1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getAsAlign());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getAsAlign());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getAsAlign());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->getSubExpr();
421 
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425 
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437 
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446 
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451 
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467 
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471 
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475 
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478 
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485 
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512 
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516 
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this with sanitizers which need
520       // more precise lifetime marks.
521       ConditionalEvaluation *OldConditional = nullptr;
522       CGBuilderTy::InsertPoint OldIP;
523       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
524           !SanOpts.has(SanitizerKind::HWAddress) &&
525           !SanOpts.has(SanitizerKind::Memory) &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529 
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535 
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542 
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549 
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556 
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570 
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress(*this);
577       break;
578     }
579 
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588 
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591 
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer(*this);
598 
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608 
609   return RValue::get(Value);
610 }
611 
612 
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620 
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632 
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637 
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645 
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652 
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks,
657                                     llvm::Value *ArraySize) {
658   if (!sanitizePerformTypeCheck())
659     return;
660 
661   // Don't check pointers outside the default address space. The null check
662   // isn't correct, the object-size check isn't supported by LLVM, and we can't
663   // communicate the addresses to the runtime handler for the vptr check.
664   if (Ptr->getType()->getPointerAddressSpace())
665     return;
666 
667   // Don't check pointers to volatile data. The behavior here is implementation-
668   // defined.
669   if (Ty.isVolatileQualified())
670     return;
671 
672   SanitizerScope SanScope(this);
673 
674   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675   llvm::BasicBlock *Done = nullptr;
676 
677   // Quickly determine whether we have a pointer to an alloca. It's possible
678   // to skip null checks, and some alignment checks, for these pointers. This
679   // can reduce compile-time significantly.
680   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014   if (getLangOpts().OpenMP)
1015     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1016                                                               E->getSubExpr());
1017 
1018   // If this is a postinc, return the value read from memory, otherwise use the
1019   // updated value.
1020   return isPre ? IncVal : InVal;
1021 }
1022 
1023 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1024                                              CodeGenFunction *CGF) {
1025   // Bind VLAs in the cast type.
1026   if (CGF && E->getType()->isVariablyModifiedType())
1027     CGF->EmitVariablyModifiedType(E->getType());
1028 
1029   if (CGDebugInfo *DI = getModuleDebugInfo())
1030     DI->EmitExplicitCastType(E->getType());
1031 }
1032 
1033 //===----------------------------------------------------------------------===//
1034 //                         LValue Expression Emission
1035 //===----------------------------------------------------------------------===//
1036 
1037 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1038 /// derive a more accurate bound on the alignment of the pointer.
1039 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1040                                                   LValueBaseInfo *BaseInfo,
1041                                                   TBAAAccessInfo *TBAAInfo) {
1042   // We allow this with ObjC object pointers because of fragile ABIs.
1043   assert(E->getType()->isPointerType() ||
1044          E->getType()->isObjCObjectPointerType());
1045   E = E->IgnoreParens();
1046 
1047   // Casts:
1048   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1049     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1050       CGM.EmitExplicitCastExprType(ECE, this);
1051 
1052     switch (CE->getCastKind()) {
1053     // Non-converting casts (but not C's implicit conversion from void*).
1054     case CK_BitCast:
1055     case CK_NoOp:
1056     case CK_AddressSpaceConversion:
1057       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1058         if (PtrTy->getPointeeType()->isVoidType())
1059           break;
1060 
1061         LValueBaseInfo InnerBaseInfo;
1062         TBAAAccessInfo InnerTBAAInfo;
1063         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1064                                                 &InnerBaseInfo,
1065                                                 &InnerTBAAInfo);
1066         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1067         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1068 
1069         if (isa<ExplicitCastExpr>(CE)) {
1070           LValueBaseInfo TargetTypeBaseInfo;
1071           TBAAAccessInfo TargetTypeTBAAInfo;
1072           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1073                                                            &TargetTypeBaseInfo,
1074                                                            &TargetTypeTBAAInfo);
1075           if (TBAAInfo)
1076             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1077                                                  TargetTypeTBAAInfo);
1078           // If the source l-value is opaque, honor the alignment of the
1079           // casted-to type.
1080           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1081             if (BaseInfo)
1082               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1083             Addr = Address(Addr.getPointer(), Align);
1084           }
1085         }
1086 
1087         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1088             CE->getCastKind() == CK_BitCast) {
1089           if (auto PT = E->getType()->getAs<PointerType>())
1090             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1091                                       /*MayBeNull=*/true,
1092                                       CodeGenFunction::CFITCK_UnrelatedCast,
1093                                       CE->getBeginLoc());
1094         }
1095         return CE->getCastKind() != CK_AddressSpaceConversion
1096                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1097                    : Builder.CreateAddrSpaceCast(Addr,
1098                                                  ConvertType(E->getType()));
1099       }
1100       break;
1101 
1102     // Array-to-pointer decay.
1103     case CK_ArrayToPointerDecay:
1104       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1105 
1106     // Derived-to-base conversions.
1107     case CK_UncheckedDerivedToBase:
1108     case CK_DerivedToBase: {
1109       // TODO: Support accesses to members of base classes in TBAA. For now, we
1110       // conservatively pretend that the complete object is of the base class
1111       // type.
1112       if (TBAAInfo)
1113         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1114       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1115       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1116       return GetAddressOfBaseClass(Addr, Derived,
1117                                    CE->path_begin(), CE->path_end(),
1118                                    ShouldNullCheckClassCastValue(CE),
1119                                    CE->getExprLoc());
1120     }
1121 
1122     // TODO: Is there any reason to treat base-to-derived conversions
1123     // specially?
1124     default:
1125       break;
1126     }
1127   }
1128 
1129   // Unary &.
1130   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1131     if (UO->getOpcode() == UO_AddrOf) {
1132       LValue LV = EmitLValue(UO->getSubExpr());
1133       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1134       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1135       return LV.getAddress(*this);
1136     }
1137   }
1138 
1139   // TODO: conditional operators, comma.
1140 
1141   // Otherwise, use the alignment of the type.
1142   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1143                                                    TBAAInfo);
1144   return Address(EmitScalarExpr(E), Align);
1145 }
1146 
1147 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1148   if (Ty->isVoidType())
1149     return RValue::get(nullptr);
1150 
1151   switch (getEvaluationKind(Ty)) {
1152   case TEK_Complex: {
1153     llvm::Type *EltTy =
1154       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1155     llvm::Value *U = llvm::UndefValue::get(EltTy);
1156     return RValue::getComplex(std::make_pair(U, U));
1157   }
1158 
1159   // If this is a use of an undefined aggregate type, the aggregate must have an
1160   // identifiable address.  Just because the contents of the value are undefined
1161   // doesn't mean that the address can't be taken and compared.
1162   case TEK_Aggregate: {
1163     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1164     return RValue::getAggregate(DestPtr);
1165   }
1166 
1167   case TEK_Scalar:
1168     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1169   }
1170   llvm_unreachable("bad evaluation kind");
1171 }
1172 
1173 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1174                                               const char *Name) {
1175   ErrorUnsupported(E, Name);
1176   return GetUndefRValue(E->getType());
1177 }
1178 
1179 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1180                                               const char *Name) {
1181   ErrorUnsupported(E, Name);
1182   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1183   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1184                         E->getType());
1185 }
1186 
1187 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1188   const Expr *Base = Obj;
1189   while (!isa<CXXThisExpr>(Base)) {
1190     // The result of a dynamic_cast can be null.
1191     if (isa<CXXDynamicCastExpr>(Base))
1192       return false;
1193 
1194     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1195       Base = CE->getSubExpr();
1196     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1197       Base = PE->getSubExpr();
1198     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1199       if (UO->getOpcode() == UO_Extension)
1200         Base = UO->getSubExpr();
1201       else
1202         return false;
1203     } else {
1204       return false;
1205     }
1206   }
1207   return true;
1208 }
1209 
1210 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1211   LValue LV;
1212   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1213     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1214   else
1215     LV = EmitLValue(E);
1216   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1217     SanitizerSet SkippedChecks;
1218     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1219       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1220       if (IsBaseCXXThis)
1221         SkippedChecks.set(SanitizerKind::Alignment, true);
1222       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1223         SkippedChecks.set(SanitizerKind::Null, true);
1224     }
1225     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1226                   LV.getAlignment(), SkippedChecks);
1227   }
1228   return LV;
1229 }
1230 
1231 /// EmitLValue - Emit code to compute a designator that specifies the location
1232 /// of the expression.
1233 ///
1234 /// This can return one of two things: a simple address or a bitfield reference.
1235 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1236 /// an LLVM pointer type.
1237 ///
1238 /// If this returns a bitfield reference, nothing about the pointee type of the
1239 /// LLVM value is known: For example, it may not be a pointer to an integer.
1240 ///
1241 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1242 /// this method guarantees that the returned pointer type will point to an LLVM
1243 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1244 /// length type, this is not possible.
1245 ///
1246 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1247   ApplyDebugLocation DL(*this, E);
1248   switch (E->getStmtClass()) {
1249   default: return EmitUnsupportedLValue(E, "l-value expression");
1250 
1251   case Expr::ObjCPropertyRefExprClass:
1252     llvm_unreachable("cannot emit a property reference directly");
1253 
1254   case Expr::ObjCSelectorExprClass:
1255     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1256   case Expr::ObjCIsaExprClass:
1257     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1258   case Expr::BinaryOperatorClass:
1259     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1260   case Expr::CompoundAssignOperatorClass: {
1261     QualType Ty = E->getType();
1262     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1263       Ty = AT->getValueType();
1264     if (!Ty->isAnyComplexType())
1265       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1266     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1267   }
1268   case Expr::CallExprClass:
1269   case Expr::CXXMemberCallExprClass:
1270   case Expr::CXXOperatorCallExprClass:
1271   case Expr::UserDefinedLiteralClass:
1272     return EmitCallExprLValue(cast<CallExpr>(E));
1273   case Expr::CXXRewrittenBinaryOperatorClass:
1274     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1275   case Expr::VAArgExprClass:
1276     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1277   case Expr::DeclRefExprClass:
1278     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1279   case Expr::ConstantExprClass:
1280     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1281   case Expr::ParenExprClass:
1282     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1283   case Expr::GenericSelectionExprClass:
1284     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1285   case Expr::PredefinedExprClass:
1286     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1287   case Expr::StringLiteralClass:
1288     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1289   case Expr::ObjCEncodeExprClass:
1290     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1291   case Expr::PseudoObjectExprClass:
1292     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1293   case Expr::InitListExprClass:
1294     return EmitInitListLValue(cast<InitListExpr>(E));
1295   case Expr::CXXTemporaryObjectExprClass:
1296   case Expr::CXXConstructExprClass:
1297     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1298   case Expr::CXXBindTemporaryExprClass:
1299     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1300   case Expr::CXXUuidofExprClass:
1301     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1302   case Expr::LambdaExprClass:
1303     return EmitAggExprToLValue(E);
1304 
1305   case Expr::ExprWithCleanupsClass: {
1306     const auto *cleanups = cast<ExprWithCleanups>(E);
1307     enterFullExpression(cleanups);
1308     RunCleanupsScope Scope(*this);
1309     LValue LV = EmitLValue(cleanups->getSubExpr());
1310     if (LV.isSimple()) {
1311       // Defend against branches out of gnu statement expressions surrounded by
1312       // cleanups.
1313       llvm::Value *V = LV.getPointer(*this);
1314       Scope.ForceCleanup({&V});
1315       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1316                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1317     }
1318     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1319     // bitfield lvalue or some other non-simple lvalue?
1320     return LV;
1321   }
1322 
1323   case Expr::CXXDefaultArgExprClass: {
1324     auto *DAE = cast<CXXDefaultArgExpr>(E);
1325     CXXDefaultArgExprScope Scope(*this, DAE);
1326     return EmitLValue(DAE->getExpr());
1327   }
1328   case Expr::CXXDefaultInitExprClass: {
1329     auto *DIE = cast<CXXDefaultInitExpr>(E);
1330     CXXDefaultInitExprScope Scope(*this, DIE);
1331     return EmitLValue(DIE->getExpr());
1332   }
1333   case Expr::CXXTypeidExprClass:
1334     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1335 
1336   case Expr::ObjCMessageExprClass:
1337     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1338   case Expr::ObjCIvarRefExprClass:
1339     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1340   case Expr::StmtExprClass:
1341     return EmitStmtExprLValue(cast<StmtExpr>(E));
1342   case Expr::UnaryOperatorClass:
1343     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1344   case Expr::ArraySubscriptExprClass:
1345     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1346   case Expr::OMPArraySectionExprClass:
1347     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1348   case Expr::ExtVectorElementExprClass:
1349     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1350   case Expr::MemberExprClass:
1351     return EmitMemberExpr(cast<MemberExpr>(E));
1352   case Expr::CompoundLiteralExprClass:
1353     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1354   case Expr::ConditionalOperatorClass:
1355     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1356   case Expr::BinaryConditionalOperatorClass:
1357     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1358   case Expr::ChooseExprClass:
1359     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1360   case Expr::OpaqueValueExprClass:
1361     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1362   case Expr::SubstNonTypeTemplateParmExprClass:
1363     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1364   case Expr::ImplicitCastExprClass:
1365   case Expr::CStyleCastExprClass:
1366   case Expr::CXXFunctionalCastExprClass:
1367   case Expr::CXXStaticCastExprClass:
1368   case Expr::CXXDynamicCastExprClass:
1369   case Expr::CXXReinterpretCastExprClass:
1370   case Expr::CXXConstCastExprClass:
1371   case Expr::ObjCBridgedCastExprClass:
1372     return EmitCastLValue(cast<CastExpr>(E));
1373 
1374   case Expr::MaterializeTemporaryExprClass:
1375     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1376 
1377   case Expr::CoawaitExprClass:
1378     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1379   case Expr::CoyieldExprClass:
1380     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1381   }
1382 }
1383 
1384 /// Given an object of the given canonical type, can we safely copy a
1385 /// value out of it based on its initializer?
1386 static bool isConstantEmittableObjectType(QualType type) {
1387   assert(type.isCanonical());
1388   assert(!type->isReferenceType());
1389 
1390   // Must be const-qualified but non-volatile.
1391   Qualifiers qs = type.getLocalQualifiers();
1392   if (!qs.hasConst() || qs.hasVolatile()) return false;
1393 
1394   // Otherwise, all object types satisfy this except C++ classes with
1395   // mutable subobjects or non-trivial copy/destroy behavior.
1396   if (const auto *RT = dyn_cast<RecordType>(type))
1397     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1398       if (RD->hasMutableFields() || !RD->isTrivial())
1399         return false;
1400 
1401   return true;
1402 }
1403 
1404 /// Can we constant-emit a load of a reference to a variable of the
1405 /// given type?  This is different from predicates like
1406 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1407 /// in situations that don't necessarily satisfy the language's rules
1408 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1409 /// to do this with const float variables even if those variables
1410 /// aren't marked 'constexpr'.
1411 enum ConstantEmissionKind {
1412   CEK_None,
1413   CEK_AsReferenceOnly,
1414   CEK_AsValueOrReference,
1415   CEK_AsValueOnly
1416 };
1417 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1418   type = type.getCanonicalType();
1419   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1420     if (isConstantEmittableObjectType(ref->getPointeeType()))
1421       return CEK_AsValueOrReference;
1422     return CEK_AsReferenceOnly;
1423   }
1424   if (isConstantEmittableObjectType(type))
1425     return CEK_AsValueOnly;
1426   return CEK_None;
1427 }
1428 
1429 /// Try to emit a reference to the given value without producing it as
1430 /// an l-value.  This is just an optimization, but it avoids us needing
1431 /// to emit global copies of variables if they're named without triggering
1432 /// a formal use in a context where we can't emit a direct reference to them,
1433 /// for instance if a block or lambda or a member of a local class uses a
1434 /// const int variable or constexpr variable from an enclosing function.
1435 CodeGenFunction::ConstantEmission
1436 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1437   ValueDecl *value = refExpr->getDecl();
1438 
1439   // The value needs to be an enum constant or a constant variable.
1440   ConstantEmissionKind CEK;
1441   if (isa<ParmVarDecl>(value)) {
1442     CEK = CEK_None;
1443   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1444     CEK = checkVarTypeForConstantEmission(var->getType());
1445   } else if (isa<EnumConstantDecl>(value)) {
1446     CEK = CEK_AsValueOnly;
1447   } else {
1448     CEK = CEK_None;
1449   }
1450   if (CEK == CEK_None) return ConstantEmission();
1451 
1452   Expr::EvalResult result;
1453   bool resultIsReference;
1454   QualType resultType;
1455 
1456   // It's best to evaluate all the way as an r-value if that's permitted.
1457   if (CEK != CEK_AsReferenceOnly &&
1458       refExpr->EvaluateAsRValue(result, getContext())) {
1459     resultIsReference = false;
1460     resultType = refExpr->getType();
1461 
1462   // Otherwise, try to evaluate as an l-value.
1463   } else if (CEK != CEK_AsValueOnly &&
1464              refExpr->EvaluateAsLValue(result, getContext())) {
1465     resultIsReference = true;
1466     resultType = value->getType();
1467 
1468   // Failure.
1469   } else {
1470     return ConstantEmission();
1471   }
1472 
1473   // In any case, if the initializer has side-effects, abandon ship.
1474   if (result.HasSideEffects)
1475     return ConstantEmission();
1476 
1477   // Emit as a constant.
1478   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1479                                                result.Val, resultType);
1480 
1481   // Make sure we emit a debug reference to the global variable.
1482   // This should probably fire even for
1483   if (isa<VarDecl>(value)) {
1484     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1485       EmitDeclRefExprDbgValue(refExpr, result.Val);
1486   } else {
1487     assert(isa<EnumConstantDecl>(value));
1488     EmitDeclRefExprDbgValue(refExpr, result.Val);
1489   }
1490 
1491   // If we emitted a reference constant, we need to dereference that.
1492   if (resultIsReference)
1493     return ConstantEmission::forReference(C);
1494 
1495   return ConstantEmission::forValue(C);
1496 }
1497 
1498 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1499                                                         const MemberExpr *ME) {
1500   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1501     // Try to emit static variable member expressions as DREs.
1502     return DeclRefExpr::Create(
1503         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1504         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1505         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1506   }
1507   return nullptr;
1508 }
1509 
1510 CodeGenFunction::ConstantEmission
1511 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1512   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1513     return tryEmitAsConstant(DRE);
1514   return ConstantEmission();
1515 }
1516 
1517 llvm::Value *CodeGenFunction::emitScalarConstant(
1518     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1519   assert(Constant && "not a constant");
1520   if (Constant.isReference())
1521     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1522                             E->getExprLoc())
1523         .getScalarVal();
1524   return Constant.getValue();
1525 }
1526 
1527 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1528                                                SourceLocation Loc) {
1529   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1530                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1531                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1532 }
1533 
1534 static bool hasBooleanRepresentation(QualType Ty) {
1535   if (Ty->isBooleanType())
1536     return true;
1537 
1538   if (const EnumType *ET = Ty->getAs<EnumType>())
1539     return ET->getDecl()->getIntegerType()->isBooleanType();
1540 
1541   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1542     return hasBooleanRepresentation(AT->getValueType());
1543 
1544   return false;
1545 }
1546 
1547 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1548                             llvm::APInt &Min, llvm::APInt &End,
1549                             bool StrictEnums, bool IsBool) {
1550   const EnumType *ET = Ty->getAs<EnumType>();
1551   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1552                                 ET && !ET->getDecl()->isFixed();
1553   if (!IsBool && !IsRegularCPlusPlusEnum)
1554     return false;
1555 
1556   if (IsBool) {
1557     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1558     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1559   } else {
1560     const EnumDecl *ED = ET->getDecl();
1561     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1562     unsigned Bitwidth = LTy->getScalarSizeInBits();
1563     unsigned NumNegativeBits = ED->getNumNegativeBits();
1564     unsigned NumPositiveBits = ED->getNumPositiveBits();
1565 
1566     if (NumNegativeBits) {
1567       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1568       assert(NumBits <= Bitwidth);
1569       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1570       Min = -End;
1571     } else {
1572       assert(NumPositiveBits <= Bitwidth);
1573       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1574       Min = llvm::APInt(Bitwidth, 0);
1575     }
1576   }
1577   return true;
1578 }
1579 
1580 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1581   llvm::APInt Min, End;
1582   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1583                        hasBooleanRepresentation(Ty)))
1584     return nullptr;
1585 
1586   llvm::MDBuilder MDHelper(getLLVMContext());
1587   return MDHelper.createRange(Min, End);
1588 }
1589 
1590 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1591                                            SourceLocation Loc) {
1592   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1593   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1594   if (!HasBoolCheck && !HasEnumCheck)
1595     return false;
1596 
1597   bool IsBool = hasBooleanRepresentation(Ty) ||
1598                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1599   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1600   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1601   if (!NeedsBoolCheck && !NeedsEnumCheck)
1602     return false;
1603 
1604   // Single-bit booleans don't need to be checked. Special-case this to avoid
1605   // a bit width mismatch when handling bitfield values. This is handled by
1606   // EmitFromMemory for the non-bitfield case.
1607   if (IsBool &&
1608       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1609     return false;
1610 
1611   llvm::APInt Min, End;
1612   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1613     return true;
1614 
1615   auto &Ctx = getLLVMContext();
1616   SanitizerScope SanScope(this);
1617   llvm::Value *Check;
1618   --End;
1619   if (!Min) {
1620     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1621   } else {
1622     llvm::Value *Upper =
1623         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1624     llvm::Value *Lower =
1625         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1626     Check = Builder.CreateAnd(Upper, Lower);
1627   }
1628   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1629                                   EmitCheckTypeDescriptor(Ty)};
1630   SanitizerMask Kind =
1631       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1632   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1633             StaticArgs, EmitCheckValue(Value));
1634   return true;
1635 }
1636 
1637 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1638                                                QualType Ty,
1639                                                SourceLocation Loc,
1640                                                LValueBaseInfo BaseInfo,
1641                                                TBAAAccessInfo TBAAInfo,
1642                                                bool isNontemporal) {
1643   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1644     // For better performance, handle vector loads differently.
1645     if (Ty->isVectorType()) {
1646       const llvm::Type *EltTy = Addr.getElementType();
1647 
1648       const auto *VTy = cast<llvm::VectorType>(EltTy);
1649 
1650       // Handle vectors of size 3 like size 4 for better performance.
1651       if (VTy->getNumElements() == 3) {
1652 
1653         // Bitcast to vec4 type.
1654         llvm::VectorType *vec4Ty =
1655             llvm::VectorType::get(VTy->getElementType(), 4);
1656         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1657         // Now load value.
1658         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1659 
1660         // Shuffle vector to get vec3.
1661         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1662                                         {0, 1, 2}, "extractVec");
1663         return EmitFromMemory(V, Ty);
1664       }
1665     }
1666   }
1667 
1668   // Atomic operations have to be done on integral types.
1669   LValue AtomicLValue =
1670       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1671   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1672     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1673   }
1674 
1675   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1676   if (isNontemporal) {
1677     llvm::MDNode *Node = llvm::MDNode::get(
1678         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1679     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1680   }
1681 
1682   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1683 
1684   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1685     // In order to prevent the optimizer from throwing away the check, don't
1686     // attach range metadata to the load.
1687   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1688     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1689       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1690 
1691   return EmitFromMemory(Load, Ty);
1692 }
1693 
1694 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1695   // Bool has a different representation in memory than in registers.
1696   if (hasBooleanRepresentation(Ty)) {
1697     // This should really always be an i1, but sometimes it's already
1698     // an i8, and it's awkward to track those cases down.
1699     if (Value->getType()->isIntegerTy(1))
1700       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1701     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1702            "wrong value rep of bool");
1703   }
1704 
1705   return Value;
1706 }
1707 
1708 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1709   // Bool has a different representation in memory than in registers.
1710   if (hasBooleanRepresentation(Ty)) {
1711     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1712            "wrong value rep of bool");
1713     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1714   }
1715 
1716   return Value;
1717 }
1718 
1719 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1720                                         bool Volatile, QualType Ty,
1721                                         LValueBaseInfo BaseInfo,
1722                                         TBAAAccessInfo TBAAInfo,
1723                                         bool isInit, bool isNontemporal) {
1724   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1725     // Handle vectors differently to get better performance.
1726     if (Ty->isVectorType()) {
1727       llvm::Type *SrcTy = Value->getType();
1728       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1729       // Handle vec3 special.
1730       if (VecTy && VecTy->getNumElements() == 3) {
1731         // Our source is a vec3, do a shuffle vector to make it a vec4.
1732         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1733                                   Builder.getInt32(2),
1734                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1735         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1736         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1737                                             MaskV, "extractVec");
1738         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1739       }
1740       if (Addr.getElementType() != SrcTy) {
1741         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1742       }
1743     }
1744   }
1745 
1746   Value = EmitToMemory(Value, Ty);
1747 
1748   LValue AtomicLValue =
1749       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1750   if (Ty->isAtomicType() ||
1751       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1752     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1753     return;
1754   }
1755 
1756   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1757   if (isNontemporal) {
1758     llvm::MDNode *Node =
1759         llvm::MDNode::get(Store->getContext(),
1760                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1761     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1762   }
1763 
1764   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1765 }
1766 
1767 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1768                                         bool isInit) {
1769   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1770                     lvalue.getType(), lvalue.getBaseInfo(),
1771                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1772 }
1773 
1774 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1775 /// method emits the address of the lvalue, then loads the result as an rvalue,
1776 /// returning the rvalue.
1777 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1778   if (LV.isObjCWeak()) {
1779     // load of a __weak object.
1780     Address AddrWeakObj = LV.getAddress(*this);
1781     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1782                                                              AddrWeakObj));
1783   }
1784   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1785     // In MRC mode, we do a load+autorelease.
1786     if (!getLangOpts().ObjCAutoRefCount) {
1787       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1788     }
1789 
1790     // In ARC mode, we load retained and then consume the value.
1791     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1792     Object = EmitObjCConsumeObject(LV.getType(), Object);
1793     return RValue::get(Object);
1794   }
1795 
1796   if (LV.isSimple()) {
1797     assert(!LV.getType()->isFunctionType());
1798 
1799     // Everything needs a load.
1800     return RValue::get(EmitLoadOfScalar(LV, Loc));
1801   }
1802 
1803   if (LV.isVectorElt()) {
1804     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1805                                               LV.isVolatileQualified());
1806     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1807                                                     "vecext"));
1808   }
1809 
1810   // If this is a reference to a subset of the elements of a vector, either
1811   // shuffle the input or extract/insert them as appropriate.
1812   if (LV.isExtVectorElt())
1813     return EmitLoadOfExtVectorElementLValue(LV);
1814 
1815   // Global Register variables always invoke intrinsics
1816   if (LV.isGlobalReg())
1817     return EmitLoadOfGlobalRegLValue(LV);
1818 
1819   assert(LV.isBitField() && "Unknown LValue type!");
1820   return EmitLoadOfBitfieldLValue(LV, Loc);
1821 }
1822 
1823 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1824                                                  SourceLocation Loc) {
1825   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1826 
1827   // Get the output type.
1828   llvm::Type *ResLTy = ConvertType(LV.getType());
1829 
1830   Address Ptr = LV.getBitFieldAddress();
1831   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1832 
1833   if (Info.IsSigned) {
1834     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1835     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1836     if (HighBits)
1837       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1838     if (Info.Offset + HighBits)
1839       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1840   } else {
1841     if (Info.Offset)
1842       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1843     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1844       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1845                                                               Info.Size),
1846                               "bf.clear");
1847   }
1848   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1849   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1850   return RValue::get(Val);
1851 }
1852 
1853 // If this is a reference to a subset of the elements of a vector, create an
1854 // appropriate shufflevector.
1855 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1856   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1857                                         LV.isVolatileQualified());
1858 
1859   const llvm::Constant *Elts = LV.getExtVectorElts();
1860 
1861   // If the result of the expression is a non-vector type, we must be extracting
1862   // a single element.  Just codegen as an extractelement.
1863   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1864   if (!ExprVT) {
1865     unsigned InIdx = getAccessedFieldNo(0, Elts);
1866     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1867     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1868   }
1869 
1870   // Always use shuffle vector to try to retain the original program structure
1871   unsigned NumResultElts = ExprVT->getNumElements();
1872 
1873   SmallVector<llvm::Constant*, 4> Mask;
1874   for (unsigned i = 0; i != NumResultElts; ++i)
1875     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1876 
1877   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1878   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1879                                     MaskV);
1880   return RValue::get(Vec);
1881 }
1882 
1883 /// Generates lvalue for partial ext_vector access.
1884 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1885   Address VectorAddress = LV.getExtVectorAddress();
1886   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1887   QualType EQT = ExprVT->getElementType();
1888   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1889 
1890   Address CastToPointerElement =
1891     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1892                                  "conv.ptr.element");
1893 
1894   const llvm::Constant *Elts = LV.getExtVectorElts();
1895   unsigned ix = getAccessedFieldNo(0, Elts);
1896 
1897   Address VectorBasePtrPlusIx =
1898     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1899                                    "vector.elt");
1900 
1901   return VectorBasePtrPlusIx;
1902 }
1903 
1904 /// Load of global gamed gegisters are always calls to intrinsics.
1905 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1906   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1907          "Bad type for register variable");
1908   llvm::MDNode *RegName = cast<llvm::MDNode>(
1909       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1910 
1911   // We accept integer and pointer types only
1912   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1913   llvm::Type *Ty = OrigTy;
1914   if (OrigTy->isPointerTy())
1915     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1916   llvm::Type *Types[] = { Ty };
1917 
1918   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1919   llvm::Value *Call = Builder.CreateCall(
1920       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1921   if (OrigTy->isPointerTy())
1922     Call = Builder.CreateIntToPtr(Call, OrigTy);
1923   return RValue::get(Call);
1924 }
1925 
1926 
1927 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1928 /// lvalue, where both are guaranteed to the have the same type, and that type
1929 /// is 'Ty'.
1930 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1931                                              bool isInit) {
1932   if (!Dst.isSimple()) {
1933     if (Dst.isVectorElt()) {
1934       // Read/modify/write the vector, inserting the new element.
1935       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1936                                             Dst.isVolatileQualified());
1937       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1938                                         Dst.getVectorIdx(), "vecins");
1939       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1940                           Dst.isVolatileQualified());
1941       return;
1942     }
1943 
1944     // If this is an update of extended vector elements, insert them as
1945     // appropriate.
1946     if (Dst.isExtVectorElt())
1947       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1948 
1949     if (Dst.isGlobalReg())
1950       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1951 
1952     assert(Dst.isBitField() && "Unknown LValue type");
1953     return EmitStoreThroughBitfieldLValue(Src, Dst);
1954   }
1955 
1956   // There's special magic for assigning into an ARC-qualified l-value.
1957   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1958     switch (Lifetime) {
1959     case Qualifiers::OCL_None:
1960       llvm_unreachable("present but none");
1961 
1962     case Qualifiers::OCL_ExplicitNone:
1963       // nothing special
1964       break;
1965 
1966     case Qualifiers::OCL_Strong:
1967       if (isInit) {
1968         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1969         break;
1970       }
1971       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1972       return;
1973 
1974     case Qualifiers::OCL_Weak:
1975       if (isInit)
1976         // Initialize and then skip the primitive store.
1977         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
1978       else
1979         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
1980                          /*ignore*/ true);
1981       return;
1982 
1983     case Qualifiers::OCL_Autoreleasing:
1984       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1985                                                      Src.getScalarVal()));
1986       // fall into the normal path
1987       break;
1988     }
1989   }
1990 
1991   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1992     // load of a __weak object.
1993     Address LvalueDst = Dst.getAddress(*this);
1994     llvm::Value *src = Src.getScalarVal();
1995      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1996     return;
1997   }
1998 
1999   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2000     // load of a __strong object.
2001     Address LvalueDst = Dst.getAddress(*this);
2002     llvm::Value *src = Src.getScalarVal();
2003     if (Dst.isObjCIvar()) {
2004       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2005       llvm::Type *ResultType = IntPtrTy;
2006       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2007       llvm::Value *RHS = dst.getPointer();
2008       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2009       llvm::Value *LHS =
2010         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2011                                "sub.ptr.lhs.cast");
2012       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2013       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2014                                               BytesBetween);
2015     } else if (Dst.isGlobalObjCRef()) {
2016       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2017                                                 Dst.isThreadLocalRef());
2018     }
2019     else
2020       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2021     return;
2022   }
2023 
2024   assert(Src.isScalar() && "Can't emit an agg store with this method");
2025   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2026 }
2027 
2028 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2029                                                      llvm::Value **Result) {
2030   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2031   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2032   Address Ptr = Dst.getBitFieldAddress();
2033 
2034   // Get the source value, truncated to the width of the bit-field.
2035   llvm::Value *SrcVal = Src.getScalarVal();
2036 
2037   // Cast the source to the storage type and shift it into place.
2038   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2039                                  /*isSigned=*/false);
2040   llvm::Value *MaskedVal = SrcVal;
2041 
2042   // See if there are other bits in the bitfield's storage we'll need to load
2043   // and mask together with source before storing.
2044   if (Info.StorageSize != Info.Size) {
2045     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2046     llvm::Value *Val =
2047       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2048 
2049     // Mask the source value as needed.
2050     if (!hasBooleanRepresentation(Dst.getType()))
2051       SrcVal = Builder.CreateAnd(SrcVal,
2052                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2053                                                             Info.Size),
2054                                  "bf.value");
2055     MaskedVal = SrcVal;
2056     if (Info.Offset)
2057       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2058 
2059     // Mask out the original value.
2060     Val = Builder.CreateAnd(Val,
2061                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2062                                                      Info.Offset,
2063                                                      Info.Offset + Info.Size),
2064                             "bf.clear");
2065 
2066     // Or together the unchanged values and the source value.
2067     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2068   } else {
2069     assert(Info.Offset == 0);
2070   }
2071 
2072   // Write the new value back out.
2073   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2074 
2075   // Return the new value of the bit-field, if requested.
2076   if (Result) {
2077     llvm::Value *ResultVal = MaskedVal;
2078 
2079     // Sign extend the value if needed.
2080     if (Info.IsSigned) {
2081       assert(Info.Size <= Info.StorageSize);
2082       unsigned HighBits = Info.StorageSize - Info.Size;
2083       if (HighBits) {
2084         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2085         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2086       }
2087     }
2088 
2089     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2090                                       "bf.result.cast");
2091     *Result = EmitFromMemory(ResultVal, Dst.getType());
2092   }
2093 }
2094 
2095 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2096                                                                LValue Dst) {
2097   // This access turns into a read/modify/write of the vector.  Load the input
2098   // value now.
2099   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2100                                         Dst.isVolatileQualified());
2101   const llvm::Constant *Elts = Dst.getExtVectorElts();
2102 
2103   llvm::Value *SrcVal = Src.getScalarVal();
2104 
2105   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2106     unsigned NumSrcElts = VTy->getNumElements();
2107     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2108     if (NumDstElts == NumSrcElts) {
2109       // Use shuffle vector is the src and destination are the same number of
2110       // elements and restore the vector mask since it is on the side it will be
2111       // stored.
2112       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2113       for (unsigned i = 0; i != NumSrcElts; ++i)
2114         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2115 
2116       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2117       Vec = Builder.CreateShuffleVector(SrcVal,
2118                                         llvm::UndefValue::get(Vec->getType()),
2119                                         MaskV);
2120     } else if (NumDstElts > NumSrcElts) {
2121       // Extended the source vector to the same length and then shuffle it
2122       // into the destination.
2123       // FIXME: since we're shuffling with undef, can we just use the indices
2124       //        into that?  This could be simpler.
2125       SmallVector<llvm::Constant*, 4> ExtMask;
2126       for (unsigned i = 0; i != NumSrcElts; ++i)
2127         ExtMask.push_back(Builder.getInt32(i));
2128       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2129       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2130       llvm::Value *ExtSrcVal =
2131         Builder.CreateShuffleVector(SrcVal,
2132                                     llvm::UndefValue::get(SrcVal->getType()),
2133                                     ExtMaskV);
2134       // build identity
2135       SmallVector<llvm::Constant*, 4> Mask;
2136       for (unsigned i = 0; i != NumDstElts; ++i)
2137         Mask.push_back(Builder.getInt32(i));
2138 
2139       // When the vector size is odd and .odd or .hi is used, the last element
2140       // of the Elts constant array will be one past the size of the vector.
2141       // Ignore the last element here, if it is greater than the mask size.
2142       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2143         NumSrcElts--;
2144 
2145       // modify when what gets shuffled in
2146       for (unsigned i = 0; i != NumSrcElts; ++i)
2147         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2148       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2149       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2150     } else {
2151       // We should never shorten the vector
2152       llvm_unreachable("unexpected shorten vector length");
2153     }
2154   } else {
2155     // If the Src is a scalar (not a vector) it must be updating one element.
2156     unsigned InIdx = getAccessedFieldNo(0, Elts);
2157     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2158     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2159   }
2160 
2161   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2162                       Dst.isVolatileQualified());
2163 }
2164 
2165 /// Store of global named registers are always calls to intrinsics.
2166 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2167   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2168          "Bad type for register variable");
2169   llvm::MDNode *RegName = cast<llvm::MDNode>(
2170       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2171   assert(RegName && "Register LValue is not metadata");
2172 
2173   // We accept integer and pointer types only
2174   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2175   llvm::Type *Ty = OrigTy;
2176   if (OrigTy->isPointerTy())
2177     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2178   llvm::Type *Types[] = { Ty };
2179 
2180   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2181   llvm::Value *Value = Src.getScalarVal();
2182   if (OrigTy->isPointerTy())
2183     Value = Builder.CreatePtrToInt(Value, Ty);
2184   Builder.CreateCall(
2185       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2186 }
2187 
2188 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2189 // generating write-barries API. It is currently a global, ivar,
2190 // or neither.
2191 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2192                                  LValue &LV,
2193                                  bool IsMemberAccess=false) {
2194   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2195     return;
2196 
2197   if (isa<ObjCIvarRefExpr>(E)) {
2198     QualType ExpTy = E->getType();
2199     if (IsMemberAccess && ExpTy->isPointerType()) {
2200       // If ivar is a structure pointer, assigning to field of
2201       // this struct follows gcc's behavior and makes it a non-ivar
2202       // writer-barrier conservatively.
2203       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2204       if (ExpTy->isRecordType()) {
2205         LV.setObjCIvar(false);
2206         return;
2207       }
2208     }
2209     LV.setObjCIvar(true);
2210     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2211     LV.setBaseIvarExp(Exp->getBase());
2212     LV.setObjCArray(E->getType()->isArrayType());
2213     return;
2214   }
2215 
2216   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2217     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2218       if (VD->hasGlobalStorage()) {
2219         LV.setGlobalObjCRef(true);
2220         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2221       }
2222     }
2223     LV.setObjCArray(E->getType()->isArrayType());
2224     return;
2225   }
2226 
2227   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2228     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2229     return;
2230   }
2231 
2232   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2233     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2234     if (LV.isObjCIvar()) {
2235       // If cast is to a structure pointer, follow gcc's behavior and make it
2236       // a non-ivar write-barrier.
2237       QualType ExpTy = E->getType();
2238       if (ExpTy->isPointerType())
2239         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2240       if (ExpTy->isRecordType())
2241         LV.setObjCIvar(false);
2242     }
2243     return;
2244   }
2245 
2246   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2247     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2248     return;
2249   }
2250 
2251   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2252     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2253     return;
2254   }
2255 
2256   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2257     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2258     return;
2259   }
2260 
2261   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2262     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2263     return;
2264   }
2265 
2266   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2267     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2268     if (LV.isObjCIvar() && !LV.isObjCArray())
2269       // Using array syntax to assigning to what an ivar points to is not
2270       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2271       LV.setObjCIvar(false);
2272     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2273       // Using array syntax to assigning to what global points to is not
2274       // same as assigning to the global itself. {id *G;} G[i] = 0;
2275       LV.setGlobalObjCRef(false);
2276     return;
2277   }
2278 
2279   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2280     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2281     // We don't know if member is an 'ivar', but this flag is looked at
2282     // only in the context of LV.isObjCIvar().
2283     LV.setObjCArray(E->getType()->isArrayType());
2284     return;
2285   }
2286 }
2287 
2288 static llvm::Value *
2289 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2290                                 llvm::Value *V, llvm::Type *IRType,
2291                                 StringRef Name = StringRef()) {
2292   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2293   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2294 }
2295 
2296 static LValue EmitThreadPrivateVarDeclLValue(
2297     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2298     llvm::Type *RealVarTy, SourceLocation Loc) {
2299   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2300   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2301   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2302 }
2303 
2304 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2305                                            const VarDecl *VD, QualType T) {
2306   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2307       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2308   // Return an invalid address if variable is MT_To and unified
2309   // memory is not enabled. For all other cases: MT_Link and
2310   // MT_To with unified memory, return a valid address.
2311   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2312                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2313     return Address::invalid();
2314   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2315           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2316            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2317          "Expected link clause OR to clause with unified memory enabled.");
2318   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2319   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2320   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2321 }
2322 
2323 Address
2324 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2325                                      LValueBaseInfo *PointeeBaseInfo,
2326                                      TBAAAccessInfo *PointeeTBAAInfo) {
2327   llvm::LoadInst *Load =
2328       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2329   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2330 
2331   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2332                                             PointeeBaseInfo, PointeeTBAAInfo,
2333                                             /* forPointeeType= */ true);
2334   return Address(Load, Align);
2335 }
2336 
2337 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2338   LValueBaseInfo PointeeBaseInfo;
2339   TBAAAccessInfo PointeeTBAAInfo;
2340   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2341                                             &PointeeTBAAInfo);
2342   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2343                         PointeeBaseInfo, PointeeTBAAInfo);
2344 }
2345 
2346 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2347                                            const PointerType *PtrTy,
2348                                            LValueBaseInfo *BaseInfo,
2349                                            TBAAAccessInfo *TBAAInfo) {
2350   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2351   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2352                                                BaseInfo, TBAAInfo,
2353                                                /*forPointeeType=*/true));
2354 }
2355 
2356 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2357                                                 const PointerType *PtrTy) {
2358   LValueBaseInfo BaseInfo;
2359   TBAAAccessInfo TBAAInfo;
2360   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2361   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2362 }
2363 
2364 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2365                                       const Expr *E, const VarDecl *VD) {
2366   QualType T = E->getType();
2367 
2368   // If it's thread_local, emit a call to its wrapper function instead.
2369   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2370       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2371     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2372   // Check if the variable is marked as declare target with link clause in
2373   // device codegen.
2374   if (CGF.getLangOpts().OpenMPIsDevice) {
2375     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2376     if (Addr.isValid())
2377       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2378   }
2379 
2380   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2381   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2382   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2383   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2384   Address Addr(V, Alignment);
2385   // Emit reference to the private copy of the variable if it is an OpenMP
2386   // threadprivate variable.
2387   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2388       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2389     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2390                                           E->getExprLoc());
2391   }
2392   LValue LV = VD->getType()->isReferenceType() ?
2393       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2394                                     AlignmentSource::Decl) :
2395       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2396   setObjCGCLValueClass(CGF.getContext(), E, LV);
2397   return LV;
2398 }
2399 
2400 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2401                                                const FunctionDecl *FD) {
2402   if (FD->hasAttr<WeakRefAttr>()) {
2403     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2404     return aliasee.getPointer();
2405   }
2406 
2407   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2408   if (!FD->hasPrototype()) {
2409     if (const FunctionProtoType *Proto =
2410             FD->getType()->getAs<FunctionProtoType>()) {
2411       // Ugly case: for a K&R-style definition, the type of the definition
2412       // isn't the same as the type of a use.  Correct for this with a
2413       // bitcast.
2414       QualType NoProtoType =
2415           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2416       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2417       V = llvm::ConstantExpr::getBitCast(V,
2418                                       CGM.getTypes().ConvertType(NoProtoType));
2419     }
2420   }
2421   return V;
2422 }
2423 
2424 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2425                                      const Expr *E, const FunctionDecl *FD) {
2426   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2427   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2428   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2429                             AlignmentSource::Decl);
2430 }
2431 
2432 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2433                                       llvm::Value *ThisValue) {
2434   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2435   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2436   return CGF.EmitLValueForField(LV, FD);
2437 }
2438 
2439 /// Named Registers are named metadata pointing to the register name
2440 /// which will be read from/written to as an argument to the intrinsic
2441 /// @llvm.read/write_register.
2442 /// So far, only the name is being passed down, but other options such as
2443 /// register type, allocation type or even optimization options could be
2444 /// passed down via the metadata node.
2445 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2446   SmallString<64> Name("llvm.named.register.");
2447   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2448   assert(Asm->getLabel().size() < 64-Name.size() &&
2449       "Register name too big");
2450   Name.append(Asm->getLabel());
2451   llvm::NamedMDNode *M =
2452     CGM.getModule().getOrInsertNamedMetadata(Name);
2453   if (M->getNumOperands() == 0) {
2454     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2455                                               Asm->getLabel());
2456     llvm::Metadata *Ops[] = {Str};
2457     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2458   }
2459 
2460   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2461 
2462   llvm::Value *Ptr =
2463     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2464   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2465 }
2466 
2467 /// Determine whether we can emit a reference to \p VD from the current
2468 /// context, despite not necessarily having seen an odr-use of the variable in
2469 /// this context.
2470 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2471                                                const DeclRefExpr *E,
2472                                                const VarDecl *VD,
2473                                                bool IsConstant) {
2474   // For a variable declared in an enclosing scope, do not emit a spurious
2475   // reference even if we have a capture, as that will emit an unwarranted
2476   // reference to our capture state, and will likely generate worse code than
2477   // emitting a local copy.
2478   if (E->refersToEnclosingVariableOrCapture())
2479     return false;
2480 
2481   // For a local declaration declared in this function, we can always reference
2482   // it even if we don't have an odr-use.
2483   if (VD->hasLocalStorage()) {
2484     return VD->getDeclContext() ==
2485            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2486   }
2487 
2488   // For a global declaration, we can emit a reference to it if we know
2489   // for sure that we are able to emit a definition of it.
2490   VD = VD->getDefinition(CGF.getContext());
2491   if (!VD)
2492     return false;
2493 
2494   // Don't emit a spurious reference if it might be to a variable that only
2495   // exists on a different device / target.
2496   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2497   // cross-target reference.
2498   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2499       CGF.getLangOpts().OpenCL) {
2500     return false;
2501   }
2502 
2503   // We can emit a spurious reference only if the linkage implies that we'll
2504   // be emitting a non-interposable symbol that will be retained until link
2505   // time.
2506   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2507   case llvm::GlobalValue::ExternalLinkage:
2508   case llvm::GlobalValue::LinkOnceODRLinkage:
2509   case llvm::GlobalValue::WeakODRLinkage:
2510   case llvm::GlobalValue::InternalLinkage:
2511   case llvm::GlobalValue::PrivateLinkage:
2512     return true;
2513   default:
2514     return false;
2515   }
2516 }
2517 
2518 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2519   const NamedDecl *ND = E->getDecl();
2520   QualType T = E->getType();
2521 
2522   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2523          "should not emit an unevaluated operand");
2524 
2525   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2526     // Global Named registers access via intrinsics only
2527     if (VD->getStorageClass() == SC_Register &&
2528         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2529       return EmitGlobalNamedRegister(VD, CGM);
2530 
2531     // If this DeclRefExpr does not constitute an odr-use of the variable,
2532     // we're not permitted to emit a reference to it in general, and it might
2533     // not be captured if capture would be necessary for a use. Emit the
2534     // constant value directly instead.
2535     if (E->isNonOdrUse() == NOUR_Constant &&
2536         (VD->getType()->isReferenceType() ||
2537          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2538       VD->getAnyInitializer(VD);
2539       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2540           E->getLocation(), *VD->evaluateValue(), VD->getType());
2541       assert(Val && "failed to emit constant expression");
2542 
2543       Address Addr = Address::invalid();
2544       if (!VD->getType()->isReferenceType()) {
2545         // Spill the constant value to a global.
2546         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2547                                            getContext().getDeclAlign(VD));
2548         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2549         auto *PTy = llvm::PointerType::get(
2550             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2551         if (PTy != Addr.getType())
2552           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2553       } else {
2554         // Should we be using the alignment of the constant pointer we emitted?
2555         CharUnits Alignment =
2556             getNaturalTypeAlignment(E->getType(),
2557                                     /* BaseInfo= */ nullptr,
2558                                     /* TBAAInfo= */ nullptr,
2559                                     /* forPointeeType= */ true);
2560         Addr = Address(Val, Alignment);
2561       }
2562       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2563     }
2564 
2565     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2566 
2567     // Check for captured variables.
2568     if (E->refersToEnclosingVariableOrCapture()) {
2569       VD = VD->getCanonicalDecl();
2570       if (auto *FD = LambdaCaptureFields.lookup(VD))
2571         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2572       if (CapturedStmtInfo) {
2573         auto I = LocalDeclMap.find(VD);
2574         if (I != LocalDeclMap.end()) {
2575           LValue CapLVal;
2576           if (VD->getType()->isReferenceType())
2577             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2578                                                 AlignmentSource::Decl);
2579           else
2580             CapLVal = MakeAddrLValue(I->second, T);
2581           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2582           // in simd context.
2583           if (getLangOpts().OpenMP &&
2584               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2585             CapLVal.setNontemporal(/*Value=*/true);
2586           return CapLVal;
2587         }
2588         LValue CapLVal =
2589             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2590                                     CapturedStmtInfo->getContextValue());
2591         CapLVal = MakeAddrLValue(
2592             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2593             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2594             CapLVal.getTBAAInfo());
2595         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2596         // in simd context.
2597         if (getLangOpts().OpenMP &&
2598             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2599           CapLVal.setNontemporal(/*Value=*/true);
2600         return CapLVal;
2601       }
2602 
2603       assert(isa<BlockDecl>(CurCodeDecl));
2604       Address addr = GetAddrOfBlockDecl(VD);
2605       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2606     }
2607   }
2608 
2609   // FIXME: We should be able to assert this for FunctionDecls as well!
2610   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2611   // those with a valid source location.
2612   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2613           !E->getLocation().isValid()) &&
2614          "Should not use decl without marking it used!");
2615 
2616   if (ND->hasAttr<WeakRefAttr>()) {
2617     const auto *VD = cast<ValueDecl>(ND);
2618     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2619     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2620   }
2621 
2622   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2623     // Check if this is a global variable.
2624     if (VD->hasLinkage() || VD->isStaticDataMember())
2625       return EmitGlobalVarDeclLValue(*this, E, VD);
2626 
2627     Address addr = Address::invalid();
2628 
2629     // The variable should generally be present in the local decl map.
2630     auto iter = LocalDeclMap.find(VD);
2631     if (iter != LocalDeclMap.end()) {
2632       addr = iter->second;
2633 
2634     // Otherwise, it might be static local we haven't emitted yet for
2635     // some reason; most likely, because it's in an outer function.
2636     } else if (VD->isStaticLocal()) {
2637       addr = Address(CGM.getOrCreateStaticVarDecl(
2638           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2639                      getContext().getDeclAlign(VD));
2640 
2641     // No other cases for now.
2642     } else {
2643       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2644     }
2645 
2646 
2647     // Check for OpenMP threadprivate variables.
2648     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2649         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2650       return EmitThreadPrivateVarDeclLValue(
2651           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2652           E->getExprLoc());
2653     }
2654 
2655     // Drill into block byref variables.
2656     bool isBlockByref = VD->isEscapingByref();
2657     if (isBlockByref) {
2658       addr = emitBlockByrefAddress(addr, VD);
2659     }
2660 
2661     // Drill into reference types.
2662     LValue LV = VD->getType()->isReferenceType() ?
2663         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2664         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2665 
2666     bool isLocalStorage = VD->hasLocalStorage();
2667 
2668     bool NonGCable = isLocalStorage &&
2669                      !VD->getType()->isReferenceType() &&
2670                      !isBlockByref;
2671     if (NonGCable) {
2672       LV.getQuals().removeObjCGCAttr();
2673       LV.setNonGC(true);
2674     }
2675 
2676     bool isImpreciseLifetime =
2677       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2678     if (isImpreciseLifetime)
2679       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2680     setObjCGCLValueClass(getContext(), E, LV);
2681     return LV;
2682   }
2683 
2684   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2685     return EmitFunctionDeclLValue(*this, E, FD);
2686 
2687   // FIXME: While we're emitting a binding from an enclosing scope, all other
2688   // DeclRefExprs we see should be implicitly treated as if they also refer to
2689   // an enclosing scope.
2690   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2691     return EmitLValue(BD->getBinding());
2692 
2693   llvm_unreachable("Unhandled DeclRefExpr");
2694 }
2695 
2696 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2697   // __extension__ doesn't affect lvalue-ness.
2698   if (E->getOpcode() == UO_Extension)
2699     return EmitLValue(E->getSubExpr());
2700 
2701   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2702   switch (E->getOpcode()) {
2703   default: llvm_unreachable("Unknown unary operator lvalue!");
2704   case UO_Deref: {
2705     QualType T = E->getSubExpr()->getType()->getPointeeType();
2706     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2707 
2708     LValueBaseInfo BaseInfo;
2709     TBAAAccessInfo TBAAInfo;
2710     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2711                                             &TBAAInfo);
2712     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2713     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2714 
2715     // We should not generate __weak write barrier on indirect reference
2716     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2717     // But, we continue to generate __strong write barrier on indirect write
2718     // into a pointer to object.
2719     if (getLangOpts().ObjC &&
2720         getLangOpts().getGC() != LangOptions::NonGC &&
2721         LV.isObjCWeak())
2722       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2723     return LV;
2724   }
2725   case UO_Real:
2726   case UO_Imag: {
2727     LValue LV = EmitLValue(E->getSubExpr());
2728     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2729 
2730     // __real is valid on scalars.  This is a faster way of testing that.
2731     // __imag can only produce an rvalue on scalars.
2732     if (E->getOpcode() == UO_Real &&
2733         !LV.getAddress(*this).getElementType()->isStructTy()) {
2734       assert(E->getSubExpr()->getType()->isArithmeticType());
2735       return LV;
2736     }
2737 
2738     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2739 
2740     Address Component =
2741         (E->getOpcode() == UO_Real
2742              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2743              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2744     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2745                                    CGM.getTBAAInfoForSubobject(LV, T));
2746     ElemLV.getQuals().addQualifiers(LV.getQuals());
2747     return ElemLV;
2748   }
2749   case UO_PreInc:
2750   case UO_PreDec: {
2751     LValue LV = EmitLValue(E->getSubExpr());
2752     bool isInc = E->getOpcode() == UO_PreInc;
2753 
2754     if (E->getType()->isAnyComplexType())
2755       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2756     else
2757       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2758     return LV;
2759   }
2760   }
2761 }
2762 
2763 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2764   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2765                         E->getType(), AlignmentSource::Decl);
2766 }
2767 
2768 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2769   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2770                         E->getType(), AlignmentSource::Decl);
2771 }
2772 
2773 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2774   auto SL = E->getFunctionName();
2775   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2776   StringRef FnName = CurFn->getName();
2777   if (FnName.startswith("\01"))
2778     FnName = FnName.substr(1);
2779   StringRef NameItems[] = {
2780       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2781   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2782   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2783     std::string Name = SL->getString();
2784     if (!Name.empty()) {
2785       unsigned Discriminator =
2786           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2787       if (Discriminator)
2788         Name += "_" + Twine(Discriminator + 1).str();
2789       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2790       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2791     } else {
2792       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2793       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2794     }
2795   }
2796   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2797   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2798 }
2799 
2800 /// Emit a type description suitable for use by a runtime sanitizer library. The
2801 /// format of a type descriptor is
2802 ///
2803 /// \code
2804 ///   { i16 TypeKind, i16 TypeInfo }
2805 /// \endcode
2806 ///
2807 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2808 /// integer, 1 for a floating point value, and -1 for anything else.
2809 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2810   // Only emit each type's descriptor once.
2811   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2812     return C;
2813 
2814   uint16_t TypeKind = -1;
2815   uint16_t TypeInfo = 0;
2816 
2817   if (T->isIntegerType()) {
2818     TypeKind = 0;
2819     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2820                (T->isSignedIntegerType() ? 1 : 0);
2821   } else if (T->isFloatingType()) {
2822     TypeKind = 1;
2823     TypeInfo = getContext().getTypeSize(T);
2824   }
2825 
2826   // Format the type name as if for a diagnostic, including quotes and
2827   // optionally an 'aka'.
2828   SmallString<32> Buffer;
2829   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2830                                     (intptr_t)T.getAsOpaquePtr(),
2831                                     StringRef(), StringRef(), None, Buffer,
2832                                     None);
2833 
2834   llvm::Constant *Components[] = {
2835     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2836     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2837   };
2838   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2839 
2840   auto *GV = new llvm::GlobalVariable(
2841       CGM.getModule(), Descriptor->getType(),
2842       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2843   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2844   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2845 
2846   // Remember the descriptor for this type.
2847   CGM.setTypeDescriptorInMap(T, GV);
2848 
2849   return GV;
2850 }
2851 
2852 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2853   llvm::Type *TargetTy = IntPtrTy;
2854 
2855   if (V->getType() == TargetTy)
2856     return V;
2857 
2858   // Floating-point types which fit into intptr_t are bitcast to integers
2859   // and then passed directly (after zero-extension, if necessary).
2860   if (V->getType()->isFloatingPointTy()) {
2861     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2862     if (Bits <= TargetTy->getIntegerBitWidth())
2863       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2864                                                          Bits));
2865   }
2866 
2867   // Integers which fit in intptr_t are zero-extended and passed directly.
2868   if (V->getType()->isIntegerTy() &&
2869       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2870     return Builder.CreateZExt(V, TargetTy);
2871 
2872   // Pointers are passed directly, everything else is passed by address.
2873   if (!V->getType()->isPointerTy()) {
2874     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2875     Builder.CreateStore(V, Ptr);
2876     V = Ptr.getPointer();
2877   }
2878   return Builder.CreatePtrToInt(V, TargetTy);
2879 }
2880 
2881 /// Emit a representation of a SourceLocation for passing to a handler
2882 /// in a sanitizer runtime library. The format for this data is:
2883 /// \code
2884 ///   struct SourceLocation {
2885 ///     const char *Filename;
2886 ///     int32_t Line, Column;
2887 ///   };
2888 /// \endcode
2889 /// For an invalid SourceLocation, the Filename pointer is null.
2890 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2891   llvm::Constant *Filename;
2892   int Line, Column;
2893 
2894   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2895   if (PLoc.isValid()) {
2896     StringRef FilenameString = PLoc.getFilename();
2897 
2898     int PathComponentsToStrip =
2899         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2900     if (PathComponentsToStrip < 0) {
2901       assert(PathComponentsToStrip != INT_MIN);
2902       int PathComponentsToKeep = -PathComponentsToStrip;
2903       auto I = llvm::sys::path::rbegin(FilenameString);
2904       auto E = llvm::sys::path::rend(FilenameString);
2905       while (I != E && --PathComponentsToKeep)
2906         ++I;
2907 
2908       FilenameString = FilenameString.substr(I - E);
2909     } else if (PathComponentsToStrip > 0) {
2910       auto I = llvm::sys::path::begin(FilenameString);
2911       auto E = llvm::sys::path::end(FilenameString);
2912       while (I != E && PathComponentsToStrip--)
2913         ++I;
2914 
2915       if (I != E)
2916         FilenameString =
2917             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2918       else
2919         FilenameString = llvm::sys::path::filename(FilenameString);
2920     }
2921 
2922     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2923     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2924                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2925     Filename = FilenameGV.getPointer();
2926     Line = PLoc.getLine();
2927     Column = PLoc.getColumn();
2928   } else {
2929     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2930     Line = Column = 0;
2931   }
2932 
2933   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2934                             Builder.getInt32(Column)};
2935 
2936   return llvm::ConstantStruct::getAnon(Data);
2937 }
2938 
2939 namespace {
2940 /// Specify under what conditions this check can be recovered
2941 enum class CheckRecoverableKind {
2942   /// Always terminate program execution if this check fails.
2943   Unrecoverable,
2944   /// Check supports recovering, runtime has both fatal (noreturn) and
2945   /// non-fatal handlers for this check.
2946   Recoverable,
2947   /// Runtime conditionally aborts, always need to support recovery.
2948   AlwaysRecoverable
2949 };
2950 }
2951 
2952 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2953   assert(Kind.countPopulation() == 1);
2954   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2955     return CheckRecoverableKind::AlwaysRecoverable;
2956   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2957     return CheckRecoverableKind::Unrecoverable;
2958   else
2959     return CheckRecoverableKind::Recoverable;
2960 }
2961 
2962 namespace {
2963 struct SanitizerHandlerInfo {
2964   char const *const Name;
2965   unsigned Version;
2966 };
2967 }
2968 
2969 const SanitizerHandlerInfo SanitizerHandlers[] = {
2970 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2971     LIST_SANITIZER_CHECKS
2972 #undef SANITIZER_CHECK
2973 };
2974 
2975 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2976                                  llvm::FunctionType *FnType,
2977                                  ArrayRef<llvm::Value *> FnArgs,
2978                                  SanitizerHandler CheckHandler,
2979                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2980                                  llvm::BasicBlock *ContBB) {
2981   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2982   Optional<ApplyDebugLocation> DL;
2983   if (!CGF.Builder.getCurrentDebugLocation()) {
2984     // Ensure that the call has at least an artificial debug location.
2985     DL.emplace(CGF, SourceLocation());
2986   }
2987   bool NeedsAbortSuffix =
2988       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2989   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2990   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2991   const StringRef CheckName = CheckInfo.Name;
2992   std::string FnName = "__ubsan_handle_" + CheckName.str();
2993   if (CheckInfo.Version && !MinimalRuntime)
2994     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2995   if (MinimalRuntime)
2996     FnName += "_minimal";
2997   if (NeedsAbortSuffix)
2998     FnName += "_abort";
2999   bool MayReturn =
3000       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3001 
3002   llvm::AttrBuilder B;
3003   if (!MayReturn) {
3004     B.addAttribute(llvm::Attribute::NoReturn)
3005         .addAttribute(llvm::Attribute::NoUnwind);
3006   }
3007   B.addAttribute(llvm::Attribute::UWTable);
3008 
3009   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3010       FnType, FnName,
3011       llvm::AttributeList::get(CGF.getLLVMContext(),
3012                                llvm::AttributeList::FunctionIndex, B),
3013       /*Local=*/true);
3014   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3015   if (!MayReturn) {
3016     HandlerCall->setDoesNotReturn();
3017     CGF.Builder.CreateUnreachable();
3018   } else {
3019     CGF.Builder.CreateBr(ContBB);
3020   }
3021 }
3022 
3023 void CodeGenFunction::EmitCheck(
3024     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3025     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3026     ArrayRef<llvm::Value *> DynamicArgs) {
3027   assert(IsSanitizerScope);
3028   assert(Checked.size() > 0);
3029   assert(CheckHandler >= 0 &&
3030          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3031   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3032 
3033   llvm::Value *FatalCond = nullptr;
3034   llvm::Value *RecoverableCond = nullptr;
3035   llvm::Value *TrapCond = nullptr;
3036   for (int i = 0, n = Checked.size(); i < n; ++i) {
3037     llvm::Value *Check = Checked[i].first;
3038     // -fsanitize-trap= overrides -fsanitize-recover=.
3039     llvm::Value *&Cond =
3040         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3041             ? TrapCond
3042             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3043                   ? RecoverableCond
3044                   : FatalCond;
3045     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3046   }
3047 
3048   if (TrapCond)
3049     EmitTrapCheck(TrapCond);
3050   if (!FatalCond && !RecoverableCond)
3051     return;
3052 
3053   llvm::Value *JointCond;
3054   if (FatalCond && RecoverableCond)
3055     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3056   else
3057     JointCond = FatalCond ? FatalCond : RecoverableCond;
3058   assert(JointCond);
3059 
3060   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3061   assert(SanOpts.has(Checked[0].second));
3062 #ifndef NDEBUG
3063   for (int i = 1, n = Checked.size(); i < n; ++i) {
3064     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3065            "All recoverable kinds in a single check must be same!");
3066     assert(SanOpts.has(Checked[i].second));
3067   }
3068 #endif
3069 
3070   llvm::BasicBlock *Cont = createBasicBlock("cont");
3071   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3072   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3073   // Give hint that we very much don't expect to execute the handler
3074   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3075   llvm::MDBuilder MDHelper(getLLVMContext());
3076   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3077   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3078   EmitBlock(Handlers);
3079 
3080   // Handler functions take an i8* pointing to the (handler-specific) static
3081   // information block, followed by a sequence of intptr_t arguments
3082   // representing operand values.
3083   SmallVector<llvm::Value *, 4> Args;
3084   SmallVector<llvm::Type *, 4> ArgTypes;
3085   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3086     Args.reserve(DynamicArgs.size() + 1);
3087     ArgTypes.reserve(DynamicArgs.size() + 1);
3088 
3089     // Emit handler arguments and create handler function type.
3090     if (!StaticArgs.empty()) {
3091       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3092       auto *InfoPtr =
3093           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3094                                    llvm::GlobalVariable::PrivateLinkage, Info);
3095       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3096       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3097       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3098       ArgTypes.push_back(Int8PtrTy);
3099     }
3100 
3101     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3102       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3103       ArgTypes.push_back(IntPtrTy);
3104     }
3105   }
3106 
3107   llvm::FunctionType *FnType =
3108     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3109 
3110   if (!FatalCond || !RecoverableCond) {
3111     // Simple case: we need to generate a single handler call, either
3112     // fatal, or non-fatal.
3113     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3114                          (FatalCond != nullptr), Cont);
3115   } else {
3116     // Emit two handler calls: first one for set of unrecoverable checks,
3117     // another one for recoverable.
3118     llvm::BasicBlock *NonFatalHandlerBB =
3119         createBasicBlock("non_fatal." + CheckName);
3120     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3121     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3122     EmitBlock(FatalHandlerBB);
3123     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3124                          NonFatalHandlerBB);
3125     EmitBlock(NonFatalHandlerBB);
3126     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3127                          Cont);
3128   }
3129 
3130   EmitBlock(Cont);
3131 }
3132 
3133 void CodeGenFunction::EmitCfiSlowPathCheck(
3134     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3135     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3136   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3137 
3138   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3139   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3140 
3141   llvm::MDBuilder MDHelper(getLLVMContext());
3142   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3143   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3144 
3145   EmitBlock(CheckBB);
3146 
3147   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3148 
3149   llvm::CallInst *CheckCall;
3150   llvm::FunctionCallee SlowPathFn;
3151   if (WithDiag) {
3152     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3153     auto *InfoPtr =
3154         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3155                                  llvm::GlobalVariable::PrivateLinkage, Info);
3156     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3157     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3158 
3159     SlowPathFn = CGM.getModule().getOrInsertFunction(
3160         "__cfi_slowpath_diag",
3161         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3162                                 false));
3163     CheckCall = Builder.CreateCall(
3164         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3165   } else {
3166     SlowPathFn = CGM.getModule().getOrInsertFunction(
3167         "__cfi_slowpath",
3168         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3169     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3170   }
3171 
3172   CGM.setDSOLocal(
3173       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3174   CheckCall->setDoesNotThrow();
3175 
3176   EmitBlock(Cont);
3177 }
3178 
3179 // Emit a stub for __cfi_check function so that the linker knows about this
3180 // symbol in LTO mode.
3181 void CodeGenFunction::EmitCfiCheckStub() {
3182   llvm::Module *M = &CGM.getModule();
3183   auto &Ctx = M->getContext();
3184   llvm::Function *F = llvm::Function::Create(
3185       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3186       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3187   CGM.setDSOLocal(F);
3188   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3189   // FIXME: consider emitting an intrinsic call like
3190   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3191   // which can be lowered in CrossDSOCFI pass to the actual contents of
3192   // __cfi_check. This would allow inlining of __cfi_check calls.
3193   llvm::CallInst::Create(
3194       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3195   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3196 }
3197 
3198 // This function is basically a switch over the CFI failure kind, which is
3199 // extracted from CFICheckFailData (1st function argument). Each case is either
3200 // llvm.trap or a call to one of the two runtime handlers, based on
3201 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3202 // failure kind) traps, but this should really never happen.  CFICheckFailData
3203 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3204 // check kind; in this case __cfi_check_fail traps as well.
3205 void CodeGenFunction::EmitCfiCheckFail() {
3206   SanitizerScope SanScope(this);
3207   FunctionArgList Args;
3208   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3209                             ImplicitParamDecl::Other);
3210   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3211                             ImplicitParamDecl::Other);
3212   Args.push_back(&ArgData);
3213   Args.push_back(&ArgAddr);
3214 
3215   const CGFunctionInfo &FI =
3216     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3217 
3218   llvm::Function *F = llvm::Function::Create(
3219       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3220       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3221 
3222   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3223   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3224   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3225 
3226   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3227                 SourceLocation());
3228 
3229   // This function should not be affected by blacklist. This function does
3230   // not have a source location, but "src:*" would still apply. Revert any
3231   // changes to SanOpts made in StartFunction.
3232   SanOpts = CGM.getLangOpts().Sanitize;
3233 
3234   llvm::Value *Data =
3235       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3236                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3237   llvm::Value *Addr =
3238       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3239                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3240 
3241   // Data == nullptr means the calling module has trap behaviour for this check.
3242   llvm::Value *DataIsNotNullPtr =
3243       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3244   EmitTrapCheck(DataIsNotNullPtr);
3245 
3246   llvm::StructType *SourceLocationTy =
3247       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3248   llvm::StructType *CfiCheckFailDataTy =
3249       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3250 
3251   llvm::Value *V = Builder.CreateConstGEP2_32(
3252       CfiCheckFailDataTy,
3253       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3254       0);
3255   Address CheckKindAddr(V, getIntAlign());
3256   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3257 
3258   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3259       CGM.getLLVMContext(),
3260       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3261   llvm::Value *ValidVtable = Builder.CreateZExt(
3262       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3263                          {Addr, AllVtables}),
3264       IntPtrTy);
3265 
3266   const std::pair<int, SanitizerMask> CheckKinds[] = {
3267       {CFITCK_VCall, SanitizerKind::CFIVCall},
3268       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3269       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3270       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3271       {CFITCK_ICall, SanitizerKind::CFIICall}};
3272 
3273   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3274   for (auto CheckKindMaskPair : CheckKinds) {
3275     int Kind = CheckKindMaskPair.first;
3276     SanitizerMask Mask = CheckKindMaskPair.second;
3277     llvm::Value *Cond =
3278         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3279     if (CGM.getLangOpts().Sanitize.has(Mask))
3280       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3281                 {Data, Addr, ValidVtable});
3282     else
3283       EmitTrapCheck(Cond);
3284   }
3285 
3286   FinishFunction();
3287   // The only reference to this function will be created during LTO link.
3288   // Make sure it survives until then.
3289   CGM.addUsedGlobal(F);
3290 }
3291 
3292 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3293   if (SanOpts.has(SanitizerKind::Unreachable)) {
3294     SanitizerScope SanScope(this);
3295     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3296                              SanitizerKind::Unreachable),
3297               SanitizerHandler::BuiltinUnreachable,
3298               EmitCheckSourceLocation(Loc), None);
3299   }
3300   Builder.CreateUnreachable();
3301 }
3302 
3303 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3304   llvm::BasicBlock *Cont = createBasicBlock("cont");
3305 
3306   // If we're optimizing, collapse all calls to trap down to just one per
3307   // function to save on code size.
3308   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3309     TrapBB = createBasicBlock("trap");
3310     Builder.CreateCondBr(Checked, Cont, TrapBB);
3311     EmitBlock(TrapBB);
3312     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3313     TrapCall->setDoesNotReturn();
3314     TrapCall->setDoesNotThrow();
3315     Builder.CreateUnreachable();
3316   } else {
3317     Builder.CreateCondBr(Checked, Cont, TrapBB);
3318   }
3319 
3320   EmitBlock(Cont);
3321 }
3322 
3323 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3324   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3325 
3326   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3327     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3328                                   CGM.getCodeGenOpts().TrapFuncName);
3329     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3330   }
3331 
3332   return TrapCall;
3333 }
3334 
3335 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3336                                                  LValueBaseInfo *BaseInfo,
3337                                                  TBAAAccessInfo *TBAAInfo) {
3338   assert(E->getType()->isArrayType() &&
3339          "Array to pointer decay must have array source type!");
3340 
3341   // Expressions of array type can't be bitfields or vector elements.
3342   LValue LV = EmitLValue(E);
3343   Address Addr = LV.getAddress(*this);
3344 
3345   // If the array type was an incomplete type, we need to make sure
3346   // the decay ends up being the right type.
3347   llvm::Type *NewTy = ConvertType(E->getType());
3348   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3349 
3350   // Note that VLA pointers are always decayed, so we don't need to do
3351   // anything here.
3352   if (!E->getType()->isVariableArrayType()) {
3353     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3354            "Expected pointer to array");
3355     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3356   }
3357 
3358   // The result of this decay conversion points to an array element within the
3359   // base lvalue. However, since TBAA currently does not support representing
3360   // accesses to elements of member arrays, we conservatively represent accesses
3361   // to the pointee object as if it had no any base lvalue specified.
3362   // TODO: Support TBAA for member arrays.
3363   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3364   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3365   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3366 
3367   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3368 }
3369 
3370 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3371 /// array to pointer, return the array subexpression.
3372 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3373   // If this isn't just an array->pointer decay, bail out.
3374   const auto *CE = dyn_cast<CastExpr>(E);
3375   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3376     return nullptr;
3377 
3378   // If this is a decay from variable width array, bail out.
3379   const Expr *SubExpr = CE->getSubExpr();
3380   if (SubExpr->getType()->isVariableArrayType())
3381     return nullptr;
3382 
3383   return SubExpr;
3384 }
3385 
3386 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3387                                           llvm::Value *ptr,
3388                                           ArrayRef<llvm::Value*> indices,
3389                                           bool inbounds,
3390                                           bool signedIndices,
3391                                           SourceLocation loc,
3392                                     const llvm::Twine &name = "arrayidx") {
3393   if (inbounds) {
3394     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3395                                       CodeGenFunction::NotSubtraction, loc,
3396                                       name);
3397   } else {
3398     return CGF.Builder.CreateGEP(ptr, indices, name);
3399   }
3400 }
3401 
3402 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3403                                       llvm::Value *idx,
3404                                       CharUnits eltSize) {
3405   // If we have a constant index, we can use the exact offset of the
3406   // element we're accessing.
3407   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3408     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3409     return arrayAlign.alignmentAtOffset(offset);
3410 
3411   // Otherwise, use the worst-case alignment for any element.
3412   } else {
3413     return arrayAlign.alignmentOfArrayElement(eltSize);
3414   }
3415 }
3416 
3417 static QualType getFixedSizeElementType(const ASTContext &ctx,
3418                                         const VariableArrayType *vla) {
3419   QualType eltType;
3420   do {
3421     eltType = vla->getElementType();
3422   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3423   return eltType;
3424 }
3425 
3426 /// Given an array base, check whether its member access belongs to a record
3427 /// with preserve_access_index attribute or not.
3428 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3429   if (!ArrayBase || !CGF.getDebugInfo())
3430     return false;
3431 
3432   // Only support base as either a MemberExpr or DeclRefExpr.
3433   // DeclRefExpr to cover cases like:
3434   //    struct s { int a; int b[10]; };
3435   //    struct s *p;
3436   //    p[1].a
3437   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3438   // p->b[5] is a MemberExpr example.
3439   const Expr *E = ArrayBase->IgnoreImpCasts();
3440   if (const auto *ME = dyn_cast<MemberExpr>(E))
3441     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3442 
3443   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3444     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3445     if (!VarDef)
3446       return false;
3447 
3448     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3449     if (!PtrT)
3450       return false;
3451 
3452     const auto *PointeeT = PtrT->getPointeeType()
3453                              ->getUnqualifiedDesugaredType();
3454     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3455       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3456     return false;
3457   }
3458 
3459   return false;
3460 }
3461 
3462 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3463                                      ArrayRef<llvm::Value *> indices,
3464                                      QualType eltType, bool inbounds,
3465                                      bool signedIndices, SourceLocation loc,
3466                                      QualType *arrayType = nullptr,
3467                                      const Expr *Base = nullptr,
3468                                      const llvm::Twine &name = "arrayidx") {
3469   // All the indices except that last must be zero.
3470 #ifndef NDEBUG
3471   for (auto idx : indices.drop_back())
3472     assert(isa<llvm::ConstantInt>(idx) &&
3473            cast<llvm::ConstantInt>(idx)->isZero());
3474 #endif
3475 
3476   // Determine the element size of the statically-sized base.  This is
3477   // the thing that the indices are expressed in terms of.
3478   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3479     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3480   }
3481 
3482   // We can use that to compute the best alignment of the element.
3483   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3484   CharUnits eltAlign =
3485     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3486 
3487   llvm::Value *eltPtr;
3488   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3489   if (!LastIndex ||
3490       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3491     eltPtr = emitArraySubscriptGEP(
3492         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3493         loc, name);
3494   } else {
3495     // Remember the original array subscript for bpf target
3496     unsigned idx = LastIndex->getZExtValue();
3497     llvm::DIType *DbgInfo = nullptr;
3498     if (arrayType)
3499       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3500     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3501                                                         addr.getPointer(),
3502                                                         indices.size() - 1,
3503                                                         idx, DbgInfo);
3504   }
3505 
3506   return Address(eltPtr, eltAlign);
3507 }
3508 
3509 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3510                                                bool Accessed) {
3511   // The index must always be an integer, which is not an aggregate.  Emit it
3512   // in lexical order (this complexity is, sadly, required by C++17).
3513   llvm::Value *IdxPre =
3514       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3515   bool SignedIndices = false;
3516   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3517     auto *Idx = IdxPre;
3518     if (E->getLHS() != E->getIdx()) {
3519       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3520       Idx = EmitScalarExpr(E->getIdx());
3521     }
3522 
3523     QualType IdxTy = E->getIdx()->getType();
3524     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3525     SignedIndices |= IdxSigned;
3526 
3527     if (SanOpts.has(SanitizerKind::ArrayBounds))
3528       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3529 
3530     // Extend or truncate the index type to 32 or 64-bits.
3531     if (Promote && Idx->getType() != IntPtrTy)
3532       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3533 
3534     return Idx;
3535   };
3536   IdxPre = nullptr;
3537 
3538   // If the base is a vector type, then we are forming a vector element lvalue
3539   // with this subscript.
3540   if (E->getBase()->getType()->isVectorType() &&
3541       !isa<ExtVectorElementExpr>(E->getBase())) {
3542     // Emit the vector as an lvalue to get its address.
3543     LValue LHS = EmitLValue(E->getBase());
3544     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3545     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3546     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3547                                  E->getBase()->getType(), LHS.getBaseInfo(),
3548                                  TBAAAccessInfo());
3549   }
3550 
3551   // All the other cases basically behave like simple offsetting.
3552 
3553   // Handle the extvector case we ignored above.
3554   if (isa<ExtVectorElementExpr>(E->getBase())) {
3555     LValue LV = EmitLValue(E->getBase());
3556     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3557     Address Addr = EmitExtVectorElementLValue(LV);
3558 
3559     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3560     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3561                                  SignedIndices, E->getExprLoc());
3562     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3563                           CGM.getTBAAInfoForSubobject(LV, EltType));
3564   }
3565 
3566   LValueBaseInfo EltBaseInfo;
3567   TBAAAccessInfo EltTBAAInfo;
3568   Address Addr = Address::invalid();
3569   if (const VariableArrayType *vla =
3570            getContext().getAsVariableArrayType(E->getType())) {
3571     // The base must be a pointer, which is not an aggregate.  Emit
3572     // it.  It needs to be emitted first in case it's what captures
3573     // the VLA bounds.
3574     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3575     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3576 
3577     // The element count here is the total number of non-VLA elements.
3578     llvm::Value *numElements = getVLASize(vla).NumElts;
3579 
3580     // Effectively, the multiply by the VLA size is part of the GEP.
3581     // GEP indexes are signed, and scaling an index isn't permitted to
3582     // signed-overflow, so we use the same semantics for our explicit
3583     // multiply.  We suppress this if overflow is not undefined behavior.
3584     if (getLangOpts().isSignedOverflowDefined()) {
3585       Idx = Builder.CreateMul(Idx, numElements);
3586     } else {
3587       Idx = Builder.CreateNSWMul(Idx, numElements);
3588     }
3589 
3590     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3591                                  !getLangOpts().isSignedOverflowDefined(),
3592                                  SignedIndices, E->getExprLoc());
3593 
3594   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3595     // Indexing over an interface, as in "NSString *P; P[4];"
3596 
3597     // Emit the base pointer.
3598     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3599     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3600 
3601     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3602     llvm::Value *InterfaceSizeVal =
3603         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3604 
3605     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3606 
3607     // We don't necessarily build correct LLVM struct types for ObjC
3608     // interfaces, so we can't rely on GEP to do this scaling
3609     // correctly, so we need to cast to i8*.  FIXME: is this actually
3610     // true?  A lot of other things in the fragile ABI would break...
3611     llvm::Type *OrigBaseTy = Addr.getType();
3612     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3613 
3614     // Do the GEP.
3615     CharUnits EltAlign =
3616       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3617     llvm::Value *EltPtr =
3618         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3619                               SignedIndices, E->getExprLoc());
3620     Addr = Address(EltPtr, EltAlign);
3621 
3622     // Cast back.
3623     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3624   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3625     // If this is A[i] where A is an array, the frontend will have decayed the
3626     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3627     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3628     // "gep x, i" here.  Emit one "gep A, 0, i".
3629     assert(Array->getType()->isArrayType() &&
3630            "Array to pointer decay must have array source type!");
3631     LValue ArrayLV;
3632     // For simple multidimensional array indexing, set the 'accessed' flag for
3633     // better bounds-checking of the base expression.
3634     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3635       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3636     else
3637       ArrayLV = EmitLValue(Array);
3638     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3639 
3640     // Propagate the alignment from the array itself to the result.
3641     QualType arrayType = Array->getType();
3642     Addr = emitArraySubscriptGEP(
3643         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3644         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3645         E->getExprLoc(), &arrayType, E->getBase());
3646     EltBaseInfo = ArrayLV.getBaseInfo();
3647     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3648   } else {
3649     // The base must be a pointer; emit it with an estimate of its alignment.
3650     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3651     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3652     QualType ptrType = E->getBase()->getType();
3653     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3654                                  !getLangOpts().isSignedOverflowDefined(),
3655                                  SignedIndices, E->getExprLoc(), &ptrType,
3656                                  E->getBase());
3657   }
3658 
3659   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3660 
3661   if (getLangOpts().ObjC &&
3662       getLangOpts().getGC() != LangOptions::NonGC) {
3663     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3664     setObjCGCLValueClass(getContext(), E, LV);
3665   }
3666   return LV;
3667 }
3668 
3669 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3670                                        LValueBaseInfo &BaseInfo,
3671                                        TBAAAccessInfo &TBAAInfo,
3672                                        QualType BaseTy, QualType ElTy,
3673                                        bool IsLowerBound) {
3674   LValue BaseLVal;
3675   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3676     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3677     if (BaseTy->isArrayType()) {
3678       Address Addr = BaseLVal.getAddress(CGF);
3679       BaseInfo = BaseLVal.getBaseInfo();
3680 
3681       // If the array type was an incomplete type, we need to make sure
3682       // the decay ends up being the right type.
3683       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3684       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3685 
3686       // Note that VLA pointers are always decayed, so we don't need to do
3687       // anything here.
3688       if (!BaseTy->isVariableArrayType()) {
3689         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3690                "Expected pointer to array");
3691         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3692       }
3693 
3694       return CGF.Builder.CreateElementBitCast(Addr,
3695                                               CGF.ConvertTypeForMem(ElTy));
3696     }
3697     LValueBaseInfo TypeBaseInfo;
3698     TBAAAccessInfo TypeTBAAInfo;
3699     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3700                                                   &TypeTBAAInfo);
3701     BaseInfo.mergeForCast(TypeBaseInfo);
3702     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3703     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3704   }
3705   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3706 }
3707 
3708 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3709                                                 bool IsLowerBound) {
3710   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3711   QualType ResultExprTy;
3712   if (auto *AT = getContext().getAsArrayType(BaseTy))
3713     ResultExprTy = AT->getElementType();
3714   else
3715     ResultExprTy = BaseTy->getPointeeType();
3716   llvm::Value *Idx = nullptr;
3717   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3718     // Requesting lower bound or upper bound, but without provided length and
3719     // without ':' symbol for the default length -> length = 1.
3720     // Idx = LowerBound ?: 0;
3721     if (auto *LowerBound = E->getLowerBound()) {
3722       Idx = Builder.CreateIntCast(
3723           EmitScalarExpr(LowerBound), IntPtrTy,
3724           LowerBound->getType()->hasSignedIntegerRepresentation());
3725     } else
3726       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3727   } else {
3728     // Try to emit length or lower bound as constant. If this is possible, 1
3729     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3730     // IR (LB + Len) - 1.
3731     auto &C = CGM.getContext();
3732     auto *Length = E->getLength();
3733     llvm::APSInt ConstLength;
3734     if (Length) {
3735       // Idx = LowerBound + Length - 1;
3736       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3737         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3738         Length = nullptr;
3739       }
3740       auto *LowerBound = E->getLowerBound();
3741       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3742       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3743         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3744         LowerBound = nullptr;
3745       }
3746       if (!Length)
3747         --ConstLength;
3748       else if (!LowerBound)
3749         --ConstLowerBound;
3750 
3751       if (Length || LowerBound) {
3752         auto *LowerBoundVal =
3753             LowerBound
3754                 ? Builder.CreateIntCast(
3755                       EmitScalarExpr(LowerBound), IntPtrTy,
3756                       LowerBound->getType()->hasSignedIntegerRepresentation())
3757                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3758         auto *LengthVal =
3759             Length
3760                 ? Builder.CreateIntCast(
3761                       EmitScalarExpr(Length), IntPtrTy,
3762                       Length->getType()->hasSignedIntegerRepresentation())
3763                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3764         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3765                                 /*HasNUW=*/false,
3766                                 !getLangOpts().isSignedOverflowDefined());
3767         if (Length && LowerBound) {
3768           Idx = Builder.CreateSub(
3769               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3770               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3771         }
3772       } else
3773         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3774     } else {
3775       // Idx = ArraySize - 1;
3776       QualType ArrayTy = BaseTy->isPointerType()
3777                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3778                              : BaseTy;
3779       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3780         Length = VAT->getSizeExpr();
3781         if (Length->isIntegerConstantExpr(ConstLength, C))
3782           Length = nullptr;
3783       } else {
3784         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3785         ConstLength = CAT->getSize();
3786       }
3787       if (Length) {
3788         auto *LengthVal = Builder.CreateIntCast(
3789             EmitScalarExpr(Length), IntPtrTy,
3790             Length->getType()->hasSignedIntegerRepresentation());
3791         Idx = Builder.CreateSub(
3792             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3793             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3794       } else {
3795         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3796         --ConstLength;
3797         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3798       }
3799     }
3800   }
3801   assert(Idx);
3802 
3803   Address EltPtr = Address::invalid();
3804   LValueBaseInfo BaseInfo;
3805   TBAAAccessInfo TBAAInfo;
3806   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3807     // The base must be a pointer, which is not an aggregate.  Emit
3808     // it.  It needs to be emitted first in case it's what captures
3809     // the VLA bounds.
3810     Address Base =
3811         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3812                                 BaseTy, VLA->getElementType(), IsLowerBound);
3813     // The element count here is the total number of non-VLA elements.
3814     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3815 
3816     // Effectively, the multiply by the VLA size is part of the GEP.
3817     // GEP indexes are signed, and scaling an index isn't permitted to
3818     // signed-overflow, so we use the same semantics for our explicit
3819     // multiply.  We suppress this if overflow is not undefined behavior.
3820     if (getLangOpts().isSignedOverflowDefined())
3821       Idx = Builder.CreateMul(Idx, NumElements);
3822     else
3823       Idx = Builder.CreateNSWMul(Idx, NumElements);
3824     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3825                                    !getLangOpts().isSignedOverflowDefined(),
3826                                    /*signedIndices=*/false, E->getExprLoc());
3827   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3828     // If this is A[i] where A is an array, the frontend will have decayed the
3829     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3830     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3831     // "gep x, i" here.  Emit one "gep A, 0, i".
3832     assert(Array->getType()->isArrayType() &&
3833            "Array to pointer decay must have array source type!");
3834     LValue ArrayLV;
3835     // For simple multidimensional array indexing, set the 'accessed' flag for
3836     // better bounds-checking of the base expression.
3837     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3838       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3839     else
3840       ArrayLV = EmitLValue(Array);
3841 
3842     // Propagate the alignment from the array itself to the result.
3843     EltPtr = emitArraySubscriptGEP(
3844         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3845         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3846         /*signedIndices=*/false, E->getExprLoc());
3847     BaseInfo = ArrayLV.getBaseInfo();
3848     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3849   } else {
3850     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3851                                            TBAAInfo, BaseTy, ResultExprTy,
3852                                            IsLowerBound);
3853     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3854                                    !getLangOpts().isSignedOverflowDefined(),
3855                                    /*signedIndices=*/false, E->getExprLoc());
3856   }
3857 
3858   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3859 }
3860 
3861 LValue CodeGenFunction::
3862 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3863   // Emit the base vector as an l-value.
3864   LValue Base;
3865 
3866   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3867   if (E->isArrow()) {
3868     // If it is a pointer to a vector, emit the address and form an lvalue with
3869     // it.
3870     LValueBaseInfo BaseInfo;
3871     TBAAAccessInfo TBAAInfo;
3872     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3873     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3874     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3875     Base.getQuals().removeObjCGCAttr();
3876   } else if (E->getBase()->isGLValue()) {
3877     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3878     // emit the base as an lvalue.
3879     assert(E->getBase()->getType()->isVectorType());
3880     Base = EmitLValue(E->getBase());
3881   } else {
3882     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3883     assert(E->getBase()->getType()->isVectorType() &&
3884            "Result must be a vector");
3885     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3886 
3887     // Store the vector to memory (because LValue wants an address).
3888     Address VecMem = CreateMemTemp(E->getBase()->getType());
3889     Builder.CreateStore(Vec, VecMem);
3890     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3891                           AlignmentSource::Decl);
3892   }
3893 
3894   QualType type =
3895     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3896 
3897   // Encode the element access list into a vector of unsigned indices.
3898   SmallVector<uint32_t, 4> Indices;
3899   E->getEncodedElementAccess(Indices);
3900 
3901   if (Base.isSimple()) {
3902     llvm::Constant *CV =
3903         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3904     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3905                                     Base.getBaseInfo(), TBAAAccessInfo());
3906   }
3907   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3908 
3909   llvm::Constant *BaseElts = Base.getExtVectorElts();
3910   SmallVector<llvm::Constant *, 4> CElts;
3911 
3912   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3913     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3914   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3915   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3916                                   Base.getBaseInfo(), TBAAAccessInfo());
3917 }
3918 
3919 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3920   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3921     EmitIgnoredExpr(E->getBase());
3922     return EmitDeclRefLValue(DRE);
3923   }
3924 
3925   Expr *BaseExpr = E->getBase();
3926   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3927   LValue BaseLV;
3928   if (E->isArrow()) {
3929     LValueBaseInfo BaseInfo;
3930     TBAAAccessInfo TBAAInfo;
3931     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3932     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3933     SanitizerSet SkippedChecks;
3934     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3935     if (IsBaseCXXThis)
3936       SkippedChecks.set(SanitizerKind::Alignment, true);
3937     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3938       SkippedChecks.set(SanitizerKind::Null, true);
3939     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3940                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3941     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3942   } else
3943     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3944 
3945   NamedDecl *ND = E->getMemberDecl();
3946   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3947     LValue LV = EmitLValueForField(BaseLV, Field);
3948     setObjCGCLValueClass(getContext(), E, LV);
3949     if (getLangOpts().OpenMP) {
3950       // If the member was explicitly marked as nontemporal, mark it as
3951       // nontemporal. If the base lvalue is marked as nontemporal, mark access
3952       // to children as nontemporal too.
3953       if ((IsWrappedCXXThis(BaseExpr) &&
3954            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
3955           BaseLV.isNontemporal())
3956         LV.setNontemporal(/*Value=*/true);
3957     }
3958     return LV;
3959   }
3960 
3961   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3962     return EmitFunctionDeclLValue(*this, E, FD);
3963 
3964   llvm_unreachable("Unhandled member declaration!");
3965 }
3966 
3967 /// Given that we are currently emitting a lambda, emit an l-value for
3968 /// one of its members.
3969 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3970   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3971   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3972   QualType LambdaTagType =
3973     getContext().getTagDeclType(Field->getParent());
3974   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3975   return EmitLValueForField(LambdaLV, Field);
3976 }
3977 
3978 /// Get the field index in the debug info. The debug info structure/union
3979 /// will ignore the unnamed bitfields.
3980 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3981                                              unsigned FieldIndex) {
3982   unsigned I = 0, Skipped = 0;
3983 
3984   for (auto F : Rec->getDefinition()->fields()) {
3985     if (I == FieldIndex)
3986       break;
3987     if (F->isUnnamedBitfield())
3988       Skipped++;
3989     I++;
3990   }
3991 
3992   return FieldIndex - Skipped;
3993 }
3994 
3995 /// Get the address of a zero-sized field within a record. The resulting
3996 /// address doesn't necessarily have the right type.
3997 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3998                                        const FieldDecl *Field) {
3999   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4000       CGF.getContext().getFieldOffset(Field));
4001   if (Offset.isZero())
4002     return Base;
4003   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4004   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4005 }
4006 
4007 /// Drill down to the storage of a field without walking into
4008 /// reference types.
4009 ///
4010 /// The resulting address doesn't necessarily have the right type.
4011 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4012                                       const FieldDecl *field) {
4013   if (field->isZeroSize(CGF.getContext()))
4014     return emitAddrOfZeroSizeField(CGF, base, field);
4015 
4016   const RecordDecl *rec = field->getParent();
4017 
4018   unsigned idx =
4019     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4020 
4021   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4022 }
4023 
4024 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
4025                                         const FieldDecl *field) {
4026   const RecordDecl *rec = field->getParent();
4027   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
4028       CGF.getContext().getRecordType(rec), rec->getLocation());
4029 
4030   unsigned idx =
4031       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4032 
4033   return CGF.Builder.CreatePreserveStructAccessIndex(
4034       base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4035 }
4036 
4037 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4038   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4039   if (!RD)
4040     return false;
4041 
4042   if (RD->isDynamicClass())
4043     return true;
4044 
4045   for (const auto &Base : RD->bases())
4046     if (hasAnyVptr(Base.getType(), Context))
4047       return true;
4048 
4049   for (const FieldDecl *Field : RD->fields())
4050     if (hasAnyVptr(Field->getType(), Context))
4051       return true;
4052 
4053   return false;
4054 }
4055 
4056 LValue CodeGenFunction::EmitLValueForField(LValue base,
4057                                            const FieldDecl *field) {
4058   LValueBaseInfo BaseInfo = base.getBaseInfo();
4059 
4060   if (field->isBitField()) {
4061     const CGRecordLayout &RL =
4062       CGM.getTypes().getCGRecordLayout(field->getParent());
4063     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4064     Address Addr = base.getAddress(*this);
4065     unsigned Idx = RL.getLLVMFieldNo(field);
4066     const RecordDecl *rec = field->getParent();
4067     if (!IsInPreservedAIRegion &&
4068         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4069       if (Idx != 0)
4070         // For structs, we GEP to the field that the record layout suggests.
4071         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4072     } else {
4073       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4074           getContext().getRecordType(rec), rec->getLocation());
4075       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4076           getDebugInfoFIndex(rec, field->getFieldIndex()),
4077           DbgInfo);
4078     }
4079 
4080     // Get the access type.
4081     llvm::Type *FieldIntTy =
4082       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4083     if (Addr.getElementType() != FieldIntTy)
4084       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4085 
4086     QualType fieldType =
4087       field->getType().withCVRQualifiers(base.getVRQualifiers());
4088     // TODO: Support TBAA for bit fields.
4089     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4090     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4091                                 TBAAAccessInfo());
4092   }
4093 
4094   // Fields of may-alias structures are may-alias themselves.
4095   // FIXME: this should get propagated down through anonymous structs
4096   // and unions.
4097   QualType FieldType = field->getType();
4098   const RecordDecl *rec = field->getParent();
4099   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4100   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4101   TBAAAccessInfo FieldTBAAInfo;
4102   if (base.getTBAAInfo().isMayAlias() ||
4103           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4104     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4105   } else if (rec->isUnion()) {
4106     // TODO: Support TBAA for unions.
4107     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4108   } else {
4109     // If no base type been assigned for the base access, then try to generate
4110     // one for this base lvalue.
4111     FieldTBAAInfo = base.getTBAAInfo();
4112     if (!FieldTBAAInfo.BaseType) {
4113         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4114         assert(!FieldTBAAInfo.Offset &&
4115                "Nonzero offset for an access with no base type!");
4116     }
4117 
4118     // Adjust offset to be relative to the base type.
4119     const ASTRecordLayout &Layout =
4120         getContext().getASTRecordLayout(field->getParent());
4121     unsigned CharWidth = getContext().getCharWidth();
4122     if (FieldTBAAInfo.BaseType)
4123       FieldTBAAInfo.Offset +=
4124           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4125 
4126     // Update the final access type and size.
4127     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4128     FieldTBAAInfo.Size =
4129         getContext().getTypeSizeInChars(FieldType).getQuantity();
4130   }
4131 
4132   Address addr = base.getAddress(*this);
4133   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4134     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4135         ClassDef->isDynamicClass()) {
4136       // Getting to any field of dynamic object requires stripping dynamic
4137       // information provided by invariant.group.  This is because accessing
4138       // fields may leak the real address of dynamic object, which could result
4139       // in miscompilation when leaked pointer would be compared.
4140       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4141       addr = Address(stripped, addr.getAlignment());
4142     }
4143   }
4144 
4145   unsigned RecordCVR = base.getVRQualifiers();
4146   if (rec->isUnion()) {
4147     // For unions, there is no pointer adjustment.
4148     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4149         hasAnyVptr(FieldType, getContext()))
4150       // Because unions can easily skip invariant.barriers, we need to add
4151       // a barrier every time CXXRecord field with vptr is referenced.
4152       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4153                      addr.getAlignment());
4154 
4155     if (IsInPreservedAIRegion ||
4156         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4157       // Remember the original union field index
4158       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4159           getContext().getRecordType(rec), rec->getLocation());
4160       addr = Address(
4161           Builder.CreatePreserveUnionAccessIndex(
4162               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4163           addr.getAlignment());
4164     }
4165 
4166     if (FieldType->isReferenceType())
4167       addr = Builder.CreateElementBitCast(
4168           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4169   } else {
4170     if (!IsInPreservedAIRegion &&
4171         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4172       // For structs, we GEP to the field that the record layout suggests.
4173       addr = emitAddrOfFieldStorage(*this, addr, field);
4174     else
4175       // Remember the original struct field index
4176       addr = emitPreserveStructAccess(*this, addr, field);
4177   }
4178 
4179   // If this is a reference field, load the reference right now.
4180   if (FieldType->isReferenceType()) {
4181     LValue RefLVal =
4182         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4183     if (RecordCVR & Qualifiers::Volatile)
4184       RefLVal.getQuals().addVolatile();
4185     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4186 
4187     // Qualifiers on the struct don't apply to the referencee.
4188     RecordCVR = 0;
4189     FieldType = FieldType->getPointeeType();
4190   }
4191 
4192   // Make sure that the address is pointing to the right type.  This is critical
4193   // for both unions and structs.  A union needs a bitcast, a struct element
4194   // will need a bitcast if the LLVM type laid out doesn't match the desired
4195   // type.
4196   addr = Builder.CreateElementBitCast(
4197       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4198 
4199   if (field->hasAttr<AnnotateAttr>())
4200     addr = EmitFieldAnnotations(field, addr);
4201 
4202   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4203   LV.getQuals().addCVRQualifiers(RecordCVR);
4204 
4205   // __weak attribute on a field is ignored.
4206   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4207     LV.getQuals().removeObjCGCAttr();
4208 
4209   return LV;
4210 }
4211 
4212 LValue
4213 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4214                                                   const FieldDecl *Field) {
4215   QualType FieldType = Field->getType();
4216 
4217   if (!FieldType->isReferenceType())
4218     return EmitLValueForField(Base, Field);
4219 
4220   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4221 
4222   // Make sure that the address is pointing to the right type.
4223   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4224   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4225 
4226   // TODO: Generate TBAA information that describes this access as a structure
4227   // member access and not just an access to an object of the field's type. This
4228   // should be similar to what we do in EmitLValueForField().
4229   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4230   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4231   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4232   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4233                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4234 }
4235 
4236 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4237   if (E->isFileScope()) {
4238     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4239     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4240   }
4241   if (E->getType()->isVariablyModifiedType())
4242     // make sure to emit the VLA size.
4243     EmitVariablyModifiedType(E->getType());
4244 
4245   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4246   const Expr *InitExpr = E->getInitializer();
4247   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4248 
4249   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4250                    /*Init*/ true);
4251 
4252   return Result;
4253 }
4254 
4255 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4256   if (!E->isGLValue())
4257     // Initializing an aggregate temporary in C++11: T{...}.
4258     return EmitAggExprToLValue(E);
4259 
4260   // An lvalue initializer list must be initializing a reference.
4261   assert(E->isTransparent() && "non-transparent glvalue init list");
4262   return EmitLValue(E->getInit(0));
4263 }
4264 
4265 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4266 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4267 /// LValue is returned and the current block has been terminated.
4268 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4269                                                     const Expr *Operand) {
4270   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4271     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4272     return None;
4273   }
4274 
4275   return CGF.EmitLValue(Operand);
4276 }
4277 
4278 LValue CodeGenFunction::
4279 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4280   if (!expr->isGLValue()) {
4281     // ?: here should be an aggregate.
4282     assert(hasAggregateEvaluationKind(expr->getType()) &&
4283            "Unexpected conditional operator!");
4284     return EmitAggExprToLValue(expr);
4285   }
4286 
4287   OpaqueValueMapping binding(*this, expr);
4288 
4289   const Expr *condExpr = expr->getCond();
4290   bool CondExprBool;
4291   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4292     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4293     if (!CondExprBool) std::swap(live, dead);
4294 
4295     if (!ContainsLabel(dead)) {
4296       // If the true case is live, we need to track its region.
4297       if (CondExprBool)
4298         incrementProfileCounter(expr);
4299       return EmitLValue(live);
4300     }
4301   }
4302 
4303   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4304   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4305   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4306 
4307   ConditionalEvaluation eval(*this);
4308   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4309 
4310   // Any temporaries created here are conditional.
4311   EmitBlock(lhsBlock);
4312   incrementProfileCounter(expr);
4313   eval.begin(*this);
4314   Optional<LValue> lhs =
4315       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4316   eval.end(*this);
4317 
4318   if (lhs && !lhs->isSimple())
4319     return EmitUnsupportedLValue(expr, "conditional operator");
4320 
4321   lhsBlock = Builder.GetInsertBlock();
4322   if (lhs)
4323     Builder.CreateBr(contBlock);
4324 
4325   // Any temporaries created here are conditional.
4326   EmitBlock(rhsBlock);
4327   eval.begin(*this);
4328   Optional<LValue> rhs =
4329       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4330   eval.end(*this);
4331   if (rhs && !rhs->isSimple())
4332     return EmitUnsupportedLValue(expr, "conditional operator");
4333   rhsBlock = Builder.GetInsertBlock();
4334 
4335   EmitBlock(contBlock);
4336 
4337   if (lhs && rhs) {
4338     llvm::PHINode *phi =
4339         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4340     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4341     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4342     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4343     AlignmentSource alignSource =
4344       std::max(lhs->getBaseInfo().getAlignmentSource(),
4345                rhs->getBaseInfo().getAlignmentSource());
4346     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4347         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4348     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4349                           TBAAInfo);
4350   } else {
4351     assert((lhs || rhs) &&
4352            "both operands of glvalue conditional are throw-expressions?");
4353     return lhs ? *lhs : *rhs;
4354   }
4355 }
4356 
4357 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4358 /// type. If the cast is to a reference, we can have the usual lvalue result,
4359 /// otherwise if a cast is needed by the code generator in an lvalue context,
4360 /// then it must mean that we need the address of an aggregate in order to
4361 /// access one of its members.  This can happen for all the reasons that casts
4362 /// are permitted with aggregate result, including noop aggregate casts, and
4363 /// cast from scalar to union.
4364 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4365   switch (E->getCastKind()) {
4366   case CK_ToVoid:
4367   case CK_BitCast:
4368   case CK_LValueToRValueBitCast:
4369   case CK_ArrayToPointerDecay:
4370   case CK_FunctionToPointerDecay:
4371   case CK_NullToMemberPointer:
4372   case CK_NullToPointer:
4373   case CK_IntegralToPointer:
4374   case CK_PointerToIntegral:
4375   case CK_PointerToBoolean:
4376   case CK_VectorSplat:
4377   case CK_IntegralCast:
4378   case CK_BooleanToSignedIntegral:
4379   case CK_IntegralToBoolean:
4380   case CK_IntegralToFloating:
4381   case CK_FloatingToIntegral:
4382   case CK_FloatingToBoolean:
4383   case CK_FloatingCast:
4384   case CK_FloatingRealToComplex:
4385   case CK_FloatingComplexToReal:
4386   case CK_FloatingComplexToBoolean:
4387   case CK_FloatingComplexCast:
4388   case CK_FloatingComplexToIntegralComplex:
4389   case CK_IntegralRealToComplex:
4390   case CK_IntegralComplexToReal:
4391   case CK_IntegralComplexToBoolean:
4392   case CK_IntegralComplexCast:
4393   case CK_IntegralComplexToFloatingComplex:
4394   case CK_DerivedToBaseMemberPointer:
4395   case CK_BaseToDerivedMemberPointer:
4396   case CK_MemberPointerToBoolean:
4397   case CK_ReinterpretMemberPointer:
4398   case CK_AnyPointerToBlockPointerCast:
4399   case CK_ARCProduceObject:
4400   case CK_ARCConsumeObject:
4401   case CK_ARCReclaimReturnedObject:
4402   case CK_ARCExtendBlockObject:
4403   case CK_CopyAndAutoreleaseBlockObject:
4404   case CK_IntToOCLSampler:
4405   case CK_FixedPointCast:
4406   case CK_FixedPointToBoolean:
4407   case CK_FixedPointToIntegral:
4408   case CK_IntegralToFixedPoint:
4409     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4410 
4411   case CK_Dependent:
4412     llvm_unreachable("dependent cast kind in IR gen!");
4413 
4414   case CK_BuiltinFnToFnPtr:
4415     llvm_unreachable("builtin functions are handled elsewhere");
4416 
4417   // These are never l-values; just use the aggregate emission code.
4418   case CK_NonAtomicToAtomic:
4419   case CK_AtomicToNonAtomic:
4420     return EmitAggExprToLValue(E);
4421 
4422   case CK_Dynamic: {
4423     LValue LV = EmitLValue(E->getSubExpr());
4424     Address V = LV.getAddress(*this);
4425     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4426     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4427   }
4428 
4429   case CK_ConstructorConversion:
4430   case CK_UserDefinedConversion:
4431   case CK_CPointerToObjCPointerCast:
4432   case CK_BlockPointerToObjCPointerCast:
4433   case CK_NoOp:
4434   case CK_LValueToRValue:
4435     return EmitLValue(E->getSubExpr());
4436 
4437   case CK_UncheckedDerivedToBase:
4438   case CK_DerivedToBase: {
4439     const RecordType *DerivedClassTy =
4440       E->getSubExpr()->getType()->getAs<RecordType>();
4441     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4442 
4443     LValue LV = EmitLValue(E->getSubExpr());
4444     Address This = LV.getAddress(*this);
4445 
4446     // Perform the derived-to-base conversion
4447     Address Base = GetAddressOfBaseClass(
4448         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4449         /*NullCheckValue=*/false, E->getExprLoc());
4450 
4451     // TODO: Support accesses to members of base classes in TBAA. For now, we
4452     // conservatively pretend that the complete object is of the base class
4453     // type.
4454     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4455                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4456   }
4457   case CK_ToUnion:
4458     return EmitAggExprToLValue(E);
4459   case CK_BaseToDerived: {
4460     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4461     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4462 
4463     LValue LV = EmitLValue(E->getSubExpr());
4464 
4465     // Perform the base-to-derived conversion
4466     Address Derived = GetAddressOfDerivedClass(
4467         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4468         /*NullCheckValue=*/false);
4469 
4470     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4471     // performed and the object is not of the derived type.
4472     if (sanitizePerformTypeCheck())
4473       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4474                     Derived.getPointer(), E->getType());
4475 
4476     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4477       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4478                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4479                                 E->getBeginLoc());
4480 
4481     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4482                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4483   }
4484   case CK_LValueBitCast: {
4485     // This must be a reinterpret_cast (or c-style equivalent).
4486     const auto *CE = cast<ExplicitCastExpr>(E);
4487 
4488     CGM.EmitExplicitCastExprType(CE, this);
4489     LValue LV = EmitLValue(E->getSubExpr());
4490     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4491                                       ConvertType(CE->getTypeAsWritten()));
4492 
4493     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4494       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4495                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4496                                 E->getBeginLoc());
4497 
4498     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4499                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4500   }
4501   case CK_AddressSpaceConversion: {
4502     LValue LV = EmitLValue(E->getSubExpr());
4503     QualType DestTy = getContext().getPointerType(E->getType());
4504     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4505         *this, LV.getPointer(*this),
4506         E->getSubExpr()->getType().getAddressSpace(),
4507         E->getType().getAddressSpace(), ConvertType(DestTy));
4508     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4509                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4510   }
4511   case CK_ObjCObjectLValueCast: {
4512     LValue LV = EmitLValue(E->getSubExpr());
4513     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4514                                              ConvertType(E->getType()));
4515     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4516                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4517   }
4518   case CK_ZeroToOCLOpaqueType:
4519     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4520   }
4521 
4522   llvm_unreachable("Unhandled lvalue cast kind?");
4523 }
4524 
4525 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4526   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4527   return getOrCreateOpaqueLValueMapping(e);
4528 }
4529 
4530 LValue
4531 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4532   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4533 
4534   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4535       it = OpaqueLValues.find(e);
4536 
4537   if (it != OpaqueLValues.end())
4538     return it->second;
4539 
4540   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4541   return EmitLValue(e->getSourceExpr());
4542 }
4543 
4544 RValue
4545 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4546   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4547 
4548   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4549       it = OpaqueRValues.find(e);
4550 
4551   if (it != OpaqueRValues.end())
4552     return it->second;
4553 
4554   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4555   return EmitAnyExpr(e->getSourceExpr());
4556 }
4557 
4558 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4559                                            const FieldDecl *FD,
4560                                            SourceLocation Loc) {
4561   QualType FT = FD->getType();
4562   LValue FieldLV = EmitLValueForField(LV, FD);
4563   switch (getEvaluationKind(FT)) {
4564   case TEK_Complex:
4565     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4566   case TEK_Aggregate:
4567     return FieldLV.asAggregateRValue(*this);
4568   case TEK_Scalar:
4569     // This routine is used to load fields one-by-one to perform a copy, so
4570     // don't load reference fields.
4571     if (FD->getType()->isReferenceType())
4572       return RValue::get(FieldLV.getPointer(*this));
4573     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4574     // primitive load.
4575     if (FieldLV.isBitField())
4576       return EmitLoadOfLValue(FieldLV, Loc);
4577     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4578   }
4579   llvm_unreachable("bad evaluation kind");
4580 }
4581 
4582 //===--------------------------------------------------------------------===//
4583 //                             Expression Emission
4584 //===--------------------------------------------------------------------===//
4585 
4586 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4587                                      ReturnValueSlot ReturnValue) {
4588   // Builtins never have block type.
4589   if (E->getCallee()->getType()->isBlockPointerType())
4590     return EmitBlockCallExpr(E, ReturnValue);
4591 
4592   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4593     return EmitCXXMemberCallExpr(CE, ReturnValue);
4594 
4595   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4596     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4597 
4598   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4599     if (const CXXMethodDecl *MD =
4600           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4601       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4602 
4603   CGCallee callee = EmitCallee(E->getCallee());
4604 
4605   if (callee.isBuiltin()) {
4606     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4607                            E, ReturnValue);
4608   }
4609 
4610   if (callee.isPseudoDestructor()) {
4611     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4612   }
4613 
4614   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4615 }
4616 
4617 /// Emit a CallExpr without considering whether it might be a subclass.
4618 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4619                                            ReturnValueSlot ReturnValue) {
4620   CGCallee Callee = EmitCallee(E->getCallee());
4621   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4622 }
4623 
4624 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4625   if (auto builtinID = FD->getBuiltinID()) {
4626     return CGCallee::forBuiltin(builtinID, FD);
4627   }
4628 
4629   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4630   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4631 }
4632 
4633 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4634   E = E->IgnoreParens();
4635 
4636   // Look through function-to-pointer decay.
4637   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4638     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4639         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4640       return EmitCallee(ICE->getSubExpr());
4641     }
4642 
4643   // Resolve direct calls.
4644   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4645     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4646       return EmitDirectCallee(*this, FD);
4647     }
4648   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4649     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4650       EmitIgnoredExpr(ME->getBase());
4651       return EmitDirectCallee(*this, FD);
4652     }
4653 
4654   // Look through template substitutions.
4655   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4656     return EmitCallee(NTTP->getReplacement());
4657 
4658   // Treat pseudo-destructor calls differently.
4659   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4660     return CGCallee::forPseudoDestructor(PDE);
4661   }
4662 
4663   // Otherwise, we have an indirect reference.
4664   llvm::Value *calleePtr;
4665   QualType functionType;
4666   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4667     calleePtr = EmitScalarExpr(E);
4668     functionType = ptrType->getPointeeType();
4669   } else {
4670     functionType = E->getType();
4671     calleePtr = EmitLValue(E).getPointer(*this);
4672   }
4673   assert(functionType->isFunctionType());
4674 
4675   GlobalDecl GD;
4676   if (const auto *VD =
4677           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4678     GD = GlobalDecl(VD);
4679 
4680   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4681   CGCallee callee(calleeInfo, calleePtr);
4682   return callee;
4683 }
4684 
4685 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4686   // Comma expressions just emit their LHS then their RHS as an l-value.
4687   if (E->getOpcode() == BO_Comma) {
4688     EmitIgnoredExpr(E->getLHS());
4689     EnsureInsertPoint();
4690     return EmitLValue(E->getRHS());
4691   }
4692 
4693   if (E->getOpcode() == BO_PtrMemD ||
4694       E->getOpcode() == BO_PtrMemI)
4695     return EmitPointerToDataMemberBinaryExpr(E);
4696 
4697   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4698 
4699   // Note that in all of these cases, __block variables need the RHS
4700   // evaluated first just in case the variable gets moved by the RHS.
4701 
4702   switch (getEvaluationKind(E->getType())) {
4703   case TEK_Scalar: {
4704     switch (E->getLHS()->getType().getObjCLifetime()) {
4705     case Qualifiers::OCL_Strong:
4706       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4707 
4708     case Qualifiers::OCL_Autoreleasing:
4709       return EmitARCStoreAutoreleasing(E).first;
4710 
4711     // No reason to do any of these differently.
4712     case Qualifiers::OCL_None:
4713     case Qualifiers::OCL_ExplicitNone:
4714     case Qualifiers::OCL_Weak:
4715       break;
4716     }
4717 
4718     RValue RV = EmitAnyExpr(E->getRHS());
4719     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4720     if (RV.isScalar())
4721       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4722     EmitStoreThroughLValue(RV, LV);
4723     if (getLangOpts().OpenMP)
4724       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4725                                                                 E->getLHS());
4726     return LV;
4727   }
4728 
4729   case TEK_Complex:
4730     return EmitComplexAssignmentLValue(E);
4731 
4732   case TEK_Aggregate:
4733     return EmitAggExprToLValue(E);
4734   }
4735   llvm_unreachable("bad evaluation kind");
4736 }
4737 
4738 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4739   RValue RV = EmitCallExpr(E);
4740 
4741   if (!RV.isScalar())
4742     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4743                           AlignmentSource::Decl);
4744 
4745   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4746          "Can't have a scalar return unless the return type is a "
4747          "reference type!");
4748 
4749   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4750 }
4751 
4752 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4753   // FIXME: This shouldn't require another copy.
4754   return EmitAggExprToLValue(E);
4755 }
4756 
4757 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4758   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4759          && "binding l-value to type which needs a temporary");
4760   AggValueSlot Slot = CreateAggTemp(E->getType());
4761   EmitCXXConstructExpr(E, Slot);
4762   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4763 }
4764 
4765 LValue
4766 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4767   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4768 }
4769 
4770 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4771   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4772                                       ConvertType(E->getType()));
4773 }
4774 
4775 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4776   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4777                         AlignmentSource::Decl);
4778 }
4779 
4780 LValue
4781 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4782   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4783   Slot.setExternallyDestructed();
4784   EmitAggExpr(E->getSubExpr(), Slot);
4785   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4786   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4787 }
4788 
4789 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4790   RValue RV = EmitObjCMessageExpr(E);
4791 
4792   if (!RV.isScalar())
4793     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4794                           AlignmentSource::Decl);
4795 
4796   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4797          "Can't have a scalar return unless the return type is a "
4798          "reference type!");
4799 
4800   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4801 }
4802 
4803 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4804   Address V =
4805     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4806   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4807 }
4808 
4809 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4810                                              const ObjCIvarDecl *Ivar) {
4811   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4812 }
4813 
4814 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4815                                           llvm::Value *BaseValue,
4816                                           const ObjCIvarDecl *Ivar,
4817                                           unsigned CVRQualifiers) {
4818   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4819                                                    Ivar, CVRQualifiers);
4820 }
4821 
4822 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4823   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4824   llvm::Value *BaseValue = nullptr;
4825   const Expr *BaseExpr = E->getBase();
4826   Qualifiers BaseQuals;
4827   QualType ObjectTy;
4828   if (E->isArrow()) {
4829     BaseValue = EmitScalarExpr(BaseExpr);
4830     ObjectTy = BaseExpr->getType()->getPointeeType();
4831     BaseQuals = ObjectTy.getQualifiers();
4832   } else {
4833     LValue BaseLV = EmitLValue(BaseExpr);
4834     BaseValue = BaseLV.getPointer(*this);
4835     ObjectTy = BaseExpr->getType();
4836     BaseQuals = ObjectTy.getQualifiers();
4837   }
4838 
4839   LValue LV =
4840     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4841                       BaseQuals.getCVRQualifiers());
4842   setObjCGCLValueClass(getContext(), E, LV);
4843   return LV;
4844 }
4845 
4846 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4847   // Can only get l-value for message expression returning aggregate type
4848   RValue RV = EmitAnyExprToTemp(E);
4849   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4850                         AlignmentSource::Decl);
4851 }
4852 
4853 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4854                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4855                                  llvm::Value *Chain) {
4856   // Get the actual function type. The callee type will always be a pointer to
4857   // function type or a block pointer type.
4858   assert(CalleeType->isFunctionPointerType() &&
4859          "Call must have function pointer type!");
4860 
4861   const Decl *TargetDecl =
4862       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4863 
4864   CalleeType = getContext().getCanonicalType(CalleeType);
4865 
4866   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4867 
4868   CGCallee Callee = OrigCallee;
4869 
4870   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4871       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4872     if (llvm::Constant *PrefixSig =
4873             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4874       SanitizerScope SanScope(this);
4875       // Remove any (C++17) exception specifications, to allow calling e.g. a
4876       // noexcept function through a non-noexcept pointer.
4877       auto ProtoTy =
4878         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4879       llvm::Constant *FTRTTIConst =
4880           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4881       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4882       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4883           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4884 
4885       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4886 
4887       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4888           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4889       llvm::Value *CalleeSigPtr =
4890           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4891       llvm::Value *CalleeSig =
4892           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4893       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4894 
4895       llvm::BasicBlock *Cont = createBasicBlock("cont");
4896       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4897       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4898 
4899       EmitBlock(TypeCheck);
4900       llvm::Value *CalleeRTTIPtr =
4901           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4902       llvm::Value *CalleeRTTIEncoded =
4903           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4904       llvm::Value *CalleeRTTI =
4905           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4906       llvm::Value *CalleeRTTIMatch =
4907           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4908       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4909                                       EmitCheckTypeDescriptor(CalleeType)};
4910       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4911                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4912                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4913 
4914       Builder.CreateBr(Cont);
4915       EmitBlock(Cont);
4916     }
4917   }
4918 
4919   const auto *FnType = cast<FunctionType>(PointeeType);
4920 
4921   // If we are checking indirect calls and this call is indirect, check that the
4922   // function pointer is a member of the bit set for the function type.
4923   if (SanOpts.has(SanitizerKind::CFIICall) &&
4924       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4925     SanitizerScope SanScope(this);
4926     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4927 
4928     llvm::Metadata *MD;
4929     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4930       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4931     else
4932       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4933 
4934     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4935 
4936     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4937     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4938     llvm::Value *TypeTest = Builder.CreateCall(
4939         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4940 
4941     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4942     llvm::Constant *StaticData[] = {
4943         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4944         EmitCheckSourceLocation(E->getBeginLoc()),
4945         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4946     };
4947     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4948       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4949                            CastedCallee, StaticData);
4950     } else {
4951       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4952                 SanitizerHandler::CFICheckFail, StaticData,
4953                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4954     }
4955   }
4956 
4957   CallArgList Args;
4958   if (Chain)
4959     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4960              CGM.getContext().VoidPtrTy);
4961 
4962   // C++17 requires that we evaluate arguments to a call using assignment syntax
4963   // right-to-left, and that we evaluate arguments to certain other operators
4964   // left-to-right. Note that we allow this to override the order dictated by
4965   // the calling convention on the MS ABI, which means that parameter
4966   // destruction order is not necessarily reverse construction order.
4967   // FIXME: Revisit this based on C++ committee response to unimplementability.
4968   EvaluationOrder Order = EvaluationOrder::Default;
4969   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4970     if (OCE->isAssignmentOp())
4971       Order = EvaluationOrder::ForceRightToLeft;
4972     else {
4973       switch (OCE->getOperator()) {
4974       case OO_LessLess:
4975       case OO_GreaterGreater:
4976       case OO_AmpAmp:
4977       case OO_PipePipe:
4978       case OO_Comma:
4979       case OO_ArrowStar:
4980         Order = EvaluationOrder::ForceLeftToRight;
4981         break;
4982       default:
4983         break;
4984       }
4985     }
4986   }
4987 
4988   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4989                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4990 
4991   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4992       Args, FnType, /*ChainCall=*/Chain);
4993 
4994   // C99 6.5.2.2p6:
4995   //   If the expression that denotes the called function has a type
4996   //   that does not include a prototype, [the default argument
4997   //   promotions are performed]. If the number of arguments does not
4998   //   equal the number of parameters, the behavior is undefined. If
4999   //   the function is defined with a type that includes a prototype,
5000   //   and either the prototype ends with an ellipsis (, ...) or the
5001   //   types of the arguments after promotion are not compatible with
5002   //   the types of the parameters, the behavior is undefined. If the
5003   //   function is defined with a type that does not include a
5004   //   prototype, and the types of the arguments after promotion are
5005   //   not compatible with those of the parameters after promotion,
5006   //   the behavior is undefined [except in some trivial cases].
5007   // That is, in the general case, we should assume that a call
5008   // through an unprototyped function type works like a *non-variadic*
5009   // call.  The way we make this work is to cast to the exact type
5010   // of the promoted arguments.
5011   //
5012   // Chain calls use this same code path to add the invisible chain parameter
5013   // to the function type.
5014   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5015     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5016     CalleeTy = CalleeTy->getPointerTo();
5017 
5018     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5019     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5020     Callee.setFunctionPointer(CalleePtr);
5021   }
5022 
5023   llvm::CallBase *CallOrInvoke = nullptr;
5024   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5025                          E->getExprLoc());
5026 
5027   // Generate function declaration DISuprogram in order to be used
5028   // in debug info about call sites.
5029   if (CGDebugInfo *DI = getDebugInfo()) {
5030     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5031       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5032                                   CalleeDecl);
5033   }
5034 
5035   return Call;
5036 }
5037 
5038 LValue CodeGenFunction::
5039 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5040   Address BaseAddr = Address::invalid();
5041   if (E->getOpcode() == BO_PtrMemI) {
5042     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5043   } else {
5044     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5045   }
5046 
5047   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5048 
5049   const MemberPointerType *MPT
5050     = E->getRHS()->getType()->getAs<MemberPointerType>();
5051 
5052   LValueBaseInfo BaseInfo;
5053   TBAAAccessInfo TBAAInfo;
5054   Address MemberAddr =
5055     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5056                                     &TBAAInfo);
5057 
5058   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5059 }
5060 
5061 /// Given the address of a temporary variable, produce an r-value of
5062 /// its type.
5063 RValue CodeGenFunction::convertTempToRValue(Address addr,
5064                                             QualType type,
5065                                             SourceLocation loc) {
5066   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5067   switch (getEvaluationKind(type)) {
5068   case TEK_Complex:
5069     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5070   case TEK_Aggregate:
5071     return lvalue.asAggregateRValue(*this);
5072   case TEK_Scalar:
5073     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5074   }
5075   llvm_unreachable("bad evaluation kind");
5076 }
5077 
5078 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5079   assert(Val->getType()->isFPOrFPVectorTy());
5080   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5081     return;
5082 
5083   llvm::MDBuilder MDHelper(getLLVMContext());
5084   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5085 
5086   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5087 }
5088 
5089 namespace {
5090   struct LValueOrRValue {
5091     LValue LV;
5092     RValue RV;
5093   };
5094 }
5095 
5096 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5097                                            const PseudoObjectExpr *E,
5098                                            bool forLValue,
5099                                            AggValueSlot slot) {
5100   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5101 
5102   // Find the result expression, if any.
5103   const Expr *resultExpr = E->getResultExpr();
5104   LValueOrRValue result;
5105 
5106   for (PseudoObjectExpr::const_semantics_iterator
5107          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5108     const Expr *semantic = *i;
5109 
5110     // If this semantic expression is an opaque value, bind it
5111     // to the result of its source expression.
5112     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5113       // Skip unique OVEs.
5114       if (ov->isUnique()) {
5115         assert(ov != resultExpr &&
5116                "A unique OVE cannot be used as the result expression");
5117         continue;
5118       }
5119 
5120       // If this is the result expression, we may need to evaluate
5121       // directly into the slot.
5122       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5123       OVMA opaqueData;
5124       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5125           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5126         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5127         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5128                                        AlignmentSource::Decl);
5129         opaqueData = OVMA::bind(CGF, ov, LV);
5130         result.RV = slot.asRValue();
5131 
5132       // Otherwise, emit as normal.
5133       } else {
5134         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5135 
5136         // If this is the result, also evaluate the result now.
5137         if (ov == resultExpr) {
5138           if (forLValue)
5139             result.LV = CGF.EmitLValue(ov);
5140           else
5141             result.RV = CGF.EmitAnyExpr(ov, slot);
5142         }
5143       }
5144 
5145       opaques.push_back(opaqueData);
5146 
5147     // Otherwise, if the expression is the result, evaluate it
5148     // and remember the result.
5149     } else if (semantic == resultExpr) {
5150       if (forLValue)
5151         result.LV = CGF.EmitLValue(semantic);
5152       else
5153         result.RV = CGF.EmitAnyExpr(semantic, slot);
5154 
5155     // Otherwise, evaluate the expression in an ignored context.
5156     } else {
5157       CGF.EmitIgnoredExpr(semantic);
5158     }
5159   }
5160 
5161   // Unbind all the opaques now.
5162   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5163     opaques[i].unbind(CGF);
5164 
5165   return result;
5166 }
5167 
5168 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5169                                                AggValueSlot slot) {
5170   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5171 }
5172 
5173 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5174   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5175 }
5176