 // We accept integer and pointer types only 2163 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2164 llvm::Type *Ty = OrigTy; 2165 if (OrigTy->isPointerTy()) 2166 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2167 llvm::Type *Types[] = { Ty }; 2168 2169 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2170 llvm::Value *Value = Src.getScalarVal(); 2171 if (OrigTy->isPointerTy()) 2172 Value = Builder.CreatePtrToInt(Value, Ty); 2173 Builder.CreateCall( 2174 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2175 } 2176 2177 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2178 // generating write-barries API. It is currently a global, ivar, 2179 // or neither. 2180 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2181 LValue &LV, 2182 bool IsMemberAccess=false) { 2183 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2184 return; 2185 2186 if (isa<ObjCIvarRefExpr>(E)) { 2187 QualType ExpTy = E->getType(); 2188 if (IsMemberAccess && ExpTy->isPointerType()) { 2189 // If ivar is a structure pointer, assigning to field of 2190 // this struct follows gcc's behavior and makes it a non-ivar 2191 // writer-barrier conservatively. 2192 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2193 if (ExpTy->isRecordType()) { 2194 LV.setObjCIvar(false); 2195 return; 2196 } 2197 } 2198 LV.setObjCIvar(true); 2199 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2200 LV.setBaseIvarExp(Exp->getBase()); 2201 LV.setObjCArray(E->getType()->isArrayType()); 2202 return; 2203 } 2204 2205 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2206 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2207 if (VD->hasGlobalStorage()) { 2208 LV.setGlobalObjCRef(true); 2209 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2210 } 2211 } 2212 LV.setObjCArray(E->getType()->isArrayType()); 2213 return; 2214 } 2215 2216 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2217 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2218 return; 2219 } 2220 2221 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2222 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2223 if (LV.isObjCIvar()) { 2224 // If cast is to a structure pointer, follow gcc's behavior and make it 2225 // a non-ivar write-barrier. 2226 QualType ExpTy = E->getType(); 2227 if (ExpTy->isPointerType()) 2228 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2229 if (ExpTy->isRecordType()) 2230 LV.setObjCIvar(false); 2231 } 2232 return; 2233 } 2234 2235 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2236 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2237 return; 2238 } 2239 2240 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2241 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2242 return; 2243 } 2244 2245 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2246 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2247 return; 2248 } 2249 2250 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2252 return; 2253 } 2254 2255 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2256 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2257 if (LV.isObjCIvar() && !LV.isObjCArray()) 2258 // Using array syntax to assigning to what an ivar points to is not 2259 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2260 LV.setObjCIvar(false); 2261 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2262 // Using array syntax to assigning to what global points to is not 2263 // same as assigning to the global itself. {id *G;} G[i] = 0; 2264 LV.setGlobalObjCRef(false); 2265 return; 2266 } 2267 2268 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2269 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2270 // We don't know if member is an 'ivar', but this flag is looked at 2271 // only in the context of LV.isObjCIvar(). 2272 LV.setObjCArray(E->getType()->isArrayType()); 2273 return; 2274 } 2275 } 2276 2277 static llvm::Value * 2278 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2279 llvm::Value *V, llvm::Type *IRType, 2280 StringRef Name = StringRef()) { 2281 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2282 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2283 } 2284 2285 static LValue EmitThreadPrivateVarDeclLValue( 2286 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2287 llvm::Type *RealVarTy, SourceLocation Loc) { 2288 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2289 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2290 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2291 } 2292 2293 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2294 const VarDecl *VD, QualType T) { 2295 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2296 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2297 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2298 return Address::invalid(); 2299 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2300 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2301 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2302 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2303 } 2304 2305 Address 2306 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2307 LValueBaseInfo *PointeeBaseInfo, 2308 TBAAAccessInfo *PointeeTBAAInfo) { 2309 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2310 RefLVal.isVolatile()); 2311 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2312 2313 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2314 PointeeBaseInfo, PointeeTBAAInfo, 2315 /* forPointeeType= */ true); 2316 return Address(Load, Align); 2317 } 2318 2319 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2320 LValueBaseInfo PointeeBaseInfo; 2321 TBAAAccessInfo PointeeTBAAInfo; 2322 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2323 &PointeeTBAAInfo); 2324 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2325 PointeeBaseInfo, PointeeTBAAInfo); 2326 } 2327 2328 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2329 const PointerType *PtrTy, 2330 LValueBaseInfo *BaseInfo, 2331 TBAAAccessInfo *TBAAInfo) { 2332 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2333 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2334 BaseInfo, TBAAInfo, 2335 /*forPointeeType=*/true)); 2336 } 2337 2338 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2339 const PointerType *PtrTy) { 2340 LValueBaseInfo BaseInfo; 2341 TBAAAccessInfo TBAAInfo; 2342 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2343 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2344 } 2345 2346 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2347 const Expr *E, const VarDecl *VD) { 2348 QualType T = E->getType(); 2349 2350 // If it's thread_local, emit a call to its wrapper function instead. 2351 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2352 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2353 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2354 // Check if the variable is marked as declare target with link clause in 2355 // device codegen. 2356 if (CGF.getLangOpts().OpenMPIsDevice) { 2357 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2358 if (Addr.isValid()) 2359 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2360 } 2361 2362 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2363 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2364 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2365 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2366 Address Addr(V, Alignment); 2367 // Emit reference to the private copy of the variable if it is an OpenMP 2368 // threadprivate variable. 2369 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2370 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2371 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2372 E->getExprLoc()); 2373 } 2374 LValue LV = VD->getType()->isReferenceType() ? 2375 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2376 AlignmentSource::Decl) : 2377 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2378 setObjCGCLValueClass(CGF.getContext(), E, LV); 2379 return LV; 2380 } 2381 2382 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2383 const FunctionDecl *FD) { 2384 if (FD->hasAttr<WeakRefAttr>()) { 2385 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2386 return aliasee.getPointer(); 2387 } 2388 2389 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2390 if (!FD->hasPrototype()) { 2391 if (const FunctionProtoType *Proto = 2392 FD->getType()->getAs<FunctionProtoType>()) { 2393 // Ugly case: for a K&R-style definition, the type of the definition 2394 // isn't the same as the type of a use. Correct for this with a 2395 // bitcast. 2396 QualType NoProtoType = 2397 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2398 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2399 V = llvm::ConstantExpr::getBitCast(V, 2400 CGM.getTypes().ConvertType(NoProtoType)); 2401 } 2402 } 2403 return V; 2404 } 2405 2406 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2407 const Expr *E, const FunctionDecl *FD) { 2408 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2409 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2410 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2411 AlignmentSource::Decl); 2412 } 2413 2414 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2415 llvm::Value *ThisValue) { 2416 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2417 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2418 return CGF.EmitLValueForField(LV, FD); 2419 } 2420 2421 /// Named Registers are named metadata pointing to the register name 2422 /// which will be read from/written to as an argument to the intrinsic 2423 /// @llvm.read/write_register. 2424 /// So far, only the name is being passed down, but other options such as 2425 /// register type, allocation type or even optimization options could be 2426 /// passed down via the metadata node. 2427 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2428 SmallString<64> Name("llvm.named.register."); 2429 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2430 assert(Asm->getLabel().size() < 64-Name.size() && 2431 "Register name too big"); 2432 Name.append(Asm->getLabel()); 2433 llvm::NamedMDNode *M = 2434 CGM.getModule().getOrInsertNamedMetadata(Name); 2435 if (M->getNumOperands() == 0) { 2436 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2437 Asm->getLabel()); 2438 llvm::Metadata *Ops[] = {Str}; 2439 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2440 } 2441 2442 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2443 2444 llvm::Value *Ptr = 2445 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2446 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2447 } 2448 2449 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2450 const NamedDecl *ND = E->getDecl(); 2451 QualType T = E->getType(); 2452 2453 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2454 // Global Named registers access via intrinsics only 2455 if (VD->getStorageClass() == SC_Register && 2456 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2457 return EmitGlobalNamedRegister(VD, CGM); 2458 2459 // A DeclRefExpr for a reference initialized by a constant expression can 2460 // appear without being odr-used. Directly emit the constant initializer. 2461 const Expr *Init = VD->getAnyInitializer(VD); 2462 const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); 2463 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2464 VD->isUsableInConstantExpressions(getContext()) && 2465 VD->checkInitIsICE() && 2466 // Do not emit if it is private OpenMP variable. 2467 !(E->refersToEnclosingVariableOrCapture() && 2468 ((CapturedStmtInfo && 2469 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2470 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2471 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2472 (BD && BD->capturesVariable(VD))))) { 2473 llvm::Constant *Val = 2474 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2475 *VD->evaluateValue(), 2476 VD->getType()); 2477 assert(Val && "failed to emit reference constant expression"); 2478 // FIXME: Eventually we will want to emit vector element references. 2479 2480 // Should we be using the alignment of the constant pointer we emitted? 2481 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2482 /* BaseInfo= */ nullptr, 2483 /* TBAAInfo= */ nullptr, 2484 /* forPointeeType= */ true); 2485 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2486 } 2487 2488 // Check for captured variables. 2489 if (E->refersToEnclosingVariableOrCapture()) { 2490 VD = VD->getCanonicalDecl(); 2491 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2492 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2493 else if (CapturedStmtInfo) { 2494 auto I = LocalDeclMap.find(VD); 2495 if (I != LocalDeclMap.end()) { 2496 if (VD->getType()->isReferenceType()) 2497 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2498 AlignmentSource::Decl); 2499 return MakeAddrLValue(I->second, T); 2500 } 2501 LValue CapLVal = 2502 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2503 CapturedStmtInfo->getContextValue()); 2504 return MakeAddrLValue( 2505 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2506 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2507 CapLVal.getTBAAInfo()); 2508 } 2509 2510 assert(isa<BlockDecl>(CurCodeDecl)); 2511 Address addr = GetAddrOfBlockDecl(VD); 2512 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2513 } 2514 } 2515 2516 // FIXME: We should be able to assert this for FunctionDecls as well! 2517 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2518 // those with a valid source location. 2519 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2520 !E->getLocation().isValid()) && 2521 "Should not use decl without marking it used!"); 2522 2523 if (ND->hasAttr<WeakRefAttr>()) { 2524 const auto *VD = cast<ValueDecl>(ND); 2525 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2526 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2527 } 2528 2529 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2530 // Check if this is a global variable. 2531 if (VD->hasLinkage() || VD->isStaticDataMember()) 2532 return EmitGlobalVarDeclLValue(*this, E, VD); 2533 2534 Address addr = Address::invalid(); 2535 2536 // The variable should generally be present in the local decl map. 2537 auto iter = LocalDeclMap.find(VD); 2538 if (iter != LocalDeclMap.end()) { 2539 addr = iter->second; 2540 2541 // Otherwise, it might be static local we haven't emitted yet for 2542 // some reason; most likely, because it's in an outer function. 2543 } else if (VD->isStaticLocal()) { 2544 addr = Address(CGM.getOrCreateStaticVarDecl( 2545 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2546 getContext().getDeclAlign(VD)); 2547 2548 // No other cases for now. 2549 } else { 2550 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2551 } 2552 2553 2554 // Check for OpenMP threadprivate variables. 2555 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2556 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2557 return EmitThreadPrivateVarDeclLValue( 2558 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2559 E->getExprLoc()); 2560 } 2561 2562 // Drill into block byref variables. 2563 bool isBlockByref = VD->isEscapingByref(); 2564 if (isBlockByref) { 2565 addr = emitBlockByrefAddress(addr, VD); 2566 } 2567 2568 // Drill into reference types. 2569 LValue LV = VD->getType()->isReferenceType() ? 2570 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2571 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2572 2573 bool isLocalStorage = VD->hasLocalStorage(); 2574 2575 bool NonGCable = isLocalStorage && 2576 !VD->getType()->isReferenceType() && 2577 !isBlockByref; 2578 if (NonGCable) { 2579 LV.getQuals().removeObjCGCAttr(); 2580 LV.setNonGC(true); 2581 } 2582 2583 bool isImpreciseLifetime = 2584 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2585 if (isImpreciseLifetime) 2586 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2587 setObjCGCLValueClass(getContext(), E, LV); 2588 return LV; 2589 } 2590 2591 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2592 return EmitFunctionDeclLValue(*this, E, FD); 2593 2594 // FIXME: While we're emitting a binding from an enclosing scope, all other 2595 // DeclRefExprs we see should be implicitly treated as if they also refer to 2596 // an enclosing scope. 2597 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2598 return EmitLValue(BD->getBinding()); 2599 2600 llvm_unreachable("Unhandled DeclRefExpr"); 2601 } 2602 2603 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2604 // __extension__ doesn't affect lvalue-ness. 2605 if (E->getOpcode() == UO_Extension) 2606 return EmitLValue(E->getSubExpr()); 2607 2608 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2609 switch (E->getOpcode()) { 2610 default: llvm_unreachable("Unknown unary operator lvalue!"); 2611 case UO_Deref: { 2612 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2613 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2614 2615 LValueBaseInfo BaseInfo; 2616 TBAAAccessInfo TBAAInfo; 2617 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2618 &TBAAInfo); 2619 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2620 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2621 2622 // We should not generate __weak write barrier on indirect reference 2623 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2624 // But, we continue to generate __strong write barrier on indirect write 2625 // into a pointer to object. 2626 if (getLangOpts().ObjC && 2627 getLangOpts().getGC() != LangOptions::NonGC && 2628 LV.isObjCWeak()) 2629 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2630 return LV; 2631 } 2632 case UO_Real: 2633 case UO_Imag: { 2634 LValue LV = EmitLValue(E->getSubExpr()); 2635 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2636 2637 // __real is valid on scalars. This is a faster way of testing that. 2638 // __imag can only produce an rvalue on scalars. 2639 if (E->getOpcode() == UO_Real && 2640 !LV.getAddress().getElementType()->isStructTy()) { 2641 assert(E->getSubExpr()->getType()->isArithmeticType()); 2642 return LV; 2643 } 2644 2645 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2646 2647 Address Component = 2648 (E->getOpcode() == UO_Real 2649 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2650 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2651 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2652 CGM.getTBAAInfoForSubobject(LV, T)); 2653 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2654 return ElemLV; 2655 } 2656 case UO_PreInc: 2657 case UO_PreDec: { 2658 LValue LV = EmitLValue(E->getSubExpr()); 2659 bool isInc = E->getOpcode() == UO_PreInc; 2660 2661 if (E->getType()->isAnyComplexType()) 2662 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2663 else 2664 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2665 return LV; 2666 } 2667 } 2668 } 2669 2670 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2671 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2672 E->getType(), AlignmentSource::Decl); 2673 } 2674 2675 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2676 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2677 E->getType(), AlignmentSource::Decl); 2678 } 2679 2680 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2681 auto SL = E->getFunctionName(); 2682 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2683 StringRef FnName = CurFn->getName(); 2684 if (FnName.startswith("\01")) 2685 FnName = FnName.substr(1); 2686 StringRef NameItems[] = { 2687 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2688 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2689 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2690 std::string Name = SL->getString(); 2691 if (!Name.empty()) { 2692 unsigned Discriminator = 2693 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2694 if (Discriminator) 2695 Name += "_" + Twine(Discriminator + 1).str(); 2696 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2697 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2698 } else { 2699 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2700 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2701 } 2702 } 2703 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2704 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2705 } 2706 2707 /// Emit a type description suitable for use by a runtime sanitizer library. The 2708 /// format of a type descriptor is 2709 /// 2710 /// \code 2711 /// { i16 TypeKind, i16 TypeInfo } 2712 /// \endcode 2713 /// 2714 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2715 /// integer, 1 for a floating point value, and -1 for anything else. 2716 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2717 // Only emit each type's descriptor once. 2718 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2719 return C; 2720 2721 uint16_t TypeKind = -1; 2722 uint16_t TypeInfo = 0; 2723 2724 if (T->isIntegerType()) { 2725 TypeKind = 0; 2726 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2727 (T->isSignedIntegerType() ? 1 : 0); 2728 } else if (T->isFloatingType()) { 2729 TypeKind = 1; 2730 TypeInfo = getContext().getTypeSize(T); 2731 } 2732 2733 // Format the type name as if for a diagnostic, including quotes and 2734 // optionally an 'aka'. 2735 SmallString<32> Buffer; 2736 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2737 (intptr_t)T.getAsOpaquePtr(), 2738 StringRef(), StringRef(), None, Buffer, 2739 None); 2740 2741 llvm::Constant *Components[] = { 2742 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2743 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2744 }; 2745 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2746 2747 auto *GV = new llvm::GlobalVariable( 2748 CGM.getModule(), Descriptor->getType(), 2749 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2750 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2751 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2752 2753 // Remember the descriptor for this type. 2754 CGM.setTypeDescriptorInMap(T, GV); 2755 2756 return GV; 2757 } 2758 2759 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2760 llvm::Type *TargetTy = IntPtrTy; 2761 2762 if (V->getType() == TargetTy) 2763 return V; 2764 2765 // Floating-point types which fit into intptr_t are bitcast to integers 2766 // and then passed directly (after zero-extension, if necessary). 2767 if (V->getType()->isFloatingPointTy()) { 2768 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2769 if (Bits <= TargetTy->getIntegerBitWidth()) 2770 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2771 Bits)); 2772 } 2773 2774 // Integers which fit in intptr_t are zero-extended and passed directly. 2775 if (V->getType()->isIntegerTy() && 2776 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2777 return Builder.CreateZExt(V, TargetTy); 2778 2779 // Pointers are passed directly, everything else is passed by address. 2780 if (!V->getType()->isPointerTy()) { 2781 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2782 Builder.CreateStore(V, Ptr); 2783 V = Ptr.getPointer(); 2784 } 2785 return Builder.CreatePtrToInt(V, TargetTy); 2786 } 2787 2788 /// Emit a representation of a SourceLocation for passing to a handler 2789 /// in a sanitizer runtime library. The format for this data is: 2790 /// \code 2791 /// struct SourceLocation { 2792 /// const char *Filename; 2793 /// int32_t Line, Column; 2794 /// }; 2795 /// \endcode 2796 /// For an invalid SourceLocation, the Filename pointer is null. 2797 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2798 llvm::Constant *Filename; 2799 int Line, Column; 2800 2801 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2802 if (PLoc.isValid()) { 2803 StringRef FilenameString = PLoc.getFilename(); 2804 2805 int PathComponentsToStrip = 2806 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2807 if (PathComponentsToStrip < 0) { 2808 assert(PathComponentsToStrip != INT_MIN); 2809 int PathComponentsToKeep = -PathComponentsToStrip; 2810 auto I = llvm::sys::path::rbegin(FilenameString); 2811 auto E = llvm::sys::path::rend(FilenameString); 2812 while (I != E && --PathComponentsToKeep) 2813 ++I; 2814 2815 FilenameString = FilenameString.substr(I - E); 2816 } else if (PathComponentsToStrip > 0) { 2817 auto I = llvm::sys::path::begin(FilenameString); 2818 auto E = llvm::sys::path::end(FilenameString); 2819 while (I != E && PathComponentsToStrip--) 2820 ++I; 2821 2822 if (I != E) 2823 FilenameString = 2824 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2825 else 2826 FilenameString = llvm::sys::path::filename(FilenameString); 2827 } 2828 2829 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2830 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2831 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2832 Filename = FilenameGV.getPointer(); 2833 Line = PLoc.getLine(); 2834 Column = PLoc.getColumn(); 2835 } else { 2836 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2837 Line = Column = 0; 2838 } 2839 2840 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2841 Builder.getInt32(Column)}; 2842 2843 return llvm::ConstantStruct::getAnon(Data); 2844 } 2845 2846 namespace { 2847 /// Specify under what conditions this check can be recovered 2848 enum class CheckRecoverableKind { 2849 /// Always terminate program execution if this check fails. 2850 Unrecoverable, 2851 /// Check supports recovering, runtime has both fatal (noreturn) and 2852 /// non-fatal handlers for this check. 2853 Recoverable, 2854 /// Runtime conditionally aborts, always need to support recovery. 2855 AlwaysRecoverable 2856 }; 2857 } 2858 2859 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2860 assert(Kind.countPopulation() == 1); 2861 if (Kind == SanitizerKind::Vptr) 2862 return CheckRecoverableKind::AlwaysRecoverable; 2863 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2864 return CheckRecoverableKind::Unrecoverable; 2865 else 2866 return CheckRecoverableKind::Recoverable; 2867 } 2868 2869 namespace { 2870 struct SanitizerHandlerInfo { 2871 char const *const Name; 2872 unsigned Version; 2873 }; 2874 } 2875 2876 const SanitizerHandlerInfo SanitizerHandlers[] = { 2877 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2878 LIST_SANITIZER_CHECKS 2879 #undef SANITIZER_CHECK 2880 }; 2881 2882 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2883 llvm::FunctionType *FnType, 2884 ArrayRef<llvm::Value *> FnArgs, 2885 SanitizerHandler CheckHandler, 2886 CheckRecoverableKind RecoverKind, bool IsFatal, 2887 llvm::BasicBlock *ContBB) { 2888 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2889 Optional<ApplyDebugLocation> DL; 2890 if (!CGF.Builder.getCurrentDebugLocation()) { 2891 // Ensure that the call has at least an artificial debug location. 2892 DL.emplace(CGF, SourceLocation()); 2893 } 2894 bool NeedsAbortSuffix = 2895 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2896 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2897 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2898 const StringRef CheckName = CheckInfo.Name; 2899 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2900 if (CheckInfo.Version && !MinimalRuntime) 2901 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2902 if (MinimalRuntime) 2903 FnName += "_minimal"; 2904 if (NeedsAbortSuffix) 2905 FnName += "_abort"; 2906 bool MayReturn = 2907 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2908 2909 llvm::AttrBuilder B; 2910 if (!MayReturn) { 2911 B.addAttribute(llvm::Attribute::NoReturn) 2912 .addAttribute(llvm::Attribute::NoUnwind); 2913 } 2914 B.addAttribute(llvm::Attribute::UWTable); 2915 2916 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 2917 FnType, FnName, 2918 llvm::AttributeList::get(CGF.getLLVMContext(), 2919 llvm::AttributeList::FunctionIndex, B), 2920 /*Local=*/true); 2921 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2922 if (!MayReturn) { 2923 HandlerCall->setDoesNotReturn(); 2924 CGF.Builder.CreateUnreachable(); 2925 } else { 2926 CGF.Builder.CreateBr(ContBB); 2927 } 2928 } 2929 2930 void CodeGenFunction::EmitCheck( 2931 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2932 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2933 ArrayRef<llvm::Value *> DynamicArgs) { 2934 assert(IsSanitizerScope); 2935 assert(Checked.size() > 0); 2936 assert(CheckHandler >= 0 && 2937 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2938 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2939 2940 llvm::Value *FatalCond = nullptr; 2941 llvm::Value *RecoverableCond = nullptr; 2942 llvm::Value *TrapCond = nullptr; 2943 for (int i = 0, n = Checked.size(); i < n; ++i) { 2944 llvm::Value *Check = Checked[i].first; 2945 // -fsanitize-trap= overrides -fsanitize-recover=. 2946 llvm::Value *&Cond = 2947 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2948 ? TrapCond 2949 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2950 ? RecoverableCond 2951 : FatalCond; 2952 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2953 } 2954 2955 if (TrapCond) 2956 EmitTrapCheck(TrapCond); 2957 if (!FatalCond && !RecoverableCond) 2958 return; 2959 2960 llvm::Value *JointCond; 2961 if (FatalCond && RecoverableCond) 2962 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2963 else 2964 JointCond = FatalCond ? FatalCond : RecoverableCond; 2965 assert(JointCond); 2966 2967 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2968 assert(SanOpts.has(Checked[0].second)); 2969 #ifndef NDEBUG 2970 for (int i = 1, n = Checked.size(); i < n; ++i) { 2971 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2972 "All recoverable kinds in a single check must be same!"); 2973 assert(SanOpts.has(Checked[i].second)); 2974 } 2975 #endif 2976 2977 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2978 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2979 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2980 // Give hint that we very much don't expect to execute the handler 2981 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2982 llvm::MDBuilder MDHelper(getLLVMContext()); 2983 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2984 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2985 EmitBlock(Handlers); 2986 2987 // Handler functions take an i8* pointing to the (handler-specific) static 2988 // information block, followed by a sequence of intptr_t arguments 2989 // representing operand values. 2990 SmallVector<llvm::Value *, 4> Args; 2991 SmallVector<llvm::Type *, 4> ArgTypes; 2992 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2993 Args.reserve(DynamicArgs.size() + 1); 2994 ArgTypes.reserve(DynamicArgs.size() + 1); 2995 2996 // Emit handler arguments and create handler function type. 2997 if (!StaticArgs.empty()) { 2998 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2999 auto *InfoPtr = 3000 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3001 llvm::GlobalVariable::PrivateLinkage, Info); 3002 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3003 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3004 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3005 ArgTypes.push_back(Int8PtrTy); 3006 } 3007 3008 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3009 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3010 ArgTypes.push_back(IntPtrTy); 3011 } 3012 } 3013 3014 llvm::FunctionType *FnType = 3015 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3016 3017 if (!FatalCond || !RecoverableCond) { 3018 // Simple case: we need to generate a single handler call, either 3019 // fatal, or non-fatal. 3020 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3021 (FatalCond != nullptr), Cont); 3022 } else { 3023 // Emit two handler calls: first one for set of unrecoverable checks, 3024 // another one for recoverable. 3025 llvm::BasicBlock *NonFatalHandlerBB = 3026 createBasicBlock("non_fatal." + CheckName); 3027 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3028 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3029 EmitBlock(FatalHandlerBB); 3030 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3031 NonFatalHandlerBB); 3032 EmitBlock(NonFatalHandlerBB); 3033 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3034 Cont); 3035 } 3036 3037 EmitBlock(Cont); 3038 } 3039 3040 void CodeGenFunction::EmitCfiSlowPathCheck( 3041 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3042 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3043 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3044 3045 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3046 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3047 3048 llvm::MDBuilder MDHelper(getLLVMContext()); 3049 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3050 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3051 3052 EmitBlock(CheckBB); 3053 3054 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3055 3056 llvm::CallInst *CheckCall; 3057 llvm::FunctionCallee SlowPathFn; 3058 if (WithDiag) { 3059 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3060 auto *InfoPtr = 3061 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3062 llvm::GlobalVariable::PrivateLinkage, Info); 3063 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3064 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3065 3066 SlowPathFn = CGM.getModule().getOrInsertFunction( 3067 "__cfi_slowpath_diag", 3068 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3069 false)); 3070 CheckCall = Builder.CreateCall( 3071 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3072 } else { 3073 SlowPathFn = CGM.getModule().getOrInsertFunction( 3074 "__cfi_slowpath", 3075 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3076 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3077 } 3078 3079 CGM.setDSOLocal( 3080 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3081 CheckCall->setDoesNotThrow(); 3082 3083 EmitBlock(Cont); 3084 } 3085 3086 // Emit a stub for __cfi_check function so that the linker knows about this 3087 // symbol in LTO mode. 3088 void CodeGenFunction::EmitCfiCheckStub() { 3089 llvm::Module *M = &CGM.getModule(); 3090 auto &Ctx = M->getContext(); 3091 llvm::Function *F = llvm::Function::Create( 3092 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3093 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3094 CGM.setDSOLocal(F); 3095 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3096 // FIXME: consider emitting an intrinsic call like 3097 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3098 // which can be lowered in CrossDSOCFI pass to the actual contents of 3099 // __cfi_check. This would allow inlining of __cfi_check calls. 3100 llvm::CallInst::Create( 3101 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3102 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3103 } 3104 3105 // This function is basically a switch over the CFI failure kind, which is 3106 // extracted from CFICheckFailData (1st function argument). Each case is either 3107 // llvm.trap or a call to one of the two runtime handlers, based on 3108 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3109 // failure kind) traps, but this should really never happen. CFICheckFailData 3110 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3111 // check kind; in this case __cfi_check_fail traps as well. 3112 void CodeGenFunction::EmitCfiCheckFail() { 3113 SanitizerScope SanScope(this); 3114 FunctionArgList Args; 3115 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3116 ImplicitParamDecl::Other); 3117 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3118 ImplicitParamDecl::Other); 3119 Args.push_back(&ArgData); 3120 Args.push_back(&ArgAddr); 3121 3122 const CGFunctionInfo &FI = 3123 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3124 3125 llvm::Function *F = llvm::Function::Create( 3126 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3127 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3128 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3129 3130 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3131 SourceLocation()); 3132 3133 // This function should not be affected by blacklist. This function does 3134 // not have a source location, but "src:*" would still apply. Revert any 3135 // changes to SanOpts made in StartFunction. 3136 SanOpts = CGM.getLangOpts().Sanitize; 3137 3138 llvm::Value *Data = 3139 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3140 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3141 llvm::Value *Addr = 3142 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3143 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3144 3145 // Data == nullptr means the calling module has trap behaviour for this check. 3146 llvm::Value *DataIsNotNullPtr = 3147 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3148 EmitTrapCheck(DataIsNotNullPtr); 3149 3150 llvm::StructType *SourceLocationTy = 3151 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3152 llvm::StructType *CfiCheckFailDataTy = 3153 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3154 3155 llvm::Value *V = Builder.CreateConstGEP2_32( 3156 CfiCheckFailDataTy, 3157 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3158 0); 3159 Address CheckKindAddr(V, getIntAlign()); 3160 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3161 3162 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3163 CGM.getLLVMContext(), 3164 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3165 llvm::Value *ValidVtable = Builder.CreateZExt( 3166 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3167 {Addr, AllVtables}), 3168 IntPtrTy); 3169 3170 const std::pair<int, SanitizerMask> CheckKinds[] = { 3171 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3172 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3173 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3174 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3175 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3176 3177 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3178 for (auto CheckKindMaskPair : CheckKinds) { 3179 int Kind = CheckKindMaskPair.first; 3180 SanitizerMask Mask = CheckKindMaskPair.second; 3181 llvm::Value *Cond = 3182 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3183 if (CGM.getLangOpts().Sanitize.has(Mask)) 3184 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3185 {Data, Addr, ValidVtable}); 3186 else 3187 EmitTrapCheck(Cond); 3188 } 3189 3190 FinishFunction(); 3191 // The only reference to this function will be created during LTO link. 3192 // Make sure it survives until then. 3193 CGM.addUsedGlobal(F); 3194 } 3195 3196 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3197 if (SanOpts.has(SanitizerKind::Unreachable)) { 3198 SanitizerScope SanScope(this); 3199 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3200 SanitizerKind::Unreachable), 3201 SanitizerHandler::BuiltinUnreachable, 3202 EmitCheckSourceLocation(Loc), None); 3203 } 3204 Builder.CreateUnreachable(); 3205 } 3206 3207 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3208 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3209 3210 // If we're optimizing, collapse all calls to trap down to just one per 3211 // function to save on code size. 3212 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3213 TrapBB = createBasicBlock("trap"); 3214 Builder.CreateCondBr(Checked, Cont, TrapBB); 3215 EmitBlock(TrapBB); 3216 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3217 TrapCall->setDoesNotReturn(); 3218 TrapCall->setDoesNotThrow(); 3219 Builder.CreateUnreachable(); 3220 } else { 3221 Builder.CreateCondBr(Checked, Cont, TrapBB); 3222 } 3223 3224 EmitBlock(Cont); 3225 } 3226 3227 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3228 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3229 3230 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3231 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3232 CGM.getCodeGenOpts().TrapFuncName); 3233 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3234 } 3235 3236 return TrapCall; 3237 } 3238 3239 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3240 LValueBaseInfo *BaseInfo, 3241 TBAAAccessInfo *TBAAInfo) { 3242 assert(E->getType()->isArrayType() && 3243 "Array to pointer decay must have array source type!"); 3244 3245 // Expressions of array type can't be bitfields or vector elements. 3246 LValue LV = EmitLValue(E); 3247 Address Addr = LV.getAddress(); 3248 3249 // If the array type was an incomplete type, we need to make sure 3250 // the decay ends up being the right type. 3251 llvm::Type *NewTy = ConvertType(E->getType()); 3252 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3253 3254 // Note that VLA pointers are always decayed, so we don't need to do 3255 // anything here. 3256 if (!E->getType()->isVariableArrayType()) { 3257 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3258 "Expected pointer to array"); 3259 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3260 } 3261 3262 // The result of this decay conversion points to an array element within the 3263 // base lvalue. However, since TBAA currently does not support representing 3264 // accesses to elements of member arrays, we conservatively represent accesses 3265 // to the pointee object as if it had no any base lvalue specified. 3266 // TODO: Support TBAA for member arrays. 3267 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3268 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3269 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3270 3271 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3272 } 3273 3274 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3275 /// array to pointer, return the array subexpression. 3276 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3277 // If this isn't just an array->pointer decay, bail out. 3278 const auto *CE = dyn_cast<CastExpr>(E); 3279 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3280 return nullptr; 3281 3282 // If this is a decay from variable width array, bail out. 3283 const Expr *SubExpr = CE->getSubExpr(); 3284 if (SubExpr->getType()->isVariableArrayType()) 3285 return nullptr; 3286 3287 return SubExpr; 3288 } 3289 3290 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3291 llvm::Value *ptr, 3292 ArrayRef<llvm::Value*> indices, 3293 bool inbounds, 3294 bool signedIndices, 3295 SourceLocation loc, 3296 const llvm::Twine &name = "arrayidx") { 3297 if (inbounds) { 3298 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3299 CodeGenFunction::NotSubtraction, loc, 3300 name); 3301 } else { 3302 return CGF.Builder.CreateGEP(ptr, indices, name); 3303 } 3304 } 3305 3306 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3307 llvm::Value *idx, 3308 CharUnits eltSize) { 3309 // If we have a constant index, we can use the exact offset of the 3310 // element we're accessing. 3311 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3312 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3313 return arrayAlign.alignmentAtOffset(offset); 3314 3315 // Otherwise, use the worst-case alignment for any element. 3316 } else { 3317 return arrayAlign.alignmentOfArrayElement(eltSize); 3318 } 3319 } 3320 3321 static QualType getFixedSizeElementType(const ASTContext &ctx, 3322 const VariableArrayType *vla) { 3323 QualType eltType; 3324 do { 3325 eltType = vla->getElementType(); 3326 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3327 return eltType; 3328 } 3329 3330 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3331 ArrayRef<llvm::Value *> indices, 3332 QualType eltType, bool inbounds, 3333 bool signedIndices, SourceLocation loc, 3334 const llvm::Twine &name = "arrayidx") { 3335 // All the indices except that last must be zero. 3336 #ifndef NDEBUG 3337 for (auto idx : indices.drop_back()) 3338 assert(isa<llvm::ConstantInt>(idx) && 3339 cast<llvm::ConstantInt>(idx)->isZero()); 3340 #endif 3341 3342 // Determine the element size of the statically-sized base. This is 3343 // the thing that the indices are expressed in terms of. 3344 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3345 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3346 } 3347 3348 // We can use that to compute the best alignment of the element. 3349 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3350 CharUnits eltAlign = 3351 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3352 3353 llvm::Value *eltPtr = emitArraySubscriptGEP( 3354 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3355 return Address(eltPtr, eltAlign); 3356 } 3357 3358 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3359 bool Accessed) { 3360 // The index must always be an integer, which is not an aggregate. Emit it 3361 // in lexical order (this complexity is, sadly, required by C++17). 3362 llvm::Value *IdxPre = 3363 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3364 bool SignedIndices = false; 3365 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3366 auto *Idx = IdxPre; 3367 if (E->getLHS() != E->getIdx()) { 3368 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3369 Idx = EmitScalarExpr(E->getIdx()); 3370 } 3371 3372 QualType IdxTy = E->getIdx()->getType(); 3373 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3374 SignedIndices |= IdxSigned; 3375 3376 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3377 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3378 3379 // Extend or truncate the index type to 32 or 64-bits. 3380 if (Promote && Idx->getType() != IntPtrTy) 3381 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3382 3383 return Idx; 3384 }; 3385 IdxPre = nullptr; 3386 3387 // If the base is a vector type, then we are forming a vector element lvalue 3388 // with this subscript. 3389 if (E->getBase()->getType()->isVectorType() && 3390 !isa<ExtVectorElementExpr>(E->getBase())) { 3391 // Emit the vector as an lvalue to get its address. 3392 LValue LHS = EmitLValue(E->getBase()); 3393 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3394 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3395 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3396 LHS.getBaseInfo(), TBAAAccessInfo()); 3397 } 3398 3399 // All the other cases basically behave like simple offsetting. 3400 3401 // Handle the extvector case we ignored above. 3402 if (isa<ExtVectorElementExpr>(E->getBase())) { 3403 LValue LV = EmitLValue(E->getBase()); 3404 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3405 Address Addr = EmitExtVectorElementLValue(LV); 3406 3407 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3408 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3409 SignedIndices, E->getExprLoc()); 3410 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3411 CGM.getTBAAInfoForSubobject(LV, EltType)); 3412 } 3413 3414 LValueBaseInfo EltBaseInfo; 3415 TBAAAccessInfo EltTBAAInfo; 3416 Address Addr = Address::invalid(); 3417 if (const VariableArrayType *vla = 3418 getContext().getAsVariableArrayType(E->getType())) { 3419 // The base must be a pointer, which is not an aggregate. Emit 3420 // it. It needs to be emitted first in case it's what captures 3421 // the VLA bounds. 3422 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3423 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3424 3425 // The element count here is the total number of non-VLA elements. 3426 llvm::Value *numElements = getVLASize(vla).NumElts; 3427 3428 // Effectively, the multiply by the VLA size is part of the GEP. 3429 // GEP indexes are signed, and scaling an index isn't permitted to 3430 // signed-overflow, so we use the same semantics for our explicit 3431 // multiply. We suppress this if overflow is not undefined behavior. 3432 if (getLangOpts().isSignedOverflowDefined()) { 3433 Idx = Builder.CreateMul(Idx, numElements); 3434 } else { 3435 Idx = Builder.CreateNSWMul(Idx, numElements); 3436 } 3437 3438 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3439 !getLangOpts().isSignedOverflowDefined(), 3440 SignedIndices, E->getExprLoc()); 3441 3442 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3443 // Indexing over an interface, as in "NSString *P; P[4];" 3444 3445 // Emit the base pointer. 3446 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3447 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3448 3449 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3450 llvm::Value *InterfaceSizeVal = 3451 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3452 3453 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3454 3455 // We don't necessarily build correct LLVM struct types for ObjC 3456 // interfaces, so we can't rely on GEP to do this scaling 3457 // correctly, so we need to cast to i8*. FIXME: is this actually 3458 // true? A lot of other things in the fragile ABI would break... 3459 llvm::Type *OrigBaseTy = Addr.getType(); 3460 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3461 3462 // Do the GEP. 3463 CharUnits EltAlign = 3464 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3465 llvm::Value *EltPtr = 3466 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3467 SignedIndices, E->getExprLoc()); 3468 Addr = Address(EltPtr, EltAlign); 3469 3470 // Cast back. 3471 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3472 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3473 // If this is A[i] where A is an array, the frontend will have decayed the 3474 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3475 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3476 // "gep x, i" here. Emit one "gep A, 0, i". 3477 assert(Array->getType()->isArrayType() && 3478 "Array to pointer decay must have array source type!"); 3479 LValue ArrayLV; 3480 // For simple multidimensional array indexing, set the 'accessed' flag for 3481 // better bounds-checking of the base expression. 3482 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3483 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3484 else 3485 ArrayLV = EmitLValue(Array); 3486 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3487 3488 // Propagate the alignment from the array itself to the result. 3489 Addr = emitArraySubscriptGEP( 3490 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3491 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3492 E->getExprLoc()); 3493 EltBaseInfo = ArrayLV.getBaseInfo(); 3494 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3495 } else { 3496 // The base must be a pointer; emit it with an estimate of its alignment. 3497 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3498 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3499 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3500 !getLangOpts().isSignedOverflowDefined(), 3501 SignedIndices, E->getExprLoc()); 3502 } 3503 3504 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3505 3506 if (getLangOpts().ObjC && 3507 getLangOpts().getGC() != LangOptions::NonGC) { 3508 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3509 setObjCGCLValueClass(getContext(), E, LV); 3510 } 3511 return LV; 3512 } 3513 3514 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3515 LValueBaseInfo &BaseInfo, 3516 TBAAAccessInfo &TBAAInfo, 3517 QualType BaseTy, QualType ElTy, 3518 bool IsLowerBound) { 3519 LValue BaseLVal; 3520 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3521 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3522 if (BaseTy->isArrayType()) { 3523 Address Addr = BaseLVal.getAddress(); 3524 BaseInfo = BaseLVal.getBaseInfo(); 3525 3526 // If the array type was an incomplete type, we need to make sure 3527 // the decay ends up being the right type. 3528 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3529 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3530 3531 // Note that VLA pointers are always decayed, so we don't need to do 3532 // anything here. 3533 if (!BaseTy->isVariableArrayType()) { 3534 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3535 "Expected pointer to array"); 3536 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3537 } 3538 3539 return CGF.Builder.CreateElementBitCast(Addr, 3540 CGF.ConvertTypeForMem(ElTy)); 3541 } 3542 LValueBaseInfo TypeBaseInfo; 3543 TBAAAccessInfo TypeTBAAInfo; 3544 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3545 &TypeTBAAInfo); 3546 BaseInfo.mergeForCast(TypeBaseInfo); 3547 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3548 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3549 } 3550 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3551 } 3552 3553 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3554 bool IsLowerBound) { 3555 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3556 QualType ResultExprTy; 3557 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3558 ResultExprTy = AT->getElementType(); 3559 else 3560 ResultExprTy = BaseTy->getPointeeType(); 3561 llvm::Value *Idx = nullptr; 3562 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3563 // Requesting lower bound or upper bound, but without provided length and 3564 // without ':' symbol for the default length -> length = 1. 3565 // Idx = LowerBound ?: 0; 3566 if (auto *LowerBound = E->getLowerBound()) { 3567 Idx = Builder.CreateIntCast( 3568 EmitScalarExpr(LowerBound), IntPtrTy, 3569 LowerBound->getType()->hasSignedIntegerRepresentation()); 3570 } else 3571 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3572 } else { 3573 // Try to emit length or lower bound as constant. If this is possible, 1 3574 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3575 // IR (LB + Len) - 1. 3576 auto &C = CGM.getContext(); 3577 auto *Length = E->getLength(); 3578 llvm::APSInt ConstLength; 3579 if (Length) { 3580 // Idx = LowerBound + Length - 1; 3581 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3582 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3583 Length = nullptr; 3584 } 3585 auto *LowerBound = E->getLowerBound(); 3586 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3587 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3588 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3589 LowerBound = nullptr; 3590 } 3591 if (!Length) 3592 --ConstLength; 3593 else if (!LowerBound) 3594 --ConstLowerBound; 3595 3596 if (Length || LowerBound) { 3597 auto *LowerBoundVal = 3598 LowerBound 3599 ? Builder.CreateIntCast( 3600 EmitScalarExpr(LowerBound), IntPtrTy, 3601 LowerBound->getType()->hasSignedIntegerRepresentation()) 3602 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3603 auto *LengthVal = 3604 Length 3605 ? Builder.CreateIntCast( 3606 EmitScalarExpr(Length), IntPtrTy, 3607 Length->getType()->hasSignedIntegerRepresentation()) 3608 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3609 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3610 /*HasNUW=*/false, 3611 !getLangOpts().isSignedOverflowDefined()); 3612 if (Length && LowerBound) { 3613 Idx = Builder.CreateSub( 3614 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3615 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3616 } 3617 } else 3618 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3619 } else { 3620 // Idx = ArraySize - 1; 3621 QualType ArrayTy = BaseTy->isPointerType() 3622 ? E->getBase()->IgnoreParenImpCasts()->getType() 3623 : BaseTy; 3624 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3625 Length = VAT->getSizeExpr(); 3626 if (Length->isIntegerConstantExpr(ConstLength, C)) 3627 Length = nullptr; 3628 } else { 3629 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3630 ConstLength = CAT->getSize(); 3631 } 3632 if (Length) { 3633 auto *LengthVal = Builder.CreateIntCast( 3634 EmitScalarExpr(Length), IntPtrTy, 3635 Length->getType()->hasSignedIntegerRepresentation()); 3636 Idx = Builder.CreateSub( 3637 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3638 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3639 } else { 3640 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3641 --ConstLength; 3642 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3643 } 3644 } 3645 } 3646 assert(Idx); 3647 3648 Address EltPtr = Address::invalid(); 3649 LValueBaseInfo BaseInfo; 3650 TBAAAccessInfo TBAAInfo; 3651 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3652 // The base must be a pointer, which is not an aggregate. Emit 3653 // it. It needs to be emitted first in case it's what captures 3654 // the VLA bounds. 3655 Address Base = 3656 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3657 BaseTy, VLA->getElementType(), IsLowerBound); 3658 // The element count here is the total number of non-VLA elements. 3659 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3660 3661 // Effectively, the multiply by the VLA size is part of the GEP. 3662 // GEP indexes are signed, and scaling an index isn't permitted to 3663 // signed-overflow, so we use the same semantics for our explicit 3664 // multiply. We suppress this if overflow is not undefined behavior. 3665 if (getLangOpts().isSignedOverflowDefined()) 3666 Idx = Builder.CreateMul(Idx, NumElements); 3667 else 3668 Idx = Builder.CreateNSWMul(Idx, NumElements); 3669 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3670 !getLangOpts().isSignedOverflowDefined(), 3671 /*SignedIndices=*/false, E->getExprLoc()); 3672 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3673 // If this is A[i] where A is an array, the frontend will have decayed the 3674 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3675 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3676 // "gep x, i" here. Emit one "gep A, 0, i". 3677 assert(Array->getType()->isArrayType() && 3678 "Array to pointer decay must have array source type!"); 3679 LValue ArrayLV; 3680 // For simple multidimensional array indexing, set the 'accessed' flag for 3681 // better bounds-checking of the base expression. 3682 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3683 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3684 else 3685 ArrayLV = EmitLValue(Array); 3686 3687 // Propagate the alignment from the array itself to the result. 3688 EltPtr = emitArraySubscriptGEP( 3689 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3690 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3691 /*SignedIndices=*/false, E->getExprLoc()); 3692 BaseInfo = ArrayLV.getBaseInfo(); 3693 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3694 } else { 3695 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3696 TBAAInfo, BaseTy, ResultExprTy, 3697 IsLowerBound); 3698 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3699 !getLangOpts().isSignedOverflowDefined(), 3700 /*SignedIndices=*/false, E->getExprLoc()); 3701 } 3702 3703 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3704 } 3705 3706 LValue CodeGenFunction:: 3707 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3708 // Emit the base vector as an l-value. 3709 LValue Base; 3710 3711 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3712 if (E->isArrow()) { 3713 // If it is a pointer to a vector, emit the address and form an lvalue with 3714 // it. 3715 LValueBaseInfo BaseInfo; 3716 TBAAAccessInfo TBAAInfo; 3717 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3718 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3719 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3720 Base.getQuals().removeObjCGCAttr(); 3721 } else if (E->getBase()->isGLValue()) { 3722 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3723 // emit the base as an lvalue. 3724 assert(E->getBase()->getType()->isVectorType()); 3725 Base = EmitLValue(E->getBase()); 3726 } else { 3727 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3728 assert(E->getBase()->getType()->isVectorType() && 3729 "Result must be a vector"); 3730 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3731 3732 // Store the vector to memory (because LValue wants an address). 3733 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3734 Builder.CreateStore(Vec, VecMem); 3735 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3736 AlignmentSource::Decl); 3737 } 3738 3739 QualType type = 3740 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3741 3742 // Encode the element access list into a vector of unsigned indices. 3743 SmallVector<uint32_t, 4> Indices; 3744 E->getEncodedElementAccess(Indices); 3745 3746 if (Base.isSimple()) { 3747 llvm::Constant *CV = 3748 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3749 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3750 Base.getBaseInfo(), TBAAAccessInfo()); 3751 } 3752 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3753 3754 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3755 SmallVector<llvm::Constant *, 4> CElts; 3756 3757 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3758 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3759 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3760 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3761 Base.getBaseInfo(), TBAAAccessInfo()); 3762 } 3763 3764 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3765 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3766 EmitIgnoredExpr(E->getBase()); 3767 return EmitDeclRefLValue(DRE); 3768 } 3769 3770 Expr *BaseExpr = E->getBase(); 3771 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3772 LValue BaseLV; 3773 if (E->isArrow()) { 3774 LValueBaseInfo BaseInfo; 3775 TBAAAccessInfo TBAAInfo; 3776 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3777 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3778 SanitizerSet SkippedChecks; 3779 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3780 if (IsBaseCXXThis) 3781 SkippedChecks.set(SanitizerKind::Alignment, true); 3782 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3783 SkippedChecks.set(SanitizerKind::Null, true); 3784 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3785 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3786 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3787 } else 3788 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3789 3790 NamedDecl *ND = E->getMemberDecl(); 3791 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3792 LValue LV = EmitLValueForField(BaseLV, Field); 3793 setObjCGCLValueClass(getContext(), E, LV); 3794 return LV; 3795 } 3796 3797 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3798 return EmitFunctionDeclLValue(*this, E, FD); 3799 3800 llvm_unreachable("Unhandled member declaration!"); 3801 } 3802 3803 /// Given that we are currently emitting a lambda, emit an l-value for 3804 /// one of its members. 3805 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3806 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3807 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3808 QualType LambdaTagType = 3809 getContext().getTagDeclType(Field->getParent()); 3810 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3811 return EmitLValueForField(LambdaLV, Field); 3812 } 3813 3814 /// Drill down to the storage of a field without walking into 3815 /// reference types. 3816 /// 3817 /// The resulting address doesn't necessarily have the right type. 3818 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3819 const FieldDecl *field) { 3820 const RecordDecl *rec = field->getParent(); 3821 3822 unsigned idx = 3823 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3824 3825 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 3826 } 3827 3828 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3829 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3830 if (!RD) 3831 return false; 3832 3833 if (RD->isDynamicClass()) 3834 return true; 3835 3836 for (const auto &Base : RD->bases()) 3837 if (hasAnyVptr(Base.getType(), Context)) 3838 return true; 3839 3840 for (const FieldDecl *Field : RD->fields()) 3841 if (hasAnyVptr(Field->getType(), Context)) 3842 return true; 3843 3844 return false; 3845 } 3846 3847 LValue CodeGenFunction::EmitLValueForField(LValue base, 3848 const FieldDecl *field) { 3849 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3850 3851 if (field->isBitField()) { 3852 const CGRecordLayout &RL = 3853 CGM.getTypes().getCGRecordLayout(field->getParent()); 3854 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3855 Address Addr = base.getAddress(); 3856 unsigned Idx = RL.getLLVMFieldNo(field); 3857 if (Idx != 0) 3858 // For structs, we GEP to the field that the record layout suggests. 3859 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 3860 // Get the access type. 3861 llvm::Type *FieldIntTy = 3862 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3863 if (Addr.getElementType() != FieldIntTy) 3864 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3865 3866 QualType fieldType = 3867 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3868 // TODO: Support TBAA for bit fields. 3869 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3870 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3871 TBAAAccessInfo()); 3872 } 3873 3874 // Fields of may-alias structures are may-alias themselves. 3875 // FIXME: this should get propagated down through anonymous structs 3876 // and unions. 3877 QualType FieldType = field->getType(); 3878 const RecordDecl *rec = field->getParent(); 3879 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3880 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3881 TBAAAccessInfo FieldTBAAInfo; 3882 if (base.getTBAAInfo().isMayAlias() || 3883 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3884 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3885 } else if (rec->isUnion()) { 3886 // TODO: Support TBAA for unions. 3887 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3888 } else { 3889 // If no base type been assigned for the base access, then try to generate 3890 // one for this base lvalue. 3891 FieldTBAAInfo = base.getTBAAInfo(); 3892 if (!FieldTBAAInfo.BaseType) { 3893 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3894 assert(!FieldTBAAInfo.Offset && 3895 "Nonzero offset for an access with no base type!"); 3896 } 3897 3898 // Adjust offset to be relative to the base type. 3899 const ASTRecordLayout &Layout = 3900 getContext().getASTRecordLayout(field->getParent()); 3901 unsigned CharWidth = getContext().getCharWidth(); 3902 if (FieldTBAAInfo.BaseType) 3903 FieldTBAAInfo.Offset += 3904 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3905 3906 // Update the final access type and size. 3907 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3908 FieldTBAAInfo.Size = 3909 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3910 } 3911 3912 Address addr = base.getAddress(); 3913 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3914 if (CGM.getCodeGenOpts().StrictVTablePointers && 3915 ClassDef->isDynamicClass()) { 3916 // Getting to any field of dynamic object requires stripping dynamic 3917 // information provided by invariant.group. This is because accessing 3918 // fields may leak the real address of dynamic object, which could result 3919 // in miscompilation when leaked pointer would be compared. 3920 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3921 addr = Address(stripped, addr.getAlignment()); 3922 } 3923 } 3924 3925 unsigned RecordCVR = base.getVRQualifiers(); 3926 if (rec->isUnion()) { 3927 // For unions, there is no pointer adjustment. 3928 assert(!FieldType->isReferenceType() && "union has reference member"); 3929 if (CGM.getCodeGenOpts().StrictVTablePointers && 3930 hasAnyVptr(FieldType, getContext())) 3931 // Because unions can easily skip invariant.barriers, we need to add 3932 // a barrier every time CXXRecord field with vptr is referenced. 3933 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3934 addr.getAlignment()); 3935 } else { 3936 // For structs, we GEP to the field that the record layout suggests. 3937 addr = emitAddrOfFieldStorage(*this, addr, field); 3938 3939 // If this is a reference field, load the reference right now. 3940 if (FieldType->isReferenceType()) { 3941 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3942 FieldTBAAInfo); 3943 if (RecordCVR & Qualifiers::Volatile) 3944 RefLVal.getQuals().addVolatile(); 3945 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3946 3947 // Qualifiers on the struct don't apply to the referencee. 3948 RecordCVR = 0; 3949 FieldType = FieldType->getPointeeType(); 3950 } 3951 } 3952 3953 // Make sure that the address is pointing to the right type. This is critical 3954 // for both unions and structs. A union needs a bitcast, a struct element 3955 // will need a bitcast if the LLVM type laid out doesn't match the desired 3956 // type. 3957 addr = Builder.CreateElementBitCast( 3958 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3959 3960 if (field->hasAttr<AnnotateAttr>()) 3961 addr = EmitFieldAnnotations(field, addr); 3962 3963 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3964 LV.getQuals().addCVRQualifiers(RecordCVR); 3965 3966 // __weak attribute on a field is ignored. 3967 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3968 LV.getQuals().removeObjCGCAttr(); 3969 3970 return LV; 3971 } 3972 3973 LValue 3974 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3975 const FieldDecl *Field) { 3976 QualType FieldType = Field->getType(); 3977 3978 if (!FieldType->isReferenceType()) 3979 return EmitLValueForField(Base, Field); 3980 3981 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3982 3983 // Make sure that the address is pointing to the right type. 3984 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3985 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3986 3987 // TODO: Generate TBAA information that describes this access as a structure 3988 // member access and not just an access to an object of the field's type. This 3989 // should be similar to what we do in EmitLValueForField(). 3990 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3991 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3992 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3993 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3994 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3995 } 3996 3997 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3998 if (E->isFileScope()) { 3999 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4000 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4001 } 4002 if (E->getType()->isVariablyModifiedType()) 4003 // make sure to emit the VLA size. 4004 EmitVariablyModifiedType(E->getType()); 4005 4006 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4007 const Expr *InitExpr = E->getInitializer(); 4008 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4009 4010 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4011 /*Init*/ true); 4012 4013 return Result; 4014 } 4015 4016 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4017 if (!E->isGLValue()) 4018 // Initializing an aggregate temporary in C++11: T{...}. 4019 return EmitAggExprToLValue(E); 4020 4021 // An lvalue initializer list must be initializing a reference. 4022 assert(E->isTransparent() && "non-transparent glvalue init list"); 4023 return EmitLValue(E->getInit(0)); 4024 } 4025 4026 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4027 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4028 /// LValue is returned and the current block has been terminated. 4029 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4030 const Expr *Operand) { 4031 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4032 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4033 return None; 4034 } 4035 4036 return CGF.EmitLValue(Operand); 4037 } 4038 4039 LValue CodeGenFunction:: 4040 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4041 if (!expr->isGLValue()) { 4042 // ?: here should be an aggregate. 4043 assert(hasAggregateEvaluationKind(expr->getType()) && 4044 "Unexpected conditional operator!"); 4045 return EmitAggExprToLValue(expr); 4046 } 4047 4048 OpaqueValueMapping binding(*this, expr); 4049 4050 const Expr *condExpr = expr->getCond(); 4051 bool CondExprBool; 4052 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4053 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4054 if (!CondExprBool) std::swap(live, dead); 4055 4056 if (!ContainsLabel(dead)) { 4057 // If the true case is live, we need to track its region. 4058 if (CondExprBool) 4059 incrementProfileCounter(expr); 4060 return EmitLValue(live); 4061 } 4062 } 4063 4064 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4065 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4066 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4067 4068 ConditionalEvaluation eval(*this); 4069 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4070 4071 // Any temporaries created here are conditional. 4072 EmitBlock(lhsBlock); 4073 incrementProfileCounter(expr); 4074 eval.begin(*this); 4075 Optional<LValue> lhs = 4076 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4077 eval.end(*this); 4078 4079 if (lhs && !lhs->isSimple()) 4080 return EmitUnsupportedLValue(expr, "conditional operator"); 4081 4082 lhsBlock = Builder.GetInsertBlock(); 4083 if (lhs) 4084 Builder.CreateBr(contBlock); 4085 4086 // Any temporaries created here are conditional. 4087 EmitBlock(rhsBlock); 4088 eval.begin(*this); 4089 Optional<LValue> rhs = 4090 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4091 eval.end(*this); 4092 if (rhs && !rhs->isSimple()) 4093 return EmitUnsupportedLValue(expr, "conditional operator"); 4094 rhsBlock = Builder.GetInsertBlock(); 4095 4096 EmitBlock(contBlock); 4097 4098 if (lhs && rhs) { 4099 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4100 2, "cond-lvalue"); 4101 phi->addIncoming(lhs->getPointer(), lhsBlock); 4102 phi->addIncoming(rhs->getPointer(), rhsBlock); 4103 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4104 AlignmentSource alignSource = 4105 std::max(lhs->getBaseInfo().getAlignmentSource(), 4106 rhs->getBaseInfo().getAlignmentSource()); 4107 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4108 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4109 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4110 TBAAInfo); 4111 } else { 4112 assert((lhs || rhs) && 4113 "both operands of glvalue conditional are throw-expressions?"); 4114 return lhs ? *lhs : *rhs; 4115 } 4116 } 4117 4118 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4119 /// type. If the cast is to a reference, we can have the usual lvalue result, 4120 /// otherwise if a cast is needed by the code generator in an lvalue context, 4121 /// then it must mean that we need the address of an aggregate in order to 4122 /// access one of its members. This can happen for all the reasons that casts 4123 /// are permitted with aggregate result, including noop aggregate casts, and 4124 /// cast from scalar to union. 4125 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4126 switch (E->getCastKind()) { 4127 case CK_ToVoid: 4128 case CK_BitCast: 4129 case CK_ArrayToPointerDecay: 4130 case CK_FunctionToPointerDecay: 4131 case CK_NullToMemberPointer: 4132 case CK_NullToPointer: 4133 case CK_IntegralToPointer: 4134 case CK_PointerToIntegral: 4135 case CK_PointerToBoolean: 4136 case CK_VectorSplat: 4137 case CK_IntegralCast: 4138 case CK_BooleanToSignedIntegral: 4139 case CK_IntegralToBoolean: 4140 case CK_IntegralToFloating: 4141 case CK_FloatingToIntegral: 4142 case CK_FloatingToBoolean: 4143 case CK_FloatingCast: 4144 case CK_FloatingRealToComplex: 4145 case CK_FloatingComplexToReal: 4146 case CK_FloatingComplexToBoolean: 4147 case CK_FloatingComplexCast: 4148 case CK_FloatingComplexToIntegralComplex: 4149 case CK_IntegralRealToComplex: 4150 case CK_IntegralComplexToReal: 4151 case CK_IntegralComplexToBoolean: 4152 case CK_IntegralComplexCast: 4153 case CK_IntegralComplexToFloatingComplex: 4154 case CK_DerivedToBaseMemberPointer: 4155 case CK_BaseToDerivedMemberPointer: 4156 case CK_MemberPointerToBoolean: 4157 case CK_ReinterpretMemberPointer: 4158 case CK_AnyPointerToBlockPointerCast: 4159 case CK_ARCProduceObject: 4160 case CK_ARCConsumeObject: 4161 case CK_ARCReclaimReturnedObject: 4162 case CK_ARCExtendBlockObject: 4163 case CK_CopyAndAutoreleaseBlockObject: 4164 case CK_IntToOCLSampler: 4165 case CK_FixedPointCast: 4166 case CK_FixedPointToBoolean: 4167 case CK_FixedPointToIntegral: 4168 case CK_IntegralToFixedPoint: 4169 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4170 4171 case CK_Dependent: 4172 llvm_unreachable("dependent cast kind in IR gen!"); 4173 4174 case CK_BuiltinFnToFnPtr: 4175 llvm_unreachable("builtin functions are handled elsewhere"); 4176 4177 // These are never l-values; just use the aggregate emission code. 4178 case CK_NonAtomicToAtomic: 4179 case CK_AtomicToNonAtomic: 4180 return EmitAggExprToLValue(E); 4181 4182 case CK_Dynamic: { 4183 LValue LV = EmitLValue(E->getSubExpr()); 4184 Address V = LV.getAddress(); 4185 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4186 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4187 } 4188 4189 case CK_ConstructorConversion: 4190 case CK_UserDefinedConversion: 4191 case CK_CPointerToObjCPointerCast: 4192 case CK_BlockPointerToObjCPointerCast: 4193 case CK_NoOp: 4194 case CK_LValueToRValue: 4195 return EmitLValue(E->getSubExpr()); 4196 4197 case CK_UncheckedDerivedToBase: 4198 case CK_DerivedToBase: { 4199 const RecordType *DerivedClassTy = 4200 E->getSubExpr()->getType()->getAs<RecordType>(); 4201 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4202 4203 LValue LV = EmitLValue(E->getSubExpr()); 4204 Address This = LV.getAddress(); 4205 4206 // Perform the derived-to-base conversion 4207 Address Base = GetAddressOfBaseClass( 4208 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4209 /*NullCheckValue=*/false, E->getExprLoc()); 4210 4211 // TODO: Support accesses to members of base classes in TBAA. For now, we 4212 // conservatively pretend that the complete object is of the base class 4213 // type. 4214 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4215 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4216 } 4217 case CK_ToUnion: 4218 return EmitAggExprToLValue(E); 4219 case CK_BaseToDerived: { 4220 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4221 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4222 4223 LValue LV = EmitLValue(E->getSubExpr()); 4224 4225 // Perform the base-to-derived conversion 4226 Address Derived = 4227 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4228 E->path_begin(), E->path_end(), 4229 /*NullCheckValue=*/false); 4230 4231 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4232 // performed and the object is not of the derived type. 4233 if (sanitizePerformTypeCheck()) 4234 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4235 Derived.getPointer(), E->getType()); 4236 4237 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4238 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4239 /*MayBeNull=*/false, CFITCK_DerivedCast, 4240 E->getBeginLoc()); 4241 4242 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4243 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4244 } 4245 case CK_LValueBitCast: { 4246 // This must be a reinterpret_cast (or c-style equivalent). 4247 const auto *CE = cast<ExplicitCastExpr>(E); 4248 4249 CGM.EmitExplicitCastExprType(CE, this); 4250 LValue LV = EmitLValue(E->getSubExpr()); 4251 Address V = Builder.CreateBitCast(LV.getAddress(), 4252 ConvertType(CE->getTypeAsWritten())); 4253 4254 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4255 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4256 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4257 E->getBeginLoc()); 4258 4259 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4260 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4261 } 4262 case CK_AddressSpaceConversion: { 4263 LValue LV = EmitLValue(E->getSubExpr()); 4264 QualType DestTy = getContext().getPointerType(E->getType()); 4265 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4266 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4267 E->getType().getAddressSpace(), ConvertType(DestTy)); 4268 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4269 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4270 } 4271 case CK_ObjCObjectLValueCast: { 4272 LValue LV = EmitLValue(E->getSubExpr()); 4273 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4274 ConvertType(E->getType())); 4275 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4276 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4277 } 4278 case CK_ZeroToOCLOpaqueType: 4279 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4280 } 4281 4282 llvm_unreachable("Unhandled lvalue cast kind?"); 4283 } 4284 4285 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4286 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4287 return getOrCreateOpaqueLValueMapping(e); 4288 } 4289 4290 LValue 4291 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4292 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4293 4294 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4295 it = OpaqueLValues.find(e); 4296 4297 if (it != OpaqueLValues.end()) 4298 return it->second; 4299 4300 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4301 return EmitLValue(e->getSourceExpr()); 4302 } 4303 4304 RValue 4305 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4306 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4307 4308 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4309 it = OpaqueRValues.find(e); 4310 4311 if (it != OpaqueRValues.end()) 4312 return it->second; 4313 4314 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4315 return EmitAnyExpr(e->getSourceExpr()); 4316 } 4317 4318 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4319 const FieldDecl *FD, 4320 SourceLocation Loc) { 4321 QualType FT = FD->getType(); 4322 LValue FieldLV = EmitLValueForField(LV, FD); 4323 switch (getEvaluationKind(FT)) { 4324 case TEK_Complex: 4325 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4326 case TEK_Aggregate: 4327 return FieldLV.asAggregateRValue(); 4328 case TEK_Scalar: 4329 // This routine is used to load fields one-by-one to perform a copy, so 4330 // don't load reference fields. 4331 if (FD->getType()->isReferenceType()) 4332 return RValue::get(FieldLV.getPointer()); 4333 return EmitLoadOfLValue(FieldLV, Loc); 4334 } 4335 llvm_unreachable("bad evaluation kind"); 4336 } 4337 4338 //===--------------------------------------------------------------------===// 4339 // Expression Emission 4340 //===--------------------------------------------------------------------===// 4341 4342 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4343 ReturnValueSlot ReturnValue) { 4344 // Builtins never have block type. 4345 if (E->getCallee()->getType()->isBlockPointerType()) 4346 return EmitBlockCallExpr(E, ReturnValue); 4347 4348 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4349 return EmitCXXMemberCallExpr(CE, ReturnValue); 4350 4351 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4352 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4353 4354 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4355 if (const CXXMethodDecl *MD = 4356 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4357 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4358 4359 CGCallee callee = EmitCallee(E->getCallee()); 4360 4361 if (callee.isBuiltin()) { 4362 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4363 E, ReturnValue); 4364 } 4365 4366 if (callee.isPseudoDestructor()) { 4367 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4368 } 4369 4370 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4371 } 4372 4373 /// Emit a CallExpr without considering whether it might be a subclass. 4374 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4375 ReturnValueSlot ReturnValue) { 4376 CGCallee Callee = EmitCallee(E->getCallee()); 4377 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4378 } 4379 4380 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4381 if (auto builtinID = FD->getBuiltinID()) { 4382 return CGCallee::forBuiltin(builtinID, FD); 4383 } 4384 4385 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4386 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4387 } 4388 4389 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4390 E = E->IgnoreParens(); 4391 4392 // Look through function-to-pointer decay. 4393 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4394 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4395 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4396 return EmitCallee(ICE->getSubExpr()); 4397 } 4398 4399 // Resolve direct calls. 4400 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4401 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4402 return EmitDirectCallee(*this, FD); 4403 } 4404 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4405 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4406 EmitIgnoredExpr(ME->getBase()); 4407 return EmitDirectCallee(*this, FD); 4408 } 4409 4410 // Look through template substitutions. 4411 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4412 return EmitCallee(NTTP->getReplacement()); 4413 4414 // Treat pseudo-destructor calls differently. 4415 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4416 return CGCallee::forPseudoDestructor(PDE); 4417 } 4418 4419 // Otherwise, we have an indirect reference. 4420 llvm::Value *calleePtr; 4421 QualType functionType; 4422 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4423 calleePtr = EmitScalarExpr(E); 4424 functionType = ptrType->getPointeeType(); 4425 } else { 4426 functionType = E->getType(); 4427 calleePtr = EmitLValue(E).getPointer(); 4428 } 4429 assert(functionType->isFunctionType()); 4430 4431 GlobalDecl GD; 4432 if (const auto *VD = 4433 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4434 GD = GlobalDecl(VD); 4435 4436 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4437 CGCallee callee(calleeInfo, calleePtr); 4438 return callee; 4439 } 4440 4441 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4442 // Comma expressions just emit their LHS then their RHS as an l-value. 4443 if (E->getOpcode() == BO_Comma) { 4444 EmitIgnoredExpr(E->getLHS()); 4445 EnsureInsertPoint(); 4446 return EmitLValue(E->getRHS()); 4447 } 4448 4449 if (E->getOpcode() == BO_PtrMemD || 4450 E->getOpcode() == BO_PtrMemI) 4451 return EmitPointerToDataMemberBinaryExpr(E); 4452 4453 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4454 4455 // Note that in all of these cases, __block variables need the RHS 4456 // evaluated first just in case the variable gets moved by the RHS. 4457 4458 switch (getEvaluationKind(E->getType())) { 4459 case TEK_Scalar: { 4460 switch (E->getLHS()->getType().getObjCLifetime()) { 4461 case Qualifiers::OCL_Strong: 4462 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4463 4464 case Qualifiers::OCL_Autoreleasing: 4465 return EmitARCStoreAutoreleasing(E).first; 4466 4467 // No reason to do any of these differently. 4468 case Qualifiers::OCL_None: 4469 case Qualifiers::OCL_ExplicitNone: 4470 case Qualifiers::OCL_Weak: 4471 break; 4472 } 4473 4474 RValue RV = EmitAnyExpr(E->getRHS()); 4475 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4476 if (RV.isScalar()) 4477 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4478 EmitStoreThroughLValue(RV, LV); 4479 return LV; 4480 } 4481 4482 case TEK_Complex: 4483 return EmitComplexAssignmentLValue(E); 4484 4485 case TEK_Aggregate: 4486 return EmitAggExprToLValue(E); 4487 } 4488 llvm_unreachable("bad evaluation kind"); 4489 } 4490 4491 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4492 RValue RV = EmitCallExpr(E); 4493 4494 if (!RV.isScalar()) 4495 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4496 AlignmentSource::Decl); 4497 4498 assert(E->getCallReturnType(getContext())->isReferenceType() && 4499 "Can't have a scalar return unless the return type is a " 4500 "reference type!"); 4501 4502 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4503 } 4504 4505 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4506 // FIXME: This shouldn't require another copy. 4507 return EmitAggExprToLValue(E); 4508 } 4509 4510 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4511 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4512 && "binding l-value to type which needs a temporary"); 4513 AggValueSlot Slot = CreateAggTemp(E->getType()); 4514 EmitCXXConstructExpr(E, Slot); 4515 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4516 } 4517 4518 LValue 4519 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4520 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4521 } 4522 4523 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4524 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4525 ConvertType(E->getType())); 4526 } 4527 4528 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4529 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4530 AlignmentSource::Decl); 4531 } 4532 4533 LValue 4534 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4535 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4536 Slot.setExternallyDestructed(); 4537 EmitAggExpr(E->getSubExpr(), Slot); 4538 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4539 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4540 } 4541 4542 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4543 RValue RV = EmitObjCMessageExpr(E); 4544 4545 if (!RV.isScalar()) 4546 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4547 AlignmentSource::Decl); 4548 4549 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4550 "Can't have a scalar return unless the return type is a " 4551 "reference type!"); 4552 4553 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4554 } 4555 4556 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4557 Address V = 4558 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4559 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4560 } 4561 4562 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4563 const ObjCIvarDecl *Ivar) { 4564 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4565 } 4566 4567 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4568 llvm::Value *BaseValue, 4569 const ObjCIvarDecl *Ivar, 4570 unsigned CVRQualifiers) { 4571 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4572 Ivar, CVRQualifiers); 4573 } 4574 4575 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4576 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4577 llvm::Value *BaseValue = nullptr; 4578 const Expr *BaseExpr = E->getBase(); 4579 Qualifiers BaseQuals; 4580 QualType ObjectTy; 4581 if (E->isArrow()) { 4582 BaseValue = EmitScalarExpr(BaseExpr); 4583 ObjectTy = BaseExpr->getType()->getPointeeType(); 4584 BaseQuals = ObjectTy.getQualifiers(); 4585 } else { 4586 LValue BaseLV = EmitLValue(BaseExpr); 4587 BaseValue = BaseLV.getPointer(); 4588 ObjectTy = BaseExpr->getType(); 4589 BaseQuals = ObjectTy.getQualifiers(); 4590 } 4591 4592 LValue LV = 4593 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4594 BaseQuals.getCVRQualifiers()); 4595 setObjCGCLValueClass(getContext(), E, LV); 4596 return LV; 4597 } 4598 4599 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4600 // Can only get l-value for message expression returning aggregate type 4601 RValue RV = EmitAnyExprToTemp(E); 4602 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4603 AlignmentSource::Decl); 4604 } 4605 4606 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4607 const CallExpr *E, ReturnValueSlot ReturnValue, 4608 llvm::Value *Chain) { 4609 // Get the actual function type. The callee type will always be a pointer to 4610 // function type or a block pointer type. 4611 assert(CalleeType->isFunctionPointerType() && 4612 "Call must have function pointer type!"); 4613 4614 const Decl *TargetDecl = 4615 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4616 4617 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4618 // We can only guarantee that a function is called from the correct 4619 // context/function based on the appropriate target attributes, 4620 // so only check in the case where we have both always_inline and target 4621 // since otherwise we could be making a conditional call after a check for 4622 // the proper cpu features (and it won't cause code generation issues due to 4623 // function based code generation). 4624 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4625 TargetDecl->hasAttr<TargetAttr>()) 4626 checkTargetFeatures(E, FD); 4627 4628 CalleeType = getContext().getCanonicalType(CalleeType); 4629 4630 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4631 4632 CGCallee Callee = OrigCallee; 4633 4634 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4635 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4636 if (llvm::Constant *PrefixSig = 4637 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4638 SanitizerScope SanScope(this); 4639 // Remove any (C++17) exception specifications, to allow calling e.g. a 4640 // noexcept function through a non-noexcept pointer. 4641 auto ProtoTy = 4642 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4643 llvm::Constant *FTRTTIConst = 4644 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4645 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4646 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4647 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4648 4649 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4650 4651 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4652 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4653 llvm::Value *CalleeSigPtr = 4654 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4655 llvm::Value *CalleeSig = 4656 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4657 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4658 4659 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4660 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4661 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4662 4663 EmitBlock(TypeCheck); 4664 llvm::Value *CalleeRTTIPtr = 4665 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4666 llvm::Value *CalleeRTTIEncoded = 4667 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4668 llvm::Value *CalleeRTTI = 4669 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4670 llvm::Value *CalleeRTTIMatch = 4671 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4672 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4673 EmitCheckTypeDescriptor(CalleeType)}; 4674 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4675 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4676 4677 Builder.CreateBr(Cont); 4678 EmitBlock(Cont); 4679 } 4680 } 4681 4682 const auto *FnType = cast<FunctionType>(PointeeType); 4683 4684 // If we are checking indirect calls and this call is indirect, check that the 4685 // function pointer is a member of the bit set for the function type. 4686 if (SanOpts.has(SanitizerKind::CFIICall) && 4687 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4688 SanitizerScope SanScope(this); 4689 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4690 4691 llvm::Metadata *MD; 4692 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4693 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4694 else 4695 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4696 4697 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4698 4699 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4700 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4701 llvm::Value *TypeTest = Builder.CreateCall( 4702 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4703 4704 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4705 llvm::Constant *StaticData[] = { 4706 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4707 EmitCheckSourceLocation(E->getBeginLoc()), 4708 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4709 }; 4710 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4711 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4712 CastedCallee, StaticData); 4713 } else { 4714 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4715 SanitizerHandler::CFICheckFail, StaticData, 4716 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4717 } 4718 } 4719 4720 CallArgList Args; 4721 if (Chain) 4722 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4723 CGM.getContext().VoidPtrTy); 4724 4725 // C++17 requires that we evaluate arguments to a call using assignment syntax 4726 // right-to-left, and that we evaluate arguments to certain other operators 4727 // left-to-right. Note that we allow this to override the order dictated by 4728 // the calling convention on the MS ABI, which means that parameter 4729 // destruction order is not necessarily reverse construction order. 4730 // FIXME: Revisit this based on C++ committee response to unimplementability. 4731 EvaluationOrder Order = EvaluationOrder::Default; 4732 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4733 if (OCE->isAssignmentOp()) 4734 Order = EvaluationOrder::ForceRightToLeft; 4735 else { 4736 switch (OCE->getOperator()) { 4737 case OO_LessLess: 4738 case OO_GreaterGreater: 4739 case OO_AmpAmp: 4740 case OO_PipePipe: 4741 case OO_Comma: 4742 case OO_ArrowStar: 4743 Order = EvaluationOrder::ForceLeftToRight; 4744 break; 4745 default: 4746 break; 4747 } 4748 } 4749 } 4750 4751 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4752 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4753 4754 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4755 Args, FnType, /*isChainCall=*/Chain); 4756 4757 // C99 6.5.2.2p6: 4758 // If the expression that denotes the called function has a type 4759 // that does not include a prototype, [the default argument 4760 // promotions are performed]. If the number of arguments does not 4761 // equal the number of parameters, the behavior is undefined. If 4762 // the function is defined with a type that includes a prototype, 4763 // and either the prototype ends with an ellipsis (, ...) or the 4764 // types of the arguments after promotion are not compatible with 4765 // the types of the parameters, the behavior is undefined. If the 4766 // function is defined with a type that does not include a 4767 // prototype, and the types of the arguments after promotion are 4768 // not compatible with those of the parameters after promotion, 4769 // the behavior is undefined [except in some trivial cases]. 4770 // That is, in the general case, we should assume that a call 4771 // through an unprototyped function type works like a *non-variadic* 4772 // call. The way we make this work is to cast to the exact type 4773 // of the promoted arguments. 4774 // 4775 // Chain calls use this same code path to add the invisible chain parameter 4776 // to the function type. 4777 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4778 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4779 CalleeTy = CalleeTy->getPointerTo(); 4780 4781 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4782 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4783 Callee.setFunctionPointer(CalleePtr); 4784 } 4785 4786 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4787 } 4788 4789 LValue CodeGenFunction:: 4790 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4791 Address BaseAddr = Address::invalid(); 4792 if (E->getOpcode() == BO_PtrMemI) { 4793 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4794 } else { 4795 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4796 } 4797 4798 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4799 4800 const MemberPointerType *MPT 4801 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4802 4803 LValueBaseInfo BaseInfo; 4804 TBAAAccessInfo TBAAInfo; 4805 Address MemberAddr = 4806 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4807 &TBAAInfo); 4808 4809 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4810 } 4811 4812 /// Given the address of a temporary variable, produce an r-value of 4813 /// its type. 4814 RValue CodeGenFunction::convertTempToRValue(Address addr, 4815 QualType type, 4816 SourceLocation loc) { 4817 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4818 switch (getEvaluationKind(type)) { 4819 case TEK_Complex: 4820 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4821 case TEK_Aggregate: 4822 return lvalue.asAggregateRValue(); 4823 case TEK_Scalar: 4824 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4825 } 4826 llvm_unreachable("bad evaluation kind"); 4827 } 4828 4829 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4830 assert(Val->getType()->isFPOrFPVectorTy()); 4831 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4832 return; 4833 4834 llvm::MDBuilder MDHelper(getLLVMContext()); 4835 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4836 4837 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4838 } 4839 4840 namespace { 4841 struct LValueOrRValue { 4842 LValue LV; 4843 RValue RV; 4844 }; 4845 } 4846 4847 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4848 const PseudoObjectExpr *E, 4849 bool forLValue, 4850 AggValueSlot slot) { 4851 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4852 4853 // Find the result expression, if any. 4854 const Expr *resultExpr = E->getResultExpr(); 4855 LValueOrRValue result; 4856 4857 for (PseudoObjectExpr::const_semantics_iterator 4858 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4859 const Expr *semantic = *i; 4860 4861 // If this semantic expression is an opaque value, bind it 4862 // to the result of its source expression. 4863 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4864 // Skip unique OVEs. 4865 if (ov->isUnique()) { 4866 assert(ov != resultExpr && 4867 "A unique OVE cannot be used as the result expression"); 4868 continue; 4869 } 4870 4871 // If this is the result expression, we may need to evaluate 4872 // directly into the slot. 4873 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4874 OVMA opaqueData; 4875 if (ov == resultExpr && ov->isRValue() && !forLValue && 4876 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4877 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4878 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4879 AlignmentSource::Decl); 4880 opaqueData = OVMA::bind(CGF, ov, LV); 4881 result.RV = slot.asRValue(); 4882 4883 // Otherwise, emit as normal. 4884 } else { 4885 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4886 4887 // If this is the result, also evaluate the result now. 4888 if (ov == resultExpr) { 4889 if (forLValue) 4890 result.LV = CGF.EmitLValue(ov); 4891 else 4892 result.RV = CGF.EmitAnyExpr(ov, slot); 4893 } 4894 } 4895 4896 opaques.push_back(opaqueData); 4897 4898 // Otherwise, if the expression is the result, evaluate it 4899 // and remember the result. 4900 } else if (semantic == resultExpr) { 4901 if (forLValue) 4902 result.LV = CGF.EmitLValue(semantic); 4903 else 4904 result.RV = CGF.EmitAnyExpr(semantic, slot); 4905 4906 // Otherwise, evaluate the expression in an ignored context. 4907 } else { 4908 CGF.EmitIgnoredExpr(semantic); 4909 } 4910 } 4911 4912 // Unbind all the opaques now. 4913 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4914 opaques[i].unbind(CGF); 4915 4916 return result; 4917 } 4918 4919 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4920 AggValueSlot slot) { 4921 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4922 } 4923 4924 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4925 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4926 } 4927