1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getAsAlign()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getAsAlign()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::FunctionCallee CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 344 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getAsAlign()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->getSubExpr(); 421 422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 424 "Reference should never be pseudo-strong!"); 425 426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 427 // as that will cause the lifetime adjustment to be lost for ARC 428 auto ownership = M->getType().getObjCLifetime(); 429 if (ownership != Qualifiers::OCL_None && 430 ownership != Qualifiers::OCL_ExplicitNone) { 431 Address Object = createReferenceTemporary(*this, M, E); 432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 433 Object = Address(llvm::ConstantExpr::getBitCast(Var, 434 ConvertTypeForMem(E->getType()) 435 ->getPointerTo(Object.getAddressSpace())), 436 Object.getAlignment()); 437 438 // createReferenceTemporary will promote the temporary to a global with a 439 // constant initializer if it can. It can only do this to a value of 440 // ARC-manageable type if the value is global and therefore "immune" to 441 // ref-counting operations. Therefore we have no need to emit either a 442 // dynamic initialization or a cleanup and we can just return the address 443 // of the temporary. 444 if (Var->hasInitializer()) 445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 446 447 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 448 } 449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 450 AlignmentSource::Decl); 451 452 switch (getEvaluationKind(E->getType())) { 453 default: llvm_unreachable("expected scalar or aggregate expression"); 454 case TEK_Scalar: 455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 456 break; 457 case TEK_Aggregate: { 458 EmitAggExpr(E, AggValueSlot::forAddr(Object, 459 E->getType().getQualifiers(), 460 AggValueSlot::IsDestructed, 461 AggValueSlot::DoesNotNeedGCBarriers, 462 AggValueSlot::IsNotAliased, 463 AggValueSlot::DoesNotOverlap)); 464 break; 465 } 466 } 467 468 pushTemporaryCleanup(*this, M, E, Object); 469 return RefTempDst; 470 } 471 472 SmallVector<const Expr *, 2> CommaLHSs; 473 SmallVector<SubobjectAdjustment, 2> Adjustments; 474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 475 476 for (const auto &Ignored : CommaLHSs) 477 EmitIgnoredExpr(Ignored); 478 479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 480 if (opaque->getType()->isRecordType()) { 481 assert(Adjustments.empty()); 482 return EmitOpaqueValueLValue(opaque); 483 } 484 } 485 486 // Create and initialize the reference temporary. 487 Address Alloca = Address::invalid(); 488 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 489 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 490 Object.getPointer()->stripPointerCasts())) { 491 Object = Address(llvm::ConstantExpr::getBitCast( 492 cast<llvm::Constant>(Object.getPointer()), 493 ConvertTypeForMem(E->getType())->getPointerTo()), 494 Object.getAlignment()); 495 // If the temporary is a global and has a constant initializer or is a 496 // constant temporary that we promoted to a global, we may have already 497 // initialized it. 498 if (!Var->hasInitializer()) { 499 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 } else { 503 switch (M->getStorageDuration()) { 504 case SD_Automatic: 505 if (auto *Size = EmitLifetimeStart( 506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 507 Alloca.getPointer())) { 508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 509 Alloca, Size); 510 } 511 break; 512 513 case SD_FullExpression: { 514 if (!ShouldEmitLifetimeMarkers) 515 break; 516 517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 518 // marker. Instead, start the lifetime of a conditional temporary earlier 519 // so that it's unconditional. Don't do this with sanitizers which need 520 // more precise lifetime marks. 521 ConditionalEvaluation *OldConditional = nullptr; 522 CGBuilderTy::InsertPoint OldIP; 523 if (isInConditionalBranch() && !E->getType().isDestructedType() && 524 !SanOpts.has(SanitizerKind::HWAddress) && 525 !SanOpts.has(SanitizerKind::Memory) && 526 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 527 OldConditional = OutermostConditional; 528 OutermostConditional = nullptr; 529 530 OldIP = Builder.saveIP(); 531 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 532 Builder.restoreIP(CGBuilderTy::InsertPoint( 533 Block, llvm::BasicBlock::iterator(Block->back()))); 534 } 535 536 if (auto *Size = EmitLifetimeStart( 537 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 538 Alloca.getPointer())) { 539 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 540 Size); 541 } 542 543 if (OldConditional) { 544 OutermostConditional = OldConditional; 545 Builder.restoreIP(OldIP); 546 } 547 break; 548 } 549 550 default: 551 break; 552 } 553 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 554 } 555 pushTemporaryCleanup(*this, M, E, Object); 556 557 // Perform derived-to-base casts and/or field accesses, to get from the 558 // temporary object we created (and, potentially, for which we extended 559 // the lifetime) to the subobject we're binding the reference to. 560 for (unsigned I = Adjustments.size(); I != 0; --I) { 561 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 562 switch (Adjustment.Kind) { 563 case SubobjectAdjustment::DerivedToBaseAdjustment: 564 Object = 565 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 566 Adjustment.DerivedToBase.BasePath->path_begin(), 567 Adjustment.DerivedToBase.BasePath->path_end(), 568 /*NullCheckValue=*/ false, E->getExprLoc()); 569 break; 570 571 case SubobjectAdjustment::FieldAdjustment: { 572 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 573 LV = EmitLValueForField(LV, Adjustment.Field); 574 assert(LV.isSimple() && 575 "materialized temporary field is not a simple lvalue"); 576 Object = LV.getAddress(*this); 577 break; 578 } 579 580 case SubobjectAdjustment::MemberPointerAdjustment: { 581 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 582 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 583 Adjustment.Ptr.MPT); 584 break; 585 } 586 } 587 } 588 589 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 590 } 591 592 RValue 593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 594 // Emit the expression as an lvalue. 595 LValue LV = EmitLValue(E); 596 assert(LV.isSimple()); 597 llvm::Value *Value = LV.getPointer(*this); 598 599 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 600 // C++11 [dcl.ref]p5 (as amended by core issue 453): 601 // If a glvalue to which a reference is directly bound designates neither 602 // an existing object or function of an appropriate type nor a region of 603 // storage of suitable size and alignment to contain an object of the 604 // reference's type, the behavior is undefined. 605 QualType Ty = E->getType(); 606 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 607 } 608 609 return RValue::get(Value); 610 } 611 612 613 /// getAccessedFieldNo - Given an encoded value and a result number, return the 614 /// input field number being accessed. 615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 616 const llvm::Constant *Elts) { 617 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 618 ->getZExtValue(); 619 } 620 621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 623 llvm::Value *High) { 624 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 625 llvm::Value *K47 = Builder.getInt64(47); 626 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 627 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 628 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 629 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 630 return Builder.CreateMul(B1, KMul); 631 } 632 633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 634 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 635 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 636 } 637 638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 639 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 640 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 641 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 642 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 643 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 644 } 645 646 bool CodeGenFunction::sanitizePerformTypeCheck() const { 647 return SanOpts.has(SanitizerKind::Null) | 648 SanOpts.has(SanitizerKind::Alignment) | 649 SanOpts.has(SanitizerKind::ObjectSize) | 650 SanOpts.has(SanitizerKind::Vptr); 651 } 652 653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 654 llvm::Value *Ptr, QualType Ty, 655 CharUnits Alignment, 656 SanitizerSet SkippedChecks, 657 llvm::Value *ArraySize) { 658 if (!sanitizePerformTypeCheck()) 659 return; 660 661 // Don't check pointers outside the default address space. The null check 662 // isn't correct, the object-size check isn't supported by LLVM, and we can't 663 // communicate the addresses to the runtime handler for the vptr check. 664 if (Ptr->getType()->getPointerAddressSpace()) 665 return; 666 667 // Don't check pointers to volatile data. The behavior here is implementation- 668 // defined. 669 if (Ty.isVolatileQualified()) 670 return; 671 672 SanitizerScope SanScope(this); 673 674 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 675 llvm::BasicBlock *Done = nullptr; 676 677 // Quickly determine whether we have a pointer to an alloca. It's possible 678 // to skip null checks, and some alignment checks, for these pointers. This 679 // can reduce compile-time significantly. 680 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 716 if (ArraySize) 717 Size = Builder.CreateMul(Size, ArraySize); 718 719 // Degenerate case: new X[0] does not need an objectsize check. 720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 721 if (!ConstantSize || !ConstantSize->isNullValue()) { 722 // The glvalue must refer to a large enough storage region. 723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 724 // to check this. 725 // FIXME: Get object address space 726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 728 llvm::Value *Min = Builder.getFalse(); 729 llvm::Value *NullIsUnknown = Builder.getFalse(); 730 llvm::Value *Dynamic = Builder.getFalse(); 731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 732 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 735 } 736 } 737 738 uint64_t AlignVal = 0; 739 llvm::Value *PtrAsInt = nullptr; 740 741 if (SanOpts.has(SanitizerKind::Alignment) && 742 !SkippedChecks.has(SanitizerKind::Alignment)) { 743 AlignVal = Alignment.getQuantity(); 744 if (!Ty->isIncompleteType() && !AlignVal) 745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 746 747 // The glvalue must be suitably aligned. 748 if (AlignVal > 1 && 749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 751 llvm::Value *Align = Builder.CreateAnd( 752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 753 llvm::Value *Aligned = 754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 755 if (Aligned != True) 756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 757 } 758 } 759 760 if (Checks.size() > 0) { 761 // Make sure we're not losing information. Alignment needs to be a power of 762 // 2 763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 767 llvm::ConstantInt::get(Int8Ty, TCK)}; 768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 769 PtrAsInt ? PtrAsInt : Ptr); 770 } 771 772 // If possible, check that the vptr indicates that there is a subobject of 773 // type Ty at offset zero within this object. 774 // 775 // C++11 [basic.life]p5,6: 776 // [For storage which does not refer to an object within its lifetime] 777 // The program has undefined behavior if: 778 // -- the [pointer or glvalue] is used to access a non-static data member 779 // or call a non-static member function 780 if (SanOpts.has(SanitizerKind::Vptr) && 781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 782 // Ensure that the pointer is non-null before loading it. If there is no 783 // compile-time guarantee, reuse the run-time null check or emit a new one. 784 if (!IsGuaranteedNonNull) { 785 if (!IsNonNull) 786 IsNonNull = Builder.CreateIsNotNull(Ptr); 787 if (!Done) 788 Done = createBasicBlock("vptr.null"); 789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 791 EmitBlock(VptrNotNull); 792 } 793 794 // Compute a hash of the mangled name of the type. 795 // 796 // FIXME: This is not guaranteed to be deterministic! Move to a 797 // fingerprinting mechanism once LLVM provides one. For the time 798 // being the implementation happens to be deterministic. 799 SmallString<64> MangledName; 800 llvm::raw_svector_ostream Out(MangledName); 801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 802 Out); 803 804 // Blacklist based on the mangled type. 805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 806 SanitizerKind::Vptr, Out.str())) { 807 llvm::hash_code TypeHash = hash_value(Out.str()); 808 809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 815 816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 817 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 818 819 // Look the hash up in our cache. 820 const int CacheSize = 128; 821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 823 "__ubsan_vptr_type_cache"); 824 llvm::Value *Slot = Builder.CreateAnd(Hash, 825 llvm::ConstantInt::get(IntPtrTy, 826 CacheSize-1)); 827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 828 llvm::Value *CacheVal = 829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 830 getPointerAlign()); 831 832 // If the hash isn't in the cache, call a runtime handler to perform the 833 // hard work of checking whether the vptr is for an object of the right 834 // type. This will either fill in the cache and return, or produce a 835 // diagnostic. 836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 837 llvm::Constant *StaticData[] = { 838 EmitCheckSourceLocation(Loc), 839 EmitCheckTypeDescriptor(Ty), 840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 841 llvm::ConstantInt::get(Int8Ty, TCK) 842 }; 843 llvm::Value *DynamicData[] = { Ptr, Hash }; 844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 845 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 846 DynamicData); 847 } 848 } 849 850 if (Done) { 851 Builder.CreateBr(Done); 852 EmitBlock(Done); 853 } 854 } 855 856 /// Determine whether this expression refers to a flexible array member in a 857 /// struct. We disable array bounds checks for such members. 858 static bool isFlexibleArrayMemberExpr(const Expr *E) { 859 // For compatibility with existing code, we treat arrays of length 0 or 860 // 1 as flexible array members. 861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 863 if (CAT->getSize().ugt(1)) 864 return false; 865 } else if (!isa<IncompleteArrayType>(AT)) 866 return false; 867 868 E = E->IgnoreParens(); 869 870 // A flexible array member must be the last member in the class. 871 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 872 // FIXME: If the base type of the member expr is not FD->getParent(), 873 // this should not be treated as a flexible array member access. 874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 875 RecordDecl::field_iterator FI( 876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 877 return ++FI == FD->getParent()->field_end(); 878 } 879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 880 return IRE->getDecl()->getNextIvar() == nullptr; 881 } 882 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 887 QualType EltTy) { 888 ASTContext &C = getContext(); 889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 890 if (!EltSize) 891 return nullptr; 892 893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 894 if (!ArrayDeclRef) 895 return nullptr; 896 897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 898 if (!ParamDecl) 899 return nullptr; 900 901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 902 if (!POSAttr) 903 return nullptr; 904 905 // Don't load the size if it's a lower bound. 906 int POSType = POSAttr->getType(); 907 if (POSType != 0 && POSType != 1) 908 return nullptr; 909 910 // Find the implicit size parameter. 911 auto PassedSizeIt = SizeArguments.find(ParamDecl); 912 if (PassedSizeIt == SizeArguments.end()) 913 return nullptr; 914 915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 919 C.getSizeType(), E->getExprLoc()); 920 llvm::Value *SizeOfElement = 921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 923 } 924 925 /// If Base is known to point to the start of an array, return the length of 926 /// that array. Return 0 if the length cannot be determined. 927 static llvm::Value *getArrayIndexingBound( 928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 929 // For the vector indexing extension, the bound is the number of elements. 930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 931 IndexedType = Base->getType(); 932 return CGF.Builder.getInt32(VT->getNumElements()); 933 } 934 935 Base = Base->IgnoreParens(); 936 937 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 938 if (CE->getCastKind() == CK_ArrayToPointerDecay && 939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 940 IndexedType = CE->getSubExpr()->getType(); 941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 943 return CGF.Builder.getInt(CAT->getSize()); 944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 945 return CGF.getVLASize(VAT).NumElts; 946 // Ignore pass_object_size here. It's not applicable on decayed pointers. 947 } 948 } 949 950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 952 IndexedType = Base->getType(); 953 return POS; 954 } 955 956 return nullptr; 957 } 958 959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 960 llvm::Value *Index, QualType IndexType, 961 bool Accessed) { 962 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 963 "should not be called unless adding bounds checks"); 964 SanitizerScope SanScope(this); 965 966 QualType IndexedType; 967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 968 if (!Bound) 969 return; 970 971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 974 975 llvm::Constant *StaticData[] = { 976 EmitCheckSourceLocation(E->getExprLoc()), 977 EmitCheckTypeDescriptor(IndexedType), 978 EmitCheckTypeDescriptor(IndexType) 979 }; 980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 981 : Builder.CreateICmpULE(IndexVal, BoundVal); 982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 983 SanitizerHandler::OutOfBounds, StaticData, Index); 984 } 985 986 987 CodeGenFunction::ComplexPairTy CodeGenFunction:: 988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 989 bool isInc, bool isPre) { 990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 991 992 llvm::Value *NextVal; 993 if (isa<llvm::IntegerType>(InVal.first->getType())) { 994 uint64_t AmountVal = isInc ? 1 : -1; 995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 996 997 // Add the inc/dec to the real part. 998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 999 } else { 1000 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1002 if (!isInc) 1003 FVal.changeSign(); 1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1005 1006 // Add the inc/dec to the real part. 1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1008 } 1009 1010 ComplexPairTy IncVal(NextVal, InVal.second); 1011 1012 // Store the updated result through the lvalue. 1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1014 if (getLangOpts().OpenMP) 1015 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1016 E->getSubExpr()); 1017 1018 // If this is a postinc, return the value read from memory, otherwise use the 1019 // updated value. 1020 return isPre ? IncVal : InVal; 1021 } 1022 1023 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1024 CodeGenFunction *CGF) { 1025 // Bind VLAs in the cast type. 1026 if (CGF && E->getType()->isVariablyModifiedType()) 1027 CGF->EmitVariablyModifiedType(E->getType()); 1028 1029 if (CGDebugInfo *DI = getModuleDebugInfo()) 1030 DI->EmitExplicitCastType(E->getType()); 1031 } 1032 1033 //===----------------------------------------------------------------------===// 1034 // LValue Expression Emission 1035 //===----------------------------------------------------------------------===// 1036 1037 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1038 /// derive a more accurate bound on the alignment of the pointer. 1039 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1040 LValueBaseInfo *BaseInfo, 1041 TBAAAccessInfo *TBAAInfo) { 1042 // We allow this with ObjC object pointers because of fragile ABIs. 1043 assert(E->getType()->isPointerType() || 1044 E->getType()->isObjCObjectPointerType()); 1045 E = E->IgnoreParens(); 1046 1047 // Casts: 1048 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1049 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1050 CGM.EmitExplicitCastExprType(ECE, this); 1051 1052 switch (CE->getCastKind()) { 1053 // Non-converting casts (but not C's implicit conversion from void*). 1054 case CK_BitCast: 1055 case CK_NoOp: 1056 case CK_AddressSpaceConversion: 1057 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1058 if (PtrTy->getPointeeType()->isVoidType()) 1059 break; 1060 1061 LValueBaseInfo InnerBaseInfo; 1062 TBAAAccessInfo InnerTBAAInfo; 1063 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1064 &InnerBaseInfo, 1065 &InnerTBAAInfo); 1066 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1067 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1068 1069 if (isa<ExplicitCastExpr>(CE)) { 1070 LValueBaseInfo TargetTypeBaseInfo; 1071 TBAAAccessInfo TargetTypeTBAAInfo; 1072 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1073 &TargetTypeBaseInfo, 1074 &TargetTypeTBAAInfo); 1075 if (TBAAInfo) 1076 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1077 TargetTypeTBAAInfo); 1078 // If the source l-value is opaque, honor the alignment of the 1079 // casted-to type. 1080 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1081 if (BaseInfo) 1082 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1083 Addr = Address(Addr.getPointer(), Align); 1084 } 1085 } 1086 1087 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1088 CE->getCastKind() == CK_BitCast) { 1089 if (auto PT = E->getType()->getAs<PointerType>()) 1090 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1091 /*MayBeNull=*/true, 1092 CodeGenFunction::CFITCK_UnrelatedCast, 1093 CE->getBeginLoc()); 1094 } 1095 return CE->getCastKind() != CK_AddressSpaceConversion 1096 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1097 : Builder.CreateAddrSpaceCast(Addr, 1098 ConvertType(E->getType())); 1099 } 1100 break; 1101 1102 // Array-to-pointer decay. 1103 case CK_ArrayToPointerDecay: 1104 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1105 1106 // Derived-to-base conversions. 1107 case CK_UncheckedDerivedToBase: 1108 case CK_DerivedToBase: { 1109 // TODO: Support accesses to members of base classes in TBAA. For now, we 1110 // conservatively pretend that the complete object is of the base class 1111 // type. 1112 if (TBAAInfo) 1113 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1114 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1115 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1116 return GetAddressOfBaseClass(Addr, Derived, 1117 CE->path_begin(), CE->path_end(), 1118 ShouldNullCheckClassCastValue(CE), 1119 CE->getExprLoc()); 1120 } 1121 1122 // TODO: Is there any reason to treat base-to-derived conversions 1123 // specially? 1124 default: 1125 break; 1126 } 1127 } 1128 1129 // Unary &. 1130 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1131 if (UO->getOpcode() == UO_AddrOf) { 1132 LValue LV = EmitLValue(UO->getSubExpr()); 1133 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1134 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1135 return LV.getAddress(*this); 1136 } 1137 } 1138 1139 // TODO: conditional operators, comma. 1140 1141 // Otherwise, use the alignment of the type. 1142 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1143 TBAAInfo); 1144 return Address(EmitScalarExpr(E), Align); 1145 } 1146 1147 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1148 if (Ty->isVoidType()) 1149 return RValue::get(nullptr); 1150 1151 switch (getEvaluationKind(Ty)) { 1152 case TEK_Complex: { 1153 llvm::Type *EltTy = 1154 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1155 llvm::Value *U = llvm::UndefValue::get(EltTy); 1156 return RValue::getComplex(std::make_pair(U, U)); 1157 } 1158 1159 // If this is a use of an undefined aggregate type, the aggregate must have an 1160 // identifiable address. Just because the contents of the value are undefined 1161 // doesn't mean that the address can't be taken and compared. 1162 case TEK_Aggregate: { 1163 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1164 return RValue::getAggregate(DestPtr); 1165 } 1166 1167 case TEK_Scalar: 1168 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1169 } 1170 llvm_unreachable("bad evaluation kind"); 1171 } 1172 1173 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1174 const char *Name) { 1175 ErrorUnsupported(E, Name); 1176 return GetUndefRValue(E->getType()); 1177 } 1178 1179 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1180 const char *Name) { 1181 ErrorUnsupported(E, Name); 1182 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1183 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1184 E->getType()); 1185 } 1186 1187 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1188 const Expr *Base = Obj; 1189 while (!isa<CXXThisExpr>(Base)) { 1190 // The result of a dynamic_cast can be null. 1191 if (isa<CXXDynamicCastExpr>(Base)) 1192 return false; 1193 1194 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1195 Base = CE->getSubExpr(); 1196 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1197 Base = PE->getSubExpr(); 1198 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1199 if (UO->getOpcode() == UO_Extension) 1200 Base = UO->getSubExpr(); 1201 else 1202 return false; 1203 } else { 1204 return false; 1205 } 1206 } 1207 return true; 1208 } 1209 1210 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1211 LValue LV; 1212 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1213 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1214 else 1215 LV = EmitLValue(E); 1216 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1217 SanitizerSet SkippedChecks; 1218 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1219 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1220 if (IsBaseCXXThis) 1221 SkippedChecks.set(SanitizerKind::Alignment, true); 1222 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1223 SkippedChecks.set(SanitizerKind::Null, true); 1224 } 1225 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1226 LV.getAlignment(), SkippedChecks); 1227 } 1228 return LV; 1229 } 1230 1231 /// EmitLValue - Emit code to compute a designator that specifies the location 1232 /// of the expression. 1233 /// 1234 /// This can return one of two things: a simple address or a bitfield reference. 1235 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1236 /// an LLVM pointer type. 1237 /// 1238 /// If this returns a bitfield reference, nothing about the pointee type of the 1239 /// LLVM value is known: For example, it may not be a pointer to an integer. 1240 /// 1241 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1242 /// this method guarantees that the returned pointer type will point to an LLVM 1243 /// type of the same size of the lvalue's type. If the lvalue has a variable 1244 /// length type, this is not possible. 1245 /// 1246 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1247 ApplyDebugLocation DL(*this, E); 1248 switch (E->getStmtClass()) { 1249 default: return EmitUnsupportedLValue(E, "l-value expression"); 1250 1251 case Expr::ObjCPropertyRefExprClass: 1252 llvm_unreachable("cannot emit a property reference directly"); 1253 1254 case Expr::ObjCSelectorExprClass: 1255 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1256 case Expr::ObjCIsaExprClass: 1257 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1258 case Expr::BinaryOperatorClass: 1259 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1260 case Expr::CompoundAssignOperatorClass: { 1261 QualType Ty = E->getType(); 1262 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1263 Ty = AT->getValueType(); 1264 if (!Ty->isAnyComplexType()) 1265 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1266 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1267 } 1268 case Expr::CallExprClass: 1269 case Expr::CXXMemberCallExprClass: 1270 case Expr::CXXOperatorCallExprClass: 1271 case Expr::UserDefinedLiteralClass: 1272 return EmitCallExprLValue(cast<CallExpr>(E)); 1273 case Expr::CXXRewrittenBinaryOperatorClass: 1274 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1275 case Expr::VAArgExprClass: 1276 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1277 case Expr::DeclRefExprClass: 1278 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1279 case Expr::ConstantExprClass: 1280 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1281 case Expr::ParenExprClass: 1282 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1283 case Expr::GenericSelectionExprClass: 1284 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1285 case Expr::PredefinedExprClass: 1286 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1287 case Expr::StringLiteralClass: 1288 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1289 case Expr::ObjCEncodeExprClass: 1290 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1291 case Expr::PseudoObjectExprClass: 1292 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1293 case Expr::InitListExprClass: 1294 return EmitInitListLValue(cast<InitListExpr>(E)); 1295 case Expr::CXXTemporaryObjectExprClass: 1296 case Expr::CXXConstructExprClass: 1297 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1298 case Expr::CXXBindTemporaryExprClass: 1299 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1300 case Expr::CXXUuidofExprClass: 1301 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1302 case Expr::LambdaExprClass: 1303 return EmitAggExprToLValue(E); 1304 1305 case Expr::ExprWithCleanupsClass: { 1306 const auto *cleanups = cast<ExprWithCleanups>(E); 1307 enterFullExpression(cleanups); 1308 RunCleanupsScope Scope(*this); 1309 LValue LV = EmitLValue(cleanups->getSubExpr()); 1310 if (LV.isSimple()) { 1311 // Defend against branches out of gnu statement expressions surrounded by 1312 // cleanups. 1313 llvm::Value *V = LV.getPointer(*this); 1314 Scope.ForceCleanup({&V}); 1315 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1316 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1317 } 1318 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1319 // bitfield lvalue or some other non-simple lvalue? 1320 return LV; 1321 } 1322 1323 case Expr::CXXDefaultArgExprClass: { 1324 auto *DAE = cast<CXXDefaultArgExpr>(E); 1325 CXXDefaultArgExprScope Scope(*this, DAE); 1326 return EmitLValue(DAE->getExpr()); 1327 } 1328 case Expr::CXXDefaultInitExprClass: { 1329 auto *DIE = cast<CXXDefaultInitExpr>(E); 1330 CXXDefaultInitExprScope Scope(*this, DIE); 1331 return EmitLValue(DIE->getExpr()); 1332 } 1333 case Expr::CXXTypeidExprClass: 1334 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1335 1336 case Expr::ObjCMessageExprClass: 1337 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1338 case Expr::ObjCIvarRefExprClass: 1339 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1340 case Expr::StmtExprClass: 1341 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1342 case Expr::UnaryOperatorClass: 1343 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1344 case Expr::ArraySubscriptExprClass: 1345 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1346 case Expr::OMPArraySectionExprClass: 1347 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1348 case Expr::ExtVectorElementExprClass: 1349 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1350 case Expr::MemberExprClass: 1351 return EmitMemberExpr(cast<MemberExpr>(E)); 1352 case Expr::CompoundLiteralExprClass: 1353 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1354 case Expr::ConditionalOperatorClass: 1355 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1356 case Expr::BinaryConditionalOperatorClass: 1357 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1358 case Expr::ChooseExprClass: 1359 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1360 case Expr::OpaqueValueExprClass: 1361 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1362 case Expr::SubstNonTypeTemplateParmExprClass: 1363 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1364 case Expr::ImplicitCastExprClass: 1365 case Expr::CStyleCastExprClass: 1366 case Expr::CXXFunctionalCastExprClass: 1367 case Expr::CXXStaticCastExprClass: 1368 case Expr::CXXDynamicCastExprClass: 1369 case Expr::CXXReinterpretCastExprClass: 1370 case Expr::CXXConstCastExprClass: 1371 case Expr::ObjCBridgedCastExprClass: 1372 return EmitCastLValue(cast<CastExpr>(E)); 1373 1374 case Expr::MaterializeTemporaryExprClass: 1375 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1376 1377 case Expr::CoawaitExprClass: 1378 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1379 case Expr::CoyieldExprClass: 1380 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1381 } 1382 } 1383 1384 /// Given an object of the given canonical type, can we safely copy a 1385 /// value out of it based on its initializer? 1386 static bool isConstantEmittableObjectType(QualType type) { 1387 assert(type.isCanonical()); 1388 assert(!type->isReferenceType()); 1389 1390 // Must be const-qualified but non-volatile. 1391 Qualifiers qs = type.getLocalQualifiers(); 1392 if (!qs.hasConst() || qs.hasVolatile()) return false; 1393 1394 // Otherwise, all object types satisfy this except C++ classes with 1395 // mutable subobjects or non-trivial copy/destroy behavior. 1396 if (const auto *RT = dyn_cast<RecordType>(type)) 1397 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1398 if (RD->hasMutableFields() || !RD->isTrivial()) 1399 return false; 1400 1401 return true; 1402 } 1403 1404 /// Can we constant-emit a load of a reference to a variable of the 1405 /// given type? This is different from predicates like 1406 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1407 /// in situations that don't necessarily satisfy the language's rules 1408 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1409 /// to do this with const float variables even if those variables 1410 /// aren't marked 'constexpr'. 1411 enum ConstantEmissionKind { 1412 CEK_None, 1413 CEK_AsReferenceOnly, 1414 CEK_AsValueOrReference, 1415 CEK_AsValueOnly 1416 }; 1417 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1418 type = type.getCanonicalType(); 1419 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1420 if (isConstantEmittableObjectType(ref->getPointeeType())) 1421 return CEK_AsValueOrReference; 1422 return CEK_AsReferenceOnly; 1423 } 1424 if (isConstantEmittableObjectType(type)) 1425 return CEK_AsValueOnly; 1426 return CEK_None; 1427 } 1428 1429 /// Try to emit a reference to the given value without producing it as 1430 /// an l-value. This is just an optimization, but it avoids us needing 1431 /// to emit global copies of variables if they're named without triggering 1432 /// a formal use in a context where we can't emit a direct reference to them, 1433 /// for instance if a block or lambda or a member of a local class uses a 1434 /// const int variable or constexpr variable from an enclosing function. 1435 CodeGenFunction::ConstantEmission 1436 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1437 ValueDecl *value = refExpr->getDecl(); 1438 1439 // The value needs to be an enum constant or a constant variable. 1440 ConstantEmissionKind CEK; 1441 if (isa<ParmVarDecl>(value)) { 1442 CEK = CEK_None; 1443 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1444 CEK = checkVarTypeForConstantEmission(var->getType()); 1445 } else if (isa<EnumConstantDecl>(value)) { 1446 CEK = CEK_AsValueOnly; 1447 } else { 1448 CEK = CEK_None; 1449 } 1450 if (CEK == CEK_None) return ConstantEmission(); 1451 1452 Expr::EvalResult result; 1453 bool resultIsReference; 1454 QualType resultType; 1455 1456 // It's best to evaluate all the way as an r-value if that's permitted. 1457 if (CEK != CEK_AsReferenceOnly && 1458 refExpr->EvaluateAsRValue(result, getContext())) { 1459 resultIsReference = false; 1460 resultType = refExpr->getType(); 1461 1462 // Otherwise, try to evaluate as an l-value. 1463 } else if (CEK != CEK_AsValueOnly && 1464 refExpr->EvaluateAsLValue(result, getContext())) { 1465 resultIsReference = true; 1466 resultType = value->getType(); 1467 1468 // Failure. 1469 } else { 1470 return ConstantEmission(); 1471 } 1472 1473 // In any case, if the initializer has side-effects, abandon ship. 1474 if (result.HasSideEffects) 1475 return ConstantEmission(); 1476 1477 // Emit as a constant. 1478 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1479 result.Val, resultType); 1480 1481 // Make sure we emit a debug reference to the global variable. 1482 // This should probably fire even for 1483 if (isa<VarDecl>(value)) { 1484 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1485 EmitDeclRefExprDbgValue(refExpr, result.Val); 1486 } else { 1487 assert(isa<EnumConstantDecl>(value)); 1488 EmitDeclRefExprDbgValue(refExpr, result.Val); 1489 } 1490 1491 // If we emitted a reference constant, we need to dereference that. 1492 if (resultIsReference) 1493 return ConstantEmission::forReference(C); 1494 1495 return ConstantEmission::forValue(C); 1496 } 1497 1498 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1499 const MemberExpr *ME) { 1500 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1501 // Try to emit static variable member expressions as DREs. 1502 return DeclRefExpr::Create( 1503 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1504 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1505 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1506 } 1507 return nullptr; 1508 } 1509 1510 CodeGenFunction::ConstantEmission 1511 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1512 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1513 return tryEmitAsConstant(DRE); 1514 return ConstantEmission(); 1515 } 1516 1517 llvm::Value *CodeGenFunction::emitScalarConstant( 1518 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1519 assert(Constant && "not a constant"); 1520 if (Constant.isReference()) 1521 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1522 E->getExprLoc()) 1523 .getScalarVal(); 1524 return Constant.getValue(); 1525 } 1526 1527 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1528 SourceLocation Loc) { 1529 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1530 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1531 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1532 } 1533 1534 static bool hasBooleanRepresentation(QualType Ty) { 1535 if (Ty->isBooleanType()) 1536 return true; 1537 1538 if (const EnumType *ET = Ty->getAs<EnumType>()) 1539 return ET->getDecl()->getIntegerType()->isBooleanType(); 1540 1541 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1542 return hasBooleanRepresentation(AT->getValueType()); 1543 1544 return false; 1545 } 1546 1547 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1548 llvm::APInt &Min, llvm::APInt &End, 1549 bool StrictEnums, bool IsBool) { 1550 const EnumType *ET = Ty->getAs<EnumType>(); 1551 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1552 ET && !ET->getDecl()->isFixed(); 1553 if (!IsBool && !IsRegularCPlusPlusEnum) 1554 return false; 1555 1556 if (IsBool) { 1557 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1558 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1559 } else { 1560 const EnumDecl *ED = ET->getDecl(); 1561 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1562 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1563 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1564 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1565 1566 if (NumNegativeBits) { 1567 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1568 assert(NumBits <= Bitwidth); 1569 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1570 Min = -End; 1571 } else { 1572 assert(NumPositiveBits <= Bitwidth); 1573 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1574 Min = llvm::APInt(Bitwidth, 0); 1575 } 1576 } 1577 return true; 1578 } 1579 1580 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1581 llvm::APInt Min, End; 1582 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1583 hasBooleanRepresentation(Ty))) 1584 return nullptr; 1585 1586 llvm::MDBuilder MDHelper(getLLVMContext()); 1587 return MDHelper.createRange(Min, End); 1588 } 1589 1590 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1591 SourceLocation Loc) { 1592 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1593 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1594 if (!HasBoolCheck && !HasEnumCheck) 1595 return false; 1596 1597 bool IsBool = hasBooleanRepresentation(Ty) || 1598 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1599 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1600 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1601 if (!NeedsBoolCheck && !NeedsEnumCheck) 1602 return false; 1603 1604 // Single-bit booleans don't need to be checked. Special-case this to avoid 1605 // a bit width mismatch when handling bitfield values. This is handled by 1606 // EmitFromMemory for the non-bitfield case. 1607 if (IsBool && 1608 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1609 return false; 1610 1611 llvm::APInt Min, End; 1612 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1613 return true; 1614 1615 auto &Ctx = getLLVMContext(); 1616 SanitizerScope SanScope(this); 1617 llvm::Value *Check; 1618 --End; 1619 if (!Min) { 1620 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1621 } else { 1622 llvm::Value *Upper = 1623 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1624 llvm::Value *Lower = 1625 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1626 Check = Builder.CreateAnd(Upper, Lower); 1627 } 1628 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1629 EmitCheckTypeDescriptor(Ty)}; 1630 SanitizerMask Kind = 1631 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1632 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1633 StaticArgs, EmitCheckValue(Value)); 1634 return true; 1635 } 1636 1637 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1638 QualType Ty, 1639 SourceLocation Loc, 1640 LValueBaseInfo BaseInfo, 1641 TBAAAccessInfo TBAAInfo, 1642 bool isNontemporal) { 1643 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1644 // For better performance, handle vector loads differently. 1645 if (Ty->isVectorType()) { 1646 const llvm::Type *EltTy = Addr.getElementType(); 1647 1648 const auto *VTy = cast<llvm::VectorType>(EltTy); 1649 1650 // Handle vectors of size 3 like size 4 for better performance. 1651 if (VTy->getNumElements() == 3) { 1652 1653 // Bitcast to vec4 type. 1654 llvm::VectorType *vec4Ty = 1655 llvm::VectorType::get(VTy->getElementType(), 4); 1656 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1657 // Now load value. 1658 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1659 1660 // Shuffle vector to get vec3. 1661 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1662 {0, 1, 2}, "extractVec"); 1663 return EmitFromMemory(V, Ty); 1664 } 1665 } 1666 } 1667 1668 // Atomic operations have to be done on integral types. 1669 LValue AtomicLValue = 1670 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1671 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1672 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1673 } 1674 1675 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1676 if (isNontemporal) { 1677 llvm::MDNode *Node = llvm::MDNode::get( 1678 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1679 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1680 } 1681 1682 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1683 1684 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1685 // In order to prevent the optimizer from throwing away the check, don't 1686 // attach range metadata to the load. 1687 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1688 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1689 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1690 1691 return EmitFromMemory(Load, Ty); 1692 } 1693 1694 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1695 // Bool has a different representation in memory than in registers. 1696 if (hasBooleanRepresentation(Ty)) { 1697 // This should really always be an i1, but sometimes it's already 1698 // an i8, and it's awkward to track those cases down. 1699 if (Value->getType()->isIntegerTy(1)) 1700 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1701 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1702 "wrong value rep of bool"); 1703 } 1704 1705 return Value; 1706 } 1707 1708 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1709 // Bool has a different representation in memory than in registers. 1710 if (hasBooleanRepresentation(Ty)) { 1711 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1712 "wrong value rep of bool"); 1713 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1714 } 1715 1716 return Value; 1717 } 1718 1719 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1720 bool Volatile, QualType Ty, 1721 LValueBaseInfo BaseInfo, 1722 TBAAAccessInfo TBAAInfo, 1723 bool isInit, bool isNontemporal) { 1724 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1725 // Handle vectors differently to get better performance. 1726 if (Ty->isVectorType()) { 1727 llvm::Type *SrcTy = Value->getType(); 1728 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1729 // Handle vec3 special. 1730 if (VecTy && VecTy->getNumElements() == 3) { 1731 // Our source is a vec3, do a shuffle vector to make it a vec4. 1732 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1733 Builder.getInt32(2), 1734 llvm::UndefValue::get(Builder.getInt32Ty())}; 1735 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1736 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1737 MaskV, "extractVec"); 1738 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1739 } 1740 if (Addr.getElementType() != SrcTy) { 1741 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1742 } 1743 } 1744 } 1745 1746 Value = EmitToMemory(Value, Ty); 1747 1748 LValue AtomicLValue = 1749 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1750 if (Ty->isAtomicType() || 1751 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1752 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1753 return; 1754 } 1755 1756 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1757 if (isNontemporal) { 1758 llvm::MDNode *Node = 1759 llvm::MDNode::get(Store->getContext(), 1760 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1761 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1762 } 1763 1764 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1765 } 1766 1767 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1768 bool isInit) { 1769 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1770 lvalue.getType(), lvalue.getBaseInfo(), 1771 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1772 } 1773 1774 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1775 /// method emits the address of the lvalue, then loads the result as an rvalue, 1776 /// returning the rvalue. 1777 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1778 if (LV.isObjCWeak()) { 1779 // load of a __weak object. 1780 Address AddrWeakObj = LV.getAddress(*this); 1781 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1782 AddrWeakObj)); 1783 } 1784 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1785 // In MRC mode, we do a load+autorelease. 1786 if (!getLangOpts().ObjCAutoRefCount) { 1787 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1788 } 1789 1790 // In ARC mode, we load retained and then consume the value. 1791 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1792 Object = EmitObjCConsumeObject(LV.getType(), Object); 1793 return RValue::get(Object); 1794 } 1795 1796 if (LV.isSimple()) { 1797 assert(!LV.getType()->isFunctionType()); 1798 1799 // Everything needs a load. 1800 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1801 } 1802 1803 if (LV.isVectorElt()) { 1804 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1805 LV.isVolatileQualified()); 1806 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1807 "vecext")); 1808 } 1809 1810 // If this is a reference to a subset of the elements of a vector, either 1811 // shuffle the input or extract/insert them as appropriate. 1812 if (LV.isExtVectorElt()) 1813 return EmitLoadOfExtVectorElementLValue(LV); 1814 1815 // Global Register variables always invoke intrinsics 1816 if (LV.isGlobalReg()) 1817 return EmitLoadOfGlobalRegLValue(LV); 1818 1819 assert(LV.isBitField() && "Unknown LValue type!"); 1820 return EmitLoadOfBitfieldLValue(LV, Loc); 1821 } 1822 1823 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1824 SourceLocation Loc) { 1825 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1826 1827 // Get the output type. 1828 llvm::Type *ResLTy = ConvertType(LV.getType()); 1829 1830 Address Ptr = LV.getBitFieldAddress(); 1831 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1832 1833 if (Info.IsSigned) { 1834 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1835 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1836 if (HighBits) 1837 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1838 if (Info.Offset + HighBits) 1839 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1840 } else { 1841 if (Info.Offset) 1842 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1843 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1844 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1845 Info.Size), 1846 "bf.clear"); 1847 } 1848 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1849 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1850 return RValue::get(Val); 1851 } 1852 1853 // If this is a reference to a subset of the elements of a vector, create an 1854 // appropriate shufflevector. 1855 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1856 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1857 LV.isVolatileQualified()); 1858 1859 const llvm::Constant *Elts = LV.getExtVectorElts(); 1860 1861 // If the result of the expression is a non-vector type, we must be extracting 1862 // a single element. Just codegen as an extractelement. 1863 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1864 if (!ExprVT) { 1865 unsigned InIdx = getAccessedFieldNo(0, Elts); 1866 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1867 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1868 } 1869 1870 // Always use shuffle vector to try to retain the original program structure 1871 unsigned NumResultElts = ExprVT->getNumElements(); 1872 1873 SmallVector<llvm::Constant*, 4> Mask; 1874 for (unsigned i = 0; i != NumResultElts; ++i) 1875 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1876 1877 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1878 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1879 MaskV); 1880 return RValue::get(Vec); 1881 } 1882 1883 /// Generates lvalue for partial ext_vector access. 1884 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1885 Address VectorAddress = LV.getExtVectorAddress(); 1886 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1887 QualType EQT = ExprVT->getElementType(); 1888 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1889 1890 Address CastToPointerElement = 1891 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1892 "conv.ptr.element"); 1893 1894 const llvm::Constant *Elts = LV.getExtVectorElts(); 1895 unsigned ix = getAccessedFieldNo(0, Elts); 1896 1897 Address VectorBasePtrPlusIx = 1898 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1899 "vector.elt"); 1900 1901 return VectorBasePtrPlusIx; 1902 } 1903 1904 /// Load of global gamed gegisters are always calls to intrinsics. 1905 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1906 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1907 "Bad type for register variable"); 1908 llvm::MDNode *RegName = cast<llvm::MDNode>( 1909 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1910 1911 // We accept integer and pointer types only 1912 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1913 llvm::Type *Ty = OrigTy; 1914 if (OrigTy->isPointerTy()) 1915 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1916 llvm::Type *Types[] = { Ty }; 1917 1918 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1919 llvm::Value *Call = Builder.CreateCall( 1920 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1921 if (OrigTy->isPointerTy()) 1922 Call = Builder.CreateIntToPtr(Call, OrigTy); 1923 return RValue::get(Call); 1924 } 1925 1926 1927 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1928 /// lvalue, where both are guaranteed to the have the same type, and that type 1929 /// is 'Ty'. 1930 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1931 bool isInit) { 1932 if (!Dst.isSimple()) { 1933 if (Dst.isVectorElt()) { 1934 // Read/modify/write the vector, inserting the new element. 1935 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1936 Dst.isVolatileQualified()); 1937 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1938 Dst.getVectorIdx(), "vecins"); 1939 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1940 Dst.isVolatileQualified()); 1941 return; 1942 } 1943 1944 // If this is an update of extended vector elements, insert them as 1945 // appropriate. 1946 if (Dst.isExtVectorElt()) 1947 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1948 1949 if (Dst.isGlobalReg()) 1950 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1951 1952 assert(Dst.isBitField() && "Unknown LValue type"); 1953 return EmitStoreThroughBitfieldLValue(Src, Dst); 1954 } 1955 1956 // There's special magic for assigning into an ARC-qualified l-value. 1957 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1958 switch (Lifetime) { 1959 case Qualifiers::OCL_None: 1960 llvm_unreachable("present but none"); 1961 1962 case Qualifiers::OCL_ExplicitNone: 1963 // nothing special 1964 break; 1965 1966 case Qualifiers::OCL_Strong: 1967 if (isInit) { 1968 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1969 break; 1970 } 1971 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1972 return; 1973 1974 case Qualifiers::OCL_Weak: 1975 if (isInit) 1976 // Initialize and then skip the primitive store. 1977 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1978 else 1979 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1980 /*ignore*/ true); 1981 return; 1982 1983 case Qualifiers::OCL_Autoreleasing: 1984 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1985 Src.getScalarVal())); 1986 // fall into the normal path 1987 break; 1988 } 1989 } 1990 1991 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1992 // load of a __weak object. 1993 Address LvalueDst = Dst.getAddress(*this); 1994 llvm::Value *src = Src.getScalarVal(); 1995 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1996 return; 1997 } 1998 1999 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2000 // load of a __strong object. 2001 Address LvalueDst = Dst.getAddress(*this); 2002 llvm::Value *src = Src.getScalarVal(); 2003 if (Dst.isObjCIvar()) { 2004 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2005 llvm::Type *ResultType = IntPtrTy; 2006 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2007 llvm::Value *RHS = dst.getPointer(); 2008 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2009 llvm::Value *LHS = 2010 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2011 "sub.ptr.lhs.cast"); 2012 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2013 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2014 BytesBetween); 2015 } else if (Dst.isGlobalObjCRef()) { 2016 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2017 Dst.isThreadLocalRef()); 2018 } 2019 else 2020 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2021 return; 2022 } 2023 2024 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2025 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2026 } 2027 2028 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2029 llvm::Value **Result) { 2030 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2031 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2032 Address Ptr = Dst.getBitFieldAddress(); 2033 2034 // Get the source value, truncated to the width of the bit-field. 2035 llvm::Value *SrcVal = Src.getScalarVal(); 2036 2037 // Cast the source to the storage type and shift it into place. 2038 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2039 /*isSigned=*/false); 2040 llvm::Value *MaskedVal = SrcVal; 2041 2042 // See if there are other bits in the bitfield's storage we'll need to load 2043 // and mask together with source before storing. 2044 if (Info.StorageSize != Info.Size) { 2045 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2046 llvm::Value *Val = 2047 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2048 2049 // Mask the source value as needed. 2050 if (!hasBooleanRepresentation(Dst.getType())) 2051 SrcVal = Builder.CreateAnd(SrcVal, 2052 llvm::APInt::getLowBitsSet(Info.StorageSize, 2053 Info.Size), 2054 "bf.value"); 2055 MaskedVal = SrcVal; 2056 if (Info.Offset) 2057 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2058 2059 // Mask out the original value. 2060 Val = Builder.CreateAnd(Val, 2061 ~llvm::APInt::getBitsSet(Info.StorageSize, 2062 Info.Offset, 2063 Info.Offset + Info.Size), 2064 "bf.clear"); 2065 2066 // Or together the unchanged values and the source value. 2067 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2068 } else { 2069 assert(Info.Offset == 0); 2070 } 2071 2072 // Write the new value back out. 2073 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2074 2075 // Return the new value of the bit-field, if requested. 2076 if (Result) { 2077 llvm::Value *ResultVal = MaskedVal; 2078 2079 // Sign extend the value if needed. 2080 if (Info.IsSigned) { 2081 assert(Info.Size <= Info.StorageSize); 2082 unsigned HighBits = Info.StorageSize - Info.Size; 2083 if (HighBits) { 2084 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2085 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2086 } 2087 } 2088 2089 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2090 "bf.result.cast"); 2091 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2092 } 2093 } 2094 2095 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2096 LValue Dst) { 2097 // This access turns into a read/modify/write of the vector. Load the input 2098 // value now. 2099 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2100 Dst.isVolatileQualified()); 2101 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2102 2103 llvm::Value *SrcVal = Src.getScalarVal(); 2104 2105 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2106 unsigned NumSrcElts = VTy->getNumElements(); 2107 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2108 if (NumDstElts == NumSrcElts) { 2109 // Use shuffle vector is the src and destination are the same number of 2110 // elements and restore the vector mask since it is on the side it will be 2111 // stored. 2112 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2113 for (unsigned i = 0; i != NumSrcElts; ++i) 2114 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2115 2116 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2117 Vec = Builder.CreateShuffleVector(SrcVal, 2118 llvm::UndefValue::get(Vec->getType()), 2119 MaskV); 2120 } else if (NumDstElts > NumSrcElts) { 2121 // Extended the source vector to the same length and then shuffle it 2122 // into the destination. 2123 // FIXME: since we're shuffling with undef, can we just use the indices 2124 // into that? This could be simpler. 2125 SmallVector<llvm::Constant*, 4> ExtMask; 2126 for (unsigned i = 0; i != NumSrcElts; ++i) 2127 ExtMask.push_back(Builder.getInt32(i)); 2128 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2129 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2130 llvm::Value *ExtSrcVal = 2131 Builder.CreateShuffleVector(SrcVal, 2132 llvm::UndefValue::get(SrcVal->getType()), 2133 ExtMaskV); 2134 // build identity 2135 SmallVector<llvm::Constant*, 4> Mask; 2136 for (unsigned i = 0; i != NumDstElts; ++i) 2137 Mask.push_back(Builder.getInt32(i)); 2138 2139 // When the vector size is odd and .odd or .hi is used, the last element 2140 // of the Elts constant array will be one past the size of the vector. 2141 // Ignore the last element here, if it is greater than the mask size. 2142 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2143 NumSrcElts--; 2144 2145 // modify when what gets shuffled in 2146 for (unsigned i = 0; i != NumSrcElts; ++i) 2147 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2148 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2149 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2150 } else { 2151 // We should never shorten the vector 2152 llvm_unreachable("unexpected shorten vector length"); 2153 } 2154 } else { 2155 // If the Src is a scalar (not a vector) it must be updating one element. 2156 unsigned InIdx = getAccessedFieldNo(0, Elts); 2157 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2158 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2159 } 2160 2161 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2162 Dst.isVolatileQualified()); 2163 } 2164 2165 /// Store of global named registers are always calls to intrinsics. 2166 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2167 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2168 "Bad type for register variable"); 2169 llvm::MDNode *RegName = cast<llvm::MDNode>( 2170 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2171 assert(RegName && "Register LValue is not metadata"); 2172 2173 // We accept integer and pointer types only 2174 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2175 llvm::Type *Ty = OrigTy; 2176 if (OrigTy->isPointerTy()) 2177 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2178 llvm::Type *Types[] = { Ty }; 2179 2180 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2181 llvm::Value *Value = Src.getScalarVal(); 2182 if (OrigTy->isPointerTy()) 2183 Value = Builder.CreatePtrToInt(Value, Ty); 2184 Builder.CreateCall( 2185 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2186 } 2187 2188 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2189 // generating write-barries API. It is currently a global, ivar, 2190 // or neither. 2191 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2192 LValue &LV, 2193 bool IsMemberAccess=false) { 2194 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2195 return; 2196 2197 if (isa<ObjCIvarRefExpr>(E)) { 2198 QualType ExpTy = E->getType(); 2199 if (IsMemberAccess && ExpTy->isPointerType()) { 2200 // If ivar is a structure pointer, assigning to field of 2201 // this struct follows gcc's behavior and makes it a non-ivar 2202 // writer-barrier conservatively. 2203 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2204 if (ExpTy->isRecordType()) { 2205 LV.setObjCIvar(false); 2206 return; 2207 } 2208 } 2209 LV.setObjCIvar(true); 2210 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2211 LV.setBaseIvarExp(Exp->getBase()); 2212 LV.setObjCArray(E->getType()->isArrayType()); 2213 return; 2214 } 2215 2216 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2217 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2218 if (VD->hasGlobalStorage()) { 2219 LV.setGlobalObjCRef(true); 2220 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2221 } 2222 } 2223 LV.setObjCArray(E->getType()->isArrayType()); 2224 return; 2225 } 2226 2227 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2228 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2229 return; 2230 } 2231 2232 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2233 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2234 if (LV.isObjCIvar()) { 2235 // If cast is to a structure pointer, follow gcc's behavior and make it 2236 // a non-ivar write-barrier. 2237 QualType ExpTy = E->getType(); 2238 if (ExpTy->isPointerType()) 2239 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2240 if (ExpTy->isRecordType()) 2241 LV.setObjCIvar(false); 2242 } 2243 return; 2244 } 2245 2246 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2247 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2248 return; 2249 } 2250 2251 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2252 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2253 return; 2254 } 2255 2256 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2257 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2258 return; 2259 } 2260 2261 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2262 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2263 return; 2264 } 2265 2266 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2267 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2268 if (LV.isObjCIvar() && !LV.isObjCArray()) 2269 // Using array syntax to assigning to what an ivar points to is not 2270 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2271 LV.setObjCIvar(false); 2272 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2273 // Using array syntax to assigning to what global points to is not 2274 // same as assigning to the global itself. {id *G;} G[i] = 0; 2275 LV.setGlobalObjCRef(false); 2276 return; 2277 } 2278 2279 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2280 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2281 // We don't know if member is an 'ivar', but this flag is looked at 2282 // only in the context of LV.isObjCIvar(). 2283 LV.setObjCArray(E->getType()->isArrayType()); 2284 return; 2285 } 2286 } 2287 2288 static llvm::Value * 2289 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2290 llvm::Value *V, llvm::Type *IRType, 2291 StringRef Name = StringRef()) { 2292 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2293 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2294 } 2295 2296 static LValue EmitThreadPrivateVarDeclLValue( 2297 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2298 llvm::Type *RealVarTy, SourceLocation Loc) { 2299 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2300 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2301 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2302 } 2303 2304 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2305 const VarDecl *VD, QualType T) { 2306 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2307 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2308 // Return an invalid address if variable is MT_To and unified 2309 // memory is not enabled. For all other cases: MT_Link and 2310 // MT_To with unified memory, return a valid address. 2311 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2312 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2313 return Address::invalid(); 2314 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2315 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2316 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2317 "Expected link clause OR to clause with unified memory enabled."); 2318 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2319 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2320 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2321 } 2322 2323 Address 2324 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2325 LValueBaseInfo *PointeeBaseInfo, 2326 TBAAAccessInfo *PointeeTBAAInfo) { 2327 llvm::LoadInst *Load = 2328 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2329 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2330 2331 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2332 PointeeBaseInfo, PointeeTBAAInfo, 2333 /* forPointeeType= */ true); 2334 return Address(Load, Align); 2335 } 2336 2337 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2338 LValueBaseInfo PointeeBaseInfo; 2339 TBAAAccessInfo PointeeTBAAInfo; 2340 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2341 &PointeeTBAAInfo); 2342 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2343 PointeeBaseInfo, PointeeTBAAInfo); 2344 } 2345 2346 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2347 const PointerType *PtrTy, 2348 LValueBaseInfo *BaseInfo, 2349 TBAAAccessInfo *TBAAInfo) { 2350 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2351 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2352 BaseInfo, TBAAInfo, 2353 /*forPointeeType=*/true)); 2354 } 2355 2356 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2357 const PointerType *PtrTy) { 2358 LValueBaseInfo BaseInfo; 2359 TBAAAccessInfo TBAAInfo; 2360 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2361 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2362 } 2363 2364 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2365 const Expr *E, const VarDecl *VD) { 2366 QualType T = E->getType(); 2367 2368 // If it's thread_local, emit a call to its wrapper function instead. 2369 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2370 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2371 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2372 // Check if the variable is marked as declare target with link clause in 2373 // device codegen. 2374 if (CGF.getLangOpts().OpenMPIsDevice) { 2375 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2376 if (Addr.isValid()) 2377 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2378 } 2379 2380 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2381 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2382 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2383 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2384 Address Addr(V, Alignment); 2385 // Emit reference to the private copy of the variable if it is an OpenMP 2386 // threadprivate variable. 2387 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2388 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2389 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2390 E->getExprLoc()); 2391 } 2392 LValue LV = VD->getType()->isReferenceType() ? 2393 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2394 AlignmentSource::Decl) : 2395 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2396 setObjCGCLValueClass(CGF.getContext(), E, LV); 2397 return LV; 2398 } 2399 2400 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2401 const FunctionDecl *FD) { 2402 if (FD->hasAttr<WeakRefAttr>()) { 2403 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2404 return aliasee.getPointer(); 2405 } 2406 2407 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2408 if (!FD->hasPrototype()) { 2409 if (const FunctionProtoType *Proto = 2410 FD->getType()->getAs<FunctionProtoType>()) { 2411 // Ugly case: for a K&R-style definition, the type of the definition 2412 // isn't the same as the type of a use. Correct for this with a 2413 // bitcast. 2414 QualType NoProtoType = 2415 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2416 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2417 V = llvm::ConstantExpr::getBitCast(V, 2418 CGM.getTypes().ConvertType(NoProtoType)); 2419 } 2420 } 2421 return V; 2422 } 2423 2424 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2425 const Expr *E, const FunctionDecl *FD) { 2426 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2427 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2428 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2429 AlignmentSource::Decl); 2430 } 2431 2432 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2433 llvm::Value *ThisValue) { 2434 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2435 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2436 return CGF.EmitLValueForField(LV, FD); 2437 } 2438 2439 /// Named Registers are named metadata pointing to the register name 2440 /// which will be read from/written to as an argument to the intrinsic 2441 /// @llvm.read/write_register. 2442 /// So far, only the name is being passed down, but other options such as 2443 /// register type, allocation type or even optimization options could be 2444 /// passed down via the metadata node. 2445 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2446 SmallString<64> Name("llvm.named.register."); 2447 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2448 assert(Asm->getLabel().size() < 64-Name.size() && 2449 "Register name too big"); 2450 Name.append(Asm->getLabel()); 2451 llvm::NamedMDNode *M = 2452 CGM.getModule().getOrInsertNamedMetadata(Name); 2453 if (M->getNumOperands() == 0) { 2454 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2455 Asm->getLabel()); 2456 llvm::Metadata *Ops[] = {Str}; 2457 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2458 } 2459 2460 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2461 2462 llvm::Value *Ptr = 2463 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2464 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2465 } 2466 2467 /// Determine whether we can emit a reference to \p VD from the current 2468 /// context, despite not necessarily having seen an odr-use of the variable in 2469 /// this context. 2470 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2471 const DeclRefExpr *E, 2472 const VarDecl *VD, 2473 bool IsConstant) { 2474 // For a variable declared in an enclosing scope, do not emit a spurious 2475 // reference even if we have a capture, as that will emit an unwarranted 2476 // reference to our capture state, and will likely generate worse code than 2477 // emitting a local copy. 2478 if (E->refersToEnclosingVariableOrCapture()) 2479 return false; 2480 2481 // For a local declaration declared in this function, we can always reference 2482 // it even if we don't have an odr-use. 2483 if (VD->hasLocalStorage()) { 2484 return VD->getDeclContext() == 2485 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2486 } 2487 2488 // For a global declaration, we can emit a reference to it if we know 2489 // for sure that we are able to emit a definition of it. 2490 VD = VD->getDefinition(CGF.getContext()); 2491 if (!VD) 2492 return false; 2493 2494 // Don't emit a spurious reference if it might be to a variable that only 2495 // exists on a different device / target. 2496 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2497 // cross-target reference. 2498 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2499 CGF.getLangOpts().OpenCL) { 2500 return false; 2501 } 2502 2503 // We can emit a spurious reference only if the linkage implies that we'll 2504 // be emitting a non-interposable symbol that will be retained until link 2505 // time. 2506 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2507 case llvm::GlobalValue::ExternalLinkage: 2508 case llvm::GlobalValue::LinkOnceODRLinkage: 2509 case llvm::GlobalValue::WeakODRLinkage: 2510 case llvm::GlobalValue::InternalLinkage: 2511 case llvm::GlobalValue::PrivateLinkage: 2512 return true; 2513 default: 2514 return false; 2515 } 2516 } 2517 2518 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2519 const NamedDecl *ND = E->getDecl(); 2520 QualType T = E->getType(); 2521 2522 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2523 "should not emit an unevaluated operand"); 2524 2525 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2526 // Global Named registers access via intrinsics only 2527 if (VD->getStorageClass() == SC_Register && 2528 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2529 return EmitGlobalNamedRegister(VD, CGM); 2530 2531 // If this DeclRefExpr does not constitute an odr-use of the variable, 2532 // we're not permitted to emit a reference to it in general, and it might 2533 // not be captured if capture would be necessary for a use. Emit the 2534 // constant value directly instead. 2535 if (E->isNonOdrUse() == NOUR_Constant && 2536 (VD->getType()->isReferenceType() || 2537 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2538 VD->getAnyInitializer(VD); 2539 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2540 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2541 assert(Val && "failed to emit constant expression"); 2542 2543 Address Addr = Address::invalid(); 2544 if (!VD->getType()->isReferenceType()) { 2545 // Spill the constant value to a global. 2546 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2547 getContext().getDeclAlign(VD)); 2548 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2549 auto *PTy = llvm::PointerType::get( 2550 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2551 if (PTy != Addr.getType()) 2552 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2553 } else { 2554 // Should we be using the alignment of the constant pointer we emitted? 2555 CharUnits Alignment = 2556 getNaturalTypeAlignment(E->getType(), 2557 /* BaseInfo= */ nullptr, 2558 /* TBAAInfo= */ nullptr, 2559 /* forPointeeType= */ true); 2560 Addr = Address(Val, Alignment); 2561 } 2562 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2563 } 2564 2565 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2566 2567 // Check for captured variables. 2568 if (E->refersToEnclosingVariableOrCapture()) { 2569 VD = VD->getCanonicalDecl(); 2570 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2571 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2572 if (CapturedStmtInfo) { 2573 auto I = LocalDeclMap.find(VD); 2574 if (I != LocalDeclMap.end()) { 2575 LValue CapLVal; 2576 if (VD->getType()->isReferenceType()) 2577 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2578 AlignmentSource::Decl); 2579 else 2580 CapLVal = MakeAddrLValue(I->second, T); 2581 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2582 // in simd context. 2583 if (getLangOpts().OpenMP && 2584 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2585 CapLVal.setNontemporal(/*Value=*/true); 2586 return CapLVal; 2587 } 2588 LValue CapLVal = 2589 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2590 CapturedStmtInfo->getContextValue()); 2591 CapLVal = MakeAddrLValue( 2592 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2593 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2594 CapLVal.getTBAAInfo()); 2595 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2596 // in simd context. 2597 if (getLangOpts().OpenMP && 2598 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2599 CapLVal.setNontemporal(/*Value=*/true); 2600 return CapLVal; 2601 } 2602 2603 assert(isa<BlockDecl>(CurCodeDecl)); 2604 Address addr = GetAddrOfBlockDecl(VD); 2605 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2606 } 2607 } 2608 2609 // FIXME: We should be able to assert this for FunctionDecls as well! 2610 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2611 // those with a valid source location. 2612 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2613 !E->getLocation().isValid()) && 2614 "Should not use decl without marking it used!"); 2615 2616 if (ND->hasAttr<WeakRefAttr>()) { 2617 const auto *VD = cast<ValueDecl>(ND); 2618 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2619 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2620 } 2621 2622 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2623 // Check if this is a global variable. 2624 if (VD->hasLinkage() || VD->isStaticDataMember()) 2625 return EmitGlobalVarDeclLValue(*this, E, VD); 2626 2627 Address addr = Address::invalid(); 2628 2629 // The variable should generally be present in the local decl map. 2630 auto iter = LocalDeclMap.find(VD); 2631 if (iter != LocalDeclMap.end()) { 2632 addr = iter->second; 2633 2634 // Otherwise, it might be static local we haven't emitted yet for 2635 // some reason; most likely, because it's in an outer function. 2636 } else if (VD->isStaticLocal()) { 2637 addr = Address(CGM.getOrCreateStaticVarDecl( 2638 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2639 getContext().getDeclAlign(VD)); 2640 2641 // No other cases for now. 2642 } else { 2643 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2644 } 2645 2646 2647 // Check for OpenMP threadprivate variables. 2648 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2649 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2650 return EmitThreadPrivateVarDeclLValue( 2651 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2652 E->getExprLoc()); 2653 } 2654 2655 // Drill into block byref variables. 2656 bool isBlockByref = VD->isEscapingByref(); 2657 if (isBlockByref) { 2658 addr = emitBlockByrefAddress(addr, VD); 2659 } 2660 2661 // Drill into reference types. 2662 LValue LV = VD->getType()->isReferenceType() ? 2663 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2664 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2665 2666 bool isLocalStorage = VD->hasLocalStorage(); 2667 2668 bool NonGCable = isLocalStorage && 2669 !VD->getType()->isReferenceType() && 2670 !isBlockByref; 2671 if (NonGCable) { 2672 LV.getQuals().removeObjCGCAttr(); 2673 LV.setNonGC(true); 2674 } 2675 2676 bool isImpreciseLifetime = 2677 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2678 if (isImpreciseLifetime) 2679 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2680 setObjCGCLValueClass(getContext(), E, LV); 2681 return LV; 2682 } 2683 2684 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2685 return EmitFunctionDeclLValue(*this, E, FD); 2686 2687 // FIXME: While we're emitting a binding from an enclosing scope, all other 2688 // DeclRefExprs we see should be implicitly treated as if they also refer to 2689 // an enclosing scope. 2690 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2691 return EmitLValue(BD->getBinding()); 2692 2693 llvm_unreachable("Unhandled DeclRefExpr"); 2694 } 2695 2696 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2697 // __extension__ doesn't affect lvalue-ness. 2698 if (E->getOpcode() == UO_Extension) 2699 return EmitLValue(E->getSubExpr()); 2700 2701 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2702 switch (E->getOpcode()) { 2703 default: llvm_unreachable("Unknown unary operator lvalue!"); 2704 case UO_Deref: { 2705 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2706 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2707 2708 LValueBaseInfo BaseInfo; 2709 TBAAAccessInfo TBAAInfo; 2710 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2711 &TBAAInfo); 2712 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2713 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2714 2715 // We should not generate __weak write barrier on indirect reference 2716 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2717 // But, we continue to generate __strong write barrier on indirect write 2718 // into a pointer to object. 2719 if (getLangOpts().ObjC && 2720 getLangOpts().getGC() != LangOptions::NonGC && 2721 LV.isObjCWeak()) 2722 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2723 return LV; 2724 } 2725 case UO_Real: 2726 case UO_Imag: { 2727 LValue LV = EmitLValue(E->getSubExpr()); 2728 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2729 2730 // __real is valid on scalars. This is a faster way of testing that. 2731 // __imag can only produce an rvalue on scalars. 2732 if (E->getOpcode() == UO_Real && 2733 !LV.getAddress(*this).getElementType()->isStructTy()) { 2734 assert(E->getSubExpr()->getType()->isArithmeticType()); 2735 return LV; 2736 } 2737 2738 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2739 2740 Address Component = 2741 (E->getOpcode() == UO_Real 2742 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2743 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2744 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2745 CGM.getTBAAInfoForSubobject(LV, T)); 2746 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2747 return ElemLV; 2748 } 2749 case UO_PreInc: 2750 case UO_PreDec: { 2751 LValue LV = EmitLValue(E->getSubExpr()); 2752 bool isInc = E->getOpcode() == UO_PreInc; 2753 2754 if (E->getType()->isAnyComplexType()) 2755 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2756 else 2757 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2758 return LV; 2759 } 2760 } 2761 } 2762 2763 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2764 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2765 E->getType(), AlignmentSource::Decl); 2766 } 2767 2768 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2769 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2770 E->getType(), AlignmentSource::Decl); 2771 } 2772 2773 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2774 auto SL = E->getFunctionName(); 2775 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2776 StringRef FnName = CurFn->getName(); 2777 if (FnName.startswith("\01")) 2778 FnName = FnName.substr(1); 2779 StringRef NameItems[] = { 2780 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2781 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2782 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2783 std::string Name = SL->getString(); 2784 if (!Name.empty()) { 2785 unsigned Discriminator = 2786 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2787 if (Discriminator) 2788 Name += "_" + Twine(Discriminator + 1).str(); 2789 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2790 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2791 } else { 2792 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2793 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2794 } 2795 } 2796 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2797 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2798 } 2799 2800 /// Emit a type description suitable for use by a runtime sanitizer library. The 2801 /// format of a type descriptor is 2802 /// 2803 /// \code 2804 /// { i16 TypeKind, i16 TypeInfo } 2805 /// \endcode 2806 /// 2807 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2808 /// integer, 1 for a floating point value, and -1 for anything else. 2809 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2810 // Only emit each type's descriptor once. 2811 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2812 return C; 2813 2814 uint16_t TypeKind = -1; 2815 uint16_t TypeInfo = 0; 2816 2817 if (T->isIntegerType()) { 2818 TypeKind = 0; 2819 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2820 (T->isSignedIntegerType() ? 1 : 0); 2821 } else if (T->isFloatingType()) { 2822 TypeKind = 1; 2823 TypeInfo = getContext().getTypeSize(T); 2824 } 2825 2826 // Format the type name as if for a diagnostic, including quotes and 2827 // optionally an 'aka'. 2828 SmallString<32> Buffer; 2829 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2830 (intptr_t)T.getAsOpaquePtr(), 2831 StringRef(), StringRef(), None, Buffer, 2832 None); 2833 2834 llvm::Constant *Components[] = { 2835 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2836 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2837 }; 2838 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2839 2840 auto *GV = new llvm::GlobalVariable( 2841 CGM.getModule(), Descriptor->getType(), 2842 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2843 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2844 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2845 2846 // Remember the descriptor for this type. 2847 CGM.setTypeDescriptorInMap(T, GV); 2848 2849 return GV; 2850 } 2851 2852 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2853 llvm::Type *TargetTy = IntPtrTy; 2854 2855 if (V->getType() == TargetTy) 2856 return V; 2857 2858 // Floating-point types which fit into intptr_t are bitcast to integers 2859 // and then passed directly (after zero-extension, if necessary). 2860 if (V->getType()->isFloatingPointTy()) { 2861 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2862 if (Bits <= TargetTy->getIntegerBitWidth()) 2863 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2864 Bits)); 2865 } 2866 2867 // Integers which fit in intptr_t are zero-extended and passed directly. 2868 if (V->getType()->isIntegerTy() && 2869 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2870 return Builder.CreateZExt(V, TargetTy); 2871 2872 // Pointers are passed directly, everything else is passed by address. 2873 if (!V->getType()->isPointerTy()) { 2874 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2875 Builder.CreateStore(V, Ptr); 2876 V = Ptr.getPointer(); 2877 } 2878 return Builder.CreatePtrToInt(V, TargetTy); 2879 } 2880 2881 /// Emit a representation of a SourceLocation for passing to a handler 2882 /// in a sanitizer runtime library. The format for this data is: 2883 /// \code 2884 /// struct SourceLocation { 2885 /// const char *Filename; 2886 /// int32_t Line, Column; 2887 /// }; 2888 /// \endcode 2889 /// For an invalid SourceLocation, the Filename pointer is null. 2890 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2891 llvm::Constant *Filename; 2892 int Line, Column; 2893 2894 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2895 if (PLoc.isValid()) { 2896 StringRef FilenameString = PLoc.getFilename(); 2897 2898 int PathComponentsToStrip = 2899 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2900 if (PathComponentsToStrip < 0) { 2901 assert(PathComponentsToStrip != INT_MIN); 2902 int PathComponentsToKeep = -PathComponentsToStrip; 2903 auto I = llvm::sys::path::rbegin(FilenameString); 2904 auto E = llvm::sys::path::rend(FilenameString); 2905 while (I != E && --PathComponentsToKeep) 2906 ++I; 2907 2908 FilenameString = FilenameString.substr(I - E); 2909 } else if (PathComponentsToStrip > 0) { 2910 auto I = llvm::sys::path::begin(FilenameString); 2911 auto E = llvm::sys::path::end(FilenameString); 2912 while (I != E && PathComponentsToStrip--) 2913 ++I; 2914 2915 if (I != E) 2916 FilenameString = 2917 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2918 else 2919 FilenameString = llvm::sys::path::filename(FilenameString); 2920 } 2921 2922 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2923 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2924 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2925 Filename = FilenameGV.getPointer(); 2926 Line = PLoc.getLine(); 2927 Column = PLoc.getColumn(); 2928 } else { 2929 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2930 Line = Column = 0; 2931 } 2932 2933 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2934 Builder.getInt32(Column)}; 2935 2936 return llvm::ConstantStruct::getAnon(Data); 2937 } 2938 2939 namespace { 2940 /// Specify under what conditions this check can be recovered 2941 enum class CheckRecoverableKind { 2942 /// Always terminate program execution if this check fails. 2943 Unrecoverable, 2944 /// Check supports recovering, runtime has both fatal (noreturn) and 2945 /// non-fatal handlers for this check. 2946 Recoverable, 2947 /// Runtime conditionally aborts, always need to support recovery. 2948 AlwaysRecoverable 2949 }; 2950 } 2951 2952 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2953 assert(Kind.countPopulation() == 1); 2954 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2955 return CheckRecoverableKind::AlwaysRecoverable; 2956 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2957 return CheckRecoverableKind::Unrecoverable; 2958 else 2959 return CheckRecoverableKind::Recoverable; 2960 } 2961 2962 namespace { 2963 struct SanitizerHandlerInfo { 2964 char const *const Name; 2965 unsigned Version; 2966 }; 2967 } 2968 2969 const SanitizerHandlerInfo SanitizerHandlers[] = { 2970 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2971 LIST_SANITIZER_CHECKS 2972 #undef SANITIZER_CHECK 2973 }; 2974 2975 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2976 llvm::FunctionType *FnType, 2977 ArrayRef<llvm::Value *> FnArgs, 2978 SanitizerHandler CheckHandler, 2979 CheckRecoverableKind RecoverKind, bool IsFatal, 2980 llvm::BasicBlock *ContBB) { 2981 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2982 Optional<ApplyDebugLocation> DL; 2983 if (!CGF.Builder.getCurrentDebugLocation()) { 2984 // Ensure that the call has at least an artificial debug location. 2985 DL.emplace(CGF, SourceLocation()); 2986 } 2987 bool NeedsAbortSuffix = 2988 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2989 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2990 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2991 const StringRef CheckName = CheckInfo.Name; 2992 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2993 if (CheckInfo.Version && !MinimalRuntime) 2994 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2995 if (MinimalRuntime) 2996 FnName += "_minimal"; 2997 if (NeedsAbortSuffix) 2998 FnName += "_abort"; 2999 bool MayReturn = 3000 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3001 3002 llvm::AttrBuilder B; 3003 if (!MayReturn) { 3004 B.addAttribute(llvm::Attribute::NoReturn) 3005 .addAttribute(llvm::Attribute::NoUnwind); 3006 } 3007 B.addAttribute(llvm::Attribute::UWTable); 3008 3009 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3010 FnType, FnName, 3011 llvm::AttributeList::get(CGF.getLLVMContext(), 3012 llvm::AttributeList::FunctionIndex, B), 3013 /*Local=*/true); 3014 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3015 if (!MayReturn) { 3016 HandlerCall->setDoesNotReturn(); 3017 CGF.Builder.CreateUnreachable(); 3018 } else { 3019 CGF.Builder.CreateBr(ContBB); 3020 } 3021 } 3022 3023 void CodeGenFunction::EmitCheck( 3024 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3025 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3026 ArrayRef<llvm::Value *> DynamicArgs) { 3027 assert(IsSanitizerScope); 3028 assert(Checked.size() > 0); 3029 assert(CheckHandler >= 0 && 3030 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3031 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3032 3033 llvm::Value *FatalCond = nullptr; 3034 llvm::Value *RecoverableCond = nullptr; 3035 llvm::Value *TrapCond = nullptr; 3036 for (int i = 0, n = Checked.size(); i < n; ++i) { 3037 llvm::Value *Check = Checked[i].first; 3038 // -fsanitize-trap= overrides -fsanitize-recover=. 3039 llvm::Value *&Cond = 3040 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3041 ? TrapCond 3042 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3043 ? RecoverableCond 3044 : FatalCond; 3045 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3046 } 3047 3048 if (TrapCond) 3049 EmitTrapCheck(TrapCond); 3050 if (!FatalCond && !RecoverableCond) 3051 return; 3052 3053 llvm::Value *JointCond; 3054 if (FatalCond && RecoverableCond) 3055 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3056 else 3057 JointCond = FatalCond ? FatalCond : RecoverableCond; 3058 assert(JointCond); 3059 3060 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3061 assert(SanOpts.has(Checked[0].second)); 3062 #ifndef NDEBUG 3063 for (int i = 1, n = Checked.size(); i < n; ++i) { 3064 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3065 "All recoverable kinds in a single check must be same!"); 3066 assert(SanOpts.has(Checked[i].second)); 3067 } 3068 #endif 3069 3070 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3071 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3072 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3073 // Give hint that we very much don't expect to execute the handler 3074 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3075 llvm::MDBuilder MDHelper(getLLVMContext()); 3076 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3077 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3078 EmitBlock(Handlers); 3079 3080 // Handler functions take an i8* pointing to the (handler-specific) static 3081 // information block, followed by a sequence of intptr_t arguments 3082 // representing operand values. 3083 SmallVector<llvm::Value *, 4> Args; 3084 SmallVector<llvm::Type *, 4> ArgTypes; 3085 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3086 Args.reserve(DynamicArgs.size() + 1); 3087 ArgTypes.reserve(DynamicArgs.size() + 1); 3088 3089 // Emit handler arguments and create handler function type. 3090 if (!StaticArgs.empty()) { 3091 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3092 auto *InfoPtr = 3093 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3094 llvm::GlobalVariable::PrivateLinkage, Info); 3095 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3096 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3097 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3098 ArgTypes.push_back(Int8PtrTy); 3099 } 3100 3101 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3102 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3103 ArgTypes.push_back(IntPtrTy); 3104 } 3105 } 3106 3107 llvm::FunctionType *FnType = 3108 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3109 3110 if (!FatalCond || !RecoverableCond) { 3111 // Simple case: we need to generate a single handler call, either 3112 // fatal, or non-fatal. 3113 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3114 (FatalCond != nullptr), Cont); 3115 } else { 3116 // Emit two handler calls: first one for set of unrecoverable checks, 3117 // another one for recoverable. 3118 llvm::BasicBlock *NonFatalHandlerBB = 3119 createBasicBlock("non_fatal." + CheckName); 3120 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3121 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3122 EmitBlock(FatalHandlerBB); 3123 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3124 NonFatalHandlerBB); 3125 EmitBlock(NonFatalHandlerBB); 3126 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3127 Cont); 3128 } 3129 3130 EmitBlock(Cont); 3131 } 3132 3133 void CodeGenFunction::EmitCfiSlowPathCheck( 3134 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3135 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3136 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3137 3138 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3139 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3140 3141 llvm::MDBuilder MDHelper(getLLVMContext()); 3142 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3143 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3144 3145 EmitBlock(CheckBB); 3146 3147 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3148 3149 llvm::CallInst *CheckCall; 3150 llvm::FunctionCallee SlowPathFn; 3151 if (WithDiag) { 3152 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3153 auto *InfoPtr = 3154 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3155 llvm::GlobalVariable::PrivateLinkage, Info); 3156 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3157 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3158 3159 SlowPathFn = CGM.getModule().getOrInsertFunction( 3160 "__cfi_slowpath_diag", 3161 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3162 false)); 3163 CheckCall = Builder.CreateCall( 3164 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3165 } else { 3166 SlowPathFn = CGM.getModule().getOrInsertFunction( 3167 "__cfi_slowpath", 3168 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3169 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3170 } 3171 3172 CGM.setDSOLocal( 3173 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3174 CheckCall->setDoesNotThrow(); 3175 3176 EmitBlock(Cont); 3177 } 3178 3179 // Emit a stub for __cfi_check function so that the linker knows about this 3180 // symbol in LTO mode. 3181 void CodeGenFunction::EmitCfiCheckStub() { 3182 llvm::Module *M = &CGM.getModule(); 3183 auto &Ctx = M->getContext(); 3184 llvm::Function *F = llvm::Function::Create( 3185 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3186 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3187 CGM.setDSOLocal(F); 3188 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3189 // FIXME: consider emitting an intrinsic call like 3190 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3191 // which can be lowered in CrossDSOCFI pass to the actual contents of 3192 // __cfi_check. This would allow inlining of __cfi_check calls. 3193 llvm::CallInst::Create( 3194 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3195 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3196 } 3197 3198 // This function is basically a switch over the CFI failure kind, which is 3199 // extracted from CFICheckFailData (1st function argument). Each case is either 3200 // llvm.trap or a call to one of the two runtime handlers, based on 3201 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3202 // failure kind) traps, but this should really never happen. CFICheckFailData 3203 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3204 // check kind; in this case __cfi_check_fail traps as well. 3205 void CodeGenFunction::EmitCfiCheckFail() { 3206 SanitizerScope SanScope(this); 3207 FunctionArgList Args; 3208 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3209 ImplicitParamDecl::Other); 3210 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3211 ImplicitParamDecl::Other); 3212 Args.push_back(&ArgData); 3213 Args.push_back(&ArgAddr); 3214 3215 const CGFunctionInfo &FI = 3216 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3217 3218 llvm::Function *F = llvm::Function::Create( 3219 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3220 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3221 3222 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3223 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3224 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3225 3226 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3227 SourceLocation()); 3228 3229 // This function should not be affected by blacklist. This function does 3230 // not have a source location, but "src:*" would still apply. Revert any 3231 // changes to SanOpts made in StartFunction. 3232 SanOpts = CGM.getLangOpts().Sanitize; 3233 3234 llvm::Value *Data = 3235 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3236 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3237 llvm::Value *Addr = 3238 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3239 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3240 3241 // Data == nullptr means the calling module has trap behaviour for this check. 3242 llvm::Value *DataIsNotNullPtr = 3243 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3244 EmitTrapCheck(DataIsNotNullPtr); 3245 3246 llvm::StructType *SourceLocationTy = 3247 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3248 llvm::StructType *CfiCheckFailDataTy = 3249 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3250 3251 llvm::Value *V = Builder.CreateConstGEP2_32( 3252 CfiCheckFailDataTy, 3253 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3254 0); 3255 Address CheckKindAddr(V, getIntAlign()); 3256 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3257 3258 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3259 CGM.getLLVMContext(), 3260 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3261 llvm::Value *ValidVtable = Builder.CreateZExt( 3262 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3263 {Addr, AllVtables}), 3264 IntPtrTy); 3265 3266 const std::pair<int, SanitizerMask> CheckKinds[] = { 3267 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3268 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3269 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3270 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3271 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3272 3273 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3274 for (auto CheckKindMaskPair : CheckKinds) { 3275 int Kind = CheckKindMaskPair.first; 3276 SanitizerMask Mask = CheckKindMaskPair.second; 3277 llvm::Value *Cond = 3278 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3279 if (CGM.getLangOpts().Sanitize.has(Mask)) 3280 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3281 {Data, Addr, ValidVtable}); 3282 else 3283 EmitTrapCheck(Cond); 3284 } 3285 3286 FinishFunction(); 3287 // The only reference to this function will be created during LTO link. 3288 // Make sure it survives until then. 3289 CGM.addUsedGlobal(F); 3290 } 3291 3292 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3293 if (SanOpts.has(SanitizerKind::Unreachable)) { 3294 SanitizerScope SanScope(this); 3295 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3296 SanitizerKind::Unreachable), 3297 SanitizerHandler::BuiltinUnreachable, 3298 EmitCheckSourceLocation(Loc), None); 3299 } 3300 Builder.CreateUnreachable(); 3301 } 3302 3303 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3304 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3305 3306 // If we're optimizing, collapse all calls to trap down to just one per 3307 // function to save on code size. 3308 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3309 TrapBB = createBasicBlock("trap"); 3310 Builder.CreateCondBr(Checked, Cont, TrapBB); 3311 EmitBlock(TrapBB); 3312 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3313 TrapCall->setDoesNotReturn(); 3314 TrapCall->setDoesNotThrow(); 3315 Builder.CreateUnreachable(); 3316 } else { 3317 Builder.CreateCondBr(Checked, Cont, TrapBB); 3318 } 3319 3320 EmitBlock(Cont); 3321 } 3322 3323 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3324 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3325 3326 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3327 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3328 CGM.getCodeGenOpts().TrapFuncName); 3329 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3330 } 3331 3332 return TrapCall; 3333 } 3334 3335 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3336 LValueBaseInfo *BaseInfo, 3337 TBAAAccessInfo *TBAAInfo) { 3338 assert(E->getType()->isArrayType() && 3339 "Array to pointer decay must have array source type!"); 3340 3341 // Expressions of array type can't be bitfields or vector elements. 3342 LValue LV = EmitLValue(E); 3343 Address Addr = LV.getAddress(*this); 3344 3345 // If the array type was an incomplete type, we need to make sure 3346 // the decay ends up being the right type. 3347 llvm::Type *NewTy = ConvertType(E->getType()); 3348 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3349 3350 // Note that VLA pointers are always decayed, so we don't need to do 3351 // anything here. 3352 if (!E->getType()->isVariableArrayType()) { 3353 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3354 "Expected pointer to array"); 3355 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3356 } 3357 3358 // The result of this decay conversion points to an array element within the 3359 // base lvalue. However, since TBAA currently does not support representing 3360 // accesses to elements of member arrays, we conservatively represent accesses 3361 // to the pointee object as if it had no any base lvalue specified. 3362 // TODO: Support TBAA for member arrays. 3363 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3364 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3365 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3366 3367 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3368 } 3369 3370 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3371 /// array to pointer, return the array subexpression. 3372 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3373 // If this isn't just an array->pointer decay, bail out. 3374 const auto *CE = dyn_cast<CastExpr>(E); 3375 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3376 return nullptr; 3377 3378 // If this is a decay from variable width array, bail out. 3379 const Expr *SubExpr = CE->getSubExpr(); 3380 if (SubExpr->getType()->isVariableArrayType()) 3381 return nullptr; 3382 3383 return SubExpr; 3384 } 3385 3386 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3387 llvm::Value *ptr, 3388 ArrayRef<llvm::Value*> indices, 3389 bool inbounds, 3390 bool signedIndices, 3391 SourceLocation loc, 3392 const llvm::Twine &name = "arrayidx") { 3393 if (inbounds) { 3394 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3395 CodeGenFunction::NotSubtraction, loc, 3396 name); 3397 } else { 3398 return CGF.Builder.CreateGEP(ptr, indices, name); 3399 } 3400 } 3401 3402 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3403 llvm::Value *idx, 3404 CharUnits eltSize) { 3405 // If we have a constant index, we can use the exact offset of the 3406 // element we're accessing. 3407 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3408 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3409 return arrayAlign.alignmentAtOffset(offset); 3410 3411 // Otherwise, use the worst-case alignment for any element. 3412 } else { 3413 return arrayAlign.alignmentOfArrayElement(eltSize); 3414 } 3415 } 3416 3417 static QualType getFixedSizeElementType(const ASTContext &ctx, 3418 const VariableArrayType *vla) { 3419 QualType eltType; 3420 do { 3421 eltType = vla->getElementType(); 3422 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3423 return eltType; 3424 } 3425 3426 /// Given an array base, check whether its member access belongs to a record 3427 /// with preserve_access_index attribute or not. 3428 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3429 if (!ArrayBase || !CGF.getDebugInfo()) 3430 return false; 3431 3432 // Only support base as either a MemberExpr or DeclRefExpr. 3433 // DeclRefExpr to cover cases like: 3434 // struct s { int a; int b[10]; }; 3435 // struct s *p; 3436 // p[1].a 3437 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3438 // p->b[5] is a MemberExpr example. 3439 const Expr *E = ArrayBase->IgnoreImpCasts(); 3440 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3441 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3442 3443 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3444 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3445 if (!VarDef) 3446 return false; 3447 3448 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3449 if (!PtrT) 3450 return false; 3451 3452 const auto *PointeeT = PtrT->getPointeeType() 3453 ->getUnqualifiedDesugaredType(); 3454 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3455 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3456 return false; 3457 } 3458 3459 return false; 3460 } 3461 3462 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3463 ArrayRef<llvm::Value *> indices, 3464 QualType eltType, bool inbounds, 3465 bool signedIndices, SourceLocation loc, 3466 QualType *arrayType = nullptr, 3467 const Expr *Base = nullptr, 3468 const llvm::Twine &name = "arrayidx") { 3469 // All the indices except that last must be zero. 3470 #ifndef NDEBUG 3471 for (auto idx : indices.drop_back()) 3472 assert(isa<llvm::ConstantInt>(idx) && 3473 cast<llvm::ConstantInt>(idx)->isZero()); 3474 #endif 3475 3476 // Determine the element size of the statically-sized base. This is 3477 // the thing that the indices are expressed in terms of. 3478 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3479 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3480 } 3481 3482 // We can use that to compute the best alignment of the element. 3483 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3484 CharUnits eltAlign = 3485 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3486 3487 llvm::Value *eltPtr; 3488 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3489 if (!LastIndex || 3490 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3491 eltPtr = emitArraySubscriptGEP( 3492 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3493 loc, name); 3494 } else { 3495 // Remember the original array subscript for bpf target 3496 unsigned idx = LastIndex->getZExtValue(); 3497 llvm::DIType *DbgInfo = nullptr; 3498 if (arrayType) 3499 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3500 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3501 addr.getPointer(), 3502 indices.size() - 1, 3503 idx, DbgInfo); 3504 } 3505 3506 return Address(eltPtr, eltAlign); 3507 } 3508 3509 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3510 bool Accessed) { 3511 // The index must always be an integer, which is not an aggregate. Emit it 3512 // in lexical order (this complexity is, sadly, required by C++17). 3513 llvm::Value *IdxPre = 3514 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3515 bool SignedIndices = false; 3516 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3517 auto *Idx = IdxPre; 3518 if (E->getLHS() != E->getIdx()) { 3519 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3520 Idx = EmitScalarExpr(E->getIdx()); 3521 } 3522 3523 QualType IdxTy = E->getIdx()->getType(); 3524 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3525 SignedIndices |= IdxSigned; 3526 3527 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3528 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3529 3530 // Extend or truncate the index type to 32 or 64-bits. 3531 if (Promote && Idx->getType() != IntPtrTy) 3532 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3533 3534 return Idx; 3535 }; 3536 IdxPre = nullptr; 3537 3538 // If the base is a vector type, then we are forming a vector element lvalue 3539 // with this subscript. 3540 if (E->getBase()->getType()->isVectorType() && 3541 !isa<ExtVectorElementExpr>(E->getBase())) { 3542 // Emit the vector as an lvalue to get its address. 3543 LValue LHS = EmitLValue(E->getBase()); 3544 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3545 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3546 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3547 E->getBase()->getType(), LHS.getBaseInfo(), 3548 TBAAAccessInfo()); 3549 } 3550 3551 // All the other cases basically behave like simple offsetting. 3552 3553 // Handle the extvector case we ignored above. 3554 if (isa<ExtVectorElementExpr>(E->getBase())) { 3555 LValue LV = EmitLValue(E->getBase()); 3556 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3557 Address Addr = EmitExtVectorElementLValue(LV); 3558 3559 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3560 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3561 SignedIndices, E->getExprLoc()); 3562 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3563 CGM.getTBAAInfoForSubobject(LV, EltType)); 3564 } 3565 3566 LValueBaseInfo EltBaseInfo; 3567 TBAAAccessInfo EltTBAAInfo; 3568 Address Addr = Address::invalid(); 3569 if (const VariableArrayType *vla = 3570 getContext().getAsVariableArrayType(E->getType())) { 3571 // The base must be a pointer, which is not an aggregate. Emit 3572 // it. It needs to be emitted first in case it's what captures 3573 // the VLA bounds. 3574 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3575 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3576 3577 // The element count here is the total number of non-VLA elements. 3578 llvm::Value *numElements = getVLASize(vla).NumElts; 3579 3580 // Effectively, the multiply by the VLA size is part of the GEP. 3581 // GEP indexes are signed, and scaling an index isn't permitted to 3582 // signed-overflow, so we use the same semantics for our explicit 3583 // multiply. We suppress this if overflow is not undefined behavior. 3584 if (getLangOpts().isSignedOverflowDefined()) { 3585 Idx = Builder.CreateMul(Idx, numElements); 3586 } else { 3587 Idx = Builder.CreateNSWMul(Idx, numElements); 3588 } 3589 3590 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3591 !getLangOpts().isSignedOverflowDefined(), 3592 SignedIndices, E->getExprLoc()); 3593 3594 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3595 // Indexing over an interface, as in "NSString *P; P[4];" 3596 3597 // Emit the base pointer. 3598 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3599 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3600 3601 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3602 llvm::Value *InterfaceSizeVal = 3603 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3604 3605 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3606 3607 // We don't necessarily build correct LLVM struct types for ObjC 3608 // interfaces, so we can't rely on GEP to do this scaling 3609 // correctly, so we need to cast to i8*. FIXME: is this actually 3610 // true? A lot of other things in the fragile ABI would break... 3611 llvm::Type *OrigBaseTy = Addr.getType(); 3612 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3613 3614 // Do the GEP. 3615 CharUnits EltAlign = 3616 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3617 llvm::Value *EltPtr = 3618 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3619 SignedIndices, E->getExprLoc()); 3620 Addr = Address(EltPtr, EltAlign); 3621 3622 // Cast back. 3623 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3624 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3625 // If this is A[i] where A is an array, the frontend will have decayed the 3626 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3627 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3628 // "gep x, i" here. Emit one "gep A, 0, i". 3629 assert(Array->getType()->isArrayType() && 3630 "Array to pointer decay must have array source type!"); 3631 LValue ArrayLV; 3632 // For simple multidimensional array indexing, set the 'accessed' flag for 3633 // better bounds-checking of the base expression. 3634 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3635 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3636 else 3637 ArrayLV = EmitLValue(Array); 3638 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3639 3640 // Propagate the alignment from the array itself to the result. 3641 QualType arrayType = Array->getType(); 3642 Addr = emitArraySubscriptGEP( 3643 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3644 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3645 E->getExprLoc(), &arrayType, E->getBase()); 3646 EltBaseInfo = ArrayLV.getBaseInfo(); 3647 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3648 } else { 3649 // The base must be a pointer; emit it with an estimate of its alignment. 3650 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3651 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3652 QualType ptrType = E->getBase()->getType(); 3653 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3654 !getLangOpts().isSignedOverflowDefined(), 3655 SignedIndices, E->getExprLoc(), &ptrType, 3656 E->getBase()); 3657 } 3658 3659 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3660 3661 if (getLangOpts().ObjC && 3662 getLangOpts().getGC() != LangOptions::NonGC) { 3663 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3664 setObjCGCLValueClass(getContext(), E, LV); 3665 } 3666 return LV; 3667 } 3668 3669 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3670 LValueBaseInfo &BaseInfo, 3671 TBAAAccessInfo &TBAAInfo, 3672 QualType BaseTy, QualType ElTy, 3673 bool IsLowerBound) { 3674 LValue BaseLVal; 3675 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3676 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3677 if (BaseTy->isArrayType()) { 3678 Address Addr = BaseLVal.getAddress(CGF); 3679 BaseInfo = BaseLVal.getBaseInfo(); 3680 3681 // If the array type was an incomplete type, we need to make sure 3682 // the decay ends up being the right type. 3683 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3684 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3685 3686 // Note that VLA pointers are always decayed, so we don't need to do 3687 // anything here. 3688 if (!BaseTy->isVariableArrayType()) { 3689 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3690 "Expected pointer to array"); 3691 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3692 } 3693 3694 return CGF.Builder.CreateElementBitCast(Addr, 3695 CGF.ConvertTypeForMem(ElTy)); 3696 } 3697 LValueBaseInfo TypeBaseInfo; 3698 TBAAAccessInfo TypeTBAAInfo; 3699 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3700 &TypeTBAAInfo); 3701 BaseInfo.mergeForCast(TypeBaseInfo); 3702 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3703 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3704 } 3705 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3706 } 3707 3708 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3709 bool IsLowerBound) { 3710 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3711 QualType ResultExprTy; 3712 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3713 ResultExprTy = AT->getElementType(); 3714 else 3715 ResultExprTy = BaseTy->getPointeeType(); 3716 llvm::Value *Idx = nullptr; 3717 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3718 // Requesting lower bound or upper bound, but without provided length and 3719 // without ':' symbol for the default length -> length = 1. 3720 // Idx = LowerBound ?: 0; 3721 if (auto *LowerBound = E->getLowerBound()) { 3722 Idx = Builder.CreateIntCast( 3723 EmitScalarExpr(LowerBound), IntPtrTy, 3724 LowerBound->getType()->hasSignedIntegerRepresentation()); 3725 } else 3726 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3727 } else { 3728 // Try to emit length or lower bound as constant. If this is possible, 1 3729 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3730 // IR (LB + Len) - 1. 3731 auto &C = CGM.getContext(); 3732 auto *Length = E->getLength(); 3733 llvm::APSInt ConstLength; 3734 if (Length) { 3735 // Idx = LowerBound + Length - 1; 3736 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3737 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3738 Length = nullptr; 3739 } 3740 auto *LowerBound = E->getLowerBound(); 3741 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3742 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3743 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3744 LowerBound = nullptr; 3745 } 3746 if (!Length) 3747 --ConstLength; 3748 else if (!LowerBound) 3749 --ConstLowerBound; 3750 3751 if (Length || LowerBound) { 3752 auto *LowerBoundVal = 3753 LowerBound 3754 ? Builder.CreateIntCast( 3755 EmitScalarExpr(LowerBound), IntPtrTy, 3756 LowerBound->getType()->hasSignedIntegerRepresentation()) 3757 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3758 auto *LengthVal = 3759 Length 3760 ? Builder.CreateIntCast( 3761 EmitScalarExpr(Length), IntPtrTy, 3762 Length->getType()->hasSignedIntegerRepresentation()) 3763 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3764 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3765 /*HasNUW=*/false, 3766 !getLangOpts().isSignedOverflowDefined()); 3767 if (Length && LowerBound) { 3768 Idx = Builder.CreateSub( 3769 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3770 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3771 } 3772 } else 3773 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3774 } else { 3775 // Idx = ArraySize - 1; 3776 QualType ArrayTy = BaseTy->isPointerType() 3777 ? E->getBase()->IgnoreParenImpCasts()->getType() 3778 : BaseTy; 3779 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3780 Length = VAT->getSizeExpr(); 3781 if (Length->isIntegerConstantExpr(ConstLength, C)) 3782 Length = nullptr; 3783 } else { 3784 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3785 ConstLength = CAT->getSize(); 3786 } 3787 if (Length) { 3788 auto *LengthVal = Builder.CreateIntCast( 3789 EmitScalarExpr(Length), IntPtrTy, 3790 Length->getType()->hasSignedIntegerRepresentation()); 3791 Idx = Builder.CreateSub( 3792 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3793 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3794 } else { 3795 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3796 --ConstLength; 3797 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3798 } 3799 } 3800 } 3801 assert(Idx); 3802 3803 Address EltPtr = Address::invalid(); 3804 LValueBaseInfo BaseInfo; 3805 TBAAAccessInfo TBAAInfo; 3806 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3807 // The base must be a pointer, which is not an aggregate. Emit 3808 // it. It needs to be emitted first in case it's what captures 3809 // the VLA bounds. 3810 Address Base = 3811 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3812 BaseTy, VLA->getElementType(), IsLowerBound); 3813 // The element count here is the total number of non-VLA elements. 3814 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3815 3816 // Effectively, the multiply by the VLA size is part of the GEP. 3817 // GEP indexes are signed, and scaling an index isn't permitted to 3818 // signed-overflow, so we use the same semantics for our explicit 3819 // multiply. We suppress this if overflow is not undefined behavior. 3820 if (getLangOpts().isSignedOverflowDefined()) 3821 Idx = Builder.CreateMul(Idx, NumElements); 3822 else 3823 Idx = Builder.CreateNSWMul(Idx, NumElements); 3824 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3825 !getLangOpts().isSignedOverflowDefined(), 3826 /*signedIndices=*/false, E->getExprLoc()); 3827 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3828 // If this is A[i] where A is an array, the frontend will have decayed the 3829 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3830 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3831 // "gep x, i" here. Emit one "gep A, 0, i". 3832 assert(Array->getType()->isArrayType() && 3833 "Array to pointer decay must have array source type!"); 3834 LValue ArrayLV; 3835 // For simple multidimensional array indexing, set the 'accessed' flag for 3836 // better bounds-checking of the base expression. 3837 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3838 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3839 else 3840 ArrayLV = EmitLValue(Array); 3841 3842 // Propagate the alignment from the array itself to the result. 3843 EltPtr = emitArraySubscriptGEP( 3844 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3845 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3846 /*signedIndices=*/false, E->getExprLoc()); 3847 BaseInfo = ArrayLV.getBaseInfo(); 3848 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3849 } else { 3850 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3851 TBAAInfo, BaseTy, ResultExprTy, 3852 IsLowerBound); 3853 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3854 !getLangOpts().isSignedOverflowDefined(), 3855 /*signedIndices=*/false, E->getExprLoc()); 3856 } 3857 3858 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3859 } 3860 3861 LValue CodeGenFunction:: 3862 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3863 // Emit the base vector as an l-value. 3864 LValue Base; 3865 3866 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3867 if (E->isArrow()) { 3868 // If it is a pointer to a vector, emit the address and form an lvalue with 3869 // it. 3870 LValueBaseInfo BaseInfo; 3871 TBAAAccessInfo TBAAInfo; 3872 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3873 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3874 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3875 Base.getQuals().removeObjCGCAttr(); 3876 } else if (E->getBase()->isGLValue()) { 3877 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3878 // emit the base as an lvalue. 3879 assert(E->getBase()->getType()->isVectorType()); 3880 Base = EmitLValue(E->getBase()); 3881 } else { 3882 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3883 assert(E->getBase()->getType()->isVectorType() && 3884 "Result must be a vector"); 3885 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3886 3887 // Store the vector to memory (because LValue wants an address). 3888 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3889 Builder.CreateStore(Vec, VecMem); 3890 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3891 AlignmentSource::Decl); 3892 } 3893 3894 QualType type = 3895 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3896 3897 // Encode the element access list into a vector of unsigned indices. 3898 SmallVector<uint32_t, 4> Indices; 3899 E->getEncodedElementAccess(Indices); 3900 3901 if (Base.isSimple()) { 3902 llvm::Constant *CV = 3903 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3904 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3905 Base.getBaseInfo(), TBAAAccessInfo()); 3906 } 3907 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3908 3909 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3910 SmallVector<llvm::Constant *, 4> CElts; 3911 3912 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3913 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3914 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3915 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3916 Base.getBaseInfo(), TBAAAccessInfo()); 3917 } 3918 3919 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3920 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3921 EmitIgnoredExpr(E->getBase()); 3922 return EmitDeclRefLValue(DRE); 3923 } 3924 3925 Expr *BaseExpr = E->getBase(); 3926 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3927 LValue BaseLV; 3928 if (E->isArrow()) { 3929 LValueBaseInfo BaseInfo; 3930 TBAAAccessInfo TBAAInfo; 3931 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3932 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3933 SanitizerSet SkippedChecks; 3934 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3935 if (IsBaseCXXThis) 3936 SkippedChecks.set(SanitizerKind::Alignment, true); 3937 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3938 SkippedChecks.set(SanitizerKind::Null, true); 3939 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3940 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3941 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3942 } else 3943 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3944 3945 NamedDecl *ND = E->getMemberDecl(); 3946 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3947 LValue LV = EmitLValueForField(BaseLV, Field); 3948 setObjCGCLValueClass(getContext(), E, LV); 3949 if (getLangOpts().OpenMP) { 3950 // If the member was explicitly marked as nontemporal, mark it as 3951 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3952 // to children as nontemporal too. 3953 if ((IsWrappedCXXThis(BaseExpr) && 3954 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3955 BaseLV.isNontemporal()) 3956 LV.setNontemporal(/*Value=*/true); 3957 } 3958 return LV; 3959 } 3960 3961 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3962 return EmitFunctionDeclLValue(*this, E, FD); 3963 3964 llvm_unreachable("Unhandled member declaration!"); 3965 } 3966 3967 /// Given that we are currently emitting a lambda, emit an l-value for 3968 /// one of its members. 3969 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3970 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3971 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3972 QualType LambdaTagType = 3973 getContext().getTagDeclType(Field->getParent()); 3974 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3975 return EmitLValueForField(LambdaLV, Field); 3976 } 3977 3978 /// Get the field index in the debug info. The debug info structure/union 3979 /// will ignore the unnamed bitfields. 3980 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3981 unsigned FieldIndex) { 3982 unsigned I = 0, Skipped = 0; 3983 3984 for (auto F : Rec->getDefinition()->fields()) { 3985 if (I == FieldIndex) 3986 break; 3987 if (F->isUnnamedBitfield()) 3988 Skipped++; 3989 I++; 3990 } 3991 3992 return FieldIndex - Skipped; 3993 } 3994 3995 /// Get the address of a zero-sized field within a record. The resulting 3996 /// address doesn't necessarily have the right type. 3997 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 3998 const FieldDecl *Field) { 3999 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4000 CGF.getContext().getFieldOffset(Field)); 4001 if (Offset.isZero()) 4002 return Base; 4003 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4004 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4005 } 4006 4007 /// Drill down to the storage of a field without walking into 4008 /// reference types. 4009 /// 4010 /// The resulting address doesn't necessarily have the right type. 4011 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4012 const FieldDecl *field) { 4013 if (field->isZeroSize(CGF.getContext())) 4014 return emitAddrOfZeroSizeField(CGF, base, field); 4015 4016 const RecordDecl *rec = field->getParent(); 4017 4018 unsigned idx = 4019 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4020 4021 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4022 } 4023 4024 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base, 4025 const FieldDecl *field) { 4026 const RecordDecl *rec = field->getParent(); 4027 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType( 4028 CGF.getContext().getRecordType(rec), rec->getLocation()); 4029 4030 unsigned idx = 4031 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4032 4033 return CGF.Builder.CreatePreserveStructAccessIndex( 4034 base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4035 } 4036 4037 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4038 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4039 if (!RD) 4040 return false; 4041 4042 if (RD->isDynamicClass()) 4043 return true; 4044 4045 for (const auto &Base : RD->bases()) 4046 if (hasAnyVptr(Base.getType(), Context)) 4047 return true; 4048 4049 for (const FieldDecl *Field : RD->fields()) 4050 if (hasAnyVptr(Field->getType(), Context)) 4051 return true; 4052 4053 return false; 4054 } 4055 4056 LValue CodeGenFunction::EmitLValueForField(LValue base, 4057 const FieldDecl *field) { 4058 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4059 4060 if (field->isBitField()) { 4061 const CGRecordLayout &RL = 4062 CGM.getTypes().getCGRecordLayout(field->getParent()); 4063 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4064 Address Addr = base.getAddress(*this); 4065 unsigned Idx = RL.getLLVMFieldNo(field); 4066 const RecordDecl *rec = field->getParent(); 4067 if (!IsInPreservedAIRegion && 4068 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4069 if (Idx != 0) 4070 // For structs, we GEP to the field that the record layout suggests. 4071 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4072 } else { 4073 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4074 getContext().getRecordType(rec), rec->getLocation()); 4075 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4076 getDebugInfoFIndex(rec, field->getFieldIndex()), 4077 DbgInfo); 4078 } 4079 4080 // Get the access type. 4081 llvm::Type *FieldIntTy = 4082 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4083 if (Addr.getElementType() != FieldIntTy) 4084 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4085 4086 QualType fieldType = 4087 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4088 // TODO: Support TBAA for bit fields. 4089 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4090 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4091 TBAAAccessInfo()); 4092 } 4093 4094 // Fields of may-alias structures are may-alias themselves. 4095 // FIXME: this should get propagated down through anonymous structs 4096 // and unions. 4097 QualType FieldType = field->getType(); 4098 const RecordDecl *rec = field->getParent(); 4099 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4100 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4101 TBAAAccessInfo FieldTBAAInfo; 4102 if (base.getTBAAInfo().isMayAlias() || 4103 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4104 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4105 } else if (rec->isUnion()) { 4106 // TODO: Support TBAA for unions. 4107 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4108 } else { 4109 // If no base type been assigned for the base access, then try to generate 4110 // one for this base lvalue. 4111 FieldTBAAInfo = base.getTBAAInfo(); 4112 if (!FieldTBAAInfo.BaseType) { 4113 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4114 assert(!FieldTBAAInfo.Offset && 4115 "Nonzero offset for an access with no base type!"); 4116 } 4117 4118 // Adjust offset to be relative to the base type. 4119 const ASTRecordLayout &Layout = 4120 getContext().getASTRecordLayout(field->getParent()); 4121 unsigned CharWidth = getContext().getCharWidth(); 4122 if (FieldTBAAInfo.BaseType) 4123 FieldTBAAInfo.Offset += 4124 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4125 4126 // Update the final access type and size. 4127 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4128 FieldTBAAInfo.Size = 4129 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4130 } 4131 4132 Address addr = base.getAddress(*this); 4133 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4134 if (CGM.getCodeGenOpts().StrictVTablePointers && 4135 ClassDef->isDynamicClass()) { 4136 // Getting to any field of dynamic object requires stripping dynamic 4137 // information provided by invariant.group. This is because accessing 4138 // fields may leak the real address of dynamic object, which could result 4139 // in miscompilation when leaked pointer would be compared. 4140 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4141 addr = Address(stripped, addr.getAlignment()); 4142 } 4143 } 4144 4145 unsigned RecordCVR = base.getVRQualifiers(); 4146 if (rec->isUnion()) { 4147 // For unions, there is no pointer adjustment. 4148 if (CGM.getCodeGenOpts().StrictVTablePointers && 4149 hasAnyVptr(FieldType, getContext())) 4150 // Because unions can easily skip invariant.barriers, we need to add 4151 // a barrier every time CXXRecord field with vptr is referenced. 4152 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4153 addr.getAlignment()); 4154 4155 if (IsInPreservedAIRegion || 4156 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4157 // Remember the original union field index 4158 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4159 getContext().getRecordType(rec), rec->getLocation()); 4160 addr = Address( 4161 Builder.CreatePreserveUnionAccessIndex( 4162 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4163 addr.getAlignment()); 4164 } 4165 4166 if (FieldType->isReferenceType()) 4167 addr = Builder.CreateElementBitCast( 4168 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4169 } else { 4170 if (!IsInPreservedAIRegion && 4171 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4172 // For structs, we GEP to the field that the record layout suggests. 4173 addr = emitAddrOfFieldStorage(*this, addr, field); 4174 else 4175 // Remember the original struct field index 4176 addr = emitPreserveStructAccess(*this, addr, field); 4177 } 4178 4179 // If this is a reference field, load the reference right now. 4180 if (FieldType->isReferenceType()) { 4181 LValue RefLVal = 4182 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4183 if (RecordCVR & Qualifiers::Volatile) 4184 RefLVal.getQuals().addVolatile(); 4185 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4186 4187 // Qualifiers on the struct don't apply to the referencee. 4188 RecordCVR = 0; 4189 FieldType = FieldType->getPointeeType(); 4190 } 4191 4192 // Make sure that the address is pointing to the right type. This is critical 4193 // for both unions and structs. A union needs a bitcast, a struct element 4194 // will need a bitcast if the LLVM type laid out doesn't match the desired 4195 // type. 4196 addr = Builder.CreateElementBitCast( 4197 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4198 4199 if (field->hasAttr<AnnotateAttr>()) 4200 addr = EmitFieldAnnotations(field, addr); 4201 4202 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4203 LV.getQuals().addCVRQualifiers(RecordCVR); 4204 4205 // __weak attribute on a field is ignored. 4206 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4207 LV.getQuals().removeObjCGCAttr(); 4208 4209 return LV; 4210 } 4211 4212 LValue 4213 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4214 const FieldDecl *Field) { 4215 QualType FieldType = Field->getType(); 4216 4217 if (!FieldType->isReferenceType()) 4218 return EmitLValueForField(Base, Field); 4219 4220 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4221 4222 // Make sure that the address is pointing to the right type. 4223 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4224 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4225 4226 // TODO: Generate TBAA information that describes this access as a structure 4227 // member access and not just an access to an object of the field's type. This 4228 // should be similar to what we do in EmitLValueForField(). 4229 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4230 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4231 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4232 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4233 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4234 } 4235 4236 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4237 if (E->isFileScope()) { 4238 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4239 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4240 } 4241 if (E->getType()->isVariablyModifiedType()) 4242 // make sure to emit the VLA size. 4243 EmitVariablyModifiedType(E->getType()); 4244 4245 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4246 const Expr *InitExpr = E->getInitializer(); 4247 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4248 4249 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4250 /*Init*/ true); 4251 4252 return Result; 4253 } 4254 4255 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4256 if (!E->isGLValue()) 4257 // Initializing an aggregate temporary in C++11: T{...}. 4258 return EmitAggExprToLValue(E); 4259 4260 // An lvalue initializer list must be initializing a reference. 4261 assert(E->isTransparent() && "non-transparent glvalue init list"); 4262 return EmitLValue(E->getInit(0)); 4263 } 4264 4265 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4266 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4267 /// LValue is returned and the current block has been terminated. 4268 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4269 const Expr *Operand) { 4270 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4271 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4272 return None; 4273 } 4274 4275 return CGF.EmitLValue(Operand); 4276 } 4277 4278 LValue CodeGenFunction:: 4279 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4280 if (!expr->isGLValue()) { 4281 // ?: here should be an aggregate. 4282 assert(hasAggregateEvaluationKind(expr->getType()) && 4283 "Unexpected conditional operator!"); 4284 return EmitAggExprToLValue(expr); 4285 } 4286 4287 OpaqueValueMapping binding(*this, expr); 4288 4289 const Expr *condExpr = expr->getCond(); 4290 bool CondExprBool; 4291 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4292 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4293 if (!CondExprBool) std::swap(live, dead); 4294 4295 if (!ContainsLabel(dead)) { 4296 // If the true case is live, we need to track its region. 4297 if (CondExprBool) 4298 incrementProfileCounter(expr); 4299 return EmitLValue(live); 4300 } 4301 } 4302 4303 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4304 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4305 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4306 4307 ConditionalEvaluation eval(*this); 4308 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4309 4310 // Any temporaries created here are conditional. 4311 EmitBlock(lhsBlock); 4312 incrementProfileCounter(expr); 4313 eval.begin(*this); 4314 Optional<LValue> lhs = 4315 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4316 eval.end(*this); 4317 4318 if (lhs && !lhs->isSimple()) 4319 return EmitUnsupportedLValue(expr, "conditional operator"); 4320 4321 lhsBlock = Builder.GetInsertBlock(); 4322 if (lhs) 4323 Builder.CreateBr(contBlock); 4324 4325 // Any temporaries created here are conditional. 4326 EmitBlock(rhsBlock); 4327 eval.begin(*this); 4328 Optional<LValue> rhs = 4329 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4330 eval.end(*this); 4331 if (rhs && !rhs->isSimple()) 4332 return EmitUnsupportedLValue(expr, "conditional operator"); 4333 rhsBlock = Builder.GetInsertBlock(); 4334 4335 EmitBlock(contBlock); 4336 4337 if (lhs && rhs) { 4338 llvm::PHINode *phi = 4339 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4340 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4341 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4342 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4343 AlignmentSource alignSource = 4344 std::max(lhs->getBaseInfo().getAlignmentSource(), 4345 rhs->getBaseInfo().getAlignmentSource()); 4346 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4347 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4348 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4349 TBAAInfo); 4350 } else { 4351 assert((lhs || rhs) && 4352 "both operands of glvalue conditional are throw-expressions?"); 4353 return lhs ? *lhs : *rhs; 4354 } 4355 } 4356 4357 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4358 /// type. If the cast is to a reference, we can have the usual lvalue result, 4359 /// otherwise if a cast is needed by the code generator in an lvalue context, 4360 /// then it must mean that we need the address of an aggregate in order to 4361 /// access one of its members. This can happen for all the reasons that casts 4362 /// are permitted with aggregate result, including noop aggregate casts, and 4363 /// cast from scalar to union. 4364 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4365 switch (E->getCastKind()) { 4366 case CK_ToVoid: 4367 case CK_BitCast: 4368 case CK_LValueToRValueBitCast: 4369 case CK_ArrayToPointerDecay: 4370 case CK_FunctionToPointerDecay: 4371 case CK_NullToMemberPointer: 4372 case CK_NullToPointer: 4373 case CK_IntegralToPointer: 4374 case CK_PointerToIntegral: 4375 case CK_PointerToBoolean: 4376 case CK_VectorSplat: 4377 case CK_IntegralCast: 4378 case CK_BooleanToSignedIntegral: 4379 case CK_IntegralToBoolean: 4380 case CK_IntegralToFloating: 4381 case CK_FloatingToIntegral: 4382 case CK_FloatingToBoolean: 4383 case CK_FloatingCast: 4384 case CK_FloatingRealToComplex: 4385 case CK_FloatingComplexToReal: 4386 case CK_FloatingComplexToBoolean: 4387 case CK_FloatingComplexCast: 4388 case CK_FloatingComplexToIntegralComplex: 4389 case CK_IntegralRealToComplex: 4390 case CK_IntegralComplexToReal: 4391 case CK_IntegralComplexToBoolean: 4392 case CK_IntegralComplexCast: 4393 case CK_IntegralComplexToFloatingComplex: 4394 case CK_DerivedToBaseMemberPointer: 4395 case CK_BaseToDerivedMemberPointer: 4396 case CK_MemberPointerToBoolean: 4397 case CK_ReinterpretMemberPointer: 4398 case CK_AnyPointerToBlockPointerCast: 4399 case CK_ARCProduceObject: 4400 case CK_ARCConsumeObject: 4401 case CK_ARCReclaimReturnedObject: 4402 case CK_ARCExtendBlockObject: 4403 case CK_CopyAndAutoreleaseBlockObject: 4404 case CK_IntToOCLSampler: 4405 case CK_FixedPointCast: 4406 case CK_FixedPointToBoolean: 4407 case CK_FixedPointToIntegral: 4408 case CK_IntegralToFixedPoint: 4409 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4410 4411 case CK_Dependent: 4412 llvm_unreachable("dependent cast kind in IR gen!"); 4413 4414 case CK_BuiltinFnToFnPtr: 4415 llvm_unreachable("builtin functions are handled elsewhere"); 4416 4417 // These are never l-values; just use the aggregate emission code. 4418 case CK_NonAtomicToAtomic: 4419 case CK_AtomicToNonAtomic: 4420 return EmitAggExprToLValue(E); 4421 4422 case CK_Dynamic: { 4423 LValue LV = EmitLValue(E->getSubExpr()); 4424 Address V = LV.getAddress(*this); 4425 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4426 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4427 } 4428 4429 case CK_ConstructorConversion: 4430 case CK_UserDefinedConversion: 4431 case CK_CPointerToObjCPointerCast: 4432 case CK_BlockPointerToObjCPointerCast: 4433 case CK_NoOp: 4434 case CK_LValueToRValue: 4435 return EmitLValue(E->getSubExpr()); 4436 4437 case CK_UncheckedDerivedToBase: 4438 case CK_DerivedToBase: { 4439 const RecordType *DerivedClassTy = 4440 E->getSubExpr()->getType()->getAs<RecordType>(); 4441 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4442 4443 LValue LV = EmitLValue(E->getSubExpr()); 4444 Address This = LV.getAddress(*this); 4445 4446 // Perform the derived-to-base conversion 4447 Address Base = GetAddressOfBaseClass( 4448 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4449 /*NullCheckValue=*/false, E->getExprLoc()); 4450 4451 // TODO: Support accesses to members of base classes in TBAA. For now, we 4452 // conservatively pretend that the complete object is of the base class 4453 // type. 4454 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4455 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4456 } 4457 case CK_ToUnion: 4458 return EmitAggExprToLValue(E); 4459 case CK_BaseToDerived: { 4460 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4461 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4462 4463 LValue LV = EmitLValue(E->getSubExpr()); 4464 4465 // Perform the base-to-derived conversion 4466 Address Derived = GetAddressOfDerivedClass( 4467 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4468 /*NullCheckValue=*/false); 4469 4470 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4471 // performed and the object is not of the derived type. 4472 if (sanitizePerformTypeCheck()) 4473 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4474 Derived.getPointer(), E->getType()); 4475 4476 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4477 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4478 /*MayBeNull=*/false, CFITCK_DerivedCast, 4479 E->getBeginLoc()); 4480 4481 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4482 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4483 } 4484 case CK_LValueBitCast: { 4485 // This must be a reinterpret_cast (or c-style equivalent). 4486 const auto *CE = cast<ExplicitCastExpr>(E); 4487 4488 CGM.EmitExplicitCastExprType(CE, this); 4489 LValue LV = EmitLValue(E->getSubExpr()); 4490 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4491 ConvertType(CE->getTypeAsWritten())); 4492 4493 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4494 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4495 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4496 E->getBeginLoc()); 4497 4498 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4499 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4500 } 4501 case CK_AddressSpaceConversion: { 4502 LValue LV = EmitLValue(E->getSubExpr()); 4503 QualType DestTy = getContext().getPointerType(E->getType()); 4504 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4505 *this, LV.getPointer(*this), 4506 E->getSubExpr()->getType().getAddressSpace(), 4507 E->getType().getAddressSpace(), ConvertType(DestTy)); 4508 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4509 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4510 } 4511 case CK_ObjCObjectLValueCast: { 4512 LValue LV = EmitLValue(E->getSubExpr()); 4513 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4514 ConvertType(E->getType())); 4515 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4516 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4517 } 4518 case CK_ZeroToOCLOpaqueType: 4519 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4520 } 4521 4522 llvm_unreachable("Unhandled lvalue cast kind?"); 4523 } 4524 4525 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4526 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4527 return getOrCreateOpaqueLValueMapping(e); 4528 } 4529 4530 LValue 4531 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4532 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4533 4534 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4535 it = OpaqueLValues.find(e); 4536 4537 if (it != OpaqueLValues.end()) 4538 return it->second; 4539 4540 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4541 return EmitLValue(e->getSourceExpr()); 4542 } 4543 4544 RValue 4545 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4546 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4547 4548 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4549 it = OpaqueRValues.find(e); 4550 4551 if (it != OpaqueRValues.end()) 4552 return it->second; 4553 4554 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4555 return EmitAnyExpr(e->getSourceExpr()); 4556 } 4557 4558 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4559 const FieldDecl *FD, 4560 SourceLocation Loc) { 4561 QualType FT = FD->getType(); 4562 LValue FieldLV = EmitLValueForField(LV, FD); 4563 switch (getEvaluationKind(FT)) { 4564 case TEK_Complex: 4565 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4566 case TEK_Aggregate: 4567 return FieldLV.asAggregateRValue(*this); 4568 case TEK_Scalar: 4569 // This routine is used to load fields one-by-one to perform a copy, so 4570 // don't load reference fields. 4571 if (FD->getType()->isReferenceType()) 4572 return RValue::get(FieldLV.getPointer(*this)); 4573 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4574 // primitive load. 4575 if (FieldLV.isBitField()) 4576 return EmitLoadOfLValue(FieldLV, Loc); 4577 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4578 } 4579 llvm_unreachable("bad evaluation kind"); 4580 } 4581 4582 //===--------------------------------------------------------------------===// 4583 // Expression Emission 4584 //===--------------------------------------------------------------------===// 4585 4586 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4587 ReturnValueSlot ReturnValue) { 4588 // Builtins never have block type. 4589 if (E->getCallee()->getType()->isBlockPointerType()) 4590 return EmitBlockCallExpr(E, ReturnValue); 4591 4592 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4593 return EmitCXXMemberCallExpr(CE, ReturnValue); 4594 4595 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4596 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4597 4598 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4599 if (const CXXMethodDecl *MD = 4600 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4601 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4602 4603 CGCallee callee = EmitCallee(E->getCallee()); 4604 4605 if (callee.isBuiltin()) { 4606 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4607 E, ReturnValue); 4608 } 4609 4610 if (callee.isPseudoDestructor()) { 4611 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4612 } 4613 4614 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4615 } 4616 4617 /// Emit a CallExpr without considering whether it might be a subclass. 4618 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4619 ReturnValueSlot ReturnValue) { 4620 CGCallee Callee = EmitCallee(E->getCallee()); 4621 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4622 } 4623 4624 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4625 if (auto builtinID = FD->getBuiltinID()) { 4626 return CGCallee::forBuiltin(builtinID, FD); 4627 } 4628 4629 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4630 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4631 } 4632 4633 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4634 E = E->IgnoreParens(); 4635 4636 // Look through function-to-pointer decay. 4637 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4638 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4639 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4640 return EmitCallee(ICE->getSubExpr()); 4641 } 4642 4643 // Resolve direct calls. 4644 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4645 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4646 return EmitDirectCallee(*this, FD); 4647 } 4648 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4649 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4650 EmitIgnoredExpr(ME->getBase()); 4651 return EmitDirectCallee(*this, FD); 4652 } 4653 4654 // Look through template substitutions. 4655 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4656 return EmitCallee(NTTP->getReplacement()); 4657 4658 // Treat pseudo-destructor calls differently. 4659 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4660 return CGCallee::forPseudoDestructor(PDE); 4661 } 4662 4663 // Otherwise, we have an indirect reference. 4664 llvm::Value *calleePtr; 4665 QualType functionType; 4666 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4667 calleePtr = EmitScalarExpr(E); 4668 functionType = ptrType->getPointeeType(); 4669 } else { 4670 functionType = E->getType(); 4671 calleePtr = EmitLValue(E).getPointer(*this); 4672 } 4673 assert(functionType->isFunctionType()); 4674 4675 GlobalDecl GD; 4676 if (const auto *VD = 4677 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4678 GD = GlobalDecl(VD); 4679 4680 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4681 CGCallee callee(calleeInfo, calleePtr); 4682 return callee; 4683 } 4684 4685 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4686 // Comma expressions just emit their LHS then their RHS as an l-value. 4687 if (E->getOpcode() == BO_Comma) { 4688 EmitIgnoredExpr(E->getLHS()); 4689 EnsureInsertPoint(); 4690 return EmitLValue(E->getRHS()); 4691 } 4692 4693 if (E->getOpcode() == BO_PtrMemD || 4694 E->getOpcode() == BO_PtrMemI) 4695 return EmitPointerToDataMemberBinaryExpr(E); 4696 4697 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4698 4699 // Note that in all of these cases, __block variables need the RHS 4700 // evaluated first just in case the variable gets moved by the RHS. 4701 4702 switch (getEvaluationKind(E->getType())) { 4703 case TEK_Scalar: { 4704 switch (E->getLHS()->getType().getObjCLifetime()) { 4705 case Qualifiers::OCL_Strong: 4706 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4707 4708 case Qualifiers::OCL_Autoreleasing: 4709 return EmitARCStoreAutoreleasing(E).first; 4710 4711 // No reason to do any of these differently. 4712 case Qualifiers::OCL_None: 4713 case Qualifiers::OCL_ExplicitNone: 4714 case Qualifiers::OCL_Weak: 4715 break; 4716 } 4717 4718 RValue RV = EmitAnyExpr(E->getRHS()); 4719 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4720 if (RV.isScalar()) 4721 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4722 EmitStoreThroughLValue(RV, LV); 4723 if (getLangOpts().OpenMP) 4724 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4725 E->getLHS()); 4726 return LV; 4727 } 4728 4729 case TEK_Complex: 4730 return EmitComplexAssignmentLValue(E); 4731 4732 case TEK_Aggregate: 4733 return EmitAggExprToLValue(E); 4734 } 4735 llvm_unreachable("bad evaluation kind"); 4736 } 4737 4738 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4739 RValue RV = EmitCallExpr(E); 4740 4741 if (!RV.isScalar()) 4742 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4743 AlignmentSource::Decl); 4744 4745 assert(E->getCallReturnType(getContext())->isReferenceType() && 4746 "Can't have a scalar return unless the return type is a " 4747 "reference type!"); 4748 4749 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4750 } 4751 4752 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4753 // FIXME: This shouldn't require another copy. 4754 return EmitAggExprToLValue(E); 4755 } 4756 4757 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4758 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4759 && "binding l-value to type which needs a temporary"); 4760 AggValueSlot Slot = CreateAggTemp(E->getType()); 4761 EmitCXXConstructExpr(E, Slot); 4762 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4763 } 4764 4765 LValue 4766 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4767 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4768 } 4769 4770 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4771 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4772 ConvertType(E->getType())); 4773 } 4774 4775 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4776 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4777 AlignmentSource::Decl); 4778 } 4779 4780 LValue 4781 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4782 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4783 Slot.setExternallyDestructed(); 4784 EmitAggExpr(E->getSubExpr(), Slot); 4785 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4786 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4787 } 4788 4789 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4790 RValue RV = EmitObjCMessageExpr(E); 4791 4792 if (!RV.isScalar()) 4793 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4794 AlignmentSource::Decl); 4795 4796 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4797 "Can't have a scalar return unless the return type is a " 4798 "reference type!"); 4799 4800 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4801 } 4802 4803 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4804 Address V = 4805 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4806 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4807 } 4808 4809 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4810 const ObjCIvarDecl *Ivar) { 4811 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4812 } 4813 4814 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4815 llvm::Value *BaseValue, 4816 const ObjCIvarDecl *Ivar, 4817 unsigned CVRQualifiers) { 4818 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4819 Ivar, CVRQualifiers); 4820 } 4821 4822 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4823 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4824 llvm::Value *BaseValue = nullptr; 4825 const Expr *BaseExpr = E->getBase(); 4826 Qualifiers BaseQuals; 4827 QualType ObjectTy; 4828 if (E->isArrow()) { 4829 BaseValue = EmitScalarExpr(BaseExpr); 4830 ObjectTy = BaseExpr->getType()->getPointeeType(); 4831 BaseQuals = ObjectTy.getQualifiers(); 4832 } else { 4833 LValue BaseLV = EmitLValue(BaseExpr); 4834 BaseValue = BaseLV.getPointer(*this); 4835 ObjectTy = BaseExpr->getType(); 4836 BaseQuals = ObjectTy.getQualifiers(); 4837 } 4838 4839 LValue LV = 4840 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4841 BaseQuals.getCVRQualifiers()); 4842 setObjCGCLValueClass(getContext(), E, LV); 4843 return LV; 4844 } 4845 4846 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4847 // Can only get l-value for message expression returning aggregate type 4848 RValue RV = EmitAnyExprToTemp(E); 4849 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4850 AlignmentSource::Decl); 4851 } 4852 4853 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4854 const CallExpr *E, ReturnValueSlot ReturnValue, 4855 llvm::Value *Chain) { 4856 // Get the actual function type. The callee type will always be a pointer to 4857 // function type or a block pointer type. 4858 assert(CalleeType->isFunctionPointerType() && 4859 "Call must have function pointer type!"); 4860 4861 const Decl *TargetDecl = 4862 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4863 4864 CalleeType = getContext().getCanonicalType(CalleeType); 4865 4866 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4867 4868 CGCallee Callee = OrigCallee; 4869 4870 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4871 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4872 if (llvm::Constant *PrefixSig = 4873 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4874 SanitizerScope SanScope(this); 4875 // Remove any (C++17) exception specifications, to allow calling e.g. a 4876 // noexcept function through a non-noexcept pointer. 4877 auto ProtoTy = 4878 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4879 llvm::Constant *FTRTTIConst = 4880 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4881 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4882 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4883 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4884 4885 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4886 4887 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4888 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4889 llvm::Value *CalleeSigPtr = 4890 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4891 llvm::Value *CalleeSig = 4892 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4893 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4894 4895 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4896 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4897 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4898 4899 EmitBlock(TypeCheck); 4900 llvm::Value *CalleeRTTIPtr = 4901 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4902 llvm::Value *CalleeRTTIEncoded = 4903 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4904 llvm::Value *CalleeRTTI = 4905 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4906 llvm::Value *CalleeRTTIMatch = 4907 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4908 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4909 EmitCheckTypeDescriptor(CalleeType)}; 4910 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4911 SanitizerHandler::FunctionTypeMismatch, StaticData, 4912 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4913 4914 Builder.CreateBr(Cont); 4915 EmitBlock(Cont); 4916 } 4917 } 4918 4919 const auto *FnType = cast<FunctionType>(PointeeType); 4920 4921 // If we are checking indirect calls and this call is indirect, check that the 4922 // function pointer is a member of the bit set for the function type. 4923 if (SanOpts.has(SanitizerKind::CFIICall) && 4924 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4925 SanitizerScope SanScope(this); 4926 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4927 4928 llvm::Metadata *MD; 4929 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4930 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4931 else 4932 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4933 4934 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4935 4936 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4937 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4938 llvm::Value *TypeTest = Builder.CreateCall( 4939 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4940 4941 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4942 llvm::Constant *StaticData[] = { 4943 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4944 EmitCheckSourceLocation(E->getBeginLoc()), 4945 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4946 }; 4947 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4948 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4949 CastedCallee, StaticData); 4950 } else { 4951 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4952 SanitizerHandler::CFICheckFail, StaticData, 4953 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4954 } 4955 } 4956 4957 CallArgList Args; 4958 if (Chain) 4959 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4960 CGM.getContext().VoidPtrTy); 4961 4962 // C++17 requires that we evaluate arguments to a call using assignment syntax 4963 // right-to-left, and that we evaluate arguments to certain other operators 4964 // left-to-right. Note that we allow this to override the order dictated by 4965 // the calling convention on the MS ABI, which means that parameter 4966 // destruction order is not necessarily reverse construction order. 4967 // FIXME: Revisit this based on C++ committee response to unimplementability. 4968 EvaluationOrder Order = EvaluationOrder::Default; 4969 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4970 if (OCE->isAssignmentOp()) 4971 Order = EvaluationOrder::ForceRightToLeft; 4972 else { 4973 switch (OCE->getOperator()) { 4974 case OO_LessLess: 4975 case OO_GreaterGreater: 4976 case OO_AmpAmp: 4977 case OO_PipePipe: 4978 case OO_Comma: 4979 case OO_ArrowStar: 4980 Order = EvaluationOrder::ForceLeftToRight; 4981 break; 4982 default: 4983 break; 4984 } 4985 } 4986 } 4987 4988 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4989 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4990 4991 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4992 Args, FnType, /*ChainCall=*/Chain); 4993 4994 // C99 6.5.2.2p6: 4995 // If the expression that denotes the called function has a type 4996 // that does not include a prototype, [the default argument 4997 // promotions are performed]. If the number of arguments does not 4998 // equal the number of parameters, the behavior is undefined. If 4999 // the function is defined with a type that includes a prototype, 5000 // and either the prototype ends with an ellipsis (, ...) or the 5001 // types of the arguments after promotion are not compatible with 5002 // the types of the parameters, the behavior is undefined. If the 5003 // function is defined with a type that does not include a 5004 // prototype, and the types of the arguments after promotion are 5005 // not compatible with those of the parameters after promotion, 5006 // the behavior is undefined [except in some trivial cases]. 5007 // That is, in the general case, we should assume that a call 5008 // through an unprototyped function type works like a *non-variadic* 5009 // call. The way we make this work is to cast to the exact type 5010 // of the promoted arguments. 5011 // 5012 // Chain calls use this same code path to add the invisible chain parameter 5013 // to the function type. 5014 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5015 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5016 CalleeTy = CalleeTy->getPointerTo(); 5017 5018 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5019 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5020 Callee.setFunctionPointer(CalleePtr); 5021 } 5022 5023 llvm::CallBase *CallOrInvoke = nullptr; 5024 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5025 E->getExprLoc()); 5026 5027 // Generate function declaration DISuprogram in order to be used 5028 // in debug info about call sites. 5029 if (CGDebugInfo *DI = getDebugInfo()) { 5030 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5031 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5032 CalleeDecl); 5033 } 5034 5035 return Call; 5036 } 5037 5038 LValue CodeGenFunction:: 5039 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5040 Address BaseAddr = Address::invalid(); 5041 if (E->getOpcode() == BO_PtrMemI) { 5042 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5043 } else { 5044 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5045 } 5046 5047 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5048 5049 const MemberPointerType *MPT 5050 = E->getRHS()->getType()->getAs<MemberPointerType>(); 5051 5052 LValueBaseInfo BaseInfo; 5053 TBAAAccessInfo TBAAInfo; 5054 Address MemberAddr = 5055 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5056 &TBAAInfo); 5057 5058 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5059 } 5060 5061 /// Given the address of a temporary variable, produce an r-value of 5062 /// its type. 5063 RValue CodeGenFunction::convertTempToRValue(Address addr, 5064 QualType type, 5065 SourceLocation loc) { 5066 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5067 switch (getEvaluationKind(type)) { 5068 case TEK_Complex: 5069 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5070 case TEK_Aggregate: 5071 return lvalue.asAggregateRValue(*this); 5072 case TEK_Scalar: 5073 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5074 } 5075 llvm_unreachable("bad evaluation kind"); 5076 } 5077 5078 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5079 assert(Val->getType()->isFPOrFPVectorTy()); 5080 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5081 return; 5082 5083 llvm::MDBuilder MDHelper(getLLVMContext()); 5084 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5085 5086 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5087 } 5088 5089 namespace { 5090 struct LValueOrRValue { 5091 LValue LV; 5092 RValue RV; 5093 }; 5094 } 5095 5096 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5097 const PseudoObjectExpr *E, 5098 bool forLValue, 5099 AggValueSlot slot) { 5100 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5101 5102 // Find the result expression, if any. 5103 const Expr *resultExpr = E->getResultExpr(); 5104 LValueOrRValue result; 5105 5106 for (PseudoObjectExpr::const_semantics_iterator 5107 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5108 const Expr *semantic = *i; 5109 5110 // If this semantic expression is an opaque value, bind it 5111 // to the result of its source expression. 5112 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5113 // Skip unique OVEs. 5114 if (ov->isUnique()) { 5115 assert(ov != resultExpr && 5116 "A unique OVE cannot be used as the result expression"); 5117 continue; 5118 } 5119 5120 // If this is the result expression, we may need to evaluate 5121 // directly into the slot. 5122 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5123 OVMA opaqueData; 5124 if (ov == resultExpr && ov->isRValue() && !forLValue && 5125 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5126 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5127 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5128 AlignmentSource::Decl); 5129 opaqueData = OVMA::bind(CGF, ov, LV); 5130 result.RV = slot.asRValue(); 5131 5132 // Otherwise, emit as normal. 5133 } else { 5134 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5135 5136 // If this is the result, also evaluate the result now. 5137 if (ov == resultExpr) { 5138 if (forLValue) 5139 result.LV = CGF.EmitLValue(ov); 5140 else 5141 result.RV = CGF.EmitAnyExpr(ov, slot); 5142 } 5143 } 5144 5145 opaques.push_back(opaqueData); 5146 5147 // Otherwise, if the expression is the result, evaluate it 5148 // and remember the result. 5149 } else if (semantic == resultExpr) { 5150 if (forLValue) 5151 result.LV = CGF.EmitLValue(semantic); 5152 else 5153 result.RV = CGF.EmitAnyExpr(semantic, slot); 5154 5155 // Otherwise, evaluate the expression in an ignored context. 5156 } else { 5157 CGF.EmitIgnoredExpr(semantic); 5158 } 5159 } 5160 5161 // Unbind all the opaques now. 5162 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5163 opaques[i].unbind(CGF); 5164 5165 return result; 5166 } 5167 5168 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5169 AggValueSlot slot) { 5170 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5171 } 5172 5173 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5174 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5175 } 5176