1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "llvm/ADT/Hashing.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/Path.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 #include <string> 43 44 using namespace clang; 45 using namespace CodeGen; 46 47 //===--------------------------------------------------------------------===// 48 // Miscellaneous Helper Methods 49 //===--------------------------------------------------------------------===// 50 51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 52 unsigned addressSpace = 53 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 54 55 llvm::PointerType *destType = Int8PtrTy; 56 if (addressSpace) 57 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 58 59 if (value->getType() == destType) return value; 60 return Builder.CreateBitCast(value, destType); 61 } 62 63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 64 /// block. 65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 66 CharUnits Align, 67 const Twine &Name, 68 llvm::Value *ArraySize) { 69 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 70 Alloca->setAlignment(Align.getAsAlign()); 71 return Address(Alloca, Align); 72 } 73 74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 75 /// block. The alloca is casted to default address space if necessary. 76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 77 const Twine &Name, 78 llvm::Value *ArraySize, 79 Address *AllocaAddr) { 80 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 81 if (AllocaAddr) 82 *AllocaAddr = Alloca; 83 llvm::Value *V = Alloca.getPointer(); 84 // Alloca always returns a pointer in alloca address space, which may 85 // be different from the type defined by the language. For example, 86 // in C++ the auto variables are in the default address space. Therefore 87 // cast alloca to the default address space when necessary. 88 if (getASTAllocaAddressSpace() != LangAS::Default) { 89 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 90 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 91 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 92 // otherwise alloca is inserted at the current insertion point of the 93 // builder. 94 if (!ArraySize) 95 Builder.SetInsertPoint(AllocaInsertPt); 96 V = getTargetHooks().performAddrSpaceCast( 97 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 98 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 99 } 100 101 return Address(V, Align); 102 } 103 104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 106 /// insertion point of the builder. 107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 108 const Twine &Name, 109 llvm::Value *ArraySize) { 110 if (ArraySize) 111 return Builder.CreateAlloca(Ty, ArraySize, Name); 112 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 113 ArraySize, Name, AllocaInsertPt); 114 } 115 116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 117 /// default alignment of the corresponding LLVM type, which is *not* 118 /// guaranteed to be related in any way to the expected alignment of 119 /// an AST type that might have been lowered to Ty. 120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 121 const Twine &Name) { 122 CharUnits Align = 123 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 124 return CreateTempAlloca(Ty, Align, Name); 125 } 126 127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 128 auto *Alloca = Var.getPointer(); 129 assert(isa<llvm::AllocaInst>(Alloca) || 130 (isa<llvm::AddrSpaceCastInst>(Alloca) && 131 isa<llvm::AllocaInst>( 132 cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand()))); 133 134 auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false, 135 Var.getAlignment().getAsAlign()); 136 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 137 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 138 } 139 140 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 141 CharUnits Align = getContext().getTypeAlignInChars(Ty); 142 return CreateTempAlloca(ConvertType(Ty), Align, Name); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 146 Address *Alloca) { 147 // FIXME: Should we prefer the preferred type alignment here? 148 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 152 const Twine &Name, Address *Alloca) { 153 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 154 /*ArraySize=*/nullptr, Alloca); 155 156 if (Ty->isConstantMatrixType()) { 157 auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType()); 158 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 159 ArrayTy->getNumElements()); 160 161 Result = Address( 162 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 163 Result.getAlignment()); 164 } 165 return Result; 166 } 167 168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 169 const Twine &Name) { 170 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 171 } 172 173 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 174 const Twine &Name) { 175 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 176 Name); 177 } 178 179 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 180 /// expression and compare the result against zero, returning an Int1Ty value. 181 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 182 PGO.setCurrentStmt(E); 183 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 184 llvm::Value *MemPtr = EmitScalarExpr(E); 185 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 186 } 187 188 QualType BoolTy = getContext().BoolTy; 189 SourceLocation Loc = E->getExprLoc(); 190 CGFPOptionsRAII FPOptsRAII(*this, E); 191 if (!E->getType()->isAnyComplexType()) 192 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 193 194 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 195 Loc); 196 } 197 198 /// EmitIgnoredExpr - Emit code to compute the specified expression, 199 /// ignoring the result. 200 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 201 if (E->isRValue()) 202 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 203 204 // Just emit it as an l-value and drop the result. 205 EmitLValue(E); 206 } 207 208 /// EmitAnyExpr - Emit code to compute the specified expression which 209 /// can have any type. The result is returned as an RValue struct. 210 /// If this is an aggregate expression, AggSlot indicates where the 211 /// result should be returned. 212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 213 AggValueSlot aggSlot, 214 bool ignoreResult) { 215 switch (getEvaluationKind(E->getType())) { 216 case TEK_Scalar: 217 return RValue::get(EmitScalarExpr(E, ignoreResult)); 218 case TEK_Complex: 219 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 220 case TEK_Aggregate: 221 if (!ignoreResult && aggSlot.isIgnored()) 222 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 223 EmitAggExpr(E, aggSlot); 224 return aggSlot.asRValue(); 225 } 226 llvm_unreachable("bad evaluation kind"); 227 } 228 229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 230 /// always be accessible even if no aggregate location is provided. 231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 232 AggValueSlot AggSlot = AggValueSlot::ignored(); 233 234 if (hasAggregateEvaluationKind(E->getType())) 235 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 236 return EmitAnyExpr(E, AggSlot); 237 } 238 239 /// EmitAnyExprToMem - Evaluate an expression into a given memory 240 /// location. 241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 242 Address Location, 243 Qualifiers Quals, 244 bool IsInit) { 245 // FIXME: This function should take an LValue as an argument. 246 switch (getEvaluationKind(E->getType())) { 247 case TEK_Complex: 248 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 249 /*isInit*/ false); 250 return; 251 252 case TEK_Aggregate: { 253 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 254 AggValueSlot::IsDestructed_t(IsInit), 255 AggValueSlot::DoesNotNeedGCBarriers, 256 AggValueSlot::IsAliased_t(!IsInit), 257 AggValueSlot::MayOverlap)); 258 return; 259 } 260 261 case TEK_Scalar: { 262 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 263 LValue LV = MakeAddrLValue(Location, E->getType()); 264 EmitStoreThroughLValue(RV, LV); 265 return; 266 } 267 } 268 llvm_unreachable("bad evaluation kind"); 269 } 270 271 static void 272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 273 const Expr *E, Address ReferenceTemporary) { 274 // Objective-C++ ARC: 275 // If we are binding a reference to a temporary that has ownership, we 276 // need to perform retain/release operations on the temporary. 277 // 278 // FIXME: This should be looking at E, not M. 279 if (auto Lifetime = M->getType().getObjCLifetime()) { 280 switch (Lifetime) { 281 case Qualifiers::OCL_None: 282 case Qualifiers::OCL_ExplicitNone: 283 // Carry on to normal cleanup handling. 284 break; 285 286 case Qualifiers::OCL_Autoreleasing: 287 // Nothing to do; cleaned up by an autorelease pool. 288 return; 289 290 case Qualifiers::OCL_Strong: 291 case Qualifiers::OCL_Weak: 292 switch (StorageDuration Duration = M->getStorageDuration()) { 293 case SD_Static: 294 // Note: we intentionally do not register a cleanup to release 295 // the object on program termination. 296 return; 297 298 case SD_Thread: 299 // FIXME: We should probably register a cleanup in this case. 300 return; 301 302 case SD_Automatic: 303 case SD_FullExpression: 304 CodeGenFunction::Destroyer *Destroy; 305 CleanupKind CleanupKind; 306 if (Lifetime == Qualifiers::OCL_Strong) { 307 const ValueDecl *VD = M->getExtendingDecl(); 308 bool Precise = 309 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 310 CleanupKind = CGF.getARCCleanupKind(); 311 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 312 : &CodeGenFunction::destroyARCStrongImprecise; 313 } else { 314 // __weak objects always get EH cleanups; otherwise, exceptions 315 // could cause really nasty crashes instead of mere leaks. 316 CleanupKind = NormalAndEHCleanup; 317 Destroy = &CodeGenFunction::destroyARCWeak; 318 } 319 if (Duration == SD_FullExpression) 320 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 321 M->getType(), *Destroy, 322 CleanupKind & EHCleanup); 323 else 324 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 325 M->getType(), 326 *Destroy, CleanupKind & EHCleanup); 327 return; 328 329 case SD_Dynamic: 330 llvm_unreachable("temporary cannot have dynamic storage duration"); 331 } 332 llvm_unreachable("unknown storage duration"); 333 } 334 } 335 336 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 337 if (const RecordType *RT = 338 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 339 // Get the destructor for the reference temporary. 340 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 341 if (!ClassDecl->hasTrivialDestructor()) 342 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 343 } 344 345 if (!ReferenceTemporaryDtor) 346 return; 347 348 // Call the destructor for the temporary. 349 switch (M->getStorageDuration()) { 350 case SD_Static: 351 case SD_Thread: { 352 llvm::FunctionCallee CleanupFn; 353 llvm::Constant *CleanupArg; 354 if (E->getType()->isArrayType()) { 355 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 356 ReferenceTemporary, E->getType(), 357 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 358 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 359 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 360 } else { 361 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 362 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 363 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 364 } 365 CGF.CGM.getCXXABI().registerGlobalDtor( 366 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 367 break; 368 } 369 370 case SD_FullExpression: 371 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 372 CodeGenFunction::destroyCXXObject, 373 CGF.getLangOpts().Exceptions); 374 break; 375 376 case SD_Automatic: 377 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 378 ReferenceTemporary, E->getType(), 379 CodeGenFunction::destroyCXXObject, 380 CGF.getLangOpts().Exceptions); 381 break; 382 383 case SD_Dynamic: 384 llvm_unreachable("temporary cannot have dynamic storage duration"); 385 } 386 } 387 388 static Address createReferenceTemporary(CodeGenFunction &CGF, 389 const MaterializeTemporaryExpr *M, 390 const Expr *Inner, 391 Address *Alloca = nullptr) { 392 auto &TCG = CGF.getTargetHooks(); 393 switch (M->getStorageDuration()) { 394 case SD_FullExpression: 395 case SD_Automatic: { 396 // If we have a constant temporary array or record try to promote it into a 397 // constant global under the same rules a normal constant would've been 398 // promoted. This is easier on the optimizer and generally emits fewer 399 // instructions. 400 QualType Ty = Inner->getType(); 401 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 402 (Ty->isArrayType() || Ty->isRecordType()) && 403 CGF.CGM.isTypeConstant(Ty, true)) 404 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 405 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 406 auto AS = AddrSpace.getValue(); 407 auto *GV = new llvm::GlobalVariable( 408 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 409 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 410 llvm::GlobalValue::NotThreadLocal, 411 CGF.getContext().getTargetAddressSpace(AS)); 412 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 413 GV->setAlignment(alignment.getAsAlign()); 414 llvm::Constant *C = GV; 415 if (AS != LangAS::Default) 416 C = TCG.performAddrSpaceCast( 417 CGF.CGM, GV, AS, LangAS::Default, 418 GV->getValueType()->getPointerTo( 419 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 420 // FIXME: Should we put the new global into a COMDAT? 421 return Address(C, alignment); 422 } 423 } 424 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 425 } 426 case SD_Thread: 427 case SD_Static: 428 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 429 430 case SD_Dynamic: 431 llvm_unreachable("temporary can't have dynamic storage duration"); 432 } 433 llvm_unreachable("unknown storage duration"); 434 } 435 436 /// Helper method to check if the underlying ABI is AAPCS 437 static bool isAAPCS(const TargetInfo &TargetInfo) { 438 return TargetInfo.getABI().startswith("aapcs"); 439 } 440 441 LValue CodeGenFunction:: 442 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 443 const Expr *E = M->getSubExpr(); 444 445 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 446 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 447 "Reference should never be pseudo-strong!"); 448 449 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 450 // as that will cause the lifetime adjustment to be lost for ARC 451 auto ownership = M->getType().getObjCLifetime(); 452 if (ownership != Qualifiers::OCL_None && 453 ownership != Qualifiers::OCL_ExplicitNone) { 454 Address Object = createReferenceTemporary(*this, M, E); 455 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 456 Object = Address(llvm::ConstantExpr::getBitCast(Var, 457 ConvertTypeForMem(E->getType()) 458 ->getPointerTo(Object.getAddressSpace())), 459 Object.getAlignment()); 460 461 // createReferenceTemporary will promote the temporary to a global with a 462 // constant initializer if it can. It can only do this to a value of 463 // ARC-manageable type if the value is global and therefore "immune" to 464 // ref-counting operations. Therefore we have no need to emit either a 465 // dynamic initialization or a cleanup and we can just return the address 466 // of the temporary. 467 if (Var->hasInitializer()) 468 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 469 470 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 471 } 472 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 473 AlignmentSource::Decl); 474 475 switch (getEvaluationKind(E->getType())) { 476 default: llvm_unreachable("expected scalar or aggregate expression"); 477 case TEK_Scalar: 478 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 479 break; 480 case TEK_Aggregate: { 481 EmitAggExpr(E, AggValueSlot::forAddr(Object, 482 E->getType().getQualifiers(), 483 AggValueSlot::IsDestructed, 484 AggValueSlot::DoesNotNeedGCBarriers, 485 AggValueSlot::IsNotAliased, 486 AggValueSlot::DoesNotOverlap)); 487 break; 488 } 489 } 490 491 pushTemporaryCleanup(*this, M, E, Object); 492 return RefTempDst; 493 } 494 495 SmallVector<const Expr *, 2> CommaLHSs; 496 SmallVector<SubobjectAdjustment, 2> Adjustments; 497 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 498 499 for (const auto &Ignored : CommaLHSs) 500 EmitIgnoredExpr(Ignored); 501 502 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 503 if (opaque->getType()->isRecordType()) { 504 assert(Adjustments.empty()); 505 return EmitOpaqueValueLValue(opaque); 506 } 507 } 508 509 // Create and initialize the reference temporary. 510 Address Alloca = Address::invalid(); 511 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 512 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 513 Object.getPointer()->stripPointerCasts())) { 514 Object = Address(llvm::ConstantExpr::getBitCast( 515 cast<llvm::Constant>(Object.getPointer()), 516 ConvertTypeForMem(E->getType())->getPointerTo()), 517 Object.getAlignment()); 518 // If the temporary is a global and has a constant initializer or is a 519 // constant temporary that we promoted to a global, we may have already 520 // initialized it. 521 if (!Var->hasInitializer()) { 522 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 524 } 525 } else { 526 switch (M->getStorageDuration()) { 527 case SD_Automatic: 528 if (auto *Size = EmitLifetimeStart( 529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 530 Alloca.getPointer())) { 531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 532 Alloca, Size); 533 } 534 break; 535 536 case SD_FullExpression: { 537 if (!ShouldEmitLifetimeMarkers) 538 break; 539 540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 541 // marker. Instead, start the lifetime of a conditional temporary earlier 542 // so that it's unconditional. Don't do this with sanitizers which need 543 // more precise lifetime marks. 544 ConditionalEvaluation *OldConditional = nullptr; 545 CGBuilderTy::InsertPoint OldIP; 546 if (isInConditionalBranch() && !E->getType().isDestructedType() && 547 !SanOpts.has(SanitizerKind::HWAddress) && 548 !SanOpts.has(SanitizerKind::Memory) && 549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 550 OldConditional = OutermostConditional; 551 OutermostConditional = nullptr; 552 553 OldIP = Builder.saveIP(); 554 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 555 Builder.restoreIP(CGBuilderTy::InsertPoint( 556 Block, llvm::BasicBlock::iterator(Block->back()))); 557 } 558 559 if (auto *Size = EmitLifetimeStart( 560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 561 Alloca.getPointer())) { 562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 563 Size); 564 } 565 566 if (OldConditional) { 567 OutermostConditional = OldConditional; 568 Builder.restoreIP(OldIP); 569 } 570 break; 571 } 572 573 default: 574 break; 575 } 576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 577 } 578 pushTemporaryCleanup(*this, M, E, Object); 579 580 // Perform derived-to-base casts and/or field accesses, to get from the 581 // temporary object we created (and, potentially, for which we extended 582 // the lifetime) to the subobject we're binding the reference to. 583 for (unsigned I = Adjustments.size(); I != 0; --I) { 584 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 585 switch (Adjustment.Kind) { 586 case SubobjectAdjustment::DerivedToBaseAdjustment: 587 Object = 588 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 589 Adjustment.DerivedToBase.BasePath->path_begin(), 590 Adjustment.DerivedToBase.BasePath->path_end(), 591 /*NullCheckValue=*/ false, E->getExprLoc()); 592 break; 593 594 case SubobjectAdjustment::FieldAdjustment: { 595 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 596 LV = EmitLValueForField(LV, Adjustment.Field); 597 assert(LV.isSimple() && 598 "materialized temporary field is not a simple lvalue"); 599 Object = LV.getAddress(*this); 600 break; 601 } 602 603 case SubobjectAdjustment::MemberPointerAdjustment: { 604 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 605 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 606 Adjustment.Ptr.MPT); 607 break; 608 } 609 } 610 } 611 612 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 613 } 614 615 RValue 616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 617 // Emit the expression as an lvalue. 618 LValue LV = EmitLValue(E); 619 assert(LV.isSimple()); 620 llvm::Value *Value = LV.getPointer(*this); 621 622 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 623 // C++11 [dcl.ref]p5 (as amended by core issue 453): 624 // If a glvalue to which a reference is directly bound designates neither 625 // an existing object or function of an appropriate type nor a region of 626 // storage of suitable size and alignment to contain an object of the 627 // reference's type, the behavior is undefined. 628 QualType Ty = E->getType(); 629 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 630 } 631 632 return RValue::get(Value); 633 } 634 635 636 /// getAccessedFieldNo - Given an encoded value and a result number, return the 637 /// input field number being accessed. 638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 639 const llvm::Constant *Elts) { 640 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 641 ->getZExtValue(); 642 } 643 644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 645 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 646 llvm::Value *High) { 647 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 648 llvm::Value *K47 = Builder.getInt64(47); 649 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 650 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 651 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 652 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 653 return Builder.CreateMul(B1, KMul); 654 } 655 656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 657 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 658 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 659 } 660 661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 662 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 663 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 664 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 665 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 666 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 667 } 668 669 bool CodeGenFunction::sanitizePerformTypeCheck() const { 670 return SanOpts.has(SanitizerKind::Null) | 671 SanOpts.has(SanitizerKind::Alignment) | 672 SanOpts.has(SanitizerKind::ObjectSize) | 673 SanOpts.has(SanitizerKind::Vptr); 674 } 675 676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 677 llvm::Value *Ptr, QualType Ty, 678 CharUnits Alignment, 679 SanitizerSet SkippedChecks, 680 llvm::Value *ArraySize) { 681 if (!sanitizePerformTypeCheck()) 682 return; 683 684 // Don't check pointers outside the default address space. The null check 685 // isn't correct, the object-size check isn't supported by LLVM, and we can't 686 // communicate the addresses to the runtime handler for the vptr check. 687 if (Ptr->getType()->getPointerAddressSpace()) 688 return; 689 690 // Don't check pointers to volatile data. The behavior here is implementation- 691 // defined. 692 if (Ty.isVolatileQualified()) 693 return; 694 695 SanitizerScope SanScope(this); 696 697 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 698 llvm::BasicBlock *Done = nullptr; 699 700 // Quickly determine whether we have a pointer to an alloca. It's possible 701 // to skip null checks, and some alignment checks, for these pointers. This 702 // can reduce compile-time significantly. 703 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 704 705 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 706 llvm::Value *IsNonNull = nullptr; 707 bool IsGuaranteedNonNull = 708 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 709 bool AllowNullPointers = isNullPointerAllowed(TCK); 710 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 711 !IsGuaranteedNonNull) { 712 // The glvalue must not be an empty glvalue. 713 IsNonNull = Builder.CreateIsNotNull(Ptr); 714 715 // The IR builder can constant-fold the null check if the pointer points to 716 // a constant. 717 IsGuaranteedNonNull = IsNonNull == True; 718 719 // Skip the null check if the pointer is known to be non-null. 720 if (!IsGuaranteedNonNull) { 721 if (AllowNullPointers) { 722 // When performing pointer casts, it's OK if the value is null. 723 // Skip the remaining checks in that case. 724 Done = createBasicBlock("null"); 725 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 726 Builder.CreateCondBr(IsNonNull, Rest, Done); 727 EmitBlock(Rest); 728 } else { 729 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 730 } 731 } 732 } 733 734 if (SanOpts.has(SanitizerKind::ObjectSize) && 735 !SkippedChecks.has(SanitizerKind::ObjectSize) && 736 !Ty->isIncompleteType()) { 737 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 738 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 739 if (ArraySize) 740 Size = Builder.CreateMul(Size, ArraySize); 741 742 // Degenerate case: new X[0] does not need an objectsize check. 743 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 744 if (!ConstantSize || !ConstantSize->isNullValue()) { 745 // The glvalue must refer to a large enough storage region. 746 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 747 // to check this. 748 // FIXME: Get object address space 749 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 750 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 751 llvm::Value *Min = Builder.getFalse(); 752 llvm::Value *NullIsUnknown = Builder.getFalse(); 753 llvm::Value *Dynamic = Builder.getFalse(); 754 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 755 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 756 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 757 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 758 } 759 } 760 761 uint64_t AlignVal = 0; 762 llvm::Value *PtrAsInt = nullptr; 763 764 if (SanOpts.has(SanitizerKind::Alignment) && 765 !SkippedChecks.has(SanitizerKind::Alignment)) { 766 AlignVal = Alignment.getQuantity(); 767 if (!Ty->isIncompleteType() && !AlignVal) 768 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 769 /*ForPointeeType=*/true) 770 .getQuantity(); 771 772 // The glvalue must be suitably aligned. 773 if (AlignVal > 1 && 774 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 775 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 776 llvm::Value *Align = Builder.CreateAnd( 777 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 778 llvm::Value *Aligned = 779 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 780 if (Aligned != True) 781 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 782 } 783 } 784 785 if (Checks.size() > 0) { 786 // Make sure we're not losing information. Alignment needs to be a power of 787 // 2 788 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 789 llvm::Constant *StaticData[] = { 790 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 791 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 792 llvm::ConstantInt::get(Int8Ty, TCK)}; 793 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 794 PtrAsInt ? PtrAsInt : Ptr); 795 } 796 797 // If possible, check that the vptr indicates that there is a subobject of 798 // type Ty at offset zero within this object. 799 // 800 // C++11 [basic.life]p5,6: 801 // [For storage which does not refer to an object within its lifetime] 802 // The program has undefined behavior if: 803 // -- the [pointer or glvalue] is used to access a non-static data member 804 // or call a non-static member function 805 if (SanOpts.has(SanitizerKind::Vptr) && 806 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 807 // Ensure that the pointer is non-null before loading it. If there is no 808 // compile-time guarantee, reuse the run-time null check or emit a new one. 809 if (!IsGuaranteedNonNull) { 810 if (!IsNonNull) 811 IsNonNull = Builder.CreateIsNotNull(Ptr); 812 if (!Done) 813 Done = createBasicBlock("vptr.null"); 814 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 815 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 816 EmitBlock(VptrNotNull); 817 } 818 819 // Compute a hash of the mangled name of the type. 820 // 821 // FIXME: This is not guaranteed to be deterministic! Move to a 822 // fingerprinting mechanism once LLVM provides one. For the time 823 // being the implementation happens to be deterministic. 824 SmallString<64> MangledName; 825 llvm::raw_svector_ostream Out(MangledName); 826 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 827 Out); 828 829 // Blacklist based on the mangled type. 830 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 831 SanitizerKind::Vptr, Out.str())) { 832 llvm::hash_code TypeHash = hash_value(Out.str()); 833 834 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 835 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 836 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 837 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 838 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 839 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 840 841 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 842 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 843 844 // Look the hash up in our cache. 845 const int CacheSize = 128; 846 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 847 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 848 "__ubsan_vptr_type_cache"); 849 llvm::Value *Slot = Builder.CreateAnd(Hash, 850 llvm::ConstantInt::get(IntPtrTy, 851 CacheSize-1)); 852 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 853 llvm::Value *CacheVal = 854 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 855 getPointerAlign()); 856 857 // If the hash isn't in the cache, call a runtime handler to perform the 858 // hard work of checking whether the vptr is for an object of the right 859 // type. This will either fill in the cache and return, or produce a 860 // diagnostic. 861 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 862 llvm::Constant *StaticData[] = { 863 EmitCheckSourceLocation(Loc), 864 EmitCheckTypeDescriptor(Ty), 865 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 866 llvm::ConstantInt::get(Int8Ty, TCK) 867 }; 868 llvm::Value *DynamicData[] = { Ptr, Hash }; 869 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 870 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 871 DynamicData); 872 } 873 } 874 875 if (Done) { 876 Builder.CreateBr(Done); 877 EmitBlock(Done); 878 } 879 } 880 881 /// Determine whether this expression refers to a flexible array member in a 882 /// struct. We disable array bounds checks for such members. 883 static bool isFlexibleArrayMemberExpr(const Expr *E) { 884 // For compatibility with existing code, we treat arrays of length 0 or 885 // 1 as flexible array members. 886 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 887 // the two mechanisms. 888 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 889 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 890 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 891 // was produced by macro expansion. 892 if (CAT->getSize().ugt(1)) 893 return false; 894 } else if (!isa<IncompleteArrayType>(AT)) 895 return false; 896 897 E = E->IgnoreParens(); 898 899 // A flexible array member must be the last member in the class. 900 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 901 // FIXME: If the base type of the member expr is not FD->getParent(), 902 // this should not be treated as a flexible array member access. 903 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 904 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 905 // member, only a T[0] or T[] member gets that treatment. 906 if (FD->getParent()->isUnion()) 907 return true; 908 RecordDecl::field_iterator FI( 909 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 910 return ++FI == FD->getParent()->field_end(); 911 } 912 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 913 return IRE->getDecl()->getNextIvar() == nullptr; 914 } 915 916 return false; 917 } 918 919 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 920 QualType EltTy) { 921 ASTContext &C = getContext(); 922 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 923 if (!EltSize) 924 return nullptr; 925 926 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 927 if (!ArrayDeclRef) 928 return nullptr; 929 930 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 931 if (!ParamDecl) 932 return nullptr; 933 934 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 935 if (!POSAttr) 936 return nullptr; 937 938 // Don't load the size if it's a lower bound. 939 int POSType = POSAttr->getType(); 940 if (POSType != 0 && POSType != 1) 941 return nullptr; 942 943 // Find the implicit size parameter. 944 auto PassedSizeIt = SizeArguments.find(ParamDecl); 945 if (PassedSizeIt == SizeArguments.end()) 946 return nullptr; 947 948 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 949 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 950 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 951 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 952 C.getSizeType(), E->getExprLoc()); 953 llvm::Value *SizeOfElement = 954 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 955 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 956 } 957 958 /// If Base is known to point to the start of an array, return the length of 959 /// that array. Return 0 if the length cannot be determined. 960 static llvm::Value *getArrayIndexingBound( 961 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 962 // For the vector indexing extension, the bound is the number of elements. 963 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 964 IndexedType = Base->getType(); 965 return CGF.Builder.getInt32(VT->getNumElements()); 966 } 967 968 Base = Base->IgnoreParens(); 969 970 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 971 if (CE->getCastKind() == CK_ArrayToPointerDecay && 972 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 973 IndexedType = CE->getSubExpr()->getType(); 974 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 975 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 976 return CGF.Builder.getInt(CAT->getSize()); 977 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 978 return CGF.getVLASize(VAT).NumElts; 979 // Ignore pass_object_size here. It's not applicable on decayed pointers. 980 } 981 } 982 983 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 984 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 985 IndexedType = Base->getType(); 986 return POS; 987 } 988 989 return nullptr; 990 } 991 992 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 993 llvm::Value *Index, QualType IndexType, 994 bool Accessed) { 995 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 996 "should not be called unless adding bounds checks"); 997 SanitizerScope SanScope(this); 998 999 QualType IndexedType; 1000 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 1001 if (!Bound) 1002 return; 1003 1004 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 1005 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 1006 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 1007 1008 llvm::Constant *StaticData[] = { 1009 EmitCheckSourceLocation(E->getExprLoc()), 1010 EmitCheckTypeDescriptor(IndexedType), 1011 EmitCheckTypeDescriptor(IndexType) 1012 }; 1013 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1014 : Builder.CreateICmpULE(IndexVal, BoundVal); 1015 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1016 SanitizerHandler::OutOfBounds, StaticData, Index); 1017 } 1018 1019 1020 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1021 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1022 bool isInc, bool isPre) { 1023 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1024 1025 llvm::Value *NextVal; 1026 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1027 uint64_t AmountVal = isInc ? 1 : -1; 1028 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1029 1030 // Add the inc/dec to the real part. 1031 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1032 } else { 1033 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1034 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1035 if (!isInc) 1036 FVal.changeSign(); 1037 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1038 1039 // Add the inc/dec to the real part. 1040 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1041 } 1042 1043 ComplexPairTy IncVal(NextVal, InVal.second); 1044 1045 // Store the updated result through the lvalue. 1046 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1047 if (getLangOpts().OpenMP) 1048 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1049 E->getSubExpr()); 1050 1051 // If this is a postinc, return the value read from memory, otherwise use the 1052 // updated value. 1053 return isPre ? IncVal : InVal; 1054 } 1055 1056 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1057 CodeGenFunction *CGF) { 1058 // Bind VLAs in the cast type. 1059 if (CGF && E->getType()->isVariablyModifiedType()) 1060 CGF->EmitVariablyModifiedType(E->getType()); 1061 1062 if (CGDebugInfo *DI = getModuleDebugInfo()) 1063 DI->EmitExplicitCastType(E->getType()); 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // LValue Expression Emission 1068 //===----------------------------------------------------------------------===// 1069 1070 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1071 /// derive a more accurate bound on the alignment of the pointer. 1072 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1073 LValueBaseInfo *BaseInfo, 1074 TBAAAccessInfo *TBAAInfo) { 1075 // We allow this with ObjC object pointers because of fragile ABIs. 1076 assert(E->getType()->isPointerType() || 1077 E->getType()->isObjCObjectPointerType()); 1078 E = E->IgnoreParens(); 1079 1080 // Casts: 1081 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1082 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1083 CGM.EmitExplicitCastExprType(ECE, this); 1084 1085 switch (CE->getCastKind()) { 1086 // Non-converting casts (but not C's implicit conversion from void*). 1087 case CK_BitCast: 1088 case CK_NoOp: 1089 case CK_AddressSpaceConversion: 1090 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1091 if (PtrTy->getPointeeType()->isVoidType()) 1092 break; 1093 1094 LValueBaseInfo InnerBaseInfo; 1095 TBAAAccessInfo InnerTBAAInfo; 1096 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1097 &InnerBaseInfo, 1098 &InnerTBAAInfo); 1099 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1100 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1101 1102 if (isa<ExplicitCastExpr>(CE)) { 1103 LValueBaseInfo TargetTypeBaseInfo; 1104 TBAAAccessInfo TargetTypeTBAAInfo; 1105 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1106 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1107 if (TBAAInfo) 1108 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1109 TargetTypeTBAAInfo); 1110 // If the source l-value is opaque, honor the alignment of the 1111 // casted-to type. 1112 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1113 if (BaseInfo) 1114 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1115 Addr = Address(Addr.getPointer(), Align); 1116 } 1117 } 1118 1119 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1120 CE->getCastKind() == CK_BitCast) { 1121 if (auto PT = E->getType()->getAs<PointerType>()) 1122 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1123 /*MayBeNull=*/true, 1124 CodeGenFunction::CFITCK_UnrelatedCast, 1125 CE->getBeginLoc()); 1126 } 1127 return CE->getCastKind() != CK_AddressSpaceConversion 1128 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1129 : Builder.CreateAddrSpaceCast(Addr, 1130 ConvertType(E->getType())); 1131 } 1132 break; 1133 1134 // Array-to-pointer decay. 1135 case CK_ArrayToPointerDecay: 1136 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1137 1138 // Derived-to-base conversions. 1139 case CK_UncheckedDerivedToBase: 1140 case CK_DerivedToBase: { 1141 // TODO: Support accesses to members of base classes in TBAA. For now, we 1142 // conservatively pretend that the complete object is of the base class 1143 // type. 1144 if (TBAAInfo) 1145 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1146 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1147 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1148 return GetAddressOfBaseClass(Addr, Derived, 1149 CE->path_begin(), CE->path_end(), 1150 ShouldNullCheckClassCastValue(CE), 1151 CE->getExprLoc()); 1152 } 1153 1154 // TODO: Is there any reason to treat base-to-derived conversions 1155 // specially? 1156 default: 1157 break; 1158 } 1159 } 1160 1161 // Unary &. 1162 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1163 if (UO->getOpcode() == UO_AddrOf) { 1164 LValue LV = EmitLValue(UO->getSubExpr()); 1165 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1166 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1167 return LV.getAddress(*this); 1168 } 1169 } 1170 1171 // TODO: conditional operators, comma. 1172 1173 // Otherwise, use the alignment of the type. 1174 CharUnits Align = 1175 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1176 return Address(EmitScalarExpr(E), Align); 1177 } 1178 1179 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1180 llvm::Value *V = RV.getScalarVal(); 1181 if (auto MPT = T->getAs<MemberPointerType>()) 1182 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1183 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1184 } 1185 1186 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1187 if (Ty->isVoidType()) 1188 return RValue::get(nullptr); 1189 1190 switch (getEvaluationKind(Ty)) { 1191 case TEK_Complex: { 1192 llvm::Type *EltTy = 1193 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1194 llvm::Value *U = llvm::UndefValue::get(EltTy); 1195 return RValue::getComplex(std::make_pair(U, U)); 1196 } 1197 1198 // If this is a use of an undefined aggregate type, the aggregate must have an 1199 // identifiable address. Just because the contents of the value are undefined 1200 // doesn't mean that the address can't be taken and compared. 1201 case TEK_Aggregate: { 1202 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1203 return RValue::getAggregate(DestPtr); 1204 } 1205 1206 case TEK_Scalar: 1207 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1208 } 1209 llvm_unreachable("bad evaluation kind"); 1210 } 1211 1212 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1213 const char *Name) { 1214 ErrorUnsupported(E, Name); 1215 return GetUndefRValue(E->getType()); 1216 } 1217 1218 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1219 const char *Name) { 1220 ErrorUnsupported(E, Name); 1221 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1222 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1223 E->getType()); 1224 } 1225 1226 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1227 const Expr *Base = Obj; 1228 while (!isa<CXXThisExpr>(Base)) { 1229 // The result of a dynamic_cast can be null. 1230 if (isa<CXXDynamicCastExpr>(Base)) 1231 return false; 1232 1233 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1234 Base = CE->getSubExpr(); 1235 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1236 Base = PE->getSubExpr(); 1237 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1238 if (UO->getOpcode() == UO_Extension) 1239 Base = UO->getSubExpr(); 1240 else 1241 return false; 1242 } else { 1243 return false; 1244 } 1245 } 1246 return true; 1247 } 1248 1249 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1250 LValue LV; 1251 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1252 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1253 else 1254 LV = EmitLValue(E); 1255 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1256 SanitizerSet SkippedChecks; 1257 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1258 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1259 if (IsBaseCXXThis) 1260 SkippedChecks.set(SanitizerKind::Alignment, true); 1261 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1262 SkippedChecks.set(SanitizerKind::Null, true); 1263 } 1264 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1265 LV.getAlignment(), SkippedChecks); 1266 } 1267 return LV; 1268 } 1269 1270 /// EmitLValue - Emit code to compute a designator that specifies the location 1271 /// of the expression. 1272 /// 1273 /// This can return one of two things: a simple address or a bitfield reference. 1274 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1275 /// an LLVM pointer type. 1276 /// 1277 /// If this returns a bitfield reference, nothing about the pointee type of the 1278 /// LLVM value is known: For example, it may not be a pointer to an integer. 1279 /// 1280 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1281 /// this method guarantees that the returned pointer type will point to an LLVM 1282 /// type of the same size of the lvalue's type. If the lvalue has a variable 1283 /// length type, this is not possible. 1284 /// 1285 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1286 ApplyDebugLocation DL(*this, E); 1287 switch (E->getStmtClass()) { 1288 default: return EmitUnsupportedLValue(E, "l-value expression"); 1289 1290 case Expr::ObjCPropertyRefExprClass: 1291 llvm_unreachable("cannot emit a property reference directly"); 1292 1293 case Expr::ObjCSelectorExprClass: 1294 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1295 case Expr::ObjCIsaExprClass: 1296 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1297 case Expr::BinaryOperatorClass: 1298 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1299 case Expr::CompoundAssignOperatorClass: { 1300 QualType Ty = E->getType(); 1301 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1302 Ty = AT->getValueType(); 1303 if (!Ty->isAnyComplexType()) 1304 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1305 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1306 } 1307 case Expr::CallExprClass: 1308 case Expr::CXXMemberCallExprClass: 1309 case Expr::CXXOperatorCallExprClass: 1310 case Expr::UserDefinedLiteralClass: 1311 return EmitCallExprLValue(cast<CallExpr>(E)); 1312 case Expr::CXXRewrittenBinaryOperatorClass: 1313 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1314 case Expr::VAArgExprClass: 1315 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1316 case Expr::DeclRefExprClass: 1317 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1318 case Expr::ConstantExprClass: { 1319 const ConstantExpr *CE = cast<ConstantExpr>(E); 1320 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1321 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1322 ->getCallReturnType(getContext()); 1323 return MakeNaturalAlignAddrLValue(Result, RetType); 1324 } 1325 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1326 } 1327 case Expr::ParenExprClass: 1328 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1329 case Expr::GenericSelectionExprClass: 1330 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1331 case Expr::PredefinedExprClass: 1332 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1333 case Expr::StringLiteralClass: 1334 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1335 case Expr::ObjCEncodeExprClass: 1336 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1337 case Expr::PseudoObjectExprClass: 1338 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1339 case Expr::InitListExprClass: 1340 return EmitInitListLValue(cast<InitListExpr>(E)); 1341 case Expr::CXXTemporaryObjectExprClass: 1342 case Expr::CXXConstructExprClass: 1343 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1344 case Expr::CXXBindTemporaryExprClass: 1345 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1346 case Expr::CXXUuidofExprClass: 1347 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1348 case Expr::LambdaExprClass: 1349 return EmitAggExprToLValue(E); 1350 1351 case Expr::ExprWithCleanupsClass: { 1352 const auto *cleanups = cast<ExprWithCleanups>(E); 1353 RunCleanupsScope Scope(*this); 1354 LValue LV = EmitLValue(cleanups->getSubExpr()); 1355 if (LV.isSimple()) { 1356 // Defend against branches out of gnu statement expressions surrounded by 1357 // cleanups. 1358 llvm::Value *V = LV.getPointer(*this); 1359 Scope.ForceCleanup({&V}); 1360 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1361 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1362 } 1363 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1364 // bitfield lvalue or some other non-simple lvalue? 1365 return LV; 1366 } 1367 1368 case Expr::CXXDefaultArgExprClass: { 1369 auto *DAE = cast<CXXDefaultArgExpr>(E); 1370 CXXDefaultArgExprScope Scope(*this, DAE); 1371 return EmitLValue(DAE->getExpr()); 1372 } 1373 case Expr::CXXDefaultInitExprClass: { 1374 auto *DIE = cast<CXXDefaultInitExpr>(E); 1375 CXXDefaultInitExprScope Scope(*this, DIE); 1376 return EmitLValue(DIE->getExpr()); 1377 } 1378 case Expr::CXXTypeidExprClass: 1379 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1380 1381 case Expr::ObjCMessageExprClass: 1382 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1383 case Expr::ObjCIvarRefExprClass: 1384 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1385 case Expr::StmtExprClass: 1386 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1387 case Expr::UnaryOperatorClass: 1388 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1389 case Expr::ArraySubscriptExprClass: 1390 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1391 case Expr::MatrixSubscriptExprClass: 1392 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1393 case Expr::OMPArraySectionExprClass: 1394 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1395 case Expr::ExtVectorElementExprClass: 1396 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1397 case Expr::MemberExprClass: 1398 return EmitMemberExpr(cast<MemberExpr>(E)); 1399 case Expr::CompoundLiteralExprClass: 1400 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1401 case Expr::ConditionalOperatorClass: 1402 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1403 case Expr::BinaryConditionalOperatorClass: 1404 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1405 case Expr::ChooseExprClass: 1406 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1407 case Expr::OpaqueValueExprClass: 1408 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1409 case Expr::SubstNonTypeTemplateParmExprClass: 1410 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1411 case Expr::ImplicitCastExprClass: 1412 case Expr::CStyleCastExprClass: 1413 case Expr::CXXFunctionalCastExprClass: 1414 case Expr::CXXStaticCastExprClass: 1415 case Expr::CXXDynamicCastExprClass: 1416 case Expr::CXXReinterpretCastExprClass: 1417 case Expr::CXXConstCastExprClass: 1418 case Expr::CXXAddrspaceCastExprClass: 1419 case Expr::ObjCBridgedCastExprClass: 1420 return EmitCastLValue(cast<CastExpr>(E)); 1421 1422 case Expr::MaterializeTemporaryExprClass: 1423 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1424 1425 case Expr::CoawaitExprClass: 1426 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1427 case Expr::CoyieldExprClass: 1428 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1429 } 1430 } 1431 1432 /// Given an object of the given canonical type, can we safely copy a 1433 /// value out of it based on its initializer? 1434 static bool isConstantEmittableObjectType(QualType type) { 1435 assert(type.isCanonical()); 1436 assert(!type->isReferenceType()); 1437 1438 // Must be const-qualified but non-volatile. 1439 Qualifiers qs = type.getLocalQualifiers(); 1440 if (!qs.hasConst() || qs.hasVolatile()) return false; 1441 1442 // Otherwise, all object types satisfy this except C++ classes with 1443 // mutable subobjects or non-trivial copy/destroy behavior. 1444 if (const auto *RT = dyn_cast<RecordType>(type)) 1445 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1446 if (RD->hasMutableFields() || !RD->isTrivial()) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 /// Can we constant-emit a load of a reference to a variable of the 1453 /// given type? This is different from predicates like 1454 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1455 /// in situations that don't necessarily satisfy the language's rules 1456 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1457 /// to do this with const float variables even if those variables 1458 /// aren't marked 'constexpr'. 1459 enum ConstantEmissionKind { 1460 CEK_None, 1461 CEK_AsReferenceOnly, 1462 CEK_AsValueOrReference, 1463 CEK_AsValueOnly 1464 }; 1465 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1466 type = type.getCanonicalType(); 1467 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1468 if (isConstantEmittableObjectType(ref->getPointeeType())) 1469 return CEK_AsValueOrReference; 1470 return CEK_AsReferenceOnly; 1471 } 1472 if (isConstantEmittableObjectType(type)) 1473 return CEK_AsValueOnly; 1474 return CEK_None; 1475 } 1476 1477 /// Try to emit a reference to the given value without producing it as 1478 /// an l-value. This is just an optimization, but it avoids us needing 1479 /// to emit global copies of variables if they're named without triggering 1480 /// a formal use in a context where we can't emit a direct reference to them, 1481 /// for instance if a block or lambda or a member of a local class uses a 1482 /// const int variable or constexpr variable from an enclosing function. 1483 CodeGenFunction::ConstantEmission 1484 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1485 ValueDecl *value = refExpr->getDecl(); 1486 1487 // The value needs to be an enum constant or a constant variable. 1488 ConstantEmissionKind CEK; 1489 if (isa<ParmVarDecl>(value)) { 1490 CEK = CEK_None; 1491 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1492 CEK = checkVarTypeForConstantEmission(var->getType()); 1493 } else if (isa<EnumConstantDecl>(value)) { 1494 CEK = CEK_AsValueOnly; 1495 } else { 1496 CEK = CEK_None; 1497 } 1498 if (CEK == CEK_None) return ConstantEmission(); 1499 1500 Expr::EvalResult result; 1501 bool resultIsReference; 1502 QualType resultType; 1503 1504 // It's best to evaluate all the way as an r-value if that's permitted. 1505 if (CEK != CEK_AsReferenceOnly && 1506 refExpr->EvaluateAsRValue(result, getContext())) { 1507 resultIsReference = false; 1508 resultType = refExpr->getType(); 1509 1510 // Otherwise, try to evaluate as an l-value. 1511 } else if (CEK != CEK_AsValueOnly && 1512 refExpr->EvaluateAsLValue(result, getContext())) { 1513 resultIsReference = true; 1514 resultType = value->getType(); 1515 1516 // Failure. 1517 } else { 1518 return ConstantEmission(); 1519 } 1520 1521 // In any case, if the initializer has side-effects, abandon ship. 1522 if (result.HasSideEffects) 1523 return ConstantEmission(); 1524 1525 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1526 // referencing a global host variable by copy. In this case the lambda should 1527 // make a copy of the value of the global host variable. The DRE of the 1528 // captured reference variable cannot be emitted as load from the host 1529 // global variable as compile time constant, since the host variable is not 1530 // accessible on device. The DRE of the captured reference variable has to be 1531 // loaded from captures. 1532 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1533 refExpr->refersToEnclosingVariableOrCapture()) { 1534 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1535 if (MD && MD->getParent()->isLambda() && 1536 MD->getOverloadedOperator() == OO_Call) { 1537 const APValue::LValueBase &base = result.Val.getLValueBase(); 1538 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1539 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1540 if (!VD->hasAttr<CUDADeviceAttr>()) { 1541 return ConstantEmission(); 1542 } 1543 } 1544 } 1545 } 1546 } 1547 1548 // Emit as a constant. 1549 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1550 result.Val, resultType); 1551 1552 // Make sure we emit a debug reference to the global variable. 1553 // This should probably fire even for 1554 if (isa<VarDecl>(value)) { 1555 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1556 EmitDeclRefExprDbgValue(refExpr, result.Val); 1557 } else { 1558 assert(isa<EnumConstantDecl>(value)); 1559 EmitDeclRefExprDbgValue(refExpr, result.Val); 1560 } 1561 1562 // If we emitted a reference constant, we need to dereference that. 1563 if (resultIsReference) 1564 return ConstantEmission::forReference(C); 1565 1566 return ConstantEmission::forValue(C); 1567 } 1568 1569 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1570 const MemberExpr *ME) { 1571 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1572 // Try to emit static variable member expressions as DREs. 1573 return DeclRefExpr::Create( 1574 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1575 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1576 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1577 } 1578 return nullptr; 1579 } 1580 1581 CodeGenFunction::ConstantEmission 1582 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1583 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1584 return tryEmitAsConstant(DRE); 1585 return ConstantEmission(); 1586 } 1587 1588 llvm::Value *CodeGenFunction::emitScalarConstant( 1589 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1590 assert(Constant && "not a constant"); 1591 if (Constant.isReference()) 1592 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1593 E->getExprLoc()) 1594 .getScalarVal(); 1595 return Constant.getValue(); 1596 } 1597 1598 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1599 SourceLocation Loc) { 1600 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1601 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1602 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1603 } 1604 1605 static bool hasBooleanRepresentation(QualType Ty) { 1606 if (Ty->isBooleanType()) 1607 return true; 1608 1609 if (const EnumType *ET = Ty->getAs<EnumType>()) 1610 return ET->getDecl()->getIntegerType()->isBooleanType(); 1611 1612 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1613 return hasBooleanRepresentation(AT->getValueType()); 1614 1615 return false; 1616 } 1617 1618 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1619 llvm::APInt &Min, llvm::APInt &End, 1620 bool StrictEnums, bool IsBool) { 1621 const EnumType *ET = Ty->getAs<EnumType>(); 1622 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1623 ET && !ET->getDecl()->isFixed(); 1624 if (!IsBool && !IsRegularCPlusPlusEnum) 1625 return false; 1626 1627 if (IsBool) { 1628 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1629 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1630 } else { 1631 const EnumDecl *ED = ET->getDecl(); 1632 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1633 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1634 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1635 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1636 1637 if (NumNegativeBits) { 1638 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1639 assert(NumBits <= Bitwidth); 1640 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1641 Min = -End; 1642 } else { 1643 assert(NumPositiveBits <= Bitwidth); 1644 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1645 Min = llvm::APInt(Bitwidth, 0); 1646 } 1647 } 1648 return true; 1649 } 1650 1651 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1652 llvm::APInt Min, End; 1653 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1654 hasBooleanRepresentation(Ty))) 1655 return nullptr; 1656 1657 llvm::MDBuilder MDHelper(getLLVMContext()); 1658 return MDHelper.createRange(Min, End); 1659 } 1660 1661 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1662 SourceLocation Loc) { 1663 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1664 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1665 if (!HasBoolCheck && !HasEnumCheck) 1666 return false; 1667 1668 bool IsBool = hasBooleanRepresentation(Ty) || 1669 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1670 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1671 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1672 if (!NeedsBoolCheck && !NeedsEnumCheck) 1673 return false; 1674 1675 // Single-bit booleans don't need to be checked. Special-case this to avoid 1676 // a bit width mismatch when handling bitfield values. This is handled by 1677 // EmitFromMemory for the non-bitfield case. 1678 if (IsBool && 1679 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1680 return false; 1681 1682 llvm::APInt Min, End; 1683 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1684 return true; 1685 1686 auto &Ctx = getLLVMContext(); 1687 SanitizerScope SanScope(this); 1688 llvm::Value *Check; 1689 --End; 1690 if (!Min) { 1691 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1692 } else { 1693 llvm::Value *Upper = 1694 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1695 llvm::Value *Lower = 1696 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1697 Check = Builder.CreateAnd(Upper, Lower); 1698 } 1699 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1700 EmitCheckTypeDescriptor(Ty)}; 1701 SanitizerMask Kind = 1702 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1703 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1704 StaticArgs, EmitCheckValue(Value)); 1705 return true; 1706 } 1707 1708 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1709 QualType Ty, 1710 SourceLocation Loc, 1711 LValueBaseInfo BaseInfo, 1712 TBAAAccessInfo TBAAInfo, 1713 bool isNontemporal) { 1714 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1715 // For better performance, handle vector loads differently. 1716 if (Ty->isVectorType()) { 1717 const llvm::Type *EltTy = Addr.getElementType(); 1718 1719 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1720 1721 // Handle vectors of size 3 like size 4 for better performance. 1722 if (VTy->getNumElements() == 3) { 1723 1724 // Bitcast to vec4 type. 1725 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1726 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1727 // Now load value. 1728 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1729 1730 // Shuffle vector to get vec3. 1731 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1732 ArrayRef<int>{0, 1, 2}, "extractVec"); 1733 return EmitFromMemory(V, Ty); 1734 } 1735 } 1736 } 1737 1738 // Atomic operations have to be done on integral types. 1739 LValue AtomicLValue = 1740 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1741 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1742 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1743 } 1744 1745 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1746 if (isNontemporal) { 1747 llvm::MDNode *Node = llvm::MDNode::get( 1748 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1749 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1750 } 1751 1752 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1753 1754 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1755 // In order to prevent the optimizer from throwing away the check, don't 1756 // attach range metadata to the load. 1757 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1758 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1759 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1760 1761 return EmitFromMemory(Load, Ty); 1762 } 1763 1764 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1765 // Bool has a different representation in memory than in registers. 1766 if (hasBooleanRepresentation(Ty)) { 1767 // This should really always be an i1, but sometimes it's already 1768 // an i8, and it's awkward to track those cases down. 1769 if (Value->getType()->isIntegerTy(1)) 1770 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1771 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1772 "wrong value rep of bool"); 1773 } 1774 1775 return Value; 1776 } 1777 1778 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1779 // Bool has a different representation in memory than in registers. 1780 if (hasBooleanRepresentation(Ty)) { 1781 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1782 "wrong value rep of bool"); 1783 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1784 } 1785 1786 return Value; 1787 } 1788 1789 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1790 // MatrixType), if it points to a array (the memory type of MatrixType). 1791 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1792 bool IsVector = true) { 1793 auto *ArrayTy = dyn_cast<llvm::ArrayType>( 1794 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1795 if (ArrayTy && IsVector) { 1796 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1797 ArrayTy->getNumElements()); 1798 1799 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1800 } 1801 auto *VectorTy = dyn_cast<llvm::VectorType>( 1802 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1803 if (VectorTy && !IsVector) { 1804 auto *ArrayTy = llvm::ArrayType::get( 1805 VectorTy->getElementType(), 1806 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1807 1808 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1809 } 1810 1811 return Addr; 1812 } 1813 1814 // Emit a store of a matrix LValue. This may require casting the original 1815 // pointer to memory address (ArrayType) to a pointer to the value type 1816 // (VectorType). 1817 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1818 bool isInit, CodeGenFunction &CGF) { 1819 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1820 value->getType()->isVectorTy()); 1821 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1822 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1823 lvalue.isNontemporal()); 1824 } 1825 1826 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1827 bool Volatile, QualType Ty, 1828 LValueBaseInfo BaseInfo, 1829 TBAAAccessInfo TBAAInfo, 1830 bool isInit, bool isNontemporal) { 1831 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1832 // Handle vectors differently to get better performance. 1833 if (Ty->isVectorType()) { 1834 llvm::Type *SrcTy = Value->getType(); 1835 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1836 // Handle vec3 special. 1837 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1838 // Our source is a vec3, do a shuffle vector to make it a vec4. 1839 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1840 ArrayRef<int>{0, 1, 2, -1}, 1841 "extractVec"); 1842 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1843 } 1844 if (Addr.getElementType() != SrcTy) { 1845 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1846 } 1847 } 1848 } 1849 1850 Value = EmitToMemory(Value, Ty); 1851 1852 LValue AtomicLValue = 1853 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1854 if (Ty->isAtomicType() || 1855 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1856 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1857 return; 1858 } 1859 1860 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1861 if (isNontemporal) { 1862 llvm::MDNode *Node = 1863 llvm::MDNode::get(Store->getContext(), 1864 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1865 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1866 } 1867 1868 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1869 } 1870 1871 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1872 bool isInit) { 1873 if (lvalue.getType()->isConstantMatrixType()) { 1874 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1875 return; 1876 } 1877 1878 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1879 lvalue.getType(), lvalue.getBaseInfo(), 1880 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1881 } 1882 1883 // Emit a load of a LValue of matrix type. This may require casting the pointer 1884 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1885 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1886 CodeGenFunction &CGF) { 1887 assert(LV.getType()->isConstantMatrixType()); 1888 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1889 LV.setAddress(Addr); 1890 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1891 } 1892 1893 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1894 /// method emits the address of the lvalue, then loads the result as an rvalue, 1895 /// returning the rvalue. 1896 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1897 if (LV.isObjCWeak()) { 1898 // load of a __weak object. 1899 Address AddrWeakObj = LV.getAddress(*this); 1900 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1901 AddrWeakObj)); 1902 } 1903 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1904 // In MRC mode, we do a load+autorelease. 1905 if (!getLangOpts().ObjCAutoRefCount) { 1906 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1907 } 1908 1909 // In ARC mode, we load retained and then consume the value. 1910 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1911 Object = EmitObjCConsumeObject(LV.getType(), Object); 1912 return RValue::get(Object); 1913 } 1914 1915 if (LV.isSimple()) { 1916 assert(!LV.getType()->isFunctionType()); 1917 1918 if (LV.getType()->isConstantMatrixType()) 1919 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1920 1921 // Everything needs a load. 1922 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1923 } 1924 1925 if (LV.isVectorElt()) { 1926 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1927 LV.isVolatileQualified()); 1928 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1929 "vecext")); 1930 } 1931 1932 // If this is a reference to a subset of the elements of a vector, either 1933 // shuffle the input or extract/insert them as appropriate. 1934 if (LV.isExtVectorElt()) { 1935 return EmitLoadOfExtVectorElementLValue(LV); 1936 } 1937 1938 // Global Register variables always invoke intrinsics 1939 if (LV.isGlobalReg()) 1940 return EmitLoadOfGlobalRegLValue(LV); 1941 1942 if (LV.isMatrixElt()) { 1943 llvm::LoadInst *Load = 1944 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1945 return RValue::get( 1946 Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext")); 1947 } 1948 1949 assert(LV.isBitField() && "Unknown LValue type!"); 1950 return EmitLoadOfBitfieldLValue(LV, Loc); 1951 } 1952 1953 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1954 SourceLocation Loc) { 1955 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1956 1957 // Get the output type. 1958 llvm::Type *ResLTy = ConvertType(LV.getType()); 1959 1960 Address Ptr = LV.getBitFieldAddress(); 1961 llvm::Value *Val = 1962 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1963 1964 bool UseVolatile = LV.isVolatileQualified() && 1965 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1966 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1967 const unsigned StorageSize = 1968 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1969 if (Info.IsSigned) { 1970 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1971 unsigned HighBits = StorageSize - Offset - Info.Size; 1972 if (HighBits) 1973 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1974 if (Offset + HighBits) 1975 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1976 } else { 1977 if (Offset) 1978 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1979 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1980 Val = Builder.CreateAnd( 1981 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1982 } 1983 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1984 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1985 return RValue::get(Val); 1986 } 1987 1988 // If this is a reference to a subset of the elements of a vector, create an 1989 // appropriate shufflevector. 1990 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1991 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1992 LV.isVolatileQualified()); 1993 1994 const llvm::Constant *Elts = LV.getExtVectorElts(); 1995 1996 // If the result of the expression is a non-vector type, we must be extracting 1997 // a single element. Just codegen as an extractelement. 1998 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1999 if (!ExprVT) { 2000 unsigned InIdx = getAccessedFieldNo(0, Elts); 2001 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2002 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2003 } 2004 2005 // Always use shuffle vector to try to retain the original program structure 2006 unsigned NumResultElts = ExprVT->getNumElements(); 2007 2008 SmallVector<int, 4> Mask; 2009 for (unsigned i = 0; i != NumResultElts; ++i) 2010 Mask.push_back(getAccessedFieldNo(i, Elts)); 2011 2012 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 2013 Mask); 2014 return RValue::get(Vec); 2015 } 2016 2017 /// Generates lvalue for partial ext_vector access. 2018 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2019 Address VectorAddress = LV.getExtVectorAddress(); 2020 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2021 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2022 2023 Address CastToPointerElement = 2024 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2025 "conv.ptr.element"); 2026 2027 const llvm::Constant *Elts = LV.getExtVectorElts(); 2028 unsigned ix = getAccessedFieldNo(0, Elts); 2029 2030 Address VectorBasePtrPlusIx = 2031 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2032 "vector.elt"); 2033 2034 return VectorBasePtrPlusIx; 2035 } 2036 2037 /// Load of global gamed gegisters are always calls to intrinsics. 2038 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2039 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2040 "Bad type for register variable"); 2041 llvm::MDNode *RegName = cast<llvm::MDNode>( 2042 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2043 2044 // We accept integer and pointer types only 2045 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2046 llvm::Type *Ty = OrigTy; 2047 if (OrigTy->isPointerTy()) 2048 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2049 llvm::Type *Types[] = { Ty }; 2050 2051 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2052 llvm::Value *Call = Builder.CreateCall( 2053 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2054 if (OrigTy->isPointerTy()) 2055 Call = Builder.CreateIntToPtr(Call, OrigTy); 2056 return RValue::get(Call); 2057 } 2058 2059 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2060 /// lvalue, where both are guaranteed to the have the same type, and that type 2061 /// is 'Ty'. 2062 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2063 bool isInit) { 2064 if (!Dst.isSimple()) { 2065 if (Dst.isVectorElt()) { 2066 // Read/modify/write the vector, inserting the new element. 2067 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2068 Dst.isVolatileQualified()); 2069 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2070 Dst.getVectorIdx(), "vecins"); 2071 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2072 Dst.isVolatileQualified()); 2073 return; 2074 } 2075 2076 // If this is an update of extended vector elements, insert them as 2077 // appropriate. 2078 if (Dst.isExtVectorElt()) 2079 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2080 2081 if (Dst.isGlobalReg()) 2082 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2083 2084 if (Dst.isMatrixElt()) { 2085 llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress()); 2086 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2087 Dst.getMatrixIdx(), "matins"); 2088 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2089 Dst.isVolatileQualified()); 2090 return; 2091 } 2092 2093 assert(Dst.isBitField() && "Unknown LValue type"); 2094 return EmitStoreThroughBitfieldLValue(Src, Dst); 2095 } 2096 2097 // There's special magic for assigning into an ARC-qualified l-value. 2098 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2099 switch (Lifetime) { 2100 case Qualifiers::OCL_None: 2101 llvm_unreachable("present but none"); 2102 2103 case Qualifiers::OCL_ExplicitNone: 2104 // nothing special 2105 break; 2106 2107 case Qualifiers::OCL_Strong: 2108 if (isInit) { 2109 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2110 break; 2111 } 2112 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2113 return; 2114 2115 case Qualifiers::OCL_Weak: 2116 if (isInit) 2117 // Initialize and then skip the primitive store. 2118 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2119 else 2120 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2121 /*ignore*/ true); 2122 return; 2123 2124 case Qualifiers::OCL_Autoreleasing: 2125 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2126 Src.getScalarVal())); 2127 // fall into the normal path 2128 break; 2129 } 2130 } 2131 2132 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2133 // load of a __weak object. 2134 Address LvalueDst = Dst.getAddress(*this); 2135 llvm::Value *src = Src.getScalarVal(); 2136 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2137 return; 2138 } 2139 2140 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2141 // load of a __strong object. 2142 Address LvalueDst = Dst.getAddress(*this); 2143 llvm::Value *src = Src.getScalarVal(); 2144 if (Dst.isObjCIvar()) { 2145 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2146 llvm::Type *ResultType = IntPtrTy; 2147 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2148 llvm::Value *RHS = dst.getPointer(); 2149 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2150 llvm::Value *LHS = 2151 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2152 "sub.ptr.lhs.cast"); 2153 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2154 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2155 BytesBetween); 2156 } else if (Dst.isGlobalObjCRef()) { 2157 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2158 Dst.isThreadLocalRef()); 2159 } 2160 else 2161 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2162 return; 2163 } 2164 2165 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2166 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2167 } 2168 2169 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2170 llvm::Value **Result) { 2171 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2172 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2173 Address Ptr = Dst.getBitFieldAddress(); 2174 2175 // Get the source value, truncated to the width of the bit-field. 2176 llvm::Value *SrcVal = Src.getScalarVal(); 2177 2178 // Cast the source to the storage type and shift it into place. 2179 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2180 /*isSigned=*/false); 2181 llvm::Value *MaskedVal = SrcVal; 2182 2183 const bool UseVolatile = 2184 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2185 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2186 const unsigned StorageSize = 2187 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2188 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2189 // See if there are other bits in the bitfield's storage we'll need to load 2190 // and mask together with source before storing. 2191 if (StorageSize != Info.Size) { 2192 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2193 llvm::Value *Val = 2194 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2195 2196 // Mask the source value as needed. 2197 if (!hasBooleanRepresentation(Dst.getType())) 2198 SrcVal = Builder.CreateAnd( 2199 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2200 "bf.value"); 2201 MaskedVal = SrcVal; 2202 if (Offset) 2203 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2204 2205 // Mask out the original value. 2206 Val = Builder.CreateAnd( 2207 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2208 "bf.clear"); 2209 2210 // Or together the unchanged values and the source value. 2211 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2212 } else { 2213 assert(Offset == 0); 2214 // According to the AACPS: 2215 // When a volatile bit-field is written, and its container does not overlap 2216 // with any non-bit-field member, its container must be read exactly once 2217 // and written exactly once using the access width appropriate to the type 2218 // of the container. The two accesses are not atomic. 2219 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2220 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2221 Builder.CreateLoad(Ptr, true, "bf.load"); 2222 } 2223 2224 // Write the new value back out. 2225 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2226 2227 // Return the new value of the bit-field, if requested. 2228 if (Result) { 2229 llvm::Value *ResultVal = MaskedVal; 2230 2231 // Sign extend the value if needed. 2232 if (Info.IsSigned) { 2233 assert(Info.Size <= StorageSize); 2234 unsigned HighBits = StorageSize - Info.Size; 2235 if (HighBits) { 2236 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2237 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2238 } 2239 } 2240 2241 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2242 "bf.result.cast"); 2243 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2244 } 2245 } 2246 2247 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2248 LValue Dst) { 2249 // This access turns into a read/modify/write of the vector. Load the input 2250 // value now. 2251 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2252 Dst.isVolatileQualified()); 2253 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2254 2255 llvm::Value *SrcVal = Src.getScalarVal(); 2256 2257 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2258 unsigned NumSrcElts = VTy->getNumElements(); 2259 unsigned NumDstElts = 2260 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2261 if (NumDstElts == NumSrcElts) { 2262 // Use shuffle vector is the src and destination are the same number of 2263 // elements and restore the vector mask since it is on the side it will be 2264 // stored. 2265 SmallVector<int, 4> Mask(NumDstElts); 2266 for (unsigned i = 0; i != NumSrcElts; ++i) 2267 Mask[getAccessedFieldNo(i, Elts)] = i; 2268 2269 Vec = Builder.CreateShuffleVector( 2270 SrcVal, llvm::UndefValue::get(Vec->getType()), Mask); 2271 } else if (NumDstElts > NumSrcElts) { 2272 // Extended the source vector to the same length and then shuffle it 2273 // into the destination. 2274 // FIXME: since we're shuffling with undef, can we just use the indices 2275 // into that? This could be simpler. 2276 SmallVector<int, 4> ExtMask; 2277 for (unsigned i = 0; i != NumSrcElts; ++i) 2278 ExtMask.push_back(i); 2279 ExtMask.resize(NumDstElts, -1); 2280 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector( 2281 SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask); 2282 // build identity 2283 SmallVector<int, 4> Mask; 2284 for (unsigned i = 0; i != NumDstElts; ++i) 2285 Mask.push_back(i); 2286 2287 // When the vector size is odd and .odd or .hi is used, the last element 2288 // of the Elts constant array will be one past the size of the vector. 2289 // Ignore the last element here, if it is greater than the mask size. 2290 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2291 NumSrcElts--; 2292 2293 // modify when what gets shuffled in 2294 for (unsigned i = 0; i != NumSrcElts; ++i) 2295 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2296 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2297 } else { 2298 // We should never shorten the vector 2299 llvm_unreachable("unexpected shorten vector length"); 2300 } 2301 } else { 2302 // If the Src is a scalar (not a vector) it must be updating one element. 2303 unsigned InIdx = getAccessedFieldNo(0, Elts); 2304 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2305 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2306 } 2307 2308 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2309 Dst.isVolatileQualified()); 2310 } 2311 2312 /// Store of global named registers are always calls to intrinsics. 2313 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2314 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2315 "Bad type for register variable"); 2316 llvm::MDNode *RegName = cast<llvm::MDNode>( 2317 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2318 assert(RegName && "Register LValue is not metadata"); 2319 2320 // We accept integer and pointer types only 2321 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2322 llvm::Type *Ty = OrigTy; 2323 if (OrigTy->isPointerTy()) 2324 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2325 llvm::Type *Types[] = { Ty }; 2326 2327 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2328 llvm::Value *Value = Src.getScalarVal(); 2329 if (OrigTy->isPointerTy()) 2330 Value = Builder.CreatePtrToInt(Value, Ty); 2331 Builder.CreateCall( 2332 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2333 } 2334 2335 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2336 // generating write-barries API. It is currently a global, ivar, 2337 // or neither. 2338 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2339 LValue &LV, 2340 bool IsMemberAccess=false) { 2341 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2342 return; 2343 2344 if (isa<ObjCIvarRefExpr>(E)) { 2345 QualType ExpTy = E->getType(); 2346 if (IsMemberAccess && ExpTy->isPointerType()) { 2347 // If ivar is a structure pointer, assigning to field of 2348 // this struct follows gcc's behavior and makes it a non-ivar 2349 // writer-barrier conservatively. 2350 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2351 if (ExpTy->isRecordType()) { 2352 LV.setObjCIvar(false); 2353 return; 2354 } 2355 } 2356 LV.setObjCIvar(true); 2357 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2358 LV.setBaseIvarExp(Exp->getBase()); 2359 LV.setObjCArray(E->getType()->isArrayType()); 2360 return; 2361 } 2362 2363 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2364 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2365 if (VD->hasGlobalStorage()) { 2366 LV.setGlobalObjCRef(true); 2367 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2368 } 2369 } 2370 LV.setObjCArray(E->getType()->isArrayType()); 2371 return; 2372 } 2373 2374 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2375 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2376 return; 2377 } 2378 2379 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2380 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2381 if (LV.isObjCIvar()) { 2382 // If cast is to a structure pointer, follow gcc's behavior and make it 2383 // a non-ivar write-barrier. 2384 QualType ExpTy = E->getType(); 2385 if (ExpTy->isPointerType()) 2386 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2387 if (ExpTy->isRecordType()) 2388 LV.setObjCIvar(false); 2389 } 2390 return; 2391 } 2392 2393 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2394 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2395 return; 2396 } 2397 2398 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2399 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2400 return; 2401 } 2402 2403 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2404 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2405 return; 2406 } 2407 2408 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2409 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2410 return; 2411 } 2412 2413 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2414 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2415 if (LV.isObjCIvar() && !LV.isObjCArray()) 2416 // Using array syntax to assigning to what an ivar points to is not 2417 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2418 LV.setObjCIvar(false); 2419 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2420 // Using array syntax to assigning to what global points to is not 2421 // same as assigning to the global itself. {id *G;} G[i] = 0; 2422 LV.setGlobalObjCRef(false); 2423 return; 2424 } 2425 2426 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2427 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2428 // We don't know if member is an 'ivar', but this flag is looked at 2429 // only in the context of LV.isObjCIvar(). 2430 LV.setObjCArray(E->getType()->isArrayType()); 2431 return; 2432 } 2433 } 2434 2435 static llvm::Value * 2436 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2437 llvm::Value *V, llvm::Type *IRType, 2438 StringRef Name = StringRef()) { 2439 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2440 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2441 } 2442 2443 static LValue EmitThreadPrivateVarDeclLValue( 2444 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2445 llvm::Type *RealVarTy, SourceLocation Loc) { 2446 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2447 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2448 CGF, VD, Addr, Loc); 2449 else 2450 Addr = 2451 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2452 2453 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2454 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2455 } 2456 2457 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2458 const VarDecl *VD, QualType T) { 2459 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2460 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2461 // Return an invalid address if variable is MT_To and unified 2462 // memory is not enabled. For all other cases: MT_Link and 2463 // MT_To with unified memory, return a valid address. 2464 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2465 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2466 return Address::invalid(); 2467 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2468 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2469 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2470 "Expected link clause OR to clause with unified memory enabled."); 2471 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2472 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2473 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2474 } 2475 2476 Address 2477 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2478 LValueBaseInfo *PointeeBaseInfo, 2479 TBAAAccessInfo *PointeeTBAAInfo) { 2480 llvm::LoadInst *Load = 2481 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2482 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2483 2484 CharUnits Align = CGM.getNaturalTypeAlignment( 2485 RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo, 2486 /* forPointeeType= */ true); 2487 return Address(Load, Align); 2488 } 2489 2490 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2491 LValueBaseInfo PointeeBaseInfo; 2492 TBAAAccessInfo PointeeTBAAInfo; 2493 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2494 &PointeeTBAAInfo); 2495 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2496 PointeeBaseInfo, PointeeTBAAInfo); 2497 } 2498 2499 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2500 const PointerType *PtrTy, 2501 LValueBaseInfo *BaseInfo, 2502 TBAAAccessInfo *TBAAInfo) { 2503 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2504 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), 2505 BaseInfo, TBAAInfo, 2506 /*forPointeeType=*/true)); 2507 } 2508 2509 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2510 const PointerType *PtrTy) { 2511 LValueBaseInfo BaseInfo; 2512 TBAAAccessInfo TBAAInfo; 2513 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2514 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2515 } 2516 2517 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2518 const Expr *E, const VarDecl *VD) { 2519 QualType T = E->getType(); 2520 2521 // If it's thread_local, emit a call to its wrapper function instead. 2522 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2523 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2524 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2525 // Check if the variable is marked as declare target with link clause in 2526 // device codegen. 2527 if (CGF.getLangOpts().OpenMPIsDevice) { 2528 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2529 if (Addr.isValid()) 2530 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2531 } 2532 2533 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2534 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2535 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2536 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2537 Address Addr(V, Alignment); 2538 // Emit reference to the private copy of the variable if it is an OpenMP 2539 // threadprivate variable. 2540 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2541 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2542 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2543 E->getExprLoc()); 2544 } 2545 LValue LV = VD->getType()->isReferenceType() ? 2546 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2547 AlignmentSource::Decl) : 2548 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2549 setObjCGCLValueClass(CGF.getContext(), E, LV); 2550 return LV; 2551 } 2552 2553 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2554 GlobalDecl GD) { 2555 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2556 if (FD->hasAttr<WeakRefAttr>()) { 2557 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2558 return aliasee.getPointer(); 2559 } 2560 2561 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2562 if (!FD->hasPrototype()) { 2563 if (const FunctionProtoType *Proto = 2564 FD->getType()->getAs<FunctionProtoType>()) { 2565 // Ugly case: for a K&R-style definition, the type of the definition 2566 // isn't the same as the type of a use. Correct for this with a 2567 // bitcast. 2568 QualType NoProtoType = 2569 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2570 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2571 V = llvm::ConstantExpr::getBitCast(V, 2572 CGM.getTypes().ConvertType(NoProtoType)); 2573 } 2574 } 2575 return V; 2576 } 2577 2578 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2579 GlobalDecl GD) { 2580 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2581 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2582 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2583 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2584 AlignmentSource::Decl); 2585 } 2586 2587 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2588 llvm::Value *ThisValue) { 2589 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2590 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2591 return CGF.EmitLValueForField(LV, FD); 2592 } 2593 2594 /// Named Registers are named metadata pointing to the register name 2595 /// which will be read from/written to as an argument to the intrinsic 2596 /// @llvm.read/write_register. 2597 /// So far, only the name is being passed down, but other options such as 2598 /// register type, allocation type or even optimization options could be 2599 /// passed down via the metadata node. 2600 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2601 SmallString<64> Name("llvm.named.register."); 2602 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2603 assert(Asm->getLabel().size() < 64-Name.size() && 2604 "Register name too big"); 2605 Name.append(Asm->getLabel()); 2606 llvm::NamedMDNode *M = 2607 CGM.getModule().getOrInsertNamedMetadata(Name); 2608 if (M->getNumOperands() == 0) { 2609 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2610 Asm->getLabel()); 2611 llvm::Metadata *Ops[] = {Str}; 2612 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2613 } 2614 2615 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2616 2617 llvm::Value *Ptr = 2618 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2619 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2620 } 2621 2622 /// Determine whether we can emit a reference to \p VD from the current 2623 /// context, despite not necessarily having seen an odr-use of the variable in 2624 /// this context. 2625 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2626 const DeclRefExpr *E, 2627 const VarDecl *VD, 2628 bool IsConstant) { 2629 // For a variable declared in an enclosing scope, do not emit a spurious 2630 // reference even if we have a capture, as that will emit an unwarranted 2631 // reference to our capture state, and will likely generate worse code than 2632 // emitting a local copy. 2633 if (E->refersToEnclosingVariableOrCapture()) 2634 return false; 2635 2636 // For a local declaration declared in this function, we can always reference 2637 // it even if we don't have an odr-use. 2638 if (VD->hasLocalStorage()) { 2639 return VD->getDeclContext() == 2640 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2641 } 2642 2643 // For a global declaration, we can emit a reference to it if we know 2644 // for sure that we are able to emit a definition of it. 2645 VD = VD->getDefinition(CGF.getContext()); 2646 if (!VD) 2647 return false; 2648 2649 // Don't emit a spurious reference if it might be to a variable that only 2650 // exists on a different device / target. 2651 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2652 // cross-target reference. 2653 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2654 CGF.getLangOpts().OpenCL) { 2655 return false; 2656 } 2657 2658 // We can emit a spurious reference only if the linkage implies that we'll 2659 // be emitting a non-interposable symbol that will be retained until link 2660 // time. 2661 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2662 case llvm::GlobalValue::ExternalLinkage: 2663 case llvm::GlobalValue::LinkOnceODRLinkage: 2664 case llvm::GlobalValue::WeakODRLinkage: 2665 case llvm::GlobalValue::InternalLinkage: 2666 case llvm::GlobalValue::PrivateLinkage: 2667 return true; 2668 default: 2669 return false; 2670 } 2671 } 2672 2673 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2674 const NamedDecl *ND = E->getDecl(); 2675 QualType T = E->getType(); 2676 2677 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2678 "should not emit an unevaluated operand"); 2679 2680 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2681 // Global Named registers access via intrinsics only 2682 if (VD->getStorageClass() == SC_Register && 2683 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2684 return EmitGlobalNamedRegister(VD, CGM); 2685 2686 // If this DeclRefExpr does not constitute an odr-use of the variable, 2687 // we're not permitted to emit a reference to it in general, and it might 2688 // not be captured if capture would be necessary for a use. Emit the 2689 // constant value directly instead. 2690 if (E->isNonOdrUse() == NOUR_Constant && 2691 (VD->getType()->isReferenceType() || 2692 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2693 VD->getAnyInitializer(VD); 2694 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2695 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2696 assert(Val && "failed to emit constant expression"); 2697 2698 Address Addr = Address::invalid(); 2699 if (!VD->getType()->isReferenceType()) { 2700 // Spill the constant value to a global. 2701 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2702 getContext().getDeclAlign(VD)); 2703 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2704 auto *PTy = llvm::PointerType::get( 2705 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2706 if (PTy != Addr.getType()) 2707 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2708 } else { 2709 // Should we be using the alignment of the constant pointer we emitted? 2710 CharUnits Alignment = 2711 CGM.getNaturalTypeAlignment(E->getType(), 2712 /* BaseInfo= */ nullptr, 2713 /* TBAAInfo= */ nullptr, 2714 /* forPointeeType= */ true); 2715 Addr = Address(Val, Alignment); 2716 } 2717 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2718 } 2719 2720 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2721 2722 // Check for captured variables. 2723 if (E->refersToEnclosingVariableOrCapture()) { 2724 VD = VD->getCanonicalDecl(); 2725 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2726 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2727 if (CapturedStmtInfo) { 2728 auto I = LocalDeclMap.find(VD); 2729 if (I != LocalDeclMap.end()) { 2730 LValue CapLVal; 2731 if (VD->getType()->isReferenceType()) 2732 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2733 AlignmentSource::Decl); 2734 else 2735 CapLVal = MakeAddrLValue(I->second, T); 2736 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2737 // in simd context. 2738 if (getLangOpts().OpenMP && 2739 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2740 CapLVal.setNontemporal(/*Value=*/true); 2741 return CapLVal; 2742 } 2743 LValue CapLVal = 2744 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2745 CapturedStmtInfo->getContextValue()); 2746 CapLVal = MakeAddrLValue( 2747 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2748 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2749 CapLVal.getTBAAInfo()); 2750 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2751 // in simd context. 2752 if (getLangOpts().OpenMP && 2753 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2754 CapLVal.setNontemporal(/*Value=*/true); 2755 return CapLVal; 2756 } 2757 2758 assert(isa<BlockDecl>(CurCodeDecl)); 2759 Address addr = GetAddrOfBlockDecl(VD); 2760 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2761 } 2762 } 2763 2764 // FIXME: We should be able to assert this for FunctionDecls as well! 2765 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2766 // those with a valid source location. 2767 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2768 !E->getLocation().isValid()) && 2769 "Should not use decl without marking it used!"); 2770 2771 if (ND->hasAttr<WeakRefAttr>()) { 2772 const auto *VD = cast<ValueDecl>(ND); 2773 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2774 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2775 } 2776 2777 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2778 // Check if this is a global variable. 2779 if (VD->hasLinkage() || VD->isStaticDataMember()) 2780 return EmitGlobalVarDeclLValue(*this, E, VD); 2781 2782 Address addr = Address::invalid(); 2783 2784 // The variable should generally be present in the local decl map. 2785 auto iter = LocalDeclMap.find(VD); 2786 if (iter != LocalDeclMap.end()) { 2787 addr = iter->second; 2788 2789 // Otherwise, it might be static local we haven't emitted yet for 2790 // some reason; most likely, because it's in an outer function. 2791 } else if (VD->isStaticLocal()) { 2792 addr = Address(CGM.getOrCreateStaticVarDecl( 2793 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2794 getContext().getDeclAlign(VD)); 2795 2796 // No other cases for now. 2797 } else { 2798 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2799 } 2800 2801 2802 // Check for OpenMP threadprivate variables. 2803 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2804 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2805 return EmitThreadPrivateVarDeclLValue( 2806 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2807 E->getExprLoc()); 2808 } 2809 2810 // Drill into block byref variables. 2811 bool isBlockByref = VD->isEscapingByref(); 2812 if (isBlockByref) { 2813 addr = emitBlockByrefAddress(addr, VD); 2814 } 2815 2816 // Drill into reference types. 2817 LValue LV = VD->getType()->isReferenceType() ? 2818 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2819 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2820 2821 bool isLocalStorage = VD->hasLocalStorage(); 2822 2823 bool NonGCable = isLocalStorage && 2824 !VD->getType()->isReferenceType() && 2825 !isBlockByref; 2826 if (NonGCable) { 2827 LV.getQuals().removeObjCGCAttr(); 2828 LV.setNonGC(true); 2829 } 2830 2831 bool isImpreciseLifetime = 2832 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2833 if (isImpreciseLifetime) 2834 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2835 setObjCGCLValueClass(getContext(), E, LV); 2836 return LV; 2837 } 2838 2839 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2840 return EmitFunctionDeclLValue(*this, E, FD); 2841 2842 // FIXME: While we're emitting a binding from an enclosing scope, all other 2843 // DeclRefExprs we see should be implicitly treated as if they also refer to 2844 // an enclosing scope. 2845 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2846 return EmitLValue(BD->getBinding()); 2847 2848 // We can form DeclRefExprs naming GUID declarations when reconstituting 2849 // non-type template parameters into expressions. 2850 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2851 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2852 AlignmentSource::Decl); 2853 2854 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2855 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2856 AlignmentSource::Decl); 2857 2858 llvm_unreachable("Unhandled DeclRefExpr"); 2859 } 2860 2861 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2862 // __extension__ doesn't affect lvalue-ness. 2863 if (E->getOpcode() == UO_Extension) 2864 return EmitLValue(E->getSubExpr()); 2865 2866 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2867 switch (E->getOpcode()) { 2868 default: llvm_unreachable("Unknown unary operator lvalue!"); 2869 case UO_Deref: { 2870 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2871 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2872 2873 LValueBaseInfo BaseInfo; 2874 TBAAAccessInfo TBAAInfo; 2875 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2876 &TBAAInfo); 2877 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2878 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2879 2880 // We should not generate __weak write barrier on indirect reference 2881 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2882 // But, we continue to generate __strong write barrier on indirect write 2883 // into a pointer to object. 2884 if (getLangOpts().ObjC && 2885 getLangOpts().getGC() != LangOptions::NonGC && 2886 LV.isObjCWeak()) 2887 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2888 return LV; 2889 } 2890 case UO_Real: 2891 case UO_Imag: { 2892 LValue LV = EmitLValue(E->getSubExpr()); 2893 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2894 2895 // __real is valid on scalars. This is a faster way of testing that. 2896 // __imag can only produce an rvalue on scalars. 2897 if (E->getOpcode() == UO_Real && 2898 !LV.getAddress(*this).getElementType()->isStructTy()) { 2899 assert(E->getSubExpr()->getType()->isArithmeticType()); 2900 return LV; 2901 } 2902 2903 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2904 2905 Address Component = 2906 (E->getOpcode() == UO_Real 2907 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2908 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2909 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2910 CGM.getTBAAInfoForSubobject(LV, T)); 2911 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2912 return ElemLV; 2913 } 2914 case UO_PreInc: 2915 case UO_PreDec: { 2916 LValue LV = EmitLValue(E->getSubExpr()); 2917 bool isInc = E->getOpcode() == UO_PreInc; 2918 2919 if (E->getType()->isAnyComplexType()) 2920 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2921 else 2922 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2923 return LV; 2924 } 2925 } 2926 } 2927 2928 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2929 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2930 E->getType(), AlignmentSource::Decl); 2931 } 2932 2933 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2934 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2935 E->getType(), AlignmentSource::Decl); 2936 } 2937 2938 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2939 auto SL = E->getFunctionName(); 2940 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2941 StringRef FnName = CurFn->getName(); 2942 if (FnName.startswith("\01")) 2943 FnName = FnName.substr(1); 2944 StringRef NameItems[] = { 2945 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2946 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2947 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2948 std::string Name = std::string(SL->getString()); 2949 if (!Name.empty()) { 2950 unsigned Discriminator = 2951 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2952 if (Discriminator) 2953 Name += "_" + Twine(Discriminator + 1).str(); 2954 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2955 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2956 } else { 2957 auto C = 2958 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2959 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2960 } 2961 } 2962 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2963 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2964 } 2965 2966 /// Emit a type description suitable for use by a runtime sanitizer library. The 2967 /// format of a type descriptor is 2968 /// 2969 /// \code 2970 /// { i16 TypeKind, i16 TypeInfo } 2971 /// \endcode 2972 /// 2973 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2974 /// integer, 1 for a floating point value, and -1 for anything else. 2975 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2976 // Only emit each type's descriptor once. 2977 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2978 return C; 2979 2980 uint16_t TypeKind = -1; 2981 uint16_t TypeInfo = 0; 2982 2983 if (T->isIntegerType()) { 2984 TypeKind = 0; 2985 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2986 (T->isSignedIntegerType() ? 1 : 0); 2987 } else if (T->isFloatingType()) { 2988 TypeKind = 1; 2989 TypeInfo = getContext().getTypeSize(T); 2990 } 2991 2992 // Format the type name as if for a diagnostic, including quotes and 2993 // optionally an 'aka'. 2994 SmallString<32> Buffer; 2995 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2996 (intptr_t)T.getAsOpaquePtr(), 2997 StringRef(), StringRef(), None, Buffer, 2998 None); 2999 3000 llvm::Constant *Components[] = { 3001 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3002 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3003 }; 3004 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3005 3006 auto *GV = new llvm::GlobalVariable( 3007 CGM.getModule(), Descriptor->getType(), 3008 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3009 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3010 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3011 3012 // Remember the descriptor for this type. 3013 CGM.setTypeDescriptorInMap(T, GV); 3014 3015 return GV; 3016 } 3017 3018 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3019 llvm::Type *TargetTy = IntPtrTy; 3020 3021 if (V->getType() == TargetTy) 3022 return V; 3023 3024 // Floating-point types which fit into intptr_t are bitcast to integers 3025 // and then passed directly (after zero-extension, if necessary). 3026 if (V->getType()->isFloatingPointTy()) { 3027 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3028 if (Bits <= TargetTy->getIntegerBitWidth()) 3029 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3030 Bits)); 3031 } 3032 3033 // Integers which fit in intptr_t are zero-extended and passed directly. 3034 if (V->getType()->isIntegerTy() && 3035 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3036 return Builder.CreateZExt(V, TargetTy); 3037 3038 // Pointers are passed directly, everything else is passed by address. 3039 if (!V->getType()->isPointerTy()) { 3040 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3041 Builder.CreateStore(V, Ptr); 3042 V = Ptr.getPointer(); 3043 } 3044 return Builder.CreatePtrToInt(V, TargetTy); 3045 } 3046 3047 /// Emit a representation of a SourceLocation for passing to a handler 3048 /// in a sanitizer runtime library. The format for this data is: 3049 /// \code 3050 /// struct SourceLocation { 3051 /// const char *Filename; 3052 /// int32_t Line, Column; 3053 /// }; 3054 /// \endcode 3055 /// For an invalid SourceLocation, the Filename pointer is null. 3056 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3057 llvm::Constant *Filename; 3058 int Line, Column; 3059 3060 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3061 if (PLoc.isValid()) { 3062 StringRef FilenameString = PLoc.getFilename(); 3063 3064 int PathComponentsToStrip = 3065 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3066 if (PathComponentsToStrip < 0) { 3067 assert(PathComponentsToStrip != INT_MIN); 3068 int PathComponentsToKeep = -PathComponentsToStrip; 3069 auto I = llvm::sys::path::rbegin(FilenameString); 3070 auto E = llvm::sys::path::rend(FilenameString); 3071 while (I != E && --PathComponentsToKeep) 3072 ++I; 3073 3074 FilenameString = FilenameString.substr(I - E); 3075 } else if (PathComponentsToStrip > 0) { 3076 auto I = llvm::sys::path::begin(FilenameString); 3077 auto E = llvm::sys::path::end(FilenameString); 3078 while (I != E && PathComponentsToStrip--) 3079 ++I; 3080 3081 if (I != E) 3082 FilenameString = 3083 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3084 else 3085 FilenameString = llvm::sys::path::filename(FilenameString); 3086 } 3087 3088 auto FilenameGV = 3089 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3090 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3091 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3092 Filename = FilenameGV.getPointer(); 3093 Line = PLoc.getLine(); 3094 Column = PLoc.getColumn(); 3095 } else { 3096 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3097 Line = Column = 0; 3098 } 3099 3100 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3101 Builder.getInt32(Column)}; 3102 3103 return llvm::ConstantStruct::getAnon(Data); 3104 } 3105 3106 namespace { 3107 /// Specify under what conditions this check can be recovered 3108 enum class CheckRecoverableKind { 3109 /// Always terminate program execution if this check fails. 3110 Unrecoverable, 3111 /// Check supports recovering, runtime has both fatal (noreturn) and 3112 /// non-fatal handlers for this check. 3113 Recoverable, 3114 /// Runtime conditionally aborts, always need to support recovery. 3115 AlwaysRecoverable 3116 }; 3117 } 3118 3119 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3120 assert(Kind.countPopulation() == 1); 3121 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3122 return CheckRecoverableKind::AlwaysRecoverable; 3123 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3124 return CheckRecoverableKind::Unrecoverable; 3125 else 3126 return CheckRecoverableKind::Recoverable; 3127 } 3128 3129 namespace { 3130 struct SanitizerHandlerInfo { 3131 char const *const Name; 3132 unsigned Version; 3133 }; 3134 } 3135 3136 const SanitizerHandlerInfo SanitizerHandlers[] = { 3137 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3138 LIST_SANITIZER_CHECKS 3139 #undef SANITIZER_CHECK 3140 }; 3141 3142 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3143 llvm::FunctionType *FnType, 3144 ArrayRef<llvm::Value *> FnArgs, 3145 SanitizerHandler CheckHandler, 3146 CheckRecoverableKind RecoverKind, bool IsFatal, 3147 llvm::BasicBlock *ContBB) { 3148 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3149 Optional<ApplyDebugLocation> DL; 3150 if (!CGF.Builder.getCurrentDebugLocation()) { 3151 // Ensure that the call has at least an artificial debug location. 3152 DL.emplace(CGF, SourceLocation()); 3153 } 3154 bool NeedsAbortSuffix = 3155 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3156 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3157 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3158 const StringRef CheckName = CheckInfo.Name; 3159 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3160 if (CheckInfo.Version && !MinimalRuntime) 3161 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3162 if (MinimalRuntime) 3163 FnName += "_minimal"; 3164 if (NeedsAbortSuffix) 3165 FnName += "_abort"; 3166 bool MayReturn = 3167 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3168 3169 llvm::AttrBuilder B; 3170 if (!MayReturn) { 3171 B.addAttribute(llvm::Attribute::NoReturn) 3172 .addAttribute(llvm::Attribute::NoUnwind); 3173 } 3174 B.addAttribute(llvm::Attribute::UWTable); 3175 3176 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3177 FnType, FnName, 3178 llvm::AttributeList::get(CGF.getLLVMContext(), 3179 llvm::AttributeList::FunctionIndex, B), 3180 /*Local=*/true); 3181 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3182 if (!MayReturn) { 3183 HandlerCall->setDoesNotReturn(); 3184 CGF.Builder.CreateUnreachable(); 3185 } else { 3186 CGF.Builder.CreateBr(ContBB); 3187 } 3188 } 3189 3190 void CodeGenFunction::EmitCheck( 3191 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3192 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3193 ArrayRef<llvm::Value *> DynamicArgs) { 3194 assert(IsSanitizerScope); 3195 assert(Checked.size() > 0); 3196 assert(CheckHandler >= 0 && 3197 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3198 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3199 3200 llvm::Value *FatalCond = nullptr; 3201 llvm::Value *RecoverableCond = nullptr; 3202 llvm::Value *TrapCond = nullptr; 3203 for (int i = 0, n = Checked.size(); i < n; ++i) { 3204 llvm::Value *Check = Checked[i].first; 3205 // -fsanitize-trap= overrides -fsanitize-recover=. 3206 llvm::Value *&Cond = 3207 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3208 ? TrapCond 3209 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3210 ? RecoverableCond 3211 : FatalCond; 3212 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3213 } 3214 3215 if (TrapCond) 3216 EmitTrapCheck(TrapCond, CheckHandler); 3217 if (!FatalCond && !RecoverableCond) 3218 return; 3219 3220 llvm::Value *JointCond; 3221 if (FatalCond && RecoverableCond) 3222 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3223 else 3224 JointCond = FatalCond ? FatalCond : RecoverableCond; 3225 assert(JointCond); 3226 3227 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3228 assert(SanOpts.has(Checked[0].second)); 3229 #ifndef NDEBUG 3230 for (int i = 1, n = Checked.size(); i < n; ++i) { 3231 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3232 "All recoverable kinds in a single check must be same!"); 3233 assert(SanOpts.has(Checked[i].second)); 3234 } 3235 #endif 3236 3237 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3238 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3239 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3240 // Give hint that we very much don't expect to execute the handler 3241 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3242 llvm::MDBuilder MDHelper(getLLVMContext()); 3243 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3244 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3245 EmitBlock(Handlers); 3246 3247 // Handler functions take an i8* pointing to the (handler-specific) static 3248 // information block, followed by a sequence of intptr_t arguments 3249 // representing operand values. 3250 SmallVector<llvm::Value *, 4> Args; 3251 SmallVector<llvm::Type *, 4> ArgTypes; 3252 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3253 Args.reserve(DynamicArgs.size() + 1); 3254 ArgTypes.reserve(DynamicArgs.size() + 1); 3255 3256 // Emit handler arguments and create handler function type. 3257 if (!StaticArgs.empty()) { 3258 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3259 auto *InfoPtr = 3260 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3261 llvm::GlobalVariable::PrivateLinkage, Info); 3262 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3263 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3264 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3265 ArgTypes.push_back(Int8PtrTy); 3266 } 3267 3268 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3269 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3270 ArgTypes.push_back(IntPtrTy); 3271 } 3272 } 3273 3274 llvm::FunctionType *FnType = 3275 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3276 3277 if (!FatalCond || !RecoverableCond) { 3278 // Simple case: we need to generate a single handler call, either 3279 // fatal, or non-fatal. 3280 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3281 (FatalCond != nullptr), Cont); 3282 } else { 3283 // Emit two handler calls: first one for set of unrecoverable checks, 3284 // another one for recoverable. 3285 llvm::BasicBlock *NonFatalHandlerBB = 3286 createBasicBlock("non_fatal." + CheckName); 3287 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3288 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3289 EmitBlock(FatalHandlerBB); 3290 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3291 NonFatalHandlerBB); 3292 EmitBlock(NonFatalHandlerBB); 3293 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3294 Cont); 3295 } 3296 3297 EmitBlock(Cont); 3298 } 3299 3300 void CodeGenFunction::EmitCfiSlowPathCheck( 3301 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3302 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3303 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3304 3305 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3306 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3307 3308 llvm::MDBuilder MDHelper(getLLVMContext()); 3309 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3310 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3311 3312 EmitBlock(CheckBB); 3313 3314 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3315 3316 llvm::CallInst *CheckCall; 3317 llvm::FunctionCallee SlowPathFn; 3318 if (WithDiag) { 3319 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3320 auto *InfoPtr = 3321 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3322 llvm::GlobalVariable::PrivateLinkage, Info); 3323 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3324 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3325 3326 SlowPathFn = CGM.getModule().getOrInsertFunction( 3327 "__cfi_slowpath_diag", 3328 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3329 false)); 3330 CheckCall = Builder.CreateCall( 3331 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3332 } else { 3333 SlowPathFn = CGM.getModule().getOrInsertFunction( 3334 "__cfi_slowpath", 3335 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3336 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3337 } 3338 3339 CGM.setDSOLocal( 3340 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3341 CheckCall->setDoesNotThrow(); 3342 3343 EmitBlock(Cont); 3344 } 3345 3346 // Emit a stub for __cfi_check function so that the linker knows about this 3347 // symbol in LTO mode. 3348 void CodeGenFunction::EmitCfiCheckStub() { 3349 llvm::Module *M = &CGM.getModule(); 3350 auto &Ctx = M->getContext(); 3351 llvm::Function *F = llvm::Function::Create( 3352 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3353 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3354 CGM.setDSOLocal(F); 3355 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3356 // FIXME: consider emitting an intrinsic call like 3357 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3358 // which can be lowered in CrossDSOCFI pass to the actual contents of 3359 // __cfi_check. This would allow inlining of __cfi_check calls. 3360 llvm::CallInst::Create( 3361 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3362 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3363 } 3364 3365 // This function is basically a switch over the CFI failure kind, which is 3366 // extracted from CFICheckFailData (1st function argument). Each case is either 3367 // llvm.trap or a call to one of the two runtime handlers, based on 3368 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3369 // failure kind) traps, but this should really never happen. CFICheckFailData 3370 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3371 // check kind; in this case __cfi_check_fail traps as well. 3372 void CodeGenFunction::EmitCfiCheckFail() { 3373 SanitizerScope SanScope(this); 3374 FunctionArgList Args; 3375 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3376 ImplicitParamDecl::Other); 3377 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3378 ImplicitParamDecl::Other); 3379 Args.push_back(&ArgData); 3380 Args.push_back(&ArgAddr); 3381 3382 const CGFunctionInfo &FI = 3383 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3384 3385 llvm::Function *F = llvm::Function::Create( 3386 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3387 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3388 3389 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3390 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3391 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3392 3393 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3394 SourceLocation()); 3395 3396 // This function should not be affected by blacklist. This function does 3397 // not have a source location, but "src:*" would still apply. Revert any 3398 // changes to SanOpts made in StartFunction. 3399 SanOpts = CGM.getLangOpts().Sanitize; 3400 3401 llvm::Value *Data = 3402 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3403 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3404 llvm::Value *Addr = 3405 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3406 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3407 3408 // Data == nullptr means the calling module has trap behaviour for this check. 3409 llvm::Value *DataIsNotNullPtr = 3410 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3411 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3412 3413 llvm::StructType *SourceLocationTy = 3414 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3415 llvm::StructType *CfiCheckFailDataTy = 3416 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3417 3418 llvm::Value *V = Builder.CreateConstGEP2_32( 3419 CfiCheckFailDataTy, 3420 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3421 0); 3422 Address CheckKindAddr(V, getIntAlign()); 3423 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3424 3425 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3426 CGM.getLLVMContext(), 3427 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3428 llvm::Value *ValidVtable = Builder.CreateZExt( 3429 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3430 {Addr, AllVtables}), 3431 IntPtrTy); 3432 3433 const std::pair<int, SanitizerMask> CheckKinds[] = { 3434 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3435 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3436 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3437 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3438 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3439 3440 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3441 for (auto CheckKindMaskPair : CheckKinds) { 3442 int Kind = CheckKindMaskPair.first; 3443 SanitizerMask Mask = CheckKindMaskPair.second; 3444 llvm::Value *Cond = 3445 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3446 if (CGM.getLangOpts().Sanitize.has(Mask)) 3447 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3448 {Data, Addr, ValidVtable}); 3449 else 3450 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3451 } 3452 3453 FinishFunction(); 3454 // The only reference to this function will be created during LTO link. 3455 // Make sure it survives until then. 3456 CGM.addUsedGlobal(F); 3457 } 3458 3459 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3460 if (SanOpts.has(SanitizerKind::Unreachable)) { 3461 SanitizerScope SanScope(this); 3462 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3463 SanitizerKind::Unreachable), 3464 SanitizerHandler::BuiltinUnreachable, 3465 EmitCheckSourceLocation(Loc), None); 3466 } 3467 Builder.CreateUnreachable(); 3468 } 3469 3470 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3471 SanitizerHandler CheckHandlerID) { 3472 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3473 3474 // If we're optimizing, collapse all calls to trap down to just one per 3475 // check-type per function to save on code size. 3476 if (TrapBBs.size() <= CheckHandlerID) 3477 TrapBBs.resize(CheckHandlerID + 1); 3478 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3479 3480 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3481 TrapBB = createBasicBlock("trap"); 3482 Builder.CreateCondBr(Checked, Cont, TrapBB); 3483 EmitBlock(TrapBB); 3484 3485 llvm::CallInst *TrapCall = 3486 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3487 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3488 3489 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3490 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3491 CGM.getCodeGenOpts().TrapFuncName); 3492 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3493 } 3494 TrapCall->setDoesNotReturn(); 3495 TrapCall->setDoesNotThrow(); 3496 Builder.CreateUnreachable(); 3497 } else { 3498 auto Call = TrapBB->begin(); 3499 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3500 3501 Call->applyMergedLocation(Call->getDebugLoc(), 3502 Builder.getCurrentDebugLocation()); 3503 Builder.CreateCondBr(Checked, Cont, TrapBB); 3504 } 3505 3506 EmitBlock(Cont); 3507 } 3508 3509 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3510 llvm::CallInst *TrapCall = 3511 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3512 3513 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3514 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3515 CGM.getCodeGenOpts().TrapFuncName); 3516 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3517 } 3518 3519 return TrapCall; 3520 } 3521 3522 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3523 LValueBaseInfo *BaseInfo, 3524 TBAAAccessInfo *TBAAInfo) { 3525 assert(E->getType()->isArrayType() && 3526 "Array to pointer decay must have array source type!"); 3527 3528 // Expressions of array type can't be bitfields or vector elements. 3529 LValue LV = EmitLValue(E); 3530 Address Addr = LV.getAddress(*this); 3531 3532 // If the array type was an incomplete type, we need to make sure 3533 // the decay ends up being the right type. 3534 llvm::Type *NewTy = ConvertType(E->getType()); 3535 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3536 3537 // Note that VLA pointers are always decayed, so we don't need to do 3538 // anything here. 3539 if (!E->getType()->isVariableArrayType()) { 3540 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3541 "Expected pointer to array"); 3542 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3543 } 3544 3545 // The result of this decay conversion points to an array element within the 3546 // base lvalue. However, since TBAA currently does not support representing 3547 // accesses to elements of member arrays, we conservatively represent accesses 3548 // to the pointee object as if it had no any base lvalue specified. 3549 // TODO: Support TBAA for member arrays. 3550 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3551 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3552 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3553 3554 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3555 } 3556 3557 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3558 /// array to pointer, return the array subexpression. 3559 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3560 // If this isn't just an array->pointer decay, bail out. 3561 const auto *CE = dyn_cast<CastExpr>(E); 3562 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3563 return nullptr; 3564 3565 // If this is a decay from variable width array, bail out. 3566 const Expr *SubExpr = CE->getSubExpr(); 3567 if (SubExpr->getType()->isVariableArrayType()) 3568 return nullptr; 3569 3570 return SubExpr; 3571 } 3572 3573 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3574 llvm::Value *ptr, 3575 ArrayRef<llvm::Value*> indices, 3576 bool inbounds, 3577 bool signedIndices, 3578 SourceLocation loc, 3579 const llvm::Twine &name = "arrayidx") { 3580 if (inbounds) { 3581 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3582 CodeGenFunction::NotSubtraction, loc, 3583 name); 3584 } else { 3585 return CGF.Builder.CreateGEP(ptr, indices, name); 3586 } 3587 } 3588 3589 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3590 llvm::Value *idx, 3591 CharUnits eltSize) { 3592 // If we have a constant index, we can use the exact offset of the 3593 // element we're accessing. 3594 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3595 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3596 return arrayAlign.alignmentAtOffset(offset); 3597 3598 // Otherwise, use the worst-case alignment for any element. 3599 } else { 3600 return arrayAlign.alignmentOfArrayElement(eltSize); 3601 } 3602 } 3603 3604 static QualType getFixedSizeElementType(const ASTContext &ctx, 3605 const VariableArrayType *vla) { 3606 QualType eltType; 3607 do { 3608 eltType = vla->getElementType(); 3609 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3610 return eltType; 3611 } 3612 3613 /// Given an array base, check whether its member access belongs to a record 3614 /// with preserve_access_index attribute or not. 3615 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3616 if (!ArrayBase || !CGF.getDebugInfo()) 3617 return false; 3618 3619 // Only support base as either a MemberExpr or DeclRefExpr. 3620 // DeclRefExpr to cover cases like: 3621 // struct s { int a; int b[10]; }; 3622 // struct s *p; 3623 // p[1].a 3624 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3625 // p->b[5] is a MemberExpr example. 3626 const Expr *E = ArrayBase->IgnoreImpCasts(); 3627 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3628 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3629 3630 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3631 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3632 if (!VarDef) 3633 return false; 3634 3635 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3636 if (!PtrT) 3637 return false; 3638 3639 const auto *PointeeT = PtrT->getPointeeType() 3640 ->getUnqualifiedDesugaredType(); 3641 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3642 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3643 return false; 3644 } 3645 3646 return false; 3647 } 3648 3649 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3650 ArrayRef<llvm::Value *> indices, 3651 QualType eltType, bool inbounds, 3652 bool signedIndices, SourceLocation loc, 3653 QualType *arrayType = nullptr, 3654 const Expr *Base = nullptr, 3655 const llvm::Twine &name = "arrayidx") { 3656 // All the indices except that last must be zero. 3657 #ifndef NDEBUG 3658 for (auto idx : indices.drop_back()) 3659 assert(isa<llvm::ConstantInt>(idx) && 3660 cast<llvm::ConstantInt>(idx)->isZero()); 3661 #endif 3662 3663 // Determine the element size of the statically-sized base. This is 3664 // the thing that the indices are expressed in terms of. 3665 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3666 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3667 } 3668 3669 // We can use that to compute the best alignment of the element. 3670 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3671 CharUnits eltAlign = 3672 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3673 3674 llvm::Value *eltPtr; 3675 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3676 if (!LastIndex || 3677 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3678 eltPtr = emitArraySubscriptGEP( 3679 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3680 loc, name); 3681 } else { 3682 // Remember the original array subscript for bpf target 3683 unsigned idx = LastIndex->getZExtValue(); 3684 llvm::DIType *DbgInfo = nullptr; 3685 if (arrayType) 3686 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3687 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3688 addr.getPointer(), 3689 indices.size() - 1, 3690 idx, DbgInfo); 3691 } 3692 3693 return Address(eltPtr, eltAlign); 3694 } 3695 3696 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3697 bool Accessed) { 3698 // The index must always be an integer, which is not an aggregate. Emit it 3699 // in lexical order (this complexity is, sadly, required by C++17). 3700 llvm::Value *IdxPre = 3701 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3702 bool SignedIndices = false; 3703 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3704 auto *Idx = IdxPre; 3705 if (E->getLHS() != E->getIdx()) { 3706 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3707 Idx = EmitScalarExpr(E->getIdx()); 3708 } 3709 3710 QualType IdxTy = E->getIdx()->getType(); 3711 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3712 SignedIndices |= IdxSigned; 3713 3714 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3715 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3716 3717 // Extend or truncate the index type to 32 or 64-bits. 3718 if (Promote && Idx->getType() != IntPtrTy) 3719 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3720 3721 return Idx; 3722 }; 3723 IdxPre = nullptr; 3724 3725 // If the base is a vector type, then we are forming a vector element lvalue 3726 // with this subscript. 3727 if (E->getBase()->getType()->isVectorType() && 3728 !isa<ExtVectorElementExpr>(E->getBase())) { 3729 // Emit the vector as an lvalue to get its address. 3730 LValue LHS = EmitLValue(E->getBase()); 3731 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3732 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3733 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3734 E->getBase()->getType(), LHS.getBaseInfo(), 3735 TBAAAccessInfo()); 3736 } 3737 3738 // All the other cases basically behave like simple offsetting. 3739 3740 // Handle the extvector case we ignored above. 3741 if (isa<ExtVectorElementExpr>(E->getBase())) { 3742 LValue LV = EmitLValue(E->getBase()); 3743 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3744 Address Addr = EmitExtVectorElementLValue(LV); 3745 3746 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3747 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3748 SignedIndices, E->getExprLoc()); 3749 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3750 CGM.getTBAAInfoForSubobject(LV, EltType)); 3751 } 3752 3753 LValueBaseInfo EltBaseInfo; 3754 TBAAAccessInfo EltTBAAInfo; 3755 Address Addr = Address::invalid(); 3756 if (const VariableArrayType *vla = 3757 getContext().getAsVariableArrayType(E->getType())) { 3758 // The base must be a pointer, which is not an aggregate. Emit 3759 // it. It needs to be emitted first in case it's what captures 3760 // the VLA bounds. 3761 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3762 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3763 3764 // The element count here is the total number of non-VLA elements. 3765 llvm::Value *numElements = getVLASize(vla).NumElts; 3766 3767 // Effectively, the multiply by the VLA size is part of the GEP. 3768 // GEP indexes are signed, and scaling an index isn't permitted to 3769 // signed-overflow, so we use the same semantics for our explicit 3770 // multiply. We suppress this if overflow is not undefined behavior. 3771 if (getLangOpts().isSignedOverflowDefined()) { 3772 Idx = Builder.CreateMul(Idx, numElements); 3773 } else { 3774 Idx = Builder.CreateNSWMul(Idx, numElements); 3775 } 3776 3777 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3778 !getLangOpts().isSignedOverflowDefined(), 3779 SignedIndices, E->getExprLoc()); 3780 3781 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3782 // Indexing over an interface, as in "NSString *P; P[4];" 3783 3784 // Emit the base pointer. 3785 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3786 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3787 3788 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3789 llvm::Value *InterfaceSizeVal = 3790 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3791 3792 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3793 3794 // We don't necessarily build correct LLVM struct types for ObjC 3795 // interfaces, so we can't rely on GEP to do this scaling 3796 // correctly, so we need to cast to i8*. FIXME: is this actually 3797 // true? A lot of other things in the fragile ABI would break... 3798 llvm::Type *OrigBaseTy = Addr.getType(); 3799 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3800 3801 // Do the GEP. 3802 CharUnits EltAlign = 3803 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3804 llvm::Value *EltPtr = 3805 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3806 SignedIndices, E->getExprLoc()); 3807 Addr = Address(EltPtr, EltAlign); 3808 3809 // Cast back. 3810 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3811 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3812 // If this is A[i] where A is an array, the frontend will have decayed the 3813 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3814 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3815 // "gep x, i" here. Emit one "gep A, 0, i". 3816 assert(Array->getType()->isArrayType() && 3817 "Array to pointer decay must have array source type!"); 3818 LValue ArrayLV; 3819 // For simple multidimensional array indexing, set the 'accessed' flag for 3820 // better bounds-checking of the base expression. 3821 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3822 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3823 else 3824 ArrayLV = EmitLValue(Array); 3825 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3826 3827 // Propagate the alignment from the array itself to the result. 3828 QualType arrayType = Array->getType(); 3829 Addr = emitArraySubscriptGEP( 3830 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3831 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3832 E->getExprLoc(), &arrayType, E->getBase()); 3833 EltBaseInfo = ArrayLV.getBaseInfo(); 3834 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3835 } else { 3836 // The base must be a pointer; emit it with an estimate of its alignment. 3837 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3838 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3839 QualType ptrType = E->getBase()->getType(); 3840 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3841 !getLangOpts().isSignedOverflowDefined(), 3842 SignedIndices, E->getExprLoc(), &ptrType, 3843 E->getBase()); 3844 } 3845 3846 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3847 3848 if (getLangOpts().ObjC && 3849 getLangOpts().getGC() != LangOptions::NonGC) { 3850 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3851 setObjCGCLValueClass(getContext(), E, LV); 3852 } 3853 return LV; 3854 } 3855 3856 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3857 assert( 3858 !E->isIncomplete() && 3859 "incomplete matrix subscript expressions should be rejected during Sema"); 3860 LValue Base = EmitLValue(E->getBase()); 3861 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3862 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3863 llvm::Value *NumRows = Builder.getIntN( 3864 RowIdx->getType()->getScalarSizeInBits(), 3865 E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows()); 3866 llvm::Value *FinalIdx = 3867 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3868 return LValue::MakeMatrixElt( 3869 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3870 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3871 } 3872 3873 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3874 LValueBaseInfo &BaseInfo, 3875 TBAAAccessInfo &TBAAInfo, 3876 QualType BaseTy, QualType ElTy, 3877 bool IsLowerBound) { 3878 LValue BaseLVal; 3879 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3880 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3881 if (BaseTy->isArrayType()) { 3882 Address Addr = BaseLVal.getAddress(CGF); 3883 BaseInfo = BaseLVal.getBaseInfo(); 3884 3885 // If the array type was an incomplete type, we need to make sure 3886 // the decay ends up being the right type. 3887 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3888 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3889 3890 // Note that VLA pointers are always decayed, so we don't need to do 3891 // anything here. 3892 if (!BaseTy->isVariableArrayType()) { 3893 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3894 "Expected pointer to array"); 3895 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3896 } 3897 3898 return CGF.Builder.CreateElementBitCast(Addr, 3899 CGF.ConvertTypeForMem(ElTy)); 3900 } 3901 LValueBaseInfo TypeBaseInfo; 3902 TBAAAccessInfo TypeTBAAInfo; 3903 CharUnits Align = 3904 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3905 BaseInfo.mergeForCast(TypeBaseInfo); 3906 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3907 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3908 } 3909 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3910 } 3911 3912 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3913 bool IsLowerBound) { 3914 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3915 QualType ResultExprTy; 3916 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3917 ResultExprTy = AT->getElementType(); 3918 else 3919 ResultExprTy = BaseTy->getPointeeType(); 3920 llvm::Value *Idx = nullptr; 3921 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3922 // Requesting lower bound or upper bound, but without provided length and 3923 // without ':' symbol for the default length -> length = 1. 3924 // Idx = LowerBound ?: 0; 3925 if (auto *LowerBound = E->getLowerBound()) { 3926 Idx = Builder.CreateIntCast( 3927 EmitScalarExpr(LowerBound), IntPtrTy, 3928 LowerBound->getType()->hasSignedIntegerRepresentation()); 3929 } else 3930 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3931 } else { 3932 // Try to emit length or lower bound as constant. If this is possible, 1 3933 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3934 // IR (LB + Len) - 1. 3935 auto &C = CGM.getContext(); 3936 auto *Length = E->getLength(); 3937 llvm::APSInt ConstLength; 3938 if (Length) { 3939 // Idx = LowerBound + Length - 1; 3940 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3941 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3942 Length = nullptr; 3943 } 3944 auto *LowerBound = E->getLowerBound(); 3945 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3946 if (LowerBound) { 3947 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3948 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3949 LowerBound = nullptr; 3950 } 3951 } 3952 if (!Length) 3953 --ConstLength; 3954 else if (!LowerBound) 3955 --ConstLowerBound; 3956 3957 if (Length || LowerBound) { 3958 auto *LowerBoundVal = 3959 LowerBound 3960 ? Builder.CreateIntCast( 3961 EmitScalarExpr(LowerBound), IntPtrTy, 3962 LowerBound->getType()->hasSignedIntegerRepresentation()) 3963 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3964 auto *LengthVal = 3965 Length 3966 ? Builder.CreateIntCast( 3967 EmitScalarExpr(Length), IntPtrTy, 3968 Length->getType()->hasSignedIntegerRepresentation()) 3969 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3970 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3971 /*HasNUW=*/false, 3972 !getLangOpts().isSignedOverflowDefined()); 3973 if (Length && LowerBound) { 3974 Idx = Builder.CreateSub( 3975 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3976 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3977 } 3978 } else 3979 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3980 } else { 3981 // Idx = ArraySize - 1; 3982 QualType ArrayTy = BaseTy->isPointerType() 3983 ? E->getBase()->IgnoreParenImpCasts()->getType() 3984 : BaseTy; 3985 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3986 Length = VAT->getSizeExpr(); 3987 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 3988 ConstLength = *L; 3989 Length = nullptr; 3990 } 3991 } else { 3992 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3993 ConstLength = CAT->getSize(); 3994 } 3995 if (Length) { 3996 auto *LengthVal = Builder.CreateIntCast( 3997 EmitScalarExpr(Length), IntPtrTy, 3998 Length->getType()->hasSignedIntegerRepresentation()); 3999 Idx = Builder.CreateSub( 4000 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4001 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4002 } else { 4003 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4004 --ConstLength; 4005 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4006 } 4007 } 4008 } 4009 assert(Idx); 4010 4011 Address EltPtr = Address::invalid(); 4012 LValueBaseInfo BaseInfo; 4013 TBAAAccessInfo TBAAInfo; 4014 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4015 // The base must be a pointer, which is not an aggregate. Emit 4016 // it. It needs to be emitted first in case it's what captures 4017 // the VLA bounds. 4018 Address Base = 4019 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4020 BaseTy, VLA->getElementType(), IsLowerBound); 4021 // The element count here is the total number of non-VLA elements. 4022 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4023 4024 // Effectively, the multiply by the VLA size is part of the GEP. 4025 // GEP indexes are signed, and scaling an index isn't permitted to 4026 // signed-overflow, so we use the same semantics for our explicit 4027 // multiply. We suppress this if overflow is not undefined behavior. 4028 if (getLangOpts().isSignedOverflowDefined()) 4029 Idx = Builder.CreateMul(Idx, NumElements); 4030 else 4031 Idx = Builder.CreateNSWMul(Idx, NumElements); 4032 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4033 !getLangOpts().isSignedOverflowDefined(), 4034 /*signedIndices=*/false, E->getExprLoc()); 4035 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4036 // If this is A[i] where A is an array, the frontend will have decayed the 4037 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4038 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4039 // "gep x, i" here. Emit one "gep A, 0, i". 4040 assert(Array->getType()->isArrayType() && 4041 "Array to pointer decay must have array source type!"); 4042 LValue ArrayLV; 4043 // For simple multidimensional array indexing, set the 'accessed' flag for 4044 // better bounds-checking of the base expression. 4045 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4046 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4047 else 4048 ArrayLV = EmitLValue(Array); 4049 4050 // Propagate the alignment from the array itself to the result. 4051 EltPtr = emitArraySubscriptGEP( 4052 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4053 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4054 /*signedIndices=*/false, E->getExprLoc()); 4055 BaseInfo = ArrayLV.getBaseInfo(); 4056 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4057 } else { 4058 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4059 TBAAInfo, BaseTy, ResultExprTy, 4060 IsLowerBound); 4061 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4062 !getLangOpts().isSignedOverflowDefined(), 4063 /*signedIndices=*/false, E->getExprLoc()); 4064 } 4065 4066 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4067 } 4068 4069 LValue CodeGenFunction:: 4070 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4071 // Emit the base vector as an l-value. 4072 LValue Base; 4073 4074 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4075 if (E->isArrow()) { 4076 // If it is a pointer to a vector, emit the address and form an lvalue with 4077 // it. 4078 LValueBaseInfo BaseInfo; 4079 TBAAAccessInfo TBAAInfo; 4080 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4081 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4082 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4083 Base.getQuals().removeObjCGCAttr(); 4084 } else if (E->getBase()->isGLValue()) { 4085 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4086 // emit the base as an lvalue. 4087 assert(E->getBase()->getType()->isVectorType()); 4088 Base = EmitLValue(E->getBase()); 4089 } else { 4090 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4091 assert(E->getBase()->getType()->isVectorType() && 4092 "Result must be a vector"); 4093 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4094 4095 // Store the vector to memory (because LValue wants an address). 4096 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4097 Builder.CreateStore(Vec, VecMem); 4098 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4099 AlignmentSource::Decl); 4100 } 4101 4102 QualType type = 4103 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4104 4105 // Encode the element access list into a vector of unsigned indices. 4106 SmallVector<uint32_t, 4> Indices; 4107 E->getEncodedElementAccess(Indices); 4108 4109 if (Base.isSimple()) { 4110 llvm::Constant *CV = 4111 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4112 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4113 Base.getBaseInfo(), TBAAAccessInfo()); 4114 } 4115 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4116 4117 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4118 SmallVector<llvm::Constant *, 4> CElts; 4119 4120 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4121 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4122 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4123 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4124 Base.getBaseInfo(), TBAAAccessInfo()); 4125 } 4126 4127 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4128 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4129 EmitIgnoredExpr(E->getBase()); 4130 return EmitDeclRefLValue(DRE); 4131 } 4132 4133 Expr *BaseExpr = E->getBase(); 4134 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4135 LValue BaseLV; 4136 if (E->isArrow()) { 4137 LValueBaseInfo BaseInfo; 4138 TBAAAccessInfo TBAAInfo; 4139 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4140 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4141 SanitizerSet SkippedChecks; 4142 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4143 if (IsBaseCXXThis) 4144 SkippedChecks.set(SanitizerKind::Alignment, true); 4145 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4146 SkippedChecks.set(SanitizerKind::Null, true); 4147 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4148 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4149 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4150 } else 4151 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4152 4153 NamedDecl *ND = E->getMemberDecl(); 4154 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4155 LValue LV = EmitLValueForField(BaseLV, Field); 4156 setObjCGCLValueClass(getContext(), E, LV); 4157 if (getLangOpts().OpenMP) { 4158 // If the member was explicitly marked as nontemporal, mark it as 4159 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4160 // to children as nontemporal too. 4161 if ((IsWrappedCXXThis(BaseExpr) && 4162 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4163 BaseLV.isNontemporal()) 4164 LV.setNontemporal(/*Value=*/true); 4165 } 4166 return LV; 4167 } 4168 4169 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4170 return EmitFunctionDeclLValue(*this, E, FD); 4171 4172 llvm_unreachable("Unhandled member declaration!"); 4173 } 4174 4175 /// Given that we are currently emitting a lambda, emit an l-value for 4176 /// one of its members. 4177 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4178 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4179 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4180 QualType LambdaTagType = 4181 getContext().getTagDeclType(Field->getParent()); 4182 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4183 return EmitLValueForField(LambdaLV, Field); 4184 } 4185 4186 /// Get the field index in the debug info. The debug info structure/union 4187 /// will ignore the unnamed bitfields. 4188 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4189 unsigned FieldIndex) { 4190 unsigned I = 0, Skipped = 0; 4191 4192 for (auto F : Rec->getDefinition()->fields()) { 4193 if (I == FieldIndex) 4194 break; 4195 if (F->isUnnamedBitfield()) 4196 Skipped++; 4197 I++; 4198 } 4199 4200 return FieldIndex - Skipped; 4201 } 4202 4203 /// Get the address of a zero-sized field within a record. The resulting 4204 /// address doesn't necessarily have the right type. 4205 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4206 const FieldDecl *Field) { 4207 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4208 CGF.getContext().getFieldOffset(Field)); 4209 if (Offset.isZero()) 4210 return Base; 4211 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4212 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4213 } 4214 4215 /// Drill down to the storage of a field without walking into 4216 /// reference types. 4217 /// 4218 /// The resulting address doesn't necessarily have the right type. 4219 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4220 const FieldDecl *field) { 4221 if (field->isZeroSize(CGF.getContext())) 4222 return emitAddrOfZeroSizeField(CGF, base, field); 4223 4224 const RecordDecl *rec = field->getParent(); 4225 4226 unsigned idx = 4227 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4228 4229 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4230 } 4231 4232 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4233 Address addr, const FieldDecl *field) { 4234 const RecordDecl *rec = field->getParent(); 4235 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4236 base.getType(), rec->getLocation()); 4237 4238 unsigned idx = 4239 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4240 4241 return CGF.Builder.CreatePreserveStructAccessIndex( 4242 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4243 } 4244 4245 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4246 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4247 if (!RD) 4248 return false; 4249 4250 if (RD->isDynamicClass()) 4251 return true; 4252 4253 for (const auto &Base : RD->bases()) 4254 if (hasAnyVptr(Base.getType(), Context)) 4255 return true; 4256 4257 for (const FieldDecl *Field : RD->fields()) 4258 if (hasAnyVptr(Field->getType(), Context)) 4259 return true; 4260 4261 return false; 4262 } 4263 4264 LValue CodeGenFunction::EmitLValueForField(LValue base, 4265 const FieldDecl *field) { 4266 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4267 4268 if (field->isBitField()) { 4269 const CGRecordLayout &RL = 4270 CGM.getTypes().getCGRecordLayout(field->getParent()); 4271 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4272 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4273 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4274 Info.VolatileStorageSize != 0 && 4275 field->getType() 4276 .withCVRQualifiers(base.getVRQualifiers()) 4277 .isVolatileQualified(); 4278 Address Addr = base.getAddress(*this); 4279 unsigned Idx = RL.getLLVMFieldNo(field); 4280 const RecordDecl *rec = field->getParent(); 4281 if (!UseVolatile) { 4282 if (!IsInPreservedAIRegion && 4283 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4284 if (Idx != 0) 4285 // For structs, we GEP to the field that the record layout suggests. 4286 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4287 } else { 4288 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4289 getContext().getRecordType(rec), rec->getLocation()); 4290 Addr = Builder.CreatePreserveStructAccessIndex( 4291 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4292 DbgInfo); 4293 } 4294 } 4295 const unsigned SS = 4296 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4297 // Get the access type. 4298 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4299 if (Addr.getElementType() != FieldIntTy) 4300 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4301 if (UseVolatile) { 4302 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4303 if (VolatileOffset) 4304 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4305 } 4306 4307 QualType fieldType = 4308 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4309 // TODO: Support TBAA for bit fields. 4310 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4311 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4312 TBAAAccessInfo()); 4313 } 4314 4315 // Fields of may-alias structures are may-alias themselves. 4316 // FIXME: this should get propagated down through anonymous structs 4317 // and unions. 4318 QualType FieldType = field->getType(); 4319 const RecordDecl *rec = field->getParent(); 4320 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4321 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4322 TBAAAccessInfo FieldTBAAInfo; 4323 if (base.getTBAAInfo().isMayAlias() || 4324 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4325 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4326 } else if (rec->isUnion()) { 4327 // TODO: Support TBAA for unions. 4328 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4329 } else { 4330 // If no base type been assigned for the base access, then try to generate 4331 // one for this base lvalue. 4332 FieldTBAAInfo = base.getTBAAInfo(); 4333 if (!FieldTBAAInfo.BaseType) { 4334 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4335 assert(!FieldTBAAInfo.Offset && 4336 "Nonzero offset for an access with no base type!"); 4337 } 4338 4339 // Adjust offset to be relative to the base type. 4340 const ASTRecordLayout &Layout = 4341 getContext().getASTRecordLayout(field->getParent()); 4342 unsigned CharWidth = getContext().getCharWidth(); 4343 if (FieldTBAAInfo.BaseType) 4344 FieldTBAAInfo.Offset += 4345 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4346 4347 // Update the final access type and size. 4348 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4349 FieldTBAAInfo.Size = 4350 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4351 } 4352 4353 Address addr = base.getAddress(*this); 4354 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4355 if (CGM.getCodeGenOpts().StrictVTablePointers && 4356 ClassDef->isDynamicClass()) { 4357 // Getting to any field of dynamic object requires stripping dynamic 4358 // information provided by invariant.group. This is because accessing 4359 // fields may leak the real address of dynamic object, which could result 4360 // in miscompilation when leaked pointer would be compared. 4361 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4362 addr = Address(stripped, addr.getAlignment()); 4363 } 4364 } 4365 4366 unsigned RecordCVR = base.getVRQualifiers(); 4367 if (rec->isUnion()) { 4368 // For unions, there is no pointer adjustment. 4369 if (CGM.getCodeGenOpts().StrictVTablePointers && 4370 hasAnyVptr(FieldType, getContext())) 4371 // Because unions can easily skip invariant.barriers, we need to add 4372 // a barrier every time CXXRecord field with vptr is referenced. 4373 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4374 addr.getAlignment()); 4375 4376 if (IsInPreservedAIRegion || 4377 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4378 // Remember the original union field index 4379 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4380 rec->getLocation()); 4381 addr = Address( 4382 Builder.CreatePreserveUnionAccessIndex( 4383 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4384 addr.getAlignment()); 4385 } 4386 4387 if (FieldType->isReferenceType()) 4388 addr = Builder.CreateElementBitCast( 4389 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4390 } else { 4391 if (!IsInPreservedAIRegion && 4392 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4393 // For structs, we GEP to the field that the record layout suggests. 4394 addr = emitAddrOfFieldStorage(*this, addr, field); 4395 else 4396 // Remember the original struct field index 4397 addr = emitPreserveStructAccess(*this, base, addr, field); 4398 } 4399 4400 // If this is a reference field, load the reference right now. 4401 if (FieldType->isReferenceType()) { 4402 LValue RefLVal = 4403 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4404 if (RecordCVR & Qualifiers::Volatile) 4405 RefLVal.getQuals().addVolatile(); 4406 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4407 4408 // Qualifiers on the struct don't apply to the referencee. 4409 RecordCVR = 0; 4410 FieldType = FieldType->getPointeeType(); 4411 } 4412 4413 // Make sure that the address is pointing to the right type. This is critical 4414 // for both unions and structs. A union needs a bitcast, a struct element 4415 // will need a bitcast if the LLVM type laid out doesn't match the desired 4416 // type. 4417 addr = Builder.CreateElementBitCast( 4418 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4419 4420 if (field->hasAttr<AnnotateAttr>()) 4421 addr = EmitFieldAnnotations(field, addr); 4422 4423 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4424 LV.getQuals().addCVRQualifiers(RecordCVR); 4425 4426 // __weak attribute on a field is ignored. 4427 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4428 LV.getQuals().removeObjCGCAttr(); 4429 4430 return LV; 4431 } 4432 4433 LValue 4434 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4435 const FieldDecl *Field) { 4436 QualType FieldType = Field->getType(); 4437 4438 if (!FieldType->isReferenceType()) 4439 return EmitLValueForField(Base, Field); 4440 4441 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4442 4443 // Make sure that the address is pointing to the right type. 4444 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4445 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4446 4447 // TODO: Generate TBAA information that describes this access as a structure 4448 // member access and not just an access to an object of the field's type. This 4449 // should be similar to what we do in EmitLValueForField(). 4450 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4451 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4452 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4453 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4454 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4455 } 4456 4457 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4458 if (E->isFileScope()) { 4459 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4460 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4461 } 4462 if (E->getType()->isVariablyModifiedType()) 4463 // make sure to emit the VLA size. 4464 EmitVariablyModifiedType(E->getType()); 4465 4466 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4467 const Expr *InitExpr = E->getInitializer(); 4468 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4469 4470 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4471 /*Init*/ true); 4472 4473 // Block-scope compound literals are destroyed at the end of the enclosing 4474 // scope in C. 4475 if (!getLangOpts().CPlusPlus) 4476 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4477 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4478 E->getType(), getDestroyer(DtorKind), 4479 DtorKind & EHCleanup); 4480 4481 return Result; 4482 } 4483 4484 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4485 if (!E->isGLValue()) 4486 // Initializing an aggregate temporary in C++11: T{...}. 4487 return EmitAggExprToLValue(E); 4488 4489 // An lvalue initializer list must be initializing a reference. 4490 assert(E->isTransparent() && "non-transparent glvalue init list"); 4491 return EmitLValue(E->getInit(0)); 4492 } 4493 4494 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4495 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4496 /// LValue is returned and the current block has been terminated. 4497 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4498 const Expr *Operand) { 4499 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4500 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4501 return None; 4502 } 4503 4504 return CGF.EmitLValue(Operand); 4505 } 4506 4507 LValue CodeGenFunction:: 4508 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4509 if (!expr->isGLValue()) { 4510 // ?: here should be an aggregate. 4511 assert(hasAggregateEvaluationKind(expr->getType()) && 4512 "Unexpected conditional operator!"); 4513 return EmitAggExprToLValue(expr); 4514 } 4515 4516 OpaqueValueMapping binding(*this, expr); 4517 4518 const Expr *condExpr = expr->getCond(); 4519 bool CondExprBool; 4520 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4521 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4522 if (!CondExprBool) std::swap(live, dead); 4523 4524 if (!ContainsLabel(dead)) { 4525 // If the true case is live, we need to track its region. 4526 if (CondExprBool) 4527 incrementProfileCounter(expr); 4528 // If a throw expression we emit it and return an undefined lvalue 4529 // because it can't be used. 4530 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4531 EmitCXXThrowExpr(ThrowExpr); 4532 llvm::Type *Ty = 4533 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4534 return MakeAddrLValue( 4535 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4536 dead->getType()); 4537 } 4538 return EmitLValue(live); 4539 } 4540 } 4541 4542 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4543 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4544 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4545 4546 ConditionalEvaluation eval(*this); 4547 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4548 4549 // Any temporaries created here are conditional. 4550 EmitBlock(lhsBlock); 4551 incrementProfileCounter(expr); 4552 eval.begin(*this); 4553 Optional<LValue> lhs = 4554 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4555 eval.end(*this); 4556 4557 if (lhs && !lhs->isSimple()) 4558 return EmitUnsupportedLValue(expr, "conditional operator"); 4559 4560 lhsBlock = Builder.GetInsertBlock(); 4561 if (lhs) 4562 Builder.CreateBr(contBlock); 4563 4564 // Any temporaries created here are conditional. 4565 EmitBlock(rhsBlock); 4566 eval.begin(*this); 4567 Optional<LValue> rhs = 4568 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4569 eval.end(*this); 4570 if (rhs && !rhs->isSimple()) 4571 return EmitUnsupportedLValue(expr, "conditional operator"); 4572 rhsBlock = Builder.GetInsertBlock(); 4573 4574 EmitBlock(contBlock); 4575 4576 if (lhs && rhs) { 4577 llvm::PHINode *phi = 4578 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4579 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4580 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4581 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4582 AlignmentSource alignSource = 4583 std::max(lhs->getBaseInfo().getAlignmentSource(), 4584 rhs->getBaseInfo().getAlignmentSource()); 4585 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4586 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4587 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4588 TBAAInfo); 4589 } else { 4590 assert((lhs || rhs) && 4591 "both operands of glvalue conditional are throw-expressions?"); 4592 return lhs ? *lhs : *rhs; 4593 } 4594 } 4595 4596 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4597 /// type. If the cast is to a reference, we can have the usual lvalue result, 4598 /// otherwise if a cast is needed by the code generator in an lvalue context, 4599 /// then it must mean that we need the address of an aggregate in order to 4600 /// access one of its members. This can happen for all the reasons that casts 4601 /// are permitted with aggregate result, including noop aggregate casts, and 4602 /// cast from scalar to union. 4603 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4604 switch (E->getCastKind()) { 4605 case CK_ToVoid: 4606 case CK_BitCast: 4607 case CK_LValueToRValueBitCast: 4608 case CK_ArrayToPointerDecay: 4609 case CK_FunctionToPointerDecay: 4610 case CK_NullToMemberPointer: 4611 case CK_NullToPointer: 4612 case CK_IntegralToPointer: 4613 case CK_PointerToIntegral: 4614 case CK_PointerToBoolean: 4615 case CK_VectorSplat: 4616 case CK_IntegralCast: 4617 case CK_BooleanToSignedIntegral: 4618 case CK_IntegralToBoolean: 4619 case CK_IntegralToFloating: 4620 case CK_FloatingToIntegral: 4621 case CK_FloatingToBoolean: 4622 case CK_FloatingCast: 4623 case CK_FloatingRealToComplex: 4624 case CK_FloatingComplexToReal: 4625 case CK_FloatingComplexToBoolean: 4626 case CK_FloatingComplexCast: 4627 case CK_FloatingComplexToIntegralComplex: 4628 case CK_IntegralRealToComplex: 4629 case CK_IntegralComplexToReal: 4630 case CK_IntegralComplexToBoolean: 4631 case CK_IntegralComplexCast: 4632 case CK_IntegralComplexToFloatingComplex: 4633 case CK_DerivedToBaseMemberPointer: 4634 case CK_BaseToDerivedMemberPointer: 4635 case CK_MemberPointerToBoolean: 4636 case CK_ReinterpretMemberPointer: 4637 case CK_AnyPointerToBlockPointerCast: 4638 case CK_ARCProduceObject: 4639 case CK_ARCConsumeObject: 4640 case CK_ARCReclaimReturnedObject: 4641 case CK_ARCExtendBlockObject: 4642 case CK_CopyAndAutoreleaseBlockObject: 4643 case CK_IntToOCLSampler: 4644 case CK_FloatingToFixedPoint: 4645 case CK_FixedPointToFloating: 4646 case CK_FixedPointCast: 4647 case CK_FixedPointToBoolean: 4648 case CK_FixedPointToIntegral: 4649 case CK_IntegralToFixedPoint: 4650 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4651 4652 case CK_Dependent: 4653 llvm_unreachable("dependent cast kind in IR gen!"); 4654 4655 case CK_BuiltinFnToFnPtr: 4656 llvm_unreachable("builtin functions are handled elsewhere"); 4657 4658 // These are never l-values; just use the aggregate emission code. 4659 case CK_NonAtomicToAtomic: 4660 case CK_AtomicToNonAtomic: 4661 return EmitAggExprToLValue(E); 4662 4663 case CK_Dynamic: { 4664 LValue LV = EmitLValue(E->getSubExpr()); 4665 Address V = LV.getAddress(*this); 4666 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4667 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4668 } 4669 4670 case CK_ConstructorConversion: 4671 case CK_UserDefinedConversion: 4672 case CK_CPointerToObjCPointerCast: 4673 case CK_BlockPointerToObjCPointerCast: 4674 case CK_NoOp: 4675 case CK_LValueToRValue: 4676 return EmitLValue(E->getSubExpr()); 4677 4678 case CK_UncheckedDerivedToBase: 4679 case CK_DerivedToBase: { 4680 const auto *DerivedClassTy = 4681 E->getSubExpr()->getType()->castAs<RecordType>(); 4682 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4683 4684 LValue LV = EmitLValue(E->getSubExpr()); 4685 Address This = LV.getAddress(*this); 4686 4687 // Perform the derived-to-base conversion 4688 Address Base = GetAddressOfBaseClass( 4689 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4690 /*NullCheckValue=*/false, E->getExprLoc()); 4691 4692 // TODO: Support accesses to members of base classes in TBAA. For now, we 4693 // conservatively pretend that the complete object is of the base class 4694 // type. 4695 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4696 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4697 } 4698 case CK_ToUnion: 4699 return EmitAggExprToLValue(E); 4700 case CK_BaseToDerived: { 4701 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4702 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4703 4704 LValue LV = EmitLValue(E->getSubExpr()); 4705 4706 // Perform the base-to-derived conversion 4707 Address Derived = GetAddressOfDerivedClass( 4708 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4709 /*NullCheckValue=*/false); 4710 4711 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4712 // performed and the object is not of the derived type. 4713 if (sanitizePerformTypeCheck()) 4714 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4715 Derived.getPointer(), E->getType()); 4716 4717 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4718 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4719 /*MayBeNull=*/false, CFITCK_DerivedCast, 4720 E->getBeginLoc()); 4721 4722 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4723 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4724 } 4725 case CK_LValueBitCast: { 4726 // This must be a reinterpret_cast (or c-style equivalent). 4727 const auto *CE = cast<ExplicitCastExpr>(E); 4728 4729 CGM.EmitExplicitCastExprType(CE, this); 4730 LValue LV = EmitLValue(E->getSubExpr()); 4731 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4732 ConvertType(CE->getTypeAsWritten())); 4733 4734 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4735 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4736 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4737 E->getBeginLoc()); 4738 4739 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4740 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4741 } 4742 case CK_AddressSpaceConversion: { 4743 LValue LV = EmitLValue(E->getSubExpr()); 4744 QualType DestTy = getContext().getPointerType(E->getType()); 4745 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4746 *this, LV.getPointer(*this), 4747 E->getSubExpr()->getType().getAddressSpace(), 4748 E->getType().getAddressSpace(), ConvertType(DestTy)); 4749 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4750 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4751 } 4752 case CK_ObjCObjectLValueCast: { 4753 LValue LV = EmitLValue(E->getSubExpr()); 4754 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4755 ConvertType(E->getType())); 4756 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4757 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4758 } 4759 case CK_ZeroToOCLOpaqueType: 4760 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4761 } 4762 4763 llvm_unreachable("Unhandled lvalue cast kind?"); 4764 } 4765 4766 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4767 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4768 return getOrCreateOpaqueLValueMapping(e); 4769 } 4770 4771 LValue 4772 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4773 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4774 4775 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4776 it = OpaqueLValues.find(e); 4777 4778 if (it != OpaqueLValues.end()) 4779 return it->second; 4780 4781 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4782 return EmitLValue(e->getSourceExpr()); 4783 } 4784 4785 RValue 4786 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4787 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4788 4789 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4790 it = OpaqueRValues.find(e); 4791 4792 if (it != OpaqueRValues.end()) 4793 return it->second; 4794 4795 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4796 return EmitAnyExpr(e->getSourceExpr()); 4797 } 4798 4799 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4800 const FieldDecl *FD, 4801 SourceLocation Loc) { 4802 QualType FT = FD->getType(); 4803 LValue FieldLV = EmitLValueForField(LV, FD); 4804 switch (getEvaluationKind(FT)) { 4805 case TEK_Complex: 4806 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4807 case TEK_Aggregate: 4808 return FieldLV.asAggregateRValue(*this); 4809 case TEK_Scalar: 4810 // This routine is used to load fields one-by-one to perform a copy, so 4811 // don't load reference fields. 4812 if (FD->getType()->isReferenceType()) 4813 return RValue::get(FieldLV.getPointer(*this)); 4814 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4815 // primitive load. 4816 if (FieldLV.isBitField()) 4817 return EmitLoadOfLValue(FieldLV, Loc); 4818 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4819 } 4820 llvm_unreachable("bad evaluation kind"); 4821 } 4822 4823 //===--------------------------------------------------------------------===// 4824 // Expression Emission 4825 //===--------------------------------------------------------------------===// 4826 4827 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4828 ReturnValueSlot ReturnValue) { 4829 // Builtins never have block type. 4830 if (E->getCallee()->getType()->isBlockPointerType()) 4831 return EmitBlockCallExpr(E, ReturnValue); 4832 4833 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4834 return EmitCXXMemberCallExpr(CE, ReturnValue); 4835 4836 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4837 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4838 4839 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4840 if (const CXXMethodDecl *MD = 4841 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4842 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4843 4844 CGCallee callee = EmitCallee(E->getCallee()); 4845 4846 if (callee.isBuiltin()) { 4847 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4848 E, ReturnValue); 4849 } 4850 4851 if (callee.isPseudoDestructor()) { 4852 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4853 } 4854 4855 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4856 } 4857 4858 /// Emit a CallExpr without considering whether it might be a subclass. 4859 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4860 ReturnValueSlot ReturnValue) { 4861 CGCallee Callee = EmitCallee(E->getCallee()); 4862 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4863 } 4864 4865 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4866 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4867 4868 if (auto builtinID = FD->getBuiltinID()) { 4869 // Replaceable builtin provide their own implementation of a builtin. Unless 4870 // we are in the builtin implementation itself, don't call the actual 4871 // builtin. If we are in the builtin implementation, avoid trivial infinite 4872 // recursion. 4873 if (!FD->isInlineBuiltinDeclaration() || 4874 CGF.CurFn->getName() == FD->getName()) 4875 return CGCallee::forBuiltin(builtinID, FD); 4876 } 4877 4878 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4879 return CGCallee::forDirect(calleePtr, GD); 4880 } 4881 4882 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4883 E = E->IgnoreParens(); 4884 4885 // Look through function-to-pointer decay. 4886 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4887 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4888 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4889 return EmitCallee(ICE->getSubExpr()); 4890 } 4891 4892 // Resolve direct calls. 4893 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4894 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4895 return EmitDirectCallee(*this, FD); 4896 } 4897 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4898 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4899 EmitIgnoredExpr(ME->getBase()); 4900 return EmitDirectCallee(*this, FD); 4901 } 4902 4903 // Look through template substitutions. 4904 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4905 return EmitCallee(NTTP->getReplacement()); 4906 4907 // Treat pseudo-destructor calls differently. 4908 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4909 return CGCallee::forPseudoDestructor(PDE); 4910 } 4911 4912 // Otherwise, we have an indirect reference. 4913 llvm::Value *calleePtr; 4914 QualType functionType; 4915 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4916 calleePtr = EmitScalarExpr(E); 4917 functionType = ptrType->getPointeeType(); 4918 } else { 4919 functionType = E->getType(); 4920 calleePtr = EmitLValue(E).getPointer(*this); 4921 } 4922 assert(functionType->isFunctionType()); 4923 4924 GlobalDecl GD; 4925 if (const auto *VD = 4926 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4927 GD = GlobalDecl(VD); 4928 4929 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4930 CGCallee callee(calleeInfo, calleePtr); 4931 return callee; 4932 } 4933 4934 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4935 // Comma expressions just emit their LHS then their RHS as an l-value. 4936 if (E->getOpcode() == BO_Comma) { 4937 EmitIgnoredExpr(E->getLHS()); 4938 EnsureInsertPoint(); 4939 return EmitLValue(E->getRHS()); 4940 } 4941 4942 if (E->getOpcode() == BO_PtrMemD || 4943 E->getOpcode() == BO_PtrMemI) 4944 return EmitPointerToDataMemberBinaryExpr(E); 4945 4946 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4947 4948 // Note that in all of these cases, __block variables need the RHS 4949 // evaluated first just in case the variable gets moved by the RHS. 4950 4951 switch (getEvaluationKind(E->getType())) { 4952 case TEK_Scalar: { 4953 switch (E->getLHS()->getType().getObjCLifetime()) { 4954 case Qualifiers::OCL_Strong: 4955 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4956 4957 case Qualifiers::OCL_Autoreleasing: 4958 return EmitARCStoreAutoreleasing(E).first; 4959 4960 // No reason to do any of these differently. 4961 case Qualifiers::OCL_None: 4962 case Qualifiers::OCL_ExplicitNone: 4963 case Qualifiers::OCL_Weak: 4964 break; 4965 } 4966 4967 RValue RV = EmitAnyExpr(E->getRHS()); 4968 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4969 if (RV.isScalar()) 4970 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4971 EmitStoreThroughLValue(RV, LV); 4972 if (getLangOpts().OpenMP) 4973 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4974 E->getLHS()); 4975 return LV; 4976 } 4977 4978 case TEK_Complex: 4979 return EmitComplexAssignmentLValue(E); 4980 4981 case TEK_Aggregate: 4982 return EmitAggExprToLValue(E); 4983 } 4984 llvm_unreachable("bad evaluation kind"); 4985 } 4986 4987 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4988 RValue RV = EmitCallExpr(E); 4989 4990 if (!RV.isScalar()) 4991 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4992 AlignmentSource::Decl); 4993 4994 assert(E->getCallReturnType(getContext())->isReferenceType() && 4995 "Can't have a scalar return unless the return type is a " 4996 "reference type!"); 4997 4998 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4999 } 5000 5001 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5002 // FIXME: This shouldn't require another copy. 5003 return EmitAggExprToLValue(E); 5004 } 5005 5006 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5007 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5008 && "binding l-value to type which needs a temporary"); 5009 AggValueSlot Slot = CreateAggTemp(E->getType()); 5010 EmitCXXConstructExpr(E, Slot); 5011 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5012 } 5013 5014 LValue 5015 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5016 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5017 } 5018 5019 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5020 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5021 ConvertType(E->getType())); 5022 } 5023 5024 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5025 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5026 AlignmentSource::Decl); 5027 } 5028 5029 LValue 5030 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5031 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5032 Slot.setExternallyDestructed(); 5033 EmitAggExpr(E->getSubExpr(), Slot); 5034 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5035 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5036 } 5037 5038 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5039 RValue RV = EmitObjCMessageExpr(E); 5040 5041 if (!RV.isScalar()) 5042 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5043 AlignmentSource::Decl); 5044 5045 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5046 "Can't have a scalar return unless the return type is a " 5047 "reference type!"); 5048 5049 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5050 } 5051 5052 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5053 Address V = 5054 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5055 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5056 } 5057 5058 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5059 const ObjCIvarDecl *Ivar) { 5060 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5061 } 5062 5063 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5064 llvm::Value *BaseValue, 5065 const ObjCIvarDecl *Ivar, 5066 unsigned CVRQualifiers) { 5067 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5068 Ivar, CVRQualifiers); 5069 } 5070 5071 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5072 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5073 llvm::Value *BaseValue = nullptr; 5074 const Expr *BaseExpr = E->getBase(); 5075 Qualifiers BaseQuals; 5076 QualType ObjectTy; 5077 if (E->isArrow()) { 5078 BaseValue = EmitScalarExpr(BaseExpr); 5079 ObjectTy = BaseExpr->getType()->getPointeeType(); 5080 BaseQuals = ObjectTy.getQualifiers(); 5081 } else { 5082 LValue BaseLV = EmitLValue(BaseExpr); 5083 BaseValue = BaseLV.getPointer(*this); 5084 ObjectTy = BaseExpr->getType(); 5085 BaseQuals = ObjectTy.getQualifiers(); 5086 } 5087 5088 LValue LV = 5089 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5090 BaseQuals.getCVRQualifiers()); 5091 setObjCGCLValueClass(getContext(), E, LV); 5092 return LV; 5093 } 5094 5095 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5096 // Can only get l-value for message expression returning aggregate type 5097 RValue RV = EmitAnyExprToTemp(E); 5098 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5099 AlignmentSource::Decl); 5100 } 5101 5102 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5103 const CallExpr *E, ReturnValueSlot ReturnValue, 5104 llvm::Value *Chain) { 5105 // Get the actual function type. The callee type will always be a pointer to 5106 // function type or a block pointer type. 5107 assert(CalleeType->isFunctionPointerType() && 5108 "Call must have function pointer type!"); 5109 5110 const Decl *TargetDecl = 5111 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5112 5113 CalleeType = getContext().getCanonicalType(CalleeType); 5114 5115 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5116 5117 CGCallee Callee = OrigCallee; 5118 5119 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5120 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5121 if (llvm::Constant *PrefixSig = 5122 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5123 SanitizerScope SanScope(this); 5124 // Remove any (C++17) exception specifications, to allow calling e.g. a 5125 // noexcept function through a non-noexcept pointer. 5126 auto ProtoTy = 5127 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5128 llvm::Constant *FTRTTIConst = 5129 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5130 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 5131 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5132 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 5133 5134 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5135 5136 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5137 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5138 llvm::Value *CalleeSigPtr = 5139 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5140 llvm::Value *CalleeSig = 5141 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 5142 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5143 5144 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5145 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5146 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5147 5148 EmitBlock(TypeCheck); 5149 llvm::Value *CalleeRTTIPtr = 5150 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5151 llvm::Value *CalleeRTTIEncoded = 5152 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 5153 llvm::Value *CalleeRTTI = 5154 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5155 llvm::Value *CalleeRTTIMatch = 5156 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5157 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5158 EmitCheckTypeDescriptor(CalleeType)}; 5159 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5160 SanitizerHandler::FunctionTypeMismatch, StaticData, 5161 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5162 5163 Builder.CreateBr(Cont); 5164 EmitBlock(Cont); 5165 } 5166 } 5167 5168 const auto *FnType = cast<FunctionType>(PointeeType); 5169 5170 // If we are checking indirect calls and this call is indirect, check that the 5171 // function pointer is a member of the bit set for the function type. 5172 if (SanOpts.has(SanitizerKind::CFIICall) && 5173 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5174 SanitizerScope SanScope(this); 5175 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5176 5177 llvm::Metadata *MD; 5178 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5179 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5180 else 5181 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5182 5183 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5184 5185 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5186 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5187 llvm::Value *TypeTest = Builder.CreateCall( 5188 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5189 5190 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5191 llvm::Constant *StaticData[] = { 5192 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5193 EmitCheckSourceLocation(E->getBeginLoc()), 5194 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5195 }; 5196 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5197 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5198 CastedCallee, StaticData); 5199 } else { 5200 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5201 SanitizerHandler::CFICheckFail, StaticData, 5202 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5203 } 5204 } 5205 5206 CallArgList Args; 5207 if (Chain) 5208 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5209 CGM.getContext().VoidPtrTy); 5210 5211 // C++17 requires that we evaluate arguments to a call using assignment syntax 5212 // right-to-left, and that we evaluate arguments to certain other operators 5213 // left-to-right. Note that we allow this to override the order dictated by 5214 // the calling convention on the MS ABI, which means that parameter 5215 // destruction order is not necessarily reverse construction order. 5216 // FIXME: Revisit this based on C++ committee response to unimplementability. 5217 EvaluationOrder Order = EvaluationOrder::Default; 5218 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5219 if (OCE->isAssignmentOp()) 5220 Order = EvaluationOrder::ForceRightToLeft; 5221 else { 5222 switch (OCE->getOperator()) { 5223 case OO_LessLess: 5224 case OO_GreaterGreater: 5225 case OO_AmpAmp: 5226 case OO_PipePipe: 5227 case OO_Comma: 5228 case OO_ArrowStar: 5229 Order = EvaluationOrder::ForceLeftToRight; 5230 break; 5231 default: 5232 break; 5233 } 5234 } 5235 } 5236 5237 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5238 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5239 5240 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5241 Args, FnType, /*ChainCall=*/Chain); 5242 5243 // C99 6.5.2.2p6: 5244 // If the expression that denotes the called function has a type 5245 // that does not include a prototype, [the default argument 5246 // promotions are performed]. If the number of arguments does not 5247 // equal the number of parameters, the behavior is undefined. If 5248 // the function is defined with a type that includes a prototype, 5249 // and either the prototype ends with an ellipsis (, ...) or the 5250 // types of the arguments after promotion are not compatible with 5251 // the types of the parameters, the behavior is undefined. If the 5252 // function is defined with a type that does not include a 5253 // prototype, and the types of the arguments after promotion are 5254 // not compatible with those of the parameters after promotion, 5255 // the behavior is undefined [except in some trivial cases]. 5256 // That is, in the general case, we should assume that a call 5257 // through an unprototyped function type works like a *non-variadic* 5258 // call. The way we make this work is to cast to the exact type 5259 // of the promoted arguments. 5260 // 5261 // Chain calls use this same code path to add the invisible chain parameter 5262 // to the function type. 5263 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5264 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5265 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5266 CalleeTy = CalleeTy->getPointerTo(AS); 5267 5268 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5269 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5270 Callee.setFunctionPointer(CalleePtr); 5271 } 5272 5273 llvm::CallBase *CallOrInvoke = nullptr; 5274 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5275 E->getExprLoc()); 5276 5277 // Generate function declaration DISuprogram in order to be used 5278 // in debug info about call sites. 5279 if (CGDebugInfo *DI = getDebugInfo()) { 5280 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5281 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5282 CalleeDecl); 5283 } 5284 5285 return Call; 5286 } 5287 5288 LValue CodeGenFunction:: 5289 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5290 Address BaseAddr = Address::invalid(); 5291 if (E->getOpcode() == BO_PtrMemI) { 5292 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5293 } else { 5294 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5295 } 5296 5297 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5298 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5299 5300 LValueBaseInfo BaseInfo; 5301 TBAAAccessInfo TBAAInfo; 5302 Address MemberAddr = 5303 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5304 &TBAAInfo); 5305 5306 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5307 } 5308 5309 /// Given the address of a temporary variable, produce an r-value of 5310 /// its type. 5311 RValue CodeGenFunction::convertTempToRValue(Address addr, 5312 QualType type, 5313 SourceLocation loc) { 5314 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5315 switch (getEvaluationKind(type)) { 5316 case TEK_Complex: 5317 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5318 case TEK_Aggregate: 5319 return lvalue.asAggregateRValue(*this); 5320 case TEK_Scalar: 5321 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5322 } 5323 llvm_unreachable("bad evaluation kind"); 5324 } 5325 5326 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5327 assert(Val->getType()->isFPOrFPVectorTy()); 5328 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5329 return; 5330 5331 llvm::MDBuilder MDHelper(getLLVMContext()); 5332 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5333 5334 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5335 } 5336 5337 namespace { 5338 struct LValueOrRValue { 5339 LValue LV; 5340 RValue RV; 5341 }; 5342 } 5343 5344 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5345 const PseudoObjectExpr *E, 5346 bool forLValue, 5347 AggValueSlot slot) { 5348 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5349 5350 // Find the result expression, if any. 5351 const Expr *resultExpr = E->getResultExpr(); 5352 LValueOrRValue result; 5353 5354 for (PseudoObjectExpr::const_semantics_iterator 5355 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5356 const Expr *semantic = *i; 5357 5358 // If this semantic expression is an opaque value, bind it 5359 // to the result of its source expression. 5360 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5361 // Skip unique OVEs. 5362 if (ov->isUnique()) { 5363 assert(ov != resultExpr && 5364 "A unique OVE cannot be used as the result expression"); 5365 continue; 5366 } 5367 5368 // If this is the result expression, we may need to evaluate 5369 // directly into the slot. 5370 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5371 OVMA opaqueData; 5372 if (ov == resultExpr && ov->isRValue() && !forLValue && 5373 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5374 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5375 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5376 AlignmentSource::Decl); 5377 opaqueData = OVMA::bind(CGF, ov, LV); 5378 result.RV = slot.asRValue(); 5379 5380 // Otherwise, emit as normal. 5381 } else { 5382 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5383 5384 // If this is the result, also evaluate the result now. 5385 if (ov == resultExpr) { 5386 if (forLValue) 5387 result.LV = CGF.EmitLValue(ov); 5388 else 5389 result.RV = CGF.EmitAnyExpr(ov, slot); 5390 } 5391 } 5392 5393 opaques.push_back(opaqueData); 5394 5395 // Otherwise, if the expression is the result, evaluate it 5396 // and remember the result. 5397 } else if (semantic == resultExpr) { 5398 if (forLValue) 5399 result.LV = CGF.EmitLValue(semantic); 5400 else 5401 result.RV = CGF.EmitAnyExpr(semantic, slot); 5402 5403 // Otherwise, evaluate the expression in an ignored context. 5404 } else { 5405 CGF.EmitIgnoredExpr(semantic); 5406 } 5407 } 5408 5409 // Unbind all the opaques now. 5410 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5411 opaques[i].unbind(CGF); 5412 5413 return result; 5414 } 5415 5416 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5417 AggValueSlot slot) { 5418 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5419 } 5420 5421 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5422 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5423 } 5424