1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 VectorTy, Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // Just emit it as an l-value and drop the result. 195 EmitLValue(E); 196 } 197 198 /// EmitAnyExpr - Emit code to compute the specified expression which 199 /// can have any type. The result is returned as an RValue struct. 200 /// If this is an aggregate expression, AggSlot indicates where the 201 /// result should be returned. 202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 203 AggValueSlot aggSlot, 204 bool ignoreResult) { 205 switch (getEvaluationKind(E->getType())) { 206 case TEK_Scalar: 207 return RValue::get(EmitScalarExpr(E, ignoreResult)); 208 case TEK_Complex: 209 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 210 case TEK_Aggregate: 211 if (!ignoreResult && aggSlot.isIgnored()) 212 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 213 EmitAggExpr(E, aggSlot); 214 return aggSlot.asRValue(); 215 } 216 llvm_unreachable("bad evaluation kind"); 217 } 218 219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 220 /// always be accessible even if no aggregate location is provided. 221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 222 AggValueSlot AggSlot = AggValueSlot::ignored(); 223 224 if (hasAggregateEvaluationKind(E->getType())) 225 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 226 return EmitAnyExpr(E, AggSlot); 227 } 228 229 /// EmitAnyExprToMem - Evaluate an expression into a given memory 230 /// location. 231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 232 Address Location, 233 Qualifiers Quals, 234 bool IsInit) { 235 // FIXME: This function should take an LValue as an argument. 236 switch (getEvaluationKind(E->getType())) { 237 case TEK_Complex: 238 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 239 /*isInit*/ false); 240 return; 241 242 case TEK_Aggregate: { 243 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 244 AggValueSlot::IsDestructed_t(IsInit), 245 AggValueSlot::DoesNotNeedGCBarriers, 246 AggValueSlot::IsAliased_t(!IsInit), 247 AggValueSlot::MayOverlap)); 248 return; 249 } 250 251 case TEK_Scalar: { 252 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 253 LValue LV = MakeAddrLValue(Location, E->getType()); 254 EmitStoreThroughLValue(RV, LV); 255 return; 256 } 257 } 258 llvm_unreachable("bad evaluation kind"); 259 } 260 261 static void 262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 263 const Expr *E, Address ReferenceTemporary) { 264 // Objective-C++ ARC: 265 // If we are binding a reference to a temporary that has ownership, we 266 // need to perform retain/release operations on the temporary. 267 // 268 // FIXME: This should be looking at E, not M. 269 if (auto Lifetime = M->getType().getObjCLifetime()) { 270 switch (Lifetime) { 271 case Qualifiers::OCL_None: 272 case Qualifiers::OCL_ExplicitNone: 273 // Carry on to normal cleanup handling. 274 break; 275 276 case Qualifiers::OCL_Autoreleasing: 277 // Nothing to do; cleaned up by an autorelease pool. 278 return; 279 280 case Qualifiers::OCL_Strong: 281 case Qualifiers::OCL_Weak: 282 switch (StorageDuration Duration = M->getStorageDuration()) { 283 case SD_Static: 284 // Note: we intentionally do not register a cleanup to release 285 // the object on program termination. 286 return; 287 288 case SD_Thread: 289 // FIXME: We should probably register a cleanup in this case. 290 return; 291 292 case SD_Automatic: 293 case SD_FullExpression: 294 CodeGenFunction::Destroyer *Destroy; 295 CleanupKind CleanupKind; 296 if (Lifetime == Qualifiers::OCL_Strong) { 297 const ValueDecl *VD = M->getExtendingDecl(); 298 bool Precise = 299 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 300 CleanupKind = CGF.getARCCleanupKind(); 301 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 302 : &CodeGenFunction::destroyARCStrongImprecise; 303 } else { 304 // __weak objects always get EH cleanups; otherwise, exceptions 305 // could cause really nasty crashes instead of mere leaks. 306 CleanupKind = NormalAndEHCleanup; 307 Destroy = &CodeGenFunction::destroyARCWeak; 308 } 309 if (Duration == SD_FullExpression) 310 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 311 M->getType(), *Destroy, 312 CleanupKind & EHCleanup); 313 else 314 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 315 M->getType(), 316 *Destroy, CleanupKind & EHCleanup); 317 return; 318 319 case SD_Dynamic: 320 llvm_unreachable("temporary cannot have dynamic storage duration"); 321 } 322 llvm_unreachable("unknown storage duration"); 323 } 324 } 325 326 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 327 if (const RecordType *RT = 328 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 329 // Get the destructor for the reference temporary. 330 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 331 if (!ClassDecl->hasTrivialDestructor()) 332 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 333 } 334 335 if (!ReferenceTemporaryDtor) 336 return; 337 338 // Call the destructor for the temporary. 339 switch (M->getStorageDuration()) { 340 case SD_Static: 341 case SD_Thread: { 342 llvm::FunctionCallee CleanupFn; 343 llvm::Constant *CleanupArg; 344 if (E->getType()->isArrayType()) { 345 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 346 ReferenceTemporary, E->getType(), 347 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 348 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 349 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 350 } else { 351 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 352 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 353 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 354 } 355 CGF.CGM.getCXXABI().registerGlobalDtor( 356 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 357 break; 358 } 359 360 case SD_FullExpression: 361 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Automatic: 367 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 368 ReferenceTemporary, E->getType(), 369 CodeGenFunction::destroyCXXObject, 370 CGF.getLangOpts().Exceptions); 371 break; 372 373 case SD_Dynamic: 374 llvm_unreachable("temporary cannot have dynamic storage duration"); 375 } 376 } 377 378 static Address createReferenceTemporary(CodeGenFunction &CGF, 379 const MaterializeTemporaryExpr *M, 380 const Expr *Inner, 381 Address *Alloca = nullptr) { 382 auto &TCG = CGF.getTargetHooks(); 383 switch (M->getStorageDuration()) { 384 case SD_FullExpression: 385 case SD_Automatic: { 386 // If we have a constant temporary array or record try to promote it into a 387 // constant global under the same rules a normal constant would've been 388 // promoted. This is easier on the optimizer and generally emits fewer 389 // instructions. 390 QualType Ty = Inner->getType(); 391 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 392 (Ty->isArrayType() || Ty->isRecordType()) && 393 CGF.CGM.isTypeConstant(Ty, true)) 394 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 395 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 396 auto *GV = new llvm::GlobalVariable( 397 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 398 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 399 llvm::GlobalValue::NotThreadLocal, 400 CGF.getContext().getTargetAddressSpace(AS)); 401 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 402 GV->setAlignment(alignment.getAsAlign()); 403 llvm::Constant *C = GV; 404 if (AS != LangAS::Default) 405 C = TCG.performAddrSpaceCast( 406 CGF.CGM, GV, AS, LangAS::Default, 407 GV->getValueType()->getPointerTo( 408 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 409 // FIXME: Should we put the new global into a COMDAT? 410 return Address(C, GV->getValueType(), alignment); 411 } 412 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 413 } 414 case SD_Thread: 415 case SD_Static: 416 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 417 418 case SD_Dynamic: 419 llvm_unreachable("temporary can't have dynamic storage duration"); 420 } 421 llvm_unreachable("unknown storage duration"); 422 } 423 424 /// Helper method to check if the underlying ABI is AAPCS 425 static bool isAAPCS(const TargetInfo &TargetInfo) { 426 return TargetInfo.getABI().startswith("aapcs"); 427 } 428 429 LValue CodeGenFunction:: 430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 431 const Expr *E = M->getSubExpr(); 432 433 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 434 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 435 "Reference should never be pseudo-strong!"); 436 437 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 438 // as that will cause the lifetime adjustment to be lost for ARC 439 auto ownership = M->getType().getObjCLifetime(); 440 if (ownership != Qualifiers::OCL_None && 441 ownership != Qualifiers::OCL_ExplicitNone) { 442 Address Object = createReferenceTemporary(*this, M, E); 443 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 444 llvm::Type *Ty = ConvertTypeForMem(E->getType()); 445 Object = Address(llvm::ConstantExpr::getBitCast( 446 Var, Ty->getPointerTo(Object.getAddressSpace())), 447 Ty, Object.getAlignment()); 448 449 // createReferenceTemporary will promote the temporary to a global with a 450 // constant initializer if it can. It can only do this to a value of 451 // ARC-manageable type if the value is global and therefore "immune" to 452 // ref-counting operations. Therefore we have no need to emit either a 453 // dynamic initialization or a cleanup and we can just return the address 454 // of the temporary. 455 if (Var->hasInitializer()) 456 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 457 458 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 459 } 460 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 461 AlignmentSource::Decl); 462 463 switch (getEvaluationKind(E->getType())) { 464 default: llvm_unreachable("expected scalar or aggregate expression"); 465 case TEK_Scalar: 466 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 467 break; 468 case TEK_Aggregate: { 469 EmitAggExpr(E, AggValueSlot::forAddr(Object, 470 E->getType().getQualifiers(), 471 AggValueSlot::IsDestructed, 472 AggValueSlot::DoesNotNeedGCBarriers, 473 AggValueSlot::IsNotAliased, 474 AggValueSlot::DoesNotOverlap)); 475 break; 476 } 477 } 478 479 pushTemporaryCleanup(*this, M, E, Object); 480 return RefTempDst; 481 } 482 483 SmallVector<const Expr *, 2> CommaLHSs; 484 SmallVector<SubobjectAdjustment, 2> Adjustments; 485 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 486 487 for (const auto &Ignored : CommaLHSs) 488 EmitIgnoredExpr(Ignored); 489 490 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 491 if (opaque->getType()->isRecordType()) { 492 assert(Adjustments.empty()); 493 return EmitOpaqueValueLValue(opaque); 494 } 495 } 496 497 // Create and initialize the reference temporary. 498 Address Alloca = Address::invalid(); 499 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 500 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 501 Object.getPointer()->stripPointerCasts())) { 502 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 503 Object = Address(llvm::ConstantExpr::getBitCast( 504 cast<llvm::Constant>(Object.getPointer()), 505 TemporaryType->getPointerTo()), 506 TemporaryType, 507 Object.getAlignment()); 508 // If the temporary is a global and has a constant initializer or is a 509 // constant temporary that we promoted to a global, we may have already 510 // initialized it. 511 if (!Var->hasInitializer()) { 512 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 513 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 514 } 515 } else { 516 switch (M->getStorageDuration()) { 517 case SD_Automatic: 518 if (auto *Size = EmitLifetimeStart( 519 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 520 Alloca.getPointer())) { 521 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 522 Alloca, Size); 523 } 524 break; 525 526 case SD_FullExpression: { 527 if (!ShouldEmitLifetimeMarkers) 528 break; 529 530 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 531 // marker. Instead, start the lifetime of a conditional temporary earlier 532 // so that it's unconditional. Don't do this with sanitizers which need 533 // more precise lifetime marks. 534 ConditionalEvaluation *OldConditional = nullptr; 535 CGBuilderTy::InsertPoint OldIP; 536 if (isInConditionalBranch() && !E->getType().isDestructedType() && 537 !SanOpts.has(SanitizerKind::HWAddress) && 538 !SanOpts.has(SanitizerKind::Memory) && 539 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 540 OldConditional = OutermostConditional; 541 OutermostConditional = nullptr; 542 543 OldIP = Builder.saveIP(); 544 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 545 Builder.restoreIP(CGBuilderTy::InsertPoint( 546 Block, llvm::BasicBlock::iterator(Block->back()))); 547 } 548 549 if (auto *Size = EmitLifetimeStart( 550 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 551 Alloca.getPointer())) { 552 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 553 Size); 554 } 555 556 if (OldConditional) { 557 OutermostConditional = OldConditional; 558 Builder.restoreIP(OldIP); 559 } 560 break; 561 } 562 563 default: 564 break; 565 } 566 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 567 } 568 pushTemporaryCleanup(*this, M, E, Object); 569 570 // Perform derived-to-base casts and/or field accesses, to get from the 571 // temporary object we created (and, potentially, for which we extended 572 // the lifetime) to the subobject we're binding the reference to. 573 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 574 switch (Adjustment.Kind) { 575 case SubobjectAdjustment::DerivedToBaseAdjustment: 576 Object = 577 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 578 Adjustment.DerivedToBase.BasePath->path_begin(), 579 Adjustment.DerivedToBase.BasePath->path_end(), 580 /*NullCheckValue=*/ false, E->getExprLoc()); 581 break; 582 583 case SubobjectAdjustment::FieldAdjustment: { 584 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 585 LV = EmitLValueForField(LV, Adjustment.Field); 586 assert(LV.isSimple() && 587 "materialized temporary field is not a simple lvalue"); 588 Object = LV.getAddress(*this); 589 break; 590 } 591 592 case SubobjectAdjustment::MemberPointerAdjustment: { 593 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 594 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 595 Adjustment.Ptr.MPT); 596 break; 597 } 598 } 599 } 600 601 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 602 } 603 604 RValue 605 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 606 // Emit the expression as an lvalue. 607 LValue LV = EmitLValue(E); 608 assert(LV.isSimple()); 609 llvm::Value *Value = LV.getPointer(*this); 610 611 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 612 // C++11 [dcl.ref]p5 (as amended by core issue 453): 613 // If a glvalue to which a reference is directly bound designates neither 614 // an existing object or function of an appropriate type nor a region of 615 // storage of suitable size and alignment to contain an object of the 616 // reference's type, the behavior is undefined. 617 QualType Ty = E->getType(); 618 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 619 } 620 621 return RValue::get(Value); 622 } 623 624 625 /// getAccessedFieldNo - Given an encoded value and a result number, return the 626 /// input field number being accessed. 627 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 628 const llvm::Constant *Elts) { 629 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 630 ->getZExtValue(); 631 } 632 633 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 634 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 635 llvm::Value *High) { 636 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 637 llvm::Value *K47 = Builder.getInt64(47); 638 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 639 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 640 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 641 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 642 return Builder.CreateMul(B1, KMul); 643 } 644 645 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 646 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 647 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 648 } 649 650 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 651 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 652 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 653 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 654 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 655 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 656 } 657 658 bool CodeGenFunction::sanitizePerformTypeCheck() const { 659 return SanOpts.has(SanitizerKind::Null) || 660 SanOpts.has(SanitizerKind::Alignment) || 661 SanOpts.has(SanitizerKind::ObjectSize) || 662 SanOpts.has(SanitizerKind::Vptr); 663 } 664 665 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 666 llvm::Value *Ptr, QualType Ty, 667 CharUnits Alignment, 668 SanitizerSet SkippedChecks, 669 llvm::Value *ArraySize) { 670 if (!sanitizePerformTypeCheck()) 671 return; 672 673 // Don't check pointers outside the default address space. The null check 674 // isn't correct, the object-size check isn't supported by LLVM, and we can't 675 // communicate the addresses to the runtime handler for the vptr check. 676 if (Ptr->getType()->getPointerAddressSpace()) 677 return; 678 679 // Don't check pointers to volatile data. The behavior here is implementation- 680 // defined. 681 if (Ty.isVolatileQualified()) 682 return; 683 684 SanitizerScope SanScope(this); 685 686 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 687 llvm::BasicBlock *Done = nullptr; 688 689 // Quickly determine whether we have a pointer to an alloca. It's possible 690 // to skip null checks, and some alignment checks, for these pointers. This 691 // can reduce compile-time significantly. 692 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 693 694 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 695 llvm::Value *IsNonNull = nullptr; 696 bool IsGuaranteedNonNull = 697 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 698 bool AllowNullPointers = isNullPointerAllowed(TCK); 699 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 700 !IsGuaranteedNonNull) { 701 // The glvalue must not be an empty glvalue. 702 IsNonNull = Builder.CreateIsNotNull(Ptr); 703 704 // The IR builder can constant-fold the null check if the pointer points to 705 // a constant. 706 IsGuaranteedNonNull = IsNonNull == True; 707 708 // Skip the null check if the pointer is known to be non-null. 709 if (!IsGuaranteedNonNull) { 710 if (AllowNullPointers) { 711 // When performing pointer casts, it's OK if the value is null. 712 // Skip the remaining checks in that case. 713 Done = createBasicBlock("null"); 714 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 715 Builder.CreateCondBr(IsNonNull, Rest, Done); 716 EmitBlock(Rest); 717 } else { 718 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 719 } 720 } 721 } 722 723 if (SanOpts.has(SanitizerKind::ObjectSize) && 724 !SkippedChecks.has(SanitizerKind::ObjectSize) && 725 !Ty->isIncompleteType()) { 726 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 727 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 728 if (ArraySize) 729 Size = Builder.CreateMul(Size, ArraySize); 730 731 // Degenerate case: new X[0] does not need an objectsize check. 732 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 733 if (!ConstantSize || !ConstantSize->isNullValue()) { 734 // The glvalue must refer to a large enough storage region. 735 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 736 // to check this. 737 // FIXME: Get object address space 738 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 739 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 740 llvm::Value *Min = Builder.getFalse(); 741 llvm::Value *NullIsUnknown = Builder.getFalse(); 742 llvm::Value *Dynamic = Builder.getFalse(); 743 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 744 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 745 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 746 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 747 } 748 } 749 750 uint64_t AlignVal = 0; 751 llvm::Value *PtrAsInt = nullptr; 752 753 if (SanOpts.has(SanitizerKind::Alignment) && 754 !SkippedChecks.has(SanitizerKind::Alignment)) { 755 AlignVal = Alignment.getQuantity(); 756 if (!Ty->isIncompleteType() && !AlignVal) 757 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 758 /*ForPointeeType=*/true) 759 .getQuantity(); 760 761 // The glvalue must be suitably aligned. 762 if (AlignVal > 1 && 763 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 764 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 765 llvm::Value *Align = Builder.CreateAnd( 766 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 767 llvm::Value *Aligned = 768 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 769 if (Aligned != True) 770 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 771 } 772 } 773 774 if (Checks.size() > 0) { 775 // Make sure we're not losing information. Alignment needs to be a power of 776 // 2 777 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 778 llvm::Constant *StaticData[] = { 779 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 780 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 781 llvm::ConstantInt::get(Int8Ty, TCK)}; 782 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 783 PtrAsInt ? PtrAsInt : Ptr); 784 } 785 786 // If possible, check that the vptr indicates that there is a subobject of 787 // type Ty at offset zero within this object. 788 // 789 // C++11 [basic.life]p5,6: 790 // [For storage which does not refer to an object within its lifetime] 791 // The program has undefined behavior if: 792 // -- the [pointer or glvalue] is used to access a non-static data member 793 // or call a non-static member function 794 if (SanOpts.has(SanitizerKind::Vptr) && 795 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 796 // Ensure that the pointer is non-null before loading it. If there is no 797 // compile-time guarantee, reuse the run-time null check or emit a new one. 798 if (!IsGuaranteedNonNull) { 799 if (!IsNonNull) 800 IsNonNull = Builder.CreateIsNotNull(Ptr); 801 if (!Done) 802 Done = createBasicBlock("vptr.null"); 803 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 804 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 805 EmitBlock(VptrNotNull); 806 } 807 808 // Compute a hash of the mangled name of the type. 809 // 810 // FIXME: This is not guaranteed to be deterministic! Move to a 811 // fingerprinting mechanism once LLVM provides one. For the time 812 // being the implementation happens to be deterministic. 813 SmallString<64> MangledName; 814 llvm::raw_svector_ostream Out(MangledName); 815 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 816 Out); 817 818 // Contained in NoSanitizeList based on the mangled type. 819 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 820 Out.str())) { 821 llvm::hash_code TypeHash = hash_value(Out.str()); 822 823 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 824 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 825 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 826 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy, 827 getPointerAlign()); 828 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 829 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 830 831 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 832 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 833 834 // Look the hash up in our cache. 835 const int CacheSize = 128; 836 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 837 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 838 "__ubsan_vptr_type_cache"); 839 llvm::Value *Slot = Builder.CreateAnd(Hash, 840 llvm::ConstantInt::get(IntPtrTy, 841 CacheSize-1)); 842 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 843 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 844 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 845 getPointerAlign()); 846 847 // If the hash isn't in the cache, call a runtime handler to perform the 848 // hard work of checking whether the vptr is for an object of the right 849 // type. This will either fill in the cache and return, or produce a 850 // diagnostic. 851 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 852 llvm::Constant *StaticData[] = { 853 EmitCheckSourceLocation(Loc), 854 EmitCheckTypeDescriptor(Ty), 855 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 856 llvm::ConstantInt::get(Int8Ty, TCK) 857 }; 858 llvm::Value *DynamicData[] = { Ptr, Hash }; 859 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 860 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 861 DynamicData); 862 } 863 } 864 865 if (Done) { 866 Builder.CreateBr(Done); 867 EmitBlock(Done); 868 } 869 } 870 871 /// Determine whether this expression refers to a flexible array member in a 872 /// struct. We disable array bounds checks for such members. 873 static bool isFlexibleArrayMemberExpr(const Expr *E) { 874 // For compatibility with existing code, we treat arrays of length 0 or 875 // 1 as flexible array members. 876 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 877 // the two mechanisms. 878 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 879 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 880 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 881 // was produced by macro expansion. 882 if (CAT->getSize().ugt(1)) 883 return false; 884 } else if (!isa<IncompleteArrayType>(AT)) 885 return false; 886 887 E = E->IgnoreParens(); 888 889 // A flexible array member must be the last member in the class. 890 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 891 // FIXME: If the base type of the member expr is not FD->getParent(), 892 // this should not be treated as a flexible array member access. 893 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 894 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 895 // member, only a T[0] or T[] member gets that treatment. 896 if (FD->getParent()->isUnion()) 897 return true; 898 RecordDecl::field_iterator FI( 899 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 900 return ++FI == FD->getParent()->field_end(); 901 } 902 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 903 return IRE->getDecl()->getNextIvar() == nullptr; 904 } 905 906 return false; 907 } 908 909 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 910 QualType EltTy) { 911 ASTContext &C = getContext(); 912 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 913 if (!EltSize) 914 return nullptr; 915 916 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 917 if (!ArrayDeclRef) 918 return nullptr; 919 920 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 921 if (!ParamDecl) 922 return nullptr; 923 924 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 925 if (!POSAttr) 926 return nullptr; 927 928 // Don't load the size if it's a lower bound. 929 int POSType = POSAttr->getType(); 930 if (POSType != 0 && POSType != 1) 931 return nullptr; 932 933 // Find the implicit size parameter. 934 auto PassedSizeIt = SizeArguments.find(ParamDecl); 935 if (PassedSizeIt == SizeArguments.end()) 936 return nullptr; 937 938 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 939 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 940 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 941 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 942 C.getSizeType(), E->getExprLoc()); 943 llvm::Value *SizeOfElement = 944 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 945 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 946 } 947 948 /// If Base is known to point to the start of an array, return the length of 949 /// that array. Return 0 if the length cannot be determined. 950 static llvm::Value *getArrayIndexingBound( 951 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 952 // For the vector indexing extension, the bound is the number of elements. 953 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 954 IndexedType = Base->getType(); 955 return CGF.Builder.getInt32(VT->getNumElements()); 956 } 957 958 Base = Base->IgnoreParens(); 959 960 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 961 if (CE->getCastKind() == CK_ArrayToPointerDecay && 962 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 963 IndexedType = CE->getSubExpr()->getType(); 964 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 965 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 966 return CGF.Builder.getInt(CAT->getSize()); 967 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 968 return CGF.getVLASize(VAT).NumElts; 969 // Ignore pass_object_size here. It's not applicable on decayed pointers. 970 } 971 } 972 973 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 974 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 975 IndexedType = Base->getType(); 976 return POS; 977 } 978 979 return nullptr; 980 } 981 982 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 983 llvm::Value *Index, QualType IndexType, 984 bool Accessed) { 985 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 986 "should not be called unless adding bounds checks"); 987 SanitizerScope SanScope(this); 988 989 QualType IndexedType; 990 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 991 if (!Bound) 992 return; 993 994 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 995 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 996 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 997 998 llvm::Constant *StaticData[] = { 999 EmitCheckSourceLocation(E->getExprLoc()), 1000 EmitCheckTypeDescriptor(IndexedType), 1001 EmitCheckTypeDescriptor(IndexType) 1002 }; 1003 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1004 : Builder.CreateICmpULE(IndexVal, BoundVal); 1005 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1006 SanitizerHandler::OutOfBounds, StaticData, Index); 1007 } 1008 1009 1010 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1011 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1012 bool isInc, bool isPre) { 1013 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1014 1015 llvm::Value *NextVal; 1016 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1017 uint64_t AmountVal = isInc ? 1 : -1; 1018 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1019 1020 // Add the inc/dec to the real part. 1021 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1022 } else { 1023 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1024 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1025 if (!isInc) 1026 FVal.changeSign(); 1027 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1028 1029 // Add the inc/dec to the real part. 1030 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1031 } 1032 1033 ComplexPairTy IncVal(NextVal, InVal.second); 1034 1035 // Store the updated result through the lvalue. 1036 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1037 if (getLangOpts().OpenMP) 1038 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1039 E->getSubExpr()); 1040 1041 // If this is a postinc, return the value read from memory, otherwise use the 1042 // updated value. 1043 return isPre ? IncVal : InVal; 1044 } 1045 1046 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1047 CodeGenFunction *CGF) { 1048 // Bind VLAs in the cast type. 1049 if (CGF && E->getType()->isVariablyModifiedType()) 1050 CGF->EmitVariablyModifiedType(E->getType()); 1051 1052 if (CGDebugInfo *DI = getModuleDebugInfo()) 1053 DI->EmitExplicitCastType(E->getType()); 1054 } 1055 1056 //===----------------------------------------------------------------------===// 1057 // LValue Expression Emission 1058 //===----------------------------------------------------------------------===// 1059 1060 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1061 /// derive a more accurate bound on the alignment of the pointer. 1062 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1063 LValueBaseInfo *BaseInfo, 1064 TBAAAccessInfo *TBAAInfo) { 1065 // We allow this with ObjC object pointers because of fragile ABIs. 1066 assert(E->getType()->isPointerType() || 1067 E->getType()->isObjCObjectPointerType()); 1068 E = E->IgnoreParens(); 1069 1070 // Casts: 1071 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1072 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1073 CGM.EmitExplicitCastExprType(ECE, this); 1074 1075 switch (CE->getCastKind()) { 1076 // Non-converting casts (but not C's implicit conversion from void*). 1077 case CK_BitCast: 1078 case CK_NoOp: 1079 case CK_AddressSpaceConversion: 1080 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1081 if (PtrTy->getPointeeType()->isVoidType()) 1082 break; 1083 1084 LValueBaseInfo InnerBaseInfo; 1085 TBAAAccessInfo InnerTBAAInfo; 1086 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1087 &InnerBaseInfo, 1088 &InnerTBAAInfo); 1089 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1090 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1091 1092 if (isa<ExplicitCastExpr>(CE)) { 1093 LValueBaseInfo TargetTypeBaseInfo; 1094 TBAAAccessInfo TargetTypeTBAAInfo; 1095 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1096 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1097 if (TBAAInfo) 1098 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1099 TargetTypeTBAAInfo); 1100 // If the source l-value is opaque, honor the alignment of the 1101 // casted-to type. 1102 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1103 if (BaseInfo) 1104 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1105 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align); 1106 } 1107 } 1108 1109 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1110 CE->getCastKind() == CK_BitCast) { 1111 if (auto PT = E->getType()->getAs<PointerType>()) 1112 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 1113 /*MayBeNull=*/true, 1114 CodeGenFunction::CFITCK_UnrelatedCast, 1115 CE->getBeginLoc()); 1116 } 1117 1118 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1119 Addr = Builder.CreateElementBitCast(Addr, ElemTy); 1120 if (CE->getCastKind() == CK_AddressSpaceConversion) 1121 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType())); 1122 return Addr; 1123 } 1124 break; 1125 1126 // Array-to-pointer decay. 1127 case CK_ArrayToPointerDecay: 1128 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1129 1130 // Derived-to-base conversions. 1131 case CK_UncheckedDerivedToBase: 1132 case CK_DerivedToBase: { 1133 // TODO: Support accesses to members of base classes in TBAA. For now, we 1134 // conservatively pretend that the complete object is of the base class 1135 // type. 1136 if (TBAAInfo) 1137 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1138 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1139 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1140 return GetAddressOfBaseClass(Addr, Derived, 1141 CE->path_begin(), CE->path_end(), 1142 ShouldNullCheckClassCastValue(CE), 1143 CE->getExprLoc()); 1144 } 1145 1146 // TODO: Is there any reason to treat base-to-derived conversions 1147 // specially? 1148 default: 1149 break; 1150 } 1151 } 1152 1153 // Unary &. 1154 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1155 if (UO->getOpcode() == UO_AddrOf) { 1156 LValue LV = EmitLValue(UO->getSubExpr()); 1157 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1158 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1159 return LV.getAddress(*this); 1160 } 1161 } 1162 1163 // TODO: conditional operators, comma. 1164 1165 // Otherwise, use the alignment of the type. 1166 CharUnits Align = 1167 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1168 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1169 return Address(EmitScalarExpr(E), ElemTy, Align); 1170 } 1171 1172 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1173 llvm::Value *V = RV.getScalarVal(); 1174 if (auto MPT = T->getAs<MemberPointerType>()) 1175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1176 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1177 } 1178 1179 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1180 if (Ty->isVoidType()) 1181 return RValue::get(nullptr); 1182 1183 switch (getEvaluationKind(Ty)) { 1184 case TEK_Complex: { 1185 llvm::Type *EltTy = 1186 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1187 llvm::Value *U = llvm::UndefValue::get(EltTy); 1188 return RValue::getComplex(std::make_pair(U, U)); 1189 } 1190 1191 // If this is a use of an undefined aggregate type, the aggregate must have an 1192 // identifiable address. Just because the contents of the value are undefined 1193 // doesn't mean that the address can't be taken and compared. 1194 case TEK_Aggregate: { 1195 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1196 return RValue::getAggregate(DestPtr); 1197 } 1198 1199 case TEK_Scalar: 1200 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1201 } 1202 llvm_unreachable("bad evaluation kind"); 1203 } 1204 1205 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1206 const char *Name) { 1207 ErrorUnsupported(E, Name); 1208 return GetUndefRValue(E->getType()); 1209 } 1210 1211 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1212 const char *Name) { 1213 ErrorUnsupported(E, Name); 1214 llvm::Type *ElTy = ConvertType(E->getType()); 1215 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy); 1216 return MakeAddrLValue( 1217 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 1218 } 1219 1220 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1221 const Expr *Base = Obj; 1222 while (!isa<CXXThisExpr>(Base)) { 1223 // The result of a dynamic_cast can be null. 1224 if (isa<CXXDynamicCastExpr>(Base)) 1225 return false; 1226 1227 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1228 Base = CE->getSubExpr(); 1229 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1230 Base = PE->getSubExpr(); 1231 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1232 if (UO->getOpcode() == UO_Extension) 1233 Base = UO->getSubExpr(); 1234 else 1235 return false; 1236 } else { 1237 return false; 1238 } 1239 } 1240 return true; 1241 } 1242 1243 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1244 LValue LV; 1245 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1246 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1247 else 1248 LV = EmitLValue(E); 1249 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1250 SanitizerSet SkippedChecks; 1251 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1252 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1253 if (IsBaseCXXThis) 1254 SkippedChecks.set(SanitizerKind::Alignment, true); 1255 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1256 SkippedChecks.set(SanitizerKind::Null, true); 1257 } 1258 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1259 LV.getAlignment(), SkippedChecks); 1260 } 1261 return LV; 1262 } 1263 1264 /// EmitLValue - Emit code to compute a designator that specifies the location 1265 /// of the expression. 1266 /// 1267 /// This can return one of two things: a simple address or a bitfield reference. 1268 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1269 /// an LLVM pointer type. 1270 /// 1271 /// If this returns a bitfield reference, nothing about the pointee type of the 1272 /// LLVM value is known: For example, it may not be a pointer to an integer. 1273 /// 1274 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1275 /// this method guarantees that the returned pointer type will point to an LLVM 1276 /// type of the same size of the lvalue's type. If the lvalue has a variable 1277 /// length type, this is not possible. 1278 /// 1279 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1280 ApplyDebugLocation DL(*this, E); 1281 switch (E->getStmtClass()) { 1282 default: return EmitUnsupportedLValue(E, "l-value expression"); 1283 1284 case Expr::ObjCPropertyRefExprClass: 1285 llvm_unreachable("cannot emit a property reference directly"); 1286 1287 case Expr::ObjCSelectorExprClass: 1288 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1289 case Expr::ObjCIsaExprClass: 1290 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1291 case Expr::BinaryOperatorClass: 1292 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1293 case Expr::CompoundAssignOperatorClass: { 1294 QualType Ty = E->getType(); 1295 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1296 Ty = AT->getValueType(); 1297 if (!Ty->isAnyComplexType()) 1298 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1299 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1300 } 1301 case Expr::CallExprClass: 1302 case Expr::CXXMemberCallExprClass: 1303 case Expr::CXXOperatorCallExprClass: 1304 case Expr::UserDefinedLiteralClass: 1305 return EmitCallExprLValue(cast<CallExpr>(E)); 1306 case Expr::CXXRewrittenBinaryOperatorClass: 1307 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1308 case Expr::VAArgExprClass: 1309 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1310 case Expr::DeclRefExprClass: 1311 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1312 case Expr::ConstantExprClass: { 1313 const ConstantExpr *CE = cast<ConstantExpr>(E); 1314 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1315 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1316 ->getCallReturnType(getContext()) 1317 ->getPointeeType(); 1318 return MakeNaturalAlignAddrLValue(Result, RetType); 1319 } 1320 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1321 } 1322 case Expr::ParenExprClass: 1323 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1324 case Expr::GenericSelectionExprClass: 1325 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1326 case Expr::PredefinedExprClass: 1327 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1328 case Expr::StringLiteralClass: 1329 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1330 case Expr::ObjCEncodeExprClass: 1331 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1332 case Expr::PseudoObjectExprClass: 1333 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1334 case Expr::InitListExprClass: 1335 return EmitInitListLValue(cast<InitListExpr>(E)); 1336 case Expr::CXXTemporaryObjectExprClass: 1337 case Expr::CXXConstructExprClass: 1338 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1339 case Expr::CXXBindTemporaryExprClass: 1340 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1341 case Expr::CXXUuidofExprClass: 1342 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1343 case Expr::LambdaExprClass: 1344 return EmitAggExprToLValue(E); 1345 1346 case Expr::ExprWithCleanupsClass: { 1347 const auto *cleanups = cast<ExprWithCleanups>(E); 1348 RunCleanupsScope Scope(*this); 1349 LValue LV = EmitLValue(cleanups->getSubExpr()); 1350 if (LV.isSimple()) { 1351 // Defend against branches out of gnu statement expressions surrounded by 1352 // cleanups. 1353 Address Addr = LV.getAddress(*this); 1354 llvm::Value *V = Addr.getPointer(); 1355 Scope.ForceCleanup({&V}); 1356 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(), 1357 LV.getBaseInfo(), LV.getTBAAInfo()); 1358 } 1359 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1360 // bitfield lvalue or some other non-simple lvalue? 1361 return LV; 1362 } 1363 1364 case Expr::CXXDefaultArgExprClass: { 1365 auto *DAE = cast<CXXDefaultArgExpr>(E); 1366 CXXDefaultArgExprScope Scope(*this, DAE); 1367 return EmitLValue(DAE->getExpr()); 1368 } 1369 case Expr::CXXDefaultInitExprClass: { 1370 auto *DIE = cast<CXXDefaultInitExpr>(E); 1371 CXXDefaultInitExprScope Scope(*this, DIE); 1372 return EmitLValue(DIE->getExpr()); 1373 } 1374 case Expr::CXXTypeidExprClass: 1375 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1376 1377 case Expr::ObjCMessageExprClass: 1378 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1379 case Expr::ObjCIvarRefExprClass: 1380 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1381 case Expr::StmtExprClass: 1382 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1383 case Expr::UnaryOperatorClass: 1384 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1385 case Expr::ArraySubscriptExprClass: 1386 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1387 case Expr::MatrixSubscriptExprClass: 1388 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1389 case Expr::OMPArraySectionExprClass: 1390 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1391 case Expr::ExtVectorElementExprClass: 1392 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1393 case Expr::MemberExprClass: 1394 return EmitMemberExpr(cast<MemberExpr>(E)); 1395 case Expr::CompoundLiteralExprClass: 1396 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1397 case Expr::ConditionalOperatorClass: 1398 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1399 case Expr::BinaryConditionalOperatorClass: 1400 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1401 case Expr::ChooseExprClass: 1402 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1403 case Expr::OpaqueValueExprClass: 1404 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1405 case Expr::SubstNonTypeTemplateParmExprClass: 1406 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1407 case Expr::ImplicitCastExprClass: 1408 case Expr::CStyleCastExprClass: 1409 case Expr::CXXFunctionalCastExprClass: 1410 case Expr::CXXStaticCastExprClass: 1411 case Expr::CXXDynamicCastExprClass: 1412 case Expr::CXXReinterpretCastExprClass: 1413 case Expr::CXXConstCastExprClass: 1414 case Expr::CXXAddrspaceCastExprClass: 1415 case Expr::ObjCBridgedCastExprClass: 1416 return EmitCastLValue(cast<CastExpr>(E)); 1417 1418 case Expr::MaterializeTemporaryExprClass: 1419 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1420 1421 case Expr::CoawaitExprClass: 1422 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1423 case Expr::CoyieldExprClass: 1424 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1425 } 1426 } 1427 1428 /// Given an object of the given canonical type, can we safely copy a 1429 /// value out of it based on its initializer? 1430 static bool isConstantEmittableObjectType(QualType type) { 1431 assert(type.isCanonical()); 1432 assert(!type->isReferenceType()); 1433 1434 // Must be const-qualified but non-volatile. 1435 Qualifiers qs = type.getLocalQualifiers(); 1436 if (!qs.hasConst() || qs.hasVolatile()) return false; 1437 1438 // Otherwise, all object types satisfy this except C++ classes with 1439 // mutable subobjects or non-trivial copy/destroy behavior. 1440 if (const auto *RT = dyn_cast<RecordType>(type)) 1441 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1442 if (RD->hasMutableFields() || !RD->isTrivial()) 1443 return false; 1444 1445 return true; 1446 } 1447 1448 /// Can we constant-emit a load of a reference to a variable of the 1449 /// given type? This is different from predicates like 1450 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1451 /// in situations that don't necessarily satisfy the language's rules 1452 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1453 /// to do this with const float variables even if those variables 1454 /// aren't marked 'constexpr'. 1455 enum ConstantEmissionKind { 1456 CEK_None, 1457 CEK_AsReferenceOnly, 1458 CEK_AsValueOrReference, 1459 CEK_AsValueOnly 1460 }; 1461 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1462 type = type.getCanonicalType(); 1463 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1464 if (isConstantEmittableObjectType(ref->getPointeeType())) 1465 return CEK_AsValueOrReference; 1466 return CEK_AsReferenceOnly; 1467 } 1468 if (isConstantEmittableObjectType(type)) 1469 return CEK_AsValueOnly; 1470 return CEK_None; 1471 } 1472 1473 /// Try to emit a reference to the given value without producing it as 1474 /// an l-value. This is just an optimization, but it avoids us needing 1475 /// to emit global copies of variables if they're named without triggering 1476 /// a formal use in a context where we can't emit a direct reference to them, 1477 /// for instance if a block or lambda or a member of a local class uses a 1478 /// const int variable or constexpr variable from an enclosing function. 1479 CodeGenFunction::ConstantEmission 1480 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1481 ValueDecl *value = refExpr->getDecl(); 1482 1483 // The value needs to be an enum constant or a constant variable. 1484 ConstantEmissionKind CEK; 1485 if (isa<ParmVarDecl>(value)) { 1486 CEK = CEK_None; 1487 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1488 CEK = checkVarTypeForConstantEmission(var->getType()); 1489 } else if (isa<EnumConstantDecl>(value)) { 1490 CEK = CEK_AsValueOnly; 1491 } else { 1492 CEK = CEK_None; 1493 } 1494 if (CEK == CEK_None) return ConstantEmission(); 1495 1496 Expr::EvalResult result; 1497 bool resultIsReference; 1498 QualType resultType; 1499 1500 // It's best to evaluate all the way as an r-value if that's permitted. 1501 if (CEK != CEK_AsReferenceOnly && 1502 refExpr->EvaluateAsRValue(result, getContext())) { 1503 resultIsReference = false; 1504 resultType = refExpr->getType(); 1505 1506 // Otherwise, try to evaluate as an l-value. 1507 } else if (CEK != CEK_AsValueOnly && 1508 refExpr->EvaluateAsLValue(result, getContext())) { 1509 resultIsReference = true; 1510 resultType = value->getType(); 1511 1512 // Failure. 1513 } else { 1514 return ConstantEmission(); 1515 } 1516 1517 // In any case, if the initializer has side-effects, abandon ship. 1518 if (result.HasSideEffects) 1519 return ConstantEmission(); 1520 1521 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1522 // referencing a global host variable by copy. In this case the lambda should 1523 // make a copy of the value of the global host variable. The DRE of the 1524 // captured reference variable cannot be emitted as load from the host 1525 // global variable as compile time constant, since the host variable is not 1526 // accessible on device. The DRE of the captured reference variable has to be 1527 // loaded from captures. 1528 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1529 refExpr->refersToEnclosingVariableOrCapture()) { 1530 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1531 if (MD && MD->getParent()->isLambda() && 1532 MD->getOverloadedOperator() == OO_Call) { 1533 const APValue::LValueBase &base = result.Val.getLValueBase(); 1534 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1535 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1536 if (!VD->hasAttr<CUDADeviceAttr>()) { 1537 return ConstantEmission(); 1538 } 1539 } 1540 } 1541 } 1542 } 1543 1544 // Emit as a constant. 1545 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1546 result.Val, resultType); 1547 1548 // Make sure we emit a debug reference to the global variable. 1549 // This should probably fire even for 1550 if (isa<VarDecl>(value)) { 1551 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1552 EmitDeclRefExprDbgValue(refExpr, result.Val); 1553 } else { 1554 assert(isa<EnumConstantDecl>(value)); 1555 EmitDeclRefExprDbgValue(refExpr, result.Val); 1556 } 1557 1558 // If we emitted a reference constant, we need to dereference that. 1559 if (resultIsReference) 1560 return ConstantEmission::forReference(C); 1561 1562 return ConstantEmission::forValue(C); 1563 } 1564 1565 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1566 const MemberExpr *ME) { 1567 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1568 // Try to emit static variable member expressions as DREs. 1569 return DeclRefExpr::Create( 1570 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1571 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1572 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1573 } 1574 return nullptr; 1575 } 1576 1577 CodeGenFunction::ConstantEmission 1578 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1579 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1580 return tryEmitAsConstant(DRE); 1581 return ConstantEmission(); 1582 } 1583 1584 llvm::Value *CodeGenFunction::emitScalarConstant( 1585 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1586 assert(Constant && "not a constant"); 1587 if (Constant.isReference()) 1588 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1589 E->getExprLoc()) 1590 .getScalarVal(); 1591 return Constant.getValue(); 1592 } 1593 1594 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1595 SourceLocation Loc) { 1596 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1597 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1598 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1599 } 1600 1601 static bool hasBooleanRepresentation(QualType Ty) { 1602 if (Ty->isBooleanType()) 1603 return true; 1604 1605 if (const EnumType *ET = Ty->getAs<EnumType>()) 1606 return ET->getDecl()->getIntegerType()->isBooleanType(); 1607 1608 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1609 return hasBooleanRepresentation(AT->getValueType()); 1610 1611 return false; 1612 } 1613 1614 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1615 llvm::APInt &Min, llvm::APInt &End, 1616 bool StrictEnums, bool IsBool) { 1617 const EnumType *ET = Ty->getAs<EnumType>(); 1618 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1619 ET && !ET->getDecl()->isFixed(); 1620 if (!IsBool && !IsRegularCPlusPlusEnum) 1621 return false; 1622 1623 if (IsBool) { 1624 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1625 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1626 } else { 1627 const EnumDecl *ED = ET->getDecl(); 1628 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1629 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1630 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1631 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1632 1633 if (NumNegativeBits) { 1634 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1635 assert(NumBits <= Bitwidth); 1636 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1637 Min = -End; 1638 } else { 1639 assert(NumPositiveBits <= Bitwidth); 1640 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1641 Min = llvm::APInt::getZero(Bitwidth); 1642 } 1643 } 1644 return true; 1645 } 1646 1647 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1648 llvm::APInt Min, End; 1649 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1650 hasBooleanRepresentation(Ty))) 1651 return nullptr; 1652 1653 llvm::MDBuilder MDHelper(getLLVMContext()); 1654 return MDHelper.createRange(Min, End); 1655 } 1656 1657 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1658 SourceLocation Loc) { 1659 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1660 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1661 if (!HasBoolCheck && !HasEnumCheck) 1662 return false; 1663 1664 bool IsBool = hasBooleanRepresentation(Ty) || 1665 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1666 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1667 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1668 if (!NeedsBoolCheck && !NeedsEnumCheck) 1669 return false; 1670 1671 // Single-bit booleans don't need to be checked. Special-case this to avoid 1672 // a bit width mismatch when handling bitfield values. This is handled by 1673 // EmitFromMemory for the non-bitfield case. 1674 if (IsBool && 1675 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1676 return false; 1677 1678 llvm::APInt Min, End; 1679 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1680 return true; 1681 1682 auto &Ctx = getLLVMContext(); 1683 SanitizerScope SanScope(this); 1684 llvm::Value *Check; 1685 --End; 1686 if (!Min) { 1687 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1688 } else { 1689 llvm::Value *Upper = 1690 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1691 llvm::Value *Lower = 1692 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1693 Check = Builder.CreateAnd(Upper, Lower); 1694 } 1695 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1696 EmitCheckTypeDescriptor(Ty)}; 1697 SanitizerMask Kind = 1698 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1699 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1700 StaticArgs, EmitCheckValue(Value)); 1701 return true; 1702 } 1703 1704 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1705 QualType Ty, 1706 SourceLocation Loc, 1707 LValueBaseInfo BaseInfo, 1708 TBAAAccessInfo TBAAInfo, 1709 bool isNontemporal) { 1710 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1711 // For better performance, handle vector loads differently. 1712 if (Ty->isVectorType()) { 1713 const llvm::Type *EltTy = Addr.getElementType(); 1714 1715 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1716 1717 // Handle vectors of size 3 like size 4 for better performance. 1718 if (VTy->getNumElements() == 3) { 1719 1720 // Bitcast to vec4 type. 1721 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1722 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1723 // Now load value. 1724 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1725 1726 // Shuffle vector to get vec3. 1727 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, 1728 "extractVec"); 1729 return EmitFromMemory(V, Ty); 1730 } 1731 } 1732 } 1733 1734 // Atomic operations have to be done on integral types. 1735 LValue AtomicLValue = 1736 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1737 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1738 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1739 } 1740 1741 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1742 if (isNontemporal) { 1743 llvm::MDNode *Node = llvm::MDNode::get( 1744 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1745 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1746 } 1747 1748 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1749 1750 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1751 // In order to prevent the optimizer from throwing away the check, don't 1752 // attach range metadata to the load. 1753 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1754 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1755 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1756 1757 return EmitFromMemory(Load, Ty); 1758 } 1759 1760 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1761 // Bool has a different representation in memory than in registers. 1762 if (hasBooleanRepresentation(Ty)) { 1763 // This should really always be an i1, but sometimes it's already 1764 // an i8, and it's awkward to track those cases down. 1765 if (Value->getType()->isIntegerTy(1)) 1766 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1767 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1768 "wrong value rep of bool"); 1769 } 1770 1771 return Value; 1772 } 1773 1774 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1775 // Bool has a different representation in memory than in registers. 1776 if (hasBooleanRepresentation(Ty)) { 1777 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1778 "wrong value rep of bool"); 1779 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1780 } 1781 1782 return Value; 1783 } 1784 1785 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1786 // MatrixType), if it points to a array (the memory type of MatrixType). 1787 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1788 bool IsVector = true) { 1789 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1790 if (ArrayTy && IsVector) { 1791 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1792 ArrayTy->getNumElements()); 1793 1794 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1795 } 1796 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1797 if (VectorTy && !IsVector) { 1798 auto *ArrayTy = llvm::ArrayType::get( 1799 VectorTy->getElementType(), 1800 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1801 1802 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1803 } 1804 1805 return Addr; 1806 } 1807 1808 // Emit a store of a matrix LValue. This may require casting the original 1809 // pointer to memory address (ArrayType) to a pointer to the value type 1810 // (VectorType). 1811 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1812 bool isInit, CodeGenFunction &CGF) { 1813 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1814 value->getType()->isVectorTy()); 1815 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1816 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1817 lvalue.isNontemporal()); 1818 } 1819 1820 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1821 bool Volatile, QualType Ty, 1822 LValueBaseInfo BaseInfo, 1823 TBAAAccessInfo TBAAInfo, 1824 bool isInit, bool isNontemporal) { 1825 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1826 // Handle vectors differently to get better performance. 1827 if (Ty->isVectorType()) { 1828 llvm::Type *SrcTy = Value->getType(); 1829 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1830 // Handle vec3 special. 1831 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1832 // Our source is a vec3, do a shuffle vector to make it a vec4. 1833 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1834 "extractVec"); 1835 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1836 } 1837 if (Addr.getElementType() != SrcTy) { 1838 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1839 } 1840 } 1841 } 1842 1843 Value = EmitToMemory(Value, Ty); 1844 1845 LValue AtomicLValue = 1846 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1847 if (Ty->isAtomicType() || 1848 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1849 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1850 return; 1851 } 1852 1853 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1854 if (isNontemporal) { 1855 llvm::MDNode *Node = 1856 llvm::MDNode::get(Store->getContext(), 1857 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1858 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1859 } 1860 1861 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1862 } 1863 1864 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1865 bool isInit) { 1866 if (lvalue.getType()->isConstantMatrixType()) { 1867 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1868 return; 1869 } 1870 1871 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1872 lvalue.getType(), lvalue.getBaseInfo(), 1873 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1874 } 1875 1876 // Emit a load of a LValue of matrix type. This may require casting the pointer 1877 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1878 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1879 CodeGenFunction &CGF) { 1880 assert(LV.getType()->isConstantMatrixType()); 1881 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1882 LV.setAddress(Addr); 1883 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1884 } 1885 1886 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1887 /// method emits the address of the lvalue, then loads the result as an rvalue, 1888 /// returning the rvalue. 1889 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1890 if (LV.isObjCWeak()) { 1891 // load of a __weak object. 1892 Address AddrWeakObj = LV.getAddress(*this); 1893 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1894 AddrWeakObj)); 1895 } 1896 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1897 // In MRC mode, we do a load+autorelease. 1898 if (!getLangOpts().ObjCAutoRefCount) { 1899 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1900 } 1901 1902 // In ARC mode, we load retained and then consume the value. 1903 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1904 Object = EmitObjCConsumeObject(LV.getType(), Object); 1905 return RValue::get(Object); 1906 } 1907 1908 if (LV.isSimple()) { 1909 assert(!LV.getType()->isFunctionType()); 1910 1911 if (LV.getType()->isConstantMatrixType()) 1912 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1913 1914 // Everything needs a load. 1915 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1916 } 1917 1918 if (LV.isVectorElt()) { 1919 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1920 LV.isVolatileQualified()); 1921 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1922 "vecext")); 1923 } 1924 1925 // If this is a reference to a subset of the elements of a vector, either 1926 // shuffle the input or extract/insert them as appropriate. 1927 if (LV.isExtVectorElt()) { 1928 return EmitLoadOfExtVectorElementLValue(LV); 1929 } 1930 1931 // Global Register variables always invoke intrinsics 1932 if (LV.isGlobalReg()) 1933 return EmitLoadOfGlobalRegLValue(LV); 1934 1935 if (LV.isMatrixElt()) { 1936 llvm::Value *Idx = LV.getMatrixIdx(); 1937 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1938 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 1939 llvm::MatrixBuilder MB(Builder); 1940 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1941 } 1942 llvm::LoadInst *Load = 1943 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1944 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1945 } 1946 1947 assert(LV.isBitField() && "Unknown LValue type!"); 1948 return EmitLoadOfBitfieldLValue(LV, Loc); 1949 } 1950 1951 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1952 SourceLocation Loc) { 1953 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1954 1955 // Get the output type. 1956 llvm::Type *ResLTy = ConvertType(LV.getType()); 1957 1958 Address Ptr = LV.getBitFieldAddress(); 1959 llvm::Value *Val = 1960 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1961 1962 bool UseVolatile = LV.isVolatileQualified() && 1963 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1964 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1965 const unsigned StorageSize = 1966 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1967 if (Info.IsSigned) { 1968 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1969 unsigned HighBits = StorageSize - Offset - Info.Size; 1970 if (HighBits) 1971 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1972 if (Offset + HighBits) 1973 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1974 } else { 1975 if (Offset) 1976 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1977 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1978 Val = Builder.CreateAnd( 1979 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1980 } 1981 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1982 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1983 return RValue::get(Val); 1984 } 1985 1986 // If this is a reference to a subset of the elements of a vector, create an 1987 // appropriate shufflevector. 1988 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1989 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1990 LV.isVolatileQualified()); 1991 1992 const llvm::Constant *Elts = LV.getExtVectorElts(); 1993 1994 // If the result of the expression is a non-vector type, we must be extracting 1995 // a single element. Just codegen as an extractelement. 1996 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1997 if (!ExprVT) { 1998 unsigned InIdx = getAccessedFieldNo(0, Elts); 1999 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2000 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2001 } 2002 2003 // Always use shuffle vector to try to retain the original program structure 2004 unsigned NumResultElts = ExprVT->getNumElements(); 2005 2006 SmallVector<int, 4> Mask; 2007 for (unsigned i = 0; i != NumResultElts; ++i) 2008 Mask.push_back(getAccessedFieldNo(i, Elts)); 2009 2010 Vec = Builder.CreateShuffleVector(Vec, Mask); 2011 return RValue::get(Vec); 2012 } 2013 2014 /// Generates lvalue for partial ext_vector access. 2015 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2016 Address VectorAddress = LV.getExtVectorAddress(); 2017 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2018 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2019 2020 Address CastToPointerElement = 2021 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2022 "conv.ptr.element"); 2023 2024 const llvm::Constant *Elts = LV.getExtVectorElts(); 2025 unsigned ix = getAccessedFieldNo(0, Elts); 2026 2027 Address VectorBasePtrPlusIx = 2028 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2029 "vector.elt"); 2030 2031 return VectorBasePtrPlusIx; 2032 } 2033 2034 /// Load of global gamed gegisters are always calls to intrinsics. 2035 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2036 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2037 "Bad type for register variable"); 2038 llvm::MDNode *RegName = cast<llvm::MDNode>( 2039 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2040 2041 // We accept integer and pointer types only 2042 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2043 llvm::Type *Ty = OrigTy; 2044 if (OrigTy->isPointerTy()) 2045 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2046 llvm::Type *Types[] = { Ty }; 2047 2048 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2049 llvm::Value *Call = Builder.CreateCall( 2050 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2051 if (OrigTy->isPointerTy()) 2052 Call = Builder.CreateIntToPtr(Call, OrigTy); 2053 return RValue::get(Call); 2054 } 2055 2056 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2057 /// lvalue, where both are guaranteed to the have the same type, and that type 2058 /// is 'Ty'. 2059 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2060 bool isInit) { 2061 if (!Dst.isSimple()) { 2062 if (Dst.isVectorElt()) { 2063 // Read/modify/write the vector, inserting the new element. 2064 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2065 Dst.isVolatileQualified()); 2066 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2067 Dst.getVectorIdx(), "vecins"); 2068 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2069 Dst.isVolatileQualified()); 2070 return; 2071 } 2072 2073 // If this is an update of extended vector elements, insert them as 2074 // appropriate. 2075 if (Dst.isExtVectorElt()) 2076 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2077 2078 if (Dst.isGlobalReg()) 2079 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2080 2081 if (Dst.isMatrixElt()) { 2082 llvm::Value *Idx = Dst.getMatrixIdx(); 2083 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2084 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 2085 llvm::MatrixBuilder MB(Builder); 2086 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2087 } 2088 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2089 llvm::Value *Vec = 2090 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2091 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2092 Dst.isVolatileQualified()); 2093 return; 2094 } 2095 2096 assert(Dst.isBitField() && "Unknown LValue type"); 2097 return EmitStoreThroughBitfieldLValue(Src, Dst); 2098 } 2099 2100 // There's special magic for assigning into an ARC-qualified l-value. 2101 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2102 switch (Lifetime) { 2103 case Qualifiers::OCL_None: 2104 llvm_unreachable("present but none"); 2105 2106 case Qualifiers::OCL_ExplicitNone: 2107 // nothing special 2108 break; 2109 2110 case Qualifiers::OCL_Strong: 2111 if (isInit) { 2112 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2113 break; 2114 } 2115 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2116 return; 2117 2118 case Qualifiers::OCL_Weak: 2119 if (isInit) 2120 // Initialize and then skip the primitive store. 2121 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2122 else 2123 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2124 /*ignore*/ true); 2125 return; 2126 2127 case Qualifiers::OCL_Autoreleasing: 2128 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2129 Src.getScalarVal())); 2130 // fall into the normal path 2131 break; 2132 } 2133 } 2134 2135 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2136 // load of a __weak object. 2137 Address LvalueDst = Dst.getAddress(*this); 2138 llvm::Value *src = Src.getScalarVal(); 2139 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2140 return; 2141 } 2142 2143 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2144 // load of a __strong object. 2145 Address LvalueDst = Dst.getAddress(*this); 2146 llvm::Value *src = Src.getScalarVal(); 2147 if (Dst.isObjCIvar()) { 2148 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2149 llvm::Type *ResultType = IntPtrTy; 2150 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2151 llvm::Value *RHS = dst.getPointer(); 2152 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2153 llvm::Value *LHS = 2154 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2155 "sub.ptr.lhs.cast"); 2156 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2157 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2158 BytesBetween); 2159 } else if (Dst.isGlobalObjCRef()) { 2160 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2161 Dst.isThreadLocalRef()); 2162 } 2163 else 2164 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2165 return; 2166 } 2167 2168 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2169 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2170 } 2171 2172 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2173 llvm::Value **Result) { 2174 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2175 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2176 Address Ptr = Dst.getBitFieldAddress(); 2177 2178 // Get the source value, truncated to the width of the bit-field. 2179 llvm::Value *SrcVal = Src.getScalarVal(); 2180 2181 // Cast the source to the storage type and shift it into place. 2182 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2183 /*isSigned=*/false); 2184 llvm::Value *MaskedVal = SrcVal; 2185 2186 const bool UseVolatile = 2187 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2188 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2189 const unsigned StorageSize = 2190 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2191 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2192 // See if there are other bits in the bitfield's storage we'll need to load 2193 // and mask together with source before storing. 2194 if (StorageSize != Info.Size) { 2195 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2196 llvm::Value *Val = 2197 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2198 2199 // Mask the source value as needed. 2200 if (!hasBooleanRepresentation(Dst.getType())) 2201 SrcVal = Builder.CreateAnd( 2202 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2203 "bf.value"); 2204 MaskedVal = SrcVal; 2205 if (Offset) 2206 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2207 2208 // Mask out the original value. 2209 Val = Builder.CreateAnd( 2210 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2211 "bf.clear"); 2212 2213 // Or together the unchanged values and the source value. 2214 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2215 } else { 2216 assert(Offset == 0); 2217 // According to the AACPS: 2218 // When a volatile bit-field is written, and its container does not overlap 2219 // with any non-bit-field member, its container must be read exactly once 2220 // and written exactly once using the access width appropriate to the type 2221 // of the container. The two accesses are not atomic. 2222 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2223 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2224 Builder.CreateLoad(Ptr, true, "bf.load"); 2225 } 2226 2227 // Write the new value back out. 2228 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2229 2230 // Return the new value of the bit-field, if requested. 2231 if (Result) { 2232 llvm::Value *ResultVal = MaskedVal; 2233 2234 // Sign extend the value if needed. 2235 if (Info.IsSigned) { 2236 assert(Info.Size <= StorageSize); 2237 unsigned HighBits = StorageSize - Info.Size; 2238 if (HighBits) { 2239 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2240 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2241 } 2242 } 2243 2244 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2245 "bf.result.cast"); 2246 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2247 } 2248 } 2249 2250 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2251 LValue Dst) { 2252 // This access turns into a read/modify/write of the vector. Load the input 2253 // value now. 2254 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2255 Dst.isVolatileQualified()); 2256 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2257 2258 llvm::Value *SrcVal = Src.getScalarVal(); 2259 2260 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2261 unsigned NumSrcElts = VTy->getNumElements(); 2262 unsigned NumDstElts = 2263 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2264 if (NumDstElts == NumSrcElts) { 2265 // Use shuffle vector is the src and destination are the same number of 2266 // elements and restore the vector mask since it is on the side it will be 2267 // stored. 2268 SmallVector<int, 4> Mask(NumDstElts); 2269 for (unsigned i = 0; i != NumSrcElts; ++i) 2270 Mask[getAccessedFieldNo(i, Elts)] = i; 2271 2272 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2273 } else if (NumDstElts > NumSrcElts) { 2274 // Extended the source vector to the same length and then shuffle it 2275 // into the destination. 2276 // FIXME: since we're shuffling with undef, can we just use the indices 2277 // into that? This could be simpler. 2278 SmallVector<int, 4> ExtMask; 2279 for (unsigned i = 0; i != NumSrcElts; ++i) 2280 ExtMask.push_back(i); 2281 ExtMask.resize(NumDstElts, -1); 2282 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2283 // build identity 2284 SmallVector<int, 4> Mask; 2285 for (unsigned i = 0; i != NumDstElts; ++i) 2286 Mask.push_back(i); 2287 2288 // When the vector size is odd and .odd or .hi is used, the last element 2289 // of the Elts constant array will be one past the size of the vector. 2290 // Ignore the last element here, if it is greater than the mask size. 2291 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2292 NumSrcElts--; 2293 2294 // modify when what gets shuffled in 2295 for (unsigned i = 0; i != NumSrcElts; ++i) 2296 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2297 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2298 } else { 2299 // We should never shorten the vector 2300 llvm_unreachable("unexpected shorten vector length"); 2301 } 2302 } else { 2303 // If the Src is a scalar (not a vector) it must be updating one element. 2304 unsigned InIdx = getAccessedFieldNo(0, Elts); 2305 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2306 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2307 } 2308 2309 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2310 Dst.isVolatileQualified()); 2311 } 2312 2313 /// Store of global named registers are always calls to intrinsics. 2314 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2315 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2316 "Bad type for register variable"); 2317 llvm::MDNode *RegName = cast<llvm::MDNode>( 2318 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2319 assert(RegName && "Register LValue is not metadata"); 2320 2321 // We accept integer and pointer types only 2322 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2323 llvm::Type *Ty = OrigTy; 2324 if (OrigTy->isPointerTy()) 2325 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2326 llvm::Type *Types[] = { Ty }; 2327 2328 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2329 llvm::Value *Value = Src.getScalarVal(); 2330 if (OrigTy->isPointerTy()) 2331 Value = Builder.CreatePtrToInt(Value, Ty); 2332 Builder.CreateCall( 2333 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2334 } 2335 2336 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2337 // generating write-barries API. It is currently a global, ivar, 2338 // or neither. 2339 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2340 LValue &LV, 2341 bool IsMemberAccess=false) { 2342 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2343 return; 2344 2345 if (isa<ObjCIvarRefExpr>(E)) { 2346 QualType ExpTy = E->getType(); 2347 if (IsMemberAccess && ExpTy->isPointerType()) { 2348 // If ivar is a structure pointer, assigning to field of 2349 // this struct follows gcc's behavior and makes it a non-ivar 2350 // writer-barrier conservatively. 2351 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2352 if (ExpTy->isRecordType()) { 2353 LV.setObjCIvar(false); 2354 return; 2355 } 2356 } 2357 LV.setObjCIvar(true); 2358 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2359 LV.setBaseIvarExp(Exp->getBase()); 2360 LV.setObjCArray(E->getType()->isArrayType()); 2361 return; 2362 } 2363 2364 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2365 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2366 if (VD->hasGlobalStorage()) { 2367 LV.setGlobalObjCRef(true); 2368 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2369 } 2370 } 2371 LV.setObjCArray(E->getType()->isArrayType()); 2372 return; 2373 } 2374 2375 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2376 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2377 return; 2378 } 2379 2380 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2381 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2382 if (LV.isObjCIvar()) { 2383 // If cast is to a structure pointer, follow gcc's behavior and make it 2384 // a non-ivar write-barrier. 2385 QualType ExpTy = E->getType(); 2386 if (ExpTy->isPointerType()) 2387 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2388 if (ExpTy->isRecordType()) 2389 LV.setObjCIvar(false); 2390 } 2391 return; 2392 } 2393 2394 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2395 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2396 return; 2397 } 2398 2399 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2400 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2401 return; 2402 } 2403 2404 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2405 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2406 return; 2407 } 2408 2409 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2410 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2411 return; 2412 } 2413 2414 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2415 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2416 if (LV.isObjCIvar() && !LV.isObjCArray()) 2417 // Using array syntax to assigning to what an ivar points to is not 2418 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2419 LV.setObjCIvar(false); 2420 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2421 // Using array syntax to assigning to what global points to is not 2422 // same as assigning to the global itself. {id *G;} G[i] = 0; 2423 LV.setGlobalObjCRef(false); 2424 return; 2425 } 2426 2427 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2428 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2429 // We don't know if member is an 'ivar', but this flag is looked at 2430 // only in the context of LV.isObjCIvar(). 2431 LV.setObjCArray(E->getType()->isArrayType()); 2432 return; 2433 } 2434 } 2435 2436 static llvm::Value * 2437 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2438 llvm::Value *V, llvm::Type *IRType, 2439 StringRef Name = StringRef()) { 2440 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2441 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2442 } 2443 2444 static LValue EmitThreadPrivateVarDeclLValue( 2445 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2446 llvm::Type *RealVarTy, SourceLocation Loc) { 2447 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2448 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2449 CGF, VD, Addr, Loc); 2450 else 2451 Addr = 2452 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2453 2454 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2455 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2456 } 2457 2458 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2459 const VarDecl *VD, QualType T) { 2460 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2461 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2462 // Return an invalid address if variable is MT_To and unified 2463 // memory is not enabled. For all other cases: MT_Link and 2464 // MT_To with unified memory, return a valid address. 2465 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2466 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2467 return Address::invalid(); 2468 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2469 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2470 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2471 "Expected link clause OR to clause with unified memory enabled."); 2472 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2473 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2474 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2475 } 2476 2477 Address 2478 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2479 LValueBaseInfo *PointeeBaseInfo, 2480 TBAAAccessInfo *PointeeTBAAInfo) { 2481 llvm::LoadInst *Load = 2482 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2483 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2484 2485 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2486 CharUnits Align = CGM.getNaturalTypeAlignment( 2487 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2488 /* forPointeeType= */ true); 2489 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2490 } 2491 2492 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2493 LValueBaseInfo PointeeBaseInfo; 2494 TBAAAccessInfo PointeeTBAAInfo; 2495 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2496 &PointeeTBAAInfo); 2497 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2498 PointeeBaseInfo, PointeeTBAAInfo); 2499 } 2500 2501 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2502 const PointerType *PtrTy, 2503 LValueBaseInfo *BaseInfo, 2504 TBAAAccessInfo *TBAAInfo) { 2505 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2506 return Address::deprecated( 2507 Addr, 2508 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, TBAAInfo, 2509 /*forPointeeType=*/true)); 2510 } 2511 2512 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2513 const PointerType *PtrTy) { 2514 LValueBaseInfo BaseInfo; 2515 TBAAAccessInfo TBAAInfo; 2516 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2517 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2518 } 2519 2520 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2521 const Expr *E, const VarDecl *VD) { 2522 QualType T = E->getType(); 2523 2524 // If it's thread_local, emit a call to its wrapper function instead. 2525 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2526 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2527 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2528 // Check if the variable is marked as declare target with link clause in 2529 // device codegen. 2530 if (CGF.getLangOpts().OpenMPIsDevice) { 2531 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2532 if (Addr.isValid()) 2533 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2534 } 2535 2536 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2537 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2538 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2539 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2540 Address Addr(V, RealVarTy, Alignment); 2541 // Emit reference to the private copy of the variable if it is an OpenMP 2542 // threadprivate variable. 2543 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2544 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2545 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2546 E->getExprLoc()); 2547 } 2548 LValue LV = VD->getType()->isReferenceType() ? 2549 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2550 AlignmentSource::Decl) : 2551 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2552 setObjCGCLValueClass(CGF.getContext(), E, LV); 2553 return LV; 2554 } 2555 2556 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2557 GlobalDecl GD) { 2558 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2559 if (FD->hasAttr<WeakRefAttr>()) { 2560 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2561 return aliasee.getPointer(); 2562 } 2563 2564 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2565 if (!FD->hasPrototype()) { 2566 if (const FunctionProtoType *Proto = 2567 FD->getType()->getAs<FunctionProtoType>()) { 2568 // Ugly case: for a K&R-style definition, the type of the definition 2569 // isn't the same as the type of a use. Correct for this with a 2570 // bitcast. 2571 QualType NoProtoType = 2572 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2573 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2574 V = llvm::ConstantExpr::getBitCast(V, 2575 CGM.getTypes().ConvertType(NoProtoType)); 2576 } 2577 } 2578 return V; 2579 } 2580 2581 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2582 GlobalDecl GD) { 2583 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2584 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2585 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2586 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2587 AlignmentSource::Decl); 2588 } 2589 2590 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2591 llvm::Value *ThisValue) { 2592 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2593 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2594 return CGF.EmitLValueForField(LV, FD); 2595 } 2596 2597 /// Named Registers are named metadata pointing to the register name 2598 /// which will be read from/written to as an argument to the intrinsic 2599 /// @llvm.read/write_register. 2600 /// So far, only the name is being passed down, but other options such as 2601 /// register type, allocation type or even optimization options could be 2602 /// passed down via the metadata node. 2603 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2604 SmallString<64> Name("llvm.named.register."); 2605 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2606 assert(Asm->getLabel().size() < 64-Name.size() && 2607 "Register name too big"); 2608 Name.append(Asm->getLabel()); 2609 llvm::NamedMDNode *M = 2610 CGM.getModule().getOrInsertNamedMetadata(Name); 2611 if (M->getNumOperands() == 0) { 2612 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2613 Asm->getLabel()); 2614 llvm::Metadata *Ops[] = {Str}; 2615 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2616 } 2617 2618 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2619 2620 llvm::Value *Ptr = 2621 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2622 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2623 } 2624 2625 /// Determine whether we can emit a reference to \p VD from the current 2626 /// context, despite not necessarily having seen an odr-use of the variable in 2627 /// this context. 2628 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2629 const DeclRefExpr *E, 2630 const VarDecl *VD, 2631 bool IsConstant) { 2632 // For a variable declared in an enclosing scope, do not emit a spurious 2633 // reference even if we have a capture, as that will emit an unwarranted 2634 // reference to our capture state, and will likely generate worse code than 2635 // emitting a local copy. 2636 if (E->refersToEnclosingVariableOrCapture()) 2637 return false; 2638 2639 // For a local declaration declared in this function, we can always reference 2640 // it even if we don't have an odr-use. 2641 if (VD->hasLocalStorage()) { 2642 return VD->getDeclContext() == 2643 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2644 } 2645 2646 // For a global declaration, we can emit a reference to it if we know 2647 // for sure that we are able to emit a definition of it. 2648 VD = VD->getDefinition(CGF.getContext()); 2649 if (!VD) 2650 return false; 2651 2652 // Don't emit a spurious reference if it might be to a variable that only 2653 // exists on a different device / target. 2654 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2655 // cross-target reference. 2656 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2657 CGF.getLangOpts().OpenCL) { 2658 return false; 2659 } 2660 2661 // We can emit a spurious reference only if the linkage implies that we'll 2662 // be emitting a non-interposable symbol that will be retained until link 2663 // time. 2664 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2665 case llvm::GlobalValue::ExternalLinkage: 2666 case llvm::GlobalValue::LinkOnceODRLinkage: 2667 case llvm::GlobalValue::WeakODRLinkage: 2668 case llvm::GlobalValue::InternalLinkage: 2669 case llvm::GlobalValue::PrivateLinkage: 2670 return true; 2671 default: 2672 return false; 2673 } 2674 } 2675 2676 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2677 const NamedDecl *ND = E->getDecl(); 2678 QualType T = E->getType(); 2679 2680 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2681 "should not emit an unevaluated operand"); 2682 2683 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2684 // Global Named registers access via intrinsics only 2685 if (VD->getStorageClass() == SC_Register && 2686 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2687 return EmitGlobalNamedRegister(VD, CGM); 2688 2689 // If this DeclRefExpr does not constitute an odr-use of the variable, 2690 // we're not permitted to emit a reference to it in general, and it might 2691 // not be captured if capture would be necessary for a use. Emit the 2692 // constant value directly instead. 2693 if (E->isNonOdrUse() == NOUR_Constant && 2694 (VD->getType()->isReferenceType() || 2695 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2696 VD->getAnyInitializer(VD); 2697 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2698 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2699 assert(Val && "failed to emit constant expression"); 2700 2701 Address Addr = Address::invalid(); 2702 if (!VD->getType()->isReferenceType()) { 2703 // Spill the constant value to a global. 2704 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2705 getContext().getDeclAlign(VD)); 2706 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2707 auto *PTy = llvm::PointerType::get( 2708 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2709 if (PTy != Addr.getType()) 2710 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2711 } else { 2712 // Should we be using the alignment of the constant pointer we emitted? 2713 CharUnits Alignment = 2714 CGM.getNaturalTypeAlignment(E->getType(), 2715 /* BaseInfo= */ nullptr, 2716 /* TBAAInfo= */ nullptr, 2717 /* forPointeeType= */ true); 2718 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 2719 } 2720 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2721 } 2722 2723 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2724 2725 // Check for captured variables. 2726 if (E->refersToEnclosingVariableOrCapture()) { 2727 VD = VD->getCanonicalDecl(); 2728 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2729 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2730 if (CapturedStmtInfo) { 2731 auto I = LocalDeclMap.find(VD); 2732 if (I != LocalDeclMap.end()) { 2733 LValue CapLVal; 2734 if (VD->getType()->isReferenceType()) 2735 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2736 AlignmentSource::Decl); 2737 else 2738 CapLVal = MakeAddrLValue(I->second, T); 2739 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2740 // in simd context. 2741 if (getLangOpts().OpenMP && 2742 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2743 CapLVal.setNontemporal(/*Value=*/true); 2744 return CapLVal; 2745 } 2746 LValue CapLVal = 2747 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2748 CapturedStmtInfo->getContextValue()); 2749 Address LValueAddress = CapLVal.getAddress(*this); 2750 CapLVal = MakeAddrLValue( 2751 Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 2752 getContext().getDeclAlign(VD)), 2753 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2754 CapLVal.getTBAAInfo()); 2755 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2756 // in simd context. 2757 if (getLangOpts().OpenMP && 2758 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2759 CapLVal.setNontemporal(/*Value=*/true); 2760 return CapLVal; 2761 } 2762 2763 assert(isa<BlockDecl>(CurCodeDecl)); 2764 Address addr = GetAddrOfBlockDecl(VD); 2765 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2766 } 2767 } 2768 2769 // FIXME: We should be able to assert this for FunctionDecls as well! 2770 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2771 // those with a valid source location. 2772 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2773 !E->getLocation().isValid()) && 2774 "Should not use decl without marking it used!"); 2775 2776 if (ND->hasAttr<WeakRefAttr>()) { 2777 const auto *VD = cast<ValueDecl>(ND); 2778 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2779 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2780 } 2781 2782 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2783 // Check if this is a global variable. 2784 if (VD->hasLinkage() || VD->isStaticDataMember()) 2785 return EmitGlobalVarDeclLValue(*this, E, VD); 2786 2787 Address addr = Address::invalid(); 2788 2789 // The variable should generally be present in the local decl map. 2790 auto iter = LocalDeclMap.find(VD); 2791 if (iter != LocalDeclMap.end()) { 2792 addr = iter->second; 2793 2794 // Otherwise, it might be static local we haven't emitted yet for 2795 // some reason; most likely, because it's in an outer function. 2796 } else if (VD->isStaticLocal()) { 2797 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 2798 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 2799 addr = Address( 2800 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 2801 2802 // No other cases for now. 2803 } else { 2804 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2805 } 2806 2807 2808 // Check for OpenMP threadprivate variables. 2809 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2810 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2811 return EmitThreadPrivateVarDeclLValue( 2812 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2813 E->getExprLoc()); 2814 } 2815 2816 // Drill into block byref variables. 2817 bool isBlockByref = VD->isEscapingByref(); 2818 if (isBlockByref) { 2819 addr = emitBlockByrefAddress(addr, VD); 2820 } 2821 2822 // Drill into reference types. 2823 LValue LV = VD->getType()->isReferenceType() ? 2824 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2825 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2826 2827 bool isLocalStorage = VD->hasLocalStorage(); 2828 2829 bool NonGCable = isLocalStorage && 2830 !VD->getType()->isReferenceType() && 2831 !isBlockByref; 2832 if (NonGCable) { 2833 LV.getQuals().removeObjCGCAttr(); 2834 LV.setNonGC(true); 2835 } 2836 2837 bool isImpreciseLifetime = 2838 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2839 if (isImpreciseLifetime) 2840 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2841 setObjCGCLValueClass(getContext(), E, LV); 2842 return LV; 2843 } 2844 2845 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2846 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2847 2848 // Emit debuginfo for the function declaration if the target wants to. 2849 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2850 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2851 auto *Fn = 2852 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2853 if (!Fn->getSubprogram()) 2854 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2855 } 2856 } 2857 2858 return LV; 2859 } 2860 2861 // FIXME: While we're emitting a binding from an enclosing scope, all other 2862 // DeclRefExprs we see should be implicitly treated as if they also refer to 2863 // an enclosing scope. 2864 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2865 return EmitLValue(BD->getBinding()); 2866 2867 // We can form DeclRefExprs naming GUID declarations when reconstituting 2868 // non-type template parameters into expressions. 2869 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2870 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2871 AlignmentSource::Decl); 2872 2873 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2874 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2875 AlignmentSource::Decl); 2876 2877 llvm_unreachable("Unhandled DeclRefExpr"); 2878 } 2879 2880 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2881 // __extension__ doesn't affect lvalue-ness. 2882 if (E->getOpcode() == UO_Extension) 2883 return EmitLValue(E->getSubExpr()); 2884 2885 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2886 switch (E->getOpcode()) { 2887 default: llvm_unreachable("Unknown unary operator lvalue!"); 2888 case UO_Deref: { 2889 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2890 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2891 2892 LValueBaseInfo BaseInfo; 2893 TBAAAccessInfo TBAAInfo; 2894 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2895 &TBAAInfo); 2896 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2897 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2898 2899 // We should not generate __weak write barrier on indirect reference 2900 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2901 // But, we continue to generate __strong write barrier on indirect write 2902 // into a pointer to object. 2903 if (getLangOpts().ObjC && 2904 getLangOpts().getGC() != LangOptions::NonGC && 2905 LV.isObjCWeak()) 2906 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2907 return LV; 2908 } 2909 case UO_Real: 2910 case UO_Imag: { 2911 LValue LV = EmitLValue(E->getSubExpr()); 2912 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2913 2914 // __real is valid on scalars. This is a faster way of testing that. 2915 // __imag can only produce an rvalue on scalars. 2916 if (E->getOpcode() == UO_Real && 2917 !LV.getAddress(*this).getElementType()->isStructTy()) { 2918 assert(E->getSubExpr()->getType()->isArithmeticType()); 2919 return LV; 2920 } 2921 2922 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2923 2924 Address Component = 2925 (E->getOpcode() == UO_Real 2926 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2927 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2928 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2929 CGM.getTBAAInfoForSubobject(LV, T)); 2930 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2931 return ElemLV; 2932 } 2933 case UO_PreInc: 2934 case UO_PreDec: { 2935 LValue LV = EmitLValue(E->getSubExpr()); 2936 bool isInc = E->getOpcode() == UO_PreInc; 2937 2938 if (E->getType()->isAnyComplexType()) 2939 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2940 else 2941 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2942 return LV; 2943 } 2944 } 2945 } 2946 2947 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2948 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2949 E->getType(), AlignmentSource::Decl); 2950 } 2951 2952 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2953 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2954 E->getType(), AlignmentSource::Decl); 2955 } 2956 2957 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2958 auto SL = E->getFunctionName(); 2959 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2960 StringRef FnName = CurFn->getName(); 2961 if (FnName.startswith("\01")) 2962 FnName = FnName.substr(1); 2963 StringRef NameItems[] = { 2964 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2965 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2966 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2967 std::string Name = std::string(SL->getString()); 2968 if (!Name.empty()) { 2969 unsigned Discriminator = 2970 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2971 if (Discriminator) 2972 Name += "_" + Twine(Discriminator + 1).str(); 2973 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2974 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2975 } else { 2976 auto C = 2977 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2978 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2979 } 2980 } 2981 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2982 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2983 } 2984 2985 /// Emit a type description suitable for use by a runtime sanitizer library. The 2986 /// format of a type descriptor is 2987 /// 2988 /// \code 2989 /// { i16 TypeKind, i16 TypeInfo } 2990 /// \endcode 2991 /// 2992 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2993 /// integer, 1 for a floating point value, and -1 for anything else. 2994 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2995 // Only emit each type's descriptor once. 2996 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2997 return C; 2998 2999 uint16_t TypeKind = -1; 3000 uint16_t TypeInfo = 0; 3001 3002 if (T->isIntegerType()) { 3003 TypeKind = 0; 3004 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 3005 (T->isSignedIntegerType() ? 1 : 0); 3006 } else if (T->isFloatingType()) { 3007 TypeKind = 1; 3008 TypeInfo = getContext().getTypeSize(T); 3009 } 3010 3011 // Format the type name as if for a diagnostic, including quotes and 3012 // optionally an 'aka'. 3013 SmallString<32> Buffer; 3014 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3015 (intptr_t)T.getAsOpaquePtr(), 3016 StringRef(), StringRef(), None, Buffer, 3017 None); 3018 3019 llvm::Constant *Components[] = { 3020 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3021 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3022 }; 3023 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3024 3025 auto *GV = new llvm::GlobalVariable( 3026 CGM.getModule(), Descriptor->getType(), 3027 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3028 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3029 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3030 3031 // Remember the descriptor for this type. 3032 CGM.setTypeDescriptorInMap(T, GV); 3033 3034 return GV; 3035 } 3036 3037 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3038 llvm::Type *TargetTy = IntPtrTy; 3039 3040 if (V->getType() == TargetTy) 3041 return V; 3042 3043 // Floating-point types which fit into intptr_t are bitcast to integers 3044 // and then passed directly (after zero-extension, if necessary). 3045 if (V->getType()->isFloatingPointTy()) { 3046 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3047 if (Bits <= TargetTy->getIntegerBitWidth()) 3048 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3049 Bits)); 3050 } 3051 3052 // Integers which fit in intptr_t are zero-extended and passed directly. 3053 if (V->getType()->isIntegerTy() && 3054 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3055 return Builder.CreateZExt(V, TargetTy); 3056 3057 // Pointers are passed directly, everything else is passed by address. 3058 if (!V->getType()->isPointerTy()) { 3059 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3060 Builder.CreateStore(V, Ptr); 3061 V = Ptr.getPointer(); 3062 } 3063 return Builder.CreatePtrToInt(V, TargetTy); 3064 } 3065 3066 /// Emit a representation of a SourceLocation for passing to a handler 3067 /// in a sanitizer runtime library. The format for this data is: 3068 /// \code 3069 /// struct SourceLocation { 3070 /// const char *Filename; 3071 /// int32_t Line, Column; 3072 /// }; 3073 /// \endcode 3074 /// For an invalid SourceLocation, the Filename pointer is null. 3075 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3076 llvm::Constant *Filename; 3077 int Line, Column; 3078 3079 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3080 if (PLoc.isValid()) { 3081 StringRef FilenameString = PLoc.getFilename(); 3082 3083 int PathComponentsToStrip = 3084 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3085 if (PathComponentsToStrip < 0) { 3086 assert(PathComponentsToStrip != INT_MIN); 3087 int PathComponentsToKeep = -PathComponentsToStrip; 3088 auto I = llvm::sys::path::rbegin(FilenameString); 3089 auto E = llvm::sys::path::rend(FilenameString); 3090 while (I != E && --PathComponentsToKeep) 3091 ++I; 3092 3093 FilenameString = FilenameString.substr(I - E); 3094 } else if (PathComponentsToStrip > 0) { 3095 auto I = llvm::sys::path::begin(FilenameString); 3096 auto E = llvm::sys::path::end(FilenameString); 3097 while (I != E && PathComponentsToStrip--) 3098 ++I; 3099 3100 if (I != E) 3101 FilenameString = 3102 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3103 else 3104 FilenameString = llvm::sys::path::filename(FilenameString); 3105 } 3106 3107 auto FilenameGV = 3108 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3109 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3110 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3111 Filename = FilenameGV.getPointer(); 3112 Line = PLoc.getLine(); 3113 Column = PLoc.getColumn(); 3114 } else { 3115 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3116 Line = Column = 0; 3117 } 3118 3119 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3120 Builder.getInt32(Column)}; 3121 3122 return llvm::ConstantStruct::getAnon(Data); 3123 } 3124 3125 namespace { 3126 /// Specify under what conditions this check can be recovered 3127 enum class CheckRecoverableKind { 3128 /// Always terminate program execution if this check fails. 3129 Unrecoverable, 3130 /// Check supports recovering, runtime has both fatal (noreturn) and 3131 /// non-fatal handlers for this check. 3132 Recoverable, 3133 /// Runtime conditionally aborts, always need to support recovery. 3134 AlwaysRecoverable 3135 }; 3136 } 3137 3138 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3139 assert(Kind.countPopulation() == 1); 3140 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3141 return CheckRecoverableKind::AlwaysRecoverable; 3142 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3143 return CheckRecoverableKind::Unrecoverable; 3144 else 3145 return CheckRecoverableKind::Recoverable; 3146 } 3147 3148 namespace { 3149 struct SanitizerHandlerInfo { 3150 char const *const Name; 3151 unsigned Version; 3152 }; 3153 } 3154 3155 const SanitizerHandlerInfo SanitizerHandlers[] = { 3156 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3157 LIST_SANITIZER_CHECKS 3158 #undef SANITIZER_CHECK 3159 }; 3160 3161 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3162 llvm::FunctionType *FnType, 3163 ArrayRef<llvm::Value *> FnArgs, 3164 SanitizerHandler CheckHandler, 3165 CheckRecoverableKind RecoverKind, bool IsFatal, 3166 llvm::BasicBlock *ContBB) { 3167 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3168 Optional<ApplyDebugLocation> DL; 3169 if (!CGF.Builder.getCurrentDebugLocation()) { 3170 // Ensure that the call has at least an artificial debug location. 3171 DL.emplace(CGF, SourceLocation()); 3172 } 3173 bool NeedsAbortSuffix = 3174 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3175 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3176 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3177 const StringRef CheckName = CheckInfo.Name; 3178 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3179 if (CheckInfo.Version && !MinimalRuntime) 3180 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3181 if (MinimalRuntime) 3182 FnName += "_minimal"; 3183 if (NeedsAbortSuffix) 3184 FnName += "_abort"; 3185 bool MayReturn = 3186 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3187 3188 llvm::AttrBuilder B(CGF.getLLVMContext()); 3189 if (!MayReturn) { 3190 B.addAttribute(llvm::Attribute::NoReturn) 3191 .addAttribute(llvm::Attribute::NoUnwind); 3192 } 3193 B.addUWTableAttr(llvm::UWTableKind::Default); 3194 3195 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3196 FnType, FnName, 3197 llvm::AttributeList::get(CGF.getLLVMContext(), 3198 llvm::AttributeList::FunctionIndex, B), 3199 /*Local=*/true); 3200 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3201 if (!MayReturn) { 3202 HandlerCall->setDoesNotReturn(); 3203 CGF.Builder.CreateUnreachable(); 3204 } else { 3205 CGF.Builder.CreateBr(ContBB); 3206 } 3207 } 3208 3209 void CodeGenFunction::EmitCheck( 3210 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3211 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3212 ArrayRef<llvm::Value *> DynamicArgs) { 3213 assert(IsSanitizerScope); 3214 assert(Checked.size() > 0); 3215 assert(CheckHandler >= 0 && 3216 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3217 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3218 3219 llvm::Value *FatalCond = nullptr; 3220 llvm::Value *RecoverableCond = nullptr; 3221 llvm::Value *TrapCond = nullptr; 3222 for (int i = 0, n = Checked.size(); i < n; ++i) { 3223 llvm::Value *Check = Checked[i].first; 3224 // -fsanitize-trap= overrides -fsanitize-recover=. 3225 llvm::Value *&Cond = 3226 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3227 ? TrapCond 3228 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3229 ? RecoverableCond 3230 : FatalCond; 3231 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3232 } 3233 3234 if (TrapCond) 3235 EmitTrapCheck(TrapCond, CheckHandler); 3236 if (!FatalCond && !RecoverableCond) 3237 return; 3238 3239 llvm::Value *JointCond; 3240 if (FatalCond && RecoverableCond) 3241 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3242 else 3243 JointCond = FatalCond ? FatalCond : RecoverableCond; 3244 assert(JointCond); 3245 3246 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3247 assert(SanOpts.has(Checked[0].second)); 3248 #ifndef NDEBUG 3249 for (int i = 1, n = Checked.size(); i < n; ++i) { 3250 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3251 "All recoverable kinds in a single check must be same!"); 3252 assert(SanOpts.has(Checked[i].second)); 3253 } 3254 #endif 3255 3256 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3257 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3258 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3259 // Give hint that we very much don't expect to execute the handler 3260 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3261 llvm::MDBuilder MDHelper(getLLVMContext()); 3262 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3263 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3264 EmitBlock(Handlers); 3265 3266 // Handler functions take an i8* pointing to the (handler-specific) static 3267 // information block, followed by a sequence of intptr_t arguments 3268 // representing operand values. 3269 SmallVector<llvm::Value *, 4> Args; 3270 SmallVector<llvm::Type *, 4> ArgTypes; 3271 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3272 Args.reserve(DynamicArgs.size() + 1); 3273 ArgTypes.reserve(DynamicArgs.size() + 1); 3274 3275 // Emit handler arguments and create handler function type. 3276 if (!StaticArgs.empty()) { 3277 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3278 auto *InfoPtr = 3279 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3280 llvm::GlobalVariable::PrivateLinkage, Info); 3281 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3282 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3283 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3284 ArgTypes.push_back(Int8PtrTy); 3285 } 3286 3287 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3288 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3289 ArgTypes.push_back(IntPtrTy); 3290 } 3291 } 3292 3293 llvm::FunctionType *FnType = 3294 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3295 3296 if (!FatalCond || !RecoverableCond) { 3297 // Simple case: we need to generate a single handler call, either 3298 // fatal, or non-fatal. 3299 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3300 (FatalCond != nullptr), Cont); 3301 } else { 3302 // Emit two handler calls: first one for set of unrecoverable checks, 3303 // another one for recoverable. 3304 llvm::BasicBlock *NonFatalHandlerBB = 3305 createBasicBlock("non_fatal." + CheckName); 3306 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3307 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3308 EmitBlock(FatalHandlerBB); 3309 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3310 NonFatalHandlerBB); 3311 EmitBlock(NonFatalHandlerBB); 3312 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3313 Cont); 3314 } 3315 3316 EmitBlock(Cont); 3317 } 3318 3319 void CodeGenFunction::EmitCfiSlowPathCheck( 3320 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3321 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3322 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3323 3324 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3325 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3326 3327 llvm::MDBuilder MDHelper(getLLVMContext()); 3328 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3329 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3330 3331 EmitBlock(CheckBB); 3332 3333 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3334 3335 llvm::CallInst *CheckCall; 3336 llvm::FunctionCallee SlowPathFn; 3337 if (WithDiag) { 3338 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3339 auto *InfoPtr = 3340 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3341 llvm::GlobalVariable::PrivateLinkage, Info); 3342 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3343 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3344 3345 SlowPathFn = CGM.getModule().getOrInsertFunction( 3346 "__cfi_slowpath_diag", 3347 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3348 false)); 3349 CheckCall = Builder.CreateCall( 3350 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3351 } else { 3352 SlowPathFn = CGM.getModule().getOrInsertFunction( 3353 "__cfi_slowpath", 3354 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3355 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3356 } 3357 3358 CGM.setDSOLocal( 3359 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3360 CheckCall->setDoesNotThrow(); 3361 3362 EmitBlock(Cont); 3363 } 3364 3365 // Emit a stub for __cfi_check function so that the linker knows about this 3366 // symbol in LTO mode. 3367 void CodeGenFunction::EmitCfiCheckStub() { 3368 llvm::Module *M = &CGM.getModule(); 3369 auto &Ctx = M->getContext(); 3370 llvm::Function *F = llvm::Function::Create( 3371 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3372 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3373 CGM.setDSOLocal(F); 3374 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3375 // FIXME: consider emitting an intrinsic call like 3376 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3377 // which can be lowered in CrossDSOCFI pass to the actual contents of 3378 // __cfi_check. This would allow inlining of __cfi_check calls. 3379 llvm::CallInst::Create( 3380 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3381 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3382 } 3383 3384 // This function is basically a switch over the CFI failure kind, which is 3385 // extracted from CFICheckFailData (1st function argument). Each case is either 3386 // llvm.trap or a call to one of the two runtime handlers, based on 3387 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3388 // failure kind) traps, but this should really never happen. CFICheckFailData 3389 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3390 // check kind; in this case __cfi_check_fail traps as well. 3391 void CodeGenFunction::EmitCfiCheckFail() { 3392 SanitizerScope SanScope(this); 3393 FunctionArgList Args; 3394 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3395 ImplicitParamDecl::Other); 3396 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3397 ImplicitParamDecl::Other); 3398 Args.push_back(&ArgData); 3399 Args.push_back(&ArgAddr); 3400 3401 const CGFunctionInfo &FI = 3402 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3403 3404 llvm::Function *F = llvm::Function::Create( 3405 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3406 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3407 3408 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3409 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3410 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3411 3412 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3413 SourceLocation()); 3414 3415 // This function is not affected by NoSanitizeList. This function does 3416 // not have a source location, but "src:*" would still apply. Revert any 3417 // changes to SanOpts made in StartFunction. 3418 SanOpts = CGM.getLangOpts().Sanitize; 3419 3420 llvm::Value *Data = 3421 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3422 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3423 llvm::Value *Addr = 3424 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3425 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3426 3427 // Data == nullptr means the calling module has trap behaviour for this check. 3428 llvm::Value *DataIsNotNullPtr = 3429 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3430 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3431 3432 llvm::StructType *SourceLocationTy = 3433 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3434 llvm::StructType *CfiCheckFailDataTy = 3435 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3436 3437 llvm::Value *V = Builder.CreateConstGEP2_32( 3438 CfiCheckFailDataTy, 3439 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3440 0); 3441 3442 Address CheckKindAddr(V, Int8Ty, getIntAlign()); 3443 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3444 3445 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3446 CGM.getLLVMContext(), 3447 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3448 llvm::Value *ValidVtable = Builder.CreateZExt( 3449 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3450 {Addr, AllVtables}), 3451 IntPtrTy); 3452 3453 const std::pair<int, SanitizerMask> CheckKinds[] = { 3454 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3455 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3456 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3457 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3458 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3459 3460 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3461 for (auto CheckKindMaskPair : CheckKinds) { 3462 int Kind = CheckKindMaskPair.first; 3463 SanitizerMask Mask = CheckKindMaskPair.second; 3464 llvm::Value *Cond = 3465 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3466 if (CGM.getLangOpts().Sanitize.has(Mask)) 3467 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3468 {Data, Addr, ValidVtable}); 3469 else 3470 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3471 } 3472 3473 FinishFunction(); 3474 // The only reference to this function will be created during LTO link. 3475 // Make sure it survives until then. 3476 CGM.addUsedGlobal(F); 3477 } 3478 3479 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3480 if (SanOpts.has(SanitizerKind::Unreachable)) { 3481 SanitizerScope SanScope(this); 3482 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3483 SanitizerKind::Unreachable), 3484 SanitizerHandler::BuiltinUnreachable, 3485 EmitCheckSourceLocation(Loc), None); 3486 } 3487 Builder.CreateUnreachable(); 3488 } 3489 3490 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3491 SanitizerHandler CheckHandlerID) { 3492 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3493 3494 // If we're optimizing, collapse all calls to trap down to just one per 3495 // check-type per function to save on code size. 3496 if (TrapBBs.size() <= CheckHandlerID) 3497 TrapBBs.resize(CheckHandlerID + 1); 3498 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3499 3500 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3501 TrapBB = createBasicBlock("trap"); 3502 Builder.CreateCondBr(Checked, Cont, TrapBB); 3503 EmitBlock(TrapBB); 3504 3505 llvm::CallInst *TrapCall = 3506 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3507 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3508 3509 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3510 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3511 CGM.getCodeGenOpts().TrapFuncName); 3512 TrapCall->addFnAttr(A); 3513 } 3514 TrapCall->setDoesNotReturn(); 3515 TrapCall->setDoesNotThrow(); 3516 Builder.CreateUnreachable(); 3517 } else { 3518 auto Call = TrapBB->begin(); 3519 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3520 3521 Call->applyMergedLocation(Call->getDebugLoc(), 3522 Builder.getCurrentDebugLocation()); 3523 Builder.CreateCondBr(Checked, Cont, TrapBB); 3524 } 3525 3526 EmitBlock(Cont); 3527 } 3528 3529 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3530 llvm::CallInst *TrapCall = 3531 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3532 3533 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3534 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3535 CGM.getCodeGenOpts().TrapFuncName); 3536 TrapCall->addFnAttr(A); 3537 } 3538 3539 return TrapCall; 3540 } 3541 3542 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3543 LValueBaseInfo *BaseInfo, 3544 TBAAAccessInfo *TBAAInfo) { 3545 assert(E->getType()->isArrayType() && 3546 "Array to pointer decay must have array source type!"); 3547 3548 // Expressions of array type can't be bitfields or vector elements. 3549 LValue LV = EmitLValue(E); 3550 Address Addr = LV.getAddress(*this); 3551 3552 // If the array type was an incomplete type, we need to make sure 3553 // the decay ends up being the right type. 3554 llvm::Type *NewTy = ConvertType(E->getType()); 3555 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3556 3557 // Note that VLA pointers are always decayed, so we don't need to do 3558 // anything here. 3559 if (!E->getType()->isVariableArrayType()) { 3560 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3561 "Expected pointer to array"); 3562 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3563 } 3564 3565 // The result of this decay conversion points to an array element within the 3566 // base lvalue. However, since TBAA currently does not support representing 3567 // accesses to elements of member arrays, we conservatively represent accesses 3568 // to the pointee object as if it had no any base lvalue specified. 3569 // TODO: Support TBAA for member arrays. 3570 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3571 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3572 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3573 3574 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3575 } 3576 3577 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3578 /// array to pointer, return the array subexpression. 3579 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3580 // If this isn't just an array->pointer decay, bail out. 3581 const auto *CE = dyn_cast<CastExpr>(E); 3582 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3583 return nullptr; 3584 3585 // If this is a decay from variable width array, bail out. 3586 const Expr *SubExpr = CE->getSubExpr(); 3587 if (SubExpr->getType()->isVariableArrayType()) 3588 return nullptr; 3589 3590 return SubExpr; 3591 } 3592 3593 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3594 llvm::Type *elemType, 3595 llvm::Value *ptr, 3596 ArrayRef<llvm::Value*> indices, 3597 bool inbounds, 3598 bool signedIndices, 3599 SourceLocation loc, 3600 const llvm::Twine &name = "arrayidx") { 3601 if (inbounds) { 3602 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3603 CodeGenFunction::NotSubtraction, loc, 3604 name); 3605 } else { 3606 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3607 } 3608 } 3609 3610 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3611 llvm::Value *idx, 3612 CharUnits eltSize) { 3613 // If we have a constant index, we can use the exact offset of the 3614 // element we're accessing. 3615 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3616 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3617 return arrayAlign.alignmentAtOffset(offset); 3618 3619 // Otherwise, use the worst-case alignment for any element. 3620 } else { 3621 return arrayAlign.alignmentOfArrayElement(eltSize); 3622 } 3623 } 3624 3625 static QualType getFixedSizeElementType(const ASTContext &ctx, 3626 const VariableArrayType *vla) { 3627 QualType eltType; 3628 do { 3629 eltType = vla->getElementType(); 3630 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3631 return eltType; 3632 } 3633 3634 /// Given an array base, check whether its member access belongs to a record 3635 /// with preserve_access_index attribute or not. 3636 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3637 if (!ArrayBase || !CGF.getDebugInfo()) 3638 return false; 3639 3640 // Only support base as either a MemberExpr or DeclRefExpr. 3641 // DeclRefExpr to cover cases like: 3642 // struct s { int a; int b[10]; }; 3643 // struct s *p; 3644 // p[1].a 3645 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3646 // p->b[5] is a MemberExpr example. 3647 const Expr *E = ArrayBase->IgnoreImpCasts(); 3648 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3649 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3650 3651 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3652 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3653 if (!VarDef) 3654 return false; 3655 3656 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3657 if (!PtrT) 3658 return false; 3659 3660 const auto *PointeeT = PtrT->getPointeeType() 3661 ->getUnqualifiedDesugaredType(); 3662 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3663 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3664 return false; 3665 } 3666 3667 return false; 3668 } 3669 3670 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3671 ArrayRef<llvm::Value *> indices, 3672 QualType eltType, bool inbounds, 3673 bool signedIndices, SourceLocation loc, 3674 QualType *arrayType = nullptr, 3675 const Expr *Base = nullptr, 3676 const llvm::Twine &name = "arrayidx") { 3677 // All the indices except that last must be zero. 3678 #ifndef NDEBUG 3679 for (auto idx : indices.drop_back()) 3680 assert(isa<llvm::ConstantInt>(idx) && 3681 cast<llvm::ConstantInt>(idx)->isZero()); 3682 #endif 3683 3684 // Determine the element size of the statically-sized base. This is 3685 // the thing that the indices are expressed in terms of. 3686 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3687 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3688 } 3689 3690 // We can use that to compute the best alignment of the element. 3691 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3692 CharUnits eltAlign = 3693 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3694 3695 llvm::Value *eltPtr; 3696 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3697 if (!LastIndex || 3698 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3699 eltPtr = emitArraySubscriptGEP( 3700 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3701 signedIndices, loc, name); 3702 } else { 3703 // Remember the original array subscript for bpf target 3704 unsigned idx = LastIndex->getZExtValue(); 3705 llvm::DIType *DbgInfo = nullptr; 3706 if (arrayType) 3707 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3708 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3709 addr.getPointer(), 3710 indices.size() - 1, 3711 idx, DbgInfo); 3712 } 3713 3714 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3715 } 3716 3717 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3718 bool Accessed) { 3719 // The index must always be an integer, which is not an aggregate. Emit it 3720 // in lexical order (this complexity is, sadly, required by C++17). 3721 llvm::Value *IdxPre = 3722 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3723 bool SignedIndices = false; 3724 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3725 auto *Idx = IdxPre; 3726 if (E->getLHS() != E->getIdx()) { 3727 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3728 Idx = EmitScalarExpr(E->getIdx()); 3729 } 3730 3731 QualType IdxTy = E->getIdx()->getType(); 3732 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3733 SignedIndices |= IdxSigned; 3734 3735 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3736 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3737 3738 // Extend or truncate the index type to 32 or 64-bits. 3739 if (Promote && Idx->getType() != IntPtrTy) 3740 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3741 3742 return Idx; 3743 }; 3744 IdxPre = nullptr; 3745 3746 // If the base is a vector type, then we are forming a vector element lvalue 3747 // with this subscript. 3748 if (E->getBase()->getType()->isVectorType() && 3749 !isa<ExtVectorElementExpr>(E->getBase())) { 3750 // Emit the vector as an lvalue to get its address. 3751 LValue LHS = EmitLValue(E->getBase()); 3752 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3753 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3754 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3755 E->getBase()->getType(), LHS.getBaseInfo(), 3756 TBAAAccessInfo()); 3757 } 3758 3759 // All the other cases basically behave like simple offsetting. 3760 3761 // Handle the extvector case we ignored above. 3762 if (isa<ExtVectorElementExpr>(E->getBase())) { 3763 LValue LV = EmitLValue(E->getBase()); 3764 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3765 Address Addr = EmitExtVectorElementLValue(LV); 3766 3767 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3768 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3769 SignedIndices, E->getExprLoc()); 3770 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3771 CGM.getTBAAInfoForSubobject(LV, EltType)); 3772 } 3773 3774 LValueBaseInfo EltBaseInfo; 3775 TBAAAccessInfo EltTBAAInfo; 3776 Address Addr = Address::invalid(); 3777 if (const VariableArrayType *vla = 3778 getContext().getAsVariableArrayType(E->getType())) { 3779 // The base must be a pointer, which is not an aggregate. Emit 3780 // it. It needs to be emitted first in case it's what captures 3781 // the VLA bounds. 3782 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3783 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3784 3785 // The element count here is the total number of non-VLA elements. 3786 llvm::Value *numElements = getVLASize(vla).NumElts; 3787 3788 // Effectively, the multiply by the VLA size is part of the GEP. 3789 // GEP indexes are signed, and scaling an index isn't permitted to 3790 // signed-overflow, so we use the same semantics for our explicit 3791 // multiply. We suppress this if overflow is not undefined behavior. 3792 if (getLangOpts().isSignedOverflowDefined()) { 3793 Idx = Builder.CreateMul(Idx, numElements); 3794 } else { 3795 Idx = Builder.CreateNSWMul(Idx, numElements); 3796 } 3797 3798 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3799 !getLangOpts().isSignedOverflowDefined(), 3800 SignedIndices, E->getExprLoc()); 3801 3802 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3803 // Indexing over an interface, as in "NSString *P; P[4];" 3804 3805 // Emit the base pointer. 3806 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3807 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3808 3809 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3810 llvm::Value *InterfaceSizeVal = 3811 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3812 3813 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3814 3815 // We don't necessarily build correct LLVM struct types for ObjC 3816 // interfaces, so we can't rely on GEP to do this scaling 3817 // correctly, so we need to cast to i8*. FIXME: is this actually 3818 // true? A lot of other things in the fragile ABI would break... 3819 llvm::Type *OrigBaseElemTy = Addr.getElementType(); 3820 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3821 3822 // Do the GEP. 3823 CharUnits EltAlign = 3824 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3825 llvm::Value *EltPtr = 3826 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3827 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3828 Addr = Address(EltPtr, Addr.getElementType(), EltAlign); 3829 3830 // Cast back. 3831 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy); 3832 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3833 // If this is A[i] where A is an array, the frontend will have decayed the 3834 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3835 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3836 // "gep x, i" here. Emit one "gep A, 0, i". 3837 assert(Array->getType()->isArrayType() && 3838 "Array to pointer decay must have array source type!"); 3839 LValue ArrayLV; 3840 // For simple multidimensional array indexing, set the 'accessed' flag for 3841 // better bounds-checking of the base expression. 3842 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3843 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3844 else 3845 ArrayLV = EmitLValue(Array); 3846 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3847 3848 // Propagate the alignment from the array itself to the result. 3849 QualType arrayType = Array->getType(); 3850 Addr = emitArraySubscriptGEP( 3851 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3852 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3853 E->getExprLoc(), &arrayType, E->getBase()); 3854 EltBaseInfo = ArrayLV.getBaseInfo(); 3855 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3856 } else { 3857 // The base must be a pointer; emit it with an estimate of its alignment. 3858 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3859 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3860 QualType ptrType = E->getBase()->getType(); 3861 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3862 !getLangOpts().isSignedOverflowDefined(), 3863 SignedIndices, E->getExprLoc(), &ptrType, 3864 E->getBase()); 3865 } 3866 3867 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3868 3869 if (getLangOpts().ObjC && 3870 getLangOpts().getGC() != LangOptions::NonGC) { 3871 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3872 setObjCGCLValueClass(getContext(), E, LV); 3873 } 3874 return LV; 3875 } 3876 3877 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3878 assert( 3879 !E->isIncomplete() && 3880 "incomplete matrix subscript expressions should be rejected during Sema"); 3881 LValue Base = EmitLValue(E->getBase()); 3882 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3883 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3884 llvm::Value *NumRows = Builder.getIntN( 3885 RowIdx->getType()->getScalarSizeInBits(), 3886 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3887 llvm::Value *FinalIdx = 3888 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3889 return LValue::MakeMatrixElt( 3890 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3891 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3892 } 3893 3894 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3895 LValueBaseInfo &BaseInfo, 3896 TBAAAccessInfo &TBAAInfo, 3897 QualType BaseTy, QualType ElTy, 3898 bool IsLowerBound) { 3899 LValue BaseLVal; 3900 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3901 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3902 if (BaseTy->isArrayType()) { 3903 Address Addr = BaseLVal.getAddress(CGF); 3904 BaseInfo = BaseLVal.getBaseInfo(); 3905 3906 // If the array type was an incomplete type, we need to make sure 3907 // the decay ends up being the right type. 3908 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3909 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3910 3911 // Note that VLA pointers are always decayed, so we don't need to do 3912 // anything here. 3913 if (!BaseTy->isVariableArrayType()) { 3914 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3915 "Expected pointer to array"); 3916 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3917 } 3918 3919 return CGF.Builder.CreateElementBitCast(Addr, 3920 CGF.ConvertTypeForMem(ElTy)); 3921 } 3922 LValueBaseInfo TypeBaseInfo; 3923 TBAAAccessInfo TypeTBAAInfo; 3924 CharUnits Align = 3925 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3926 BaseInfo.mergeForCast(TypeBaseInfo); 3927 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3928 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 3929 CGF.ConvertTypeForMem(ElTy), Align); 3930 } 3931 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3932 } 3933 3934 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3935 bool IsLowerBound) { 3936 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3937 QualType ResultExprTy; 3938 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3939 ResultExprTy = AT->getElementType(); 3940 else 3941 ResultExprTy = BaseTy->getPointeeType(); 3942 llvm::Value *Idx = nullptr; 3943 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3944 // Requesting lower bound or upper bound, but without provided length and 3945 // without ':' symbol for the default length -> length = 1. 3946 // Idx = LowerBound ?: 0; 3947 if (auto *LowerBound = E->getLowerBound()) { 3948 Idx = Builder.CreateIntCast( 3949 EmitScalarExpr(LowerBound), IntPtrTy, 3950 LowerBound->getType()->hasSignedIntegerRepresentation()); 3951 } else 3952 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3953 } else { 3954 // Try to emit length or lower bound as constant. If this is possible, 1 3955 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3956 // IR (LB + Len) - 1. 3957 auto &C = CGM.getContext(); 3958 auto *Length = E->getLength(); 3959 llvm::APSInt ConstLength; 3960 if (Length) { 3961 // Idx = LowerBound + Length - 1; 3962 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3963 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3964 Length = nullptr; 3965 } 3966 auto *LowerBound = E->getLowerBound(); 3967 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3968 if (LowerBound) { 3969 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3970 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3971 LowerBound = nullptr; 3972 } 3973 } 3974 if (!Length) 3975 --ConstLength; 3976 else if (!LowerBound) 3977 --ConstLowerBound; 3978 3979 if (Length || LowerBound) { 3980 auto *LowerBoundVal = 3981 LowerBound 3982 ? Builder.CreateIntCast( 3983 EmitScalarExpr(LowerBound), IntPtrTy, 3984 LowerBound->getType()->hasSignedIntegerRepresentation()) 3985 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3986 auto *LengthVal = 3987 Length 3988 ? Builder.CreateIntCast( 3989 EmitScalarExpr(Length), IntPtrTy, 3990 Length->getType()->hasSignedIntegerRepresentation()) 3991 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3992 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3993 /*HasNUW=*/false, 3994 !getLangOpts().isSignedOverflowDefined()); 3995 if (Length && LowerBound) { 3996 Idx = Builder.CreateSub( 3997 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3998 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3999 } 4000 } else 4001 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 4002 } else { 4003 // Idx = ArraySize - 1; 4004 QualType ArrayTy = BaseTy->isPointerType() 4005 ? E->getBase()->IgnoreParenImpCasts()->getType() 4006 : BaseTy; 4007 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 4008 Length = VAT->getSizeExpr(); 4009 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4010 ConstLength = *L; 4011 Length = nullptr; 4012 } 4013 } else { 4014 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4015 ConstLength = CAT->getSize(); 4016 } 4017 if (Length) { 4018 auto *LengthVal = Builder.CreateIntCast( 4019 EmitScalarExpr(Length), IntPtrTy, 4020 Length->getType()->hasSignedIntegerRepresentation()); 4021 Idx = Builder.CreateSub( 4022 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4023 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4024 } else { 4025 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4026 --ConstLength; 4027 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4028 } 4029 } 4030 } 4031 assert(Idx); 4032 4033 Address EltPtr = Address::invalid(); 4034 LValueBaseInfo BaseInfo; 4035 TBAAAccessInfo TBAAInfo; 4036 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4037 // The base must be a pointer, which is not an aggregate. Emit 4038 // it. It needs to be emitted first in case it's what captures 4039 // the VLA bounds. 4040 Address Base = 4041 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4042 BaseTy, VLA->getElementType(), IsLowerBound); 4043 // The element count here is the total number of non-VLA elements. 4044 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4045 4046 // Effectively, the multiply by the VLA size is part of the GEP. 4047 // GEP indexes are signed, and scaling an index isn't permitted to 4048 // signed-overflow, so we use the same semantics for our explicit 4049 // multiply. We suppress this if overflow is not undefined behavior. 4050 if (getLangOpts().isSignedOverflowDefined()) 4051 Idx = Builder.CreateMul(Idx, NumElements); 4052 else 4053 Idx = Builder.CreateNSWMul(Idx, NumElements); 4054 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4055 !getLangOpts().isSignedOverflowDefined(), 4056 /*signedIndices=*/false, E->getExprLoc()); 4057 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4058 // If this is A[i] where A is an array, the frontend will have decayed the 4059 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4060 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4061 // "gep x, i" here. Emit one "gep A, 0, i". 4062 assert(Array->getType()->isArrayType() && 4063 "Array to pointer decay must have array source type!"); 4064 LValue ArrayLV; 4065 // For simple multidimensional array indexing, set the 'accessed' flag for 4066 // better bounds-checking of the base expression. 4067 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4068 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4069 else 4070 ArrayLV = EmitLValue(Array); 4071 4072 // Propagate the alignment from the array itself to the result. 4073 EltPtr = emitArraySubscriptGEP( 4074 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4075 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4076 /*signedIndices=*/false, E->getExprLoc()); 4077 BaseInfo = ArrayLV.getBaseInfo(); 4078 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4079 } else { 4080 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4081 TBAAInfo, BaseTy, ResultExprTy, 4082 IsLowerBound); 4083 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4084 !getLangOpts().isSignedOverflowDefined(), 4085 /*signedIndices=*/false, E->getExprLoc()); 4086 } 4087 4088 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4089 } 4090 4091 LValue CodeGenFunction:: 4092 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4093 // Emit the base vector as an l-value. 4094 LValue Base; 4095 4096 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4097 if (E->isArrow()) { 4098 // If it is a pointer to a vector, emit the address and form an lvalue with 4099 // it. 4100 LValueBaseInfo BaseInfo; 4101 TBAAAccessInfo TBAAInfo; 4102 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4103 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4104 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4105 Base.getQuals().removeObjCGCAttr(); 4106 } else if (E->getBase()->isGLValue()) { 4107 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4108 // emit the base as an lvalue. 4109 assert(E->getBase()->getType()->isVectorType()); 4110 Base = EmitLValue(E->getBase()); 4111 } else { 4112 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4113 assert(E->getBase()->getType()->isVectorType() && 4114 "Result must be a vector"); 4115 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4116 4117 // Store the vector to memory (because LValue wants an address). 4118 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4119 Builder.CreateStore(Vec, VecMem); 4120 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4121 AlignmentSource::Decl); 4122 } 4123 4124 QualType type = 4125 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4126 4127 // Encode the element access list into a vector of unsigned indices. 4128 SmallVector<uint32_t, 4> Indices; 4129 E->getEncodedElementAccess(Indices); 4130 4131 if (Base.isSimple()) { 4132 llvm::Constant *CV = 4133 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4134 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4135 Base.getBaseInfo(), TBAAAccessInfo()); 4136 } 4137 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4138 4139 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4140 SmallVector<llvm::Constant *, 4> CElts; 4141 4142 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4143 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4144 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4145 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4146 Base.getBaseInfo(), TBAAAccessInfo()); 4147 } 4148 4149 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4150 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4151 EmitIgnoredExpr(E->getBase()); 4152 return EmitDeclRefLValue(DRE); 4153 } 4154 4155 Expr *BaseExpr = E->getBase(); 4156 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4157 LValue BaseLV; 4158 if (E->isArrow()) { 4159 LValueBaseInfo BaseInfo; 4160 TBAAAccessInfo TBAAInfo; 4161 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4162 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4163 SanitizerSet SkippedChecks; 4164 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4165 if (IsBaseCXXThis) 4166 SkippedChecks.set(SanitizerKind::Alignment, true); 4167 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4168 SkippedChecks.set(SanitizerKind::Null, true); 4169 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4170 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4171 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4172 } else 4173 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4174 4175 NamedDecl *ND = E->getMemberDecl(); 4176 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4177 LValue LV = EmitLValueForField(BaseLV, Field); 4178 setObjCGCLValueClass(getContext(), E, LV); 4179 if (getLangOpts().OpenMP) { 4180 // If the member was explicitly marked as nontemporal, mark it as 4181 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4182 // to children as nontemporal too. 4183 if ((IsWrappedCXXThis(BaseExpr) && 4184 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4185 BaseLV.isNontemporal()) 4186 LV.setNontemporal(/*Value=*/true); 4187 } 4188 return LV; 4189 } 4190 4191 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4192 return EmitFunctionDeclLValue(*this, E, FD); 4193 4194 llvm_unreachable("Unhandled member declaration!"); 4195 } 4196 4197 /// Given that we are currently emitting a lambda, emit an l-value for 4198 /// one of its members. 4199 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4200 if (CurCodeDecl) { 4201 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4202 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4203 } 4204 QualType LambdaTagType = 4205 getContext().getTagDeclType(Field->getParent()); 4206 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4207 return EmitLValueForField(LambdaLV, Field); 4208 } 4209 4210 /// Get the field index in the debug info. The debug info structure/union 4211 /// will ignore the unnamed bitfields. 4212 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4213 unsigned FieldIndex) { 4214 unsigned I = 0, Skipped = 0; 4215 4216 for (auto F : Rec->getDefinition()->fields()) { 4217 if (I == FieldIndex) 4218 break; 4219 if (F->isUnnamedBitfield()) 4220 Skipped++; 4221 I++; 4222 } 4223 4224 return FieldIndex - Skipped; 4225 } 4226 4227 /// Get the address of a zero-sized field within a record. The resulting 4228 /// address doesn't necessarily have the right type. 4229 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4230 const FieldDecl *Field) { 4231 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4232 CGF.getContext().getFieldOffset(Field)); 4233 if (Offset.isZero()) 4234 return Base; 4235 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4236 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4237 } 4238 4239 /// Drill down to the storage of a field without walking into 4240 /// reference types. 4241 /// 4242 /// The resulting address doesn't necessarily have the right type. 4243 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4244 const FieldDecl *field) { 4245 if (field->isZeroSize(CGF.getContext())) 4246 return emitAddrOfZeroSizeField(CGF, base, field); 4247 4248 const RecordDecl *rec = field->getParent(); 4249 4250 unsigned idx = 4251 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4252 4253 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4254 } 4255 4256 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4257 Address addr, const FieldDecl *field) { 4258 const RecordDecl *rec = field->getParent(); 4259 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4260 base.getType(), rec->getLocation()); 4261 4262 unsigned idx = 4263 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4264 4265 return CGF.Builder.CreatePreserveStructAccessIndex( 4266 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4267 } 4268 4269 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4270 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4271 if (!RD) 4272 return false; 4273 4274 if (RD->isDynamicClass()) 4275 return true; 4276 4277 for (const auto &Base : RD->bases()) 4278 if (hasAnyVptr(Base.getType(), Context)) 4279 return true; 4280 4281 for (const FieldDecl *Field : RD->fields()) 4282 if (hasAnyVptr(Field->getType(), Context)) 4283 return true; 4284 4285 return false; 4286 } 4287 4288 LValue CodeGenFunction::EmitLValueForField(LValue base, 4289 const FieldDecl *field) { 4290 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4291 4292 if (field->isBitField()) { 4293 const CGRecordLayout &RL = 4294 CGM.getTypes().getCGRecordLayout(field->getParent()); 4295 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4296 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4297 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4298 Info.VolatileStorageSize != 0 && 4299 field->getType() 4300 .withCVRQualifiers(base.getVRQualifiers()) 4301 .isVolatileQualified(); 4302 Address Addr = base.getAddress(*this); 4303 unsigned Idx = RL.getLLVMFieldNo(field); 4304 const RecordDecl *rec = field->getParent(); 4305 if (!UseVolatile) { 4306 if (!IsInPreservedAIRegion && 4307 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4308 if (Idx != 0) 4309 // For structs, we GEP to the field that the record layout suggests. 4310 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4311 } else { 4312 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4313 getContext().getRecordType(rec), rec->getLocation()); 4314 Addr = Builder.CreatePreserveStructAccessIndex( 4315 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4316 DbgInfo); 4317 } 4318 } 4319 const unsigned SS = 4320 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4321 // Get the access type. 4322 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4323 if (Addr.getElementType() != FieldIntTy) 4324 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4325 if (UseVolatile) { 4326 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4327 if (VolatileOffset) 4328 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4329 } 4330 4331 QualType fieldType = 4332 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4333 // TODO: Support TBAA for bit fields. 4334 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4335 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4336 TBAAAccessInfo()); 4337 } 4338 4339 // Fields of may-alias structures are may-alias themselves. 4340 // FIXME: this should get propagated down through anonymous structs 4341 // and unions. 4342 QualType FieldType = field->getType(); 4343 const RecordDecl *rec = field->getParent(); 4344 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4345 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4346 TBAAAccessInfo FieldTBAAInfo; 4347 if (base.getTBAAInfo().isMayAlias() || 4348 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4349 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4350 } else if (rec->isUnion()) { 4351 // TODO: Support TBAA for unions. 4352 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4353 } else { 4354 // If no base type been assigned for the base access, then try to generate 4355 // one for this base lvalue. 4356 FieldTBAAInfo = base.getTBAAInfo(); 4357 if (!FieldTBAAInfo.BaseType) { 4358 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4359 assert(!FieldTBAAInfo.Offset && 4360 "Nonzero offset for an access with no base type!"); 4361 } 4362 4363 // Adjust offset to be relative to the base type. 4364 const ASTRecordLayout &Layout = 4365 getContext().getASTRecordLayout(field->getParent()); 4366 unsigned CharWidth = getContext().getCharWidth(); 4367 if (FieldTBAAInfo.BaseType) 4368 FieldTBAAInfo.Offset += 4369 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4370 4371 // Update the final access type and size. 4372 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4373 FieldTBAAInfo.Size = 4374 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4375 } 4376 4377 Address addr = base.getAddress(*this); 4378 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4379 if (CGM.getCodeGenOpts().StrictVTablePointers && 4380 ClassDef->isDynamicClass()) { 4381 // Getting to any field of dynamic object requires stripping dynamic 4382 // information provided by invariant.group. This is because accessing 4383 // fields may leak the real address of dynamic object, which could result 4384 // in miscompilation when leaked pointer would be compared. 4385 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4386 addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 4387 } 4388 } 4389 4390 unsigned RecordCVR = base.getVRQualifiers(); 4391 if (rec->isUnion()) { 4392 // For unions, there is no pointer adjustment. 4393 if (CGM.getCodeGenOpts().StrictVTablePointers && 4394 hasAnyVptr(FieldType, getContext())) 4395 // Because unions can easily skip invariant.barriers, we need to add 4396 // a barrier every time CXXRecord field with vptr is referenced. 4397 addr = Builder.CreateLaunderInvariantGroup(addr); 4398 4399 if (IsInPreservedAIRegion || 4400 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4401 // Remember the original union field index 4402 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4403 rec->getLocation()); 4404 addr = Address( 4405 Builder.CreatePreserveUnionAccessIndex( 4406 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4407 addr.getElementType(), addr.getAlignment()); 4408 } 4409 4410 if (FieldType->isReferenceType()) 4411 addr = Builder.CreateElementBitCast( 4412 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4413 } else { 4414 if (!IsInPreservedAIRegion && 4415 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4416 // For structs, we GEP to the field that the record layout suggests. 4417 addr = emitAddrOfFieldStorage(*this, addr, field); 4418 else 4419 // Remember the original struct field index 4420 addr = emitPreserveStructAccess(*this, base, addr, field); 4421 } 4422 4423 // If this is a reference field, load the reference right now. 4424 if (FieldType->isReferenceType()) { 4425 LValue RefLVal = 4426 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4427 if (RecordCVR & Qualifiers::Volatile) 4428 RefLVal.getQuals().addVolatile(); 4429 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4430 4431 // Qualifiers on the struct don't apply to the referencee. 4432 RecordCVR = 0; 4433 FieldType = FieldType->getPointeeType(); 4434 } 4435 4436 // Make sure that the address is pointing to the right type. This is critical 4437 // for both unions and structs. A union needs a bitcast, a struct element 4438 // will need a bitcast if the LLVM type laid out doesn't match the desired 4439 // type. 4440 addr = Builder.CreateElementBitCast( 4441 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4442 4443 if (field->hasAttr<AnnotateAttr>()) 4444 addr = EmitFieldAnnotations(field, addr); 4445 4446 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4447 LV.getQuals().addCVRQualifiers(RecordCVR); 4448 4449 // __weak attribute on a field is ignored. 4450 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4451 LV.getQuals().removeObjCGCAttr(); 4452 4453 return LV; 4454 } 4455 4456 LValue 4457 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4458 const FieldDecl *Field) { 4459 QualType FieldType = Field->getType(); 4460 4461 if (!FieldType->isReferenceType()) 4462 return EmitLValueForField(Base, Field); 4463 4464 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4465 4466 // Make sure that the address is pointing to the right type. 4467 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4468 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4469 4470 // TODO: Generate TBAA information that describes this access as a structure 4471 // member access and not just an access to an object of the field's type. This 4472 // should be similar to what we do in EmitLValueForField(). 4473 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4474 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4475 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4476 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4477 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4478 } 4479 4480 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4481 if (E->isFileScope()) { 4482 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4483 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4484 } 4485 if (E->getType()->isVariablyModifiedType()) 4486 // make sure to emit the VLA size. 4487 EmitVariablyModifiedType(E->getType()); 4488 4489 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4490 const Expr *InitExpr = E->getInitializer(); 4491 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4492 4493 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4494 /*Init*/ true); 4495 4496 // Block-scope compound literals are destroyed at the end of the enclosing 4497 // scope in C. 4498 if (!getLangOpts().CPlusPlus) 4499 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4500 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4501 E->getType(), getDestroyer(DtorKind), 4502 DtorKind & EHCleanup); 4503 4504 return Result; 4505 } 4506 4507 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4508 if (!E->isGLValue()) 4509 // Initializing an aggregate temporary in C++11: T{...}. 4510 return EmitAggExprToLValue(E); 4511 4512 // An lvalue initializer list must be initializing a reference. 4513 assert(E->isTransparent() && "non-transparent glvalue init list"); 4514 return EmitLValue(E->getInit(0)); 4515 } 4516 4517 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4518 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4519 /// LValue is returned and the current block has been terminated. 4520 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4521 const Expr *Operand) { 4522 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4523 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4524 return None; 4525 } 4526 4527 return CGF.EmitLValue(Operand); 4528 } 4529 4530 LValue CodeGenFunction:: 4531 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4532 if (!expr->isGLValue()) { 4533 // ?: here should be an aggregate. 4534 assert(hasAggregateEvaluationKind(expr->getType()) && 4535 "Unexpected conditional operator!"); 4536 return EmitAggExprToLValue(expr); 4537 } 4538 4539 OpaqueValueMapping binding(*this, expr); 4540 4541 const Expr *condExpr = expr->getCond(); 4542 bool CondExprBool; 4543 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4544 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4545 if (!CondExprBool) std::swap(live, dead); 4546 4547 if (!ContainsLabel(dead)) { 4548 // If the true case is live, we need to track its region. 4549 if (CondExprBool) 4550 incrementProfileCounter(expr); 4551 // If a throw expression we emit it and return an undefined lvalue 4552 // because it can't be used. 4553 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4554 EmitCXXThrowExpr(ThrowExpr); 4555 llvm::Type *ElemTy = ConvertType(dead->getType()); 4556 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 4557 return MakeAddrLValue( 4558 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 4559 dead->getType()); 4560 } 4561 return EmitLValue(live); 4562 } 4563 } 4564 4565 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4566 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4567 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4568 4569 ConditionalEvaluation eval(*this); 4570 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4571 4572 // Any temporaries created here are conditional. 4573 EmitBlock(lhsBlock); 4574 incrementProfileCounter(expr); 4575 eval.begin(*this); 4576 Optional<LValue> lhs = 4577 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4578 eval.end(*this); 4579 4580 if (lhs && !lhs->isSimple()) 4581 return EmitUnsupportedLValue(expr, "conditional operator"); 4582 4583 lhsBlock = Builder.GetInsertBlock(); 4584 if (lhs) 4585 Builder.CreateBr(contBlock); 4586 4587 // Any temporaries created here are conditional. 4588 EmitBlock(rhsBlock); 4589 eval.begin(*this); 4590 Optional<LValue> rhs = 4591 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4592 eval.end(*this); 4593 if (rhs && !rhs->isSimple()) 4594 return EmitUnsupportedLValue(expr, "conditional operator"); 4595 rhsBlock = Builder.GetInsertBlock(); 4596 4597 EmitBlock(contBlock); 4598 4599 if (lhs && rhs) { 4600 Address lhsAddr = lhs->getAddress(*this); 4601 Address rhsAddr = rhs->getAddress(*this); 4602 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 4603 phi->addIncoming(lhsAddr.getPointer(), lhsBlock); 4604 phi->addIncoming(rhsAddr.getPointer(), rhsBlock); 4605 Address result(phi, lhsAddr.getElementType(), 4606 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 4607 AlignmentSource alignSource = 4608 std::max(lhs->getBaseInfo().getAlignmentSource(), 4609 rhs->getBaseInfo().getAlignmentSource()); 4610 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4611 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4612 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4613 TBAAInfo); 4614 } else { 4615 assert((lhs || rhs) && 4616 "both operands of glvalue conditional are throw-expressions?"); 4617 return lhs ? *lhs : *rhs; 4618 } 4619 } 4620 4621 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4622 /// type. If the cast is to a reference, we can have the usual lvalue result, 4623 /// otherwise if a cast is needed by the code generator in an lvalue context, 4624 /// then it must mean that we need the address of an aggregate in order to 4625 /// access one of its members. This can happen for all the reasons that casts 4626 /// are permitted with aggregate result, including noop aggregate casts, and 4627 /// cast from scalar to union. 4628 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4629 switch (E->getCastKind()) { 4630 case CK_ToVoid: 4631 case CK_BitCast: 4632 case CK_LValueToRValueBitCast: 4633 case CK_ArrayToPointerDecay: 4634 case CK_FunctionToPointerDecay: 4635 case CK_NullToMemberPointer: 4636 case CK_NullToPointer: 4637 case CK_IntegralToPointer: 4638 case CK_PointerToIntegral: 4639 case CK_PointerToBoolean: 4640 case CK_VectorSplat: 4641 case CK_IntegralCast: 4642 case CK_BooleanToSignedIntegral: 4643 case CK_IntegralToBoolean: 4644 case CK_IntegralToFloating: 4645 case CK_FloatingToIntegral: 4646 case CK_FloatingToBoolean: 4647 case CK_FloatingCast: 4648 case CK_FloatingRealToComplex: 4649 case CK_FloatingComplexToReal: 4650 case CK_FloatingComplexToBoolean: 4651 case CK_FloatingComplexCast: 4652 case CK_FloatingComplexToIntegralComplex: 4653 case CK_IntegralRealToComplex: 4654 case CK_IntegralComplexToReal: 4655 case CK_IntegralComplexToBoolean: 4656 case CK_IntegralComplexCast: 4657 case CK_IntegralComplexToFloatingComplex: 4658 case CK_DerivedToBaseMemberPointer: 4659 case CK_BaseToDerivedMemberPointer: 4660 case CK_MemberPointerToBoolean: 4661 case CK_ReinterpretMemberPointer: 4662 case CK_AnyPointerToBlockPointerCast: 4663 case CK_ARCProduceObject: 4664 case CK_ARCConsumeObject: 4665 case CK_ARCReclaimReturnedObject: 4666 case CK_ARCExtendBlockObject: 4667 case CK_CopyAndAutoreleaseBlockObject: 4668 case CK_IntToOCLSampler: 4669 case CK_FloatingToFixedPoint: 4670 case CK_FixedPointToFloating: 4671 case CK_FixedPointCast: 4672 case CK_FixedPointToBoolean: 4673 case CK_FixedPointToIntegral: 4674 case CK_IntegralToFixedPoint: 4675 case CK_MatrixCast: 4676 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4677 4678 case CK_Dependent: 4679 llvm_unreachable("dependent cast kind in IR gen!"); 4680 4681 case CK_BuiltinFnToFnPtr: 4682 llvm_unreachable("builtin functions are handled elsewhere"); 4683 4684 // These are never l-values; just use the aggregate emission code. 4685 case CK_NonAtomicToAtomic: 4686 case CK_AtomicToNonAtomic: 4687 return EmitAggExprToLValue(E); 4688 4689 case CK_Dynamic: { 4690 LValue LV = EmitLValue(E->getSubExpr()); 4691 Address V = LV.getAddress(*this); 4692 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4693 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4694 } 4695 4696 case CK_ConstructorConversion: 4697 case CK_UserDefinedConversion: 4698 case CK_CPointerToObjCPointerCast: 4699 case CK_BlockPointerToObjCPointerCast: 4700 case CK_LValueToRValue: 4701 return EmitLValue(E->getSubExpr()); 4702 4703 case CK_NoOp: { 4704 // CK_NoOp can model a qualification conversion, which can remove an array 4705 // bound and change the IR type. 4706 // FIXME: Once pointee types are removed from IR, remove this. 4707 LValue LV = EmitLValue(E->getSubExpr()); 4708 if (LV.isSimple()) { 4709 Address V = LV.getAddress(*this); 4710 if (V.isValid()) { 4711 llvm::Type *T = ConvertTypeForMem(E->getType()); 4712 if (V.getElementType() != T) 4713 LV.setAddress(Builder.CreateElementBitCast(V, T)); 4714 } 4715 } 4716 return LV; 4717 } 4718 4719 case CK_UncheckedDerivedToBase: 4720 case CK_DerivedToBase: { 4721 const auto *DerivedClassTy = 4722 E->getSubExpr()->getType()->castAs<RecordType>(); 4723 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4724 4725 LValue LV = EmitLValue(E->getSubExpr()); 4726 Address This = LV.getAddress(*this); 4727 4728 // Perform the derived-to-base conversion 4729 Address Base = GetAddressOfBaseClass( 4730 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4731 /*NullCheckValue=*/false, E->getExprLoc()); 4732 4733 // TODO: Support accesses to members of base classes in TBAA. For now, we 4734 // conservatively pretend that the complete object is of the base class 4735 // type. 4736 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4737 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4738 } 4739 case CK_ToUnion: 4740 return EmitAggExprToLValue(E); 4741 case CK_BaseToDerived: { 4742 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4743 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4744 4745 LValue LV = EmitLValue(E->getSubExpr()); 4746 4747 // Perform the base-to-derived conversion 4748 Address Derived = GetAddressOfDerivedClass( 4749 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4750 /*NullCheckValue=*/false); 4751 4752 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4753 // performed and the object is not of the derived type. 4754 if (sanitizePerformTypeCheck()) 4755 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4756 Derived.getPointer(), E->getType()); 4757 4758 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4759 EmitVTablePtrCheckForCast(E->getType(), Derived, 4760 /*MayBeNull=*/false, CFITCK_DerivedCast, 4761 E->getBeginLoc()); 4762 4763 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4764 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4765 } 4766 case CK_LValueBitCast: { 4767 // This must be a reinterpret_cast (or c-style equivalent). 4768 const auto *CE = cast<ExplicitCastExpr>(E); 4769 4770 CGM.EmitExplicitCastExprType(CE, this); 4771 LValue LV = EmitLValue(E->getSubExpr()); 4772 Address V = Builder.CreateElementBitCast( 4773 LV.getAddress(*this), 4774 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 4775 4776 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4777 EmitVTablePtrCheckForCast(E->getType(), V, 4778 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4779 E->getBeginLoc()); 4780 4781 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4782 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4783 } 4784 case CK_AddressSpaceConversion: { 4785 LValue LV = EmitLValue(E->getSubExpr()); 4786 QualType DestTy = getContext().getPointerType(E->getType()); 4787 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4788 *this, LV.getPointer(*this), 4789 E->getSubExpr()->getType().getAddressSpace(), 4790 E->getType().getAddressSpace(), ConvertType(DestTy)); 4791 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 4792 LV.getAddress(*this).getAlignment()), 4793 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4794 } 4795 case CK_ObjCObjectLValueCast: { 4796 LValue LV = EmitLValue(E->getSubExpr()); 4797 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4798 ConvertType(E->getType())); 4799 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4800 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4801 } 4802 case CK_ZeroToOCLOpaqueType: 4803 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4804 } 4805 4806 llvm_unreachable("Unhandled lvalue cast kind?"); 4807 } 4808 4809 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4810 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4811 return getOrCreateOpaqueLValueMapping(e); 4812 } 4813 4814 LValue 4815 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4816 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4817 4818 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4819 it = OpaqueLValues.find(e); 4820 4821 if (it != OpaqueLValues.end()) 4822 return it->second; 4823 4824 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4825 return EmitLValue(e->getSourceExpr()); 4826 } 4827 4828 RValue 4829 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4830 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4831 4832 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4833 it = OpaqueRValues.find(e); 4834 4835 if (it != OpaqueRValues.end()) 4836 return it->second; 4837 4838 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4839 return EmitAnyExpr(e->getSourceExpr()); 4840 } 4841 4842 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4843 const FieldDecl *FD, 4844 SourceLocation Loc) { 4845 QualType FT = FD->getType(); 4846 LValue FieldLV = EmitLValueForField(LV, FD); 4847 switch (getEvaluationKind(FT)) { 4848 case TEK_Complex: 4849 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4850 case TEK_Aggregate: 4851 return FieldLV.asAggregateRValue(*this); 4852 case TEK_Scalar: 4853 // This routine is used to load fields one-by-one to perform a copy, so 4854 // don't load reference fields. 4855 if (FD->getType()->isReferenceType()) 4856 return RValue::get(FieldLV.getPointer(*this)); 4857 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4858 // primitive load. 4859 if (FieldLV.isBitField()) 4860 return EmitLoadOfLValue(FieldLV, Loc); 4861 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4862 } 4863 llvm_unreachable("bad evaluation kind"); 4864 } 4865 4866 //===--------------------------------------------------------------------===// 4867 // Expression Emission 4868 //===--------------------------------------------------------------------===// 4869 4870 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4871 ReturnValueSlot ReturnValue) { 4872 // Builtins never have block type. 4873 if (E->getCallee()->getType()->isBlockPointerType()) 4874 return EmitBlockCallExpr(E, ReturnValue); 4875 4876 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4877 return EmitCXXMemberCallExpr(CE, ReturnValue); 4878 4879 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4880 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4881 4882 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4883 if (const CXXMethodDecl *MD = 4884 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4885 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4886 4887 CGCallee callee = EmitCallee(E->getCallee()); 4888 4889 if (callee.isBuiltin()) { 4890 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4891 E, ReturnValue); 4892 } 4893 4894 if (callee.isPseudoDestructor()) { 4895 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4896 } 4897 4898 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4899 } 4900 4901 /// Emit a CallExpr without considering whether it might be a subclass. 4902 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4903 ReturnValueSlot ReturnValue) { 4904 CGCallee Callee = EmitCallee(E->getCallee()); 4905 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4906 } 4907 4908 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4909 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4910 4911 if (auto builtinID = FD->getBuiltinID()) { 4912 std::string FDInlineName = (FD->getName() + ".inline").str(); 4913 // When directing calling an inline builtin, call it through it's mangled 4914 // name to make it clear it's not the actual builtin. 4915 if (FD->isInlineBuiltinDeclaration() && 4916 CGF.CurFn->getName() != FDInlineName) { 4917 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4918 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 4919 llvm::Module *M = Fn->getParent(); 4920 llvm::Function *Clone = M->getFunction(FDInlineName); 4921 if (!Clone) { 4922 Clone = llvm::Function::Create(Fn->getFunctionType(), 4923 llvm::GlobalValue::InternalLinkage, 4924 Fn->getAddressSpace(), FDInlineName, M); 4925 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 4926 } 4927 return CGCallee::forDirect(Clone, GD); 4928 } 4929 4930 // Replaceable builtins provide their own implementation of a builtin. If we 4931 // are in an inline builtin implementation, avoid trivial infinite 4932 // recursion. 4933 else 4934 return CGCallee::forBuiltin(builtinID, FD); 4935 } 4936 4937 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4938 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 4939 FD->hasAttr<CUDAGlobalAttr>()) 4940 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 4941 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 4942 4943 return CGCallee::forDirect(CalleePtr, GD); 4944 } 4945 4946 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4947 E = E->IgnoreParens(); 4948 4949 // Look through function-to-pointer decay. 4950 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4951 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4952 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4953 return EmitCallee(ICE->getSubExpr()); 4954 } 4955 4956 // Resolve direct calls. 4957 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4958 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4959 return EmitDirectCallee(*this, FD); 4960 } 4961 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4962 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4963 EmitIgnoredExpr(ME->getBase()); 4964 return EmitDirectCallee(*this, FD); 4965 } 4966 4967 // Look through template substitutions. 4968 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4969 return EmitCallee(NTTP->getReplacement()); 4970 4971 // Treat pseudo-destructor calls differently. 4972 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4973 return CGCallee::forPseudoDestructor(PDE); 4974 } 4975 4976 // Otherwise, we have an indirect reference. 4977 llvm::Value *calleePtr; 4978 QualType functionType; 4979 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4980 calleePtr = EmitScalarExpr(E); 4981 functionType = ptrType->getPointeeType(); 4982 } else { 4983 functionType = E->getType(); 4984 calleePtr = EmitLValue(E).getPointer(*this); 4985 } 4986 assert(functionType->isFunctionType()); 4987 4988 GlobalDecl GD; 4989 if (const auto *VD = 4990 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4991 GD = GlobalDecl(VD); 4992 4993 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4994 CGCallee callee(calleeInfo, calleePtr); 4995 return callee; 4996 } 4997 4998 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4999 // Comma expressions just emit their LHS then their RHS as an l-value. 5000 if (E->getOpcode() == BO_Comma) { 5001 EmitIgnoredExpr(E->getLHS()); 5002 EnsureInsertPoint(); 5003 return EmitLValue(E->getRHS()); 5004 } 5005 5006 if (E->getOpcode() == BO_PtrMemD || 5007 E->getOpcode() == BO_PtrMemI) 5008 return EmitPointerToDataMemberBinaryExpr(E); 5009 5010 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5011 5012 // Note that in all of these cases, __block variables need the RHS 5013 // evaluated first just in case the variable gets moved by the RHS. 5014 5015 switch (getEvaluationKind(E->getType())) { 5016 case TEK_Scalar: { 5017 switch (E->getLHS()->getType().getObjCLifetime()) { 5018 case Qualifiers::OCL_Strong: 5019 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5020 5021 case Qualifiers::OCL_Autoreleasing: 5022 return EmitARCStoreAutoreleasing(E).first; 5023 5024 // No reason to do any of these differently. 5025 case Qualifiers::OCL_None: 5026 case Qualifiers::OCL_ExplicitNone: 5027 case Qualifiers::OCL_Weak: 5028 break; 5029 } 5030 5031 RValue RV = EmitAnyExpr(E->getRHS()); 5032 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5033 if (RV.isScalar()) 5034 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5035 EmitStoreThroughLValue(RV, LV); 5036 if (getLangOpts().OpenMP) 5037 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5038 E->getLHS()); 5039 return LV; 5040 } 5041 5042 case TEK_Complex: 5043 return EmitComplexAssignmentLValue(E); 5044 5045 case TEK_Aggregate: 5046 return EmitAggExprToLValue(E); 5047 } 5048 llvm_unreachable("bad evaluation kind"); 5049 } 5050 5051 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5052 RValue RV = EmitCallExpr(E); 5053 5054 if (!RV.isScalar()) 5055 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5056 AlignmentSource::Decl); 5057 5058 assert(E->getCallReturnType(getContext())->isReferenceType() && 5059 "Can't have a scalar return unless the return type is a " 5060 "reference type!"); 5061 5062 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5063 } 5064 5065 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5066 // FIXME: This shouldn't require another copy. 5067 return EmitAggExprToLValue(E); 5068 } 5069 5070 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5071 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5072 && "binding l-value to type which needs a temporary"); 5073 AggValueSlot Slot = CreateAggTemp(E->getType()); 5074 EmitCXXConstructExpr(E, Slot); 5075 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5076 } 5077 5078 LValue 5079 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5080 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5081 } 5082 5083 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5084 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5085 ConvertType(E->getType())); 5086 } 5087 5088 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5089 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5090 AlignmentSource::Decl); 5091 } 5092 5093 LValue 5094 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5095 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5096 Slot.setExternallyDestructed(); 5097 EmitAggExpr(E->getSubExpr(), Slot); 5098 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5099 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5100 } 5101 5102 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5103 RValue RV = EmitObjCMessageExpr(E); 5104 5105 if (!RV.isScalar()) 5106 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5107 AlignmentSource::Decl); 5108 5109 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5110 "Can't have a scalar return unless the return type is a " 5111 "reference type!"); 5112 5113 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5114 } 5115 5116 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5117 Address V = 5118 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5119 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5120 } 5121 5122 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5123 const ObjCIvarDecl *Ivar) { 5124 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5125 } 5126 5127 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5128 llvm::Value *BaseValue, 5129 const ObjCIvarDecl *Ivar, 5130 unsigned CVRQualifiers) { 5131 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5132 Ivar, CVRQualifiers); 5133 } 5134 5135 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5136 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5137 llvm::Value *BaseValue = nullptr; 5138 const Expr *BaseExpr = E->getBase(); 5139 Qualifiers BaseQuals; 5140 QualType ObjectTy; 5141 if (E->isArrow()) { 5142 BaseValue = EmitScalarExpr(BaseExpr); 5143 ObjectTy = BaseExpr->getType()->getPointeeType(); 5144 BaseQuals = ObjectTy.getQualifiers(); 5145 } else { 5146 LValue BaseLV = EmitLValue(BaseExpr); 5147 BaseValue = BaseLV.getPointer(*this); 5148 ObjectTy = BaseExpr->getType(); 5149 BaseQuals = ObjectTy.getQualifiers(); 5150 } 5151 5152 LValue LV = 5153 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5154 BaseQuals.getCVRQualifiers()); 5155 setObjCGCLValueClass(getContext(), E, LV); 5156 return LV; 5157 } 5158 5159 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5160 // Can only get l-value for message expression returning aggregate type 5161 RValue RV = EmitAnyExprToTemp(E); 5162 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5163 AlignmentSource::Decl); 5164 } 5165 5166 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5167 const CallExpr *E, ReturnValueSlot ReturnValue, 5168 llvm::Value *Chain) { 5169 // Get the actual function type. The callee type will always be a pointer to 5170 // function type or a block pointer type. 5171 assert(CalleeType->isFunctionPointerType() && 5172 "Call must have function pointer type!"); 5173 5174 const Decl *TargetDecl = 5175 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5176 5177 CalleeType = getContext().getCanonicalType(CalleeType); 5178 5179 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5180 5181 CGCallee Callee = OrigCallee; 5182 5183 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5184 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5185 if (llvm::Constant *PrefixSig = 5186 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5187 SanitizerScope SanScope(this); 5188 // Remove any (C++17) exception specifications, to allow calling e.g. a 5189 // noexcept function through a non-noexcept pointer. 5190 auto ProtoTy = 5191 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5192 llvm::Constant *FTRTTIConst = 5193 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5194 llvm::Type *PrefixSigType = PrefixSig->getType(); 5195 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5196 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5197 5198 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5199 5200 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5201 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5202 llvm::Value *CalleeSigPtr = 5203 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5204 llvm::Value *CalleeSig = 5205 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5206 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5207 5208 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5209 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5210 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5211 5212 EmitBlock(TypeCheck); 5213 llvm::Value *CalleeRTTIPtr = 5214 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5215 llvm::Value *CalleeRTTIEncoded = 5216 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5217 llvm::Value *CalleeRTTI = 5218 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5219 llvm::Value *CalleeRTTIMatch = 5220 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5221 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5222 EmitCheckTypeDescriptor(CalleeType)}; 5223 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5224 SanitizerHandler::FunctionTypeMismatch, StaticData, 5225 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5226 5227 Builder.CreateBr(Cont); 5228 EmitBlock(Cont); 5229 } 5230 } 5231 5232 const auto *FnType = cast<FunctionType>(PointeeType); 5233 5234 // If we are checking indirect calls and this call is indirect, check that the 5235 // function pointer is a member of the bit set for the function type. 5236 if (SanOpts.has(SanitizerKind::CFIICall) && 5237 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5238 SanitizerScope SanScope(this); 5239 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5240 5241 llvm::Metadata *MD; 5242 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5243 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5244 else 5245 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5246 5247 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5248 5249 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5250 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5251 llvm::Value *TypeTest = Builder.CreateCall( 5252 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5253 5254 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5255 llvm::Constant *StaticData[] = { 5256 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5257 EmitCheckSourceLocation(E->getBeginLoc()), 5258 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5259 }; 5260 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5261 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5262 CastedCallee, StaticData); 5263 } else { 5264 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5265 SanitizerHandler::CFICheckFail, StaticData, 5266 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5267 } 5268 } 5269 5270 CallArgList Args; 5271 if (Chain) 5272 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5273 CGM.getContext().VoidPtrTy); 5274 5275 // C++17 requires that we evaluate arguments to a call using assignment syntax 5276 // right-to-left, and that we evaluate arguments to certain other operators 5277 // left-to-right. Note that we allow this to override the order dictated by 5278 // the calling convention on the MS ABI, which means that parameter 5279 // destruction order is not necessarily reverse construction order. 5280 // FIXME: Revisit this based on C++ committee response to unimplementability. 5281 EvaluationOrder Order = EvaluationOrder::Default; 5282 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5283 if (OCE->isAssignmentOp()) 5284 Order = EvaluationOrder::ForceRightToLeft; 5285 else { 5286 switch (OCE->getOperator()) { 5287 case OO_LessLess: 5288 case OO_GreaterGreater: 5289 case OO_AmpAmp: 5290 case OO_PipePipe: 5291 case OO_Comma: 5292 case OO_ArrowStar: 5293 Order = EvaluationOrder::ForceLeftToRight; 5294 break; 5295 default: 5296 break; 5297 } 5298 } 5299 } 5300 5301 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5302 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5303 5304 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5305 Args, FnType, /*ChainCall=*/Chain); 5306 5307 // C99 6.5.2.2p6: 5308 // If the expression that denotes the called function has a type 5309 // that does not include a prototype, [the default argument 5310 // promotions are performed]. If the number of arguments does not 5311 // equal the number of parameters, the behavior is undefined. If 5312 // the function is defined with a type that includes a prototype, 5313 // and either the prototype ends with an ellipsis (, ...) or the 5314 // types of the arguments after promotion are not compatible with 5315 // the types of the parameters, the behavior is undefined. If the 5316 // function is defined with a type that does not include a 5317 // prototype, and the types of the arguments after promotion are 5318 // not compatible with those of the parameters after promotion, 5319 // the behavior is undefined [except in some trivial cases]. 5320 // That is, in the general case, we should assume that a call 5321 // through an unprototyped function type works like a *non-variadic* 5322 // call. The way we make this work is to cast to the exact type 5323 // of the promoted arguments. 5324 // 5325 // Chain calls use this same code path to add the invisible chain parameter 5326 // to the function type. 5327 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5328 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5329 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5330 CalleeTy = CalleeTy->getPointerTo(AS); 5331 5332 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5333 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5334 Callee.setFunctionPointer(CalleePtr); 5335 } 5336 5337 // HIP function pointer contains kernel handle when it is used in triple 5338 // chevron. The kernel stub needs to be loaded from kernel handle and used 5339 // as callee. 5340 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5341 isa<CUDAKernelCallExpr>(E) && 5342 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5343 llvm::Value *Handle = Callee.getFunctionPointer(); 5344 auto *Cast = 5345 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5346 auto *Stub = Builder.CreateLoad( 5347 Address(Cast, Handle->getType(), CGM.getPointerAlign())); 5348 Callee.setFunctionPointer(Stub); 5349 } 5350 llvm::CallBase *CallOrInvoke = nullptr; 5351 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5352 E == MustTailCall, E->getExprLoc()); 5353 5354 // Generate function declaration DISuprogram in order to be used 5355 // in debug info about call sites. 5356 if (CGDebugInfo *DI = getDebugInfo()) { 5357 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5358 FunctionArgList Args; 5359 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5360 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5361 DI->getFunctionType(CalleeDecl, ResTy, Args), 5362 CalleeDecl); 5363 } 5364 } 5365 5366 return Call; 5367 } 5368 5369 LValue CodeGenFunction:: 5370 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5371 Address BaseAddr = Address::invalid(); 5372 if (E->getOpcode() == BO_PtrMemI) { 5373 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5374 } else { 5375 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5376 } 5377 5378 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5379 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5380 5381 LValueBaseInfo BaseInfo; 5382 TBAAAccessInfo TBAAInfo; 5383 Address MemberAddr = 5384 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5385 &TBAAInfo); 5386 5387 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5388 } 5389 5390 /// Given the address of a temporary variable, produce an r-value of 5391 /// its type. 5392 RValue CodeGenFunction::convertTempToRValue(Address addr, 5393 QualType type, 5394 SourceLocation loc) { 5395 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5396 switch (getEvaluationKind(type)) { 5397 case TEK_Complex: 5398 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5399 case TEK_Aggregate: 5400 return lvalue.asAggregateRValue(*this); 5401 case TEK_Scalar: 5402 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5403 } 5404 llvm_unreachable("bad evaluation kind"); 5405 } 5406 5407 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5408 assert(Val->getType()->isFPOrFPVectorTy()); 5409 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5410 return; 5411 5412 llvm::MDBuilder MDHelper(getLLVMContext()); 5413 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5414 5415 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5416 } 5417 5418 namespace { 5419 struct LValueOrRValue { 5420 LValue LV; 5421 RValue RV; 5422 }; 5423 } 5424 5425 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5426 const PseudoObjectExpr *E, 5427 bool forLValue, 5428 AggValueSlot slot) { 5429 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5430 5431 // Find the result expression, if any. 5432 const Expr *resultExpr = E->getResultExpr(); 5433 LValueOrRValue result; 5434 5435 for (PseudoObjectExpr::const_semantics_iterator 5436 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5437 const Expr *semantic = *i; 5438 5439 // If this semantic expression is an opaque value, bind it 5440 // to the result of its source expression. 5441 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5442 // Skip unique OVEs. 5443 if (ov->isUnique()) { 5444 assert(ov != resultExpr && 5445 "A unique OVE cannot be used as the result expression"); 5446 continue; 5447 } 5448 5449 // If this is the result expression, we may need to evaluate 5450 // directly into the slot. 5451 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5452 OVMA opaqueData; 5453 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5454 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5455 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5456 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5457 AlignmentSource::Decl); 5458 opaqueData = OVMA::bind(CGF, ov, LV); 5459 result.RV = slot.asRValue(); 5460 5461 // Otherwise, emit as normal. 5462 } else { 5463 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5464 5465 // If this is the result, also evaluate the result now. 5466 if (ov == resultExpr) { 5467 if (forLValue) 5468 result.LV = CGF.EmitLValue(ov); 5469 else 5470 result.RV = CGF.EmitAnyExpr(ov, slot); 5471 } 5472 } 5473 5474 opaques.push_back(opaqueData); 5475 5476 // Otherwise, if the expression is the result, evaluate it 5477 // and remember the result. 5478 } else if (semantic == resultExpr) { 5479 if (forLValue) 5480 result.LV = CGF.EmitLValue(semantic); 5481 else 5482 result.RV = CGF.EmitAnyExpr(semantic, slot); 5483 5484 // Otherwise, evaluate the expression in an ignored context. 5485 } else { 5486 CGF.EmitIgnoredExpr(semantic); 5487 } 5488 } 5489 5490 // Unbind all the opaques now. 5491 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5492 opaques[i].unbind(CGF); 5493 5494 return result; 5495 } 5496 5497 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5498 AggValueSlot slot) { 5499 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5500 } 5501 5502 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5503 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5504 } 5505