1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     auto CurIP = Builder.saveIP();
78     Builder.SetInsertPoint(AllocaInsertPt);
79     V = getTargetHooks().performAddrSpaceCast(
80         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
81         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
82     Builder.restoreIP(CurIP);
83   }
84 
85   return Address(V, Align);
86 }
87 
88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
90 /// insertion point of the builder.
91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
92                                                     const Twine &Name,
93                                                     llvm::Value *ArraySize) {
94   if (ArraySize)
95     return Builder.CreateAlloca(Ty, ArraySize, Name);
96   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
97                               ArraySize, Name, AllocaInsertPt);
98 }
99 
100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
101 /// default alignment of the corresponding LLVM type, which is *not*
102 /// guaranteed to be related in any way to the expected alignment of
103 /// an AST type that might have been lowered to Ty.
104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
105                                                       const Twine &Name) {
106   CharUnits Align =
107     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
108   return CreateTempAlloca(Ty, Align, Name);
109 }
110 
111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
112   assert(isa<llvm::AllocaInst>(Var.getPointer()));
113   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
114   Store->setAlignment(Var.getAlignment().getQuantity());
115   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
116   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
117 }
118 
119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
120   CharUnits Align = getContext().getTypeAlignInChars(Ty);
121   return CreateTempAlloca(ConvertType(Ty), Align, Name);
122 }
123 
124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
125                                        bool CastToDefaultAddrSpace) {
126   // FIXME: Should we prefer the preferred type alignment here?
127   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
128                        CastToDefaultAddrSpace);
129 }
130 
131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
132                                        const Twine &Name,
133                                        bool CastToDefaultAddrSpace) {
134   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
135                           CastToDefaultAddrSpace);
136 }
137 
138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
139 /// expression and compare the result against zero, returning an Int1Ty value.
140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
141   PGO.setCurrentStmt(E);
142   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
143     llvm::Value *MemPtr = EmitScalarExpr(E);
144     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
145   }
146 
147   QualType BoolTy = getContext().BoolTy;
148   SourceLocation Loc = E->getExprLoc();
149   if (!E->getType()->isAnyComplexType())
150     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
151 
152   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
153                                        Loc);
154 }
155 
156 /// EmitIgnoredExpr - Emit code to compute the specified expression,
157 /// ignoring the result.
158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
159   if (E->isRValue())
160     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
161 
162   // Just emit it as an l-value and drop the result.
163   EmitLValue(E);
164 }
165 
166 /// EmitAnyExpr - Emit code to compute the specified expression which
167 /// can have any type.  The result is returned as an RValue struct.
168 /// If this is an aggregate expression, AggSlot indicates where the
169 /// result should be returned.
170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
171                                     AggValueSlot aggSlot,
172                                     bool ignoreResult) {
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Scalar:
175     return RValue::get(EmitScalarExpr(E, ignoreResult));
176   case TEK_Complex:
177     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
178   case TEK_Aggregate:
179     if (!ignoreResult && aggSlot.isIgnored())
180       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
181     EmitAggExpr(E, aggSlot);
182     return aggSlot.asRValue();
183   }
184   llvm_unreachable("bad evaluation kind");
185 }
186 
187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
188 /// always be accessible even if no aggregate location is provided.
189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
190   AggValueSlot AggSlot = AggValueSlot::ignored();
191 
192   if (hasAggregateEvaluationKind(E->getType()))
193     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
194   return EmitAnyExpr(E, AggSlot);
195 }
196 
197 /// EmitAnyExprToMem - Evaluate an expression into a given memory
198 /// location.
199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
200                                        Address Location,
201                                        Qualifiers Quals,
202                                        bool IsInit) {
203   // FIXME: This function should take an LValue as an argument.
204   switch (getEvaluationKind(E->getType())) {
205   case TEK_Complex:
206     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
207                               /*isInit*/ false);
208     return;
209 
210   case TEK_Aggregate: {
211     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
212                                          AggValueSlot::IsDestructed_t(IsInit),
213                                          AggValueSlot::DoesNotNeedGCBarriers,
214                                          AggValueSlot::IsAliased_t(!IsInit)));
215     return;
216   }
217 
218   case TEK_Scalar: {
219     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
220     LValue LV = MakeAddrLValue(Location, E->getType());
221     EmitStoreThroughLValue(RV, LV);
222     return;
223   }
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 static void
229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
230                      const Expr *E, Address ReferenceTemporary) {
231   // Objective-C++ ARC:
232   //   If we are binding a reference to a temporary that has ownership, we
233   //   need to perform retain/release operations on the temporary.
234   //
235   // FIXME: This should be looking at E, not M.
236   if (auto Lifetime = M->getType().getObjCLifetime()) {
237     switch (Lifetime) {
238     case Qualifiers::OCL_None:
239     case Qualifiers::OCL_ExplicitNone:
240       // Carry on to normal cleanup handling.
241       break;
242 
243     case Qualifiers::OCL_Autoreleasing:
244       // Nothing to do; cleaned up by an autorelease pool.
245       return;
246 
247     case Qualifiers::OCL_Strong:
248     case Qualifiers::OCL_Weak:
249       switch (StorageDuration Duration = M->getStorageDuration()) {
250       case SD_Static:
251         // Note: we intentionally do not register a cleanup to release
252         // the object on program termination.
253         return;
254 
255       case SD_Thread:
256         // FIXME: We should probably register a cleanup in this case.
257         return;
258 
259       case SD_Automatic:
260       case SD_FullExpression:
261         CodeGenFunction::Destroyer *Destroy;
262         CleanupKind CleanupKind;
263         if (Lifetime == Qualifiers::OCL_Strong) {
264           const ValueDecl *VD = M->getExtendingDecl();
265           bool Precise =
266               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
267           CleanupKind = CGF.getARCCleanupKind();
268           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
269                             : &CodeGenFunction::destroyARCStrongImprecise;
270         } else {
271           // __weak objects always get EH cleanups; otherwise, exceptions
272           // could cause really nasty crashes instead of mere leaks.
273           CleanupKind = NormalAndEHCleanup;
274           Destroy = &CodeGenFunction::destroyARCWeak;
275         }
276         if (Duration == SD_FullExpression)
277           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
278                           M->getType(), *Destroy,
279                           CleanupKind & EHCleanup);
280         else
281           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
282                                           M->getType(),
283                                           *Destroy, CleanupKind & EHCleanup);
284         return;
285 
286       case SD_Dynamic:
287         llvm_unreachable("temporary cannot have dynamic storage duration");
288       }
289       llvm_unreachable("unknown storage duration");
290     }
291   }
292 
293   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
294   if (const RecordType *RT =
295           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
296     // Get the destructor for the reference temporary.
297     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
298     if (!ClassDecl->hasTrivialDestructor())
299       ReferenceTemporaryDtor = ClassDecl->getDestructor();
300   }
301 
302   if (!ReferenceTemporaryDtor)
303     return;
304 
305   // Call the destructor for the temporary.
306   switch (M->getStorageDuration()) {
307   case SD_Static:
308   case SD_Thread: {
309     llvm::Constant *CleanupFn;
310     llvm::Constant *CleanupArg;
311     if (E->getType()->isArrayType()) {
312       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
313           ReferenceTemporary, E->getType(),
314           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
315           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
316       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
317     } else {
318       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
319                                                StructorType::Complete);
320       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
321     }
322     CGF.CGM.getCXXABI().registerGlobalDtor(
323         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
324     break;
325   }
326 
327   case SD_FullExpression:
328     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
329                     CodeGenFunction::destroyCXXObject,
330                     CGF.getLangOpts().Exceptions);
331     break;
332 
333   case SD_Automatic:
334     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
335                                     ReferenceTemporary, E->getType(),
336                                     CodeGenFunction::destroyCXXObject,
337                                     CGF.getLangOpts().Exceptions);
338     break;
339 
340   case SD_Dynamic:
341     llvm_unreachable("temporary cannot have dynamic storage duration");
342   }
343 }
344 
345 static Address createReferenceTemporary(CodeGenFunction &CGF,
346                                         const MaterializeTemporaryExpr *M,
347                                         const Expr *Inner) {
348   auto &TCG = CGF.getTargetHooks();
349   switch (M->getStorageDuration()) {
350   case SD_FullExpression:
351   case SD_Automatic: {
352     // If we have a constant temporary array or record try to promote it into a
353     // constant global under the same rules a normal constant would've been
354     // promoted. This is easier on the optimizer and generally emits fewer
355     // instructions.
356     QualType Ty = Inner->getType();
357     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
358         (Ty->isArrayType() || Ty->isRecordType()) &&
359         CGF.CGM.isTypeConstant(Ty, true))
360       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
361         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
362           auto AS = AddrSpace.getValue();
363           auto *GV = new llvm::GlobalVariable(
364               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
365               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
366               llvm::GlobalValue::NotThreadLocal,
367               CGF.getContext().getTargetAddressSpace(AS));
368           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
369           GV->setAlignment(alignment.getQuantity());
370           llvm::Constant *C = GV;
371           if (AS != LangAS::Default)
372             C = TCG.performAddrSpaceCast(
373                 CGF.CGM, GV, AS, LangAS::Default,
374                 GV->getValueType()->getPointerTo(
375                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
376           // FIXME: Should we put the new global into a COMDAT?
377           return Address(C, alignment);
378         }
379       }
380     return CGF.CreateMemTemp(Ty, "ref.tmp");
381   }
382   case SD_Thread:
383   case SD_Static:
384     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
385 
386   case SD_Dynamic:
387     llvm_unreachable("temporary can't have dynamic storage duration");
388   }
389   llvm_unreachable("unknown storage duration");
390 }
391 
392 LValue CodeGenFunction::
393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
394   const Expr *E = M->GetTemporaryExpr();
395 
396     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
397     // as that will cause the lifetime adjustment to be lost for ARC
398   auto ownership = M->getType().getObjCLifetime();
399   if (ownership != Qualifiers::OCL_None &&
400       ownership != Qualifiers::OCL_ExplicitNone) {
401     Address Object = createReferenceTemporary(*this, M, E);
402     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
403       Object = Address(llvm::ConstantExpr::getBitCast(Var,
404                            ConvertTypeForMem(E->getType())
405                              ->getPointerTo(Object.getAddressSpace())),
406                        Object.getAlignment());
407 
408       // createReferenceTemporary will promote the temporary to a global with a
409       // constant initializer if it can.  It can only do this to a value of
410       // ARC-manageable type if the value is global and therefore "immune" to
411       // ref-counting operations.  Therefore we have no need to emit either a
412       // dynamic initialization or a cleanup and we can just return the address
413       // of the temporary.
414       if (Var->hasInitializer())
415         return MakeAddrLValue(Object, M->getType(),
416                               LValueBaseInfo(AlignmentSource::Decl, false));
417 
418       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
419     }
420     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
421                                        LValueBaseInfo(AlignmentSource::Decl,
422                                                       false));
423 
424     switch (getEvaluationKind(E->getType())) {
425     default: llvm_unreachable("expected scalar or aggregate expression");
426     case TEK_Scalar:
427       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
428       break;
429     case TEK_Aggregate: {
430       EmitAggExpr(E, AggValueSlot::forAddr(Object,
431                                            E->getType().getQualifiers(),
432                                            AggValueSlot::IsDestructed,
433                                            AggValueSlot::DoesNotNeedGCBarriers,
434                                            AggValueSlot::IsNotAliased));
435       break;
436     }
437     }
438 
439     pushTemporaryCleanup(*this, M, E, Object);
440     return RefTempDst;
441   }
442 
443   SmallVector<const Expr *, 2> CommaLHSs;
444   SmallVector<SubobjectAdjustment, 2> Adjustments;
445   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
446 
447   for (const auto &Ignored : CommaLHSs)
448     EmitIgnoredExpr(Ignored);
449 
450   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
451     if (opaque->getType()->isRecordType()) {
452       assert(Adjustments.empty());
453       return EmitOpaqueValueLValue(opaque);
454     }
455   }
456 
457   // Create and initialize the reference temporary.
458   Address Object = createReferenceTemporary(*this, M, E);
459   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
460           Object.getPointer()->stripPointerCasts())) {
461     Object = Address(llvm::ConstantExpr::getBitCast(
462                          cast<llvm::Constant>(Object.getPointer()),
463                          ConvertTypeForMem(E->getType())->getPointerTo()),
464                      Object.getAlignment());
465     // If the temporary is a global and has a constant initializer or is a
466     // constant temporary that we promoted to a global, we may have already
467     // initialized it.
468     if (!Var->hasInitializer()) {
469       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
471     }
472   } else {
473     switch (M->getStorageDuration()) {
474     case SD_Automatic:
475     case SD_FullExpression:
476       if (auto *Size = EmitLifetimeStart(
477               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
478               Object.getPointer())) {
479         if (M->getStorageDuration() == SD_Automatic)
480           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
481                                                     Object, Size);
482         else
483           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
484                                                Size);
485       }
486       break;
487     default:
488       break;
489     }
490     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
491   }
492   pushTemporaryCleanup(*this, M, E, Object);
493 
494   // Perform derived-to-base casts and/or field accesses, to get from the
495   // temporary object we created (and, potentially, for which we extended
496   // the lifetime) to the subobject we're binding the reference to.
497   for (unsigned I = Adjustments.size(); I != 0; --I) {
498     SubobjectAdjustment &Adjustment = Adjustments[I-1];
499     switch (Adjustment.Kind) {
500     case SubobjectAdjustment::DerivedToBaseAdjustment:
501       Object =
502           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
503                                 Adjustment.DerivedToBase.BasePath->path_begin(),
504                                 Adjustment.DerivedToBase.BasePath->path_end(),
505                                 /*NullCheckValue=*/ false, E->getExprLoc());
506       break;
507 
508     case SubobjectAdjustment::FieldAdjustment: {
509       LValue LV = MakeAddrLValue(Object, E->getType(),
510                                  LValueBaseInfo(AlignmentSource::Decl, false));
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(),
528                         LValueBaseInfo(AlignmentSource::Decl, false));
529 }
530 
531 RValue
532 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
533   // Emit the expression as an lvalue.
534   LValue LV = EmitLValue(E);
535   assert(LV.isSimple());
536   llvm::Value *Value = LV.getPointer();
537 
538   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
539     // C++11 [dcl.ref]p5 (as amended by core issue 453):
540     //   If a glvalue to which a reference is directly bound designates neither
541     //   an existing object or function of an appropriate type nor a region of
542     //   storage of suitable size and alignment to contain an object of the
543     //   reference's type, the behavior is undefined.
544     QualType Ty = E->getType();
545     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
546   }
547 
548   return RValue::get(Value);
549 }
550 
551 
552 /// getAccessedFieldNo - Given an encoded value and a result number, return the
553 /// input field number being accessed.
554 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
555                                              const llvm::Constant *Elts) {
556   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
557       ->getZExtValue();
558 }
559 
560 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
561 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
562                                     llvm::Value *High) {
563   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
564   llvm::Value *K47 = Builder.getInt64(47);
565   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
566   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
567   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
568   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
569   return Builder.CreateMul(B1, KMul);
570 }
571 
572 bool CodeGenFunction::sanitizePerformTypeCheck() const {
573   return SanOpts.has(SanitizerKind::Null) |
574          SanOpts.has(SanitizerKind::Alignment) |
575          SanOpts.has(SanitizerKind::ObjectSize) |
576          SanOpts.has(SanitizerKind::Vptr);
577 }
578 
579 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
580                                     llvm::Value *Ptr, QualType Ty,
581                                     CharUnits Alignment,
582                                     SanitizerSet SkippedChecks) {
583   if (!sanitizePerformTypeCheck())
584     return;
585 
586   // Don't check pointers outside the default address space. The null check
587   // isn't correct, the object-size check isn't supported by LLVM, and we can't
588   // communicate the addresses to the runtime handler for the vptr check.
589   if (Ptr->getType()->getPointerAddressSpace())
590     return;
591 
592   // Don't check pointers to volatile data. The behavior here is implementation-
593   // defined.
594   if (Ty.isVolatileQualified())
595     return;
596 
597   SanitizerScope SanScope(this);
598 
599   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
600   llvm::BasicBlock *Done = nullptr;
601 
602   // Quickly determine whether we have a pointer to an alloca. It's possible
603   // to skip null checks, and some alignment checks, for these pointers. This
604   // can reduce compile-time significantly.
605   auto PtrToAlloca =
606       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
607 
608   llvm::Value *IsNonNull = nullptr;
609   bool IsGuaranteedNonNull =
610       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
611   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
612                            TCK == TCK_UpcastToVirtualBase;
613   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
614       !IsGuaranteedNonNull) {
615     // The glvalue must not be an empty glvalue.
616     IsNonNull = Builder.CreateIsNotNull(Ptr);
617 
618     // The IR builder can constant-fold the null check if the pointer points to
619     // a constant.
620     IsGuaranteedNonNull =
621         IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext());
622 
623     // Skip the null check if the pointer is known to be non-null.
624     if (!IsGuaranteedNonNull) {
625       if (AllowNullPointers) {
626         // When performing pointer casts, it's OK if the value is null.
627         // Skip the remaining checks in that case.
628         Done = createBasicBlock("null");
629         llvm::BasicBlock *Rest = createBasicBlock("not.null");
630         Builder.CreateCondBr(IsNonNull, Rest, Done);
631         EmitBlock(Rest);
632       } else {
633         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
634       }
635     }
636   }
637 
638   if (SanOpts.has(SanitizerKind::ObjectSize) &&
639       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
640       !Ty->isIncompleteType()) {
641     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
642 
643     // The glvalue must refer to a large enough storage region.
644     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
645     //        to check this.
646     // FIXME: Get object address space
647     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
648     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
649     llvm::Value *Min = Builder.getFalse();
650     llvm::Value *NullIsUnknown = Builder.getFalse();
651     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
652     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
653         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
654         llvm::ConstantInt::get(IntPtrTy, Size));
655     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
656   }
657 
658   uint64_t AlignVal = 0;
659 
660   if (SanOpts.has(SanitizerKind::Alignment) &&
661       !SkippedChecks.has(SanitizerKind::Alignment)) {
662     AlignVal = Alignment.getQuantity();
663     if (!Ty->isIncompleteType() && !AlignVal)
664       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
665 
666     // The glvalue must be suitably aligned.
667     if (AlignVal > 1 &&
668         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
669       llvm::Value *Align =
670           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
671                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
672       llvm::Value *Aligned =
673         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
674       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
675     }
676   }
677 
678   if (Checks.size() > 0) {
679     // Make sure we're not losing information. Alignment needs to be a power of
680     // 2
681     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
682     llvm::Constant *StaticData[] = {
683         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
684         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
685         llvm::ConstantInt::get(Int8Ty, TCK)};
686     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
687   }
688 
689   // If possible, check that the vptr indicates that there is a subobject of
690   // type Ty at offset zero within this object.
691   //
692   // C++11 [basic.life]p5,6:
693   //   [For storage which does not refer to an object within its lifetime]
694   //   The program has undefined behavior if:
695   //    -- the [pointer or glvalue] is used to access a non-static data member
696   //       or call a non-static member function
697   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
698   if (SanOpts.has(SanitizerKind::Vptr) &&
699       !SkippedChecks.has(SanitizerKind::Vptr) &&
700       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
701        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
702        TCK == TCK_UpcastToVirtualBase) &&
703       RD && RD->hasDefinition() && RD->isDynamicClass()) {
704     // Ensure that the pointer is non-null before loading it. If there is no
705     // compile-time guarantee, reuse the run-time null check or emit a new one.
706     if (!IsGuaranteedNonNull) {
707       if (!IsNonNull)
708         IsNonNull = Builder.CreateIsNotNull(Ptr);
709       if (!Done)
710         Done = createBasicBlock("vptr.null");
711       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
712       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
713       EmitBlock(VptrNotNull);
714     }
715 
716     // Compute a hash of the mangled name of the type.
717     //
718     // FIXME: This is not guaranteed to be deterministic! Move to a
719     //        fingerprinting mechanism once LLVM provides one. For the time
720     //        being the implementation happens to be deterministic.
721     SmallString<64> MangledName;
722     llvm::raw_svector_ostream Out(MangledName);
723     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
724                                                      Out);
725 
726     // Blacklist based on the mangled type.
727     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
728             Out.str())) {
729       llvm::hash_code TypeHash = hash_value(Out.str());
730 
731       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
732       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
733       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
734       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
735       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
736       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
737 
738       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
739       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
740 
741       // Look the hash up in our cache.
742       const int CacheSize = 128;
743       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
744       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
745                                                      "__ubsan_vptr_type_cache");
746       llvm::Value *Slot = Builder.CreateAnd(Hash,
747                                             llvm::ConstantInt::get(IntPtrTy,
748                                                                    CacheSize-1));
749       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
750       llvm::Value *CacheVal =
751         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
752                                   getPointerAlign());
753 
754       // If the hash isn't in the cache, call a runtime handler to perform the
755       // hard work of checking whether the vptr is for an object of the right
756       // type. This will either fill in the cache and return, or produce a
757       // diagnostic.
758       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
759       llvm::Constant *StaticData[] = {
760         EmitCheckSourceLocation(Loc),
761         EmitCheckTypeDescriptor(Ty),
762         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
763         llvm::ConstantInt::get(Int8Ty, TCK)
764       };
765       llvm::Value *DynamicData[] = { Ptr, Hash };
766       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
767                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
768                 DynamicData);
769     }
770   }
771 
772   if (Done) {
773     Builder.CreateBr(Done);
774     EmitBlock(Done);
775   }
776 }
777 
778 /// Determine whether this expression refers to a flexible array member in a
779 /// struct. We disable array bounds checks for such members.
780 static bool isFlexibleArrayMemberExpr(const Expr *E) {
781   // For compatibility with existing code, we treat arrays of length 0 or
782   // 1 as flexible array members.
783   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
784   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
785     if (CAT->getSize().ugt(1))
786       return false;
787   } else if (!isa<IncompleteArrayType>(AT))
788     return false;
789 
790   E = E->IgnoreParens();
791 
792   // A flexible array member must be the last member in the class.
793   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
794     // FIXME: If the base type of the member expr is not FD->getParent(),
795     // this should not be treated as a flexible array member access.
796     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
797       RecordDecl::field_iterator FI(
798           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
799       return ++FI == FD->getParent()->field_end();
800     }
801   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
802     return IRE->getDecl()->getNextIvar() == nullptr;
803   }
804 
805   return false;
806 }
807 
808 /// If Base is known to point to the start of an array, return the length of
809 /// that array. Return 0 if the length cannot be determined.
810 static llvm::Value *getArrayIndexingBound(
811     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
812   // For the vector indexing extension, the bound is the number of elements.
813   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
814     IndexedType = Base->getType();
815     return CGF.Builder.getInt32(VT->getNumElements());
816   }
817 
818   Base = Base->IgnoreParens();
819 
820   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
821     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
822         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
823       IndexedType = CE->getSubExpr()->getType();
824       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
825       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
826         return CGF.Builder.getInt(CAT->getSize());
827       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
828         return CGF.getVLASize(VAT).first;
829     }
830   }
831 
832   return nullptr;
833 }
834 
835 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
836                                       llvm::Value *Index, QualType IndexType,
837                                       bool Accessed) {
838   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
839          "should not be called unless adding bounds checks");
840   SanitizerScope SanScope(this);
841 
842   QualType IndexedType;
843   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
844   if (!Bound)
845     return;
846 
847   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
848   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
849   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
850 
851   llvm::Constant *StaticData[] = {
852     EmitCheckSourceLocation(E->getExprLoc()),
853     EmitCheckTypeDescriptor(IndexedType),
854     EmitCheckTypeDescriptor(IndexType)
855   };
856   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
857                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
858   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
859             SanitizerHandler::OutOfBounds, StaticData, Index);
860 }
861 
862 
863 CodeGenFunction::ComplexPairTy CodeGenFunction::
864 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
865                          bool isInc, bool isPre) {
866   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
867 
868   llvm::Value *NextVal;
869   if (isa<llvm::IntegerType>(InVal.first->getType())) {
870     uint64_t AmountVal = isInc ? 1 : -1;
871     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
872 
873     // Add the inc/dec to the real part.
874     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
875   } else {
876     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
877     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
878     if (!isInc)
879       FVal.changeSign();
880     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
881 
882     // Add the inc/dec to the real part.
883     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
884   }
885 
886   ComplexPairTy IncVal(NextVal, InVal.second);
887 
888   // Store the updated result through the lvalue.
889   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
890 
891   // If this is a postinc, return the value read from memory, otherwise use the
892   // updated value.
893   return isPre ? IncVal : InVal;
894 }
895 
896 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
897                                              CodeGenFunction *CGF) {
898   // Bind VLAs in the cast type.
899   if (CGF && E->getType()->isVariablyModifiedType())
900     CGF->EmitVariablyModifiedType(E->getType());
901 
902   if (CGDebugInfo *DI = getModuleDebugInfo())
903     DI->EmitExplicitCastType(E->getType());
904 }
905 
906 //===----------------------------------------------------------------------===//
907 //                         LValue Expression Emission
908 //===----------------------------------------------------------------------===//
909 
910 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
911 /// derive a more accurate bound on the alignment of the pointer.
912 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
913                                                   LValueBaseInfo *BaseInfo) {
914   // We allow this with ObjC object pointers because of fragile ABIs.
915   assert(E->getType()->isPointerType() ||
916          E->getType()->isObjCObjectPointerType());
917   E = E->IgnoreParens();
918 
919   // Casts:
920   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
921     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
922       CGM.EmitExplicitCastExprType(ECE, this);
923 
924     switch (CE->getCastKind()) {
925     // Non-converting casts (but not C's implicit conversion from void*).
926     case CK_BitCast:
927     case CK_NoOp:
928       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
929         if (PtrTy->getPointeeType()->isVoidType())
930           break;
931 
932         LValueBaseInfo InnerInfo;
933         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo);
934         if (BaseInfo) *BaseInfo = InnerInfo;
935 
936         // If this is an explicit bitcast, and the source l-value is
937         // opaque, honor the alignment of the casted-to type.
938         if (isa<ExplicitCastExpr>(CE) &&
939             InnerInfo.getAlignmentSource() != AlignmentSource::Decl) {
940           LValueBaseInfo ExpInfo;
941           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
942                                                            &ExpInfo);
943           if (BaseInfo)
944             BaseInfo->mergeForCast(ExpInfo);
945           Addr = Address(Addr.getPointer(), Align);
946         }
947 
948         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
949             CE->getCastKind() == CK_BitCast) {
950           if (auto PT = E->getType()->getAs<PointerType>())
951             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
952                                       /*MayBeNull=*/true,
953                                       CodeGenFunction::CFITCK_UnrelatedCast,
954                                       CE->getLocStart());
955         }
956 
957         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
958       }
959       break;
960 
961     // Array-to-pointer decay.
962     case CK_ArrayToPointerDecay:
963       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo);
964 
965     // Derived-to-base conversions.
966     case CK_UncheckedDerivedToBase:
967     case CK_DerivedToBase: {
968       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
969       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
970       return GetAddressOfBaseClass(Addr, Derived,
971                                    CE->path_begin(), CE->path_end(),
972                                    ShouldNullCheckClassCastValue(CE),
973                                    CE->getExprLoc());
974     }
975 
976     // TODO: Is there any reason to treat base-to-derived conversions
977     // specially?
978     default:
979       break;
980     }
981   }
982 
983   // Unary &.
984   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
985     if (UO->getOpcode() == UO_AddrOf) {
986       LValue LV = EmitLValue(UO->getSubExpr());
987       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
988       return LV.getAddress();
989     }
990   }
991 
992   // TODO: conditional operators, comma.
993 
994   // Otherwise, use the alignment of the type.
995   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo);
996   return Address(EmitScalarExpr(E), Align);
997 }
998 
999 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1000   if (Ty->isVoidType())
1001     return RValue::get(nullptr);
1002 
1003   switch (getEvaluationKind(Ty)) {
1004   case TEK_Complex: {
1005     llvm::Type *EltTy =
1006       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1007     llvm::Value *U = llvm::UndefValue::get(EltTy);
1008     return RValue::getComplex(std::make_pair(U, U));
1009   }
1010 
1011   // If this is a use of an undefined aggregate type, the aggregate must have an
1012   // identifiable address.  Just because the contents of the value are undefined
1013   // doesn't mean that the address can't be taken and compared.
1014   case TEK_Aggregate: {
1015     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1016     return RValue::getAggregate(DestPtr);
1017   }
1018 
1019   case TEK_Scalar:
1020     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1021   }
1022   llvm_unreachable("bad evaluation kind");
1023 }
1024 
1025 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1026                                               const char *Name) {
1027   ErrorUnsupported(E, Name);
1028   return GetUndefRValue(E->getType());
1029 }
1030 
1031 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1032                                               const char *Name) {
1033   ErrorUnsupported(E, Name);
1034   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1035   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1036                         E->getType());
1037 }
1038 
1039 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1040   const Expr *Base = Obj;
1041   while (!isa<CXXThisExpr>(Base)) {
1042     // The result of a dynamic_cast can be null.
1043     if (isa<CXXDynamicCastExpr>(Base))
1044       return false;
1045 
1046     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1047       Base = CE->getSubExpr();
1048     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1049       Base = PE->getSubExpr();
1050     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1051       if (UO->getOpcode() == UO_Extension)
1052         Base = UO->getSubExpr();
1053       else
1054         return false;
1055     } else {
1056       return false;
1057     }
1058   }
1059   return true;
1060 }
1061 
1062 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1063   LValue LV;
1064   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1065     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1066   else
1067     LV = EmitLValue(E);
1068   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1069     SanitizerSet SkippedChecks;
1070     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1071       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1072       if (IsBaseCXXThis)
1073         SkippedChecks.set(SanitizerKind::Alignment, true);
1074       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1075         SkippedChecks.set(SanitizerKind::Null, true);
1076     }
1077     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1078                   E->getType(), LV.getAlignment(), SkippedChecks);
1079   }
1080   return LV;
1081 }
1082 
1083 /// EmitLValue - Emit code to compute a designator that specifies the location
1084 /// of the expression.
1085 ///
1086 /// This can return one of two things: a simple address or a bitfield reference.
1087 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1088 /// an LLVM pointer type.
1089 ///
1090 /// If this returns a bitfield reference, nothing about the pointee type of the
1091 /// LLVM value is known: For example, it may not be a pointer to an integer.
1092 ///
1093 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1094 /// this method guarantees that the returned pointer type will point to an LLVM
1095 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1096 /// length type, this is not possible.
1097 ///
1098 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1099   ApplyDebugLocation DL(*this, E);
1100   switch (E->getStmtClass()) {
1101   default: return EmitUnsupportedLValue(E, "l-value expression");
1102 
1103   case Expr::ObjCPropertyRefExprClass:
1104     llvm_unreachable("cannot emit a property reference directly");
1105 
1106   case Expr::ObjCSelectorExprClass:
1107     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1108   case Expr::ObjCIsaExprClass:
1109     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1110   case Expr::BinaryOperatorClass:
1111     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1112   case Expr::CompoundAssignOperatorClass: {
1113     QualType Ty = E->getType();
1114     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1115       Ty = AT->getValueType();
1116     if (!Ty->isAnyComplexType())
1117       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1118     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1119   }
1120   case Expr::CallExprClass:
1121   case Expr::CXXMemberCallExprClass:
1122   case Expr::CXXOperatorCallExprClass:
1123   case Expr::UserDefinedLiteralClass:
1124     return EmitCallExprLValue(cast<CallExpr>(E));
1125   case Expr::VAArgExprClass:
1126     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1127   case Expr::DeclRefExprClass:
1128     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1129   case Expr::ParenExprClass:
1130     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1131   case Expr::GenericSelectionExprClass:
1132     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1133   case Expr::PredefinedExprClass:
1134     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1135   case Expr::StringLiteralClass:
1136     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1137   case Expr::ObjCEncodeExprClass:
1138     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1139   case Expr::PseudoObjectExprClass:
1140     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1141   case Expr::InitListExprClass:
1142     return EmitInitListLValue(cast<InitListExpr>(E));
1143   case Expr::CXXTemporaryObjectExprClass:
1144   case Expr::CXXConstructExprClass:
1145     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1146   case Expr::CXXBindTemporaryExprClass:
1147     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1148   case Expr::CXXUuidofExprClass:
1149     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1150   case Expr::LambdaExprClass:
1151     return EmitLambdaLValue(cast<LambdaExpr>(E));
1152 
1153   case Expr::ExprWithCleanupsClass: {
1154     const auto *cleanups = cast<ExprWithCleanups>(E);
1155     enterFullExpression(cleanups);
1156     RunCleanupsScope Scope(*this);
1157     LValue LV = EmitLValue(cleanups->getSubExpr());
1158     if (LV.isSimple()) {
1159       // Defend against branches out of gnu statement expressions surrounded by
1160       // cleanups.
1161       llvm::Value *V = LV.getPointer();
1162       Scope.ForceCleanup({&V});
1163       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1164                               getContext(), LV.getBaseInfo(),
1165                               LV.getTBAAInfo());
1166     }
1167     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1168     // bitfield lvalue or some other non-simple lvalue?
1169     return LV;
1170   }
1171 
1172   case Expr::CXXDefaultArgExprClass:
1173     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1174   case Expr::CXXDefaultInitExprClass: {
1175     CXXDefaultInitExprScope Scope(*this);
1176     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1177   }
1178   case Expr::CXXTypeidExprClass:
1179     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1180 
1181   case Expr::ObjCMessageExprClass:
1182     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1183   case Expr::ObjCIvarRefExprClass:
1184     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1185   case Expr::StmtExprClass:
1186     return EmitStmtExprLValue(cast<StmtExpr>(E));
1187   case Expr::UnaryOperatorClass:
1188     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1189   case Expr::ArraySubscriptExprClass:
1190     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1191   case Expr::OMPArraySectionExprClass:
1192     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1193   case Expr::ExtVectorElementExprClass:
1194     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1195   case Expr::MemberExprClass:
1196     return EmitMemberExpr(cast<MemberExpr>(E));
1197   case Expr::CompoundLiteralExprClass:
1198     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1199   case Expr::ConditionalOperatorClass:
1200     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1201   case Expr::BinaryConditionalOperatorClass:
1202     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1203   case Expr::ChooseExprClass:
1204     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1205   case Expr::OpaqueValueExprClass:
1206     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1207   case Expr::SubstNonTypeTemplateParmExprClass:
1208     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1209   case Expr::ImplicitCastExprClass:
1210   case Expr::CStyleCastExprClass:
1211   case Expr::CXXFunctionalCastExprClass:
1212   case Expr::CXXStaticCastExprClass:
1213   case Expr::CXXDynamicCastExprClass:
1214   case Expr::CXXReinterpretCastExprClass:
1215   case Expr::CXXConstCastExprClass:
1216   case Expr::ObjCBridgedCastExprClass:
1217     return EmitCastLValue(cast<CastExpr>(E));
1218 
1219   case Expr::MaterializeTemporaryExprClass:
1220     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1221 
1222   case Expr::CoawaitExprClass:
1223     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1224   case Expr::CoyieldExprClass:
1225     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1226   }
1227 }
1228 
1229 /// Given an object of the given canonical type, can we safely copy a
1230 /// value out of it based on its initializer?
1231 static bool isConstantEmittableObjectType(QualType type) {
1232   assert(type.isCanonical());
1233   assert(!type->isReferenceType());
1234 
1235   // Must be const-qualified but non-volatile.
1236   Qualifiers qs = type.getLocalQualifiers();
1237   if (!qs.hasConst() || qs.hasVolatile()) return false;
1238 
1239   // Otherwise, all object types satisfy this except C++ classes with
1240   // mutable subobjects or non-trivial copy/destroy behavior.
1241   if (const auto *RT = dyn_cast<RecordType>(type))
1242     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1243       if (RD->hasMutableFields() || !RD->isTrivial())
1244         return false;
1245 
1246   return true;
1247 }
1248 
1249 /// Can we constant-emit a load of a reference to a variable of the
1250 /// given type?  This is different from predicates like
1251 /// Decl::isUsableInConstantExpressions because we do want it to apply
1252 /// in situations that don't necessarily satisfy the language's rules
1253 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1254 /// to do this with const float variables even if those variables
1255 /// aren't marked 'constexpr'.
1256 enum ConstantEmissionKind {
1257   CEK_None,
1258   CEK_AsReferenceOnly,
1259   CEK_AsValueOrReference,
1260   CEK_AsValueOnly
1261 };
1262 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1263   type = type.getCanonicalType();
1264   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1265     if (isConstantEmittableObjectType(ref->getPointeeType()))
1266       return CEK_AsValueOrReference;
1267     return CEK_AsReferenceOnly;
1268   }
1269   if (isConstantEmittableObjectType(type))
1270     return CEK_AsValueOnly;
1271   return CEK_None;
1272 }
1273 
1274 /// Try to emit a reference to the given value without producing it as
1275 /// an l-value.  This is actually more than an optimization: we can't
1276 /// produce an l-value for variables that we never actually captured
1277 /// in a block or lambda, which means const int variables or constexpr
1278 /// literals or similar.
1279 CodeGenFunction::ConstantEmission
1280 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1281   ValueDecl *value = refExpr->getDecl();
1282 
1283   // The value needs to be an enum constant or a constant variable.
1284   ConstantEmissionKind CEK;
1285   if (isa<ParmVarDecl>(value)) {
1286     CEK = CEK_None;
1287   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1288     CEK = checkVarTypeForConstantEmission(var->getType());
1289   } else if (isa<EnumConstantDecl>(value)) {
1290     CEK = CEK_AsValueOnly;
1291   } else {
1292     CEK = CEK_None;
1293   }
1294   if (CEK == CEK_None) return ConstantEmission();
1295 
1296   Expr::EvalResult result;
1297   bool resultIsReference;
1298   QualType resultType;
1299 
1300   // It's best to evaluate all the way as an r-value if that's permitted.
1301   if (CEK != CEK_AsReferenceOnly &&
1302       refExpr->EvaluateAsRValue(result, getContext())) {
1303     resultIsReference = false;
1304     resultType = refExpr->getType();
1305 
1306   // Otherwise, try to evaluate as an l-value.
1307   } else if (CEK != CEK_AsValueOnly &&
1308              refExpr->EvaluateAsLValue(result, getContext())) {
1309     resultIsReference = true;
1310     resultType = value->getType();
1311 
1312   // Failure.
1313   } else {
1314     return ConstantEmission();
1315   }
1316 
1317   // In any case, if the initializer has side-effects, abandon ship.
1318   if (result.HasSideEffects)
1319     return ConstantEmission();
1320 
1321   // Emit as a constant.
1322   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1323                                                result.Val, resultType);
1324 
1325   // Make sure we emit a debug reference to the global variable.
1326   // This should probably fire even for
1327   if (isa<VarDecl>(value)) {
1328     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1329       EmitDeclRefExprDbgValue(refExpr, result.Val);
1330   } else {
1331     assert(isa<EnumConstantDecl>(value));
1332     EmitDeclRefExprDbgValue(refExpr, result.Val);
1333   }
1334 
1335   // If we emitted a reference constant, we need to dereference that.
1336   if (resultIsReference)
1337     return ConstantEmission::forReference(C);
1338 
1339   return ConstantEmission::forValue(C);
1340 }
1341 
1342 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1343                                                SourceLocation Loc) {
1344   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1345                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1346                           lvalue.getTBAAInfo(),
1347                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1348                           lvalue.isNontemporal());
1349 }
1350 
1351 static bool hasBooleanRepresentation(QualType Ty) {
1352   if (Ty->isBooleanType())
1353     return true;
1354 
1355   if (const EnumType *ET = Ty->getAs<EnumType>())
1356     return ET->getDecl()->getIntegerType()->isBooleanType();
1357 
1358   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1359     return hasBooleanRepresentation(AT->getValueType());
1360 
1361   return false;
1362 }
1363 
1364 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1365                             llvm::APInt &Min, llvm::APInt &End,
1366                             bool StrictEnums, bool IsBool) {
1367   const EnumType *ET = Ty->getAs<EnumType>();
1368   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1369                                 ET && !ET->getDecl()->isFixed();
1370   if (!IsBool && !IsRegularCPlusPlusEnum)
1371     return false;
1372 
1373   if (IsBool) {
1374     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1375     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1376   } else {
1377     const EnumDecl *ED = ET->getDecl();
1378     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1379     unsigned Bitwidth = LTy->getScalarSizeInBits();
1380     unsigned NumNegativeBits = ED->getNumNegativeBits();
1381     unsigned NumPositiveBits = ED->getNumPositiveBits();
1382 
1383     if (NumNegativeBits) {
1384       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1385       assert(NumBits <= Bitwidth);
1386       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1387       Min = -End;
1388     } else {
1389       assert(NumPositiveBits <= Bitwidth);
1390       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1391       Min = llvm::APInt(Bitwidth, 0);
1392     }
1393   }
1394   return true;
1395 }
1396 
1397 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1398   llvm::APInt Min, End;
1399   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1400                        hasBooleanRepresentation(Ty)))
1401     return nullptr;
1402 
1403   llvm::MDBuilder MDHelper(getLLVMContext());
1404   return MDHelper.createRange(Min, End);
1405 }
1406 
1407 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1408                                            SourceLocation Loc) {
1409   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1410   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1411   if (!HasBoolCheck && !HasEnumCheck)
1412     return false;
1413 
1414   bool IsBool = hasBooleanRepresentation(Ty) ||
1415                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1416   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1417   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1418   if (!NeedsBoolCheck && !NeedsEnumCheck)
1419     return false;
1420 
1421   // Single-bit booleans don't need to be checked. Special-case this to avoid
1422   // a bit width mismatch when handling bitfield values. This is handled by
1423   // EmitFromMemory for the non-bitfield case.
1424   if (IsBool &&
1425       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1426     return false;
1427 
1428   llvm::APInt Min, End;
1429   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1430     return true;
1431 
1432   SanitizerScope SanScope(this);
1433   llvm::Value *Check;
1434   --End;
1435   if (!Min) {
1436     Check = Builder.CreateICmpULE(
1437         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1438   } else {
1439     llvm::Value *Upper = Builder.CreateICmpSLE(
1440         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1441     llvm::Value *Lower = Builder.CreateICmpSGE(
1442         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1443     Check = Builder.CreateAnd(Upper, Lower);
1444   }
1445   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1446                                   EmitCheckTypeDescriptor(Ty)};
1447   SanitizerMask Kind =
1448       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1449   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1450             StaticArgs, EmitCheckValue(Value));
1451   return true;
1452 }
1453 
1454 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1455                                                QualType Ty,
1456                                                SourceLocation Loc,
1457                                                LValueBaseInfo BaseInfo,
1458                                                llvm::MDNode *TBAAInfo,
1459                                                QualType TBAABaseType,
1460                                                uint64_t TBAAOffset,
1461                                                bool isNontemporal) {
1462   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1463     // For better performance, handle vector loads differently.
1464     if (Ty->isVectorType()) {
1465       const llvm::Type *EltTy = Addr.getElementType();
1466 
1467       const auto *VTy = cast<llvm::VectorType>(EltTy);
1468 
1469       // Handle vectors of size 3 like size 4 for better performance.
1470       if (VTy->getNumElements() == 3) {
1471 
1472         // Bitcast to vec4 type.
1473         llvm::VectorType *vec4Ty =
1474             llvm::VectorType::get(VTy->getElementType(), 4);
1475         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1476         // Now load value.
1477         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1478 
1479         // Shuffle vector to get vec3.
1480         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1481                                         {0, 1, 2}, "extractVec");
1482         return EmitFromMemory(V, Ty);
1483       }
1484     }
1485   }
1486 
1487   // Atomic operations have to be done on integral types.
1488   LValue AtomicLValue =
1489       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1490   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1491     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1492   }
1493 
1494   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1495   if (isNontemporal) {
1496     llvm::MDNode *Node = llvm::MDNode::get(
1497         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1498     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1499   }
1500   if (TBAAInfo) {
1501     bool MayAlias = BaseInfo.getMayAlias();
1502     llvm::MDNode *TBAA = MayAlias
1503         ? CGM.getTBAAInfo(getContext().CharTy)
1504         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1505     if (TBAA)
1506       CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias);
1507   }
1508 
1509   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1510     // In order to prevent the optimizer from throwing away the check, don't
1511     // attach range metadata to the load.
1512   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1513     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1514       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1515 
1516   return EmitFromMemory(Load, Ty);
1517 }
1518 
1519 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1520   // Bool has a different representation in memory than in registers.
1521   if (hasBooleanRepresentation(Ty)) {
1522     // This should really always be an i1, but sometimes it's already
1523     // an i8, and it's awkward to track those cases down.
1524     if (Value->getType()->isIntegerTy(1))
1525       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1526     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1527            "wrong value rep of bool");
1528   }
1529 
1530   return Value;
1531 }
1532 
1533 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1534   // Bool has a different representation in memory than in registers.
1535   if (hasBooleanRepresentation(Ty)) {
1536     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1537            "wrong value rep of bool");
1538     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1539   }
1540 
1541   return Value;
1542 }
1543 
1544 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1545                                         bool Volatile, QualType Ty,
1546                                         LValueBaseInfo BaseInfo,
1547                                         llvm::MDNode *TBAAInfo,
1548                                         bool isInit, QualType TBAABaseType,
1549                                         uint64_t TBAAOffset,
1550                                         bool isNontemporal) {
1551 
1552   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1553     // Handle vectors differently to get better performance.
1554     if (Ty->isVectorType()) {
1555       llvm::Type *SrcTy = Value->getType();
1556       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1557       // Handle vec3 special.
1558       if (VecTy && VecTy->getNumElements() == 3) {
1559         // Our source is a vec3, do a shuffle vector to make it a vec4.
1560         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1561                                   Builder.getInt32(2),
1562                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1563         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1564         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1565                                             MaskV, "extractVec");
1566         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1567       }
1568       if (Addr.getElementType() != SrcTy) {
1569         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1570       }
1571     }
1572   }
1573 
1574   Value = EmitToMemory(Value, Ty);
1575 
1576   LValue AtomicLValue =
1577       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1578   if (Ty->isAtomicType() ||
1579       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1580     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1581     return;
1582   }
1583 
1584   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1585   if (isNontemporal) {
1586     llvm::MDNode *Node =
1587         llvm::MDNode::get(Store->getContext(),
1588                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1589     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1590   }
1591   if (TBAAInfo) {
1592     bool MayAlias = BaseInfo.getMayAlias();
1593     llvm::MDNode *TBAA = MayAlias
1594         ? CGM.getTBAAInfo(getContext().CharTy)
1595         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1596     if (TBAA)
1597       CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias);
1598   }
1599 }
1600 
1601 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1602                                         bool isInit) {
1603   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1604                     lvalue.getType(), lvalue.getBaseInfo(),
1605                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1606                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1607 }
1608 
1609 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1610 /// method emits the address of the lvalue, then loads the result as an rvalue,
1611 /// returning the rvalue.
1612 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1613   if (LV.isObjCWeak()) {
1614     // load of a __weak object.
1615     Address AddrWeakObj = LV.getAddress();
1616     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1617                                                              AddrWeakObj));
1618   }
1619   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1620     // In MRC mode, we do a load+autorelease.
1621     if (!getLangOpts().ObjCAutoRefCount) {
1622       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1623     }
1624 
1625     // In ARC mode, we load retained and then consume the value.
1626     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1627     Object = EmitObjCConsumeObject(LV.getType(), Object);
1628     return RValue::get(Object);
1629   }
1630 
1631   if (LV.isSimple()) {
1632     assert(!LV.getType()->isFunctionType());
1633 
1634     // Everything needs a load.
1635     return RValue::get(EmitLoadOfScalar(LV, Loc));
1636   }
1637 
1638   if (LV.isVectorElt()) {
1639     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1640                                               LV.isVolatileQualified());
1641     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1642                                                     "vecext"));
1643   }
1644 
1645   // If this is a reference to a subset of the elements of a vector, either
1646   // shuffle the input or extract/insert them as appropriate.
1647   if (LV.isExtVectorElt())
1648     return EmitLoadOfExtVectorElementLValue(LV);
1649 
1650   // Global Register variables always invoke intrinsics
1651   if (LV.isGlobalReg())
1652     return EmitLoadOfGlobalRegLValue(LV);
1653 
1654   assert(LV.isBitField() && "Unknown LValue type!");
1655   return EmitLoadOfBitfieldLValue(LV, Loc);
1656 }
1657 
1658 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1659                                                  SourceLocation Loc) {
1660   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1661 
1662   // Get the output type.
1663   llvm::Type *ResLTy = ConvertType(LV.getType());
1664 
1665   Address Ptr = LV.getBitFieldAddress();
1666   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1667 
1668   if (Info.IsSigned) {
1669     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1670     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1671     if (HighBits)
1672       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1673     if (Info.Offset + HighBits)
1674       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1675   } else {
1676     if (Info.Offset)
1677       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1678     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1679       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1680                                                               Info.Size),
1681                               "bf.clear");
1682   }
1683   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1684   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1685   return RValue::get(Val);
1686 }
1687 
1688 // If this is a reference to a subset of the elements of a vector, create an
1689 // appropriate shufflevector.
1690 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1691   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1692                                         LV.isVolatileQualified());
1693 
1694   const llvm::Constant *Elts = LV.getExtVectorElts();
1695 
1696   // If the result of the expression is a non-vector type, we must be extracting
1697   // a single element.  Just codegen as an extractelement.
1698   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1699   if (!ExprVT) {
1700     unsigned InIdx = getAccessedFieldNo(0, Elts);
1701     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1702     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1703   }
1704 
1705   // Always use shuffle vector to try to retain the original program structure
1706   unsigned NumResultElts = ExprVT->getNumElements();
1707 
1708   SmallVector<llvm::Constant*, 4> Mask;
1709   for (unsigned i = 0; i != NumResultElts; ++i)
1710     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1711 
1712   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1713   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1714                                     MaskV);
1715   return RValue::get(Vec);
1716 }
1717 
1718 /// @brief Generates lvalue for partial ext_vector access.
1719 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1720   Address VectorAddress = LV.getExtVectorAddress();
1721   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1722   QualType EQT = ExprVT->getElementType();
1723   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1724 
1725   Address CastToPointerElement =
1726     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1727                                  "conv.ptr.element");
1728 
1729   const llvm::Constant *Elts = LV.getExtVectorElts();
1730   unsigned ix = getAccessedFieldNo(0, Elts);
1731 
1732   Address VectorBasePtrPlusIx =
1733     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1734                                    getContext().getTypeSizeInChars(EQT),
1735                                    "vector.elt");
1736 
1737   return VectorBasePtrPlusIx;
1738 }
1739 
1740 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1741 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1742   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1743          "Bad type for register variable");
1744   llvm::MDNode *RegName = cast<llvm::MDNode>(
1745       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1746 
1747   // We accept integer and pointer types only
1748   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1749   llvm::Type *Ty = OrigTy;
1750   if (OrigTy->isPointerTy())
1751     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1752   llvm::Type *Types[] = { Ty };
1753 
1754   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1755   llvm::Value *Call = Builder.CreateCall(
1756       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1757   if (OrigTy->isPointerTy())
1758     Call = Builder.CreateIntToPtr(Call, OrigTy);
1759   return RValue::get(Call);
1760 }
1761 
1762 
1763 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1764 /// lvalue, where both are guaranteed to the have the same type, and that type
1765 /// is 'Ty'.
1766 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1767                                              bool isInit) {
1768   if (!Dst.isSimple()) {
1769     if (Dst.isVectorElt()) {
1770       // Read/modify/write the vector, inserting the new element.
1771       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1772                                             Dst.isVolatileQualified());
1773       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1774                                         Dst.getVectorIdx(), "vecins");
1775       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1776                           Dst.isVolatileQualified());
1777       return;
1778     }
1779 
1780     // If this is an update of extended vector elements, insert them as
1781     // appropriate.
1782     if (Dst.isExtVectorElt())
1783       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1784 
1785     if (Dst.isGlobalReg())
1786       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1787 
1788     assert(Dst.isBitField() && "Unknown LValue type");
1789     return EmitStoreThroughBitfieldLValue(Src, Dst);
1790   }
1791 
1792   // There's special magic for assigning into an ARC-qualified l-value.
1793   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1794     switch (Lifetime) {
1795     case Qualifiers::OCL_None:
1796       llvm_unreachable("present but none");
1797 
1798     case Qualifiers::OCL_ExplicitNone:
1799       // nothing special
1800       break;
1801 
1802     case Qualifiers::OCL_Strong:
1803       if (isInit) {
1804         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1805         break;
1806       }
1807       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1808       return;
1809 
1810     case Qualifiers::OCL_Weak:
1811       if (isInit)
1812         // Initialize and then skip the primitive store.
1813         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1814       else
1815         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1816       return;
1817 
1818     case Qualifiers::OCL_Autoreleasing:
1819       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1820                                                      Src.getScalarVal()));
1821       // fall into the normal path
1822       break;
1823     }
1824   }
1825 
1826   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1827     // load of a __weak object.
1828     Address LvalueDst = Dst.getAddress();
1829     llvm::Value *src = Src.getScalarVal();
1830      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1831     return;
1832   }
1833 
1834   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1835     // load of a __strong object.
1836     Address LvalueDst = Dst.getAddress();
1837     llvm::Value *src = Src.getScalarVal();
1838     if (Dst.isObjCIvar()) {
1839       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1840       llvm::Type *ResultType = IntPtrTy;
1841       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1842       llvm::Value *RHS = dst.getPointer();
1843       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1844       llvm::Value *LHS =
1845         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1846                                "sub.ptr.lhs.cast");
1847       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1848       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1849                                               BytesBetween);
1850     } else if (Dst.isGlobalObjCRef()) {
1851       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1852                                                 Dst.isThreadLocalRef());
1853     }
1854     else
1855       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1856     return;
1857   }
1858 
1859   assert(Src.isScalar() && "Can't emit an agg store with this method");
1860   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1861 }
1862 
1863 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1864                                                      llvm::Value **Result) {
1865   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1866   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1867   Address Ptr = Dst.getBitFieldAddress();
1868 
1869   // Get the source value, truncated to the width of the bit-field.
1870   llvm::Value *SrcVal = Src.getScalarVal();
1871 
1872   // Cast the source to the storage type and shift it into place.
1873   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1874                                  /*IsSigned=*/false);
1875   llvm::Value *MaskedVal = SrcVal;
1876 
1877   // See if there are other bits in the bitfield's storage we'll need to load
1878   // and mask together with source before storing.
1879   if (Info.StorageSize != Info.Size) {
1880     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1881     llvm::Value *Val =
1882       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1883 
1884     // Mask the source value as needed.
1885     if (!hasBooleanRepresentation(Dst.getType()))
1886       SrcVal = Builder.CreateAnd(SrcVal,
1887                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1888                                                             Info.Size),
1889                                  "bf.value");
1890     MaskedVal = SrcVal;
1891     if (Info.Offset)
1892       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1893 
1894     // Mask out the original value.
1895     Val = Builder.CreateAnd(Val,
1896                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1897                                                      Info.Offset,
1898                                                      Info.Offset + Info.Size),
1899                             "bf.clear");
1900 
1901     // Or together the unchanged values and the source value.
1902     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1903   } else {
1904     assert(Info.Offset == 0);
1905   }
1906 
1907   // Write the new value back out.
1908   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1909 
1910   // Return the new value of the bit-field, if requested.
1911   if (Result) {
1912     llvm::Value *ResultVal = MaskedVal;
1913 
1914     // Sign extend the value if needed.
1915     if (Info.IsSigned) {
1916       assert(Info.Size <= Info.StorageSize);
1917       unsigned HighBits = Info.StorageSize - Info.Size;
1918       if (HighBits) {
1919         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1920         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1921       }
1922     }
1923 
1924     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1925                                       "bf.result.cast");
1926     *Result = EmitFromMemory(ResultVal, Dst.getType());
1927   }
1928 }
1929 
1930 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1931                                                                LValue Dst) {
1932   // This access turns into a read/modify/write of the vector.  Load the input
1933   // value now.
1934   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1935                                         Dst.isVolatileQualified());
1936   const llvm::Constant *Elts = Dst.getExtVectorElts();
1937 
1938   llvm::Value *SrcVal = Src.getScalarVal();
1939 
1940   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1941     unsigned NumSrcElts = VTy->getNumElements();
1942     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1943     if (NumDstElts == NumSrcElts) {
1944       // Use shuffle vector is the src and destination are the same number of
1945       // elements and restore the vector mask since it is on the side it will be
1946       // stored.
1947       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1948       for (unsigned i = 0; i != NumSrcElts; ++i)
1949         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1950 
1951       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1952       Vec = Builder.CreateShuffleVector(SrcVal,
1953                                         llvm::UndefValue::get(Vec->getType()),
1954                                         MaskV);
1955     } else if (NumDstElts > NumSrcElts) {
1956       // Extended the source vector to the same length and then shuffle it
1957       // into the destination.
1958       // FIXME: since we're shuffling with undef, can we just use the indices
1959       //        into that?  This could be simpler.
1960       SmallVector<llvm::Constant*, 4> ExtMask;
1961       for (unsigned i = 0; i != NumSrcElts; ++i)
1962         ExtMask.push_back(Builder.getInt32(i));
1963       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1964       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1965       llvm::Value *ExtSrcVal =
1966         Builder.CreateShuffleVector(SrcVal,
1967                                     llvm::UndefValue::get(SrcVal->getType()),
1968                                     ExtMaskV);
1969       // build identity
1970       SmallVector<llvm::Constant*, 4> Mask;
1971       for (unsigned i = 0; i != NumDstElts; ++i)
1972         Mask.push_back(Builder.getInt32(i));
1973 
1974       // When the vector size is odd and .odd or .hi is used, the last element
1975       // of the Elts constant array will be one past the size of the vector.
1976       // Ignore the last element here, if it is greater than the mask size.
1977       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1978         NumSrcElts--;
1979 
1980       // modify when what gets shuffled in
1981       for (unsigned i = 0; i != NumSrcElts; ++i)
1982         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1983       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1984       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1985     } else {
1986       // We should never shorten the vector
1987       llvm_unreachable("unexpected shorten vector length");
1988     }
1989   } else {
1990     // If the Src is a scalar (not a vector) it must be updating one element.
1991     unsigned InIdx = getAccessedFieldNo(0, Elts);
1992     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1993     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1994   }
1995 
1996   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1997                       Dst.isVolatileQualified());
1998 }
1999 
2000 /// @brief Store of global named registers are always calls to intrinsics.
2001 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2002   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2003          "Bad type for register variable");
2004   llvm::MDNode *RegName = cast<llvm::MDNode>(
2005       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2006   assert(RegName && "Register LValue is not metadata");
2007 
2008   // We accept integer and pointer types only
2009   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2010   llvm::Type *Ty = OrigTy;
2011   if (OrigTy->isPointerTy())
2012     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2013   llvm::Type *Types[] = { Ty };
2014 
2015   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2016   llvm::Value *Value = Src.getScalarVal();
2017   if (OrigTy->isPointerTy())
2018     Value = Builder.CreatePtrToInt(Value, Ty);
2019   Builder.CreateCall(
2020       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2021 }
2022 
2023 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2024 // generating write-barries API. It is currently a global, ivar,
2025 // or neither.
2026 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2027                                  LValue &LV,
2028                                  bool IsMemberAccess=false) {
2029   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2030     return;
2031 
2032   if (isa<ObjCIvarRefExpr>(E)) {
2033     QualType ExpTy = E->getType();
2034     if (IsMemberAccess && ExpTy->isPointerType()) {
2035       // If ivar is a structure pointer, assigning to field of
2036       // this struct follows gcc's behavior and makes it a non-ivar
2037       // writer-barrier conservatively.
2038       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2039       if (ExpTy->isRecordType()) {
2040         LV.setObjCIvar(false);
2041         return;
2042       }
2043     }
2044     LV.setObjCIvar(true);
2045     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2046     LV.setBaseIvarExp(Exp->getBase());
2047     LV.setObjCArray(E->getType()->isArrayType());
2048     return;
2049   }
2050 
2051   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2052     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2053       if (VD->hasGlobalStorage()) {
2054         LV.setGlobalObjCRef(true);
2055         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2056       }
2057     }
2058     LV.setObjCArray(E->getType()->isArrayType());
2059     return;
2060   }
2061 
2062   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2063     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2064     return;
2065   }
2066 
2067   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2068     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2069     if (LV.isObjCIvar()) {
2070       // If cast is to a structure pointer, follow gcc's behavior and make it
2071       // a non-ivar write-barrier.
2072       QualType ExpTy = E->getType();
2073       if (ExpTy->isPointerType())
2074         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2075       if (ExpTy->isRecordType())
2076         LV.setObjCIvar(false);
2077     }
2078     return;
2079   }
2080 
2081   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2082     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2083     return;
2084   }
2085 
2086   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2087     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2088     return;
2089   }
2090 
2091   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2092     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2093     return;
2094   }
2095 
2096   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2097     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2098     return;
2099   }
2100 
2101   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2102     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2103     if (LV.isObjCIvar() && !LV.isObjCArray())
2104       // Using array syntax to assigning to what an ivar points to is not
2105       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2106       LV.setObjCIvar(false);
2107     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2108       // Using array syntax to assigning to what global points to is not
2109       // same as assigning to the global itself. {id *G;} G[i] = 0;
2110       LV.setGlobalObjCRef(false);
2111     return;
2112   }
2113 
2114   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2115     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2116     // We don't know if member is an 'ivar', but this flag is looked at
2117     // only in the context of LV.isObjCIvar().
2118     LV.setObjCArray(E->getType()->isArrayType());
2119     return;
2120   }
2121 }
2122 
2123 static llvm::Value *
2124 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2125                                 llvm::Value *V, llvm::Type *IRType,
2126                                 StringRef Name = StringRef()) {
2127   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2128   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2129 }
2130 
2131 static LValue EmitThreadPrivateVarDeclLValue(
2132     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2133     llvm::Type *RealVarTy, SourceLocation Loc) {
2134   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2135   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2136   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2137   return CGF.MakeAddrLValue(Addr, T, BaseInfo);
2138 }
2139 
2140 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2141                                              const ReferenceType *RefTy,
2142                                              LValueBaseInfo *BaseInfo) {
2143   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2144   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2145                                               BaseInfo, /*forPointee*/ true));
2146 }
2147 
2148 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2149                                                   const ReferenceType *RefTy) {
2150   LValueBaseInfo BaseInfo;
2151   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo);
2152   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo);
2153 }
2154 
2155 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2156                                            const PointerType *PtrTy,
2157                                            LValueBaseInfo *BaseInfo) {
2158   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2159   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2160                                                BaseInfo,
2161                                                /*forPointeeType=*/true));
2162 }
2163 
2164 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2165                                                 const PointerType *PtrTy) {
2166   LValueBaseInfo BaseInfo;
2167   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo);
2168   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo);
2169 }
2170 
2171 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2172                                       const Expr *E, const VarDecl *VD) {
2173   QualType T = E->getType();
2174 
2175   // If it's thread_local, emit a call to its wrapper function instead.
2176   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2177       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2178     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2179 
2180   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2181   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2182   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2183   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2184   Address Addr(V, Alignment);
2185   LValue LV;
2186   // Emit reference to the private copy of the variable if it is an OpenMP
2187   // threadprivate variable.
2188   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2189     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2190                                           E->getExprLoc());
2191   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2192     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2193   } else {
2194     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2195     LV = CGF.MakeAddrLValue(Addr, T, BaseInfo);
2196   }
2197   setObjCGCLValueClass(CGF.getContext(), E, LV);
2198   return LV;
2199 }
2200 
2201 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2202                                                const FunctionDecl *FD) {
2203   if (FD->hasAttr<WeakRefAttr>()) {
2204     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2205     return aliasee.getPointer();
2206   }
2207 
2208   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2209   if (!FD->hasPrototype()) {
2210     if (const FunctionProtoType *Proto =
2211             FD->getType()->getAs<FunctionProtoType>()) {
2212       // Ugly case: for a K&R-style definition, the type of the definition
2213       // isn't the same as the type of a use.  Correct for this with a
2214       // bitcast.
2215       QualType NoProtoType =
2216           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2217       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2218       V = llvm::ConstantExpr::getBitCast(V,
2219                                       CGM.getTypes().ConvertType(NoProtoType));
2220     }
2221   }
2222   return V;
2223 }
2224 
2225 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2226                                      const Expr *E, const FunctionDecl *FD) {
2227   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2228   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2229   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2230   return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo);
2231 }
2232 
2233 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2234                                       llvm::Value *ThisValue) {
2235   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2236   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2237   return CGF.EmitLValueForField(LV, FD);
2238 }
2239 
2240 /// Named Registers are named metadata pointing to the register name
2241 /// which will be read from/written to as an argument to the intrinsic
2242 /// @llvm.read/write_register.
2243 /// So far, only the name is being passed down, but other options such as
2244 /// register type, allocation type or even optimization options could be
2245 /// passed down via the metadata node.
2246 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2247   SmallString<64> Name("llvm.named.register.");
2248   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2249   assert(Asm->getLabel().size() < 64-Name.size() &&
2250       "Register name too big");
2251   Name.append(Asm->getLabel());
2252   llvm::NamedMDNode *M =
2253     CGM.getModule().getOrInsertNamedMetadata(Name);
2254   if (M->getNumOperands() == 0) {
2255     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2256                                               Asm->getLabel());
2257     llvm::Metadata *Ops[] = {Str};
2258     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2259   }
2260 
2261   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2262 
2263   llvm::Value *Ptr =
2264     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2265   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2266 }
2267 
2268 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2269   const NamedDecl *ND = E->getDecl();
2270   QualType T = E->getType();
2271 
2272   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2273     // Global Named registers access via intrinsics only
2274     if (VD->getStorageClass() == SC_Register &&
2275         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2276       return EmitGlobalNamedRegister(VD, CGM);
2277 
2278     // A DeclRefExpr for a reference initialized by a constant expression can
2279     // appear without being odr-used. Directly emit the constant initializer.
2280     const Expr *Init = VD->getAnyInitializer(VD);
2281     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2282         VD->isUsableInConstantExpressions(getContext()) &&
2283         VD->checkInitIsICE() &&
2284         // Do not emit if it is private OpenMP variable.
2285         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2286           LocalDeclMap.count(VD))) {
2287       llvm::Constant *Val =
2288         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2289                                             *VD->evaluateValue(),
2290                                             VD->getType());
2291       assert(Val && "failed to emit reference constant expression");
2292       // FIXME: Eventually we will want to emit vector element references.
2293 
2294       // Should we be using the alignment of the constant pointer we emitted?
2295       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2296                                                     /*pointee*/ true);
2297       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2298       return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo);
2299     }
2300 
2301     // Check for captured variables.
2302     if (E->refersToEnclosingVariableOrCapture()) {
2303       VD = VD->getCanonicalDecl();
2304       if (auto *FD = LambdaCaptureFields.lookup(VD))
2305         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2306       else if (CapturedStmtInfo) {
2307         auto I = LocalDeclMap.find(VD);
2308         if (I != LocalDeclMap.end()) {
2309           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2310             return EmitLoadOfReferenceLValue(I->second, RefTy);
2311           return MakeAddrLValue(I->second, T);
2312         }
2313         LValue CapLVal =
2314             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2315                                     CapturedStmtInfo->getContextValue());
2316         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2317         return MakeAddrLValue(
2318             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2319             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias));
2320       }
2321 
2322       assert(isa<BlockDecl>(CurCodeDecl));
2323       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2324       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2325       return MakeAddrLValue(addr, T, BaseInfo);
2326     }
2327   }
2328 
2329   // FIXME: We should be able to assert this for FunctionDecls as well!
2330   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2331   // those with a valid source location.
2332   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2333           !E->getLocation().isValid()) &&
2334          "Should not use decl without marking it used!");
2335 
2336   if (ND->hasAttr<WeakRefAttr>()) {
2337     const auto *VD = cast<ValueDecl>(ND);
2338     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2339     return MakeAddrLValue(Aliasee, T,
2340                           LValueBaseInfo(AlignmentSource::Decl, false));
2341   }
2342 
2343   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2344     // Check if this is a global variable.
2345     if (VD->hasLinkage() || VD->isStaticDataMember())
2346       return EmitGlobalVarDeclLValue(*this, E, VD);
2347 
2348     Address addr = Address::invalid();
2349 
2350     // The variable should generally be present in the local decl map.
2351     auto iter = LocalDeclMap.find(VD);
2352     if (iter != LocalDeclMap.end()) {
2353       addr = iter->second;
2354 
2355     // Otherwise, it might be static local we haven't emitted yet for
2356     // some reason; most likely, because it's in an outer function.
2357     } else if (VD->isStaticLocal()) {
2358       addr = Address(CGM.getOrCreateStaticVarDecl(
2359           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2360                      getContext().getDeclAlign(VD));
2361 
2362     // No other cases for now.
2363     } else {
2364       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2365     }
2366 
2367 
2368     // Check for OpenMP threadprivate variables.
2369     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2370       return EmitThreadPrivateVarDeclLValue(
2371           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2372           E->getExprLoc());
2373     }
2374 
2375     // Drill into block byref variables.
2376     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2377     if (isBlockByref) {
2378       addr = emitBlockByrefAddress(addr, VD);
2379     }
2380 
2381     // Drill into reference types.
2382     LValue LV;
2383     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2384       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2385     } else {
2386       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2387       LV = MakeAddrLValue(addr, T, BaseInfo);
2388     }
2389 
2390     bool isLocalStorage = VD->hasLocalStorage();
2391 
2392     bool NonGCable = isLocalStorage &&
2393                      !VD->getType()->isReferenceType() &&
2394                      !isBlockByref;
2395     if (NonGCable) {
2396       LV.getQuals().removeObjCGCAttr();
2397       LV.setNonGC(true);
2398     }
2399 
2400     bool isImpreciseLifetime =
2401       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2402     if (isImpreciseLifetime)
2403       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2404     setObjCGCLValueClass(getContext(), E, LV);
2405     return LV;
2406   }
2407 
2408   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2409     return EmitFunctionDeclLValue(*this, E, FD);
2410 
2411   // FIXME: While we're emitting a binding from an enclosing scope, all other
2412   // DeclRefExprs we see should be implicitly treated as if they also refer to
2413   // an enclosing scope.
2414   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2415     return EmitLValue(BD->getBinding());
2416 
2417   llvm_unreachable("Unhandled DeclRefExpr");
2418 }
2419 
2420 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2421   // __extension__ doesn't affect lvalue-ness.
2422   if (E->getOpcode() == UO_Extension)
2423     return EmitLValue(E->getSubExpr());
2424 
2425   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2426   switch (E->getOpcode()) {
2427   default: llvm_unreachable("Unknown unary operator lvalue!");
2428   case UO_Deref: {
2429     QualType T = E->getSubExpr()->getType()->getPointeeType();
2430     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2431 
2432     LValueBaseInfo BaseInfo;
2433     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo);
2434     LValue LV = MakeAddrLValue(Addr, T, BaseInfo);
2435     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2436 
2437     // We should not generate __weak write barrier on indirect reference
2438     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2439     // But, we continue to generate __strong write barrier on indirect write
2440     // into a pointer to object.
2441     if (getLangOpts().ObjC1 &&
2442         getLangOpts().getGC() != LangOptions::NonGC &&
2443         LV.isObjCWeak())
2444       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2445     return LV;
2446   }
2447   case UO_Real:
2448   case UO_Imag: {
2449     LValue LV = EmitLValue(E->getSubExpr());
2450     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2451 
2452     // __real is valid on scalars.  This is a faster way of testing that.
2453     // __imag can only produce an rvalue on scalars.
2454     if (E->getOpcode() == UO_Real &&
2455         !LV.getAddress().getElementType()->isStructTy()) {
2456       assert(E->getSubExpr()->getType()->isArithmeticType());
2457       return LV;
2458     }
2459 
2460     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2461 
2462     Address Component =
2463       (E->getOpcode() == UO_Real
2464          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2465          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2466     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo());
2467     ElemLV.getQuals().addQualifiers(LV.getQuals());
2468     return ElemLV;
2469   }
2470   case UO_PreInc:
2471   case UO_PreDec: {
2472     LValue LV = EmitLValue(E->getSubExpr());
2473     bool isInc = E->getOpcode() == UO_PreInc;
2474 
2475     if (E->getType()->isAnyComplexType())
2476       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2477     else
2478       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2479     return LV;
2480   }
2481   }
2482 }
2483 
2484 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2485   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2486                         E->getType(),
2487                         LValueBaseInfo(AlignmentSource::Decl, false));
2488 }
2489 
2490 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2491   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2492                         E->getType(),
2493                         LValueBaseInfo(AlignmentSource::Decl, false));
2494 }
2495 
2496 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2497   auto SL = E->getFunctionName();
2498   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2499   StringRef FnName = CurFn->getName();
2500   if (FnName.startswith("\01"))
2501     FnName = FnName.substr(1);
2502   StringRef NameItems[] = {
2503       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2504   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2505   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2506   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2507     std::string Name = SL->getString();
2508     if (!Name.empty()) {
2509       unsigned Discriminator =
2510           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2511       if (Discriminator)
2512         Name += "_" + Twine(Discriminator + 1).str();
2513       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2514       return MakeAddrLValue(C, E->getType(), BaseInfo);
2515     } else {
2516       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2517       return MakeAddrLValue(C, E->getType(), BaseInfo);
2518     }
2519   }
2520   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2521   return MakeAddrLValue(C, E->getType(), BaseInfo);
2522 }
2523 
2524 /// Emit a type description suitable for use by a runtime sanitizer library. The
2525 /// format of a type descriptor is
2526 ///
2527 /// \code
2528 ///   { i16 TypeKind, i16 TypeInfo }
2529 /// \endcode
2530 ///
2531 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2532 /// integer, 1 for a floating point value, and -1 for anything else.
2533 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2534   // Only emit each type's descriptor once.
2535   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2536     return C;
2537 
2538   uint16_t TypeKind = -1;
2539   uint16_t TypeInfo = 0;
2540 
2541   if (T->isIntegerType()) {
2542     TypeKind = 0;
2543     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2544                (T->isSignedIntegerType() ? 1 : 0);
2545   } else if (T->isFloatingType()) {
2546     TypeKind = 1;
2547     TypeInfo = getContext().getTypeSize(T);
2548   }
2549 
2550   // Format the type name as if for a diagnostic, including quotes and
2551   // optionally an 'aka'.
2552   SmallString<32> Buffer;
2553   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2554                                     (intptr_t)T.getAsOpaquePtr(),
2555                                     StringRef(), StringRef(), None, Buffer,
2556                                     None);
2557 
2558   llvm::Constant *Components[] = {
2559     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2560     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2561   };
2562   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2563 
2564   auto *GV = new llvm::GlobalVariable(
2565       CGM.getModule(), Descriptor->getType(),
2566       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2567   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2568   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2569 
2570   // Remember the descriptor for this type.
2571   CGM.setTypeDescriptorInMap(T, GV);
2572 
2573   return GV;
2574 }
2575 
2576 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2577   llvm::Type *TargetTy = IntPtrTy;
2578 
2579   // Floating-point types which fit into intptr_t are bitcast to integers
2580   // and then passed directly (after zero-extension, if necessary).
2581   if (V->getType()->isFloatingPointTy()) {
2582     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2583     if (Bits <= TargetTy->getIntegerBitWidth())
2584       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2585                                                          Bits));
2586   }
2587 
2588   // Integers which fit in intptr_t are zero-extended and passed directly.
2589   if (V->getType()->isIntegerTy() &&
2590       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2591     return Builder.CreateZExt(V, TargetTy);
2592 
2593   // Pointers are passed directly, everything else is passed by address.
2594   if (!V->getType()->isPointerTy()) {
2595     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2596     Builder.CreateStore(V, Ptr);
2597     V = Ptr.getPointer();
2598   }
2599   return Builder.CreatePtrToInt(V, TargetTy);
2600 }
2601 
2602 /// \brief Emit a representation of a SourceLocation for passing to a handler
2603 /// in a sanitizer runtime library. The format for this data is:
2604 /// \code
2605 ///   struct SourceLocation {
2606 ///     const char *Filename;
2607 ///     int32_t Line, Column;
2608 ///   };
2609 /// \endcode
2610 /// For an invalid SourceLocation, the Filename pointer is null.
2611 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2612   llvm::Constant *Filename;
2613   int Line, Column;
2614 
2615   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2616   if (PLoc.isValid()) {
2617     StringRef FilenameString = PLoc.getFilename();
2618 
2619     int PathComponentsToStrip =
2620         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2621     if (PathComponentsToStrip < 0) {
2622       assert(PathComponentsToStrip != INT_MIN);
2623       int PathComponentsToKeep = -PathComponentsToStrip;
2624       auto I = llvm::sys::path::rbegin(FilenameString);
2625       auto E = llvm::sys::path::rend(FilenameString);
2626       while (I != E && --PathComponentsToKeep)
2627         ++I;
2628 
2629       FilenameString = FilenameString.substr(I - E);
2630     } else if (PathComponentsToStrip > 0) {
2631       auto I = llvm::sys::path::begin(FilenameString);
2632       auto E = llvm::sys::path::end(FilenameString);
2633       while (I != E && PathComponentsToStrip--)
2634         ++I;
2635 
2636       if (I != E)
2637         FilenameString =
2638             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2639       else
2640         FilenameString = llvm::sys::path::filename(FilenameString);
2641     }
2642 
2643     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2644     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2645                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2646     Filename = FilenameGV.getPointer();
2647     Line = PLoc.getLine();
2648     Column = PLoc.getColumn();
2649   } else {
2650     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2651     Line = Column = 0;
2652   }
2653 
2654   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2655                             Builder.getInt32(Column)};
2656 
2657   return llvm::ConstantStruct::getAnon(Data);
2658 }
2659 
2660 namespace {
2661 /// \brief Specify under what conditions this check can be recovered
2662 enum class CheckRecoverableKind {
2663   /// Always terminate program execution if this check fails.
2664   Unrecoverable,
2665   /// Check supports recovering, runtime has both fatal (noreturn) and
2666   /// non-fatal handlers for this check.
2667   Recoverable,
2668   /// Runtime conditionally aborts, always need to support recovery.
2669   AlwaysRecoverable
2670 };
2671 }
2672 
2673 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2674   assert(llvm::countPopulation(Kind) == 1);
2675   switch (Kind) {
2676   case SanitizerKind::Vptr:
2677     return CheckRecoverableKind::AlwaysRecoverable;
2678   case SanitizerKind::Return:
2679   case SanitizerKind::Unreachable:
2680     return CheckRecoverableKind::Unrecoverable;
2681   default:
2682     return CheckRecoverableKind::Recoverable;
2683   }
2684 }
2685 
2686 namespace {
2687 struct SanitizerHandlerInfo {
2688   char const *const Name;
2689   unsigned Version;
2690 };
2691 }
2692 
2693 const SanitizerHandlerInfo SanitizerHandlers[] = {
2694 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2695     LIST_SANITIZER_CHECKS
2696 #undef SANITIZER_CHECK
2697 };
2698 
2699 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2700                                  llvm::FunctionType *FnType,
2701                                  ArrayRef<llvm::Value *> FnArgs,
2702                                  SanitizerHandler CheckHandler,
2703                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2704                                  llvm::BasicBlock *ContBB) {
2705   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2706   bool NeedsAbortSuffix =
2707       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2708   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2709   const StringRef CheckName = CheckInfo.Name;
2710   std::string FnName =
2711       ("__ubsan_handle_" + CheckName +
2712        (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") +
2713        (NeedsAbortSuffix ? "_abort" : ""))
2714           .str();
2715   bool MayReturn =
2716       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2717 
2718   llvm::AttrBuilder B;
2719   if (!MayReturn) {
2720     B.addAttribute(llvm::Attribute::NoReturn)
2721         .addAttribute(llvm::Attribute::NoUnwind);
2722   }
2723   B.addAttribute(llvm::Attribute::UWTable);
2724 
2725   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2726       FnType, FnName,
2727       llvm::AttributeList::get(CGF.getLLVMContext(),
2728                                llvm::AttributeList::FunctionIndex, B),
2729       /*Local=*/true);
2730   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2731   if (!MayReturn) {
2732     HandlerCall->setDoesNotReturn();
2733     CGF.Builder.CreateUnreachable();
2734   } else {
2735     CGF.Builder.CreateBr(ContBB);
2736   }
2737 }
2738 
2739 void CodeGenFunction::EmitCheck(
2740     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2741     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2742     ArrayRef<llvm::Value *> DynamicArgs) {
2743   assert(IsSanitizerScope);
2744   assert(Checked.size() > 0);
2745   assert(CheckHandler >= 0 &&
2746          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2747   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2748 
2749   llvm::Value *FatalCond = nullptr;
2750   llvm::Value *RecoverableCond = nullptr;
2751   llvm::Value *TrapCond = nullptr;
2752   for (int i = 0, n = Checked.size(); i < n; ++i) {
2753     llvm::Value *Check = Checked[i].first;
2754     // -fsanitize-trap= overrides -fsanitize-recover=.
2755     llvm::Value *&Cond =
2756         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2757             ? TrapCond
2758             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2759                   ? RecoverableCond
2760                   : FatalCond;
2761     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2762   }
2763 
2764   if (TrapCond)
2765     EmitTrapCheck(TrapCond);
2766   if (!FatalCond && !RecoverableCond)
2767     return;
2768 
2769   llvm::Value *JointCond;
2770   if (FatalCond && RecoverableCond)
2771     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2772   else
2773     JointCond = FatalCond ? FatalCond : RecoverableCond;
2774   assert(JointCond);
2775 
2776   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2777   assert(SanOpts.has(Checked[0].second));
2778 #ifndef NDEBUG
2779   for (int i = 1, n = Checked.size(); i < n; ++i) {
2780     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2781            "All recoverable kinds in a single check must be same!");
2782     assert(SanOpts.has(Checked[i].second));
2783   }
2784 #endif
2785 
2786   llvm::BasicBlock *Cont = createBasicBlock("cont");
2787   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2788   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2789   // Give hint that we very much don't expect to execute the handler
2790   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2791   llvm::MDBuilder MDHelper(getLLVMContext());
2792   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2793   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2794   EmitBlock(Handlers);
2795 
2796   // Handler functions take an i8* pointing to the (handler-specific) static
2797   // information block, followed by a sequence of intptr_t arguments
2798   // representing operand values.
2799   SmallVector<llvm::Value *, 4> Args;
2800   SmallVector<llvm::Type *, 4> ArgTypes;
2801   Args.reserve(DynamicArgs.size() + 1);
2802   ArgTypes.reserve(DynamicArgs.size() + 1);
2803 
2804   // Emit handler arguments and create handler function type.
2805   if (!StaticArgs.empty()) {
2806     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2807     auto *InfoPtr =
2808         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2809                                  llvm::GlobalVariable::PrivateLinkage, Info);
2810     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2811     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2812     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2813     ArgTypes.push_back(Int8PtrTy);
2814   }
2815 
2816   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2817     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2818     ArgTypes.push_back(IntPtrTy);
2819   }
2820 
2821   llvm::FunctionType *FnType =
2822     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2823 
2824   if (!FatalCond || !RecoverableCond) {
2825     // Simple case: we need to generate a single handler call, either
2826     // fatal, or non-fatal.
2827     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2828                          (FatalCond != nullptr), Cont);
2829   } else {
2830     // Emit two handler calls: first one for set of unrecoverable checks,
2831     // another one for recoverable.
2832     llvm::BasicBlock *NonFatalHandlerBB =
2833         createBasicBlock("non_fatal." + CheckName);
2834     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2835     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2836     EmitBlock(FatalHandlerBB);
2837     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2838                          NonFatalHandlerBB);
2839     EmitBlock(NonFatalHandlerBB);
2840     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2841                          Cont);
2842   }
2843 
2844   EmitBlock(Cont);
2845 }
2846 
2847 void CodeGenFunction::EmitCfiSlowPathCheck(
2848     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2849     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2850   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2851 
2852   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2853   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2854 
2855   llvm::MDBuilder MDHelper(getLLVMContext());
2856   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2857   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2858 
2859   EmitBlock(CheckBB);
2860 
2861   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2862 
2863   llvm::CallInst *CheckCall;
2864   if (WithDiag) {
2865     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2866     auto *InfoPtr =
2867         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2868                                  llvm::GlobalVariable::PrivateLinkage, Info);
2869     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2870     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2871 
2872     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2873         "__cfi_slowpath_diag",
2874         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2875                                 false));
2876     CheckCall = Builder.CreateCall(
2877         SlowPathDiagFn,
2878         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2879   } else {
2880     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2881         "__cfi_slowpath",
2882         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2883     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2884   }
2885 
2886   CheckCall->setDoesNotThrow();
2887 
2888   EmitBlock(Cont);
2889 }
2890 
2891 // Emit a stub for __cfi_check function so that the linker knows about this
2892 // symbol in LTO mode.
2893 void CodeGenFunction::EmitCfiCheckStub() {
2894   llvm::Module *M = &CGM.getModule();
2895   auto &Ctx = M->getContext();
2896   llvm::Function *F = llvm::Function::Create(
2897       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2898       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2899   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2900   // FIXME: consider emitting an intrinsic call like
2901   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2902   // which can be lowered in CrossDSOCFI pass to the actual contents of
2903   // __cfi_check. This would allow inlining of __cfi_check calls.
2904   llvm::CallInst::Create(
2905       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2906   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2907 }
2908 
2909 // This function is basically a switch over the CFI failure kind, which is
2910 // extracted from CFICheckFailData (1st function argument). Each case is either
2911 // llvm.trap or a call to one of the two runtime handlers, based on
2912 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2913 // failure kind) traps, but this should really never happen.  CFICheckFailData
2914 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2915 // check kind; in this case __cfi_check_fail traps as well.
2916 void CodeGenFunction::EmitCfiCheckFail() {
2917   SanitizerScope SanScope(this);
2918   FunctionArgList Args;
2919   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2920                             ImplicitParamDecl::Other);
2921   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2922                             ImplicitParamDecl::Other);
2923   Args.push_back(&ArgData);
2924   Args.push_back(&ArgAddr);
2925 
2926   const CGFunctionInfo &FI =
2927     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2928 
2929   llvm::Function *F = llvm::Function::Create(
2930       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2931       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2932   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2933 
2934   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2935                 SourceLocation());
2936 
2937   llvm::Value *Data =
2938       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2939                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2940   llvm::Value *Addr =
2941       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2942                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2943 
2944   // Data == nullptr means the calling module has trap behaviour for this check.
2945   llvm::Value *DataIsNotNullPtr =
2946       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2947   EmitTrapCheck(DataIsNotNullPtr);
2948 
2949   llvm::StructType *SourceLocationTy =
2950       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2951   llvm::StructType *CfiCheckFailDataTy =
2952       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2953 
2954   llvm::Value *V = Builder.CreateConstGEP2_32(
2955       CfiCheckFailDataTy,
2956       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2957       0);
2958   Address CheckKindAddr(V, getIntAlign());
2959   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2960 
2961   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2962       CGM.getLLVMContext(),
2963       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2964   llvm::Value *ValidVtable = Builder.CreateZExt(
2965       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2966                          {Addr, AllVtables}),
2967       IntPtrTy);
2968 
2969   const std::pair<int, SanitizerMask> CheckKinds[] = {
2970       {CFITCK_VCall, SanitizerKind::CFIVCall},
2971       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2972       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2973       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2974       {CFITCK_ICall, SanitizerKind::CFIICall}};
2975 
2976   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2977   for (auto CheckKindMaskPair : CheckKinds) {
2978     int Kind = CheckKindMaskPair.first;
2979     SanitizerMask Mask = CheckKindMaskPair.second;
2980     llvm::Value *Cond =
2981         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2982     if (CGM.getLangOpts().Sanitize.has(Mask))
2983       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
2984                 {Data, Addr, ValidVtable});
2985     else
2986       EmitTrapCheck(Cond);
2987   }
2988 
2989   FinishFunction();
2990   // The only reference to this function will be created during LTO link.
2991   // Make sure it survives until then.
2992   CGM.addUsedGlobal(F);
2993 }
2994 
2995 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2996   llvm::BasicBlock *Cont = createBasicBlock("cont");
2997 
2998   // If we're optimizing, collapse all calls to trap down to just one per
2999   // function to save on code size.
3000   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3001     TrapBB = createBasicBlock("trap");
3002     Builder.CreateCondBr(Checked, Cont, TrapBB);
3003     EmitBlock(TrapBB);
3004     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3005     TrapCall->setDoesNotReturn();
3006     TrapCall->setDoesNotThrow();
3007     Builder.CreateUnreachable();
3008   } else {
3009     Builder.CreateCondBr(Checked, Cont, TrapBB);
3010   }
3011 
3012   EmitBlock(Cont);
3013 }
3014 
3015 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3016   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3017 
3018   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3019     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3020                                   CGM.getCodeGenOpts().TrapFuncName);
3021     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3022   }
3023 
3024   return TrapCall;
3025 }
3026 
3027 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3028                                                  LValueBaseInfo *BaseInfo) {
3029   assert(E->getType()->isArrayType() &&
3030          "Array to pointer decay must have array source type!");
3031 
3032   // Expressions of array type can't be bitfields or vector elements.
3033   LValue LV = EmitLValue(E);
3034   Address Addr = LV.getAddress();
3035   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3036 
3037   // If the array type was an incomplete type, we need to make sure
3038   // the decay ends up being the right type.
3039   llvm::Type *NewTy = ConvertType(E->getType());
3040   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3041 
3042   // Note that VLA pointers are always decayed, so we don't need to do
3043   // anything here.
3044   if (!E->getType()->isVariableArrayType()) {
3045     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3046            "Expected pointer to array");
3047     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3048   }
3049 
3050   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3051   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3052 }
3053 
3054 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3055 /// array to pointer, return the array subexpression.
3056 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3057   // If this isn't just an array->pointer decay, bail out.
3058   const auto *CE = dyn_cast<CastExpr>(E);
3059   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3060     return nullptr;
3061 
3062   // If this is a decay from variable width array, bail out.
3063   const Expr *SubExpr = CE->getSubExpr();
3064   if (SubExpr->getType()->isVariableArrayType())
3065     return nullptr;
3066 
3067   return SubExpr;
3068 }
3069 
3070 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3071                                           llvm::Value *ptr,
3072                                           ArrayRef<llvm::Value*> indices,
3073                                           bool inbounds,
3074                                           bool signedIndices,
3075                                           SourceLocation loc,
3076                                     const llvm::Twine &name = "arrayidx") {
3077   if (inbounds) {
3078     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3079                                       CodeGenFunction::NotSubtraction, loc,
3080                                       name);
3081   } else {
3082     return CGF.Builder.CreateGEP(ptr, indices, name);
3083   }
3084 }
3085 
3086 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3087                                       llvm::Value *idx,
3088                                       CharUnits eltSize) {
3089   // If we have a constant index, we can use the exact offset of the
3090   // element we're accessing.
3091   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3092     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3093     return arrayAlign.alignmentAtOffset(offset);
3094 
3095   // Otherwise, use the worst-case alignment for any element.
3096   } else {
3097     return arrayAlign.alignmentOfArrayElement(eltSize);
3098   }
3099 }
3100 
3101 static QualType getFixedSizeElementType(const ASTContext &ctx,
3102                                         const VariableArrayType *vla) {
3103   QualType eltType;
3104   do {
3105     eltType = vla->getElementType();
3106   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3107   return eltType;
3108 }
3109 
3110 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3111                                      ArrayRef<llvm::Value *> indices,
3112                                      QualType eltType, bool inbounds,
3113                                      bool signedIndices, SourceLocation loc,
3114                                      const llvm::Twine &name = "arrayidx") {
3115   // All the indices except that last must be zero.
3116 #ifndef NDEBUG
3117   for (auto idx : indices.drop_back())
3118     assert(isa<llvm::ConstantInt>(idx) &&
3119            cast<llvm::ConstantInt>(idx)->isZero());
3120 #endif
3121 
3122   // Determine the element size of the statically-sized base.  This is
3123   // the thing that the indices are expressed in terms of.
3124   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3125     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3126   }
3127 
3128   // We can use that to compute the best alignment of the element.
3129   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3130   CharUnits eltAlign =
3131     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3132 
3133   llvm::Value *eltPtr = emitArraySubscriptGEP(
3134       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3135   return Address(eltPtr, eltAlign);
3136 }
3137 
3138 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3139                                                bool Accessed) {
3140   // The index must always be an integer, which is not an aggregate.  Emit it
3141   // in lexical order (this complexity is, sadly, required by C++17).
3142   llvm::Value *IdxPre =
3143       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3144   bool SignedIndices = false;
3145   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3146     auto *Idx = IdxPre;
3147     if (E->getLHS() != E->getIdx()) {
3148       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3149       Idx = EmitScalarExpr(E->getIdx());
3150     }
3151 
3152     QualType IdxTy = E->getIdx()->getType();
3153     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3154     SignedIndices |= IdxSigned;
3155 
3156     if (SanOpts.has(SanitizerKind::ArrayBounds))
3157       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3158 
3159     // Extend or truncate the index type to 32 or 64-bits.
3160     if (Promote && Idx->getType() != IntPtrTy)
3161       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3162 
3163     return Idx;
3164   };
3165   IdxPre = nullptr;
3166 
3167   // If the base is a vector type, then we are forming a vector element lvalue
3168   // with this subscript.
3169   if (E->getBase()->getType()->isVectorType() &&
3170       !isa<ExtVectorElementExpr>(E->getBase())) {
3171     // Emit the vector as an lvalue to get its address.
3172     LValue LHS = EmitLValue(E->getBase());
3173     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3174     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3175     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3176                                  E->getBase()->getType(),
3177                                  LHS.getBaseInfo());
3178   }
3179 
3180   // All the other cases basically behave like simple offsetting.
3181 
3182   // Handle the extvector case we ignored above.
3183   if (isa<ExtVectorElementExpr>(E->getBase())) {
3184     LValue LV = EmitLValue(E->getBase());
3185     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3186     Address Addr = EmitExtVectorElementLValue(LV);
3187 
3188     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3189     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3190                                  SignedIndices, E->getExprLoc());
3191     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo());
3192   }
3193 
3194   LValueBaseInfo BaseInfo;
3195   Address Addr = Address::invalid();
3196   if (const VariableArrayType *vla =
3197            getContext().getAsVariableArrayType(E->getType())) {
3198     // The base must be a pointer, which is not an aggregate.  Emit
3199     // it.  It needs to be emitted first in case it's what captures
3200     // the VLA bounds.
3201     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3202     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3203 
3204     // The element count here is the total number of non-VLA elements.
3205     llvm::Value *numElements = getVLASize(vla).first;
3206 
3207     // Effectively, the multiply by the VLA size is part of the GEP.
3208     // GEP indexes are signed, and scaling an index isn't permitted to
3209     // signed-overflow, so we use the same semantics for our explicit
3210     // multiply.  We suppress this if overflow is not undefined behavior.
3211     if (getLangOpts().isSignedOverflowDefined()) {
3212       Idx = Builder.CreateMul(Idx, numElements);
3213     } else {
3214       Idx = Builder.CreateNSWMul(Idx, numElements);
3215     }
3216 
3217     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3218                                  !getLangOpts().isSignedOverflowDefined(),
3219                                  SignedIndices, E->getExprLoc());
3220 
3221   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3222     // Indexing over an interface, as in "NSString *P; P[4];"
3223 
3224     // Emit the base pointer.
3225     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3226     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3227 
3228     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3229     llvm::Value *InterfaceSizeVal =
3230         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3231 
3232     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3233 
3234     // We don't necessarily build correct LLVM struct types for ObjC
3235     // interfaces, so we can't rely on GEP to do this scaling
3236     // correctly, so we need to cast to i8*.  FIXME: is this actually
3237     // true?  A lot of other things in the fragile ABI would break...
3238     llvm::Type *OrigBaseTy = Addr.getType();
3239     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3240 
3241     // Do the GEP.
3242     CharUnits EltAlign =
3243       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3244     llvm::Value *EltPtr =
3245         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3246                               SignedIndices, E->getExprLoc());
3247     Addr = Address(EltPtr, EltAlign);
3248 
3249     // Cast back.
3250     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3251   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3252     // If this is A[i] where A is an array, the frontend will have decayed the
3253     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3254     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3255     // "gep x, i" here.  Emit one "gep A, 0, i".
3256     assert(Array->getType()->isArrayType() &&
3257            "Array to pointer decay must have array source type!");
3258     LValue ArrayLV;
3259     // For simple multidimensional array indexing, set the 'accessed' flag for
3260     // better bounds-checking of the base expression.
3261     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3262       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3263     else
3264       ArrayLV = EmitLValue(Array);
3265     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3266 
3267     // Propagate the alignment from the array itself to the result.
3268     Addr = emitArraySubscriptGEP(
3269         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3270         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3271         E->getExprLoc());
3272     BaseInfo = ArrayLV.getBaseInfo();
3273   } else {
3274     // The base must be a pointer; emit it with an estimate of its alignment.
3275     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3276     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3277     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3278                                  !getLangOpts().isSignedOverflowDefined(),
3279                                  SignedIndices, E->getExprLoc());
3280   }
3281 
3282   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo);
3283 
3284   // TODO: Preserve/extend path TBAA metadata?
3285 
3286   if (getLangOpts().ObjC1 &&
3287       getLangOpts().getGC() != LangOptions::NonGC) {
3288     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3289     setObjCGCLValueClass(getContext(), E, LV);
3290   }
3291   return LV;
3292 }
3293 
3294 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3295                                        LValueBaseInfo &BaseInfo,
3296                                        QualType BaseTy, QualType ElTy,
3297                                        bool IsLowerBound) {
3298   LValue BaseLVal;
3299   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3300     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3301     if (BaseTy->isArrayType()) {
3302       Address Addr = BaseLVal.getAddress();
3303       BaseInfo = BaseLVal.getBaseInfo();
3304 
3305       // If the array type was an incomplete type, we need to make sure
3306       // the decay ends up being the right type.
3307       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3308       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3309 
3310       // Note that VLA pointers are always decayed, so we don't need to do
3311       // anything here.
3312       if (!BaseTy->isVariableArrayType()) {
3313         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3314                "Expected pointer to array");
3315         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3316                                            "arraydecay");
3317       }
3318 
3319       return CGF.Builder.CreateElementBitCast(Addr,
3320                                               CGF.ConvertTypeForMem(ElTy));
3321     }
3322     LValueBaseInfo TypeInfo;
3323     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3324     BaseInfo.mergeForCast(TypeInfo);
3325     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3326   }
3327   return CGF.EmitPointerWithAlignment(Base, &BaseInfo);
3328 }
3329 
3330 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3331                                                 bool IsLowerBound) {
3332   QualType BaseTy;
3333   if (auto *ASE =
3334           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3335     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3336   else
3337     BaseTy = E->getBase()->getType();
3338   QualType ResultExprTy;
3339   if (auto *AT = getContext().getAsArrayType(BaseTy))
3340     ResultExprTy = AT->getElementType();
3341   else
3342     ResultExprTy = BaseTy->getPointeeType();
3343   llvm::Value *Idx = nullptr;
3344   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3345     // Requesting lower bound or upper bound, but without provided length and
3346     // without ':' symbol for the default length -> length = 1.
3347     // Idx = LowerBound ?: 0;
3348     if (auto *LowerBound = E->getLowerBound()) {
3349       Idx = Builder.CreateIntCast(
3350           EmitScalarExpr(LowerBound), IntPtrTy,
3351           LowerBound->getType()->hasSignedIntegerRepresentation());
3352     } else
3353       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3354   } else {
3355     // Try to emit length or lower bound as constant. If this is possible, 1
3356     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3357     // IR (LB + Len) - 1.
3358     auto &C = CGM.getContext();
3359     auto *Length = E->getLength();
3360     llvm::APSInt ConstLength;
3361     if (Length) {
3362       // Idx = LowerBound + Length - 1;
3363       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3364         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3365         Length = nullptr;
3366       }
3367       auto *LowerBound = E->getLowerBound();
3368       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3369       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3370         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3371         LowerBound = nullptr;
3372       }
3373       if (!Length)
3374         --ConstLength;
3375       else if (!LowerBound)
3376         --ConstLowerBound;
3377 
3378       if (Length || LowerBound) {
3379         auto *LowerBoundVal =
3380             LowerBound
3381                 ? Builder.CreateIntCast(
3382                       EmitScalarExpr(LowerBound), IntPtrTy,
3383                       LowerBound->getType()->hasSignedIntegerRepresentation())
3384                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3385         auto *LengthVal =
3386             Length
3387                 ? Builder.CreateIntCast(
3388                       EmitScalarExpr(Length), IntPtrTy,
3389                       Length->getType()->hasSignedIntegerRepresentation())
3390                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3391         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3392                                 /*HasNUW=*/false,
3393                                 !getLangOpts().isSignedOverflowDefined());
3394         if (Length && LowerBound) {
3395           Idx = Builder.CreateSub(
3396               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3397               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3398         }
3399       } else
3400         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3401     } else {
3402       // Idx = ArraySize - 1;
3403       QualType ArrayTy = BaseTy->isPointerType()
3404                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3405                              : BaseTy;
3406       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3407         Length = VAT->getSizeExpr();
3408         if (Length->isIntegerConstantExpr(ConstLength, C))
3409           Length = nullptr;
3410       } else {
3411         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3412         ConstLength = CAT->getSize();
3413       }
3414       if (Length) {
3415         auto *LengthVal = Builder.CreateIntCast(
3416             EmitScalarExpr(Length), IntPtrTy,
3417             Length->getType()->hasSignedIntegerRepresentation());
3418         Idx = Builder.CreateSub(
3419             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3420             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3421       } else {
3422         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3423         --ConstLength;
3424         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3425       }
3426     }
3427   }
3428   assert(Idx);
3429 
3430   Address EltPtr = Address::invalid();
3431   LValueBaseInfo BaseInfo;
3432   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3433     // The base must be a pointer, which is not an aggregate.  Emit
3434     // it.  It needs to be emitted first in case it's what captures
3435     // the VLA bounds.
3436     Address Base =
3437         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy,
3438                                 VLA->getElementType(), IsLowerBound);
3439     // The element count here is the total number of non-VLA elements.
3440     llvm::Value *NumElements = getVLASize(VLA).first;
3441 
3442     // Effectively, the multiply by the VLA size is part of the GEP.
3443     // GEP indexes are signed, and scaling an index isn't permitted to
3444     // signed-overflow, so we use the same semantics for our explicit
3445     // multiply.  We suppress this if overflow is not undefined behavior.
3446     if (getLangOpts().isSignedOverflowDefined())
3447       Idx = Builder.CreateMul(Idx, NumElements);
3448     else
3449       Idx = Builder.CreateNSWMul(Idx, NumElements);
3450     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3451                                    !getLangOpts().isSignedOverflowDefined(),
3452                                    /*SignedIndices=*/false, E->getExprLoc());
3453   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3454     // If this is A[i] where A is an array, the frontend will have decayed the
3455     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3456     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3457     // "gep x, i" here.  Emit one "gep A, 0, i".
3458     assert(Array->getType()->isArrayType() &&
3459            "Array to pointer decay must have array source type!");
3460     LValue ArrayLV;
3461     // For simple multidimensional array indexing, set the 'accessed' flag for
3462     // better bounds-checking of the base expression.
3463     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3464       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3465     else
3466       ArrayLV = EmitLValue(Array);
3467 
3468     // Propagate the alignment from the array itself to the result.
3469     EltPtr = emitArraySubscriptGEP(
3470         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3471         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3472         /*SignedIndices=*/false, E->getExprLoc());
3473     BaseInfo = ArrayLV.getBaseInfo();
3474   } else {
3475     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3476                                            BaseTy, ResultExprTy, IsLowerBound);
3477     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3478                                    !getLangOpts().isSignedOverflowDefined(),
3479                                    /*SignedIndices=*/false, E->getExprLoc());
3480   }
3481 
3482   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo);
3483 }
3484 
3485 LValue CodeGenFunction::
3486 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3487   // Emit the base vector as an l-value.
3488   LValue Base;
3489 
3490   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3491   if (E->isArrow()) {
3492     // If it is a pointer to a vector, emit the address and form an lvalue with
3493     // it.
3494     LValueBaseInfo BaseInfo;
3495     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3496     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3497     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo);
3498     Base.getQuals().removeObjCGCAttr();
3499   } else if (E->getBase()->isGLValue()) {
3500     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3501     // emit the base as an lvalue.
3502     assert(E->getBase()->getType()->isVectorType());
3503     Base = EmitLValue(E->getBase());
3504   } else {
3505     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3506     assert(E->getBase()->getType()->isVectorType() &&
3507            "Result must be a vector");
3508     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3509 
3510     // Store the vector to memory (because LValue wants an address).
3511     Address VecMem = CreateMemTemp(E->getBase()->getType());
3512     Builder.CreateStore(Vec, VecMem);
3513     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3514                           LValueBaseInfo(AlignmentSource::Decl, false));
3515   }
3516 
3517   QualType type =
3518     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3519 
3520   // Encode the element access list into a vector of unsigned indices.
3521   SmallVector<uint32_t, 4> Indices;
3522   E->getEncodedElementAccess(Indices);
3523 
3524   if (Base.isSimple()) {
3525     llvm::Constant *CV =
3526         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3527     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3528                                     Base.getBaseInfo());
3529   }
3530   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3531 
3532   llvm::Constant *BaseElts = Base.getExtVectorElts();
3533   SmallVector<llvm::Constant *, 4> CElts;
3534 
3535   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3536     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3537   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3538   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3539                                   Base.getBaseInfo());
3540 }
3541 
3542 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3543   Expr *BaseExpr = E->getBase();
3544   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3545   LValue BaseLV;
3546   if (E->isArrow()) {
3547     LValueBaseInfo BaseInfo;
3548     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo);
3549     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3550     SanitizerSet SkippedChecks;
3551     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3552     if (IsBaseCXXThis)
3553       SkippedChecks.set(SanitizerKind::Alignment, true);
3554     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3555       SkippedChecks.set(SanitizerKind::Null, true);
3556     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3557                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3558     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo);
3559   } else
3560     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3561 
3562   NamedDecl *ND = E->getMemberDecl();
3563   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3564     LValue LV = EmitLValueForField(BaseLV, Field);
3565     setObjCGCLValueClass(getContext(), E, LV);
3566     return LV;
3567   }
3568 
3569   if (auto *VD = dyn_cast<VarDecl>(ND))
3570     return EmitGlobalVarDeclLValue(*this, E, VD);
3571 
3572   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3573     return EmitFunctionDeclLValue(*this, E, FD);
3574 
3575   llvm_unreachable("Unhandled member declaration!");
3576 }
3577 
3578 /// Given that we are currently emitting a lambda, emit an l-value for
3579 /// one of its members.
3580 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3581   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3582   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3583   QualType LambdaTagType =
3584     getContext().getTagDeclType(Field->getParent());
3585   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3586   return EmitLValueForField(LambdaLV, Field);
3587 }
3588 
3589 /// Drill down to the storage of a field without walking into
3590 /// reference types.
3591 ///
3592 /// The resulting address doesn't necessarily have the right type.
3593 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3594                                       const FieldDecl *field) {
3595   const RecordDecl *rec = field->getParent();
3596 
3597   unsigned idx =
3598     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3599 
3600   CharUnits offset;
3601   // Adjust the alignment down to the given offset.
3602   // As a special case, if the LLVM field index is 0, we know that this
3603   // is zero.
3604   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3605                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3606          "LLVM field at index zero had non-zero offset?");
3607   if (idx != 0) {
3608     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3609     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3610     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3611   }
3612 
3613   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3614 }
3615 
3616 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3617   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3618   if (!RD)
3619     return false;
3620 
3621   if (RD->isDynamicClass())
3622     return true;
3623 
3624   for (const auto &Base : RD->bases())
3625     if (hasAnyVptr(Base.getType(), Context))
3626       return true;
3627 
3628   for (const FieldDecl *Field : RD->fields())
3629     if (hasAnyVptr(Field->getType(), Context))
3630       return true;
3631 
3632   return false;
3633 }
3634 
3635 LValue CodeGenFunction::EmitLValueForField(LValue base,
3636                                            const FieldDecl *field) {
3637   LValueBaseInfo BaseInfo = base.getBaseInfo();
3638   AlignmentSource fieldAlignSource =
3639     getFieldAlignmentSource(BaseInfo.getAlignmentSource());
3640   LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias());
3641 
3642   const RecordDecl *rec = field->getParent();
3643   if (rec->isUnion() || rec->hasAttr<MayAliasAttr>())
3644     FieldBaseInfo.setMayAlias(true);
3645   bool mayAlias = FieldBaseInfo.getMayAlias();
3646 
3647   if (field->isBitField()) {
3648     const CGRecordLayout &RL =
3649       CGM.getTypes().getCGRecordLayout(field->getParent());
3650     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3651     Address Addr = base.getAddress();
3652     unsigned Idx = RL.getLLVMFieldNo(field);
3653     if (Idx != 0)
3654       // For structs, we GEP to the field that the record layout suggests.
3655       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3656                                      field->getName());
3657     // Get the access type.
3658     llvm::Type *FieldIntTy =
3659       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3660     if (Addr.getElementType() != FieldIntTy)
3661       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3662 
3663     QualType fieldType =
3664       field->getType().withCVRQualifiers(base.getVRQualifiers());
3665     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo);
3666   }
3667 
3668   QualType type = field->getType();
3669   Address addr = base.getAddress();
3670   unsigned cvr = base.getVRQualifiers();
3671   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3672   if (rec->isUnion()) {
3673     // For unions, there is no pointer adjustment.
3674     assert(!type->isReferenceType() && "union has reference member");
3675     // TODO: handle path-aware TBAA for union.
3676     TBAAPath = false;
3677 
3678     const auto FieldType = field->getType();
3679     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3680         hasAnyVptr(FieldType, getContext()))
3681       // Because unions can easily skip invariant.barriers, we need to add
3682       // a barrier every time CXXRecord field with vptr is referenced.
3683       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3684                      addr.getAlignment());
3685   } else {
3686     // For structs, we GEP to the field that the record layout suggests.
3687     addr = emitAddrOfFieldStorage(*this, addr, field);
3688 
3689     // If this is a reference field, load the reference right now.
3690     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3691       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3692       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3693 
3694       // Loading the reference will disable path-aware TBAA.
3695       TBAAPath = false;
3696       if (CGM.shouldUseTBAA()) {
3697         llvm::MDNode *tbaa;
3698         if (mayAlias)
3699           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3700         else
3701           tbaa = CGM.getTBAAInfo(type);
3702         if (tbaa)
3703           CGM.DecorateInstructionWithTBAA(load, tbaa);
3704       }
3705 
3706       mayAlias = false;
3707       type = refType->getPointeeType();
3708 
3709       CharUnits alignment =
3710         getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true);
3711       FieldBaseInfo.setMayAlias(false);
3712       addr = Address(load, alignment);
3713 
3714       // Qualifiers on the struct don't apply to the referencee, and
3715       // we'll pick up CVR from the actual type later, so reset these
3716       // additional qualifiers now.
3717       cvr = 0;
3718     }
3719   }
3720 
3721   // Make sure that the address is pointing to the right type.  This is critical
3722   // for both unions and structs.  A union needs a bitcast, a struct element
3723   // will need a bitcast if the LLVM type laid out doesn't match the desired
3724   // type.
3725   addr = Builder.CreateElementBitCast(addr,
3726                                       CGM.getTypes().ConvertTypeForMem(type),
3727                                       field->getName());
3728 
3729   if (field->hasAttr<AnnotateAttr>())
3730     addr = EmitFieldAnnotations(field, addr);
3731 
3732   LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo);
3733   LV.getQuals().addCVRQualifiers(cvr);
3734   if (TBAAPath) {
3735     const ASTRecordLayout &Layout =
3736         getContext().getASTRecordLayout(field->getParent());
3737     // Set the base type to be the base type of the base LValue and
3738     // update offset to be relative to the base type.
3739     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3740     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3741                      Layout.getFieldOffset(field->getFieldIndex()) /
3742                                            getContext().getCharWidth());
3743   }
3744 
3745   // __weak attribute on a field is ignored.
3746   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3747     LV.getQuals().removeObjCGCAttr();
3748 
3749   // Fields of may_alias structs act like 'char' for TBAA purposes.
3750   // FIXME: this should get propagated down through anonymous structs
3751   // and unions.
3752   if (mayAlias && LV.getTBAAInfo())
3753     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3754 
3755   return LV;
3756 }
3757 
3758 LValue
3759 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3760                                                   const FieldDecl *Field) {
3761   QualType FieldType = Field->getType();
3762 
3763   if (!FieldType->isReferenceType())
3764     return EmitLValueForField(Base, Field);
3765 
3766   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3767 
3768   // Make sure that the address is pointing to the right type.
3769   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3770   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3771 
3772   // TODO: access-path TBAA?
3773   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3774   LValueBaseInfo FieldBaseInfo(
3775       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3776       BaseInfo.getMayAlias());
3777   return MakeAddrLValue(V, FieldType, FieldBaseInfo);
3778 }
3779 
3780 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3781   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
3782   if (E->isFileScope()) {
3783     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3784     return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo);
3785   }
3786   if (E->getType()->isVariablyModifiedType())
3787     // make sure to emit the VLA size.
3788     EmitVariablyModifiedType(E->getType());
3789 
3790   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3791   const Expr *InitExpr = E->getInitializer();
3792   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo);
3793 
3794   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3795                    /*Init*/ true);
3796 
3797   return Result;
3798 }
3799 
3800 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3801   if (!E->isGLValue())
3802     // Initializing an aggregate temporary in C++11: T{...}.
3803     return EmitAggExprToLValue(E);
3804 
3805   // An lvalue initializer list must be initializing a reference.
3806   assert(E->isTransparent() && "non-transparent glvalue init list");
3807   return EmitLValue(E->getInit(0));
3808 }
3809 
3810 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3811 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3812 /// LValue is returned and the current block has been terminated.
3813 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3814                                                     const Expr *Operand) {
3815   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3816     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3817     return None;
3818   }
3819 
3820   return CGF.EmitLValue(Operand);
3821 }
3822 
3823 LValue CodeGenFunction::
3824 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3825   if (!expr->isGLValue()) {
3826     // ?: here should be an aggregate.
3827     assert(hasAggregateEvaluationKind(expr->getType()) &&
3828            "Unexpected conditional operator!");
3829     return EmitAggExprToLValue(expr);
3830   }
3831 
3832   OpaqueValueMapping binding(*this, expr);
3833 
3834   const Expr *condExpr = expr->getCond();
3835   bool CondExprBool;
3836   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3837     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3838     if (!CondExprBool) std::swap(live, dead);
3839 
3840     if (!ContainsLabel(dead)) {
3841       // If the true case is live, we need to track its region.
3842       if (CondExprBool)
3843         incrementProfileCounter(expr);
3844       return EmitLValue(live);
3845     }
3846   }
3847 
3848   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3849   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3850   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3851 
3852   ConditionalEvaluation eval(*this);
3853   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3854 
3855   // Any temporaries created here are conditional.
3856   EmitBlock(lhsBlock);
3857   incrementProfileCounter(expr);
3858   eval.begin(*this);
3859   Optional<LValue> lhs =
3860       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3861   eval.end(*this);
3862 
3863   if (lhs && !lhs->isSimple())
3864     return EmitUnsupportedLValue(expr, "conditional operator");
3865 
3866   lhsBlock = Builder.GetInsertBlock();
3867   if (lhs)
3868     Builder.CreateBr(contBlock);
3869 
3870   // Any temporaries created here are conditional.
3871   EmitBlock(rhsBlock);
3872   eval.begin(*this);
3873   Optional<LValue> rhs =
3874       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3875   eval.end(*this);
3876   if (rhs && !rhs->isSimple())
3877     return EmitUnsupportedLValue(expr, "conditional operator");
3878   rhsBlock = Builder.GetInsertBlock();
3879 
3880   EmitBlock(contBlock);
3881 
3882   if (lhs && rhs) {
3883     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3884                                            2, "cond-lvalue");
3885     phi->addIncoming(lhs->getPointer(), lhsBlock);
3886     phi->addIncoming(rhs->getPointer(), rhsBlock);
3887     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3888     AlignmentSource alignSource =
3889       std::max(lhs->getBaseInfo().getAlignmentSource(),
3890                rhs->getBaseInfo().getAlignmentSource());
3891     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3892                     rhs->getBaseInfo().getMayAlias();
3893     return MakeAddrLValue(result, expr->getType(),
3894                           LValueBaseInfo(alignSource, MayAlias));
3895   } else {
3896     assert((lhs || rhs) &&
3897            "both operands of glvalue conditional are throw-expressions?");
3898     return lhs ? *lhs : *rhs;
3899   }
3900 }
3901 
3902 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3903 /// type. If the cast is to a reference, we can have the usual lvalue result,
3904 /// otherwise if a cast is needed by the code generator in an lvalue context,
3905 /// then it must mean that we need the address of an aggregate in order to
3906 /// access one of its members.  This can happen for all the reasons that casts
3907 /// are permitted with aggregate result, including noop aggregate casts, and
3908 /// cast from scalar to union.
3909 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3910   switch (E->getCastKind()) {
3911   case CK_ToVoid:
3912   case CK_BitCast:
3913   case CK_ArrayToPointerDecay:
3914   case CK_FunctionToPointerDecay:
3915   case CK_NullToMemberPointer:
3916   case CK_NullToPointer:
3917   case CK_IntegralToPointer:
3918   case CK_PointerToIntegral:
3919   case CK_PointerToBoolean:
3920   case CK_VectorSplat:
3921   case CK_IntegralCast:
3922   case CK_BooleanToSignedIntegral:
3923   case CK_IntegralToBoolean:
3924   case CK_IntegralToFloating:
3925   case CK_FloatingToIntegral:
3926   case CK_FloatingToBoolean:
3927   case CK_FloatingCast:
3928   case CK_FloatingRealToComplex:
3929   case CK_FloatingComplexToReal:
3930   case CK_FloatingComplexToBoolean:
3931   case CK_FloatingComplexCast:
3932   case CK_FloatingComplexToIntegralComplex:
3933   case CK_IntegralRealToComplex:
3934   case CK_IntegralComplexToReal:
3935   case CK_IntegralComplexToBoolean:
3936   case CK_IntegralComplexCast:
3937   case CK_IntegralComplexToFloatingComplex:
3938   case CK_DerivedToBaseMemberPointer:
3939   case CK_BaseToDerivedMemberPointer:
3940   case CK_MemberPointerToBoolean:
3941   case CK_ReinterpretMemberPointer:
3942   case CK_AnyPointerToBlockPointerCast:
3943   case CK_ARCProduceObject:
3944   case CK_ARCConsumeObject:
3945   case CK_ARCReclaimReturnedObject:
3946   case CK_ARCExtendBlockObject:
3947   case CK_CopyAndAutoreleaseBlockObject:
3948   case CK_AddressSpaceConversion:
3949   case CK_IntToOCLSampler:
3950     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3951 
3952   case CK_Dependent:
3953     llvm_unreachable("dependent cast kind in IR gen!");
3954 
3955   case CK_BuiltinFnToFnPtr:
3956     llvm_unreachable("builtin functions are handled elsewhere");
3957 
3958   // These are never l-values; just use the aggregate emission code.
3959   case CK_NonAtomicToAtomic:
3960   case CK_AtomicToNonAtomic:
3961     return EmitAggExprToLValue(E);
3962 
3963   case CK_Dynamic: {
3964     LValue LV = EmitLValue(E->getSubExpr());
3965     Address V = LV.getAddress();
3966     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3967     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3968   }
3969 
3970   case CK_ConstructorConversion:
3971   case CK_UserDefinedConversion:
3972   case CK_CPointerToObjCPointerCast:
3973   case CK_BlockPointerToObjCPointerCast:
3974   case CK_NoOp:
3975   case CK_LValueToRValue:
3976     return EmitLValue(E->getSubExpr());
3977 
3978   case CK_UncheckedDerivedToBase:
3979   case CK_DerivedToBase: {
3980     const RecordType *DerivedClassTy =
3981       E->getSubExpr()->getType()->getAs<RecordType>();
3982     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3983 
3984     LValue LV = EmitLValue(E->getSubExpr());
3985     Address This = LV.getAddress();
3986 
3987     // Perform the derived-to-base conversion
3988     Address Base = GetAddressOfBaseClass(
3989         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3990         /*NullCheckValue=*/false, E->getExprLoc());
3991 
3992     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo());
3993   }
3994   case CK_ToUnion:
3995     return EmitAggExprToLValue(E);
3996   case CK_BaseToDerived: {
3997     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3998     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3999 
4000     LValue LV = EmitLValue(E->getSubExpr());
4001 
4002     // Perform the base-to-derived conversion
4003     Address Derived =
4004       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4005                                E->path_begin(), E->path_end(),
4006                                /*NullCheckValue=*/false);
4007 
4008     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4009     // performed and the object is not of the derived type.
4010     if (sanitizePerformTypeCheck())
4011       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4012                     Derived.getPointer(), E->getType());
4013 
4014     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4015       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4016                                 /*MayBeNull=*/false,
4017                                 CFITCK_DerivedCast, E->getLocStart());
4018 
4019     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo());
4020   }
4021   case CK_LValueBitCast: {
4022     // This must be a reinterpret_cast (or c-style equivalent).
4023     const auto *CE = cast<ExplicitCastExpr>(E);
4024 
4025     CGM.EmitExplicitCastExprType(CE, this);
4026     LValue LV = EmitLValue(E->getSubExpr());
4027     Address V = Builder.CreateBitCast(LV.getAddress(),
4028                                       ConvertType(CE->getTypeAsWritten()));
4029 
4030     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4031       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4032                                 /*MayBeNull=*/false,
4033                                 CFITCK_UnrelatedCast, E->getLocStart());
4034 
4035     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4036   }
4037   case CK_ObjCObjectLValueCast: {
4038     LValue LV = EmitLValue(E->getSubExpr());
4039     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4040                                              ConvertType(E->getType()));
4041     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4042   }
4043   case CK_ZeroToOCLQueue:
4044     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4045   case CK_ZeroToOCLEvent:
4046     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4047   }
4048 
4049   llvm_unreachable("Unhandled lvalue cast kind?");
4050 }
4051 
4052 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4053   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4054   return getOpaqueLValueMapping(e);
4055 }
4056 
4057 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4058                                            const FieldDecl *FD,
4059                                            SourceLocation Loc) {
4060   QualType FT = FD->getType();
4061   LValue FieldLV = EmitLValueForField(LV, FD);
4062   switch (getEvaluationKind(FT)) {
4063   case TEK_Complex:
4064     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4065   case TEK_Aggregate:
4066     return FieldLV.asAggregateRValue();
4067   case TEK_Scalar:
4068     // This routine is used to load fields one-by-one to perform a copy, so
4069     // don't load reference fields.
4070     if (FD->getType()->isReferenceType())
4071       return RValue::get(FieldLV.getPointer());
4072     return EmitLoadOfLValue(FieldLV, Loc);
4073   }
4074   llvm_unreachable("bad evaluation kind");
4075 }
4076 
4077 //===--------------------------------------------------------------------===//
4078 //                             Expression Emission
4079 //===--------------------------------------------------------------------===//
4080 
4081 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4082                                      ReturnValueSlot ReturnValue) {
4083   // Builtins never have block type.
4084   if (E->getCallee()->getType()->isBlockPointerType())
4085     return EmitBlockCallExpr(E, ReturnValue);
4086 
4087   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4088     return EmitCXXMemberCallExpr(CE, ReturnValue);
4089 
4090   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4091     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4092 
4093   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4094     if (const CXXMethodDecl *MD =
4095           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4096       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4097 
4098   CGCallee callee = EmitCallee(E->getCallee());
4099 
4100   if (callee.isBuiltin()) {
4101     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4102                            E, ReturnValue);
4103   }
4104 
4105   if (callee.isPseudoDestructor()) {
4106     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4107   }
4108 
4109   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4110 }
4111 
4112 /// Emit a CallExpr without considering whether it might be a subclass.
4113 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4114                                            ReturnValueSlot ReturnValue) {
4115   CGCallee Callee = EmitCallee(E->getCallee());
4116   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4117 }
4118 
4119 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4120   if (auto builtinID = FD->getBuiltinID()) {
4121     return CGCallee::forBuiltin(builtinID, FD);
4122   }
4123 
4124   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4125   return CGCallee::forDirect(calleePtr, FD);
4126 }
4127 
4128 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4129   E = E->IgnoreParens();
4130 
4131   // Look through function-to-pointer decay.
4132   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4133     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4134         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4135       return EmitCallee(ICE->getSubExpr());
4136     }
4137 
4138   // Resolve direct calls.
4139   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4140     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4141       return EmitDirectCallee(*this, FD);
4142     }
4143   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4144     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4145       EmitIgnoredExpr(ME->getBase());
4146       return EmitDirectCallee(*this, FD);
4147     }
4148 
4149   // Look through template substitutions.
4150   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4151     return EmitCallee(NTTP->getReplacement());
4152 
4153   // Treat pseudo-destructor calls differently.
4154   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4155     return CGCallee::forPseudoDestructor(PDE);
4156   }
4157 
4158   // Otherwise, we have an indirect reference.
4159   llvm::Value *calleePtr;
4160   QualType functionType;
4161   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4162     calleePtr = EmitScalarExpr(E);
4163     functionType = ptrType->getPointeeType();
4164   } else {
4165     functionType = E->getType();
4166     calleePtr = EmitLValue(E).getPointer();
4167   }
4168   assert(functionType->isFunctionType());
4169   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4170                           E->getReferencedDeclOfCallee());
4171   CGCallee callee(calleeInfo, calleePtr);
4172   return callee;
4173 }
4174 
4175 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4176   // Comma expressions just emit their LHS then their RHS as an l-value.
4177   if (E->getOpcode() == BO_Comma) {
4178     EmitIgnoredExpr(E->getLHS());
4179     EnsureInsertPoint();
4180     return EmitLValue(E->getRHS());
4181   }
4182 
4183   if (E->getOpcode() == BO_PtrMemD ||
4184       E->getOpcode() == BO_PtrMemI)
4185     return EmitPointerToDataMemberBinaryExpr(E);
4186 
4187   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4188 
4189   // Note that in all of these cases, __block variables need the RHS
4190   // evaluated first just in case the variable gets moved by the RHS.
4191 
4192   switch (getEvaluationKind(E->getType())) {
4193   case TEK_Scalar: {
4194     switch (E->getLHS()->getType().getObjCLifetime()) {
4195     case Qualifiers::OCL_Strong:
4196       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4197 
4198     case Qualifiers::OCL_Autoreleasing:
4199       return EmitARCStoreAutoreleasing(E).first;
4200 
4201     // No reason to do any of these differently.
4202     case Qualifiers::OCL_None:
4203     case Qualifiers::OCL_ExplicitNone:
4204     case Qualifiers::OCL_Weak:
4205       break;
4206     }
4207 
4208     RValue RV = EmitAnyExpr(E->getRHS());
4209     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4210     if (RV.isScalar())
4211       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4212     EmitStoreThroughLValue(RV, LV);
4213     return LV;
4214   }
4215 
4216   case TEK_Complex:
4217     return EmitComplexAssignmentLValue(E);
4218 
4219   case TEK_Aggregate:
4220     return EmitAggExprToLValue(E);
4221   }
4222   llvm_unreachable("bad evaluation kind");
4223 }
4224 
4225 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4226   RValue RV = EmitCallExpr(E);
4227 
4228   if (!RV.isScalar())
4229     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4230                           LValueBaseInfo(AlignmentSource::Decl, false));
4231 
4232   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4233          "Can't have a scalar return unless the return type is a "
4234          "reference type!");
4235 
4236   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4237 }
4238 
4239 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4240   // FIXME: This shouldn't require another copy.
4241   return EmitAggExprToLValue(E);
4242 }
4243 
4244 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4245   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4246          && "binding l-value to type which needs a temporary");
4247   AggValueSlot Slot = CreateAggTemp(E->getType());
4248   EmitCXXConstructExpr(E, Slot);
4249   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4250                         LValueBaseInfo(AlignmentSource::Decl, false));
4251 }
4252 
4253 LValue
4254 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4255   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4256 }
4257 
4258 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4259   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4260                                       ConvertType(E->getType()));
4261 }
4262 
4263 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4264   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4265                         LValueBaseInfo(AlignmentSource::Decl, false));
4266 }
4267 
4268 LValue
4269 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4270   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4271   Slot.setExternallyDestructed();
4272   EmitAggExpr(E->getSubExpr(), Slot);
4273   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4274   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4275                         LValueBaseInfo(AlignmentSource::Decl, false));
4276 }
4277 
4278 LValue
4279 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4280   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4281   EmitLambdaExpr(E, Slot);
4282   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4283                         LValueBaseInfo(AlignmentSource::Decl, false));
4284 }
4285 
4286 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4287   RValue RV = EmitObjCMessageExpr(E);
4288 
4289   if (!RV.isScalar())
4290     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4291                           LValueBaseInfo(AlignmentSource::Decl, false));
4292 
4293   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4294          "Can't have a scalar return unless the return type is a "
4295          "reference type!");
4296 
4297   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4298 }
4299 
4300 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4301   Address V =
4302     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4303   return MakeAddrLValue(V, E->getType(),
4304                         LValueBaseInfo(AlignmentSource::Decl, false));
4305 }
4306 
4307 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4308                                              const ObjCIvarDecl *Ivar) {
4309   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4310 }
4311 
4312 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4313                                           llvm::Value *BaseValue,
4314                                           const ObjCIvarDecl *Ivar,
4315                                           unsigned CVRQualifiers) {
4316   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4317                                                    Ivar, CVRQualifiers);
4318 }
4319 
4320 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4321   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4322   llvm::Value *BaseValue = nullptr;
4323   const Expr *BaseExpr = E->getBase();
4324   Qualifiers BaseQuals;
4325   QualType ObjectTy;
4326   if (E->isArrow()) {
4327     BaseValue = EmitScalarExpr(BaseExpr);
4328     ObjectTy = BaseExpr->getType()->getPointeeType();
4329     BaseQuals = ObjectTy.getQualifiers();
4330   } else {
4331     LValue BaseLV = EmitLValue(BaseExpr);
4332     BaseValue = BaseLV.getPointer();
4333     ObjectTy = BaseExpr->getType();
4334     BaseQuals = ObjectTy.getQualifiers();
4335   }
4336 
4337   LValue LV =
4338     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4339                       BaseQuals.getCVRQualifiers());
4340   setObjCGCLValueClass(getContext(), E, LV);
4341   return LV;
4342 }
4343 
4344 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4345   // Can only get l-value for message expression returning aggregate type
4346   RValue RV = EmitAnyExprToTemp(E);
4347   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4348                         LValueBaseInfo(AlignmentSource::Decl, false));
4349 }
4350 
4351 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4352                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4353                                  llvm::Value *Chain) {
4354   // Get the actual function type. The callee type will always be a pointer to
4355   // function type or a block pointer type.
4356   assert(CalleeType->isFunctionPointerType() &&
4357          "Call must have function pointer type!");
4358 
4359   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4360 
4361   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4362     // We can only guarantee that a function is called from the correct
4363     // context/function based on the appropriate target attributes,
4364     // so only check in the case where we have both always_inline and target
4365     // since otherwise we could be making a conditional call after a check for
4366     // the proper cpu features (and it won't cause code generation issues due to
4367     // function based code generation).
4368     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4369         TargetDecl->hasAttr<TargetAttr>())
4370       checkTargetFeatures(E, FD);
4371 
4372   CalleeType = getContext().getCanonicalType(CalleeType);
4373 
4374   const auto *FnType =
4375       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4376 
4377   CGCallee Callee = OrigCallee;
4378 
4379   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4380       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4381     if (llvm::Constant *PrefixSig =
4382             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4383       SanitizerScope SanScope(this);
4384       llvm::Constant *FTRTTIConst =
4385           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4386       llvm::Type *PrefixStructTyElems[] = {
4387         PrefixSig->getType(),
4388         FTRTTIConst->getType()
4389       };
4390       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4391           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4392 
4393       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4394 
4395       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4396           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4397       llvm::Value *CalleeSigPtr =
4398           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4399       llvm::Value *CalleeSig =
4400           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4401       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4402 
4403       llvm::BasicBlock *Cont = createBasicBlock("cont");
4404       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4405       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4406 
4407       EmitBlock(TypeCheck);
4408       llvm::Value *CalleeRTTIPtr =
4409           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4410       llvm::Value *CalleeRTTI =
4411           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4412       llvm::Value *CalleeRTTIMatch =
4413           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4414       llvm::Constant *StaticData[] = {
4415         EmitCheckSourceLocation(E->getLocStart()),
4416         EmitCheckTypeDescriptor(CalleeType)
4417       };
4418       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4419                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4420 
4421       Builder.CreateBr(Cont);
4422       EmitBlock(Cont);
4423     }
4424   }
4425 
4426   // If we are checking indirect calls and this call is indirect, check that the
4427   // function pointer is a member of the bit set for the function type.
4428   if (SanOpts.has(SanitizerKind::CFIICall) &&
4429       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4430     SanitizerScope SanScope(this);
4431     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4432 
4433     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4434     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4435 
4436     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4437     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4438     llvm::Value *TypeTest = Builder.CreateCall(
4439         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4440 
4441     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4442     llvm::Constant *StaticData[] = {
4443         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4444         EmitCheckSourceLocation(E->getLocStart()),
4445         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4446     };
4447     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4448       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4449                            CastedCallee, StaticData);
4450     } else {
4451       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4452                 SanitizerHandler::CFICheckFail, StaticData,
4453                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4454     }
4455   }
4456 
4457   CallArgList Args;
4458   if (Chain)
4459     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4460              CGM.getContext().VoidPtrTy);
4461 
4462   // C++17 requires that we evaluate arguments to a call using assignment syntax
4463   // right-to-left, and that we evaluate arguments to certain other operators
4464   // left-to-right. Note that we allow this to override the order dictated by
4465   // the calling convention on the MS ABI, which means that parameter
4466   // destruction order is not necessarily reverse construction order.
4467   // FIXME: Revisit this based on C++ committee response to unimplementability.
4468   EvaluationOrder Order = EvaluationOrder::Default;
4469   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4470     if (OCE->isAssignmentOp())
4471       Order = EvaluationOrder::ForceRightToLeft;
4472     else {
4473       switch (OCE->getOperator()) {
4474       case OO_LessLess:
4475       case OO_GreaterGreater:
4476       case OO_AmpAmp:
4477       case OO_PipePipe:
4478       case OO_Comma:
4479       case OO_ArrowStar:
4480         Order = EvaluationOrder::ForceLeftToRight;
4481         break;
4482       default:
4483         break;
4484       }
4485     }
4486   }
4487 
4488   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4489                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4490 
4491   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4492       Args, FnType, /*isChainCall=*/Chain);
4493 
4494   // C99 6.5.2.2p6:
4495   //   If the expression that denotes the called function has a type
4496   //   that does not include a prototype, [the default argument
4497   //   promotions are performed]. If the number of arguments does not
4498   //   equal the number of parameters, the behavior is undefined. If
4499   //   the function is defined with a type that includes a prototype,
4500   //   and either the prototype ends with an ellipsis (, ...) or the
4501   //   types of the arguments after promotion are not compatible with
4502   //   the types of the parameters, the behavior is undefined. If the
4503   //   function is defined with a type that does not include a
4504   //   prototype, and the types of the arguments after promotion are
4505   //   not compatible with those of the parameters after promotion,
4506   //   the behavior is undefined [except in some trivial cases].
4507   // That is, in the general case, we should assume that a call
4508   // through an unprototyped function type works like a *non-variadic*
4509   // call.  The way we make this work is to cast to the exact type
4510   // of the promoted arguments.
4511   //
4512   // Chain calls use this same code path to add the invisible chain parameter
4513   // to the function type.
4514   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4515     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4516     CalleeTy = CalleeTy->getPointerTo();
4517 
4518     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4519     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4520     Callee.setFunctionPointer(CalleePtr);
4521   }
4522 
4523   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4524 }
4525 
4526 LValue CodeGenFunction::
4527 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4528   Address BaseAddr = Address::invalid();
4529   if (E->getOpcode() == BO_PtrMemI) {
4530     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4531   } else {
4532     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4533   }
4534 
4535   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4536 
4537   const MemberPointerType *MPT
4538     = E->getRHS()->getType()->getAs<MemberPointerType>();
4539 
4540   LValueBaseInfo BaseInfo;
4541   Address MemberAddr =
4542     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo);
4543 
4544   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo);
4545 }
4546 
4547 /// Given the address of a temporary variable, produce an r-value of
4548 /// its type.
4549 RValue CodeGenFunction::convertTempToRValue(Address addr,
4550                                             QualType type,
4551                                             SourceLocation loc) {
4552   LValue lvalue = MakeAddrLValue(addr, type,
4553                                  LValueBaseInfo(AlignmentSource::Decl, false));
4554   switch (getEvaluationKind(type)) {
4555   case TEK_Complex:
4556     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4557   case TEK_Aggregate:
4558     return lvalue.asAggregateRValue();
4559   case TEK_Scalar:
4560     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4561   }
4562   llvm_unreachable("bad evaluation kind");
4563 }
4564 
4565 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4566   assert(Val->getType()->isFPOrFPVectorTy());
4567   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4568     return;
4569 
4570   llvm::MDBuilder MDHelper(getLLVMContext());
4571   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4572 
4573   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4574 }
4575 
4576 namespace {
4577   struct LValueOrRValue {
4578     LValue LV;
4579     RValue RV;
4580   };
4581 }
4582 
4583 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4584                                            const PseudoObjectExpr *E,
4585                                            bool forLValue,
4586                                            AggValueSlot slot) {
4587   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4588 
4589   // Find the result expression, if any.
4590   const Expr *resultExpr = E->getResultExpr();
4591   LValueOrRValue result;
4592 
4593   for (PseudoObjectExpr::const_semantics_iterator
4594          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4595     const Expr *semantic = *i;
4596 
4597     // If this semantic expression is an opaque value, bind it
4598     // to the result of its source expression.
4599     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4600 
4601       // If this is the result expression, we may need to evaluate
4602       // directly into the slot.
4603       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4604       OVMA opaqueData;
4605       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4606           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4607         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4608         LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
4609         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4610                                        BaseInfo);
4611         opaqueData = OVMA::bind(CGF, ov, LV);
4612         result.RV = slot.asRValue();
4613 
4614       // Otherwise, emit as normal.
4615       } else {
4616         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4617 
4618         // If this is the result, also evaluate the result now.
4619         if (ov == resultExpr) {
4620           if (forLValue)
4621             result.LV = CGF.EmitLValue(ov);
4622           else
4623             result.RV = CGF.EmitAnyExpr(ov, slot);
4624         }
4625       }
4626 
4627       opaques.push_back(opaqueData);
4628 
4629     // Otherwise, if the expression is the result, evaluate it
4630     // and remember the result.
4631     } else if (semantic == resultExpr) {
4632       if (forLValue)
4633         result.LV = CGF.EmitLValue(semantic);
4634       else
4635         result.RV = CGF.EmitAnyExpr(semantic, slot);
4636 
4637     // Otherwise, evaluate the expression in an ignored context.
4638     } else {
4639       CGF.EmitIgnoredExpr(semantic);
4640     }
4641   }
4642 
4643   // Unbind all the opaques now.
4644   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4645     opaques[i].unbind(CGF);
4646 
4647   return result;
4648 }
4649 
4650 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4651                                                AggValueSlot slot) {
4652   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4653 }
4654 
4655 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4656   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4657 }
4658