1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 auto CurIP = Builder.saveIP(); 78 Builder.SetInsertPoint(AllocaInsertPt); 79 V = getTargetHooks().performAddrSpaceCast( 80 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 81 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 82 Builder.restoreIP(CurIP); 83 } 84 85 return Address(V, Align); 86 } 87 88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 90 /// insertion point of the builder. 91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 92 const Twine &Name, 93 llvm::Value *ArraySize) { 94 if (ArraySize) 95 return Builder.CreateAlloca(Ty, ArraySize, Name); 96 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 97 ArraySize, Name, AllocaInsertPt); 98 } 99 100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 101 /// default alignment of the corresponding LLVM type, which is *not* 102 /// guaranteed to be related in any way to the expected alignment of 103 /// an AST type that might have been lowered to Ty. 104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 105 const Twine &Name) { 106 CharUnits Align = 107 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 108 return CreateTempAlloca(Ty, Align, Name); 109 } 110 111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 112 assert(isa<llvm::AllocaInst>(Var.getPointer())); 113 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 114 Store->setAlignment(Var.getAlignment().getQuantity()); 115 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 116 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 117 } 118 119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 120 CharUnits Align = getContext().getTypeAlignInChars(Ty); 121 return CreateTempAlloca(ConvertType(Ty), Align, Name); 122 } 123 124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 125 bool CastToDefaultAddrSpace) { 126 // FIXME: Should we prefer the preferred type alignment here? 127 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 128 CastToDefaultAddrSpace); 129 } 130 131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 132 const Twine &Name, 133 bool CastToDefaultAddrSpace) { 134 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 135 CastToDefaultAddrSpace); 136 } 137 138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 139 /// expression and compare the result against zero, returning an Int1Ty value. 140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 141 PGO.setCurrentStmt(E); 142 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 143 llvm::Value *MemPtr = EmitScalarExpr(E); 144 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 145 } 146 147 QualType BoolTy = getContext().BoolTy; 148 SourceLocation Loc = E->getExprLoc(); 149 if (!E->getType()->isAnyComplexType()) 150 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 151 152 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 153 Loc); 154 } 155 156 /// EmitIgnoredExpr - Emit code to compute the specified expression, 157 /// ignoring the result. 158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 159 if (E->isRValue()) 160 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 161 162 // Just emit it as an l-value and drop the result. 163 EmitLValue(E); 164 } 165 166 /// EmitAnyExpr - Emit code to compute the specified expression which 167 /// can have any type. The result is returned as an RValue struct. 168 /// If this is an aggregate expression, AggSlot indicates where the 169 /// result should be returned. 170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 171 AggValueSlot aggSlot, 172 bool ignoreResult) { 173 switch (getEvaluationKind(E->getType())) { 174 case TEK_Scalar: 175 return RValue::get(EmitScalarExpr(E, ignoreResult)); 176 case TEK_Complex: 177 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 178 case TEK_Aggregate: 179 if (!ignoreResult && aggSlot.isIgnored()) 180 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 181 EmitAggExpr(E, aggSlot); 182 return aggSlot.asRValue(); 183 } 184 llvm_unreachable("bad evaluation kind"); 185 } 186 187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 188 /// always be accessible even if no aggregate location is provided. 189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 190 AggValueSlot AggSlot = AggValueSlot::ignored(); 191 192 if (hasAggregateEvaluationKind(E->getType())) 193 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 194 return EmitAnyExpr(E, AggSlot); 195 } 196 197 /// EmitAnyExprToMem - Evaluate an expression into a given memory 198 /// location. 199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 200 Address Location, 201 Qualifiers Quals, 202 bool IsInit) { 203 // FIXME: This function should take an LValue as an argument. 204 switch (getEvaluationKind(E->getType())) { 205 case TEK_Complex: 206 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 207 /*isInit*/ false); 208 return; 209 210 case TEK_Aggregate: { 211 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 212 AggValueSlot::IsDestructed_t(IsInit), 213 AggValueSlot::DoesNotNeedGCBarriers, 214 AggValueSlot::IsAliased_t(!IsInit))); 215 return; 216 } 217 218 case TEK_Scalar: { 219 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 220 LValue LV = MakeAddrLValue(Location, E->getType()); 221 EmitStoreThroughLValue(RV, LV); 222 return; 223 } 224 } 225 llvm_unreachable("bad evaluation kind"); 226 } 227 228 static void 229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 230 const Expr *E, Address ReferenceTemporary) { 231 // Objective-C++ ARC: 232 // If we are binding a reference to a temporary that has ownership, we 233 // need to perform retain/release operations on the temporary. 234 // 235 // FIXME: This should be looking at E, not M. 236 if (auto Lifetime = M->getType().getObjCLifetime()) { 237 switch (Lifetime) { 238 case Qualifiers::OCL_None: 239 case Qualifiers::OCL_ExplicitNone: 240 // Carry on to normal cleanup handling. 241 break; 242 243 case Qualifiers::OCL_Autoreleasing: 244 // Nothing to do; cleaned up by an autorelease pool. 245 return; 246 247 case Qualifiers::OCL_Strong: 248 case Qualifiers::OCL_Weak: 249 switch (StorageDuration Duration = M->getStorageDuration()) { 250 case SD_Static: 251 // Note: we intentionally do not register a cleanup to release 252 // the object on program termination. 253 return; 254 255 case SD_Thread: 256 // FIXME: We should probably register a cleanup in this case. 257 return; 258 259 case SD_Automatic: 260 case SD_FullExpression: 261 CodeGenFunction::Destroyer *Destroy; 262 CleanupKind CleanupKind; 263 if (Lifetime == Qualifiers::OCL_Strong) { 264 const ValueDecl *VD = M->getExtendingDecl(); 265 bool Precise = 266 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 267 CleanupKind = CGF.getARCCleanupKind(); 268 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 269 : &CodeGenFunction::destroyARCStrongImprecise; 270 } else { 271 // __weak objects always get EH cleanups; otherwise, exceptions 272 // could cause really nasty crashes instead of mere leaks. 273 CleanupKind = NormalAndEHCleanup; 274 Destroy = &CodeGenFunction::destroyARCWeak; 275 } 276 if (Duration == SD_FullExpression) 277 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 278 M->getType(), *Destroy, 279 CleanupKind & EHCleanup); 280 else 281 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 282 M->getType(), 283 *Destroy, CleanupKind & EHCleanup); 284 return; 285 286 case SD_Dynamic: 287 llvm_unreachable("temporary cannot have dynamic storage duration"); 288 } 289 llvm_unreachable("unknown storage duration"); 290 } 291 } 292 293 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 294 if (const RecordType *RT = 295 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 296 // Get the destructor for the reference temporary. 297 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 298 if (!ClassDecl->hasTrivialDestructor()) 299 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 300 } 301 302 if (!ReferenceTemporaryDtor) 303 return; 304 305 // Call the destructor for the temporary. 306 switch (M->getStorageDuration()) { 307 case SD_Static: 308 case SD_Thread: { 309 llvm::Constant *CleanupFn; 310 llvm::Constant *CleanupArg; 311 if (E->getType()->isArrayType()) { 312 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 313 ReferenceTemporary, E->getType(), 314 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 315 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 316 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 317 } else { 318 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 319 StructorType::Complete); 320 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 321 } 322 CGF.CGM.getCXXABI().registerGlobalDtor( 323 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 324 break; 325 } 326 327 case SD_FullExpression: 328 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 329 CodeGenFunction::destroyCXXObject, 330 CGF.getLangOpts().Exceptions); 331 break; 332 333 case SD_Automatic: 334 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 335 ReferenceTemporary, E->getType(), 336 CodeGenFunction::destroyCXXObject, 337 CGF.getLangOpts().Exceptions); 338 break; 339 340 case SD_Dynamic: 341 llvm_unreachable("temporary cannot have dynamic storage duration"); 342 } 343 } 344 345 static Address createReferenceTemporary(CodeGenFunction &CGF, 346 const MaterializeTemporaryExpr *M, 347 const Expr *Inner) { 348 auto &TCG = CGF.getTargetHooks(); 349 switch (M->getStorageDuration()) { 350 case SD_FullExpression: 351 case SD_Automatic: { 352 // If we have a constant temporary array or record try to promote it into a 353 // constant global under the same rules a normal constant would've been 354 // promoted. This is easier on the optimizer and generally emits fewer 355 // instructions. 356 QualType Ty = Inner->getType(); 357 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 358 (Ty->isArrayType() || Ty->isRecordType()) && 359 CGF.CGM.isTypeConstant(Ty, true)) 360 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 361 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 362 auto AS = AddrSpace.getValue(); 363 auto *GV = new llvm::GlobalVariable( 364 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 365 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 366 llvm::GlobalValue::NotThreadLocal, 367 CGF.getContext().getTargetAddressSpace(AS)); 368 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 369 GV->setAlignment(alignment.getQuantity()); 370 llvm::Constant *C = GV; 371 if (AS != LangAS::Default) 372 C = TCG.performAddrSpaceCast( 373 CGF.CGM, GV, AS, LangAS::Default, 374 GV->getValueType()->getPointerTo( 375 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 376 // FIXME: Should we put the new global into a COMDAT? 377 return Address(C, alignment); 378 } 379 } 380 return CGF.CreateMemTemp(Ty, "ref.tmp"); 381 } 382 case SD_Thread: 383 case SD_Static: 384 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 385 386 case SD_Dynamic: 387 llvm_unreachable("temporary can't have dynamic storage duration"); 388 } 389 llvm_unreachable("unknown storage duration"); 390 } 391 392 LValue CodeGenFunction:: 393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 394 const Expr *E = M->GetTemporaryExpr(); 395 396 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 397 // as that will cause the lifetime adjustment to be lost for ARC 398 auto ownership = M->getType().getObjCLifetime(); 399 if (ownership != Qualifiers::OCL_None && 400 ownership != Qualifiers::OCL_ExplicitNone) { 401 Address Object = createReferenceTemporary(*this, M, E); 402 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 403 Object = Address(llvm::ConstantExpr::getBitCast(Var, 404 ConvertTypeForMem(E->getType()) 405 ->getPointerTo(Object.getAddressSpace())), 406 Object.getAlignment()); 407 408 // createReferenceTemporary will promote the temporary to a global with a 409 // constant initializer if it can. It can only do this to a value of 410 // ARC-manageable type if the value is global and therefore "immune" to 411 // ref-counting operations. Therefore we have no need to emit either a 412 // dynamic initialization or a cleanup and we can just return the address 413 // of the temporary. 414 if (Var->hasInitializer()) 415 return MakeAddrLValue(Object, M->getType(), 416 LValueBaseInfo(AlignmentSource::Decl, false)); 417 418 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 419 } 420 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 421 LValueBaseInfo(AlignmentSource::Decl, 422 false)); 423 424 switch (getEvaluationKind(E->getType())) { 425 default: llvm_unreachable("expected scalar or aggregate expression"); 426 case TEK_Scalar: 427 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 428 break; 429 case TEK_Aggregate: { 430 EmitAggExpr(E, AggValueSlot::forAddr(Object, 431 E->getType().getQualifiers(), 432 AggValueSlot::IsDestructed, 433 AggValueSlot::DoesNotNeedGCBarriers, 434 AggValueSlot::IsNotAliased)); 435 break; 436 } 437 } 438 439 pushTemporaryCleanup(*this, M, E, Object); 440 return RefTempDst; 441 } 442 443 SmallVector<const Expr *, 2> CommaLHSs; 444 SmallVector<SubobjectAdjustment, 2> Adjustments; 445 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 446 447 for (const auto &Ignored : CommaLHSs) 448 EmitIgnoredExpr(Ignored); 449 450 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 451 if (opaque->getType()->isRecordType()) { 452 assert(Adjustments.empty()); 453 return EmitOpaqueValueLValue(opaque); 454 } 455 } 456 457 // Create and initialize the reference temporary. 458 Address Object = createReferenceTemporary(*this, M, E); 459 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 460 Object.getPointer()->stripPointerCasts())) { 461 Object = Address(llvm::ConstantExpr::getBitCast( 462 cast<llvm::Constant>(Object.getPointer()), 463 ConvertTypeForMem(E->getType())->getPointerTo()), 464 Object.getAlignment()); 465 // If the temporary is a global and has a constant initializer or is a 466 // constant temporary that we promoted to a global, we may have already 467 // initialized it. 468 if (!Var->hasInitializer()) { 469 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 470 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 471 } 472 } else { 473 switch (M->getStorageDuration()) { 474 case SD_Automatic: 475 case SD_FullExpression: 476 if (auto *Size = EmitLifetimeStart( 477 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 478 Object.getPointer())) { 479 if (M->getStorageDuration() == SD_Automatic) 480 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 481 Object, Size); 482 else 483 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 484 Size); 485 } 486 break; 487 default: 488 break; 489 } 490 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 491 } 492 pushTemporaryCleanup(*this, M, E, Object); 493 494 // Perform derived-to-base casts and/or field accesses, to get from the 495 // temporary object we created (and, potentially, for which we extended 496 // the lifetime) to the subobject we're binding the reference to. 497 for (unsigned I = Adjustments.size(); I != 0; --I) { 498 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 499 switch (Adjustment.Kind) { 500 case SubobjectAdjustment::DerivedToBaseAdjustment: 501 Object = 502 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 503 Adjustment.DerivedToBase.BasePath->path_begin(), 504 Adjustment.DerivedToBase.BasePath->path_end(), 505 /*NullCheckValue=*/ false, E->getExprLoc()); 506 break; 507 508 case SubobjectAdjustment::FieldAdjustment: { 509 LValue LV = MakeAddrLValue(Object, E->getType(), 510 LValueBaseInfo(AlignmentSource::Decl, false)); 511 LV = EmitLValueForField(LV, Adjustment.Field); 512 assert(LV.isSimple() && 513 "materialized temporary field is not a simple lvalue"); 514 Object = LV.getAddress(); 515 break; 516 } 517 518 case SubobjectAdjustment::MemberPointerAdjustment: { 519 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 520 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 521 Adjustment.Ptr.MPT); 522 break; 523 } 524 } 525 } 526 527 return MakeAddrLValue(Object, M->getType(), 528 LValueBaseInfo(AlignmentSource::Decl, false)); 529 } 530 531 RValue 532 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 533 // Emit the expression as an lvalue. 534 LValue LV = EmitLValue(E); 535 assert(LV.isSimple()); 536 llvm::Value *Value = LV.getPointer(); 537 538 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 539 // C++11 [dcl.ref]p5 (as amended by core issue 453): 540 // If a glvalue to which a reference is directly bound designates neither 541 // an existing object or function of an appropriate type nor a region of 542 // storage of suitable size and alignment to contain an object of the 543 // reference's type, the behavior is undefined. 544 QualType Ty = E->getType(); 545 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 546 } 547 548 return RValue::get(Value); 549 } 550 551 552 /// getAccessedFieldNo - Given an encoded value and a result number, return the 553 /// input field number being accessed. 554 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 555 const llvm::Constant *Elts) { 556 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 557 ->getZExtValue(); 558 } 559 560 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 561 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 562 llvm::Value *High) { 563 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 564 llvm::Value *K47 = Builder.getInt64(47); 565 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 566 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 567 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 568 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 569 return Builder.CreateMul(B1, KMul); 570 } 571 572 bool CodeGenFunction::sanitizePerformTypeCheck() const { 573 return SanOpts.has(SanitizerKind::Null) | 574 SanOpts.has(SanitizerKind::Alignment) | 575 SanOpts.has(SanitizerKind::ObjectSize) | 576 SanOpts.has(SanitizerKind::Vptr); 577 } 578 579 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 580 llvm::Value *Ptr, QualType Ty, 581 CharUnits Alignment, 582 SanitizerSet SkippedChecks) { 583 if (!sanitizePerformTypeCheck()) 584 return; 585 586 // Don't check pointers outside the default address space. The null check 587 // isn't correct, the object-size check isn't supported by LLVM, and we can't 588 // communicate the addresses to the runtime handler for the vptr check. 589 if (Ptr->getType()->getPointerAddressSpace()) 590 return; 591 592 // Don't check pointers to volatile data. The behavior here is implementation- 593 // defined. 594 if (Ty.isVolatileQualified()) 595 return; 596 597 SanitizerScope SanScope(this); 598 599 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 600 llvm::BasicBlock *Done = nullptr; 601 602 // Quickly determine whether we have a pointer to an alloca. It's possible 603 // to skip null checks, and some alignment checks, for these pointers. This 604 // can reduce compile-time significantly. 605 auto PtrToAlloca = 606 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 607 608 llvm::Value *IsNonNull = nullptr; 609 bool IsGuaranteedNonNull = 610 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 611 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 612 TCK == TCK_UpcastToVirtualBase; 613 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 614 !IsGuaranteedNonNull) { 615 // The glvalue must not be an empty glvalue. 616 IsNonNull = Builder.CreateIsNotNull(Ptr); 617 618 // The IR builder can constant-fold the null check if the pointer points to 619 // a constant. 620 IsGuaranteedNonNull = 621 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 622 623 // Skip the null check if the pointer is known to be non-null. 624 if (!IsGuaranteedNonNull) { 625 if (AllowNullPointers) { 626 // When performing pointer casts, it's OK if the value is null. 627 // Skip the remaining checks in that case. 628 Done = createBasicBlock("null"); 629 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 630 Builder.CreateCondBr(IsNonNull, Rest, Done); 631 EmitBlock(Rest); 632 } else { 633 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 634 } 635 } 636 } 637 638 if (SanOpts.has(SanitizerKind::ObjectSize) && 639 !SkippedChecks.has(SanitizerKind::ObjectSize) && 640 !Ty->isIncompleteType()) { 641 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 642 643 // The glvalue must refer to a large enough storage region. 644 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 645 // to check this. 646 // FIXME: Get object address space 647 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 648 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 649 llvm::Value *Min = Builder.getFalse(); 650 llvm::Value *NullIsUnknown = Builder.getFalse(); 651 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 652 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 653 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 654 llvm::ConstantInt::get(IntPtrTy, Size)); 655 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 656 } 657 658 uint64_t AlignVal = 0; 659 660 if (SanOpts.has(SanitizerKind::Alignment) && 661 !SkippedChecks.has(SanitizerKind::Alignment)) { 662 AlignVal = Alignment.getQuantity(); 663 if (!Ty->isIncompleteType() && !AlignVal) 664 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 665 666 // The glvalue must be suitably aligned. 667 if (AlignVal > 1 && 668 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 669 llvm::Value *Align = 670 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 671 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 672 llvm::Value *Aligned = 673 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 674 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 675 } 676 } 677 678 if (Checks.size() > 0) { 679 // Make sure we're not losing information. Alignment needs to be a power of 680 // 2 681 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 682 llvm::Constant *StaticData[] = { 683 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 684 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 685 llvm::ConstantInt::get(Int8Ty, TCK)}; 686 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 687 } 688 689 // If possible, check that the vptr indicates that there is a subobject of 690 // type Ty at offset zero within this object. 691 // 692 // C++11 [basic.life]p5,6: 693 // [For storage which does not refer to an object within its lifetime] 694 // The program has undefined behavior if: 695 // -- the [pointer or glvalue] is used to access a non-static data member 696 // or call a non-static member function 697 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 698 if (SanOpts.has(SanitizerKind::Vptr) && 699 !SkippedChecks.has(SanitizerKind::Vptr) && 700 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 701 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 702 TCK == TCK_UpcastToVirtualBase) && 703 RD && RD->hasDefinition() && RD->isDynamicClass()) { 704 // Ensure that the pointer is non-null before loading it. If there is no 705 // compile-time guarantee, reuse the run-time null check or emit a new one. 706 if (!IsGuaranteedNonNull) { 707 if (!IsNonNull) 708 IsNonNull = Builder.CreateIsNotNull(Ptr); 709 if (!Done) 710 Done = createBasicBlock("vptr.null"); 711 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 712 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 713 EmitBlock(VptrNotNull); 714 } 715 716 // Compute a hash of the mangled name of the type. 717 // 718 // FIXME: This is not guaranteed to be deterministic! Move to a 719 // fingerprinting mechanism once LLVM provides one. For the time 720 // being the implementation happens to be deterministic. 721 SmallString<64> MangledName; 722 llvm::raw_svector_ostream Out(MangledName); 723 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 724 Out); 725 726 // Blacklist based on the mangled type. 727 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 728 Out.str())) { 729 llvm::hash_code TypeHash = hash_value(Out.str()); 730 731 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 732 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 733 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 734 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 735 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 736 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 737 738 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 739 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 740 741 // Look the hash up in our cache. 742 const int CacheSize = 128; 743 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 744 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 745 "__ubsan_vptr_type_cache"); 746 llvm::Value *Slot = Builder.CreateAnd(Hash, 747 llvm::ConstantInt::get(IntPtrTy, 748 CacheSize-1)); 749 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 750 llvm::Value *CacheVal = 751 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 752 getPointerAlign()); 753 754 // If the hash isn't in the cache, call a runtime handler to perform the 755 // hard work of checking whether the vptr is for an object of the right 756 // type. This will either fill in the cache and return, or produce a 757 // diagnostic. 758 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 759 llvm::Constant *StaticData[] = { 760 EmitCheckSourceLocation(Loc), 761 EmitCheckTypeDescriptor(Ty), 762 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 763 llvm::ConstantInt::get(Int8Ty, TCK) 764 }; 765 llvm::Value *DynamicData[] = { Ptr, Hash }; 766 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 767 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 768 DynamicData); 769 } 770 } 771 772 if (Done) { 773 Builder.CreateBr(Done); 774 EmitBlock(Done); 775 } 776 } 777 778 /// Determine whether this expression refers to a flexible array member in a 779 /// struct. We disable array bounds checks for such members. 780 static bool isFlexibleArrayMemberExpr(const Expr *E) { 781 // For compatibility with existing code, we treat arrays of length 0 or 782 // 1 as flexible array members. 783 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 784 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 785 if (CAT->getSize().ugt(1)) 786 return false; 787 } else if (!isa<IncompleteArrayType>(AT)) 788 return false; 789 790 E = E->IgnoreParens(); 791 792 // A flexible array member must be the last member in the class. 793 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 794 // FIXME: If the base type of the member expr is not FD->getParent(), 795 // this should not be treated as a flexible array member access. 796 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 797 RecordDecl::field_iterator FI( 798 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 799 return ++FI == FD->getParent()->field_end(); 800 } 801 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 802 return IRE->getDecl()->getNextIvar() == nullptr; 803 } 804 805 return false; 806 } 807 808 /// If Base is known to point to the start of an array, return the length of 809 /// that array. Return 0 if the length cannot be determined. 810 static llvm::Value *getArrayIndexingBound( 811 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 812 // For the vector indexing extension, the bound is the number of elements. 813 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 814 IndexedType = Base->getType(); 815 return CGF.Builder.getInt32(VT->getNumElements()); 816 } 817 818 Base = Base->IgnoreParens(); 819 820 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 821 if (CE->getCastKind() == CK_ArrayToPointerDecay && 822 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 823 IndexedType = CE->getSubExpr()->getType(); 824 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 825 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 826 return CGF.Builder.getInt(CAT->getSize()); 827 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 828 return CGF.getVLASize(VAT).first; 829 } 830 } 831 832 return nullptr; 833 } 834 835 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 836 llvm::Value *Index, QualType IndexType, 837 bool Accessed) { 838 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 839 "should not be called unless adding bounds checks"); 840 SanitizerScope SanScope(this); 841 842 QualType IndexedType; 843 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 844 if (!Bound) 845 return; 846 847 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 848 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 849 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 850 851 llvm::Constant *StaticData[] = { 852 EmitCheckSourceLocation(E->getExprLoc()), 853 EmitCheckTypeDescriptor(IndexedType), 854 EmitCheckTypeDescriptor(IndexType) 855 }; 856 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 857 : Builder.CreateICmpULE(IndexVal, BoundVal); 858 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 859 SanitizerHandler::OutOfBounds, StaticData, Index); 860 } 861 862 863 CodeGenFunction::ComplexPairTy CodeGenFunction:: 864 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 865 bool isInc, bool isPre) { 866 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 867 868 llvm::Value *NextVal; 869 if (isa<llvm::IntegerType>(InVal.first->getType())) { 870 uint64_t AmountVal = isInc ? 1 : -1; 871 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 872 873 // Add the inc/dec to the real part. 874 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 875 } else { 876 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 877 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 878 if (!isInc) 879 FVal.changeSign(); 880 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 881 882 // Add the inc/dec to the real part. 883 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 884 } 885 886 ComplexPairTy IncVal(NextVal, InVal.second); 887 888 // Store the updated result through the lvalue. 889 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 890 891 // If this is a postinc, return the value read from memory, otherwise use the 892 // updated value. 893 return isPre ? IncVal : InVal; 894 } 895 896 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 897 CodeGenFunction *CGF) { 898 // Bind VLAs in the cast type. 899 if (CGF && E->getType()->isVariablyModifiedType()) 900 CGF->EmitVariablyModifiedType(E->getType()); 901 902 if (CGDebugInfo *DI = getModuleDebugInfo()) 903 DI->EmitExplicitCastType(E->getType()); 904 } 905 906 //===----------------------------------------------------------------------===// 907 // LValue Expression Emission 908 //===----------------------------------------------------------------------===// 909 910 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 911 /// derive a more accurate bound on the alignment of the pointer. 912 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 913 LValueBaseInfo *BaseInfo) { 914 // We allow this with ObjC object pointers because of fragile ABIs. 915 assert(E->getType()->isPointerType() || 916 E->getType()->isObjCObjectPointerType()); 917 E = E->IgnoreParens(); 918 919 // Casts: 920 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 921 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 922 CGM.EmitExplicitCastExprType(ECE, this); 923 924 switch (CE->getCastKind()) { 925 // Non-converting casts (but not C's implicit conversion from void*). 926 case CK_BitCast: 927 case CK_NoOp: 928 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 929 if (PtrTy->getPointeeType()->isVoidType()) 930 break; 931 932 LValueBaseInfo InnerInfo; 933 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 934 if (BaseInfo) *BaseInfo = InnerInfo; 935 936 // If this is an explicit bitcast, and the source l-value is 937 // opaque, honor the alignment of the casted-to type. 938 if (isa<ExplicitCastExpr>(CE) && 939 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 940 LValueBaseInfo ExpInfo; 941 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 942 &ExpInfo); 943 if (BaseInfo) 944 BaseInfo->mergeForCast(ExpInfo); 945 Addr = Address(Addr.getPointer(), Align); 946 } 947 948 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 949 CE->getCastKind() == CK_BitCast) { 950 if (auto PT = E->getType()->getAs<PointerType>()) 951 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 952 /*MayBeNull=*/true, 953 CodeGenFunction::CFITCK_UnrelatedCast, 954 CE->getLocStart()); 955 } 956 957 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 958 } 959 break; 960 961 // Array-to-pointer decay. 962 case CK_ArrayToPointerDecay: 963 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 964 965 // Derived-to-base conversions. 966 case CK_UncheckedDerivedToBase: 967 case CK_DerivedToBase: { 968 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 969 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 970 return GetAddressOfBaseClass(Addr, Derived, 971 CE->path_begin(), CE->path_end(), 972 ShouldNullCheckClassCastValue(CE), 973 CE->getExprLoc()); 974 } 975 976 // TODO: Is there any reason to treat base-to-derived conversions 977 // specially? 978 default: 979 break; 980 } 981 } 982 983 // Unary &. 984 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 985 if (UO->getOpcode() == UO_AddrOf) { 986 LValue LV = EmitLValue(UO->getSubExpr()); 987 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 988 return LV.getAddress(); 989 } 990 } 991 992 // TODO: conditional operators, comma. 993 994 // Otherwise, use the alignment of the type. 995 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 996 return Address(EmitScalarExpr(E), Align); 997 } 998 999 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1000 if (Ty->isVoidType()) 1001 return RValue::get(nullptr); 1002 1003 switch (getEvaluationKind(Ty)) { 1004 case TEK_Complex: { 1005 llvm::Type *EltTy = 1006 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1007 llvm::Value *U = llvm::UndefValue::get(EltTy); 1008 return RValue::getComplex(std::make_pair(U, U)); 1009 } 1010 1011 // If this is a use of an undefined aggregate type, the aggregate must have an 1012 // identifiable address. Just because the contents of the value are undefined 1013 // doesn't mean that the address can't be taken and compared. 1014 case TEK_Aggregate: { 1015 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1016 return RValue::getAggregate(DestPtr); 1017 } 1018 1019 case TEK_Scalar: 1020 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1021 } 1022 llvm_unreachable("bad evaluation kind"); 1023 } 1024 1025 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1026 const char *Name) { 1027 ErrorUnsupported(E, Name); 1028 return GetUndefRValue(E->getType()); 1029 } 1030 1031 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1032 const char *Name) { 1033 ErrorUnsupported(E, Name); 1034 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1035 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1036 E->getType()); 1037 } 1038 1039 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1040 const Expr *Base = Obj; 1041 while (!isa<CXXThisExpr>(Base)) { 1042 // The result of a dynamic_cast can be null. 1043 if (isa<CXXDynamicCastExpr>(Base)) 1044 return false; 1045 1046 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1047 Base = CE->getSubExpr(); 1048 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1049 Base = PE->getSubExpr(); 1050 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1051 if (UO->getOpcode() == UO_Extension) 1052 Base = UO->getSubExpr(); 1053 else 1054 return false; 1055 } else { 1056 return false; 1057 } 1058 } 1059 return true; 1060 } 1061 1062 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1063 LValue LV; 1064 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1065 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1066 else 1067 LV = EmitLValue(E); 1068 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1069 SanitizerSet SkippedChecks; 1070 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1071 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1072 if (IsBaseCXXThis) 1073 SkippedChecks.set(SanitizerKind::Alignment, true); 1074 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1075 SkippedChecks.set(SanitizerKind::Null, true); 1076 } 1077 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1078 E->getType(), LV.getAlignment(), SkippedChecks); 1079 } 1080 return LV; 1081 } 1082 1083 /// EmitLValue - Emit code to compute a designator that specifies the location 1084 /// of the expression. 1085 /// 1086 /// This can return one of two things: a simple address or a bitfield reference. 1087 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1088 /// an LLVM pointer type. 1089 /// 1090 /// If this returns a bitfield reference, nothing about the pointee type of the 1091 /// LLVM value is known: For example, it may not be a pointer to an integer. 1092 /// 1093 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1094 /// this method guarantees that the returned pointer type will point to an LLVM 1095 /// type of the same size of the lvalue's type. If the lvalue has a variable 1096 /// length type, this is not possible. 1097 /// 1098 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1099 ApplyDebugLocation DL(*this, E); 1100 switch (E->getStmtClass()) { 1101 default: return EmitUnsupportedLValue(E, "l-value expression"); 1102 1103 case Expr::ObjCPropertyRefExprClass: 1104 llvm_unreachable("cannot emit a property reference directly"); 1105 1106 case Expr::ObjCSelectorExprClass: 1107 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1108 case Expr::ObjCIsaExprClass: 1109 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1110 case Expr::BinaryOperatorClass: 1111 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1112 case Expr::CompoundAssignOperatorClass: { 1113 QualType Ty = E->getType(); 1114 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1115 Ty = AT->getValueType(); 1116 if (!Ty->isAnyComplexType()) 1117 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1118 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1119 } 1120 case Expr::CallExprClass: 1121 case Expr::CXXMemberCallExprClass: 1122 case Expr::CXXOperatorCallExprClass: 1123 case Expr::UserDefinedLiteralClass: 1124 return EmitCallExprLValue(cast<CallExpr>(E)); 1125 case Expr::VAArgExprClass: 1126 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1127 case Expr::DeclRefExprClass: 1128 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1129 case Expr::ParenExprClass: 1130 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1131 case Expr::GenericSelectionExprClass: 1132 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1133 case Expr::PredefinedExprClass: 1134 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1135 case Expr::StringLiteralClass: 1136 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1137 case Expr::ObjCEncodeExprClass: 1138 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1139 case Expr::PseudoObjectExprClass: 1140 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1141 case Expr::InitListExprClass: 1142 return EmitInitListLValue(cast<InitListExpr>(E)); 1143 case Expr::CXXTemporaryObjectExprClass: 1144 case Expr::CXXConstructExprClass: 1145 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1146 case Expr::CXXBindTemporaryExprClass: 1147 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1148 case Expr::CXXUuidofExprClass: 1149 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1150 case Expr::LambdaExprClass: 1151 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1152 1153 case Expr::ExprWithCleanupsClass: { 1154 const auto *cleanups = cast<ExprWithCleanups>(E); 1155 enterFullExpression(cleanups); 1156 RunCleanupsScope Scope(*this); 1157 LValue LV = EmitLValue(cleanups->getSubExpr()); 1158 if (LV.isSimple()) { 1159 // Defend against branches out of gnu statement expressions surrounded by 1160 // cleanups. 1161 llvm::Value *V = LV.getPointer(); 1162 Scope.ForceCleanup({&V}); 1163 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1164 getContext(), LV.getBaseInfo(), 1165 LV.getTBAAInfo()); 1166 } 1167 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1168 // bitfield lvalue or some other non-simple lvalue? 1169 return LV; 1170 } 1171 1172 case Expr::CXXDefaultArgExprClass: 1173 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1174 case Expr::CXXDefaultInitExprClass: { 1175 CXXDefaultInitExprScope Scope(*this); 1176 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1177 } 1178 case Expr::CXXTypeidExprClass: 1179 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1180 1181 case Expr::ObjCMessageExprClass: 1182 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1183 case Expr::ObjCIvarRefExprClass: 1184 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1185 case Expr::StmtExprClass: 1186 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1187 case Expr::UnaryOperatorClass: 1188 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1189 case Expr::ArraySubscriptExprClass: 1190 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1191 case Expr::OMPArraySectionExprClass: 1192 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1193 case Expr::ExtVectorElementExprClass: 1194 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1195 case Expr::MemberExprClass: 1196 return EmitMemberExpr(cast<MemberExpr>(E)); 1197 case Expr::CompoundLiteralExprClass: 1198 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1199 case Expr::ConditionalOperatorClass: 1200 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1201 case Expr::BinaryConditionalOperatorClass: 1202 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1203 case Expr::ChooseExprClass: 1204 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1205 case Expr::OpaqueValueExprClass: 1206 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1207 case Expr::SubstNonTypeTemplateParmExprClass: 1208 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1209 case Expr::ImplicitCastExprClass: 1210 case Expr::CStyleCastExprClass: 1211 case Expr::CXXFunctionalCastExprClass: 1212 case Expr::CXXStaticCastExprClass: 1213 case Expr::CXXDynamicCastExprClass: 1214 case Expr::CXXReinterpretCastExprClass: 1215 case Expr::CXXConstCastExprClass: 1216 case Expr::ObjCBridgedCastExprClass: 1217 return EmitCastLValue(cast<CastExpr>(E)); 1218 1219 case Expr::MaterializeTemporaryExprClass: 1220 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1221 1222 case Expr::CoawaitExprClass: 1223 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1224 case Expr::CoyieldExprClass: 1225 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1226 } 1227 } 1228 1229 /// Given an object of the given canonical type, can we safely copy a 1230 /// value out of it based on its initializer? 1231 static bool isConstantEmittableObjectType(QualType type) { 1232 assert(type.isCanonical()); 1233 assert(!type->isReferenceType()); 1234 1235 // Must be const-qualified but non-volatile. 1236 Qualifiers qs = type.getLocalQualifiers(); 1237 if (!qs.hasConst() || qs.hasVolatile()) return false; 1238 1239 // Otherwise, all object types satisfy this except C++ classes with 1240 // mutable subobjects or non-trivial copy/destroy behavior. 1241 if (const auto *RT = dyn_cast<RecordType>(type)) 1242 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1243 if (RD->hasMutableFields() || !RD->isTrivial()) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 /// Can we constant-emit a load of a reference to a variable of the 1250 /// given type? This is different from predicates like 1251 /// Decl::isUsableInConstantExpressions because we do want it to apply 1252 /// in situations that don't necessarily satisfy the language's rules 1253 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1254 /// to do this with const float variables even if those variables 1255 /// aren't marked 'constexpr'. 1256 enum ConstantEmissionKind { 1257 CEK_None, 1258 CEK_AsReferenceOnly, 1259 CEK_AsValueOrReference, 1260 CEK_AsValueOnly 1261 }; 1262 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1263 type = type.getCanonicalType(); 1264 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1265 if (isConstantEmittableObjectType(ref->getPointeeType())) 1266 return CEK_AsValueOrReference; 1267 return CEK_AsReferenceOnly; 1268 } 1269 if (isConstantEmittableObjectType(type)) 1270 return CEK_AsValueOnly; 1271 return CEK_None; 1272 } 1273 1274 /// Try to emit a reference to the given value without producing it as 1275 /// an l-value. This is actually more than an optimization: we can't 1276 /// produce an l-value for variables that we never actually captured 1277 /// in a block or lambda, which means const int variables or constexpr 1278 /// literals or similar. 1279 CodeGenFunction::ConstantEmission 1280 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1281 ValueDecl *value = refExpr->getDecl(); 1282 1283 // The value needs to be an enum constant or a constant variable. 1284 ConstantEmissionKind CEK; 1285 if (isa<ParmVarDecl>(value)) { 1286 CEK = CEK_None; 1287 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1288 CEK = checkVarTypeForConstantEmission(var->getType()); 1289 } else if (isa<EnumConstantDecl>(value)) { 1290 CEK = CEK_AsValueOnly; 1291 } else { 1292 CEK = CEK_None; 1293 } 1294 if (CEK == CEK_None) return ConstantEmission(); 1295 1296 Expr::EvalResult result; 1297 bool resultIsReference; 1298 QualType resultType; 1299 1300 // It's best to evaluate all the way as an r-value if that's permitted. 1301 if (CEK != CEK_AsReferenceOnly && 1302 refExpr->EvaluateAsRValue(result, getContext())) { 1303 resultIsReference = false; 1304 resultType = refExpr->getType(); 1305 1306 // Otherwise, try to evaluate as an l-value. 1307 } else if (CEK != CEK_AsValueOnly && 1308 refExpr->EvaluateAsLValue(result, getContext())) { 1309 resultIsReference = true; 1310 resultType = value->getType(); 1311 1312 // Failure. 1313 } else { 1314 return ConstantEmission(); 1315 } 1316 1317 // In any case, if the initializer has side-effects, abandon ship. 1318 if (result.HasSideEffects) 1319 return ConstantEmission(); 1320 1321 // Emit as a constant. 1322 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1323 result.Val, resultType); 1324 1325 // Make sure we emit a debug reference to the global variable. 1326 // This should probably fire even for 1327 if (isa<VarDecl>(value)) { 1328 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1329 EmitDeclRefExprDbgValue(refExpr, result.Val); 1330 } else { 1331 assert(isa<EnumConstantDecl>(value)); 1332 EmitDeclRefExprDbgValue(refExpr, result.Val); 1333 } 1334 1335 // If we emitted a reference constant, we need to dereference that. 1336 if (resultIsReference) 1337 return ConstantEmission::forReference(C); 1338 1339 return ConstantEmission::forValue(C); 1340 } 1341 1342 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1343 SourceLocation Loc) { 1344 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1345 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1346 lvalue.getTBAAInfo(), 1347 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1348 lvalue.isNontemporal()); 1349 } 1350 1351 static bool hasBooleanRepresentation(QualType Ty) { 1352 if (Ty->isBooleanType()) 1353 return true; 1354 1355 if (const EnumType *ET = Ty->getAs<EnumType>()) 1356 return ET->getDecl()->getIntegerType()->isBooleanType(); 1357 1358 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1359 return hasBooleanRepresentation(AT->getValueType()); 1360 1361 return false; 1362 } 1363 1364 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1365 llvm::APInt &Min, llvm::APInt &End, 1366 bool StrictEnums, bool IsBool) { 1367 const EnumType *ET = Ty->getAs<EnumType>(); 1368 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1369 ET && !ET->getDecl()->isFixed(); 1370 if (!IsBool && !IsRegularCPlusPlusEnum) 1371 return false; 1372 1373 if (IsBool) { 1374 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1375 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1376 } else { 1377 const EnumDecl *ED = ET->getDecl(); 1378 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1379 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1380 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1381 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1382 1383 if (NumNegativeBits) { 1384 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1385 assert(NumBits <= Bitwidth); 1386 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1387 Min = -End; 1388 } else { 1389 assert(NumPositiveBits <= Bitwidth); 1390 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1391 Min = llvm::APInt(Bitwidth, 0); 1392 } 1393 } 1394 return true; 1395 } 1396 1397 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1398 llvm::APInt Min, End; 1399 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1400 hasBooleanRepresentation(Ty))) 1401 return nullptr; 1402 1403 llvm::MDBuilder MDHelper(getLLVMContext()); 1404 return MDHelper.createRange(Min, End); 1405 } 1406 1407 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1408 SourceLocation Loc) { 1409 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1410 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1411 if (!HasBoolCheck && !HasEnumCheck) 1412 return false; 1413 1414 bool IsBool = hasBooleanRepresentation(Ty) || 1415 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1416 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1417 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1418 if (!NeedsBoolCheck && !NeedsEnumCheck) 1419 return false; 1420 1421 // Single-bit booleans don't need to be checked. Special-case this to avoid 1422 // a bit width mismatch when handling bitfield values. This is handled by 1423 // EmitFromMemory for the non-bitfield case. 1424 if (IsBool && 1425 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1426 return false; 1427 1428 llvm::APInt Min, End; 1429 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1430 return true; 1431 1432 SanitizerScope SanScope(this); 1433 llvm::Value *Check; 1434 --End; 1435 if (!Min) { 1436 Check = Builder.CreateICmpULE( 1437 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1438 } else { 1439 llvm::Value *Upper = Builder.CreateICmpSLE( 1440 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1441 llvm::Value *Lower = Builder.CreateICmpSGE( 1442 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1443 Check = Builder.CreateAnd(Upper, Lower); 1444 } 1445 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1446 EmitCheckTypeDescriptor(Ty)}; 1447 SanitizerMask Kind = 1448 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1449 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1450 StaticArgs, EmitCheckValue(Value)); 1451 return true; 1452 } 1453 1454 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1455 QualType Ty, 1456 SourceLocation Loc, 1457 LValueBaseInfo BaseInfo, 1458 llvm::MDNode *TBAAInfo, 1459 QualType TBAABaseType, 1460 uint64_t TBAAOffset, 1461 bool isNontemporal) { 1462 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1463 // For better performance, handle vector loads differently. 1464 if (Ty->isVectorType()) { 1465 const llvm::Type *EltTy = Addr.getElementType(); 1466 1467 const auto *VTy = cast<llvm::VectorType>(EltTy); 1468 1469 // Handle vectors of size 3 like size 4 for better performance. 1470 if (VTy->getNumElements() == 3) { 1471 1472 // Bitcast to vec4 type. 1473 llvm::VectorType *vec4Ty = 1474 llvm::VectorType::get(VTy->getElementType(), 4); 1475 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1476 // Now load value. 1477 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1478 1479 // Shuffle vector to get vec3. 1480 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1481 {0, 1, 2}, "extractVec"); 1482 return EmitFromMemory(V, Ty); 1483 } 1484 } 1485 } 1486 1487 // Atomic operations have to be done on integral types. 1488 LValue AtomicLValue = 1489 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1490 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1491 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1492 } 1493 1494 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1495 if (isNontemporal) { 1496 llvm::MDNode *Node = llvm::MDNode::get( 1497 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1498 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1499 } 1500 if (TBAAInfo) { 1501 bool MayAlias = BaseInfo.getMayAlias(); 1502 llvm::MDNode *TBAA = MayAlias 1503 ? CGM.getTBAAInfo(getContext().CharTy) 1504 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1505 if (TBAA) 1506 CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias); 1507 } 1508 1509 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1510 // In order to prevent the optimizer from throwing away the check, don't 1511 // attach range metadata to the load. 1512 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1513 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1514 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1515 1516 return EmitFromMemory(Load, Ty); 1517 } 1518 1519 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1520 // Bool has a different representation in memory than in registers. 1521 if (hasBooleanRepresentation(Ty)) { 1522 // This should really always be an i1, but sometimes it's already 1523 // an i8, and it's awkward to track those cases down. 1524 if (Value->getType()->isIntegerTy(1)) 1525 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1526 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1527 "wrong value rep of bool"); 1528 } 1529 1530 return Value; 1531 } 1532 1533 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1534 // Bool has a different representation in memory than in registers. 1535 if (hasBooleanRepresentation(Ty)) { 1536 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1537 "wrong value rep of bool"); 1538 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1539 } 1540 1541 return Value; 1542 } 1543 1544 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1545 bool Volatile, QualType Ty, 1546 LValueBaseInfo BaseInfo, 1547 llvm::MDNode *TBAAInfo, 1548 bool isInit, QualType TBAABaseType, 1549 uint64_t TBAAOffset, 1550 bool isNontemporal) { 1551 1552 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1553 // Handle vectors differently to get better performance. 1554 if (Ty->isVectorType()) { 1555 llvm::Type *SrcTy = Value->getType(); 1556 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1557 // Handle vec3 special. 1558 if (VecTy && VecTy->getNumElements() == 3) { 1559 // Our source is a vec3, do a shuffle vector to make it a vec4. 1560 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1561 Builder.getInt32(2), 1562 llvm::UndefValue::get(Builder.getInt32Ty())}; 1563 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1564 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1565 MaskV, "extractVec"); 1566 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1567 } 1568 if (Addr.getElementType() != SrcTy) { 1569 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1570 } 1571 } 1572 } 1573 1574 Value = EmitToMemory(Value, Ty); 1575 1576 LValue AtomicLValue = 1577 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1578 if (Ty->isAtomicType() || 1579 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1580 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1581 return; 1582 } 1583 1584 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1585 if (isNontemporal) { 1586 llvm::MDNode *Node = 1587 llvm::MDNode::get(Store->getContext(), 1588 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1589 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1590 } 1591 if (TBAAInfo) { 1592 bool MayAlias = BaseInfo.getMayAlias(); 1593 llvm::MDNode *TBAA = MayAlias 1594 ? CGM.getTBAAInfo(getContext().CharTy) 1595 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1596 if (TBAA) 1597 CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias); 1598 } 1599 } 1600 1601 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1602 bool isInit) { 1603 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1604 lvalue.getType(), lvalue.getBaseInfo(), 1605 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1606 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1607 } 1608 1609 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1610 /// method emits the address of the lvalue, then loads the result as an rvalue, 1611 /// returning the rvalue. 1612 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1613 if (LV.isObjCWeak()) { 1614 // load of a __weak object. 1615 Address AddrWeakObj = LV.getAddress(); 1616 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1617 AddrWeakObj)); 1618 } 1619 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1620 // In MRC mode, we do a load+autorelease. 1621 if (!getLangOpts().ObjCAutoRefCount) { 1622 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1623 } 1624 1625 // In ARC mode, we load retained and then consume the value. 1626 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1627 Object = EmitObjCConsumeObject(LV.getType(), Object); 1628 return RValue::get(Object); 1629 } 1630 1631 if (LV.isSimple()) { 1632 assert(!LV.getType()->isFunctionType()); 1633 1634 // Everything needs a load. 1635 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1636 } 1637 1638 if (LV.isVectorElt()) { 1639 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1640 LV.isVolatileQualified()); 1641 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1642 "vecext")); 1643 } 1644 1645 // If this is a reference to a subset of the elements of a vector, either 1646 // shuffle the input or extract/insert them as appropriate. 1647 if (LV.isExtVectorElt()) 1648 return EmitLoadOfExtVectorElementLValue(LV); 1649 1650 // Global Register variables always invoke intrinsics 1651 if (LV.isGlobalReg()) 1652 return EmitLoadOfGlobalRegLValue(LV); 1653 1654 assert(LV.isBitField() && "Unknown LValue type!"); 1655 return EmitLoadOfBitfieldLValue(LV, Loc); 1656 } 1657 1658 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1659 SourceLocation Loc) { 1660 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1661 1662 // Get the output type. 1663 llvm::Type *ResLTy = ConvertType(LV.getType()); 1664 1665 Address Ptr = LV.getBitFieldAddress(); 1666 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1667 1668 if (Info.IsSigned) { 1669 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1670 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1671 if (HighBits) 1672 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1673 if (Info.Offset + HighBits) 1674 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1675 } else { 1676 if (Info.Offset) 1677 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1678 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1679 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1680 Info.Size), 1681 "bf.clear"); 1682 } 1683 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1684 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1685 return RValue::get(Val); 1686 } 1687 1688 // If this is a reference to a subset of the elements of a vector, create an 1689 // appropriate shufflevector. 1690 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1691 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1692 LV.isVolatileQualified()); 1693 1694 const llvm::Constant *Elts = LV.getExtVectorElts(); 1695 1696 // If the result of the expression is a non-vector type, we must be extracting 1697 // a single element. Just codegen as an extractelement. 1698 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1699 if (!ExprVT) { 1700 unsigned InIdx = getAccessedFieldNo(0, Elts); 1701 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1702 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1703 } 1704 1705 // Always use shuffle vector to try to retain the original program structure 1706 unsigned NumResultElts = ExprVT->getNumElements(); 1707 1708 SmallVector<llvm::Constant*, 4> Mask; 1709 for (unsigned i = 0; i != NumResultElts; ++i) 1710 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1711 1712 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1713 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1714 MaskV); 1715 return RValue::get(Vec); 1716 } 1717 1718 /// @brief Generates lvalue for partial ext_vector access. 1719 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1720 Address VectorAddress = LV.getExtVectorAddress(); 1721 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1722 QualType EQT = ExprVT->getElementType(); 1723 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1724 1725 Address CastToPointerElement = 1726 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1727 "conv.ptr.element"); 1728 1729 const llvm::Constant *Elts = LV.getExtVectorElts(); 1730 unsigned ix = getAccessedFieldNo(0, Elts); 1731 1732 Address VectorBasePtrPlusIx = 1733 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1734 getContext().getTypeSizeInChars(EQT), 1735 "vector.elt"); 1736 1737 return VectorBasePtrPlusIx; 1738 } 1739 1740 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1741 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1742 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1743 "Bad type for register variable"); 1744 llvm::MDNode *RegName = cast<llvm::MDNode>( 1745 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1746 1747 // We accept integer and pointer types only 1748 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1749 llvm::Type *Ty = OrigTy; 1750 if (OrigTy->isPointerTy()) 1751 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1752 llvm::Type *Types[] = { Ty }; 1753 1754 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1755 llvm::Value *Call = Builder.CreateCall( 1756 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1757 if (OrigTy->isPointerTy()) 1758 Call = Builder.CreateIntToPtr(Call, OrigTy); 1759 return RValue::get(Call); 1760 } 1761 1762 1763 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1764 /// lvalue, where both are guaranteed to the have the same type, and that type 1765 /// is 'Ty'. 1766 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1767 bool isInit) { 1768 if (!Dst.isSimple()) { 1769 if (Dst.isVectorElt()) { 1770 // Read/modify/write the vector, inserting the new element. 1771 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1772 Dst.isVolatileQualified()); 1773 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1774 Dst.getVectorIdx(), "vecins"); 1775 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1776 Dst.isVolatileQualified()); 1777 return; 1778 } 1779 1780 // If this is an update of extended vector elements, insert them as 1781 // appropriate. 1782 if (Dst.isExtVectorElt()) 1783 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1784 1785 if (Dst.isGlobalReg()) 1786 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1787 1788 assert(Dst.isBitField() && "Unknown LValue type"); 1789 return EmitStoreThroughBitfieldLValue(Src, Dst); 1790 } 1791 1792 // There's special magic for assigning into an ARC-qualified l-value. 1793 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1794 switch (Lifetime) { 1795 case Qualifiers::OCL_None: 1796 llvm_unreachable("present but none"); 1797 1798 case Qualifiers::OCL_ExplicitNone: 1799 // nothing special 1800 break; 1801 1802 case Qualifiers::OCL_Strong: 1803 if (isInit) { 1804 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1805 break; 1806 } 1807 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1808 return; 1809 1810 case Qualifiers::OCL_Weak: 1811 if (isInit) 1812 // Initialize and then skip the primitive store. 1813 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1814 else 1815 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1816 return; 1817 1818 case Qualifiers::OCL_Autoreleasing: 1819 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1820 Src.getScalarVal())); 1821 // fall into the normal path 1822 break; 1823 } 1824 } 1825 1826 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1827 // load of a __weak object. 1828 Address LvalueDst = Dst.getAddress(); 1829 llvm::Value *src = Src.getScalarVal(); 1830 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1831 return; 1832 } 1833 1834 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1835 // load of a __strong object. 1836 Address LvalueDst = Dst.getAddress(); 1837 llvm::Value *src = Src.getScalarVal(); 1838 if (Dst.isObjCIvar()) { 1839 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1840 llvm::Type *ResultType = IntPtrTy; 1841 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1842 llvm::Value *RHS = dst.getPointer(); 1843 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1844 llvm::Value *LHS = 1845 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1846 "sub.ptr.lhs.cast"); 1847 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1848 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1849 BytesBetween); 1850 } else if (Dst.isGlobalObjCRef()) { 1851 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1852 Dst.isThreadLocalRef()); 1853 } 1854 else 1855 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1856 return; 1857 } 1858 1859 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1860 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1861 } 1862 1863 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1864 llvm::Value **Result) { 1865 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1866 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1867 Address Ptr = Dst.getBitFieldAddress(); 1868 1869 // Get the source value, truncated to the width of the bit-field. 1870 llvm::Value *SrcVal = Src.getScalarVal(); 1871 1872 // Cast the source to the storage type and shift it into place. 1873 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1874 /*IsSigned=*/false); 1875 llvm::Value *MaskedVal = SrcVal; 1876 1877 // See if there are other bits in the bitfield's storage we'll need to load 1878 // and mask together with source before storing. 1879 if (Info.StorageSize != Info.Size) { 1880 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1881 llvm::Value *Val = 1882 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1883 1884 // Mask the source value as needed. 1885 if (!hasBooleanRepresentation(Dst.getType())) 1886 SrcVal = Builder.CreateAnd(SrcVal, 1887 llvm::APInt::getLowBitsSet(Info.StorageSize, 1888 Info.Size), 1889 "bf.value"); 1890 MaskedVal = SrcVal; 1891 if (Info.Offset) 1892 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1893 1894 // Mask out the original value. 1895 Val = Builder.CreateAnd(Val, 1896 ~llvm::APInt::getBitsSet(Info.StorageSize, 1897 Info.Offset, 1898 Info.Offset + Info.Size), 1899 "bf.clear"); 1900 1901 // Or together the unchanged values and the source value. 1902 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1903 } else { 1904 assert(Info.Offset == 0); 1905 } 1906 1907 // Write the new value back out. 1908 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1909 1910 // Return the new value of the bit-field, if requested. 1911 if (Result) { 1912 llvm::Value *ResultVal = MaskedVal; 1913 1914 // Sign extend the value if needed. 1915 if (Info.IsSigned) { 1916 assert(Info.Size <= Info.StorageSize); 1917 unsigned HighBits = Info.StorageSize - Info.Size; 1918 if (HighBits) { 1919 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1920 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1921 } 1922 } 1923 1924 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1925 "bf.result.cast"); 1926 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1927 } 1928 } 1929 1930 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1931 LValue Dst) { 1932 // This access turns into a read/modify/write of the vector. Load the input 1933 // value now. 1934 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1935 Dst.isVolatileQualified()); 1936 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1937 1938 llvm::Value *SrcVal = Src.getScalarVal(); 1939 1940 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1941 unsigned NumSrcElts = VTy->getNumElements(); 1942 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1943 if (NumDstElts == NumSrcElts) { 1944 // Use shuffle vector is the src and destination are the same number of 1945 // elements and restore the vector mask since it is on the side it will be 1946 // stored. 1947 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1948 for (unsigned i = 0; i != NumSrcElts; ++i) 1949 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1950 1951 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1952 Vec = Builder.CreateShuffleVector(SrcVal, 1953 llvm::UndefValue::get(Vec->getType()), 1954 MaskV); 1955 } else if (NumDstElts > NumSrcElts) { 1956 // Extended the source vector to the same length and then shuffle it 1957 // into the destination. 1958 // FIXME: since we're shuffling with undef, can we just use the indices 1959 // into that? This could be simpler. 1960 SmallVector<llvm::Constant*, 4> ExtMask; 1961 for (unsigned i = 0; i != NumSrcElts; ++i) 1962 ExtMask.push_back(Builder.getInt32(i)); 1963 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1964 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1965 llvm::Value *ExtSrcVal = 1966 Builder.CreateShuffleVector(SrcVal, 1967 llvm::UndefValue::get(SrcVal->getType()), 1968 ExtMaskV); 1969 // build identity 1970 SmallVector<llvm::Constant*, 4> Mask; 1971 for (unsigned i = 0; i != NumDstElts; ++i) 1972 Mask.push_back(Builder.getInt32(i)); 1973 1974 // When the vector size is odd and .odd or .hi is used, the last element 1975 // of the Elts constant array will be one past the size of the vector. 1976 // Ignore the last element here, if it is greater than the mask size. 1977 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1978 NumSrcElts--; 1979 1980 // modify when what gets shuffled in 1981 for (unsigned i = 0; i != NumSrcElts; ++i) 1982 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1983 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1984 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1985 } else { 1986 // We should never shorten the vector 1987 llvm_unreachable("unexpected shorten vector length"); 1988 } 1989 } else { 1990 // If the Src is a scalar (not a vector) it must be updating one element. 1991 unsigned InIdx = getAccessedFieldNo(0, Elts); 1992 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1993 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1994 } 1995 1996 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1997 Dst.isVolatileQualified()); 1998 } 1999 2000 /// @brief Store of global named registers are always calls to intrinsics. 2001 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2002 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2003 "Bad type for register variable"); 2004 llvm::MDNode *RegName = cast<llvm::MDNode>( 2005 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2006 assert(RegName && "Register LValue is not metadata"); 2007 2008 // We accept integer and pointer types only 2009 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2010 llvm::Type *Ty = OrigTy; 2011 if (OrigTy->isPointerTy()) 2012 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2013 llvm::Type *Types[] = { Ty }; 2014 2015 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2016 llvm::Value *Value = Src.getScalarVal(); 2017 if (OrigTy->isPointerTy()) 2018 Value = Builder.CreatePtrToInt(Value, Ty); 2019 Builder.CreateCall( 2020 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2021 } 2022 2023 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2024 // generating write-barries API. It is currently a global, ivar, 2025 // or neither. 2026 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2027 LValue &LV, 2028 bool IsMemberAccess=false) { 2029 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2030 return; 2031 2032 if (isa<ObjCIvarRefExpr>(E)) { 2033 QualType ExpTy = E->getType(); 2034 if (IsMemberAccess && ExpTy->isPointerType()) { 2035 // If ivar is a structure pointer, assigning to field of 2036 // this struct follows gcc's behavior and makes it a non-ivar 2037 // writer-barrier conservatively. 2038 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2039 if (ExpTy->isRecordType()) { 2040 LV.setObjCIvar(false); 2041 return; 2042 } 2043 } 2044 LV.setObjCIvar(true); 2045 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2046 LV.setBaseIvarExp(Exp->getBase()); 2047 LV.setObjCArray(E->getType()->isArrayType()); 2048 return; 2049 } 2050 2051 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2052 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2053 if (VD->hasGlobalStorage()) { 2054 LV.setGlobalObjCRef(true); 2055 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2056 } 2057 } 2058 LV.setObjCArray(E->getType()->isArrayType()); 2059 return; 2060 } 2061 2062 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2063 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2064 return; 2065 } 2066 2067 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2068 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2069 if (LV.isObjCIvar()) { 2070 // If cast is to a structure pointer, follow gcc's behavior and make it 2071 // a non-ivar write-barrier. 2072 QualType ExpTy = E->getType(); 2073 if (ExpTy->isPointerType()) 2074 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2075 if (ExpTy->isRecordType()) 2076 LV.setObjCIvar(false); 2077 } 2078 return; 2079 } 2080 2081 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2082 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2083 return; 2084 } 2085 2086 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2087 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2088 return; 2089 } 2090 2091 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2092 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2093 return; 2094 } 2095 2096 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2097 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2098 return; 2099 } 2100 2101 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2102 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2103 if (LV.isObjCIvar() && !LV.isObjCArray()) 2104 // Using array syntax to assigning to what an ivar points to is not 2105 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2106 LV.setObjCIvar(false); 2107 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2108 // Using array syntax to assigning to what global points to is not 2109 // same as assigning to the global itself. {id *G;} G[i] = 0; 2110 LV.setGlobalObjCRef(false); 2111 return; 2112 } 2113 2114 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2115 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2116 // We don't know if member is an 'ivar', but this flag is looked at 2117 // only in the context of LV.isObjCIvar(). 2118 LV.setObjCArray(E->getType()->isArrayType()); 2119 return; 2120 } 2121 } 2122 2123 static llvm::Value * 2124 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2125 llvm::Value *V, llvm::Type *IRType, 2126 StringRef Name = StringRef()) { 2127 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2128 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2129 } 2130 2131 static LValue EmitThreadPrivateVarDeclLValue( 2132 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2133 llvm::Type *RealVarTy, SourceLocation Loc) { 2134 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2135 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2136 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2137 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2138 } 2139 2140 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2141 const ReferenceType *RefTy, 2142 LValueBaseInfo *BaseInfo) { 2143 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2144 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2145 BaseInfo, /*forPointee*/ true)); 2146 } 2147 2148 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2149 const ReferenceType *RefTy) { 2150 LValueBaseInfo BaseInfo; 2151 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2152 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2153 } 2154 2155 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2156 const PointerType *PtrTy, 2157 LValueBaseInfo *BaseInfo) { 2158 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2159 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2160 BaseInfo, 2161 /*forPointeeType=*/true)); 2162 } 2163 2164 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2165 const PointerType *PtrTy) { 2166 LValueBaseInfo BaseInfo; 2167 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2168 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2169 } 2170 2171 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2172 const Expr *E, const VarDecl *VD) { 2173 QualType T = E->getType(); 2174 2175 // If it's thread_local, emit a call to its wrapper function instead. 2176 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2177 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2178 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2179 2180 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2181 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2182 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2183 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2184 Address Addr(V, Alignment); 2185 LValue LV; 2186 // Emit reference to the private copy of the variable if it is an OpenMP 2187 // threadprivate variable. 2188 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2189 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2190 E->getExprLoc()); 2191 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2192 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2193 } else { 2194 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2195 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2196 } 2197 setObjCGCLValueClass(CGF.getContext(), E, LV); 2198 return LV; 2199 } 2200 2201 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2202 const FunctionDecl *FD) { 2203 if (FD->hasAttr<WeakRefAttr>()) { 2204 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2205 return aliasee.getPointer(); 2206 } 2207 2208 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2209 if (!FD->hasPrototype()) { 2210 if (const FunctionProtoType *Proto = 2211 FD->getType()->getAs<FunctionProtoType>()) { 2212 // Ugly case: for a K&R-style definition, the type of the definition 2213 // isn't the same as the type of a use. Correct for this with a 2214 // bitcast. 2215 QualType NoProtoType = 2216 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2217 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2218 V = llvm::ConstantExpr::getBitCast(V, 2219 CGM.getTypes().ConvertType(NoProtoType)); 2220 } 2221 } 2222 return V; 2223 } 2224 2225 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2226 const Expr *E, const FunctionDecl *FD) { 2227 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2228 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2229 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2230 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2231 } 2232 2233 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2234 llvm::Value *ThisValue) { 2235 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2236 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2237 return CGF.EmitLValueForField(LV, FD); 2238 } 2239 2240 /// Named Registers are named metadata pointing to the register name 2241 /// which will be read from/written to as an argument to the intrinsic 2242 /// @llvm.read/write_register. 2243 /// So far, only the name is being passed down, but other options such as 2244 /// register type, allocation type or even optimization options could be 2245 /// passed down via the metadata node. 2246 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2247 SmallString<64> Name("llvm.named.register."); 2248 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2249 assert(Asm->getLabel().size() < 64-Name.size() && 2250 "Register name too big"); 2251 Name.append(Asm->getLabel()); 2252 llvm::NamedMDNode *M = 2253 CGM.getModule().getOrInsertNamedMetadata(Name); 2254 if (M->getNumOperands() == 0) { 2255 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2256 Asm->getLabel()); 2257 llvm::Metadata *Ops[] = {Str}; 2258 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2259 } 2260 2261 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2262 2263 llvm::Value *Ptr = 2264 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2265 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2266 } 2267 2268 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2269 const NamedDecl *ND = E->getDecl(); 2270 QualType T = E->getType(); 2271 2272 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2273 // Global Named registers access via intrinsics only 2274 if (VD->getStorageClass() == SC_Register && 2275 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2276 return EmitGlobalNamedRegister(VD, CGM); 2277 2278 // A DeclRefExpr for a reference initialized by a constant expression can 2279 // appear without being odr-used. Directly emit the constant initializer. 2280 const Expr *Init = VD->getAnyInitializer(VD); 2281 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2282 VD->isUsableInConstantExpressions(getContext()) && 2283 VD->checkInitIsICE() && 2284 // Do not emit if it is private OpenMP variable. 2285 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2286 LocalDeclMap.count(VD))) { 2287 llvm::Constant *Val = 2288 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2289 *VD->evaluateValue(), 2290 VD->getType()); 2291 assert(Val && "failed to emit reference constant expression"); 2292 // FIXME: Eventually we will want to emit vector element references. 2293 2294 // Should we be using the alignment of the constant pointer we emitted? 2295 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2296 /*pointee*/ true); 2297 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2298 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2299 } 2300 2301 // Check for captured variables. 2302 if (E->refersToEnclosingVariableOrCapture()) { 2303 VD = VD->getCanonicalDecl(); 2304 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2305 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2306 else if (CapturedStmtInfo) { 2307 auto I = LocalDeclMap.find(VD); 2308 if (I != LocalDeclMap.end()) { 2309 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2310 return EmitLoadOfReferenceLValue(I->second, RefTy); 2311 return MakeAddrLValue(I->second, T); 2312 } 2313 LValue CapLVal = 2314 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2315 CapturedStmtInfo->getContextValue()); 2316 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2317 return MakeAddrLValue( 2318 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2319 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2320 } 2321 2322 assert(isa<BlockDecl>(CurCodeDecl)); 2323 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2324 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2325 return MakeAddrLValue(addr, T, BaseInfo); 2326 } 2327 } 2328 2329 // FIXME: We should be able to assert this for FunctionDecls as well! 2330 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2331 // those with a valid source location. 2332 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2333 !E->getLocation().isValid()) && 2334 "Should not use decl without marking it used!"); 2335 2336 if (ND->hasAttr<WeakRefAttr>()) { 2337 const auto *VD = cast<ValueDecl>(ND); 2338 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2339 return MakeAddrLValue(Aliasee, T, 2340 LValueBaseInfo(AlignmentSource::Decl, false)); 2341 } 2342 2343 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2344 // Check if this is a global variable. 2345 if (VD->hasLinkage() || VD->isStaticDataMember()) 2346 return EmitGlobalVarDeclLValue(*this, E, VD); 2347 2348 Address addr = Address::invalid(); 2349 2350 // The variable should generally be present in the local decl map. 2351 auto iter = LocalDeclMap.find(VD); 2352 if (iter != LocalDeclMap.end()) { 2353 addr = iter->second; 2354 2355 // Otherwise, it might be static local we haven't emitted yet for 2356 // some reason; most likely, because it's in an outer function. 2357 } else if (VD->isStaticLocal()) { 2358 addr = Address(CGM.getOrCreateStaticVarDecl( 2359 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2360 getContext().getDeclAlign(VD)); 2361 2362 // No other cases for now. 2363 } else { 2364 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2365 } 2366 2367 2368 // Check for OpenMP threadprivate variables. 2369 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2370 return EmitThreadPrivateVarDeclLValue( 2371 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2372 E->getExprLoc()); 2373 } 2374 2375 // Drill into block byref variables. 2376 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2377 if (isBlockByref) { 2378 addr = emitBlockByrefAddress(addr, VD); 2379 } 2380 2381 // Drill into reference types. 2382 LValue LV; 2383 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2384 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2385 } else { 2386 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2387 LV = MakeAddrLValue(addr, T, BaseInfo); 2388 } 2389 2390 bool isLocalStorage = VD->hasLocalStorage(); 2391 2392 bool NonGCable = isLocalStorage && 2393 !VD->getType()->isReferenceType() && 2394 !isBlockByref; 2395 if (NonGCable) { 2396 LV.getQuals().removeObjCGCAttr(); 2397 LV.setNonGC(true); 2398 } 2399 2400 bool isImpreciseLifetime = 2401 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2402 if (isImpreciseLifetime) 2403 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2404 setObjCGCLValueClass(getContext(), E, LV); 2405 return LV; 2406 } 2407 2408 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2409 return EmitFunctionDeclLValue(*this, E, FD); 2410 2411 // FIXME: While we're emitting a binding from an enclosing scope, all other 2412 // DeclRefExprs we see should be implicitly treated as if they also refer to 2413 // an enclosing scope. 2414 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2415 return EmitLValue(BD->getBinding()); 2416 2417 llvm_unreachable("Unhandled DeclRefExpr"); 2418 } 2419 2420 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2421 // __extension__ doesn't affect lvalue-ness. 2422 if (E->getOpcode() == UO_Extension) 2423 return EmitLValue(E->getSubExpr()); 2424 2425 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2426 switch (E->getOpcode()) { 2427 default: llvm_unreachable("Unknown unary operator lvalue!"); 2428 case UO_Deref: { 2429 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2430 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2431 2432 LValueBaseInfo BaseInfo; 2433 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2434 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2435 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2436 2437 // We should not generate __weak write barrier on indirect reference 2438 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2439 // But, we continue to generate __strong write barrier on indirect write 2440 // into a pointer to object. 2441 if (getLangOpts().ObjC1 && 2442 getLangOpts().getGC() != LangOptions::NonGC && 2443 LV.isObjCWeak()) 2444 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2445 return LV; 2446 } 2447 case UO_Real: 2448 case UO_Imag: { 2449 LValue LV = EmitLValue(E->getSubExpr()); 2450 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2451 2452 // __real is valid on scalars. This is a faster way of testing that. 2453 // __imag can only produce an rvalue on scalars. 2454 if (E->getOpcode() == UO_Real && 2455 !LV.getAddress().getElementType()->isStructTy()) { 2456 assert(E->getSubExpr()->getType()->isArithmeticType()); 2457 return LV; 2458 } 2459 2460 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2461 2462 Address Component = 2463 (E->getOpcode() == UO_Real 2464 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2465 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2466 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2467 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2468 return ElemLV; 2469 } 2470 case UO_PreInc: 2471 case UO_PreDec: { 2472 LValue LV = EmitLValue(E->getSubExpr()); 2473 bool isInc = E->getOpcode() == UO_PreInc; 2474 2475 if (E->getType()->isAnyComplexType()) 2476 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2477 else 2478 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2479 return LV; 2480 } 2481 } 2482 } 2483 2484 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2485 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2486 E->getType(), 2487 LValueBaseInfo(AlignmentSource::Decl, false)); 2488 } 2489 2490 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2491 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2492 E->getType(), 2493 LValueBaseInfo(AlignmentSource::Decl, false)); 2494 } 2495 2496 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2497 auto SL = E->getFunctionName(); 2498 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2499 StringRef FnName = CurFn->getName(); 2500 if (FnName.startswith("\01")) 2501 FnName = FnName.substr(1); 2502 StringRef NameItems[] = { 2503 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2504 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2505 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2506 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2507 std::string Name = SL->getString(); 2508 if (!Name.empty()) { 2509 unsigned Discriminator = 2510 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2511 if (Discriminator) 2512 Name += "_" + Twine(Discriminator + 1).str(); 2513 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2514 return MakeAddrLValue(C, E->getType(), BaseInfo); 2515 } else { 2516 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2517 return MakeAddrLValue(C, E->getType(), BaseInfo); 2518 } 2519 } 2520 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2521 return MakeAddrLValue(C, E->getType(), BaseInfo); 2522 } 2523 2524 /// Emit a type description suitable for use by a runtime sanitizer library. The 2525 /// format of a type descriptor is 2526 /// 2527 /// \code 2528 /// { i16 TypeKind, i16 TypeInfo } 2529 /// \endcode 2530 /// 2531 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2532 /// integer, 1 for a floating point value, and -1 for anything else. 2533 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2534 // Only emit each type's descriptor once. 2535 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2536 return C; 2537 2538 uint16_t TypeKind = -1; 2539 uint16_t TypeInfo = 0; 2540 2541 if (T->isIntegerType()) { 2542 TypeKind = 0; 2543 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2544 (T->isSignedIntegerType() ? 1 : 0); 2545 } else if (T->isFloatingType()) { 2546 TypeKind = 1; 2547 TypeInfo = getContext().getTypeSize(T); 2548 } 2549 2550 // Format the type name as if for a diagnostic, including quotes and 2551 // optionally an 'aka'. 2552 SmallString<32> Buffer; 2553 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2554 (intptr_t)T.getAsOpaquePtr(), 2555 StringRef(), StringRef(), None, Buffer, 2556 None); 2557 2558 llvm::Constant *Components[] = { 2559 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2560 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2561 }; 2562 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2563 2564 auto *GV = new llvm::GlobalVariable( 2565 CGM.getModule(), Descriptor->getType(), 2566 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2567 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2568 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2569 2570 // Remember the descriptor for this type. 2571 CGM.setTypeDescriptorInMap(T, GV); 2572 2573 return GV; 2574 } 2575 2576 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2577 llvm::Type *TargetTy = IntPtrTy; 2578 2579 // Floating-point types which fit into intptr_t are bitcast to integers 2580 // and then passed directly (after zero-extension, if necessary). 2581 if (V->getType()->isFloatingPointTy()) { 2582 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2583 if (Bits <= TargetTy->getIntegerBitWidth()) 2584 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2585 Bits)); 2586 } 2587 2588 // Integers which fit in intptr_t are zero-extended and passed directly. 2589 if (V->getType()->isIntegerTy() && 2590 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2591 return Builder.CreateZExt(V, TargetTy); 2592 2593 // Pointers are passed directly, everything else is passed by address. 2594 if (!V->getType()->isPointerTy()) { 2595 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2596 Builder.CreateStore(V, Ptr); 2597 V = Ptr.getPointer(); 2598 } 2599 return Builder.CreatePtrToInt(V, TargetTy); 2600 } 2601 2602 /// \brief Emit a representation of a SourceLocation for passing to a handler 2603 /// in a sanitizer runtime library. The format for this data is: 2604 /// \code 2605 /// struct SourceLocation { 2606 /// const char *Filename; 2607 /// int32_t Line, Column; 2608 /// }; 2609 /// \endcode 2610 /// For an invalid SourceLocation, the Filename pointer is null. 2611 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2612 llvm::Constant *Filename; 2613 int Line, Column; 2614 2615 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2616 if (PLoc.isValid()) { 2617 StringRef FilenameString = PLoc.getFilename(); 2618 2619 int PathComponentsToStrip = 2620 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2621 if (PathComponentsToStrip < 0) { 2622 assert(PathComponentsToStrip != INT_MIN); 2623 int PathComponentsToKeep = -PathComponentsToStrip; 2624 auto I = llvm::sys::path::rbegin(FilenameString); 2625 auto E = llvm::sys::path::rend(FilenameString); 2626 while (I != E && --PathComponentsToKeep) 2627 ++I; 2628 2629 FilenameString = FilenameString.substr(I - E); 2630 } else if (PathComponentsToStrip > 0) { 2631 auto I = llvm::sys::path::begin(FilenameString); 2632 auto E = llvm::sys::path::end(FilenameString); 2633 while (I != E && PathComponentsToStrip--) 2634 ++I; 2635 2636 if (I != E) 2637 FilenameString = 2638 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2639 else 2640 FilenameString = llvm::sys::path::filename(FilenameString); 2641 } 2642 2643 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2644 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2645 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2646 Filename = FilenameGV.getPointer(); 2647 Line = PLoc.getLine(); 2648 Column = PLoc.getColumn(); 2649 } else { 2650 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2651 Line = Column = 0; 2652 } 2653 2654 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2655 Builder.getInt32(Column)}; 2656 2657 return llvm::ConstantStruct::getAnon(Data); 2658 } 2659 2660 namespace { 2661 /// \brief Specify under what conditions this check can be recovered 2662 enum class CheckRecoverableKind { 2663 /// Always terminate program execution if this check fails. 2664 Unrecoverable, 2665 /// Check supports recovering, runtime has both fatal (noreturn) and 2666 /// non-fatal handlers for this check. 2667 Recoverable, 2668 /// Runtime conditionally aborts, always need to support recovery. 2669 AlwaysRecoverable 2670 }; 2671 } 2672 2673 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2674 assert(llvm::countPopulation(Kind) == 1); 2675 switch (Kind) { 2676 case SanitizerKind::Vptr: 2677 return CheckRecoverableKind::AlwaysRecoverable; 2678 case SanitizerKind::Return: 2679 case SanitizerKind::Unreachable: 2680 return CheckRecoverableKind::Unrecoverable; 2681 default: 2682 return CheckRecoverableKind::Recoverable; 2683 } 2684 } 2685 2686 namespace { 2687 struct SanitizerHandlerInfo { 2688 char const *const Name; 2689 unsigned Version; 2690 }; 2691 } 2692 2693 const SanitizerHandlerInfo SanitizerHandlers[] = { 2694 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2695 LIST_SANITIZER_CHECKS 2696 #undef SANITIZER_CHECK 2697 }; 2698 2699 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2700 llvm::FunctionType *FnType, 2701 ArrayRef<llvm::Value *> FnArgs, 2702 SanitizerHandler CheckHandler, 2703 CheckRecoverableKind RecoverKind, bool IsFatal, 2704 llvm::BasicBlock *ContBB) { 2705 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2706 bool NeedsAbortSuffix = 2707 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2708 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2709 const StringRef CheckName = CheckInfo.Name; 2710 std::string FnName = 2711 ("__ubsan_handle_" + CheckName + 2712 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2713 (NeedsAbortSuffix ? "_abort" : "")) 2714 .str(); 2715 bool MayReturn = 2716 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2717 2718 llvm::AttrBuilder B; 2719 if (!MayReturn) { 2720 B.addAttribute(llvm::Attribute::NoReturn) 2721 .addAttribute(llvm::Attribute::NoUnwind); 2722 } 2723 B.addAttribute(llvm::Attribute::UWTable); 2724 2725 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2726 FnType, FnName, 2727 llvm::AttributeList::get(CGF.getLLVMContext(), 2728 llvm::AttributeList::FunctionIndex, B), 2729 /*Local=*/true); 2730 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2731 if (!MayReturn) { 2732 HandlerCall->setDoesNotReturn(); 2733 CGF.Builder.CreateUnreachable(); 2734 } else { 2735 CGF.Builder.CreateBr(ContBB); 2736 } 2737 } 2738 2739 void CodeGenFunction::EmitCheck( 2740 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2741 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2742 ArrayRef<llvm::Value *> DynamicArgs) { 2743 assert(IsSanitizerScope); 2744 assert(Checked.size() > 0); 2745 assert(CheckHandler >= 0 && 2746 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2747 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2748 2749 llvm::Value *FatalCond = nullptr; 2750 llvm::Value *RecoverableCond = nullptr; 2751 llvm::Value *TrapCond = nullptr; 2752 for (int i = 0, n = Checked.size(); i < n; ++i) { 2753 llvm::Value *Check = Checked[i].first; 2754 // -fsanitize-trap= overrides -fsanitize-recover=. 2755 llvm::Value *&Cond = 2756 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2757 ? TrapCond 2758 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2759 ? RecoverableCond 2760 : FatalCond; 2761 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2762 } 2763 2764 if (TrapCond) 2765 EmitTrapCheck(TrapCond); 2766 if (!FatalCond && !RecoverableCond) 2767 return; 2768 2769 llvm::Value *JointCond; 2770 if (FatalCond && RecoverableCond) 2771 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2772 else 2773 JointCond = FatalCond ? FatalCond : RecoverableCond; 2774 assert(JointCond); 2775 2776 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2777 assert(SanOpts.has(Checked[0].second)); 2778 #ifndef NDEBUG 2779 for (int i = 1, n = Checked.size(); i < n; ++i) { 2780 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2781 "All recoverable kinds in a single check must be same!"); 2782 assert(SanOpts.has(Checked[i].second)); 2783 } 2784 #endif 2785 2786 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2787 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2788 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2789 // Give hint that we very much don't expect to execute the handler 2790 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2791 llvm::MDBuilder MDHelper(getLLVMContext()); 2792 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2793 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2794 EmitBlock(Handlers); 2795 2796 // Handler functions take an i8* pointing to the (handler-specific) static 2797 // information block, followed by a sequence of intptr_t arguments 2798 // representing operand values. 2799 SmallVector<llvm::Value *, 4> Args; 2800 SmallVector<llvm::Type *, 4> ArgTypes; 2801 Args.reserve(DynamicArgs.size() + 1); 2802 ArgTypes.reserve(DynamicArgs.size() + 1); 2803 2804 // Emit handler arguments and create handler function type. 2805 if (!StaticArgs.empty()) { 2806 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2807 auto *InfoPtr = 2808 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2809 llvm::GlobalVariable::PrivateLinkage, Info); 2810 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2811 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2812 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2813 ArgTypes.push_back(Int8PtrTy); 2814 } 2815 2816 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2817 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2818 ArgTypes.push_back(IntPtrTy); 2819 } 2820 2821 llvm::FunctionType *FnType = 2822 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2823 2824 if (!FatalCond || !RecoverableCond) { 2825 // Simple case: we need to generate a single handler call, either 2826 // fatal, or non-fatal. 2827 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2828 (FatalCond != nullptr), Cont); 2829 } else { 2830 // Emit two handler calls: first one for set of unrecoverable checks, 2831 // another one for recoverable. 2832 llvm::BasicBlock *NonFatalHandlerBB = 2833 createBasicBlock("non_fatal." + CheckName); 2834 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2835 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2836 EmitBlock(FatalHandlerBB); 2837 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2838 NonFatalHandlerBB); 2839 EmitBlock(NonFatalHandlerBB); 2840 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2841 Cont); 2842 } 2843 2844 EmitBlock(Cont); 2845 } 2846 2847 void CodeGenFunction::EmitCfiSlowPathCheck( 2848 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2849 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2850 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2851 2852 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2853 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2854 2855 llvm::MDBuilder MDHelper(getLLVMContext()); 2856 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2857 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2858 2859 EmitBlock(CheckBB); 2860 2861 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2862 2863 llvm::CallInst *CheckCall; 2864 if (WithDiag) { 2865 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2866 auto *InfoPtr = 2867 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2868 llvm::GlobalVariable::PrivateLinkage, Info); 2869 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2870 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2871 2872 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2873 "__cfi_slowpath_diag", 2874 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2875 false)); 2876 CheckCall = Builder.CreateCall( 2877 SlowPathDiagFn, 2878 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2879 } else { 2880 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2881 "__cfi_slowpath", 2882 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2883 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2884 } 2885 2886 CheckCall->setDoesNotThrow(); 2887 2888 EmitBlock(Cont); 2889 } 2890 2891 // Emit a stub for __cfi_check function so that the linker knows about this 2892 // symbol in LTO mode. 2893 void CodeGenFunction::EmitCfiCheckStub() { 2894 llvm::Module *M = &CGM.getModule(); 2895 auto &Ctx = M->getContext(); 2896 llvm::Function *F = llvm::Function::Create( 2897 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2898 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2899 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2900 // FIXME: consider emitting an intrinsic call like 2901 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2902 // which can be lowered in CrossDSOCFI pass to the actual contents of 2903 // __cfi_check. This would allow inlining of __cfi_check calls. 2904 llvm::CallInst::Create( 2905 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2906 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2907 } 2908 2909 // This function is basically a switch over the CFI failure kind, which is 2910 // extracted from CFICheckFailData (1st function argument). Each case is either 2911 // llvm.trap or a call to one of the two runtime handlers, based on 2912 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2913 // failure kind) traps, but this should really never happen. CFICheckFailData 2914 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2915 // check kind; in this case __cfi_check_fail traps as well. 2916 void CodeGenFunction::EmitCfiCheckFail() { 2917 SanitizerScope SanScope(this); 2918 FunctionArgList Args; 2919 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2920 ImplicitParamDecl::Other); 2921 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2922 ImplicitParamDecl::Other); 2923 Args.push_back(&ArgData); 2924 Args.push_back(&ArgAddr); 2925 2926 const CGFunctionInfo &FI = 2927 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2928 2929 llvm::Function *F = llvm::Function::Create( 2930 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2931 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2932 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2933 2934 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2935 SourceLocation()); 2936 2937 llvm::Value *Data = 2938 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2939 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2940 llvm::Value *Addr = 2941 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2942 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2943 2944 // Data == nullptr means the calling module has trap behaviour for this check. 2945 llvm::Value *DataIsNotNullPtr = 2946 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2947 EmitTrapCheck(DataIsNotNullPtr); 2948 2949 llvm::StructType *SourceLocationTy = 2950 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2951 llvm::StructType *CfiCheckFailDataTy = 2952 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2953 2954 llvm::Value *V = Builder.CreateConstGEP2_32( 2955 CfiCheckFailDataTy, 2956 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2957 0); 2958 Address CheckKindAddr(V, getIntAlign()); 2959 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2960 2961 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2962 CGM.getLLVMContext(), 2963 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2964 llvm::Value *ValidVtable = Builder.CreateZExt( 2965 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2966 {Addr, AllVtables}), 2967 IntPtrTy); 2968 2969 const std::pair<int, SanitizerMask> CheckKinds[] = { 2970 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2971 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2972 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2973 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2974 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2975 2976 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2977 for (auto CheckKindMaskPair : CheckKinds) { 2978 int Kind = CheckKindMaskPair.first; 2979 SanitizerMask Mask = CheckKindMaskPair.second; 2980 llvm::Value *Cond = 2981 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2982 if (CGM.getLangOpts().Sanitize.has(Mask)) 2983 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2984 {Data, Addr, ValidVtable}); 2985 else 2986 EmitTrapCheck(Cond); 2987 } 2988 2989 FinishFunction(); 2990 // The only reference to this function will be created during LTO link. 2991 // Make sure it survives until then. 2992 CGM.addUsedGlobal(F); 2993 } 2994 2995 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2996 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2997 2998 // If we're optimizing, collapse all calls to trap down to just one per 2999 // function to save on code size. 3000 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3001 TrapBB = createBasicBlock("trap"); 3002 Builder.CreateCondBr(Checked, Cont, TrapBB); 3003 EmitBlock(TrapBB); 3004 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3005 TrapCall->setDoesNotReturn(); 3006 TrapCall->setDoesNotThrow(); 3007 Builder.CreateUnreachable(); 3008 } else { 3009 Builder.CreateCondBr(Checked, Cont, TrapBB); 3010 } 3011 3012 EmitBlock(Cont); 3013 } 3014 3015 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3016 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3017 3018 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3019 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3020 CGM.getCodeGenOpts().TrapFuncName); 3021 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3022 } 3023 3024 return TrapCall; 3025 } 3026 3027 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3028 LValueBaseInfo *BaseInfo) { 3029 assert(E->getType()->isArrayType() && 3030 "Array to pointer decay must have array source type!"); 3031 3032 // Expressions of array type can't be bitfields or vector elements. 3033 LValue LV = EmitLValue(E); 3034 Address Addr = LV.getAddress(); 3035 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3036 3037 // If the array type was an incomplete type, we need to make sure 3038 // the decay ends up being the right type. 3039 llvm::Type *NewTy = ConvertType(E->getType()); 3040 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3041 3042 // Note that VLA pointers are always decayed, so we don't need to do 3043 // anything here. 3044 if (!E->getType()->isVariableArrayType()) { 3045 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3046 "Expected pointer to array"); 3047 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3048 } 3049 3050 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3051 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3052 } 3053 3054 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3055 /// array to pointer, return the array subexpression. 3056 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3057 // If this isn't just an array->pointer decay, bail out. 3058 const auto *CE = dyn_cast<CastExpr>(E); 3059 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3060 return nullptr; 3061 3062 // If this is a decay from variable width array, bail out. 3063 const Expr *SubExpr = CE->getSubExpr(); 3064 if (SubExpr->getType()->isVariableArrayType()) 3065 return nullptr; 3066 3067 return SubExpr; 3068 } 3069 3070 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3071 llvm::Value *ptr, 3072 ArrayRef<llvm::Value*> indices, 3073 bool inbounds, 3074 bool signedIndices, 3075 SourceLocation loc, 3076 const llvm::Twine &name = "arrayidx") { 3077 if (inbounds) { 3078 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3079 CodeGenFunction::NotSubtraction, loc, 3080 name); 3081 } else { 3082 return CGF.Builder.CreateGEP(ptr, indices, name); 3083 } 3084 } 3085 3086 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3087 llvm::Value *idx, 3088 CharUnits eltSize) { 3089 // If we have a constant index, we can use the exact offset of the 3090 // element we're accessing. 3091 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3092 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3093 return arrayAlign.alignmentAtOffset(offset); 3094 3095 // Otherwise, use the worst-case alignment for any element. 3096 } else { 3097 return arrayAlign.alignmentOfArrayElement(eltSize); 3098 } 3099 } 3100 3101 static QualType getFixedSizeElementType(const ASTContext &ctx, 3102 const VariableArrayType *vla) { 3103 QualType eltType; 3104 do { 3105 eltType = vla->getElementType(); 3106 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3107 return eltType; 3108 } 3109 3110 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3111 ArrayRef<llvm::Value *> indices, 3112 QualType eltType, bool inbounds, 3113 bool signedIndices, SourceLocation loc, 3114 const llvm::Twine &name = "arrayidx") { 3115 // All the indices except that last must be zero. 3116 #ifndef NDEBUG 3117 for (auto idx : indices.drop_back()) 3118 assert(isa<llvm::ConstantInt>(idx) && 3119 cast<llvm::ConstantInt>(idx)->isZero()); 3120 #endif 3121 3122 // Determine the element size of the statically-sized base. This is 3123 // the thing that the indices are expressed in terms of. 3124 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3125 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3126 } 3127 3128 // We can use that to compute the best alignment of the element. 3129 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3130 CharUnits eltAlign = 3131 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3132 3133 llvm::Value *eltPtr = emitArraySubscriptGEP( 3134 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3135 return Address(eltPtr, eltAlign); 3136 } 3137 3138 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3139 bool Accessed) { 3140 // The index must always be an integer, which is not an aggregate. Emit it 3141 // in lexical order (this complexity is, sadly, required by C++17). 3142 llvm::Value *IdxPre = 3143 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3144 bool SignedIndices = false; 3145 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3146 auto *Idx = IdxPre; 3147 if (E->getLHS() != E->getIdx()) { 3148 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3149 Idx = EmitScalarExpr(E->getIdx()); 3150 } 3151 3152 QualType IdxTy = E->getIdx()->getType(); 3153 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3154 SignedIndices |= IdxSigned; 3155 3156 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3157 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3158 3159 // Extend or truncate the index type to 32 or 64-bits. 3160 if (Promote && Idx->getType() != IntPtrTy) 3161 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3162 3163 return Idx; 3164 }; 3165 IdxPre = nullptr; 3166 3167 // If the base is a vector type, then we are forming a vector element lvalue 3168 // with this subscript. 3169 if (E->getBase()->getType()->isVectorType() && 3170 !isa<ExtVectorElementExpr>(E->getBase())) { 3171 // Emit the vector as an lvalue to get its address. 3172 LValue LHS = EmitLValue(E->getBase()); 3173 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3174 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3175 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3176 E->getBase()->getType(), 3177 LHS.getBaseInfo()); 3178 } 3179 3180 // All the other cases basically behave like simple offsetting. 3181 3182 // Handle the extvector case we ignored above. 3183 if (isa<ExtVectorElementExpr>(E->getBase())) { 3184 LValue LV = EmitLValue(E->getBase()); 3185 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3186 Address Addr = EmitExtVectorElementLValue(LV); 3187 3188 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3189 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3190 SignedIndices, E->getExprLoc()); 3191 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3192 } 3193 3194 LValueBaseInfo BaseInfo; 3195 Address Addr = Address::invalid(); 3196 if (const VariableArrayType *vla = 3197 getContext().getAsVariableArrayType(E->getType())) { 3198 // The base must be a pointer, which is not an aggregate. Emit 3199 // it. It needs to be emitted first in case it's what captures 3200 // the VLA bounds. 3201 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3202 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3203 3204 // The element count here is the total number of non-VLA elements. 3205 llvm::Value *numElements = getVLASize(vla).first; 3206 3207 // Effectively, the multiply by the VLA size is part of the GEP. 3208 // GEP indexes are signed, and scaling an index isn't permitted to 3209 // signed-overflow, so we use the same semantics for our explicit 3210 // multiply. We suppress this if overflow is not undefined behavior. 3211 if (getLangOpts().isSignedOverflowDefined()) { 3212 Idx = Builder.CreateMul(Idx, numElements); 3213 } else { 3214 Idx = Builder.CreateNSWMul(Idx, numElements); 3215 } 3216 3217 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3218 !getLangOpts().isSignedOverflowDefined(), 3219 SignedIndices, E->getExprLoc()); 3220 3221 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3222 // Indexing over an interface, as in "NSString *P; P[4];" 3223 3224 // Emit the base pointer. 3225 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3226 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3227 3228 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3229 llvm::Value *InterfaceSizeVal = 3230 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3231 3232 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3233 3234 // We don't necessarily build correct LLVM struct types for ObjC 3235 // interfaces, so we can't rely on GEP to do this scaling 3236 // correctly, so we need to cast to i8*. FIXME: is this actually 3237 // true? A lot of other things in the fragile ABI would break... 3238 llvm::Type *OrigBaseTy = Addr.getType(); 3239 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3240 3241 // Do the GEP. 3242 CharUnits EltAlign = 3243 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3244 llvm::Value *EltPtr = 3245 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3246 SignedIndices, E->getExprLoc()); 3247 Addr = Address(EltPtr, EltAlign); 3248 3249 // Cast back. 3250 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3251 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3252 // If this is A[i] where A is an array, the frontend will have decayed the 3253 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3254 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3255 // "gep x, i" here. Emit one "gep A, 0, i". 3256 assert(Array->getType()->isArrayType() && 3257 "Array to pointer decay must have array source type!"); 3258 LValue ArrayLV; 3259 // For simple multidimensional array indexing, set the 'accessed' flag for 3260 // better bounds-checking of the base expression. 3261 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3262 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3263 else 3264 ArrayLV = EmitLValue(Array); 3265 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3266 3267 // Propagate the alignment from the array itself to the result. 3268 Addr = emitArraySubscriptGEP( 3269 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3270 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3271 E->getExprLoc()); 3272 BaseInfo = ArrayLV.getBaseInfo(); 3273 } else { 3274 // The base must be a pointer; emit it with an estimate of its alignment. 3275 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3276 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3277 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3278 !getLangOpts().isSignedOverflowDefined(), 3279 SignedIndices, E->getExprLoc()); 3280 } 3281 3282 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3283 3284 // TODO: Preserve/extend path TBAA metadata? 3285 3286 if (getLangOpts().ObjC1 && 3287 getLangOpts().getGC() != LangOptions::NonGC) { 3288 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3289 setObjCGCLValueClass(getContext(), E, LV); 3290 } 3291 return LV; 3292 } 3293 3294 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3295 LValueBaseInfo &BaseInfo, 3296 QualType BaseTy, QualType ElTy, 3297 bool IsLowerBound) { 3298 LValue BaseLVal; 3299 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3300 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3301 if (BaseTy->isArrayType()) { 3302 Address Addr = BaseLVal.getAddress(); 3303 BaseInfo = BaseLVal.getBaseInfo(); 3304 3305 // If the array type was an incomplete type, we need to make sure 3306 // the decay ends up being the right type. 3307 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3308 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3309 3310 // Note that VLA pointers are always decayed, so we don't need to do 3311 // anything here. 3312 if (!BaseTy->isVariableArrayType()) { 3313 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3314 "Expected pointer to array"); 3315 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3316 "arraydecay"); 3317 } 3318 3319 return CGF.Builder.CreateElementBitCast(Addr, 3320 CGF.ConvertTypeForMem(ElTy)); 3321 } 3322 LValueBaseInfo TypeInfo; 3323 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3324 BaseInfo.mergeForCast(TypeInfo); 3325 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3326 } 3327 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3328 } 3329 3330 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3331 bool IsLowerBound) { 3332 QualType BaseTy; 3333 if (auto *ASE = 3334 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3335 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3336 else 3337 BaseTy = E->getBase()->getType(); 3338 QualType ResultExprTy; 3339 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3340 ResultExprTy = AT->getElementType(); 3341 else 3342 ResultExprTy = BaseTy->getPointeeType(); 3343 llvm::Value *Idx = nullptr; 3344 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3345 // Requesting lower bound or upper bound, but without provided length and 3346 // without ':' symbol for the default length -> length = 1. 3347 // Idx = LowerBound ?: 0; 3348 if (auto *LowerBound = E->getLowerBound()) { 3349 Idx = Builder.CreateIntCast( 3350 EmitScalarExpr(LowerBound), IntPtrTy, 3351 LowerBound->getType()->hasSignedIntegerRepresentation()); 3352 } else 3353 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3354 } else { 3355 // Try to emit length or lower bound as constant. If this is possible, 1 3356 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3357 // IR (LB + Len) - 1. 3358 auto &C = CGM.getContext(); 3359 auto *Length = E->getLength(); 3360 llvm::APSInt ConstLength; 3361 if (Length) { 3362 // Idx = LowerBound + Length - 1; 3363 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3364 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3365 Length = nullptr; 3366 } 3367 auto *LowerBound = E->getLowerBound(); 3368 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3369 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3370 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3371 LowerBound = nullptr; 3372 } 3373 if (!Length) 3374 --ConstLength; 3375 else if (!LowerBound) 3376 --ConstLowerBound; 3377 3378 if (Length || LowerBound) { 3379 auto *LowerBoundVal = 3380 LowerBound 3381 ? Builder.CreateIntCast( 3382 EmitScalarExpr(LowerBound), IntPtrTy, 3383 LowerBound->getType()->hasSignedIntegerRepresentation()) 3384 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3385 auto *LengthVal = 3386 Length 3387 ? Builder.CreateIntCast( 3388 EmitScalarExpr(Length), IntPtrTy, 3389 Length->getType()->hasSignedIntegerRepresentation()) 3390 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3391 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3392 /*HasNUW=*/false, 3393 !getLangOpts().isSignedOverflowDefined()); 3394 if (Length && LowerBound) { 3395 Idx = Builder.CreateSub( 3396 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3397 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3398 } 3399 } else 3400 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3401 } else { 3402 // Idx = ArraySize - 1; 3403 QualType ArrayTy = BaseTy->isPointerType() 3404 ? E->getBase()->IgnoreParenImpCasts()->getType() 3405 : BaseTy; 3406 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3407 Length = VAT->getSizeExpr(); 3408 if (Length->isIntegerConstantExpr(ConstLength, C)) 3409 Length = nullptr; 3410 } else { 3411 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3412 ConstLength = CAT->getSize(); 3413 } 3414 if (Length) { 3415 auto *LengthVal = Builder.CreateIntCast( 3416 EmitScalarExpr(Length), IntPtrTy, 3417 Length->getType()->hasSignedIntegerRepresentation()); 3418 Idx = Builder.CreateSub( 3419 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3420 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3421 } else { 3422 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3423 --ConstLength; 3424 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3425 } 3426 } 3427 } 3428 assert(Idx); 3429 3430 Address EltPtr = Address::invalid(); 3431 LValueBaseInfo BaseInfo; 3432 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3433 // The base must be a pointer, which is not an aggregate. Emit 3434 // it. It needs to be emitted first in case it's what captures 3435 // the VLA bounds. 3436 Address Base = 3437 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3438 VLA->getElementType(), IsLowerBound); 3439 // The element count here is the total number of non-VLA elements. 3440 llvm::Value *NumElements = getVLASize(VLA).first; 3441 3442 // Effectively, the multiply by the VLA size is part of the GEP. 3443 // GEP indexes are signed, and scaling an index isn't permitted to 3444 // signed-overflow, so we use the same semantics for our explicit 3445 // multiply. We suppress this if overflow is not undefined behavior. 3446 if (getLangOpts().isSignedOverflowDefined()) 3447 Idx = Builder.CreateMul(Idx, NumElements); 3448 else 3449 Idx = Builder.CreateNSWMul(Idx, NumElements); 3450 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3451 !getLangOpts().isSignedOverflowDefined(), 3452 /*SignedIndices=*/false, E->getExprLoc()); 3453 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3454 // If this is A[i] where A is an array, the frontend will have decayed the 3455 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3456 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3457 // "gep x, i" here. Emit one "gep A, 0, i". 3458 assert(Array->getType()->isArrayType() && 3459 "Array to pointer decay must have array source type!"); 3460 LValue ArrayLV; 3461 // For simple multidimensional array indexing, set the 'accessed' flag for 3462 // better bounds-checking of the base expression. 3463 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3464 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3465 else 3466 ArrayLV = EmitLValue(Array); 3467 3468 // Propagate the alignment from the array itself to the result. 3469 EltPtr = emitArraySubscriptGEP( 3470 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3471 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3472 /*SignedIndices=*/false, E->getExprLoc()); 3473 BaseInfo = ArrayLV.getBaseInfo(); 3474 } else { 3475 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3476 BaseTy, ResultExprTy, IsLowerBound); 3477 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3478 !getLangOpts().isSignedOverflowDefined(), 3479 /*SignedIndices=*/false, E->getExprLoc()); 3480 } 3481 3482 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3483 } 3484 3485 LValue CodeGenFunction:: 3486 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3487 // Emit the base vector as an l-value. 3488 LValue Base; 3489 3490 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3491 if (E->isArrow()) { 3492 // If it is a pointer to a vector, emit the address and form an lvalue with 3493 // it. 3494 LValueBaseInfo BaseInfo; 3495 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3496 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3497 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3498 Base.getQuals().removeObjCGCAttr(); 3499 } else if (E->getBase()->isGLValue()) { 3500 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3501 // emit the base as an lvalue. 3502 assert(E->getBase()->getType()->isVectorType()); 3503 Base = EmitLValue(E->getBase()); 3504 } else { 3505 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3506 assert(E->getBase()->getType()->isVectorType() && 3507 "Result must be a vector"); 3508 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3509 3510 // Store the vector to memory (because LValue wants an address). 3511 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3512 Builder.CreateStore(Vec, VecMem); 3513 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3514 LValueBaseInfo(AlignmentSource::Decl, false)); 3515 } 3516 3517 QualType type = 3518 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3519 3520 // Encode the element access list into a vector of unsigned indices. 3521 SmallVector<uint32_t, 4> Indices; 3522 E->getEncodedElementAccess(Indices); 3523 3524 if (Base.isSimple()) { 3525 llvm::Constant *CV = 3526 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3527 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3528 Base.getBaseInfo()); 3529 } 3530 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3531 3532 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3533 SmallVector<llvm::Constant *, 4> CElts; 3534 3535 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3536 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3537 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3538 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3539 Base.getBaseInfo()); 3540 } 3541 3542 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3543 Expr *BaseExpr = E->getBase(); 3544 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3545 LValue BaseLV; 3546 if (E->isArrow()) { 3547 LValueBaseInfo BaseInfo; 3548 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3549 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3550 SanitizerSet SkippedChecks; 3551 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3552 if (IsBaseCXXThis) 3553 SkippedChecks.set(SanitizerKind::Alignment, true); 3554 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3555 SkippedChecks.set(SanitizerKind::Null, true); 3556 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3557 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3558 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3559 } else 3560 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3561 3562 NamedDecl *ND = E->getMemberDecl(); 3563 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3564 LValue LV = EmitLValueForField(BaseLV, Field); 3565 setObjCGCLValueClass(getContext(), E, LV); 3566 return LV; 3567 } 3568 3569 if (auto *VD = dyn_cast<VarDecl>(ND)) 3570 return EmitGlobalVarDeclLValue(*this, E, VD); 3571 3572 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3573 return EmitFunctionDeclLValue(*this, E, FD); 3574 3575 llvm_unreachable("Unhandled member declaration!"); 3576 } 3577 3578 /// Given that we are currently emitting a lambda, emit an l-value for 3579 /// one of its members. 3580 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3581 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3582 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3583 QualType LambdaTagType = 3584 getContext().getTagDeclType(Field->getParent()); 3585 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3586 return EmitLValueForField(LambdaLV, Field); 3587 } 3588 3589 /// Drill down to the storage of a field without walking into 3590 /// reference types. 3591 /// 3592 /// The resulting address doesn't necessarily have the right type. 3593 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3594 const FieldDecl *field) { 3595 const RecordDecl *rec = field->getParent(); 3596 3597 unsigned idx = 3598 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3599 3600 CharUnits offset; 3601 // Adjust the alignment down to the given offset. 3602 // As a special case, if the LLVM field index is 0, we know that this 3603 // is zero. 3604 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3605 .getFieldOffset(field->getFieldIndex()) == 0) && 3606 "LLVM field at index zero had non-zero offset?"); 3607 if (idx != 0) { 3608 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3609 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3610 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3611 } 3612 3613 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3614 } 3615 3616 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3617 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3618 if (!RD) 3619 return false; 3620 3621 if (RD->isDynamicClass()) 3622 return true; 3623 3624 for (const auto &Base : RD->bases()) 3625 if (hasAnyVptr(Base.getType(), Context)) 3626 return true; 3627 3628 for (const FieldDecl *Field : RD->fields()) 3629 if (hasAnyVptr(Field->getType(), Context)) 3630 return true; 3631 3632 return false; 3633 } 3634 3635 LValue CodeGenFunction::EmitLValueForField(LValue base, 3636 const FieldDecl *field) { 3637 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3638 AlignmentSource fieldAlignSource = 3639 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3640 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3641 3642 const RecordDecl *rec = field->getParent(); 3643 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>()) 3644 FieldBaseInfo.setMayAlias(true); 3645 bool mayAlias = FieldBaseInfo.getMayAlias(); 3646 3647 if (field->isBitField()) { 3648 const CGRecordLayout &RL = 3649 CGM.getTypes().getCGRecordLayout(field->getParent()); 3650 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3651 Address Addr = base.getAddress(); 3652 unsigned Idx = RL.getLLVMFieldNo(field); 3653 if (Idx != 0) 3654 // For structs, we GEP to the field that the record layout suggests. 3655 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3656 field->getName()); 3657 // Get the access type. 3658 llvm::Type *FieldIntTy = 3659 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3660 if (Addr.getElementType() != FieldIntTy) 3661 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3662 3663 QualType fieldType = 3664 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3665 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3666 } 3667 3668 QualType type = field->getType(); 3669 Address addr = base.getAddress(); 3670 unsigned cvr = base.getVRQualifiers(); 3671 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3672 if (rec->isUnion()) { 3673 // For unions, there is no pointer adjustment. 3674 assert(!type->isReferenceType() && "union has reference member"); 3675 // TODO: handle path-aware TBAA for union. 3676 TBAAPath = false; 3677 3678 const auto FieldType = field->getType(); 3679 if (CGM.getCodeGenOpts().StrictVTablePointers && 3680 hasAnyVptr(FieldType, getContext())) 3681 // Because unions can easily skip invariant.barriers, we need to add 3682 // a barrier every time CXXRecord field with vptr is referenced. 3683 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3684 addr.getAlignment()); 3685 } else { 3686 // For structs, we GEP to the field that the record layout suggests. 3687 addr = emitAddrOfFieldStorage(*this, addr, field); 3688 3689 // If this is a reference field, load the reference right now. 3690 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3691 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3692 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3693 3694 // Loading the reference will disable path-aware TBAA. 3695 TBAAPath = false; 3696 if (CGM.shouldUseTBAA()) { 3697 llvm::MDNode *tbaa; 3698 if (mayAlias) 3699 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3700 else 3701 tbaa = CGM.getTBAAInfo(type); 3702 if (tbaa) 3703 CGM.DecorateInstructionWithTBAA(load, tbaa); 3704 } 3705 3706 mayAlias = false; 3707 type = refType->getPointeeType(); 3708 3709 CharUnits alignment = 3710 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3711 FieldBaseInfo.setMayAlias(false); 3712 addr = Address(load, alignment); 3713 3714 // Qualifiers on the struct don't apply to the referencee, and 3715 // we'll pick up CVR from the actual type later, so reset these 3716 // additional qualifiers now. 3717 cvr = 0; 3718 } 3719 } 3720 3721 // Make sure that the address is pointing to the right type. This is critical 3722 // for both unions and structs. A union needs a bitcast, a struct element 3723 // will need a bitcast if the LLVM type laid out doesn't match the desired 3724 // type. 3725 addr = Builder.CreateElementBitCast(addr, 3726 CGM.getTypes().ConvertTypeForMem(type), 3727 field->getName()); 3728 3729 if (field->hasAttr<AnnotateAttr>()) 3730 addr = EmitFieldAnnotations(field, addr); 3731 3732 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3733 LV.getQuals().addCVRQualifiers(cvr); 3734 if (TBAAPath) { 3735 const ASTRecordLayout &Layout = 3736 getContext().getASTRecordLayout(field->getParent()); 3737 // Set the base type to be the base type of the base LValue and 3738 // update offset to be relative to the base type. 3739 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3740 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3741 Layout.getFieldOffset(field->getFieldIndex()) / 3742 getContext().getCharWidth()); 3743 } 3744 3745 // __weak attribute on a field is ignored. 3746 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3747 LV.getQuals().removeObjCGCAttr(); 3748 3749 // Fields of may_alias structs act like 'char' for TBAA purposes. 3750 // FIXME: this should get propagated down through anonymous structs 3751 // and unions. 3752 if (mayAlias && LV.getTBAAInfo()) 3753 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3754 3755 return LV; 3756 } 3757 3758 LValue 3759 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3760 const FieldDecl *Field) { 3761 QualType FieldType = Field->getType(); 3762 3763 if (!FieldType->isReferenceType()) 3764 return EmitLValueForField(Base, Field); 3765 3766 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3767 3768 // Make sure that the address is pointing to the right type. 3769 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3770 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3771 3772 // TODO: access-path TBAA? 3773 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3774 LValueBaseInfo FieldBaseInfo( 3775 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3776 BaseInfo.getMayAlias()); 3777 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3778 } 3779 3780 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3781 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3782 if (E->isFileScope()) { 3783 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3784 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3785 } 3786 if (E->getType()->isVariablyModifiedType()) 3787 // make sure to emit the VLA size. 3788 EmitVariablyModifiedType(E->getType()); 3789 3790 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3791 const Expr *InitExpr = E->getInitializer(); 3792 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3793 3794 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3795 /*Init*/ true); 3796 3797 return Result; 3798 } 3799 3800 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3801 if (!E->isGLValue()) 3802 // Initializing an aggregate temporary in C++11: T{...}. 3803 return EmitAggExprToLValue(E); 3804 3805 // An lvalue initializer list must be initializing a reference. 3806 assert(E->isTransparent() && "non-transparent glvalue init list"); 3807 return EmitLValue(E->getInit(0)); 3808 } 3809 3810 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3811 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3812 /// LValue is returned and the current block has been terminated. 3813 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3814 const Expr *Operand) { 3815 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3816 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3817 return None; 3818 } 3819 3820 return CGF.EmitLValue(Operand); 3821 } 3822 3823 LValue CodeGenFunction:: 3824 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3825 if (!expr->isGLValue()) { 3826 // ?: here should be an aggregate. 3827 assert(hasAggregateEvaluationKind(expr->getType()) && 3828 "Unexpected conditional operator!"); 3829 return EmitAggExprToLValue(expr); 3830 } 3831 3832 OpaqueValueMapping binding(*this, expr); 3833 3834 const Expr *condExpr = expr->getCond(); 3835 bool CondExprBool; 3836 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3837 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3838 if (!CondExprBool) std::swap(live, dead); 3839 3840 if (!ContainsLabel(dead)) { 3841 // If the true case is live, we need to track its region. 3842 if (CondExprBool) 3843 incrementProfileCounter(expr); 3844 return EmitLValue(live); 3845 } 3846 } 3847 3848 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3849 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3850 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3851 3852 ConditionalEvaluation eval(*this); 3853 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3854 3855 // Any temporaries created here are conditional. 3856 EmitBlock(lhsBlock); 3857 incrementProfileCounter(expr); 3858 eval.begin(*this); 3859 Optional<LValue> lhs = 3860 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3861 eval.end(*this); 3862 3863 if (lhs && !lhs->isSimple()) 3864 return EmitUnsupportedLValue(expr, "conditional operator"); 3865 3866 lhsBlock = Builder.GetInsertBlock(); 3867 if (lhs) 3868 Builder.CreateBr(contBlock); 3869 3870 // Any temporaries created here are conditional. 3871 EmitBlock(rhsBlock); 3872 eval.begin(*this); 3873 Optional<LValue> rhs = 3874 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3875 eval.end(*this); 3876 if (rhs && !rhs->isSimple()) 3877 return EmitUnsupportedLValue(expr, "conditional operator"); 3878 rhsBlock = Builder.GetInsertBlock(); 3879 3880 EmitBlock(contBlock); 3881 3882 if (lhs && rhs) { 3883 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3884 2, "cond-lvalue"); 3885 phi->addIncoming(lhs->getPointer(), lhsBlock); 3886 phi->addIncoming(rhs->getPointer(), rhsBlock); 3887 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3888 AlignmentSource alignSource = 3889 std::max(lhs->getBaseInfo().getAlignmentSource(), 3890 rhs->getBaseInfo().getAlignmentSource()); 3891 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3892 rhs->getBaseInfo().getMayAlias(); 3893 return MakeAddrLValue(result, expr->getType(), 3894 LValueBaseInfo(alignSource, MayAlias)); 3895 } else { 3896 assert((lhs || rhs) && 3897 "both operands of glvalue conditional are throw-expressions?"); 3898 return lhs ? *lhs : *rhs; 3899 } 3900 } 3901 3902 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3903 /// type. If the cast is to a reference, we can have the usual lvalue result, 3904 /// otherwise if a cast is needed by the code generator in an lvalue context, 3905 /// then it must mean that we need the address of an aggregate in order to 3906 /// access one of its members. This can happen for all the reasons that casts 3907 /// are permitted with aggregate result, including noop aggregate casts, and 3908 /// cast from scalar to union. 3909 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3910 switch (E->getCastKind()) { 3911 case CK_ToVoid: 3912 case CK_BitCast: 3913 case CK_ArrayToPointerDecay: 3914 case CK_FunctionToPointerDecay: 3915 case CK_NullToMemberPointer: 3916 case CK_NullToPointer: 3917 case CK_IntegralToPointer: 3918 case CK_PointerToIntegral: 3919 case CK_PointerToBoolean: 3920 case CK_VectorSplat: 3921 case CK_IntegralCast: 3922 case CK_BooleanToSignedIntegral: 3923 case CK_IntegralToBoolean: 3924 case CK_IntegralToFloating: 3925 case CK_FloatingToIntegral: 3926 case CK_FloatingToBoolean: 3927 case CK_FloatingCast: 3928 case CK_FloatingRealToComplex: 3929 case CK_FloatingComplexToReal: 3930 case CK_FloatingComplexToBoolean: 3931 case CK_FloatingComplexCast: 3932 case CK_FloatingComplexToIntegralComplex: 3933 case CK_IntegralRealToComplex: 3934 case CK_IntegralComplexToReal: 3935 case CK_IntegralComplexToBoolean: 3936 case CK_IntegralComplexCast: 3937 case CK_IntegralComplexToFloatingComplex: 3938 case CK_DerivedToBaseMemberPointer: 3939 case CK_BaseToDerivedMemberPointer: 3940 case CK_MemberPointerToBoolean: 3941 case CK_ReinterpretMemberPointer: 3942 case CK_AnyPointerToBlockPointerCast: 3943 case CK_ARCProduceObject: 3944 case CK_ARCConsumeObject: 3945 case CK_ARCReclaimReturnedObject: 3946 case CK_ARCExtendBlockObject: 3947 case CK_CopyAndAutoreleaseBlockObject: 3948 case CK_AddressSpaceConversion: 3949 case CK_IntToOCLSampler: 3950 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3951 3952 case CK_Dependent: 3953 llvm_unreachable("dependent cast kind in IR gen!"); 3954 3955 case CK_BuiltinFnToFnPtr: 3956 llvm_unreachable("builtin functions are handled elsewhere"); 3957 3958 // These are never l-values; just use the aggregate emission code. 3959 case CK_NonAtomicToAtomic: 3960 case CK_AtomicToNonAtomic: 3961 return EmitAggExprToLValue(E); 3962 3963 case CK_Dynamic: { 3964 LValue LV = EmitLValue(E->getSubExpr()); 3965 Address V = LV.getAddress(); 3966 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3967 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3968 } 3969 3970 case CK_ConstructorConversion: 3971 case CK_UserDefinedConversion: 3972 case CK_CPointerToObjCPointerCast: 3973 case CK_BlockPointerToObjCPointerCast: 3974 case CK_NoOp: 3975 case CK_LValueToRValue: 3976 return EmitLValue(E->getSubExpr()); 3977 3978 case CK_UncheckedDerivedToBase: 3979 case CK_DerivedToBase: { 3980 const RecordType *DerivedClassTy = 3981 E->getSubExpr()->getType()->getAs<RecordType>(); 3982 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3983 3984 LValue LV = EmitLValue(E->getSubExpr()); 3985 Address This = LV.getAddress(); 3986 3987 // Perform the derived-to-base conversion 3988 Address Base = GetAddressOfBaseClass( 3989 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3990 /*NullCheckValue=*/false, E->getExprLoc()); 3991 3992 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 3993 } 3994 case CK_ToUnion: 3995 return EmitAggExprToLValue(E); 3996 case CK_BaseToDerived: { 3997 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3998 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3999 4000 LValue LV = EmitLValue(E->getSubExpr()); 4001 4002 // Perform the base-to-derived conversion 4003 Address Derived = 4004 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4005 E->path_begin(), E->path_end(), 4006 /*NullCheckValue=*/false); 4007 4008 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4009 // performed and the object is not of the derived type. 4010 if (sanitizePerformTypeCheck()) 4011 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4012 Derived.getPointer(), E->getType()); 4013 4014 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4015 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4016 /*MayBeNull=*/false, 4017 CFITCK_DerivedCast, E->getLocStart()); 4018 4019 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 4020 } 4021 case CK_LValueBitCast: { 4022 // This must be a reinterpret_cast (or c-style equivalent). 4023 const auto *CE = cast<ExplicitCastExpr>(E); 4024 4025 CGM.EmitExplicitCastExprType(CE, this); 4026 LValue LV = EmitLValue(E->getSubExpr()); 4027 Address V = Builder.CreateBitCast(LV.getAddress(), 4028 ConvertType(CE->getTypeAsWritten())); 4029 4030 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4031 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4032 /*MayBeNull=*/false, 4033 CFITCK_UnrelatedCast, E->getLocStart()); 4034 4035 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4036 } 4037 case CK_ObjCObjectLValueCast: { 4038 LValue LV = EmitLValue(E->getSubExpr()); 4039 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4040 ConvertType(E->getType())); 4041 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4042 } 4043 case CK_ZeroToOCLQueue: 4044 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4045 case CK_ZeroToOCLEvent: 4046 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4047 } 4048 4049 llvm_unreachable("Unhandled lvalue cast kind?"); 4050 } 4051 4052 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4053 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4054 return getOpaqueLValueMapping(e); 4055 } 4056 4057 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4058 const FieldDecl *FD, 4059 SourceLocation Loc) { 4060 QualType FT = FD->getType(); 4061 LValue FieldLV = EmitLValueForField(LV, FD); 4062 switch (getEvaluationKind(FT)) { 4063 case TEK_Complex: 4064 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4065 case TEK_Aggregate: 4066 return FieldLV.asAggregateRValue(); 4067 case TEK_Scalar: 4068 // This routine is used to load fields one-by-one to perform a copy, so 4069 // don't load reference fields. 4070 if (FD->getType()->isReferenceType()) 4071 return RValue::get(FieldLV.getPointer()); 4072 return EmitLoadOfLValue(FieldLV, Loc); 4073 } 4074 llvm_unreachable("bad evaluation kind"); 4075 } 4076 4077 //===--------------------------------------------------------------------===// 4078 // Expression Emission 4079 //===--------------------------------------------------------------------===// 4080 4081 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4082 ReturnValueSlot ReturnValue) { 4083 // Builtins never have block type. 4084 if (E->getCallee()->getType()->isBlockPointerType()) 4085 return EmitBlockCallExpr(E, ReturnValue); 4086 4087 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4088 return EmitCXXMemberCallExpr(CE, ReturnValue); 4089 4090 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4091 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4092 4093 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4094 if (const CXXMethodDecl *MD = 4095 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4096 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4097 4098 CGCallee callee = EmitCallee(E->getCallee()); 4099 4100 if (callee.isBuiltin()) { 4101 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4102 E, ReturnValue); 4103 } 4104 4105 if (callee.isPseudoDestructor()) { 4106 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4107 } 4108 4109 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4110 } 4111 4112 /// Emit a CallExpr without considering whether it might be a subclass. 4113 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4114 ReturnValueSlot ReturnValue) { 4115 CGCallee Callee = EmitCallee(E->getCallee()); 4116 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4117 } 4118 4119 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4120 if (auto builtinID = FD->getBuiltinID()) { 4121 return CGCallee::forBuiltin(builtinID, FD); 4122 } 4123 4124 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4125 return CGCallee::forDirect(calleePtr, FD); 4126 } 4127 4128 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4129 E = E->IgnoreParens(); 4130 4131 // Look through function-to-pointer decay. 4132 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4133 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4134 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4135 return EmitCallee(ICE->getSubExpr()); 4136 } 4137 4138 // Resolve direct calls. 4139 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4140 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4141 return EmitDirectCallee(*this, FD); 4142 } 4143 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4144 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4145 EmitIgnoredExpr(ME->getBase()); 4146 return EmitDirectCallee(*this, FD); 4147 } 4148 4149 // Look through template substitutions. 4150 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4151 return EmitCallee(NTTP->getReplacement()); 4152 4153 // Treat pseudo-destructor calls differently. 4154 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4155 return CGCallee::forPseudoDestructor(PDE); 4156 } 4157 4158 // Otherwise, we have an indirect reference. 4159 llvm::Value *calleePtr; 4160 QualType functionType; 4161 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4162 calleePtr = EmitScalarExpr(E); 4163 functionType = ptrType->getPointeeType(); 4164 } else { 4165 functionType = E->getType(); 4166 calleePtr = EmitLValue(E).getPointer(); 4167 } 4168 assert(functionType->isFunctionType()); 4169 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4170 E->getReferencedDeclOfCallee()); 4171 CGCallee callee(calleeInfo, calleePtr); 4172 return callee; 4173 } 4174 4175 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4176 // Comma expressions just emit their LHS then their RHS as an l-value. 4177 if (E->getOpcode() == BO_Comma) { 4178 EmitIgnoredExpr(E->getLHS()); 4179 EnsureInsertPoint(); 4180 return EmitLValue(E->getRHS()); 4181 } 4182 4183 if (E->getOpcode() == BO_PtrMemD || 4184 E->getOpcode() == BO_PtrMemI) 4185 return EmitPointerToDataMemberBinaryExpr(E); 4186 4187 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4188 4189 // Note that in all of these cases, __block variables need the RHS 4190 // evaluated first just in case the variable gets moved by the RHS. 4191 4192 switch (getEvaluationKind(E->getType())) { 4193 case TEK_Scalar: { 4194 switch (E->getLHS()->getType().getObjCLifetime()) { 4195 case Qualifiers::OCL_Strong: 4196 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4197 4198 case Qualifiers::OCL_Autoreleasing: 4199 return EmitARCStoreAutoreleasing(E).first; 4200 4201 // No reason to do any of these differently. 4202 case Qualifiers::OCL_None: 4203 case Qualifiers::OCL_ExplicitNone: 4204 case Qualifiers::OCL_Weak: 4205 break; 4206 } 4207 4208 RValue RV = EmitAnyExpr(E->getRHS()); 4209 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4210 if (RV.isScalar()) 4211 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4212 EmitStoreThroughLValue(RV, LV); 4213 return LV; 4214 } 4215 4216 case TEK_Complex: 4217 return EmitComplexAssignmentLValue(E); 4218 4219 case TEK_Aggregate: 4220 return EmitAggExprToLValue(E); 4221 } 4222 llvm_unreachable("bad evaluation kind"); 4223 } 4224 4225 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4226 RValue RV = EmitCallExpr(E); 4227 4228 if (!RV.isScalar()) 4229 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4230 LValueBaseInfo(AlignmentSource::Decl, false)); 4231 4232 assert(E->getCallReturnType(getContext())->isReferenceType() && 4233 "Can't have a scalar return unless the return type is a " 4234 "reference type!"); 4235 4236 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4237 } 4238 4239 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4240 // FIXME: This shouldn't require another copy. 4241 return EmitAggExprToLValue(E); 4242 } 4243 4244 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4245 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4246 && "binding l-value to type which needs a temporary"); 4247 AggValueSlot Slot = CreateAggTemp(E->getType()); 4248 EmitCXXConstructExpr(E, Slot); 4249 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4250 LValueBaseInfo(AlignmentSource::Decl, false)); 4251 } 4252 4253 LValue 4254 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4255 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4256 } 4257 4258 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4259 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4260 ConvertType(E->getType())); 4261 } 4262 4263 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4264 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4265 LValueBaseInfo(AlignmentSource::Decl, false)); 4266 } 4267 4268 LValue 4269 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4270 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4271 Slot.setExternallyDestructed(); 4272 EmitAggExpr(E->getSubExpr(), Slot); 4273 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4274 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4275 LValueBaseInfo(AlignmentSource::Decl, false)); 4276 } 4277 4278 LValue 4279 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4280 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4281 EmitLambdaExpr(E, Slot); 4282 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4283 LValueBaseInfo(AlignmentSource::Decl, false)); 4284 } 4285 4286 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4287 RValue RV = EmitObjCMessageExpr(E); 4288 4289 if (!RV.isScalar()) 4290 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4291 LValueBaseInfo(AlignmentSource::Decl, false)); 4292 4293 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4294 "Can't have a scalar return unless the return type is a " 4295 "reference type!"); 4296 4297 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4298 } 4299 4300 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4301 Address V = 4302 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4303 return MakeAddrLValue(V, E->getType(), 4304 LValueBaseInfo(AlignmentSource::Decl, false)); 4305 } 4306 4307 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4308 const ObjCIvarDecl *Ivar) { 4309 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4310 } 4311 4312 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4313 llvm::Value *BaseValue, 4314 const ObjCIvarDecl *Ivar, 4315 unsigned CVRQualifiers) { 4316 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4317 Ivar, CVRQualifiers); 4318 } 4319 4320 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4321 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4322 llvm::Value *BaseValue = nullptr; 4323 const Expr *BaseExpr = E->getBase(); 4324 Qualifiers BaseQuals; 4325 QualType ObjectTy; 4326 if (E->isArrow()) { 4327 BaseValue = EmitScalarExpr(BaseExpr); 4328 ObjectTy = BaseExpr->getType()->getPointeeType(); 4329 BaseQuals = ObjectTy.getQualifiers(); 4330 } else { 4331 LValue BaseLV = EmitLValue(BaseExpr); 4332 BaseValue = BaseLV.getPointer(); 4333 ObjectTy = BaseExpr->getType(); 4334 BaseQuals = ObjectTy.getQualifiers(); 4335 } 4336 4337 LValue LV = 4338 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4339 BaseQuals.getCVRQualifiers()); 4340 setObjCGCLValueClass(getContext(), E, LV); 4341 return LV; 4342 } 4343 4344 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4345 // Can only get l-value for message expression returning aggregate type 4346 RValue RV = EmitAnyExprToTemp(E); 4347 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4348 LValueBaseInfo(AlignmentSource::Decl, false)); 4349 } 4350 4351 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4352 const CallExpr *E, ReturnValueSlot ReturnValue, 4353 llvm::Value *Chain) { 4354 // Get the actual function type. The callee type will always be a pointer to 4355 // function type or a block pointer type. 4356 assert(CalleeType->isFunctionPointerType() && 4357 "Call must have function pointer type!"); 4358 4359 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4360 4361 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4362 // We can only guarantee that a function is called from the correct 4363 // context/function based on the appropriate target attributes, 4364 // so only check in the case where we have both always_inline and target 4365 // since otherwise we could be making a conditional call after a check for 4366 // the proper cpu features (and it won't cause code generation issues due to 4367 // function based code generation). 4368 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4369 TargetDecl->hasAttr<TargetAttr>()) 4370 checkTargetFeatures(E, FD); 4371 4372 CalleeType = getContext().getCanonicalType(CalleeType); 4373 4374 const auto *FnType = 4375 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4376 4377 CGCallee Callee = OrigCallee; 4378 4379 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4380 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4381 if (llvm::Constant *PrefixSig = 4382 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4383 SanitizerScope SanScope(this); 4384 llvm::Constant *FTRTTIConst = 4385 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4386 llvm::Type *PrefixStructTyElems[] = { 4387 PrefixSig->getType(), 4388 FTRTTIConst->getType() 4389 }; 4390 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4391 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4392 4393 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4394 4395 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4396 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4397 llvm::Value *CalleeSigPtr = 4398 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4399 llvm::Value *CalleeSig = 4400 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4401 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4402 4403 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4404 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4405 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4406 4407 EmitBlock(TypeCheck); 4408 llvm::Value *CalleeRTTIPtr = 4409 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4410 llvm::Value *CalleeRTTI = 4411 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4412 llvm::Value *CalleeRTTIMatch = 4413 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4414 llvm::Constant *StaticData[] = { 4415 EmitCheckSourceLocation(E->getLocStart()), 4416 EmitCheckTypeDescriptor(CalleeType) 4417 }; 4418 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4419 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4420 4421 Builder.CreateBr(Cont); 4422 EmitBlock(Cont); 4423 } 4424 } 4425 4426 // If we are checking indirect calls and this call is indirect, check that the 4427 // function pointer is a member of the bit set for the function type. 4428 if (SanOpts.has(SanitizerKind::CFIICall) && 4429 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4430 SanitizerScope SanScope(this); 4431 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4432 4433 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4434 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4435 4436 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4437 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4438 llvm::Value *TypeTest = Builder.CreateCall( 4439 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4440 4441 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4442 llvm::Constant *StaticData[] = { 4443 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4444 EmitCheckSourceLocation(E->getLocStart()), 4445 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4446 }; 4447 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4448 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4449 CastedCallee, StaticData); 4450 } else { 4451 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4452 SanitizerHandler::CFICheckFail, StaticData, 4453 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4454 } 4455 } 4456 4457 CallArgList Args; 4458 if (Chain) 4459 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4460 CGM.getContext().VoidPtrTy); 4461 4462 // C++17 requires that we evaluate arguments to a call using assignment syntax 4463 // right-to-left, and that we evaluate arguments to certain other operators 4464 // left-to-right. Note that we allow this to override the order dictated by 4465 // the calling convention on the MS ABI, which means that parameter 4466 // destruction order is not necessarily reverse construction order. 4467 // FIXME: Revisit this based on C++ committee response to unimplementability. 4468 EvaluationOrder Order = EvaluationOrder::Default; 4469 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4470 if (OCE->isAssignmentOp()) 4471 Order = EvaluationOrder::ForceRightToLeft; 4472 else { 4473 switch (OCE->getOperator()) { 4474 case OO_LessLess: 4475 case OO_GreaterGreater: 4476 case OO_AmpAmp: 4477 case OO_PipePipe: 4478 case OO_Comma: 4479 case OO_ArrowStar: 4480 Order = EvaluationOrder::ForceLeftToRight; 4481 break; 4482 default: 4483 break; 4484 } 4485 } 4486 } 4487 4488 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4489 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4490 4491 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4492 Args, FnType, /*isChainCall=*/Chain); 4493 4494 // C99 6.5.2.2p6: 4495 // If the expression that denotes the called function has a type 4496 // that does not include a prototype, [the default argument 4497 // promotions are performed]. If the number of arguments does not 4498 // equal the number of parameters, the behavior is undefined. If 4499 // the function is defined with a type that includes a prototype, 4500 // and either the prototype ends with an ellipsis (, ...) or the 4501 // types of the arguments after promotion are not compatible with 4502 // the types of the parameters, the behavior is undefined. If the 4503 // function is defined with a type that does not include a 4504 // prototype, and the types of the arguments after promotion are 4505 // not compatible with those of the parameters after promotion, 4506 // the behavior is undefined [except in some trivial cases]. 4507 // That is, in the general case, we should assume that a call 4508 // through an unprototyped function type works like a *non-variadic* 4509 // call. The way we make this work is to cast to the exact type 4510 // of the promoted arguments. 4511 // 4512 // Chain calls use this same code path to add the invisible chain parameter 4513 // to the function type. 4514 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4515 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4516 CalleeTy = CalleeTy->getPointerTo(); 4517 4518 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4519 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4520 Callee.setFunctionPointer(CalleePtr); 4521 } 4522 4523 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4524 } 4525 4526 LValue CodeGenFunction:: 4527 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4528 Address BaseAddr = Address::invalid(); 4529 if (E->getOpcode() == BO_PtrMemI) { 4530 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4531 } else { 4532 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4533 } 4534 4535 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4536 4537 const MemberPointerType *MPT 4538 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4539 4540 LValueBaseInfo BaseInfo; 4541 Address MemberAddr = 4542 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4543 4544 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4545 } 4546 4547 /// Given the address of a temporary variable, produce an r-value of 4548 /// its type. 4549 RValue CodeGenFunction::convertTempToRValue(Address addr, 4550 QualType type, 4551 SourceLocation loc) { 4552 LValue lvalue = MakeAddrLValue(addr, type, 4553 LValueBaseInfo(AlignmentSource::Decl, false)); 4554 switch (getEvaluationKind(type)) { 4555 case TEK_Complex: 4556 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4557 case TEK_Aggregate: 4558 return lvalue.asAggregateRValue(); 4559 case TEK_Scalar: 4560 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4561 } 4562 llvm_unreachable("bad evaluation kind"); 4563 } 4564 4565 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4566 assert(Val->getType()->isFPOrFPVectorTy()); 4567 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4568 return; 4569 4570 llvm::MDBuilder MDHelper(getLLVMContext()); 4571 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4572 4573 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4574 } 4575 4576 namespace { 4577 struct LValueOrRValue { 4578 LValue LV; 4579 RValue RV; 4580 }; 4581 } 4582 4583 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4584 const PseudoObjectExpr *E, 4585 bool forLValue, 4586 AggValueSlot slot) { 4587 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4588 4589 // Find the result expression, if any. 4590 const Expr *resultExpr = E->getResultExpr(); 4591 LValueOrRValue result; 4592 4593 for (PseudoObjectExpr::const_semantics_iterator 4594 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4595 const Expr *semantic = *i; 4596 4597 // If this semantic expression is an opaque value, bind it 4598 // to the result of its source expression. 4599 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4600 4601 // If this is the result expression, we may need to evaluate 4602 // directly into the slot. 4603 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4604 OVMA opaqueData; 4605 if (ov == resultExpr && ov->isRValue() && !forLValue && 4606 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4607 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4608 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4609 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4610 BaseInfo); 4611 opaqueData = OVMA::bind(CGF, ov, LV); 4612 result.RV = slot.asRValue(); 4613 4614 // Otherwise, emit as normal. 4615 } else { 4616 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4617 4618 // If this is the result, also evaluate the result now. 4619 if (ov == resultExpr) { 4620 if (forLValue) 4621 result.LV = CGF.EmitLValue(ov); 4622 else 4623 result.RV = CGF.EmitAnyExpr(ov, slot); 4624 } 4625 } 4626 4627 opaques.push_back(opaqueData); 4628 4629 // Otherwise, if the expression is the result, evaluate it 4630 // and remember the result. 4631 } else if (semantic == resultExpr) { 4632 if (forLValue) 4633 result.LV = CGF.EmitLValue(semantic); 4634 else 4635 result.RV = CGF.EmitAnyExpr(semantic, slot); 4636 4637 // Otherwise, evaluate the expression in an ignored context. 4638 } else { 4639 CGF.EmitIgnoredExpr(semantic); 4640 } 4641 } 4642 4643 // Unbind all the opaques now. 4644 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4645 opaques[i].unbind(CGF); 4646 4647 return result; 4648 } 4649 4650 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4651 AggValueSlot slot) { 4652 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4653 } 4654 4655 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4656 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4657 } 4658