1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(getPostAllocaInsertPoint());
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // Just emit it as an l-value and drop the result.
195   EmitLValue(E);
196 }
197 
198 /// EmitAnyExpr - Emit code to compute the specified expression which
199 /// can have any type.  The result is returned as an RValue struct.
200 /// If this is an aggregate expression, AggSlot indicates where the
201 /// result should be returned.
202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
203                                     AggValueSlot aggSlot,
204                                     bool ignoreResult) {
205   switch (getEvaluationKind(E->getType())) {
206   case TEK_Scalar:
207     return RValue::get(EmitScalarExpr(E, ignoreResult));
208   case TEK_Complex:
209     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
210   case TEK_Aggregate:
211     if (!ignoreResult && aggSlot.isIgnored())
212       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
213     EmitAggExpr(E, aggSlot);
214     return aggSlot.asRValue();
215   }
216   llvm_unreachable("bad evaluation kind");
217 }
218 
219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
220 /// always be accessible even if no aggregate location is provided.
221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
222   AggValueSlot AggSlot = AggValueSlot::ignored();
223 
224   if (hasAggregateEvaluationKind(E->getType()))
225     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
226   return EmitAnyExpr(E, AggSlot);
227 }
228 
229 /// EmitAnyExprToMem - Evaluate an expression into a given memory
230 /// location.
231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
232                                        Address Location,
233                                        Qualifiers Quals,
234                                        bool IsInit) {
235   // FIXME: This function should take an LValue as an argument.
236   switch (getEvaluationKind(E->getType())) {
237   case TEK_Complex:
238     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
239                               /*isInit*/ false);
240     return;
241 
242   case TEK_Aggregate: {
243     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
244                                          AggValueSlot::IsDestructed_t(IsInit),
245                                          AggValueSlot::DoesNotNeedGCBarriers,
246                                          AggValueSlot::IsAliased_t(!IsInit),
247                                          AggValueSlot::MayOverlap));
248     return;
249   }
250 
251   case TEK_Scalar: {
252     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
253     LValue LV = MakeAddrLValue(Location, E->getType());
254     EmitStoreThroughLValue(RV, LV);
255     return;
256   }
257   }
258   llvm_unreachable("bad evaluation kind");
259 }
260 
261 static void
262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
263                      const Expr *E, Address ReferenceTemporary) {
264   // Objective-C++ ARC:
265   //   If we are binding a reference to a temporary that has ownership, we
266   //   need to perform retain/release operations on the temporary.
267   //
268   // FIXME: This should be looking at E, not M.
269   if (auto Lifetime = M->getType().getObjCLifetime()) {
270     switch (Lifetime) {
271     case Qualifiers::OCL_None:
272     case Qualifiers::OCL_ExplicitNone:
273       // Carry on to normal cleanup handling.
274       break;
275 
276     case Qualifiers::OCL_Autoreleasing:
277       // Nothing to do; cleaned up by an autorelease pool.
278       return;
279 
280     case Qualifiers::OCL_Strong:
281     case Qualifiers::OCL_Weak:
282       switch (StorageDuration Duration = M->getStorageDuration()) {
283       case SD_Static:
284         // Note: we intentionally do not register a cleanup to release
285         // the object on program termination.
286         return;
287 
288       case SD_Thread:
289         // FIXME: We should probably register a cleanup in this case.
290         return;
291 
292       case SD_Automatic:
293       case SD_FullExpression:
294         CodeGenFunction::Destroyer *Destroy;
295         CleanupKind CleanupKind;
296         if (Lifetime == Qualifiers::OCL_Strong) {
297           const ValueDecl *VD = M->getExtendingDecl();
298           bool Precise =
299               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
300           CleanupKind = CGF.getARCCleanupKind();
301           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
302                             : &CodeGenFunction::destroyARCStrongImprecise;
303         } else {
304           // __weak objects always get EH cleanups; otherwise, exceptions
305           // could cause really nasty crashes instead of mere leaks.
306           CleanupKind = NormalAndEHCleanup;
307           Destroy = &CodeGenFunction::destroyARCWeak;
308         }
309         if (Duration == SD_FullExpression)
310           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
311                           M->getType(), *Destroy,
312                           CleanupKind & EHCleanup);
313         else
314           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
315                                           M->getType(),
316                                           *Destroy, CleanupKind & EHCleanup);
317         return;
318 
319       case SD_Dynamic:
320         llvm_unreachable("temporary cannot have dynamic storage duration");
321       }
322       llvm_unreachable("unknown storage duration");
323     }
324   }
325 
326   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
327   if (const RecordType *RT =
328           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
329     // Get the destructor for the reference temporary.
330     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
331     if (!ClassDecl->hasTrivialDestructor())
332       ReferenceTemporaryDtor = ClassDecl->getDestructor();
333   }
334 
335   if (!ReferenceTemporaryDtor)
336     return;
337 
338   // Call the destructor for the temporary.
339   switch (M->getStorageDuration()) {
340   case SD_Static:
341   case SD_Thread: {
342     llvm::FunctionCallee CleanupFn;
343     llvm::Constant *CleanupArg;
344     if (E->getType()->isArrayType()) {
345       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
346           ReferenceTemporary, E->getType(),
347           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
348           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
349       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
350     } else {
351       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
352           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
353       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
354     }
355     CGF.CGM.getCXXABI().registerGlobalDtor(
356         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
357     break;
358   }
359 
360   case SD_FullExpression:
361     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
362                     CodeGenFunction::destroyCXXObject,
363                     CGF.getLangOpts().Exceptions);
364     break;
365 
366   case SD_Automatic:
367     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
368                                     ReferenceTemporary, E->getType(),
369                                     CodeGenFunction::destroyCXXObject,
370                                     CGF.getLangOpts().Exceptions);
371     break;
372 
373   case SD_Dynamic:
374     llvm_unreachable("temporary cannot have dynamic storage duration");
375   }
376 }
377 
378 static Address createReferenceTemporary(CodeGenFunction &CGF,
379                                         const MaterializeTemporaryExpr *M,
380                                         const Expr *Inner,
381                                         Address *Alloca = nullptr) {
382   auto &TCG = CGF.getTargetHooks();
383   switch (M->getStorageDuration()) {
384   case SD_FullExpression:
385   case SD_Automatic: {
386     // If we have a constant temporary array or record try to promote it into a
387     // constant global under the same rules a normal constant would've been
388     // promoted. This is easier on the optimizer and generally emits fewer
389     // instructions.
390     QualType Ty = Inner->getType();
391     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
392         (Ty->isArrayType() || Ty->isRecordType()) &&
393         CGF.CGM.isTypeConstant(Ty, true))
394       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
395         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
396         auto *GV = new llvm::GlobalVariable(
397             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
398             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
399             llvm::GlobalValue::NotThreadLocal,
400             CGF.getContext().getTargetAddressSpace(AS));
401         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
402         GV->setAlignment(alignment.getAsAlign());
403         llvm::Constant *C = GV;
404         if (AS != LangAS::Default)
405           C = TCG.performAddrSpaceCast(
406               CGF.CGM, GV, AS, LangAS::Default,
407               GV->getValueType()->getPointerTo(
408                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
409         // FIXME: Should we put the new global into a COMDAT?
410         return Address(C, alignment);
411       }
412     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
413   }
414   case SD_Thread:
415   case SD_Static:
416     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
417 
418   case SD_Dynamic:
419     llvm_unreachable("temporary can't have dynamic storage duration");
420   }
421   llvm_unreachable("unknown storage duration");
422 }
423 
424 /// Helper method to check if the underlying ABI is AAPCS
425 static bool isAAPCS(const TargetInfo &TargetInfo) {
426   return TargetInfo.getABI().startswith("aapcs");
427 }
428 
429 LValue CodeGenFunction::
430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
431   const Expr *E = M->getSubExpr();
432 
433   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
434           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
435          "Reference should never be pseudo-strong!");
436 
437   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
438   // as that will cause the lifetime adjustment to be lost for ARC
439   auto ownership = M->getType().getObjCLifetime();
440   if (ownership != Qualifiers::OCL_None &&
441       ownership != Qualifiers::OCL_ExplicitNone) {
442     Address Object = createReferenceTemporary(*this, M, E);
443     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
444       Object = Address(llvm::ConstantExpr::getBitCast(Var,
445                            ConvertTypeForMem(E->getType())
446                              ->getPointerTo(Object.getAddressSpace())),
447                        Object.getAlignment());
448 
449       // createReferenceTemporary will promote the temporary to a global with a
450       // constant initializer if it can.  It can only do this to a value of
451       // ARC-manageable type if the value is global and therefore "immune" to
452       // ref-counting operations.  Therefore we have no need to emit either a
453       // dynamic initialization or a cleanup and we can just return the address
454       // of the temporary.
455       if (Var->hasInitializer())
456         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 
458       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
459     }
460     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
461                                        AlignmentSource::Decl);
462 
463     switch (getEvaluationKind(E->getType())) {
464     default: llvm_unreachable("expected scalar or aggregate expression");
465     case TEK_Scalar:
466       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
467       break;
468     case TEK_Aggregate: {
469       EmitAggExpr(E, AggValueSlot::forAddr(Object,
470                                            E->getType().getQualifiers(),
471                                            AggValueSlot::IsDestructed,
472                                            AggValueSlot::DoesNotNeedGCBarriers,
473                                            AggValueSlot::IsNotAliased,
474                                            AggValueSlot::DoesNotOverlap));
475       break;
476     }
477     }
478 
479     pushTemporaryCleanup(*this, M, E, Object);
480     return RefTempDst;
481   }
482 
483   SmallVector<const Expr *, 2> CommaLHSs;
484   SmallVector<SubobjectAdjustment, 2> Adjustments;
485   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
486 
487   for (const auto &Ignored : CommaLHSs)
488     EmitIgnoredExpr(Ignored);
489 
490   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
491     if (opaque->getType()->isRecordType()) {
492       assert(Adjustments.empty());
493       return EmitOpaqueValueLValue(opaque);
494     }
495   }
496 
497   // Create and initialize the reference temporary.
498   Address Alloca = Address::invalid();
499   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
500   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
501           Object.getPointer()->stripPointerCasts())) {
502     Object = Address(llvm::ConstantExpr::getBitCast(
503                          cast<llvm::Constant>(Object.getPointer()),
504                          ConvertTypeForMem(E->getType())->getPointerTo()),
505                      Object.getAlignment());
506     // If the temporary is a global and has a constant initializer or is a
507     // constant temporary that we promoted to a global, we may have already
508     // initialized it.
509     if (!Var->hasInitializer()) {
510       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
511       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
512     }
513   } else {
514     switch (M->getStorageDuration()) {
515     case SD_Automatic:
516       if (auto *Size = EmitLifetimeStart(
517               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
518               Alloca.getPointer())) {
519         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
520                                                   Alloca, Size);
521       }
522       break;
523 
524     case SD_FullExpression: {
525       if (!ShouldEmitLifetimeMarkers)
526         break;
527 
528       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
529       // marker. Instead, start the lifetime of a conditional temporary earlier
530       // so that it's unconditional. Don't do this with sanitizers which need
531       // more precise lifetime marks.
532       ConditionalEvaluation *OldConditional = nullptr;
533       CGBuilderTy::InsertPoint OldIP;
534       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
535           !SanOpts.has(SanitizerKind::HWAddress) &&
536           !SanOpts.has(SanitizerKind::Memory) &&
537           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
538         OldConditional = OutermostConditional;
539         OutermostConditional = nullptr;
540 
541         OldIP = Builder.saveIP();
542         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
543         Builder.restoreIP(CGBuilderTy::InsertPoint(
544             Block, llvm::BasicBlock::iterator(Block->back())));
545       }
546 
547       if (auto *Size = EmitLifetimeStart(
548               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
549               Alloca.getPointer())) {
550         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
551                                              Size);
552       }
553 
554       if (OldConditional) {
555         OutermostConditional = OldConditional;
556         Builder.restoreIP(OldIP);
557       }
558       break;
559     }
560 
561     default:
562       break;
563     }
564     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
565   }
566   pushTemporaryCleanup(*this, M, E, Object);
567 
568   // Perform derived-to-base casts and/or field accesses, to get from the
569   // temporary object we created (and, potentially, for which we extended
570   // the lifetime) to the subobject we're binding the reference to.
571   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
572     switch (Adjustment.Kind) {
573     case SubobjectAdjustment::DerivedToBaseAdjustment:
574       Object =
575           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
576                                 Adjustment.DerivedToBase.BasePath->path_begin(),
577                                 Adjustment.DerivedToBase.BasePath->path_end(),
578                                 /*NullCheckValue=*/ false, E->getExprLoc());
579       break;
580 
581     case SubobjectAdjustment::FieldAdjustment: {
582       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
583       LV = EmitLValueForField(LV, Adjustment.Field);
584       assert(LV.isSimple() &&
585              "materialized temporary field is not a simple lvalue");
586       Object = LV.getAddress(*this);
587       break;
588     }
589 
590     case SubobjectAdjustment::MemberPointerAdjustment: {
591       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
592       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
593                                                Adjustment.Ptr.MPT);
594       break;
595     }
596     }
597   }
598 
599   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
600 }
601 
602 RValue
603 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
604   // Emit the expression as an lvalue.
605   LValue LV = EmitLValue(E);
606   assert(LV.isSimple());
607   llvm::Value *Value = LV.getPointer(*this);
608 
609   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
610     // C++11 [dcl.ref]p5 (as amended by core issue 453):
611     //   If a glvalue to which a reference is directly bound designates neither
612     //   an existing object or function of an appropriate type nor a region of
613     //   storage of suitable size and alignment to contain an object of the
614     //   reference's type, the behavior is undefined.
615     QualType Ty = E->getType();
616     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
617   }
618 
619   return RValue::get(Value);
620 }
621 
622 
623 /// getAccessedFieldNo - Given an encoded value and a result number, return the
624 /// input field number being accessed.
625 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
626                                              const llvm::Constant *Elts) {
627   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
628       ->getZExtValue();
629 }
630 
631 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
632 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
633                                     llvm::Value *High) {
634   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
635   llvm::Value *K47 = Builder.getInt64(47);
636   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
637   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
638   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
639   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
640   return Builder.CreateMul(B1, KMul);
641 }
642 
643 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
644   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
645          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
646 }
647 
648 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
649   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
650   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
651          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
652           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
653           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
654 }
655 
656 bool CodeGenFunction::sanitizePerformTypeCheck() const {
657   return SanOpts.has(SanitizerKind::Null) ||
658          SanOpts.has(SanitizerKind::Alignment) ||
659          SanOpts.has(SanitizerKind::ObjectSize) ||
660          SanOpts.has(SanitizerKind::Vptr);
661 }
662 
663 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
664                                     llvm::Value *Ptr, QualType Ty,
665                                     CharUnits Alignment,
666                                     SanitizerSet SkippedChecks,
667                                     llvm::Value *ArraySize) {
668   if (!sanitizePerformTypeCheck())
669     return;
670 
671   // Don't check pointers outside the default address space. The null check
672   // isn't correct, the object-size check isn't supported by LLVM, and we can't
673   // communicate the addresses to the runtime handler for the vptr check.
674   if (Ptr->getType()->getPointerAddressSpace())
675     return;
676 
677   // Don't check pointers to volatile data. The behavior here is implementation-
678   // defined.
679   if (Ty.isVolatileQualified())
680     return;
681 
682   SanitizerScope SanScope(this);
683 
684   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
685   llvm::BasicBlock *Done = nullptr;
686 
687   // Quickly determine whether we have a pointer to an alloca. It's possible
688   // to skip null checks, and some alignment checks, for these pointers. This
689   // can reduce compile-time significantly.
690   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
691 
692   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
693   llvm::Value *IsNonNull = nullptr;
694   bool IsGuaranteedNonNull =
695       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
696   bool AllowNullPointers = isNullPointerAllowed(TCK);
697   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
698       !IsGuaranteedNonNull) {
699     // The glvalue must not be an empty glvalue.
700     IsNonNull = Builder.CreateIsNotNull(Ptr);
701 
702     // The IR builder can constant-fold the null check if the pointer points to
703     // a constant.
704     IsGuaranteedNonNull = IsNonNull == True;
705 
706     // Skip the null check if the pointer is known to be non-null.
707     if (!IsGuaranteedNonNull) {
708       if (AllowNullPointers) {
709         // When performing pointer casts, it's OK if the value is null.
710         // Skip the remaining checks in that case.
711         Done = createBasicBlock("null");
712         llvm::BasicBlock *Rest = createBasicBlock("not.null");
713         Builder.CreateCondBr(IsNonNull, Rest, Done);
714         EmitBlock(Rest);
715       } else {
716         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
717       }
718     }
719   }
720 
721   if (SanOpts.has(SanitizerKind::ObjectSize) &&
722       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
723       !Ty->isIncompleteType()) {
724     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
725     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
726     if (ArraySize)
727       Size = Builder.CreateMul(Size, ArraySize);
728 
729     // Degenerate case: new X[0] does not need an objectsize check.
730     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
731     if (!ConstantSize || !ConstantSize->isNullValue()) {
732       // The glvalue must refer to a large enough storage region.
733       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
734       //        to check this.
735       // FIXME: Get object address space
736       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
737       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
738       llvm::Value *Min = Builder.getFalse();
739       llvm::Value *NullIsUnknown = Builder.getFalse();
740       llvm::Value *Dynamic = Builder.getFalse();
741       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
742       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
743           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
744       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
745     }
746   }
747 
748   uint64_t AlignVal = 0;
749   llvm::Value *PtrAsInt = nullptr;
750 
751   if (SanOpts.has(SanitizerKind::Alignment) &&
752       !SkippedChecks.has(SanitizerKind::Alignment)) {
753     AlignVal = Alignment.getQuantity();
754     if (!Ty->isIncompleteType() && !AlignVal)
755       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
756                                              /*ForPointeeType=*/true)
757                      .getQuantity();
758 
759     // The glvalue must be suitably aligned.
760     if (AlignVal > 1 &&
761         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
762       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
763       llvm::Value *Align = Builder.CreateAnd(
764           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
765       llvm::Value *Aligned =
766           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
767       if (Aligned != True)
768         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
769     }
770   }
771 
772   if (Checks.size() > 0) {
773     // Make sure we're not losing information. Alignment needs to be a power of
774     // 2
775     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
776     llvm::Constant *StaticData[] = {
777         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
778         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
779         llvm::ConstantInt::get(Int8Ty, TCK)};
780     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
781               PtrAsInt ? PtrAsInt : Ptr);
782   }
783 
784   // If possible, check that the vptr indicates that there is a subobject of
785   // type Ty at offset zero within this object.
786   //
787   // C++11 [basic.life]p5,6:
788   //   [For storage which does not refer to an object within its lifetime]
789   //   The program has undefined behavior if:
790   //    -- the [pointer or glvalue] is used to access a non-static data member
791   //       or call a non-static member function
792   if (SanOpts.has(SanitizerKind::Vptr) &&
793       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
794     // Ensure that the pointer is non-null before loading it. If there is no
795     // compile-time guarantee, reuse the run-time null check or emit a new one.
796     if (!IsGuaranteedNonNull) {
797       if (!IsNonNull)
798         IsNonNull = Builder.CreateIsNotNull(Ptr);
799       if (!Done)
800         Done = createBasicBlock("vptr.null");
801       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
802       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
803       EmitBlock(VptrNotNull);
804     }
805 
806     // Compute a hash of the mangled name of the type.
807     //
808     // FIXME: This is not guaranteed to be deterministic! Move to a
809     //        fingerprinting mechanism once LLVM provides one. For the time
810     //        being the implementation happens to be deterministic.
811     SmallString<64> MangledName;
812     llvm::raw_svector_ostream Out(MangledName);
813     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
814                                                      Out);
815 
816     // Contained in NoSanitizeList based on the mangled type.
817     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
818                                                            Out.str())) {
819       llvm::hash_code TypeHash = hash_value(Out.str());
820 
821       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
822       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
823       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
824       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
825       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
826       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
827 
828       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
829       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
830 
831       // Look the hash up in our cache.
832       const int CacheSize = 128;
833       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
834       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
835                                                      "__ubsan_vptr_type_cache");
836       llvm::Value *Slot = Builder.CreateAnd(Hash,
837                                             llvm::ConstantInt::get(IntPtrTy,
838                                                                    CacheSize-1));
839       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
840       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
841           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
842           getPointerAlign());
843 
844       // If the hash isn't in the cache, call a runtime handler to perform the
845       // hard work of checking whether the vptr is for an object of the right
846       // type. This will either fill in the cache and return, or produce a
847       // diagnostic.
848       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
849       llvm::Constant *StaticData[] = {
850         EmitCheckSourceLocation(Loc),
851         EmitCheckTypeDescriptor(Ty),
852         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
853         llvm::ConstantInt::get(Int8Ty, TCK)
854       };
855       llvm::Value *DynamicData[] = { Ptr, Hash };
856       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
857                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
858                 DynamicData);
859     }
860   }
861 
862   if (Done) {
863     Builder.CreateBr(Done);
864     EmitBlock(Done);
865   }
866 }
867 
868 /// Determine whether this expression refers to a flexible array member in a
869 /// struct. We disable array bounds checks for such members.
870 static bool isFlexibleArrayMemberExpr(const Expr *E) {
871   // For compatibility with existing code, we treat arrays of length 0 or
872   // 1 as flexible array members.
873   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
874   // the two mechanisms.
875   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
876   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
877     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
878     // was produced by macro expansion.
879     if (CAT->getSize().ugt(1))
880       return false;
881   } else if (!isa<IncompleteArrayType>(AT))
882     return false;
883 
884   E = E->IgnoreParens();
885 
886   // A flexible array member must be the last member in the class.
887   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
888     // FIXME: If the base type of the member expr is not FD->getParent(),
889     // this should not be treated as a flexible array member access.
890     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
891       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
892       // member, only a T[0] or T[] member gets that treatment.
893       if (FD->getParent()->isUnion())
894         return true;
895       RecordDecl::field_iterator FI(
896           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
897       return ++FI == FD->getParent()->field_end();
898     }
899   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
900     return IRE->getDecl()->getNextIvar() == nullptr;
901   }
902 
903   return false;
904 }
905 
906 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
907                                                    QualType EltTy) {
908   ASTContext &C = getContext();
909   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
910   if (!EltSize)
911     return nullptr;
912 
913   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
914   if (!ArrayDeclRef)
915     return nullptr;
916 
917   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
918   if (!ParamDecl)
919     return nullptr;
920 
921   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
922   if (!POSAttr)
923     return nullptr;
924 
925   // Don't load the size if it's a lower bound.
926   int POSType = POSAttr->getType();
927   if (POSType != 0 && POSType != 1)
928     return nullptr;
929 
930   // Find the implicit size parameter.
931   auto PassedSizeIt = SizeArguments.find(ParamDecl);
932   if (PassedSizeIt == SizeArguments.end())
933     return nullptr;
934 
935   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
936   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
937   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
938   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
939                                               C.getSizeType(), E->getExprLoc());
940   llvm::Value *SizeOfElement =
941       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
942   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
943 }
944 
945 /// If Base is known to point to the start of an array, return the length of
946 /// that array. Return 0 if the length cannot be determined.
947 static llvm::Value *getArrayIndexingBound(
948     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
949   // For the vector indexing extension, the bound is the number of elements.
950   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
951     IndexedType = Base->getType();
952     return CGF.Builder.getInt32(VT->getNumElements());
953   }
954 
955   Base = Base->IgnoreParens();
956 
957   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
958     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
959         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
960       IndexedType = CE->getSubExpr()->getType();
961       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
962       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
963         return CGF.Builder.getInt(CAT->getSize());
964       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
965         return CGF.getVLASize(VAT).NumElts;
966       // Ignore pass_object_size here. It's not applicable on decayed pointers.
967     }
968   }
969 
970   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
971   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
972     IndexedType = Base->getType();
973     return POS;
974   }
975 
976   return nullptr;
977 }
978 
979 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
980                                       llvm::Value *Index, QualType IndexType,
981                                       bool Accessed) {
982   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
983          "should not be called unless adding bounds checks");
984   SanitizerScope SanScope(this);
985 
986   QualType IndexedType;
987   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
988   if (!Bound)
989     return;
990 
991   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
992   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
993   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
994 
995   llvm::Constant *StaticData[] = {
996     EmitCheckSourceLocation(E->getExprLoc()),
997     EmitCheckTypeDescriptor(IndexedType),
998     EmitCheckTypeDescriptor(IndexType)
999   };
1000   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1001                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1002   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1003             SanitizerHandler::OutOfBounds, StaticData, Index);
1004 }
1005 
1006 
1007 CodeGenFunction::ComplexPairTy CodeGenFunction::
1008 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1009                          bool isInc, bool isPre) {
1010   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1011 
1012   llvm::Value *NextVal;
1013   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1014     uint64_t AmountVal = isInc ? 1 : -1;
1015     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1016 
1017     // Add the inc/dec to the real part.
1018     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1019   } else {
1020     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1021     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1022     if (!isInc)
1023       FVal.changeSign();
1024     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1025 
1026     // Add the inc/dec to the real part.
1027     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1028   }
1029 
1030   ComplexPairTy IncVal(NextVal, InVal.second);
1031 
1032   // Store the updated result through the lvalue.
1033   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1034   if (getLangOpts().OpenMP)
1035     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1036                                                               E->getSubExpr());
1037 
1038   // If this is a postinc, return the value read from memory, otherwise use the
1039   // updated value.
1040   return isPre ? IncVal : InVal;
1041 }
1042 
1043 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1044                                              CodeGenFunction *CGF) {
1045   // Bind VLAs in the cast type.
1046   if (CGF && E->getType()->isVariablyModifiedType())
1047     CGF->EmitVariablyModifiedType(E->getType());
1048 
1049   if (CGDebugInfo *DI = getModuleDebugInfo())
1050     DI->EmitExplicitCastType(E->getType());
1051 }
1052 
1053 //===----------------------------------------------------------------------===//
1054 //                         LValue Expression Emission
1055 //===----------------------------------------------------------------------===//
1056 
1057 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1058 /// derive a more accurate bound on the alignment of the pointer.
1059 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1060                                                   LValueBaseInfo *BaseInfo,
1061                                                   TBAAAccessInfo *TBAAInfo) {
1062   // We allow this with ObjC object pointers because of fragile ABIs.
1063   assert(E->getType()->isPointerType() ||
1064          E->getType()->isObjCObjectPointerType());
1065   E = E->IgnoreParens();
1066 
1067   // Casts:
1068   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1069     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1070       CGM.EmitExplicitCastExprType(ECE, this);
1071 
1072     switch (CE->getCastKind()) {
1073     // Non-converting casts (but not C's implicit conversion from void*).
1074     case CK_BitCast:
1075     case CK_NoOp:
1076     case CK_AddressSpaceConversion:
1077       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1078         if (PtrTy->getPointeeType()->isVoidType())
1079           break;
1080 
1081         LValueBaseInfo InnerBaseInfo;
1082         TBAAAccessInfo InnerTBAAInfo;
1083         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1084                                                 &InnerBaseInfo,
1085                                                 &InnerTBAAInfo);
1086         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1087         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1088 
1089         if (isa<ExplicitCastExpr>(CE)) {
1090           LValueBaseInfo TargetTypeBaseInfo;
1091           TBAAAccessInfo TargetTypeTBAAInfo;
1092           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1093               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1094           if (TBAAInfo)
1095             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1096                                                  TargetTypeTBAAInfo);
1097           // If the source l-value is opaque, honor the alignment of the
1098           // casted-to type.
1099           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1100             if (BaseInfo)
1101               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1102             Addr = Address(Addr.getPointer(), Align);
1103           }
1104         }
1105 
1106         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1107             CE->getCastKind() == CK_BitCast) {
1108           if (auto PT = E->getType()->getAs<PointerType>())
1109             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1110                                       /*MayBeNull=*/true,
1111                                       CodeGenFunction::CFITCK_UnrelatedCast,
1112                                       CE->getBeginLoc());
1113         }
1114         return CE->getCastKind() != CK_AddressSpaceConversion
1115                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1116                    : Builder.CreateAddrSpaceCast(Addr,
1117                                                  ConvertType(E->getType()));
1118       }
1119       break;
1120 
1121     // Array-to-pointer decay.
1122     case CK_ArrayToPointerDecay:
1123       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1124 
1125     // Derived-to-base conversions.
1126     case CK_UncheckedDerivedToBase:
1127     case CK_DerivedToBase: {
1128       // TODO: Support accesses to members of base classes in TBAA. For now, we
1129       // conservatively pretend that the complete object is of the base class
1130       // type.
1131       if (TBAAInfo)
1132         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1133       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1134       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1135       return GetAddressOfBaseClass(Addr, Derived,
1136                                    CE->path_begin(), CE->path_end(),
1137                                    ShouldNullCheckClassCastValue(CE),
1138                                    CE->getExprLoc());
1139     }
1140 
1141     // TODO: Is there any reason to treat base-to-derived conversions
1142     // specially?
1143     default:
1144       break;
1145     }
1146   }
1147 
1148   // Unary &.
1149   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1150     if (UO->getOpcode() == UO_AddrOf) {
1151       LValue LV = EmitLValue(UO->getSubExpr());
1152       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1153       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1154       return LV.getAddress(*this);
1155     }
1156   }
1157 
1158   // TODO: conditional operators, comma.
1159 
1160   // Otherwise, use the alignment of the type.
1161   CharUnits Align =
1162       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1163   return Address(EmitScalarExpr(E), Align);
1164 }
1165 
1166 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1167   llvm::Value *V = RV.getScalarVal();
1168   if (auto MPT = T->getAs<MemberPointerType>())
1169     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1170   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1171 }
1172 
1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1174   if (Ty->isVoidType())
1175     return RValue::get(nullptr);
1176 
1177   switch (getEvaluationKind(Ty)) {
1178   case TEK_Complex: {
1179     llvm::Type *EltTy =
1180       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1181     llvm::Value *U = llvm::UndefValue::get(EltTy);
1182     return RValue::getComplex(std::make_pair(U, U));
1183   }
1184 
1185   // If this is a use of an undefined aggregate type, the aggregate must have an
1186   // identifiable address.  Just because the contents of the value are undefined
1187   // doesn't mean that the address can't be taken and compared.
1188   case TEK_Aggregate: {
1189     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1190     return RValue::getAggregate(DestPtr);
1191   }
1192 
1193   case TEK_Scalar:
1194     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1195   }
1196   llvm_unreachable("bad evaluation kind");
1197 }
1198 
1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1200                                               const char *Name) {
1201   ErrorUnsupported(E, Name);
1202   return GetUndefRValue(E->getType());
1203 }
1204 
1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1206                                               const char *Name) {
1207   ErrorUnsupported(E, Name);
1208   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1209   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1210                         E->getType());
1211 }
1212 
1213 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1214   const Expr *Base = Obj;
1215   while (!isa<CXXThisExpr>(Base)) {
1216     // The result of a dynamic_cast can be null.
1217     if (isa<CXXDynamicCastExpr>(Base))
1218       return false;
1219 
1220     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1221       Base = CE->getSubExpr();
1222     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1223       Base = PE->getSubExpr();
1224     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1225       if (UO->getOpcode() == UO_Extension)
1226         Base = UO->getSubExpr();
1227       else
1228         return false;
1229     } else {
1230       return false;
1231     }
1232   }
1233   return true;
1234 }
1235 
1236 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1237   LValue LV;
1238   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1239     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1240   else
1241     LV = EmitLValue(E);
1242   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1243     SanitizerSet SkippedChecks;
1244     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1245       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1246       if (IsBaseCXXThis)
1247         SkippedChecks.set(SanitizerKind::Alignment, true);
1248       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1249         SkippedChecks.set(SanitizerKind::Null, true);
1250     }
1251     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1252                   LV.getAlignment(), SkippedChecks);
1253   }
1254   return LV;
1255 }
1256 
1257 /// EmitLValue - Emit code to compute a designator that specifies the location
1258 /// of the expression.
1259 ///
1260 /// This can return one of two things: a simple address or a bitfield reference.
1261 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1262 /// an LLVM pointer type.
1263 ///
1264 /// If this returns a bitfield reference, nothing about the pointee type of the
1265 /// LLVM value is known: For example, it may not be a pointer to an integer.
1266 ///
1267 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1268 /// this method guarantees that the returned pointer type will point to an LLVM
1269 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1270 /// length type, this is not possible.
1271 ///
1272 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1273   ApplyDebugLocation DL(*this, E);
1274   switch (E->getStmtClass()) {
1275   default: return EmitUnsupportedLValue(E, "l-value expression");
1276 
1277   case Expr::ObjCPropertyRefExprClass:
1278     llvm_unreachable("cannot emit a property reference directly");
1279 
1280   case Expr::ObjCSelectorExprClass:
1281     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1282   case Expr::ObjCIsaExprClass:
1283     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1284   case Expr::BinaryOperatorClass:
1285     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1286   case Expr::CompoundAssignOperatorClass: {
1287     QualType Ty = E->getType();
1288     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1289       Ty = AT->getValueType();
1290     if (!Ty->isAnyComplexType())
1291       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1292     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293   }
1294   case Expr::CallExprClass:
1295   case Expr::CXXMemberCallExprClass:
1296   case Expr::CXXOperatorCallExprClass:
1297   case Expr::UserDefinedLiteralClass:
1298     return EmitCallExprLValue(cast<CallExpr>(E));
1299   case Expr::CXXRewrittenBinaryOperatorClass:
1300     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1301   case Expr::VAArgExprClass:
1302     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1303   case Expr::DeclRefExprClass:
1304     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1305   case Expr::ConstantExprClass: {
1306     const ConstantExpr *CE = cast<ConstantExpr>(E);
1307     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1308       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1309                              ->getCallReturnType(getContext());
1310       return MakeNaturalAlignAddrLValue(Result, RetType);
1311     }
1312     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1313   }
1314   case Expr::ParenExprClass:
1315     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1316   case Expr::GenericSelectionExprClass:
1317     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1318   case Expr::PredefinedExprClass:
1319     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1320   case Expr::StringLiteralClass:
1321     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1322   case Expr::ObjCEncodeExprClass:
1323     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1324   case Expr::PseudoObjectExprClass:
1325     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1326   case Expr::InitListExprClass:
1327     return EmitInitListLValue(cast<InitListExpr>(E));
1328   case Expr::CXXTemporaryObjectExprClass:
1329   case Expr::CXXConstructExprClass:
1330     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1331   case Expr::CXXBindTemporaryExprClass:
1332     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1333   case Expr::CXXUuidofExprClass:
1334     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1335   case Expr::LambdaExprClass:
1336     return EmitAggExprToLValue(E);
1337 
1338   case Expr::ExprWithCleanupsClass: {
1339     const auto *cleanups = cast<ExprWithCleanups>(E);
1340     RunCleanupsScope Scope(*this);
1341     LValue LV = EmitLValue(cleanups->getSubExpr());
1342     if (LV.isSimple()) {
1343       // Defend against branches out of gnu statement expressions surrounded by
1344       // cleanups.
1345       llvm::Value *V = LV.getPointer(*this);
1346       Scope.ForceCleanup({&V});
1347       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1348                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1349     }
1350     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1351     // bitfield lvalue or some other non-simple lvalue?
1352     return LV;
1353   }
1354 
1355   case Expr::CXXDefaultArgExprClass: {
1356     auto *DAE = cast<CXXDefaultArgExpr>(E);
1357     CXXDefaultArgExprScope Scope(*this, DAE);
1358     return EmitLValue(DAE->getExpr());
1359   }
1360   case Expr::CXXDefaultInitExprClass: {
1361     auto *DIE = cast<CXXDefaultInitExpr>(E);
1362     CXXDefaultInitExprScope Scope(*this, DIE);
1363     return EmitLValue(DIE->getExpr());
1364   }
1365   case Expr::CXXTypeidExprClass:
1366     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1367 
1368   case Expr::ObjCMessageExprClass:
1369     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1370   case Expr::ObjCIvarRefExprClass:
1371     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1372   case Expr::StmtExprClass:
1373     return EmitStmtExprLValue(cast<StmtExpr>(E));
1374   case Expr::UnaryOperatorClass:
1375     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1376   case Expr::ArraySubscriptExprClass:
1377     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1378   case Expr::MatrixSubscriptExprClass:
1379     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1380   case Expr::OMPArraySectionExprClass:
1381     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1382   case Expr::ExtVectorElementExprClass:
1383     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1384   case Expr::MemberExprClass:
1385     return EmitMemberExpr(cast<MemberExpr>(E));
1386   case Expr::CompoundLiteralExprClass:
1387     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1388   case Expr::ConditionalOperatorClass:
1389     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1390   case Expr::BinaryConditionalOperatorClass:
1391     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1392   case Expr::ChooseExprClass:
1393     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1394   case Expr::OpaqueValueExprClass:
1395     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1396   case Expr::SubstNonTypeTemplateParmExprClass:
1397     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1398   case Expr::ImplicitCastExprClass:
1399   case Expr::CStyleCastExprClass:
1400   case Expr::CXXFunctionalCastExprClass:
1401   case Expr::CXXStaticCastExprClass:
1402   case Expr::CXXDynamicCastExprClass:
1403   case Expr::CXXReinterpretCastExprClass:
1404   case Expr::CXXConstCastExprClass:
1405   case Expr::CXXAddrspaceCastExprClass:
1406   case Expr::ObjCBridgedCastExprClass:
1407     return EmitCastLValue(cast<CastExpr>(E));
1408 
1409   case Expr::MaterializeTemporaryExprClass:
1410     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1411 
1412   case Expr::CoawaitExprClass:
1413     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1414   case Expr::CoyieldExprClass:
1415     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1416   }
1417 }
1418 
1419 /// Given an object of the given canonical type, can we safely copy a
1420 /// value out of it based on its initializer?
1421 static bool isConstantEmittableObjectType(QualType type) {
1422   assert(type.isCanonical());
1423   assert(!type->isReferenceType());
1424 
1425   // Must be const-qualified but non-volatile.
1426   Qualifiers qs = type.getLocalQualifiers();
1427   if (!qs.hasConst() || qs.hasVolatile()) return false;
1428 
1429   // Otherwise, all object types satisfy this except C++ classes with
1430   // mutable subobjects or non-trivial copy/destroy behavior.
1431   if (const auto *RT = dyn_cast<RecordType>(type))
1432     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1433       if (RD->hasMutableFields() || !RD->isTrivial())
1434         return false;
1435 
1436   return true;
1437 }
1438 
1439 /// Can we constant-emit a load of a reference to a variable of the
1440 /// given type?  This is different from predicates like
1441 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1442 /// in situations that don't necessarily satisfy the language's rules
1443 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1444 /// to do this with const float variables even if those variables
1445 /// aren't marked 'constexpr'.
1446 enum ConstantEmissionKind {
1447   CEK_None,
1448   CEK_AsReferenceOnly,
1449   CEK_AsValueOrReference,
1450   CEK_AsValueOnly
1451 };
1452 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1453   type = type.getCanonicalType();
1454   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1455     if (isConstantEmittableObjectType(ref->getPointeeType()))
1456       return CEK_AsValueOrReference;
1457     return CEK_AsReferenceOnly;
1458   }
1459   if (isConstantEmittableObjectType(type))
1460     return CEK_AsValueOnly;
1461   return CEK_None;
1462 }
1463 
1464 /// Try to emit a reference to the given value without producing it as
1465 /// an l-value.  This is just an optimization, but it avoids us needing
1466 /// to emit global copies of variables if they're named without triggering
1467 /// a formal use in a context where we can't emit a direct reference to them,
1468 /// for instance if a block or lambda or a member of a local class uses a
1469 /// const int variable or constexpr variable from an enclosing function.
1470 CodeGenFunction::ConstantEmission
1471 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1472   ValueDecl *value = refExpr->getDecl();
1473 
1474   // The value needs to be an enum constant or a constant variable.
1475   ConstantEmissionKind CEK;
1476   if (isa<ParmVarDecl>(value)) {
1477     CEK = CEK_None;
1478   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1479     CEK = checkVarTypeForConstantEmission(var->getType());
1480   } else if (isa<EnumConstantDecl>(value)) {
1481     CEK = CEK_AsValueOnly;
1482   } else {
1483     CEK = CEK_None;
1484   }
1485   if (CEK == CEK_None) return ConstantEmission();
1486 
1487   Expr::EvalResult result;
1488   bool resultIsReference;
1489   QualType resultType;
1490 
1491   // It's best to evaluate all the way as an r-value if that's permitted.
1492   if (CEK != CEK_AsReferenceOnly &&
1493       refExpr->EvaluateAsRValue(result, getContext())) {
1494     resultIsReference = false;
1495     resultType = refExpr->getType();
1496 
1497   // Otherwise, try to evaluate as an l-value.
1498   } else if (CEK != CEK_AsValueOnly &&
1499              refExpr->EvaluateAsLValue(result, getContext())) {
1500     resultIsReference = true;
1501     resultType = value->getType();
1502 
1503   // Failure.
1504   } else {
1505     return ConstantEmission();
1506   }
1507 
1508   // In any case, if the initializer has side-effects, abandon ship.
1509   if (result.HasSideEffects)
1510     return ConstantEmission();
1511 
1512   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1513   // referencing a global host variable by copy. In this case the lambda should
1514   // make a copy of the value of the global host variable. The DRE of the
1515   // captured reference variable cannot be emitted as load from the host
1516   // global variable as compile time constant, since the host variable is not
1517   // accessible on device. The DRE of the captured reference variable has to be
1518   // loaded from captures.
1519   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1520       refExpr->refersToEnclosingVariableOrCapture()) {
1521     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1522     if (MD && MD->getParent()->isLambda() &&
1523         MD->getOverloadedOperator() == OO_Call) {
1524       const APValue::LValueBase &base = result.Val.getLValueBase();
1525       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1526         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1527           if (!VD->hasAttr<CUDADeviceAttr>()) {
1528             return ConstantEmission();
1529           }
1530         }
1531       }
1532     }
1533   }
1534 
1535   // Emit as a constant.
1536   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1537                                                result.Val, resultType);
1538 
1539   // Make sure we emit a debug reference to the global variable.
1540   // This should probably fire even for
1541   if (isa<VarDecl>(value)) {
1542     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1543       EmitDeclRefExprDbgValue(refExpr, result.Val);
1544   } else {
1545     assert(isa<EnumConstantDecl>(value));
1546     EmitDeclRefExprDbgValue(refExpr, result.Val);
1547   }
1548 
1549   // If we emitted a reference constant, we need to dereference that.
1550   if (resultIsReference)
1551     return ConstantEmission::forReference(C);
1552 
1553   return ConstantEmission::forValue(C);
1554 }
1555 
1556 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1557                                                         const MemberExpr *ME) {
1558   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1559     // Try to emit static variable member expressions as DREs.
1560     return DeclRefExpr::Create(
1561         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1562         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1563         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1564   }
1565   return nullptr;
1566 }
1567 
1568 CodeGenFunction::ConstantEmission
1569 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1570   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1571     return tryEmitAsConstant(DRE);
1572   return ConstantEmission();
1573 }
1574 
1575 llvm::Value *CodeGenFunction::emitScalarConstant(
1576     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1577   assert(Constant && "not a constant");
1578   if (Constant.isReference())
1579     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1580                             E->getExprLoc())
1581         .getScalarVal();
1582   return Constant.getValue();
1583 }
1584 
1585 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1586                                                SourceLocation Loc) {
1587   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1588                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1589                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1590 }
1591 
1592 static bool hasBooleanRepresentation(QualType Ty) {
1593   if (Ty->isBooleanType())
1594     return true;
1595 
1596   if (const EnumType *ET = Ty->getAs<EnumType>())
1597     return ET->getDecl()->getIntegerType()->isBooleanType();
1598 
1599   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1600     return hasBooleanRepresentation(AT->getValueType());
1601 
1602   return false;
1603 }
1604 
1605 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1606                             llvm::APInt &Min, llvm::APInt &End,
1607                             bool StrictEnums, bool IsBool) {
1608   const EnumType *ET = Ty->getAs<EnumType>();
1609   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1610                                 ET && !ET->getDecl()->isFixed();
1611   if (!IsBool && !IsRegularCPlusPlusEnum)
1612     return false;
1613 
1614   if (IsBool) {
1615     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1616     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1617   } else {
1618     const EnumDecl *ED = ET->getDecl();
1619     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1620     unsigned Bitwidth = LTy->getScalarSizeInBits();
1621     unsigned NumNegativeBits = ED->getNumNegativeBits();
1622     unsigned NumPositiveBits = ED->getNumPositiveBits();
1623 
1624     if (NumNegativeBits) {
1625       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1626       assert(NumBits <= Bitwidth);
1627       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1628       Min = -End;
1629     } else {
1630       assert(NumPositiveBits <= Bitwidth);
1631       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1632       Min = llvm::APInt::getZero(Bitwidth);
1633     }
1634   }
1635   return true;
1636 }
1637 
1638 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1639   llvm::APInt Min, End;
1640   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1641                        hasBooleanRepresentation(Ty)))
1642     return nullptr;
1643 
1644   llvm::MDBuilder MDHelper(getLLVMContext());
1645   return MDHelper.createRange(Min, End);
1646 }
1647 
1648 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1649                                            SourceLocation Loc) {
1650   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1651   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1652   if (!HasBoolCheck && !HasEnumCheck)
1653     return false;
1654 
1655   bool IsBool = hasBooleanRepresentation(Ty) ||
1656                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1657   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1658   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1659   if (!NeedsBoolCheck && !NeedsEnumCheck)
1660     return false;
1661 
1662   // Single-bit booleans don't need to be checked. Special-case this to avoid
1663   // a bit width mismatch when handling bitfield values. This is handled by
1664   // EmitFromMemory for the non-bitfield case.
1665   if (IsBool &&
1666       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1667     return false;
1668 
1669   llvm::APInt Min, End;
1670   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1671     return true;
1672 
1673   auto &Ctx = getLLVMContext();
1674   SanitizerScope SanScope(this);
1675   llvm::Value *Check;
1676   --End;
1677   if (!Min) {
1678     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1679   } else {
1680     llvm::Value *Upper =
1681         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1682     llvm::Value *Lower =
1683         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1684     Check = Builder.CreateAnd(Upper, Lower);
1685   }
1686   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1687                                   EmitCheckTypeDescriptor(Ty)};
1688   SanitizerMask Kind =
1689       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1690   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1691             StaticArgs, EmitCheckValue(Value));
1692   return true;
1693 }
1694 
1695 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1696                                                QualType Ty,
1697                                                SourceLocation Loc,
1698                                                LValueBaseInfo BaseInfo,
1699                                                TBAAAccessInfo TBAAInfo,
1700                                                bool isNontemporal) {
1701   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1702     // For better performance, handle vector loads differently.
1703     if (Ty->isVectorType()) {
1704       const llvm::Type *EltTy = Addr.getElementType();
1705 
1706       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1707 
1708       // Handle vectors of size 3 like size 4 for better performance.
1709       if (VTy->getNumElements() == 3) {
1710 
1711         // Bitcast to vec4 type.
1712         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1713         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1714         // Now load value.
1715         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1716 
1717         // Shuffle vector to get vec3.
1718         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1719                                         "extractVec");
1720         return EmitFromMemory(V, Ty);
1721       }
1722     }
1723   }
1724 
1725   // Atomic operations have to be done on integral types.
1726   LValue AtomicLValue =
1727       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1728   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1729     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1730   }
1731 
1732   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1733   if (isNontemporal) {
1734     llvm::MDNode *Node = llvm::MDNode::get(
1735         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1736     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1737   }
1738 
1739   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1740 
1741   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1742     // In order to prevent the optimizer from throwing away the check, don't
1743     // attach range metadata to the load.
1744   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1745     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1746       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1747 
1748   return EmitFromMemory(Load, Ty);
1749 }
1750 
1751 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1752   // Bool has a different representation in memory than in registers.
1753   if (hasBooleanRepresentation(Ty)) {
1754     // This should really always be an i1, but sometimes it's already
1755     // an i8, and it's awkward to track those cases down.
1756     if (Value->getType()->isIntegerTy(1))
1757       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1758     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1759            "wrong value rep of bool");
1760   }
1761 
1762   return Value;
1763 }
1764 
1765 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1766   // Bool has a different representation in memory than in registers.
1767   if (hasBooleanRepresentation(Ty)) {
1768     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1769            "wrong value rep of bool");
1770     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1771   }
1772 
1773   return Value;
1774 }
1775 
1776 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1777 // MatrixType), if it points to a array (the memory type of MatrixType).
1778 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1779                                          bool IsVector = true) {
1780   auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1781   if (ArrayTy && IsVector) {
1782     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1783                                                 ArrayTy->getNumElements());
1784 
1785     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1786   }
1787   auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1788   if (VectorTy && !IsVector) {
1789     auto *ArrayTy = llvm::ArrayType::get(
1790         VectorTy->getElementType(),
1791         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1792 
1793     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1794   }
1795 
1796   return Addr;
1797 }
1798 
1799 // Emit a store of a matrix LValue. This may require casting the original
1800 // pointer to memory address (ArrayType) to a pointer to the value type
1801 // (VectorType).
1802 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1803                                     bool isInit, CodeGenFunction &CGF) {
1804   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1805                                            value->getType()->isVectorTy());
1806   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1807                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1808                         lvalue.isNontemporal());
1809 }
1810 
1811 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1812                                         bool Volatile, QualType Ty,
1813                                         LValueBaseInfo BaseInfo,
1814                                         TBAAAccessInfo TBAAInfo,
1815                                         bool isInit, bool isNontemporal) {
1816   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1817     // Handle vectors differently to get better performance.
1818     if (Ty->isVectorType()) {
1819       llvm::Type *SrcTy = Value->getType();
1820       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1821       // Handle vec3 special.
1822       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1823         // Our source is a vec3, do a shuffle vector to make it a vec4.
1824         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1825                                             "extractVec");
1826         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1827       }
1828       if (Addr.getElementType() != SrcTy) {
1829         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1830       }
1831     }
1832   }
1833 
1834   Value = EmitToMemory(Value, Ty);
1835 
1836   LValue AtomicLValue =
1837       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1838   if (Ty->isAtomicType() ||
1839       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1840     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1841     return;
1842   }
1843 
1844   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1845   if (isNontemporal) {
1846     llvm::MDNode *Node =
1847         llvm::MDNode::get(Store->getContext(),
1848                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1849     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1850   }
1851 
1852   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1853 }
1854 
1855 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1856                                         bool isInit) {
1857   if (lvalue.getType()->isConstantMatrixType()) {
1858     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1859     return;
1860   }
1861 
1862   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1863                     lvalue.getType(), lvalue.getBaseInfo(),
1864                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1865 }
1866 
1867 // Emit a load of a LValue of matrix type. This may require casting the pointer
1868 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1869 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1870                                      CodeGenFunction &CGF) {
1871   assert(LV.getType()->isConstantMatrixType());
1872   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1873   LV.setAddress(Addr);
1874   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1875 }
1876 
1877 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1878 /// method emits the address of the lvalue, then loads the result as an rvalue,
1879 /// returning the rvalue.
1880 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1881   if (LV.isObjCWeak()) {
1882     // load of a __weak object.
1883     Address AddrWeakObj = LV.getAddress(*this);
1884     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1885                                                              AddrWeakObj));
1886   }
1887   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1888     // In MRC mode, we do a load+autorelease.
1889     if (!getLangOpts().ObjCAutoRefCount) {
1890       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1891     }
1892 
1893     // In ARC mode, we load retained and then consume the value.
1894     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1895     Object = EmitObjCConsumeObject(LV.getType(), Object);
1896     return RValue::get(Object);
1897   }
1898 
1899   if (LV.isSimple()) {
1900     assert(!LV.getType()->isFunctionType());
1901 
1902     if (LV.getType()->isConstantMatrixType())
1903       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1904 
1905     // Everything needs a load.
1906     return RValue::get(EmitLoadOfScalar(LV, Loc));
1907   }
1908 
1909   if (LV.isVectorElt()) {
1910     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1911                                               LV.isVolatileQualified());
1912     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1913                                                     "vecext"));
1914   }
1915 
1916   // If this is a reference to a subset of the elements of a vector, either
1917   // shuffle the input or extract/insert them as appropriate.
1918   if (LV.isExtVectorElt()) {
1919     return EmitLoadOfExtVectorElementLValue(LV);
1920   }
1921 
1922   // Global Register variables always invoke intrinsics
1923   if (LV.isGlobalReg())
1924     return EmitLoadOfGlobalRegLValue(LV);
1925 
1926   if (LV.isMatrixElt()) {
1927     llvm::Value *Idx = LV.getMatrixIdx();
1928     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1929       const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>();
1930       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1931       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1932     }
1933     llvm::LoadInst *Load =
1934         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1935     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1936   }
1937 
1938   assert(LV.isBitField() && "Unknown LValue type!");
1939   return EmitLoadOfBitfieldLValue(LV, Loc);
1940 }
1941 
1942 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1943                                                  SourceLocation Loc) {
1944   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1945 
1946   // Get the output type.
1947   llvm::Type *ResLTy = ConvertType(LV.getType());
1948 
1949   Address Ptr = LV.getBitFieldAddress();
1950   llvm::Value *Val =
1951       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1952 
1953   bool UseVolatile = LV.isVolatileQualified() &&
1954                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1955   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1956   const unsigned StorageSize =
1957       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1958   if (Info.IsSigned) {
1959     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1960     unsigned HighBits = StorageSize - Offset - Info.Size;
1961     if (HighBits)
1962       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1963     if (Offset + HighBits)
1964       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1965   } else {
1966     if (Offset)
1967       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1968     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1969       Val = Builder.CreateAnd(
1970           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1971   }
1972   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1973   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1974   return RValue::get(Val);
1975 }
1976 
1977 // If this is a reference to a subset of the elements of a vector, create an
1978 // appropriate shufflevector.
1979 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1980   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1981                                         LV.isVolatileQualified());
1982 
1983   const llvm::Constant *Elts = LV.getExtVectorElts();
1984 
1985   // If the result of the expression is a non-vector type, we must be extracting
1986   // a single element.  Just codegen as an extractelement.
1987   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1988   if (!ExprVT) {
1989     unsigned InIdx = getAccessedFieldNo(0, Elts);
1990     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1991     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1992   }
1993 
1994   // Always use shuffle vector to try to retain the original program structure
1995   unsigned NumResultElts = ExprVT->getNumElements();
1996 
1997   SmallVector<int, 4> Mask;
1998   for (unsigned i = 0; i != NumResultElts; ++i)
1999     Mask.push_back(getAccessedFieldNo(i, Elts));
2000 
2001   Vec = Builder.CreateShuffleVector(Vec, Mask);
2002   return RValue::get(Vec);
2003 }
2004 
2005 /// Generates lvalue for partial ext_vector access.
2006 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2007   Address VectorAddress = LV.getExtVectorAddress();
2008   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2009   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2010 
2011   Address CastToPointerElement =
2012     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2013                                  "conv.ptr.element");
2014 
2015   const llvm::Constant *Elts = LV.getExtVectorElts();
2016   unsigned ix = getAccessedFieldNo(0, Elts);
2017 
2018   Address VectorBasePtrPlusIx =
2019     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2020                                    "vector.elt");
2021 
2022   return VectorBasePtrPlusIx;
2023 }
2024 
2025 /// Load of global gamed gegisters are always calls to intrinsics.
2026 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2027   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2028          "Bad type for register variable");
2029   llvm::MDNode *RegName = cast<llvm::MDNode>(
2030       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2031 
2032   // We accept integer and pointer types only
2033   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2034   llvm::Type *Ty = OrigTy;
2035   if (OrigTy->isPointerTy())
2036     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2037   llvm::Type *Types[] = { Ty };
2038 
2039   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2040   llvm::Value *Call = Builder.CreateCall(
2041       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2042   if (OrigTy->isPointerTy())
2043     Call = Builder.CreateIntToPtr(Call, OrigTy);
2044   return RValue::get(Call);
2045 }
2046 
2047 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2048 /// lvalue, where both are guaranteed to the have the same type, and that type
2049 /// is 'Ty'.
2050 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2051                                              bool isInit) {
2052   if (!Dst.isSimple()) {
2053     if (Dst.isVectorElt()) {
2054       // Read/modify/write the vector, inserting the new element.
2055       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2056                                             Dst.isVolatileQualified());
2057       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2058                                         Dst.getVectorIdx(), "vecins");
2059       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2060                           Dst.isVolatileQualified());
2061       return;
2062     }
2063 
2064     // If this is an update of extended vector elements, insert them as
2065     // appropriate.
2066     if (Dst.isExtVectorElt())
2067       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2068 
2069     if (Dst.isGlobalReg())
2070       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2071 
2072     if (Dst.isMatrixElt()) {
2073       llvm::Value *Idx = Dst.getMatrixIdx();
2074       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2075         const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>();
2076         llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
2077         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2078       }
2079       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2080       llvm::Value *Vec =
2081           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2082       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2083                           Dst.isVolatileQualified());
2084       return;
2085     }
2086 
2087     assert(Dst.isBitField() && "Unknown LValue type");
2088     return EmitStoreThroughBitfieldLValue(Src, Dst);
2089   }
2090 
2091   // There's special magic for assigning into an ARC-qualified l-value.
2092   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2093     switch (Lifetime) {
2094     case Qualifiers::OCL_None:
2095       llvm_unreachable("present but none");
2096 
2097     case Qualifiers::OCL_ExplicitNone:
2098       // nothing special
2099       break;
2100 
2101     case Qualifiers::OCL_Strong:
2102       if (isInit) {
2103         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2104         break;
2105       }
2106       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2107       return;
2108 
2109     case Qualifiers::OCL_Weak:
2110       if (isInit)
2111         // Initialize and then skip the primitive store.
2112         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2113       else
2114         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2115                          /*ignore*/ true);
2116       return;
2117 
2118     case Qualifiers::OCL_Autoreleasing:
2119       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2120                                                      Src.getScalarVal()));
2121       // fall into the normal path
2122       break;
2123     }
2124   }
2125 
2126   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2127     // load of a __weak object.
2128     Address LvalueDst = Dst.getAddress(*this);
2129     llvm::Value *src = Src.getScalarVal();
2130      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2131     return;
2132   }
2133 
2134   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2135     // load of a __strong object.
2136     Address LvalueDst = Dst.getAddress(*this);
2137     llvm::Value *src = Src.getScalarVal();
2138     if (Dst.isObjCIvar()) {
2139       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2140       llvm::Type *ResultType = IntPtrTy;
2141       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2142       llvm::Value *RHS = dst.getPointer();
2143       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2144       llvm::Value *LHS =
2145         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2146                                "sub.ptr.lhs.cast");
2147       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2148       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2149                                               BytesBetween);
2150     } else if (Dst.isGlobalObjCRef()) {
2151       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2152                                                 Dst.isThreadLocalRef());
2153     }
2154     else
2155       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2156     return;
2157   }
2158 
2159   assert(Src.isScalar() && "Can't emit an agg store with this method");
2160   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2161 }
2162 
2163 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2164                                                      llvm::Value **Result) {
2165   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2166   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2167   Address Ptr = Dst.getBitFieldAddress();
2168 
2169   // Get the source value, truncated to the width of the bit-field.
2170   llvm::Value *SrcVal = Src.getScalarVal();
2171 
2172   // Cast the source to the storage type and shift it into place.
2173   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2174                                  /*isSigned=*/false);
2175   llvm::Value *MaskedVal = SrcVal;
2176 
2177   const bool UseVolatile =
2178       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2179       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2180   const unsigned StorageSize =
2181       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2182   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2183   // See if there are other bits in the bitfield's storage we'll need to load
2184   // and mask together with source before storing.
2185   if (StorageSize != Info.Size) {
2186     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2187     llvm::Value *Val =
2188         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2189 
2190     // Mask the source value as needed.
2191     if (!hasBooleanRepresentation(Dst.getType()))
2192       SrcVal = Builder.CreateAnd(
2193           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2194           "bf.value");
2195     MaskedVal = SrcVal;
2196     if (Offset)
2197       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2198 
2199     // Mask out the original value.
2200     Val = Builder.CreateAnd(
2201         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2202         "bf.clear");
2203 
2204     // Or together the unchanged values and the source value.
2205     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2206   } else {
2207     assert(Offset == 0);
2208     // According to the AACPS:
2209     // When a volatile bit-field is written, and its container does not overlap
2210     // with any non-bit-field member, its container must be read exactly once
2211     // and written exactly once using the access width appropriate to the type
2212     // of the container. The two accesses are not atomic.
2213     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2214         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2215       Builder.CreateLoad(Ptr, true, "bf.load");
2216   }
2217 
2218   // Write the new value back out.
2219   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2220 
2221   // Return the new value of the bit-field, if requested.
2222   if (Result) {
2223     llvm::Value *ResultVal = MaskedVal;
2224 
2225     // Sign extend the value if needed.
2226     if (Info.IsSigned) {
2227       assert(Info.Size <= StorageSize);
2228       unsigned HighBits = StorageSize - Info.Size;
2229       if (HighBits) {
2230         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2231         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2232       }
2233     }
2234 
2235     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2236                                       "bf.result.cast");
2237     *Result = EmitFromMemory(ResultVal, Dst.getType());
2238   }
2239 }
2240 
2241 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2242                                                                LValue Dst) {
2243   // This access turns into a read/modify/write of the vector.  Load the input
2244   // value now.
2245   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2246                                         Dst.isVolatileQualified());
2247   const llvm::Constant *Elts = Dst.getExtVectorElts();
2248 
2249   llvm::Value *SrcVal = Src.getScalarVal();
2250 
2251   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2252     unsigned NumSrcElts = VTy->getNumElements();
2253     unsigned NumDstElts =
2254         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2255     if (NumDstElts == NumSrcElts) {
2256       // Use shuffle vector is the src and destination are the same number of
2257       // elements and restore the vector mask since it is on the side it will be
2258       // stored.
2259       SmallVector<int, 4> Mask(NumDstElts);
2260       for (unsigned i = 0; i != NumSrcElts; ++i)
2261         Mask[getAccessedFieldNo(i, Elts)] = i;
2262 
2263       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2264     } else if (NumDstElts > NumSrcElts) {
2265       // Extended the source vector to the same length and then shuffle it
2266       // into the destination.
2267       // FIXME: since we're shuffling with undef, can we just use the indices
2268       //        into that?  This could be simpler.
2269       SmallVector<int, 4> ExtMask;
2270       for (unsigned i = 0; i != NumSrcElts; ++i)
2271         ExtMask.push_back(i);
2272       ExtMask.resize(NumDstElts, -1);
2273       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2274       // build identity
2275       SmallVector<int, 4> Mask;
2276       for (unsigned i = 0; i != NumDstElts; ++i)
2277         Mask.push_back(i);
2278 
2279       // When the vector size is odd and .odd or .hi is used, the last element
2280       // of the Elts constant array will be one past the size of the vector.
2281       // Ignore the last element here, if it is greater than the mask size.
2282       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2283         NumSrcElts--;
2284 
2285       // modify when what gets shuffled in
2286       for (unsigned i = 0; i != NumSrcElts; ++i)
2287         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2288       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2289     } else {
2290       // We should never shorten the vector
2291       llvm_unreachable("unexpected shorten vector length");
2292     }
2293   } else {
2294     // If the Src is a scalar (not a vector) it must be updating one element.
2295     unsigned InIdx = getAccessedFieldNo(0, Elts);
2296     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2297     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2298   }
2299 
2300   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2301                       Dst.isVolatileQualified());
2302 }
2303 
2304 /// Store of global named registers are always calls to intrinsics.
2305 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2306   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2307          "Bad type for register variable");
2308   llvm::MDNode *RegName = cast<llvm::MDNode>(
2309       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2310   assert(RegName && "Register LValue is not metadata");
2311 
2312   // We accept integer and pointer types only
2313   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2314   llvm::Type *Ty = OrigTy;
2315   if (OrigTy->isPointerTy())
2316     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2317   llvm::Type *Types[] = { Ty };
2318 
2319   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2320   llvm::Value *Value = Src.getScalarVal();
2321   if (OrigTy->isPointerTy())
2322     Value = Builder.CreatePtrToInt(Value, Ty);
2323   Builder.CreateCall(
2324       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2325 }
2326 
2327 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2328 // generating write-barries API. It is currently a global, ivar,
2329 // or neither.
2330 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2331                                  LValue &LV,
2332                                  bool IsMemberAccess=false) {
2333   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2334     return;
2335 
2336   if (isa<ObjCIvarRefExpr>(E)) {
2337     QualType ExpTy = E->getType();
2338     if (IsMemberAccess && ExpTy->isPointerType()) {
2339       // If ivar is a structure pointer, assigning to field of
2340       // this struct follows gcc's behavior and makes it a non-ivar
2341       // writer-barrier conservatively.
2342       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2343       if (ExpTy->isRecordType()) {
2344         LV.setObjCIvar(false);
2345         return;
2346       }
2347     }
2348     LV.setObjCIvar(true);
2349     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2350     LV.setBaseIvarExp(Exp->getBase());
2351     LV.setObjCArray(E->getType()->isArrayType());
2352     return;
2353   }
2354 
2355   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2356     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2357       if (VD->hasGlobalStorage()) {
2358         LV.setGlobalObjCRef(true);
2359         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2360       }
2361     }
2362     LV.setObjCArray(E->getType()->isArrayType());
2363     return;
2364   }
2365 
2366   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2367     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2368     return;
2369   }
2370 
2371   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2372     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2373     if (LV.isObjCIvar()) {
2374       // If cast is to a structure pointer, follow gcc's behavior and make it
2375       // a non-ivar write-barrier.
2376       QualType ExpTy = E->getType();
2377       if (ExpTy->isPointerType())
2378         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2379       if (ExpTy->isRecordType())
2380         LV.setObjCIvar(false);
2381     }
2382     return;
2383   }
2384 
2385   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2386     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2387     return;
2388   }
2389 
2390   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2391     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2392     return;
2393   }
2394 
2395   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2396     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2397     return;
2398   }
2399 
2400   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2401     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2402     return;
2403   }
2404 
2405   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2406     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2407     if (LV.isObjCIvar() && !LV.isObjCArray())
2408       // Using array syntax to assigning to what an ivar points to is not
2409       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2410       LV.setObjCIvar(false);
2411     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2412       // Using array syntax to assigning to what global points to is not
2413       // same as assigning to the global itself. {id *G;} G[i] = 0;
2414       LV.setGlobalObjCRef(false);
2415     return;
2416   }
2417 
2418   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2419     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2420     // We don't know if member is an 'ivar', but this flag is looked at
2421     // only in the context of LV.isObjCIvar().
2422     LV.setObjCArray(E->getType()->isArrayType());
2423     return;
2424   }
2425 }
2426 
2427 static llvm::Value *
2428 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2429                                 llvm::Value *V, llvm::Type *IRType,
2430                                 StringRef Name = StringRef()) {
2431   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2432   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2433 }
2434 
2435 static LValue EmitThreadPrivateVarDeclLValue(
2436     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2437     llvm::Type *RealVarTy, SourceLocation Loc) {
2438   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2439     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2440         CGF, VD, Addr, Loc);
2441   else
2442     Addr =
2443         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2444 
2445   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2446   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2447 }
2448 
2449 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2450                                            const VarDecl *VD, QualType T) {
2451   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2452       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2453   // Return an invalid address if variable is MT_To and unified
2454   // memory is not enabled. For all other cases: MT_Link and
2455   // MT_To with unified memory, return a valid address.
2456   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2457                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2458     return Address::invalid();
2459   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2460           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2461            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2462          "Expected link clause OR to clause with unified memory enabled.");
2463   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2464   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2465   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2466 }
2467 
2468 Address
2469 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2470                                      LValueBaseInfo *PointeeBaseInfo,
2471                                      TBAAAccessInfo *PointeeTBAAInfo) {
2472   llvm::LoadInst *Load =
2473       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2474   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2475 
2476   CharUnits Align = CGM.getNaturalTypeAlignment(
2477       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2478       /* forPointeeType= */ true);
2479   return Address(Load, Align);
2480 }
2481 
2482 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2483   LValueBaseInfo PointeeBaseInfo;
2484   TBAAAccessInfo PointeeTBAAInfo;
2485   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2486                                             &PointeeTBAAInfo);
2487   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2488                         PointeeBaseInfo, PointeeTBAAInfo);
2489 }
2490 
2491 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2492                                            const PointerType *PtrTy,
2493                                            LValueBaseInfo *BaseInfo,
2494                                            TBAAAccessInfo *TBAAInfo) {
2495   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2496   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2497                                                    BaseInfo, TBAAInfo,
2498                                                    /*forPointeeType=*/true));
2499 }
2500 
2501 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2502                                                 const PointerType *PtrTy) {
2503   LValueBaseInfo BaseInfo;
2504   TBAAAccessInfo TBAAInfo;
2505   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2506   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2507 }
2508 
2509 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2510                                       const Expr *E, const VarDecl *VD) {
2511   QualType T = E->getType();
2512 
2513   // If it's thread_local, emit a call to its wrapper function instead.
2514   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2515       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2516     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2517   // Check if the variable is marked as declare target with link clause in
2518   // device codegen.
2519   if (CGF.getLangOpts().OpenMPIsDevice) {
2520     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2521     if (Addr.isValid())
2522       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2523   }
2524 
2525   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2526   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2527   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2528   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2529   Address Addr(V, Alignment);
2530   // Emit reference to the private copy of the variable if it is an OpenMP
2531   // threadprivate variable.
2532   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2533       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2534     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2535                                           E->getExprLoc());
2536   }
2537   LValue LV = VD->getType()->isReferenceType() ?
2538       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2539                                     AlignmentSource::Decl) :
2540       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2541   setObjCGCLValueClass(CGF.getContext(), E, LV);
2542   return LV;
2543 }
2544 
2545 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2546                                                GlobalDecl GD) {
2547   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2548   if (FD->hasAttr<WeakRefAttr>()) {
2549     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2550     return aliasee.getPointer();
2551   }
2552 
2553   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2554   if (!FD->hasPrototype()) {
2555     if (const FunctionProtoType *Proto =
2556             FD->getType()->getAs<FunctionProtoType>()) {
2557       // Ugly case: for a K&R-style definition, the type of the definition
2558       // isn't the same as the type of a use.  Correct for this with a
2559       // bitcast.
2560       QualType NoProtoType =
2561           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2562       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2563       V = llvm::ConstantExpr::getBitCast(V,
2564                                       CGM.getTypes().ConvertType(NoProtoType));
2565     }
2566   }
2567   return V;
2568 }
2569 
2570 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2571                                      GlobalDecl GD) {
2572   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2573   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2574   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2575   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2576                             AlignmentSource::Decl);
2577 }
2578 
2579 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2580                                       llvm::Value *ThisValue) {
2581   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2582   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2583   return CGF.EmitLValueForField(LV, FD);
2584 }
2585 
2586 /// Named Registers are named metadata pointing to the register name
2587 /// which will be read from/written to as an argument to the intrinsic
2588 /// @llvm.read/write_register.
2589 /// So far, only the name is being passed down, but other options such as
2590 /// register type, allocation type or even optimization options could be
2591 /// passed down via the metadata node.
2592 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2593   SmallString<64> Name("llvm.named.register.");
2594   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2595   assert(Asm->getLabel().size() < 64-Name.size() &&
2596       "Register name too big");
2597   Name.append(Asm->getLabel());
2598   llvm::NamedMDNode *M =
2599     CGM.getModule().getOrInsertNamedMetadata(Name);
2600   if (M->getNumOperands() == 0) {
2601     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2602                                               Asm->getLabel());
2603     llvm::Metadata *Ops[] = {Str};
2604     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2605   }
2606 
2607   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2608 
2609   llvm::Value *Ptr =
2610     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2611   return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2612 }
2613 
2614 /// Determine whether we can emit a reference to \p VD from the current
2615 /// context, despite not necessarily having seen an odr-use of the variable in
2616 /// this context.
2617 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2618                                                const DeclRefExpr *E,
2619                                                const VarDecl *VD,
2620                                                bool IsConstant) {
2621   // For a variable declared in an enclosing scope, do not emit a spurious
2622   // reference even if we have a capture, as that will emit an unwarranted
2623   // reference to our capture state, and will likely generate worse code than
2624   // emitting a local copy.
2625   if (E->refersToEnclosingVariableOrCapture())
2626     return false;
2627 
2628   // For a local declaration declared in this function, we can always reference
2629   // it even if we don't have an odr-use.
2630   if (VD->hasLocalStorage()) {
2631     return VD->getDeclContext() ==
2632            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2633   }
2634 
2635   // For a global declaration, we can emit a reference to it if we know
2636   // for sure that we are able to emit a definition of it.
2637   VD = VD->getDefinition(CGF.getContext());
2638   if (!VD)
2639     return false;
2640 
2641   // Don't emit a spurious reference if it might be to a variable that only
2642   // exists on a different device / target.
2643   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2644   // cross-target reference.
2645   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2646       CGF.getLangOpts().OpenCL) {
2647     return false;
2648   }
2649 
2650   // We can emit a spurious reference only if the linkage implies that we'll
2651   // be emitting a non-interposable symbol that will be retained until link
2652   // time.
2653   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2654   case llvm::GlobalValue::ExternalLinkage:
2655   case llvm::GlobalValue::LinkOnceODRLinkage:
2656   case llvm::GlobalValue::WeakODRLinkage:
2657   case llvm::GlobalValue::InternalLinkage:
2658   case llvm::GlobalValue::PrivateLinkage:
2659     return true;
2660   default:
2661     return false;
2662   }
2663 }
2664 
2665 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2666   const NamedDecl *ND = E->getDecl();
2667   QualType T = E->getType();
2668 
2669   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2670          "should not emit an unevaluated operand");
2671 
2672   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2673     // Global Named registers access via intrinsics only
2674     if (VD->getStorageClass() == SC_Register &&
2675         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2676       return EmitGlobalNamedRegister(VD, CGM);
2677 
2678     // If this DeclRefExpr does not constitute an odr-use of the variable,
2679     // we're not permitted to emit a reference to it in general, and it might
2680     // not be captured if capture would be necessary for a use. Emit the
2681     // constant value directly instead.
2682     if (E->isNonOdrUse() == NOUR_Constant &&
2683         (VD->getType()->isReferenceType() ||
2684          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2685       VD->getAnyInitializer(VD);
2686       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2687           E->getLocation(), *VD->evaluateValue(), VD->getType());
2688       assert(Val && "failed to emit constant expression");
2689 
2690       Address Addr = Address::invalid();
2691       if (!VD->getType()->isReferenceType()) {
2692         // Spill the constant value to a global.
2693         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2694                                            getContext().getDeclAlign(VD));
2695         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2696         auto *PTy = llvm::PointerType::get(
2697             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2698         if (PTy != Addr.getType())
2699           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2700       } else {
2701         // Should we be using the alignment of the constant pointer we emitted?
2702         CharUnits Alignment =
2703             CGM.getNaturalTypeAlignment(E->getType(),
2704                                         /* BaseInfo= */ nullptr,
2705                                         /* TBAAInfo= */ nullptr,
2706                                         /* forPointeeType= */ true);
2707         Addr = Address(Val, Alignment);
2708       }
2709       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2710     }
2711 
2712     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2713 
2714     // Check for captured variables.
2715     if (E->refersToEnclosingVariableOrCapture()) {
2716       VD = VD->getCanonicalDecl();
2717       if (auto *FD = LambdaCaptureFields.lookup(VD))
2718         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2719       if (CapturedStmtInfo) {
2720         auto I = LocalDeclMap.find(VD);
2721         if (I != LocalDeclMap.end()) {
2722           LValue CapLVal;
2723           if (VD->getType()->isReferenceType())
2724             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2725                                                 AlignmentSource::Decl);
2726           else
2727             CapLVal = MakeAddrLValue(I->second, T);
2728           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2729           // in simd context.
2730           if (getLangOpts().OpenMP &&
2731               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2732             CapLVal.setNontemporal(/*Value=*/true);
2733           return CapLVal;
2734         }
2735         LValue CapLVal =
2736             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2737                                     CapturedStmtInfo->getContextValue());
2738         CapLVal = MakeAddrLValue(
2739             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2740             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2741             CapLVal.getTBAAInfo());
2742         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2743         // in simd context.
2744         if (getLangOpts().OpenMP &&
2745             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2746           CapLVal.setNontemporal(/*Value=*/true);
2747         return CapLVal;
2748       }
2749 
2750       assert(isa<BlockDecl>(CurCodeDecl));
2751       Address addr = GetAddrOfBlockDecl(VD);
2752       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2753     }
2754   }
2755 
2756   // FIXME: We should be able to assert this for FunctionDecls as well!
2757   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2758   // those with a valid source location.
2759   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2760           !E->getLocation().isValid()) &&
2761          "Should not use decl without marking it used!");
2762 
2763   if (ND->hasAttr<WeakRefAttr>()) {
2764     const auto *VD = cast<ValueDecl>(ND);
2765     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2766     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2767   }
2768 
2769   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2770     // Check if this is a global variable.
2771     if (VD->hasLinkage() || VD->isStaticDataMember())
2772       return EmitGlobalVarDeclLValue(*this, E, VD);
2773 
2774     Address addr = Address::invalid();
2775 
2776     // The variable should generally be present in the local decl map.
2777     auto iter = LocalDeclMap.find(VD);
2778     if (iter != LocalDeclMap.end()) {
2779       addr = iter->second;
2780 
2781     // Otherwise, it might be static local we haven't emitted yet for
2782     // some reason; most likely, because it's in an outer function.
2783     } else if (VD->isStaticLocal()) {
2784       addr = Address(CGM.getOrCreateStaticVarDecl(
2785           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2786                      getContext().getDeclAlign(VD));
2787 
2788     // No other cases for now.
2789     } else {
2790       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2791     }
2792 
2793 
2794     // Check for OpenMP threadprivate variables.
2795     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2796         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2797       return EmitThreadPrivateVarDeclLValue(
2798           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2799           E->getExprLoc());
2800     }
2801 
2802     // Drill into block byref variables.
2803     bool isBlockByref = VD->isEscapingByref();
2804     if (isBlockByref) {
2805       addr = emitBlockByrefAddress(addr, VD);
2806     }
2807 
2808     // Drill into reference types.
2809     LValue LV = VD->getType()->isReferenceType() ?
2810         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2811         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2812 
2813     bool isLocalStorage = VD->hasLocalStorage();
2814 
2815     bool NonGCable = isLocalStorage &&
2816                      !VD->getType()->isReferenceType() &&
2817                      !isBlockByref;
2818     if (NonGCable) {
2819       LV.getQuals().removeObjCGCAttr();
2820       LV.setNonGC(true);
2821     }
2822 
2823     bool isImpreciseLifetime =
2824       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2825     if (isImpreciseLifetime)
2826       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2827     setObjCGCLValueClass(getContext(), E, LV);
2828     return LV;
2829   }
2830 
2831   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2832     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2833 
2834     // Emit debuginfo for the function declaration if the target wants to.
2835     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2836       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2837         auto *Fn =
2838             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2839         if (!Fn->getSubprogram())
2840           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2841       }
2842     }
2843 
2844     return LV;
2845   }
2846 
2847   // FIXME: While we're emitting a binding from an enclosing scope, all other
2848   // DeclRefExprs we see should be implicitly treated as if they also refer to
2849   // an enclosing scope.
2850   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2851     return EmitLValue(BD->getBinding());
2852 
2853   // We can form DeclRefExprs naming GUID declarations when reconstituting
2854   // non-type template parameters into expressions.
2855   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2856     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2857                           AlignmentSource::Decl);
2858 
2859   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2860     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2861                           AlignmentSource::Decl);
2862 
2863   llvm_unreachable("Unhandled DeclRefExpr");
2864 }
2865 
2866 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2867   // __extension__ doesn't affect lvalue-ness.
2868   if (E->getOpcode() == UO_Extension)
2869     return EmitLValue(E->getSubExpr());
2870 
2871   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2872   switch (E->getOpcode()) {
2873   default: llvm_unreachable("Unknown unary operator lvalue!");
2874   case UO_Deref: {
2875     QualType T = E->getSubExpr()->getType()->getPointeeType();
2876     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2877 
2878     LValueBaseInfo BaseInfo;
2879     TBAAAccessInfo TBAAInfo;
2880     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2881                                             &TBAAInfo);
2882     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2883     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2884 
2885     // We should not generate __weak write barrier on indirect reference
2886     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2887     // But, we continue to generate __strong write barrier on indirect write
2888     // into a pointer to object.
2889     if (getLangOpts().ObjC &&
2890         getLangOpts().getGC() != LangOptions::NonGC &&
2891         LV.isObjCWeak())
2892       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2893     return LV;
2894   }
2895   case UO_Real:
2896   case UO_Imag: {
2897     LValue LV = EmitLValue(E->getSubExpr());
2898     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2899 
2900     // __real is valid on scalars.  This is a faster way of testing that.
2901     // __imag can only produce an rvalue on scalars.
2902     if (E->getOpcode() == UO_Real &&
2903         !LV.getAddress(*this).getElementType()->isStructTy()) {
2904       assert(E->getSubExpr()->getType()->isArithmeticType());
2905       return LV;
2906     }
2907 
2908     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2909 
2910     Address Component =
2911         (E->getOpcode() == UO_Real
2912              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2913              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2914     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2915                                    CGM.getTBAAInfoForSubobject(LV, T));
2916     ElemLV.getQuals().addQualifiers(LV.getQuals());
2917     return ElemLV;
2918   }
2919   case UO_PreInc:
2920   case UO_PreDec: {
2921     LValue LV = EmitLValue(E->getSubExpr());
2922     bool isInc = E->getOpcode() == UO_PreInc;
2923 
2924     if (E->getType()->isAnyComplexType())
2925       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2926     else
2927       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2928     return LV;
2929   }
2930   }
2931 }
2932 
2933 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2934   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2935                         E->getType(), AlignmentSource::Decl);
2936 }
2937 
2938 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2939   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2940                         E->getType(), AlignmentSource::Decl);
2941 }
2942 
2943 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2944   auto SL = E->getFunctionName();
2945   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2946   StringRef FnName = CurFn->getName();
2947   if (FnName.startswith("\01"))
2948     FnName = FnName.substr(1);
2949   StringRef NameItems[] = {
2950       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2951   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2952   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2953     std::string Name = std::string(SL->getString());
2954     if (!Name.empty()) {
2955       unsigned Discriminator =
2956           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2957       if (Discriminator)
2958         Name += "_" + Twine(Discriminator + 1).str();
2959       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2960       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2961     } else {
2962       auto C =
2963           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2964       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2965     }
2966   }
2967   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2968   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2969 }
2970 
2971 /// Emit a type description suitable for use by a runtime sanitizer library. The
2972 /// format of a type descriptor is
2973 ///
2974 /// \code
2975 ///   { i16 TypeKind, i16 TypeInfo }
2976 /// \endcode
2977 ///
2978 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2979 /// integer, 1 for a floating point value, and -1 for anything else.
2980 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2981   // Only emit each type's descriptor once.
2982   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2983     return C;
2984 
2985   uint16_t TypeKind = -1;
2986   uint16_t TypeInfo = 0;
2987 
2988   if (T->isIntegerType()) {
2989     TypeKind = 0;
2990     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2991                (T->isSignedIntegerType() ? 1 : 0);
2992   } else if (T->isFloatingType()) {
2993     TypeKind = 1;
2994     TypeInfo = getContext().getTypeSize(T);
2995   }
2996 
2997   // Format the type name as if for a diagnostic, including quotes and
2998   // optionally an 'aka'.
2999   SmallString<32> Buffer;
3000   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3001                                     (intptr_t)T.getAsOpaquePtr(),
3002                                     StringRef(), StringRef(), None, Buffer,
3003                                     None);
3004 
3005   llvm::Constant *Components[] = {
3006     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3007     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3008   };
3009   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3010 
3011   auto *GV = new llvm::GlobalVariable(
3012       CGM.getModule(), Descriptor->getType(),
3013       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3014   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3015   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3016 
3017   // Remember the descriptor for this type.
3018   CGM.setTypeDescriptorInMap(T, GV);
3019 
3020   return GV;
3021 }
3022 
3023 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3024   llvm::Type *TargetTy = IntPtrTy;
3025 
3026   if (V->getType() == TargetTy)
3027     return V;
3028 
3029   // Floating-point types which fit into intptr_t are bitcast to integers
3030   // and then passed directly (after zero-extension, if necessary).
3031   if (V->getType()->isFloatingPointTy()) {
3032     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3033     if (Bits <= TargetTy->getIntegerBitWidth())
3034       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3035                                                          Bits));
3036   }
3037 
3038   // Integers which fit in intptr_t are zero-extended and passed directly.
3039   if (V->getType()->isIntegerTy() &&
3040       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3041     return Builder.CreateZExt(V, TargetTy);
3042 
3043   // Pointers are passed directly, everything else is passed by address.
3044   if (!V->getType()->isPointerTy()) {
3045     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3046     Builder.CreateStore(V, Ptr);
3047     V = Ptr.getPointer();
3048   }
3049   return Builder.CreatePtrToInt(V, TargetTy);
3050 }
3051 
3052 /// Emit a representation of a SourceLocation for passing to a handler
3053 /// in a sanitizer runtime library. The format for this data is:
3054 /// \code
3055 ///   struct SourceLocation {
3056 ///     const char *Filename;
3057 ///     int32_t Line, Column;
3058 ///   };
3059 /// \endcode
3060 /// For an invalid SourceLocation, the Filename pointer is null.
3061 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3062   llvm::Constant *Filename;
3063   int Line, Column;
3064 
3065   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3066   if (PLoc.isValid()) {
3067     StringRef FilenameString = PLoc.getFilename();
3068 
3069     int PathComponentsToStrip =
3070         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3071     if (PathComponentsToStrip < 0) {
3072       assert(PathComponentsToStrip != INT_MIN);
3073       int PathComponentsToKeep = -PathComponentsToStrip;
3074       auto I = llvm::sys::path::rbegin(FilenameString);
3075       auto E = llvm::sys::path::rend(FilenameString);
3076       while (I != E && --PathComponentsToKeep)
3077         ++I;
3078 
3079       FilenameString = FilenameString.substr(I - E);
3080     } else if (PathComponentsToStrip > 0) {
3081       auto I = llvm::sys::path::begin(FilenameString);
3082       auto E = llvm::sys::path::end(FilenameString);
3083       while (I != E && PathComponentsToStrip--)
3084         ++I;
3085 
3086       if (I != E)
3087         FilenameString =
3088             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3089       else
3090         FilenameString = llvm::sys::path::filename(FilenameString);
3091     }
3092 
3093     auto FilenameGV =
3094         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3095     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3096                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3097     Filename = FilenameGV.getPointer();
3098     Line = PLoc.getLine();
3099     Column = PLoc.getColumn();
3100   } else {
3101     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3102     Line = Column = 0;
3103   }
3104 
3105   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3106                             Builder.getInt32(Column)};
3107 
3108   return llvm::ConstantStruct::getAnon(Data);
3109 }
3110 
3111 namespace {
3112 /// Specify under what conditions this check can be recovered
3113 enum class CheckRecoverableKind {
3114   /// Always terminate program execution if this check fails.
3115   Unrecoverable,
3116   /// Check supports recovering, runtime has both fatal (noreturn) and
3117   /// non-fatal handlers for this check.
3118   Recoverable,
3119   /// Runtime conditionally aborts, always need to support recovery.
3120   AlwaysRecoverable
3121 };
3122 }
3123 
3124 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3125   assert(Kind.countPopulation() == 1);
3126   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3127     return CheckRecoverableKind::AlwaysRecoverable;
3128   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3129     return CheckRecoverableKind::Unrecoverable;
3130   else
3131     return CheckRecoverableKind::Recoverable;
3132 }
3133 
3134 namespace {
3135 struct SanitizerHandlerInfo {
3136   char const *const Name;
3137   unsigned Version;
3138 };
3139 }
3140 
3141 const SanitizerHandlerInfo SanitizerHandlers[] = {
3142 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3143     LIST_SANITIZER_CHECKS
3144 #undef SANITIZER_CHECK
3145 };
3146 
3147 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3148                                  llvm::FunctionType *FnType,
3149                                  ArrayRef<llvm::Value *> FnArgs,
3150                                  SanitizerHandler CheckHandler,
3151                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3152                                  llvm::BasicBlock *ContBB) {
3153   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3154   Optional<ApplyDebugLocation> DL;
3155   if (!CGF.Builder.getCurrentDebugLocation()) {
3156     // Ensure that the call has at least an artificial debug location.
3157     DL.emplace(CGF, SourceLocation());
3158   }
3159   bool NeedsAbortSuffix =
3160       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3161   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3162   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3163   const StringRef CheckName = CheckInfo.Name;
3164   std::string FnName = "__ubsan_handle_" + CheckName.str();
3165   if (CheckInfo.Version && !MinimalRuntime)
3166     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3167   if (MinimalRuntime)
3168     FnName += "_minimal";
3169   if (NeedsAbortSuffix)
3170     FnName += "_abort";
3171   bool MayReturn =
3172       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3173 
3174   llvm::AttrBuilder B;
3175   if (!MayReturn) {
3176     B.addAttribute(llvm::Attribute::NoReturn)
3177         .addAttribute(llvm::Attribute::NoUnwind);
3178   }
3179   B.addAttribute(llvm::Attribute::UWTable);
3180 
3181   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3182       FnType, FnName,
3183       llvm::AttributeList::get(CGF.getLLVMContext(),
3184                                llvm::AttributeList::FunctionIndex, B),
3185       /*Local=*/true);
3186   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3187   if (!MayReturn) {
3188     HandlerCall->setDoesNotReturn();
3189     CGF.Builder.CreateUnreachable();
3190   } else {
3191     CGF.Builder.CreateBr(ContBB);
3192   }
3193 }
3194 
3195 void CodeGenFunction::EmitCheck(
3196     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3197     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3198     ArrayRef<llvm::Value *> DynamicArgs) {
3199   assert(IsSanitizerScope);
3200   assert(Checked.size() > 0);
3201   assert(CheckHandler >= 0 &&
3202          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3203   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3204 
3205   llvm::Value *FatalCond = nullptr;
3206   llvm::Value *RecoverableCond = nullptr;
3207   llvm::Value *TrapCond = nullptr;
3208   for (int i = 0, n = Checked.size(); i < n; ++i) {
3209     llvm::Value *Check = Checked[i].first;
3210     // -fsanitize-trap= overrides -fsanitize-recover=.
3211     llvm::Value *&Cond =
3212         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3213             ? TrapCond
3214             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3215                   ? RecoverableCond
3216                   : FatalCond;
3217     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3218   }
3219 
3220   if (TrapCond)
3221     EmitTrapCheck(TrapCond, CheckHandler);
3222   if (!FatalCond && !RecoverableCond)
3223     return;
3224 
3225   llvm::Value *JointCond;
3226   if (FatalCond && RecoverableCond)
3227     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3228   else
3229     JointCond = FatalCond ? FatalCond : RecoverableCond;
3230   assert(JointCond);
3231 
3232   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3233   assert(SanOpts.has(Checked[0].second));
3234 #ifndef NDEBUG
3235   for (int i = 1, n = Checked.size(); i < n; ++i) {
3236     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3237            "All recoverable kinds in a single check must be same!");
3238     assert(SanOpts.has(Checked[i].second));
3239   }
3240 #endif
3241 
3242   llvm::BasicBlock *Cont = createBasicBlock("cont");
3243   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3244   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3245   // Give hint that we very much don't expect to execute the handler
3246   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3247   llvm::MDBuilder MDHelper(getLLVMContext());
3248   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3249   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3250   EmitBlock(Handlers);
3251 
3252   // Handler functions take an i8* pointing to the (handler-specific) static
3253   // information block, followed by a sequence of intptr_t arguments
3254   // representing operand values.
3255   SmallVector<llvm::Value *, 4> Args;
3256   SmallVector<llvm::Type *, 4> ArgTypes;
3257   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3258     Args.reserve(DynamicArgs.size() + 1);
3259     ArgTypes.reserve(DynamicArgs.size() + 1);
3260 
3261     // Emit handler arguments and create handler function type.
3262     if (!StaticArgs.empty()) {
3263       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3264       auto *InfoPtr =
3265           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3266                                    llvm::GlobalVariable::PrivateLinkage, Info);
3267       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3268       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3269       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3270       ArgTypes.push_back(Int8PtrTy);
3271     }
3272 
3273     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3274       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3275       ArgTypes.push_back(IntPtrTy);
3276     }
3277   }
3278 
3279   llvm::FunctionType *FnType =
3280     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3281 
3282   if (!FatalCond || !RecoverableCond) {
3283     // Simple case: we need to generate a single handler call, either
3284     // fatal, or non-fatal.
3285     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3286                          (FatalCond != nullptr), Cont);
3287   } else {
3288     // Emit two handler calls: first one for set of unrecoverable checks,
3289     // another one for recoverable.
3290     llvm::BasicBlock *NonFatalHandlerBB =
3291         createBasicBlock("non_fatal." + CheckName);
3292     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3293     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3294     EmitBlock(FatalHandlerBB);
3295     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3296                          NonFatalHandlerBB);
3297     EmitBlock(NonFatalHandlerBB);
3298     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3299                          Cont);
3300   }
3301 
3302   EmitBlock(Cont);
3303 }
3304 
3305 void CodeGenFunction::EmitCfiSlowPathCheck(
3306     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3307     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3308   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3309 
3310   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3311   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3312 
3313   llvm::MDBuilder MDHelper(getLLVMContext());
3314   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3315   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3316 
3317   EmitBlock(CheckBB);
3318 
3319   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3320 
3321   llvm::CallInst *CheckCall;
3322   llvm::FunctionCallee SlowPathFn;
3323   if (WithDiag) {
3324     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3325     auto *InfoPtr =
3326         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3327                                  llvm::GlobalVariable::PrivateLinkage, Info);
3328     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3329     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3330 
3331     SlowPathFn = CGM.getModule().getOrInsertFunction(
3332         "__cfi_slowpath_diag",
3333         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3334                                 false));
3335     CheckCall = Builder.CreateCall(
3336         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3337   } else {
3338     SlowPathFn = CGM.getModule().getOrInsertFunction(
3339         "__cfi_slowpath",
3340         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3341     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3342   }
3343 
3344   CGM.setDSOLocal(
3345       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3346   CheckCall->setDoesNotThrow();
3347 
3348   EmitBlock(Cont);
3349 }
3350 
3351 // Emit a stub for __cfi_check function so that the linker knows about this
3352 // symbol in LTO mode.
3353 void CodeGenFunction::EmitCfiCheckStub() {
3354   llvm::Module *M = &CGM.getModule();
3355   auto &Ctx = M->getContext();
3356   llvm::Function *F = llvm::Function::Create(
3357       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3358       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3359   CGM.setDSOLocal(F);
3360   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3361   // FIXME: consider emitting an intrinsic call like
3362   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3363   // which can be lowered in CrossDSOCFI pass to the actual contents of
3364   // __cfi_check. This would allow inlining of __cfi_check calls.
3365   llvm::CallInst::Create(
3366       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3367   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3368 }
3369 
3370 // This function is basically a switch over the CFI failure kind, which is
3371 // extracted from CFICheckFailData (1st function argument). Each case is either
3372 // llvm.trap or a call to one of the two runtime handlers, based on
3373 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3374 // failure kind) traps, but this should really never happen.  CFICheckFailData
3375 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3376 // check kind; in this case __cfi_check_fail traps as well.
3377 void CodeGenFunction::EmitCfiCheckFail() {
3378   SanitizerScope SanScope(this);
3379   FunctionArgList Args;
3380   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3381                             ImplicitParamDecl::Other);
3382   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3383                             ImplicitParamDecl::Other);
3384   Args.push_back(&ArgData);
3385   Args.push_back(&ArgAddr);
3386 
3387   const CGFunctionInfo &FI =
3388     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3389 
3390   llvm::Function *F = llvm::Function::Create(
3391       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3392       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3393 
3394   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3395   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3396   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3397 
3398   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3399                 SourceLocation());
3400 
3401   // This function is not affected by NoSanitizeList. This function does
3402   // not have a source location, but "src:*" would still apply. Revert any
3403   // changes to SanOpts made in StartFunction.
3404   SanOpts = CGM.getLangOpts().Sanitize;
3405 
3406   llvm::Value *Data =
3407       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3408                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3409   llvm::Value *Addr =
3410       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3411                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3412 
3413   // Data == nullptr means the calling module has trap behaviour for this check.
3414   llvm::Value *DataIsNotNullPtr =
3415       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3416   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3417 
3418   llvm::StructType *SourceLocationTy =
3419       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3420   llvm::StructType *CfiCheckFailDataTy =
3421       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3422 
3423   llvm::Value *V = Builder.CreateConstGEP2_32(
3424       CfiCheckFailDataTy,
3425       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3426       0);
3427   Address CheckKindAddr(V, getIntAlign());
3428   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3429 
3430   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3431       CGM.getLLVMContext(),
3432       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3433   llvm::Value *ValidVtable = Builder.CreateZExt(
3434       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3435                          {Addr, AllVtables}),
3436       IntPtrTy);
3437 
3438   const std::pair<int, SanitizerMask> CheckKinds[] = {
3439       {CFITCK_VCall, SanitizerKind::CFIVCall},
3440       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3441       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3442       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3443       {CFITCK_ICall, SanitizerKind::CFIICall}};
3444 
3445   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3446   for (auto CheckKindMaskPair : CheckKinds) {
3447     int Kind = CheckKindMaskPair.first;
3448     SanitizerMask Mask = CheckKindMaskPair.second;
3449     llvm::Value *Cond =
3450         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3451     if (CGM.getLangOpts().Sanitize.has(Mask))
3452       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3453                 {Data, Addr, ValidVtable});
3454     else
3455       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3456   }
3457 
3458   FinishFunction();
3459   // The only reference to this function will be created during LTO link.
3460   // Make sure it survives until then.
3461   CGM.addUsedGlobal(F);
3462 }
3463 
3464 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3465   if (SanOpts.has(SanitizerKind::Unreachable)) {
3466     SanitizerScope SanScope(this);
3467     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3468                              SanitizerKind::Unreachable),
3469               SanitizerHandler::BuiltinUnreachable,
3470               EmitCheckSourceLocation(Loc), None);
3471   }
3472   Builder.CreateUnreachable();
3473 }
3474 
3475 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3476                                     SanitizerHandler CheckHandlerID) {
3477   llvm::BasicBlock *Cont = createBasicBlock("cont");
3478 
3479   // If we're optimizing, collapse all calls to trap down to just one per
3480   // check-type per function to save on code size.
3481   if (TrapBBs.size() <= CheckHandlerID)
3482     TrapBBs.resize(CheckHandlerID + 1);
3483   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3484 
3485   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3486     TrapBB = createBasicBlock("trap");
3487     Builder.CreateCondBr(Checked, Cont, TrapBB);
3488     EmitBlock(TrapBB);
3489 
3490     llvm::CallInst *TrapCall =
3491         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3492                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3493 
3494     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3495       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3496                                     CGM.getCodeGenOpts().TrapFuncName);
3497       TrapCall->addFnAttr(A);
3498     }
3499     TrapCall->setDoesNotReturn();
3500     TrapCall->setDoesNotThrow();
3501     Builder.CreateUnreachable();
3502   } else {
3503     auto Call = TrapBB->begin();
3504     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3505 
3506     Call->applyMergedLocation(Call->getDebugLoc(),
3507                               Builder.getCurrentDebugLocation());
3508     Builder.CreateCondBr(Checked, Cont, TrapBB);
3509   }
3510 
3511   EmitBlock(Cont);
3512 }
3513 
3514 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3515   llvm::CallInst *TrapCall =
3516       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3517 
3518   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3519     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3520                                   CGM.getCodeGenOpts().TrapFuncName);
3521     TrapCall->addFnAttr(A);
3522   }
3523 
3524   return TrapCall;
3525 }
3526 
3527 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3528                                                  LValueBaseInfo *BaseInfo,
3529                                                  TBAAAccessInfo *TBAAInfo) {
3530   assert(E->getType()->isArrayType() &&
3531          "Array to pointer decay must have array source type!");
3532 
3533   // Expressions of array type can't be bitfields or vector elements.
3534   LValue LV = EmitLValue(E);
3535   Address Addr = LV.getAddress(*this);
3536 
3537   // If the array type was an incomplete type, we need to make sure
3538   // the decay ends up being the right type.
3539   llvm::Type *NewTy = ConvertType(E->getType());
3540   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3541 
3542   // Note that VLA pointers are always decayed, so we don't need to do
3543   // anything here.
3544   if (!E->getType()->isVariableArrayType()) {
3545     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3546            "Expected pointer to array");
3547     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3548   }
3549 
3550   // The result of this decay conversion points to an array element within the
3551   // base lvalue. However, since TBAA currently does not support representing
3552   // accesses to elements of member arrays, we conservatively represent accesses
3553   // to the pointee object as if it had no any base lvalue specified.
3554   // TODO: Support TBAA for member arrays.
3555   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3556   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3557   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3558 
3559   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3560 }
3561 
3562 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3563 /// array to pointer, return the array subexpression.
3564 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3565   // If this isn't just an array->pointer decay, bail out.
3566   const auto *CE = dyn_cast<CastExpr>(E);
3567   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3568     return nullptr;
3569 
3570   // If this is a decay from variable width array, bail out.
3571   const Expr *SubExpr = CE->getSubExpr();
3572   if (SubExpr->getType()->isVariableArrayType())
3573     return nullptr;
3574 
3575   return SubExpr;
3576 }
3577 
3578 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3579                                           llvm::Type *elemType,
3580                                           llvm::Value *ptr,
3581                                           ArrayRef<llvm::Value*> indices,
3582                                           bool inbounds,
3583                                           bool signedIndices,
3584                                           SourceLocation loc,
3585                                     const llvm::Twine &name = "arrayidx") {
3586   if (inbounds) {
3587     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3588                                       CodeGenFunction::NotSubtraction, loc,
3589                                       name);
3590   } else {
3591     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3592   }
3593 }
3594 
3595 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3596                                       llvm::Value *idx,
3597                                       CharUnits eltSize) {
3598   // If we have a constant index, we can use the exact offset of the
3599   // element we're accessing.
3600   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3601     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3602     return arrayAlign.alignmentAtOffset(offset);
3603 
3604   // Otherwise, use the worst-case alignment for any element.
3605   } else {
3606     return arrayAlign.alignmentOfArrayElement(eltSize);
3607   }
3608 }
3609 
3610 static QualType getFixedSizeElementType(const ASTContext &ctx,
3611                                         const VariableArrayType *vla) {
3612   QualType eltType;
3613   do {
3614     eltType = vla->getElementType();
3615   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3616   return eltType;
3617 }
3618 
3619 /// Given an array base, check whether its member access belongs to a record
3620 /// with preserve_access_index attribute or not.
3621 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3622   if (!ArrayBase || !CGF.getDebugInfo())
3623     return false;
3624 
3625   // Only support base as either a MemberExpr or DeclRefExpr.
3626   // DeclRefExpr to cover cases like:
3627   //    struct s { int a; int b[10]; };
3628   //    struct s *p;
3629   //    p[1].a
3630   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3631   // p->b[5] is a MemberExpr example.
3632   const Expr *E = ArrayBase->IgnoreImpCasts();
3633   if (const auto *ME = dyn_cast<MemberExpr>(E))
3634     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3635 
3636   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3637     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3638     if (!VarDef)
3639       return false;
3640 
3641     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3642     if (!PtrT)
3643       return false;
3644 
3645     const auto *PointeeT = PtrT->getPointeeType()
3646                              ->getUnqualifiedDesugaredType();
3647     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3648       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3649     return false;
3650   }
3651 
3652   return false;
3653 }
3654 
3655 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3656                                      ArrayRef<llvm::Value *> indices,
3657                                      QualType eltType, bool inbounds,
3658                                      bool signedIndices, SourceLocation loc,
3659                                      QualType *arrayType = nullptr,
3660                                      const Expr *Base = nullptr,
3661                                      const llvm::Twine &name = "arrayidx") {
3662   // All the indices except that last must be zero.
3663 #ifndef NDEBUG
3664   for (auto idx : indices.drop_back())
3665     assert(isa<llvm::ConstantInt>(idx) &&
3666            cast<llvm::ConstantInt>(idx)->isZero());
3667 #endif
3668 
3669   // Determine the element size of the statically-sized base.  This is
3670   // the thing that the indices are expressed in terms of.
3671   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3672     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3673   }
3674 
3675   // We can use that to compute the best alignment of the element.
3676   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3677   CharUnits eltAlign =
3678     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3679 
3680   llvm::Value *eltPtr;
3681   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3682   if (!LastIndex ||
3683       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3684     eltPtr = emitArraySubscriptGEP(
3685         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3686         signedIndices, loc, name);
3687   } else {
3688     // Remember the original array subscript for bpf target
3689     unsigned idx = LastIndex->getZExtValue();
3690     llvm::DIType *DbgInfo = nullptr;
3691     if (arrayType)
3692       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3693     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3694                                                         addr.getPointer(),
3695                                                         indices.size() - 1,
3696                                                         idx, DbgInfo);
3697   }
3698 
3699   return Address(eltPtr, eltAlign);
3700 }
3701 
3702 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3703                                                bool Accessed) {
3704   // The index must always be an integer, which is not an aggregate.  Emit it
3705   // in lexical order (this complexity is, sadly, required by C++17).
3706   llvm::Value *IdxPre =
3707       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3708   bool SignedIndices = false;
3709   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3710     auto *Idx = IdxPre;
3711     if (E->getLHS() != E->getIdx()) {
3712       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3713       Idx = EmitScalarExpr(E->getIdx());
3714     }
3715 
3716     QualType IdxTy = E->getIdx()->getType();
3717     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3718     SignedIndices |= IdxSigned;
3719 
3720     if (SanOpts.has(SanitizerKind::ArrayBounds))
3721       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3722 
3723     // Extend or truncate the index type to 32 or 64-bits.
3724     if (Promote && Idx->getType() != IntPtrTy)
3725       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3726 
3727     return Idx;
3728   };
3729   IdxPre = nullptr;
3730 
3731   // If the base is a vector type, then we are forming a vector element lvalue
3732   // with this subscript.
3733   if (E->getBase()->getType()->isVectorType() &&
3734       !isa<ExtVectorElementExpr>(E->getBase())) {
3735     // Emit the vector as an lvalue to get its address.
3736     LValue LHS = EmitLValue(E->getBase());
3737     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3738     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3739     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3740                                  E->getBase()->getType(), LHS.getBaseInfo(),
3741                                  TBAAAccessInfo());
3742   }
3743 
3744   // All the other cases basically behave like simple offsetting.
3745 
3746   // Handle the extvector case we ignored above.
3747   if (isa<ExtVectorElementExpr>(E->getBase())) {
3748     LValue LV = EmitLValue(E->getBase());
3749     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3750     Address Addr = EmitExtVectorElementLValue(LV);
3751 
3752     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3753     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3754                                  SignedIndices, E->getExprLoc());
3755     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3756                           CGM.getTBAAInfoForSubobject(LV, EltType));
3757   }
3758 
3759   LValueBaseInfo EltBaseInfo;
3760   TBAAAccessInfo EltTBAAInfo;
3761   Address Addr = Address::invalid();
3762   if (const VariableArrayType *vla =
3763            getContext().getAsVariableArrayType(E->getType())) {
3764     // The base must be a pointer, which is not an aggregate.  Emit
3765     // it.  It needs to be emitted first in case it's what captures
3766     // the VLA bounds.
3767     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3768     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3769 
3770     // The element count here is the total number of non-VLA elements.
3771     llvm::Value *numElements = getVLASize(vla).NumElts;
3772 
3773     // Effectively, the multiply by the VLA size is part of the GEP.
3774     // GEP indexes are signed, and scaling an index isn't permitted to
3775     // signed-overflow, so we use the same semantics for our explicit
3776     // multiply.  We suppress this if overflow is not undefined behavior.
3777     if (getLangOpts().isSignedOverflowDefined()) {
3778       Idx = Builder.CreateMul(Idx, numElements);
3779     } else {
3780       Idx = Builder.CreateNSWMul(Idx, numElements);
3781     }
3782 
3783     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3784                                  !getLangOpts().isSignedOverflowDefined(),
3785                                  SignedIndices, E->getExprLoc());
3786 
3787   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3788     // Indexing over an interface, as in "NSString *P; P[4];"
3789 
3790     // Emit the base pointer.
3791     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3792     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3793 
3794     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3795     llvm::Value *InterfaceSizeVal =
3796         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3797 
3798     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3799 
3800     // We don't necessarily build correct LLVM struct types for ObjC
3801     // interfaces, so we can't rely on GEP to do this scaling
3802     // correctly, so we need to cast to i8*.  FIXME: is this actually
3803     // true?  A lot of other things in the fragile ABI would break...
3804     llvm::Type *OrigBaseTy = Addr.getType();
3805     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3806 
3807     // Do the GEP.
3808     CharUnits EltAlign =
3809       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3810     llvm::Value *EltPtr =
3811         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3812                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3813     Addr = Address(EltPtr, EltAlign);
3814 
3815     // Cast back.
3816     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3817   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3818     // If this is A[i] where A is an array, the frontend will have decayed the
3819     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3820     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3821     // "gep x, i" here.  Emit one "gep A, 0, i".
3822     assert(Array->getType()->isArrayType() &&
3823            "Array to pointer decay must have array source type!");
3824     LValue ArrayLV;
3825     // For simple multidimensional array indexing, set the 'accessed' flag for
3826     // better bounds-checking of the base expression.
3827     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3828       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3829     else
3830       ArrayLV = EmitLValue(Array);
3831     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3832 
3833     // Propagate the alignment from the array itself to the result.
3834     QualType arrayType = Array->getType();
3835     Addr = emitArraySubscriptGEP(
3836         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3837         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3838         E->getExprLoc(), &arrayType, E->getBase());
3839     EltBaseInfo = ArrayLV.getBaseInfo();
3840     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3841   } else {
3842     // The base must be a pointer; emit it with an estimate of its alignment.
3843     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3844     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3845     QualType ptrType = E->getBase()->getType();
3846     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3847                                  !getLangOpts().isSignedOverflowDefined(),
3848                                  SignedIndices, E->getExprLoc(), &ptrType,
3849                                  E->getBase());
3850   }
3851 
3852   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3853 
3854   if (getLangOpts().ObjC &&
3855       getLangOpts().getGC() != LangOptions::NonGC) {
3856     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3857     setObjCGCLValueClass(getContext(), E, LV);
3858   }
3859   return LV;
3860 }
3861 
3862 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3863   assert(
3864       !E->isIncomplete() &&
3865       "incomplete matrix subscript expressions should be rejected during Sema");
3866   LValue Base = EmitLValue(E->getBase());
3867   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3868   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3869   llvm::Value *NumRows = Builder.getIntN(
3870       RowIdx->getType()->getScalarSizeInBits(),
3871       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3872   llvm::Value *FinalIdx =
3873       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3874   return LValue::MakeMatrixElt(
3875       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3876       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3877 }
3878 
3879 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3880                                        LValueBaseInfo &BaseInfo,
3881                                        TBAAAccessInfo &TBAAInfo,
3882                                        QualType BaseTy, QualType ElTy,
3883                                        bool IsLowerBound) {
3884   LValue BaseLVal;
3885   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3886     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3887     if (BaseTy->isArrayType()) {
3888       Address Addr = BaseLVal.getAddress(CGF);
3889       BaseInfo = BaseLVal.getBaseInfo();
3890 
3891       // If the array type was an incomplete type, we need to make sure
3892       // the decay ends up being the right type.
3893       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3894       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3895 
3896       // Note that VLA pointers are always decayed, so we don't need to do
3897       // anything here.
3898       if (!BaseTy->isVariableArrayType()) {
3899         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3900                "Expected pointer to array");
3901         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3902       }
3903 
3904       return CGF.Builder.CreateElementBitCast(Addr,
3905                                               CGF.ConvertTypeForMem(ElTy));
3906     }
3907     LValueBaseInfo TypeBaseInfo;
3908     TBAAAccessInfo TypeTBAAInfo;
3909     CharUnits Align =
3910         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3911     BaseInfo.mergeForCast(TypeBaseInfo);
3912     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3913     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3914   }
3915   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3916 }
3917 
3918 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3919                                                 bool IsLowerBound) {
3920   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3921   QualType ResultExprTy;
3922   if (auto *AT = getContext().getAsArrayType(BaseTy))
3923     ResultExprTy = AT->getElementType();
3924   else
3925     ResultExprTy = BaseTy->getPointeeType();
3926   llvm::Value *Idx = nullptr;
3927   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3928     // Requesting lower bound or upper bound, but without provided length and
3929     // without ':' symbol for the default length -> length = 1.
3930     // Idx = LowerBound ?: 0;
3931     if (auto *LowerBound = E->getLowerBound()) {
3932       Idx = Builder.CreateIntCast(
3933           EmitScalarExpr(LowerBound), IntPtrTy,
3934           LowerBound->getType()->hasSignedIntegerRepresentation());
3935     } else
3936       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3937   } else {
3938     // Try to emit length or lower bound as constant. If this is possible, 1
3939     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3940     // IR (LB + Len) - 1.
3941     auto &C = CGM.getContext();
3942     auto *Length = E->getLength();
3943     llvm::APSInt ConstLength;
3944     if (Length) {
3945       // Idx = LowerBound + Length - 1;
3946       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3947         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3948         Length = nullptr;
3949       }
3950       auto *LowerBound = E->getLowerBound();
3951       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3952       if (LowerBound) {
3953         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3954           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3955           LowerBound = nullptr;
3956         }
3957       }
3958       if (!Length)
3959         --ConstLength;
3960       else if (!LowerBound)
3961         --ConstLowerBound;
3962 
3963       if (Length || LowerBound) {
3964         auto *LowerBoundVal =
3965             LowerBound
3966                 ? Builder.CreateIntCast(
3967                       EmitScalarExpr(LowerBound), IntPtrTy,
3968                       LowerBound->getType()->hasSignedIntegerRepresentation())
3969                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3970         auto *LengthVal =
3971             Length
3972                 ? Builder.CreateIntCast(
3973                       EmitScalarExpr(Length), IntPtrTy,
3974                       Length->getType()->hasSignedIntegerRepresentation())
3975                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3976         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3977                                 /*HasNUW=*/false,
3978                                 !getLangOpts().isSignedOverflowDefined());
3979         if (Length && LowerBound) {
3980           Idx = Builder.CreateSub(
3981               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3982               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3983         }
3984       } else
3985         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3986     } else {
3987       // Idx = ArraySize - 1;
3988       QualType ArrayTy = BaseTy->isPointerType()
3989                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3990                              : BaseTy;
3991       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3992         Length = VAT->getSizeExpr();
3993         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3994           ConstLength = *L;
3995           Length = nullptr;
3996         }
3997       } else {
3998         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3999         ConstLength = CAT->getSize();
4000       }
4001       if (Length) {
4002         auto *LengthVal = Builder.CreateIntCast(
4003             EmitScalarExpr(Length), IntPtrTy,
4004             Length->getType()->hasSignedIntegerRepresentation());
4005         Idx = Builder.CreateSub(
4006             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4007             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4008       } else {
4009         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4010         --ConstLength;
4011         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4012       }
4013     }
4014   }
4015   assert(Idx);
4016 
4017   Address EltPtr = Address::invalid();
4018   LValueBaseInfo BaseInfo;
4019   TBAAAccessInfo TBAAInfo;
4020   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4021     // The base must be a pointer, which is not an aggregate.  Emit
4022     // it.  It needs to be emitted first in case it's what captures
4023     // the VLA bounds.
4024     Address Base =
4025         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4026                                 BaseTy, VLA->getElementType(), IsLowerBound);
4027     // The element count here is the total number of non-VLA elements.
4028     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4029 
4030     // Effectively, the multiply by the VLA size is part of the GEP.
4031     // GEP indexes are signed, and scaling an index isn't permitted to
4032     // signed-overflow, so we use the same semantics for our explicit
4033     // multiply.  We suppress this if overflow is not undefined behavior.
4034     if (getLangOpts().isSignedOverflowDefined())
4035       Idx = Builder.CreateMul(Idx, NumElements);
4036     else
4037       Idx = Builder.CreateNSWMul(Idx, NumElements);
4038     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4039                                    !getLangOpts().isSignedOverflowDefined(),
4040                                    /*signedIndices=*/false, E->getExprLoc());
4041   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4042     // If this is A[i] where A is an array, the frontend will have decayed the
4043     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4044     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4045     // "gep x, i" here.  Emit one "gep A, 0, i".
4046     assert(Array->getType()->isArrayType() &&
4047            "Array to pointer decay must have array source type!");
4048     LValue ArrayLV;
4049     // For simple multidimensional array indexing, set the 'accessed' flag for
4050     // better bounds-checking of the base expression.
4051     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4052       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4053     else
4054       ArrayLV = EmitLValue(Array);
4055 
4056     // Propagate the alignment from the array itself to the result.
4057     EltPtr = emitArraySubscriptGEP(
4058         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4059         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4060         /*signedIndices=*/false, E->getExprLoc());
4061     BaseInfo = ArrayLV.getBaseInfo();
4062     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4063   } else {
4064     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4065                                            TBAAInfo, BaseTy, ResultExprTy,
4066                                            IsLowerBound);
4067     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4068                                    !getLangOpts().isSignedOverflowDefined(),
4069                                    /*signedIndices=*/false, E->getExprLoc());
4070   }
4071 
4072   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4073 }
4074 
4075 LValue CodeGenFunction::
4076 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4077   // Emit the base vector as an l-value.
4078   LValue Base;
4079 
4080   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4081   if (E->isArrow()) {
4082     // If it is a pointer to a vector, emit the address and form an lvalue with
4083     // it.
4084     LValueBaseInfo BaseInfo;
4085     TBAAAccessInfo TBAAInfo;
4086     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4087     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4088     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4089     Base.getQuals().removeObjCGCAttr();
4090   } else if (E->getBase()->isGLValue()) {
4091     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4092     // emit the base as an lvalue.
4093     assert(E->getBase()->getType()->isVectorType());
4094     Base = EmitLValue(E->getBase());
4095   } else {
4096     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4097     assert(E->getBase()->getType()->isVectorType() &&
4098            "Result must be a vector");
4099     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4100 
4101     // Store the vector to memory (because LValue wants an address).
4102     Address VecMem = CreateMemTemp(E->getBase()->getType());
4103     Builder.CreateStore(Vec, VecMem);
4104     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4105                           AlignmentSource::Decl);
4106   }
4107 
4108   QualType type =
4109     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4110 
4111   // Encode the element access list into a vector of unsigned indices.
4112   SmallVector<uint32_t, 4> Indices;
4113   E->getEncodedElementAccess(Indices);
4114 
4115   if (Base.isSimple()) {
4116     llvm::Constant *CV =
4117         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4118     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4119                                     Base.getBaseInfo(), TBAAAccessInfo());
4120   }
4121   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4122 
4123   llvm::Constant *BaseElts = Base.getExtVectorElts();
4124   SmallVector<llvm::Constant *, 4> CElts;
4125 
4126   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4127     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4128   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4129   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4130                                   Base.getBaseInfo(), TBAAAccessInfo());
4131 }
4132 
4133 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4134   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4135     EmitIgnoredExpr(E->getBase());
4136     return EmitDeclRefLValue(DRE);
4137   }
4138 
4139   Expr *BaseExpr = E->getBase();
4140   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4141   LValue BaseLV;
4142   if (E->isArrow()) {
4143     LValueBaseInfo BaseInfo;
4144     TBAAAccessInfo TBAAInfo;
4145     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4146     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4147     SanitizerSet SkippedChecks;
4148     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4149     if (IsBaseCXXThis)
4150       SkippedChecks.set(SanitizerKind::Alignment, true);
4151     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4152       SkippedChecks.set(SanitizerKind::Null, true);
4153     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4154                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4155     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4156   } else
4157     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4158 
4159   NamedDecl *ND = E->getMemberDecl();
4160   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4161     LValue LV = EmitLValueForField(BaseLV, Field);
4162     setObjCGCLValueClass(getContext(), E, LV);
4163     if (getLangOpts().OpenMP) {
4164       // If the member was explicitly marked as nontemporal, mark it as
4165       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4166       // to children as nontemporal too.
4167       if ((IsWrappedCXXThis(BaseExpr) &&
4168            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4169           BaseLV.isNontemporal())
4170         LV.setNontemporal(/*Value=*/true);
4171     }
4172     return LV;
4173   }
4174 
4175   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4176     return EmitFunctionDeclLValue(*this, E, FD);
4177 
4178   llvm_unreachable("Unhandled member declaration!");
4179 }
4180 
4181 /// Given that we are currently emitting a lambda, emit an l-value for
4182 /// one of its members.
4183 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4184   if (CurCodeDecl) {
4185     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4186     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4187   }
4188   QualType LambdaTagType =
4189     getContext().getTagDeclType(Field->getParent());
4190   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4191   return EmitLValueForField(LambdaLV, Field);
4192 }
4193 
4194 /// Get the field index in the debug info. The debug info structure/union
4195 /// will ignore the unnamed bitfields.
4196 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4197                                              unsigned FieldIndex) {
4198   unsigned I = 0, Skipped = 0;
4199 
4200   for (auto F : Rec->getDefinition()->fields()) {
4201     if (I == FieldIndex)
4202       break;
4203     if (F->isUnnamedBitfield())
4204       Skipped++;
4205     I++;
4206   }
4207 
4208   return FieldIndex - Skipped;
4209 }
4210 
4211 /// Get the address of a zero-sized field within a record. The resulting
4212 /// address doesn't necessarily have the right type.
4213 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4214                                        const FieldDecl *Field) {
4215   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4216       CGF.getContext().getFieldOffset(Field));
4217   if (Offset.isZero())
4218     return Base;
4219   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4220   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4221 }
4222 
4223 /// Drill down to the storage of a field without walking into
4224 /// reference types.
4225 ///
4226 /// The resulting address doesn't necessarily have the right type.
4227 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4228                                       const FieldDecl *field) {
4229   if (field->isZeroSize(CGF.getContext()))
4230     return emitAddrOfZeroSizeField(CGF, base, field);
4231 
4232   const RecordDecl *rec = field->getParent();
4233 
4234   unsigned idx =
4235     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4236 
4237   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4238 }
4239 
4240 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4241                                         Address addr, const FieldDecl *field) {
4242   const RecordDecl *rec = field->getParent();
4243   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4244       base.getType(), rec->getLocation());
4245 
4246   unsigned idx =
4247       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4248 
4249   return CGF.Builder.CreatePreserveStructAccessIndex(
4250       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4251 }
4252 
4253 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4254   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4255   if (!RD)
4256     return false;
4257 
4258   if (RD->isDynamicClass())
4259     return true;
4260 
4261   for (const auto &Base : RD->bases())
4262     if (hasAnyVptr(Base.getType(), Context))
4263       return true;
4264 
4265   for (const FieldDecl *Field : RD->fields())
4266     if (hasAnyVptr(Field->getType(), Context))
4267       return true;
4268 
4269   return false;
4270 }
4271 
4272 LValue CodeGenFunction::EmitLValueForField(LValue base,
4273                                            const FieldDecl *field) {
4274   LValueBaseInfo BaseInfo = base.getBaseInfo();
4275 
4276   if (field->isBitField()) {
4277     const CGRecordLayout &RL =
4278         CGM.getTypes().getCGRecordLayout(field->getParent());
4279     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4280     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4281                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4282                              Info.VolatileStorageSize != 0 &&
4283                              field->getType()
4284                                  .withCVRQualifiers(base.getVRQualifiers())
4285                                  .isVolatileQualified();
4286     Address Addr = base.getAddress(*this);
4287     unsigned Idx = RL.getLLVMFieldNo(field);
4288     const RecordDecl *rec = field->getParent();
4289     if (!UseVolatile) {
4290       if (!IsInPreservedAIRegion &&
4291           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4292         if (Idx != 0)
4293           // For structs, we GEP to the field that the record layout suggests.
4294           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4295       } else {
4296         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4297             getContext().getRecordType(rec), rec->getLocation());
4298         Addr = Builder.CreatePreserveStructAccessIndex(
4299             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4300             DbgInfo);
4301       }
4302     }
4303     const unsigned SS =
4304         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4305     // Get the access type.
4306     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4307     if (Addr.getElementType() != FieldIntTy)
4308       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4309     if (UseVolatile) {
4310       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4311       if (VolatileOffset)
4312         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4313     }
4314 
4315     QualType fieldType =
4316         field->getType().withCVRQualifiers(base.getVRQualifiers());
4317     // TODO: Support TBAA for bit fields.
4318     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4319     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4320                                 TBAAAccessInfo());
4321   }
4322 
4323   // Fields of may-alias structures are may-alias themselves.
4324   // FIXME: this should get propagated down through anonymous structs
4325   // and unions.
4326   QualType FieldType = field->getType();
4327   const RecordDecl *rec = field->getParent();
4328   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4329   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4330   TBAAAccessInfo FieldTBAAInfo;
4331   if (base.getTBAAInfo().isMayAlias() ||
4332           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4333     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4334   } else if (rec->isUnion()) {
4335     // TODO: Support TBAA for unions.
4336     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4337   } else {
4338     // If no base type been assigned for the base access, then try to generate
4339     // one for this base lvalue.
4340     FieldTBAAInfo = base.getTBAAInfo();
4341     if (!FieldTBAAInfo.BaseType) {
4342         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4343         assert(!FieldTBAAInfo.Offset &&
4344                "Nonzero offset for an access with no base type!");
4345     }
4346 
4347     // Adjust offset to be relative to the base type.
4348     const ASTRecordLayout &Layout =
4349         getContext().getASTRecordLayout(field->getParent());
4350     unsigned CharWidth = getContext().getCharWidth();
4351     if (FieldTBAAInfo.BaseType)
4352       FieldTBAAInfo.Offset +=
4353           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4354 
4355     // Update the final access type and size.
4356     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4357     FieldTBAAInfo.Size =
4358         getContext().getTypeSizeInChars(FieldType).getQuantity();
4359   }
4360 
4361   Address addr = base.getAddress(*this);
4362   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4363     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4364         ClassDef->isDynamicClass()) {
4365       // Getting to any field of dynamic object requires stripping dynamic
4366       // information provided by invariant.group.  This is because accessing
4367       // fields may leak the real address of dynamic object, which could result
4368       // in miscompilation when leaked pointer would be compared.
4369       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4370       addr = Address(stripped, addr.getAlignment());
4371     }
4372   }
4373 
4374   unsigned RecordCVR = base.getVRQualifiers();
4375   if (rec->isUnion()) {
4376     // For unions, there is no pointer adjustment.
4377     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4378         hasAnyVptr(FieldType, getContext()))
4379       // Because unions can easily skip invariant.barriers, we need to add
4380       // a barrier every time CXXRecord field with vptr is referenced.
4381       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4382                      addr.getAlignment());
4383 
4384     if (IsInPreservedAIRegion ||
4385         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4386       // Remember the original union field index
4387       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4388           rec->getLocation());
4389       addr = Address(
4390           Builder.CreatePreserveUnionAccessIndex(
4391               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4392           addr.getAlignment());
4393     }
4394 
4395     if (FieldType->isReferenceType())
4396       addr = Builder.CreateElementBitCast(
4397           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4398   } else {
4399     if (!IsInPreservedAIRegion &&
4400         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4401       // For structs, we GEP to the field that the record layout suggests.
4402       addr = emitAddrOfFieldStorage(*this, addr, field);
4403     else
4404       // Remember the original struct field index
4405       addr = emitPreserveStructAccess(*this, base, addr, field);
4406   }
4407 
4408   // If this is a reference field, load the reference right now.
4409   if (FieldType->isReferenceType()) {
4410     LValue RefLVal =
4411         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4412     if (RecordCVR & Qualifiers::Volatile)
4413       RefLVal.getQuals().addVolatile();
4414     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4415 
4416     // Qualifiers on the struct don't apply to the referencee.
4417     RecordCVR = 0;
4418     FieldType = FieldType->getPointeeType();
4419   }
4420 
4421   // Make sure that the address is pointing to the right type.  This is critical
4422   // for both unions and structs.  A union needs a bitcast, a struct element
4423   // will need a bitcast if the LLVM type laid out doesn't match the desired
4424   // type.
4425   addr = Builder.CreateElementBitCast(
4426       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4427 
4428   if (field->hasAttr<AnnotateAttr>())
4429     addr = EmitFieldAnnotations(field, addr);
4430 
4431   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4432   LV.getQuals().addCVRQualifiers(RecordCVR);
4433 
4434   // __weak attribute on a field is ignored.
4435   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4436     LV.getQuals().removeObjCGCAttr();
4437 
4438   return LV;
4439 }
4440 
4441 LValue
4442 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4443                                                   const FieldDecl *Field) {
4444   QualType FieldType = Field->getType();
4445 
4446   if (!FieldType->isReferenceType())
4447     return EmitLValueForField(Base, Field);
4448 
4449   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4450 
4451   // Make sure that the address is pointing to the right type.
4452   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4453   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4454 
4455   // TODO: Generate TBAA information that describes this access as a structure
4456   // member access and not just an access to an object of the field's type. This
4457   // should be similar to what we do in EmitLValueForField().
4458   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4459   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4460   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4461   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4462                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4463 }
4464 
4465 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4466   if (E->isFileScope()) {
4467     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4468     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4469   }
4470   if (E->getType()->isVariablyModifiedType())
4471     // make sure to emit the VLA size.
4472     EmitVariablyModifiedType(E->getType());
4473 
4474   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4475   const Expr *InitExpr = E->getInitializer();
4476   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4477 
4478   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4479                    /*Init*/ true);
4480 
4481   // Block-scope compound literals are destroyed at the end of the enclosing
4482   // scope in C.
4483   if (!getLangOpts().CPlusPlus)
4484     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4485       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4486                                   E->getType(), getDestroyer(DtorKind),
4487                                   DtorKind & EHCleanup);
4488 
4489   return Result;
4490 }
4491 
4492 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4493   if (!E->isGLValue())
4494     // Initializing an aggregate temporary in C++11: T{...}.
4495     return EmitAggExprToLValue(E);
4496 
4497   // An lvalue initializer list must be initializing a reference.
4498   assert(E->isTransparent() && "non-transparent glvalue init list");
4499   return EmitLValue(E->getInit(0));
4500 }
4501 
4502 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4503 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4504 /// LValue is returned and the current block has been terminated.
4505 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4506                                                     const Expr *Operand) {
4507   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4508     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4509     return None;
4510   }
4511 
4512   return CGF.EmitLValue(Operand);
4513 }
4514 
4515 LValue CodeGenFunction::
4516 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4517   if (!expr->isGLValue()) {
4518     // ?: here should be an aggregate.
4519     assert(hasAggregateEvaluationKind(expr->getType()) &&
4520            "Unexpected conditional operator!");
4521     return EmitAggExprToLValue(expr);
4522   }
4523 
4524   OpaqueValueMapping binding(*this, expr);
4525 
4526   const Expr *condExpr = expr->getCond();
4527   bool CondExprBool;
4528   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4529     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4530     if (!CondExprBool) std::swap(live, dead);
4531 
4532     if (!ContainsLabel(dead)) {
4533       // If the true case is live, we need to track its region.
4534       if (CondExprBool)
4535         incrementProfileCounter(expr);
4536       // If a throw expression we emit it and return an undefined lvalue
4537       // because it can't be used.
4538       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4539         EmitCXXThrowExpr(ThrowExpr);
4540         llvm::Type *Ty =
4541             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4542         return MakeAddrLValue(
4543             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4544             dead->getType());
4545       }
4546       return EmitLValue(live);
4547     }
4548   }
4549 
4550   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4551   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4552   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4553 
4554   ConditionalEvaluation eval(*this);
4555   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4556 
4557   // Any temporaries created here are conditional.
4558   EmitBlock(lhsBlock);
4559   incrementProfileCounter(expr);
4560   eval.begin(*this);
4561   Optional<LValue> lhs =
4562       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4563   eval.end(*this);
4564 
4565   if (lhs && !lhs->isSimple())
4566     return EmitUnsupportedLValue(expr, "conditional operator");
4567 
4568   lhsBlock = Builder.GetInsertBlock();
4569   if (lhs)
4570     Builder.CreateBr(contBlock);
4571 
4572   // Any temporaries created here are conditional.
4573   EmitBlock(rhsBlock);
4574   eval.begin(*this);
4575   Optional<LValue> rhs =
4576       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4577   eval.end(*this);
4578   if (rhs && !rhs->isSimple())
4579     return EmitUnsupportedLValue(expr, "conditional operator");
4580   rhsBlock = Builder.GetInsertBlock();
4581 
4582   EmitBlock(contBlock);
4583 
4584   if (lhs && rhs) {
4585     llvm::PHINode *phi =
4586         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4587     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4588     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4589     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4590     AlignmentSource alignSource =
4591       std::max(lhs->getBaseInfo().getAlignmentSource(),
4592                rhs->getBaseInfo().getAlignmentSource());
4593     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4594         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4595     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4596                           TBAAInfo);
4597   } else {
4598     assert((lhs || rhs) &&
4599            "both operands of glvalue conditional are throw-expressions?");
4600     return lhs ? *lhs : *rhs;
4601   }
4602 }
4603 
4604 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4605 /// type. If the cast is to a reference, we can have the usual lvalue result,
4606 /// otherwise if a cast is needed by the code generator in an lvalue context,
4607 /// then it must mean that we need the address of an aggregate in order to
4608 /// access one of its members.  This can happen for all the reasons that casts
4609 /// are permitted with aggregate result, including noop aggregate casts, and
4610 /// cast from scalar to union.
4611 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4612   switch (E->getCastKind()) {
4613   case CK_ToVoid:
4614   case CK_BitCast:
4615   case CK_LValueToRValueBitCast:
4616   case CK_ArrayToPointerDecay:
4617   case CK_FunctionToPointerDecay:
4618   case CK_NullToMemberPointer:
4619   case CK_NullToPointer:
4620   case CK_IntegralToPointer:
4621   case CK_PointerToIntegral:
4622   case CK_PointerToBoolean:
4623   case CK_VectorSplat:
4624   case CK_IntegralCast:
4625   case CK_BooleanToSignedIntegral:
4626   case CK_IntegralToBoolean:
4627   case CK_IntegralToFloating:
4628   case CK_FloatingToIntegral:
4629   case CK_FloatingToBoolean:
4630   case CK_FloatingCast:
4631   case CK_FloatingRealToComplex:
4632   case CK_FloatingComplexToReal:
4633   case CK_FloatingComplexToBoolean:
4634   case CK_FloatingComplexCast:
4635   case CK_FloatingComplexToIntegralComplex:
4636   case CK_IntegralRealToComplex:
4637   case CK_IntegralComplexToReal:
4638   case CK_IntegralComplexToBoolean:
4639   case CK_IntegralComplexCast:
4640   case CK_IntegralComplexToFloatingComplex:
4641   case CK_DerivedToBaseMemberPointer:
4642   case CK_BaseToDerivedMemberPointer:
4643   case CK_MemberPointerToBoolean:
4644   case CK_ReinterpretMemberPointer:
4645   case CK_AnyPointerToBlockPointerCast:
4646   case CK_ARCProduceObject:
4647   case CK_ARCConsumeObject:
4648   case CK_ARCReclaimReturnedObject:
4649   case CK_ARCExtendBlockObject:
4650   case CK_CopyAndAutoreleaseBlockObject:
4651   case CK_IntToOCLSampler:
4652   case CK_FloatingToFixedPoint:
4653   case CK_FixedPointToFloating:
4654   case CK_FixedPointCast:
4655   case CK_FixedPointToBoolean:
4656   case CK_FixedPointToIntegral:
4657   case CK_IntegralToFixedPoint:
4658   case CK_MatrixCast:
4659     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4660 
4661   case CK_Dependent:
4662     llvm_unreachable("dependent cast kind in IR gen!");
4663 
4664   case CK_BuiltinFnToFnPtr:
4665     llvm_unreachable("builtin functions are handled elsewhere");
4666 
4667   // These are never l-values; just use the aggregate emission code.
4668   case CK_NonAtomicToAtomic:
4669   case CK_AtomicToNonAtomic:
4670     return EmitAggExprToLValue(E);
4671 
4672   case CK_Dynamic: {
4673     LValue LV = EmitLValue(E->getSubExpr());
4674     Address V = LV.getAddress(*this);
4675     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4676     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4677   }
4678 
4679   case CK_ConstructorConversion:
4680   case CK_UserDefinedConversion:
4681   case CK_CPointerToObjCPointerCast:
4682   case CK_BlockPointerToObjCPointerCast:
4683   case CK_LValueToRValue:
4684     return EmitLValue(E->getSubExpr());
4685 
4686   case CK_NoOp: {
4687     // CK_NoOp can model a qualification conversion, which can remove an array
4688     // bound and change the IR type.
4689     // FIXME: Once pointee types are removed from IR, remove this.
4690     LValue LV = EmitLValue(E->getSubExpr());
4691     if (LV.isSimple()) {
4692       Address V = LV.getAddress(*this);
4693       if (V.isValid()) {
4694         llvm::Type *T =
4695             ConvertTypeForMem(E->getType())
4696                 ->getPointerTo(
4697                     cast<llvm::PointerType>(V.getType())->getAddressSpace());
4698         if (V.getType() != T)
4699           LV.setAddress(Builder.CreateBitCast(V, T));
4700       }
4701     }
4702     return LV;
4703   }
4704 
4705   case CK_UncheckedDerivedToBase:
4706   case CK_DerivedToBase: {
4707     const auto *DerivedClassTy =
4708         E->getSubExpr()->getType()->castAs<RecordType>();
4709     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4710 
4711     LValue LV = EmitLValue(E->getSubExpr());
4712     Address This = LV.getAddress(*this);
4713 
4714     // Perform the derived-to-base conversion
4715     Address Base = GetAddressOfBaseClass(
4716         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4717         /*NullCheckValue=*/false, E->getExprLoc());
4718 
4719     // TODO: Support accesses to members of base classes in TBAA. For now, we
4720     // conservatively pretend that the complete object is of the base class
4721     // type.
4722     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4723                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4724   }
4725   case CK_ToUnion:
4726     return EmitAggExprToLValue(E);
4727   case CK_BaseToDerived: {
4728     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4729     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4730 
4731     LValue LV = EmitLValue(E->getSubExpr());
4732 
4733     // Perform the base-to-derived conversion
4734     Address Derived = GetAddressOfDerivedClass(
4735         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4736         /*NullCheckValue=*/false);
4737 
4738     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4739     // performed and the object is not of the derived type.
4740     if (sanitizePerformTypeCheck())
4741       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4742                     Derived.getPointer(), E->getType());
4743 
4744     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4745       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4746                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4747                                 E->getBeginLoc());
4748 
4749     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4750                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4751   }
4752   case CK_LValueBitCast: {
4753     // This must be a reinterpret_cast (or c-style equivalent).
4754     const auto *CE = cast<ExplicitCastExpr>(E);
4755 
4756     CGM.EmitExplicitCastExprType(CE, this);
4757     LValue LV = EmitLValue(E->getSubExpr());
4758     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4759                                       ConvertType(CE->getTypeAsWritten()));
4760 
4761     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4762       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4763                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4764                                 E->getBeginLoc());
4765 
4766     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4767                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4768   }
4769   case CK_AddressSpaceConversion: {
4770     LValue LV = EmitLValue(E->getSubExpr());
4771     QualType DestTy = getContext().getPointerType(E->getType());
4772     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4773         *this, LV.getPointer(*this),
4774         E->getSubExpr()->getType().getAddressSpace(),
4775         E->getType().getAddressSpace(), ConvertType(DestTy));
4776     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4777                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4778   }
4779   case CK_ObjCObjectLValueCast: {
4780     LValue LV = EmitLValue(E->getSubExpr());
4781     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4782                                              ConvertType(E->getType()));
4783     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4784                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4785   }
4786   case CK_ZeroToOCLOpaqueType:
4787     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4788   }
4789 
4790   llvm_unreachable("Unhandled lvalue cast kind?");
4791 }
4792 
4793 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4794   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4795   return getOrCreateOpaqueLValueMapping(e);
4796 }
4797 
4798 LValue
4799 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4800   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4801 
4802   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4803       it = OpaqueLValues.find(e);
4804 
4805   if (it != OpaqueLValues.end())
4806     return it->second;
4807 
4808   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4809   return EmitLValue(e->getSourceExpr());
4810 }
4811 
4812 RValue
4813 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4814   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4815 
4816   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4817       it = OpaqueRValues.find(e);
4818 
4819   if (it != OpaqueRValues.end())
4820     return it->second;
4821 
4822   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4823   return EmitAnyExpr(e->getSourceExpr());
4824 }
4825 
4826 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4827                                            const FieldDecl *FD,
4828                                            SourceLocation Loc) {
4829   QualType FT = FD->getType();
4830   LValue FieldLV = EmitLValueForField(LV, FD);
4831   switch (getEvaluationKind(FT)) {
4832   case TEK_Complex:
4833     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4834   case TEK_Aggregate:
4835     return FieldLV.asAggregateRValue(*this);
4836   case TEK_Scalar:
4837     // This routine is used to load fields one-by-one to perform a copy, so
4838     // don't load reference fields.
4839     if (FD->getType()->isReferenceType())
4840       return RValue::get(FieldLV.getPointer(*this));
4841     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4842     // primitive load.
4843     if (FieldLV.isBitField())
4844       return EmitLoadOfLValue(FieldLV, Loc);
4845     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4846   }
4847   llvm_unreachable("bad evaluation kind");
4848 }
4849 
4850 //===--------------------------------------------------------------------===//
4851 //                             Expression Emission
4852 //===--------------------------------------------------------------------===//
4853 
4854 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4855                                      ReturnValueSlot ReturnValue) {
4856   // Builtins never have block type.
4857   if (E->getCallee()->getType()->isBlockPointerType())
4858     return EmitBlockCallExpr(E, ReturnValue);
4859 
4860   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4861     return EmitCXXMemberCallExpr(CE, ReturnValue);
4862 
4863   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4864     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4865 
4866   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4867     if (const CXXMethodDecl *MD =
4868           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4869       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4870 
4871   CGCallee callee = EmitCallee(E->getCallee());
4872 
4873   if (callee.isBuiltin()) {
4874     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4875                            E, ReturnValue);
4876   }
4877 
4878   if (callee.isPseudoDestructor()) {
4879     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4880   }
4881 
4882   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4883 }
4884 
4885 /// Emit a CallExpr without considering whether it might be a subclass.
4886 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4887                                            ReturnValueSlot ReturnValue) {
4888   CGCallee Callee = EmitCallee(E->getCallee());
4889   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4890 }
4891 
4892 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4893   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4894 
4895   if (auto builtinID = FD->getBuiltinID()) {
4896     std::string FDInlineName = (FD->getName() + ".inline").str();
4897     // When directing calling an inline builtin, call it through it's mangled
4898     // name to make it clear it's not the actual builtin.
4899     if (FD->isInlineBuiltinDeclaration() &&
4900         CGF.CurFn->getName() != FDInlineName) {
4901       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4902       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
4903       llvm::Module *M = Fn->getParent();
4904       llvm::Function *Clone = M->getFunction(FDInlineName);
4905       if (!Clone) {
4906         Clone = llvm::Function::Create(Fn->getFunctionType(),
4907                                        llvm::GlobalValue::InternalLinkage,
4908                                        Fn->getAddressSpace(), FDInlineName, M);
4909         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
4910       }
4911       return CGCallee::forDirect(Clone, GD);
4912     }
4913 
4914     // Replaceable builtins provide their own implementation of a builtin. If we
4915     // are in an inline builtin implementation, avoid trivial infinite
4916     // recursion.
4917     else
4918       return CGCallee::forBuiltin(builtinID, FD);
4919   }
4920 
4921   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4922   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4923       FD->hasAttr<CUDAGlobalAttr>())
4924     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4925         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4926 
4927   return CGCallee::forDirect(CalleePtr, GD);
4928 }
4929 
4930 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4931   E = E->IgnoreParens();
4932 
4933   // Look through function-to-pointer decay.
4934   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4935     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4936         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4937       return EmitCallee(ICE->getSubExpr());
4938     }
4939 
4940   // Resolve direct calls.
4941   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4942     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4943       return EmitDirectCallee(*this, FD);
4944     }
4945   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4946     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4947       EmitIgnoredExpr(ME->getBase());
4948       return EmitDirectCallee(*this, FD);
4949     }
4950 
4951   // Look through template substitutions.
4952   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4953     return EmitCallee(NTTP->getReplacement());
4954 
4955   // Treat pseudo-destructor calls differently.
4956   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4957     return CGCallee::forPseudoDestructor(PDE);
4958   }
4959 
4960   // Otherwise, we have an indirect reference.
4961   llvm::Value *calleePtr;
4962   QualType functionType;
4963   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4964     calleePtr = EmitScalarExpr(E);
4965     functionType = ptrType->getPointeeType();
4966   } else {
4967     functionType = E->getType();
4968     calleePtr = EmitLValue(E).getPointer(*this);
4969   }
4970   assert(functionType->isFunctionType());
4971 
4972   GlobalDecl GD;
4973   if (const auto *VD =
4974           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4975     GD = GlobalDecl(VD);
4976 
4977   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4978   CGCallee callee(calleeInfo, calleePtr);
4979   return callee;
4980 }
4981 
4982 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4983   // Comma expressions just emit their LHS then their RHS as an l-value.
4984   if (E->getOpcode() == BO_Comma) {
4985     EmitIgnoredExpr(E->getLHS());
4986     EnsureInsertPoint();
4987     return EmitLValue(E->getRHS());
4988   }
4989 
4990   if (E->getOpcode() == BO_PtrMemD ||
4991       E->getOpcode() == BO_PtrMemI)
4992     return EmitPointerToDataMemberBinaryExpr(E);
4993 
4994   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4995 
4996   // Note that in all of these cases, __block variables need the RHS
4997   // evaluated first just in case the variable gets moved by the RHS.
4998 
4999   switch (getEvaluationKind(E->getType())) {
5000   case TEK_Scalar: {
5001     switch (E->getLHS()->getType().getObjCLifetime()) {
5002     case Qualifiers::OCL_Strong:
5003       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5004 
5005     case Qualifiers::OCL_Autoreleasing:
5006       return EmitARCStoreAutoreleasing(E).first;
5007 
5008     // No reason to do any of these differently.
5009     case Qualifiers::OCL_None:
5010     case Qualifiers::OCL_ExplicitNone:
5011     case Qualifiers::OCL_Weak:
5012       break;
5013     }
5014 
5015     RValue RV = EmitAnyExpr(E->getRHS());
5016     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5017     if (RV.isScalar())
5018       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5019     EmitStoreThroughLValue(RV, LV);
5020     if (getLangOpts().OpenMP)
5021       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5022                                                                 E->getLHS());
5023     return LV;
5024   }
5025 
5026   case TEK_Complex:
5027     return EmitComplexAssignmentLValue(E);
5028 
5029   case TEK_Aggregate:
5030     return EmitAggExprToLValue(E);
5031   }
5032   llvm_unreachable("bad evaluation kind");
5033 }
5034 
5035 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5036   RValue RV = EmitCallExpr(E);
5037 
5038   if (!RV.isScalar())
5039     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5040                           AlignmentSource::Decl);
5041 
5042   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5043          "Can't have a scalar return unless the return type is a "
5044          "reference type!");
5045 
5046   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5047 }
5048 
5049 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5050   // FIXME: This shouldn't require another copy.
5051   return EmitAggExprToLValue(E);
5052 }
5053 
5054 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5055   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5056          && "binding l-value to type which needs a temporary");
5057   AggValueSlot Slot = CreateAggTemp(E->getType());
5058   EmitCXXConstructExpr(E, Slot);
5059   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5060 }
5061 
5062 LValue
5063 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5064   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5065 }
5066 
5067 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5068   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5069                                       ConvertType(E->getType()));
5070 }
5071 
5072 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5073   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5074                         AlignmentSource::Decl);
5075 }
5076 
5077 LValue
5078 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5079   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5080   Slot.setExternallyDestructed();
5081   EmitAggExpr(E->getSubExpr(), Slot);
5082   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5083   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5084 }
5085 
5086 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5087   RValue RV = EmitObjCMessageExpr(E);
5088 
5089   if (!RV.isScalar())
5090     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5091                           AlignmentSource::Decl);
5092 
5093   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5094          "Can't have a scalar return unless the return type is a "
5095          "reference type!");
5096 
5097   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5098 }
5099 
5100 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5101   Address V =
5102     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5103   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5104 }
5105 
5106 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5107                                              const ObjCIvarDecl *Ivar) {
5108   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5109 }
5110 
5111 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5112                                           llvm::Value *BaseValue,
5113                                           const ObjCIvarDecl *Ivar,
5114                                           unsigned CVRQualifiers) {
5115   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5116                                                    Ivar, CVRQualifiers);
5117 }
5118 
5119 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5120   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5121   llvm::Value *BaseValue = nullptr;
5122   const Expr *BaseExpr = E->getBase();
5123   Qualifiers BaseQuals;
5124   QualType ObjectTy;
5125   if (E->isArrow()) {
5126     BaseValue = EmitScalarExpr(BaseExpr);
5127     ObjectTy = BaseExpr->getType()->getPointeeType();
5128     BaseQuals = ObjectTy.getQualifiers();
5129   } else {
5130     LValue BaseLV = EmitLValue(BaseExpr);
5131     BaseValue = BaseLV.getPointer(*this);
5132     ObjectTy = BaseExpr->getType();
5133     BaseQuals = ObjectTy.getQualifiers();
5134   }
5135 
5136   LValue LV =
5137     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5138                       BaseQuals.getCVRQualifiers());
5139   setObjCGCLValueClass(getContext(), E, LV);
5140   return LV;
5141 }
5142 
5143 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5144   // Can only get l-value for message expression returning aggregate type
5145   RValue RV = EmitAnyExprToTemp(E);
5146   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5147                         AlignmentSource::Decl);
5148 }
5149 
5150 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5151                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5152                                  llvm::Value *Chain) {
5153   // Get the actual function type. The callee type will always be a pointer to
5154   // function type or a block pointer type.
5155   assert(CalleeType->isFunctionPointerType() &&
5156          "Call must have function pointer type!");
5157 
5158   const Decl *TargetDecl =
5159       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5160 
5161   CalleeType = getContext().getCanonicalType(CalleeType);
5162 
5163   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5164 
5165   CGCallee Callee = OrigCallee;
5166 
5167   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5168       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5169     if (llvm::Constant *PrefixSig =
5170             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5171       SanitizerScope SanScope(this);
5172       // Remove any (C++17) exception specifications, to allow calling e.g. a
5173       // noexcept function through a non-noexcept pointer.
5174       auto ProtoTy =
5175         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5176       llvm::Constant *FTRTTIConst =
5177           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5178       llvm::Type *PrefixSigType = PrefixSig->getType();
5179       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5180           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5181 
5182       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5183 
5184       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5185           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5186       llvm::Value *CalleeSigPtr =
5187           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5188       llvm::Value *CalleeSig =
5189           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5190       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5191 
5192       llvm::BasicBlock *Cont = createBasicBlock("cont");
5193       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5194       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5195 
5196       EmitBlock(TypeCheck);
5197       llvm::Value *CalleeRTTIPtr =
5198           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5199       llvm::Value *CalleeRTTIEncoded =
5200           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5201       llvm::Value *CalleeRTTI =
5202           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5203       llvm::Value *CalleeRTTIMatch =
5204           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5205       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5206                                       EmitCheckTypeDescriptor(CalleeType)};
5207       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5208                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5209                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5210 
5211       Builder.CreateBr(Cont);
5212       EmitBlock(Cont);
5213     }
5214   }
5215 
5216   const auto *FnType = cast<FunctionType>(PointeeType);
5217 
5218   // If we are checking indirect calls and this call is indirect, check that the
5219   // function pointer is a member of the bit set for the function type.
5220   if (SanOpts.has(SanitizerKind::CFIICall) &&
5221       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5222     SanitizerScope SanScope(this);
5223     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5224 
5225     llvm::Metadata *MD;
5226     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5227       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5228     else
5229       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5230 
5231     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5232 
5233     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5234     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5235     llvm::Value *TypeTest = Builder.CreateCall(
5236         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5237 
5238     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5239     llvm::Constant *StaticData[] = {
5240         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5241         EmitCheckSourceLocation(E->getBeginLoc()),
5242         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5243     };
5244     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5245       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5246                            CastedCallee, StaticData);
5247     } else {
5248       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5249                 SanitizerHandler::CFICheckFail, StaticData,
5250                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5251     }
5252   }
5253 
5254   CallArgList Args;
5255   if (Chain)
5256     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5257              CGM.getContext().VoidPtrTy);
5258 
5259   // C++17 requires that we evaluate arguments to a call using assignment syntax
5260   // right-to-left, and that we evaluate arguments to certain other operators
5261   // left-to-right. Note that we allow this to override the order dictated by
5262   // the calling convention on the MS ABI, which means that parameter
5263   // destruction order is not necessarily reverse construction order.
5264   // FIXME: Revisit this based on C++ committee response to unimplementability.
5265   EvaluationOrder Order = EvaluationOrder::Default;
5266   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5267     if (OCE->isAssignmentOp())
5268       Order = EvaluationOrder::ForceRightToLeft;
5269     else {
5270       switch (OCE->getOperator()) {
5271       case OO_LessLess:
5272       case OO_GreaterGreater:
5273       case OO_AmpAmp:
5274       case OO_PipePipe:
5275       case OO_Comma:
5276       case OO_ArrowStar:
5277         Order = EvaluationOrder::ForceLeftToRight;
5278         break;
5279       default:
5280         break;
5281       }
5282     }
5283   }
5284 
5285   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5286                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5287 
5288   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5289       Args, FnType, /*ChainCall=*/Chain);
5290 
5291   // C99 6.5.2.2p6:
5292   //   If the expression that denotes the called function has a type
5293   //   that does not include a prototype, [the default argument
5294   //   promotions are performed]. If the number of arguments does not
5295   //   equal the number of parameters, the behavior is undefined. If
5296   //   the function is defined with a type that includes a prototype,
5297   //   and either the prototype ends with an ellipsis (, ...) or the
5298   //   types of the arguments after promotion are not compatible with
5299   //   the types of the parameters, the behavior is undefined. If the
5300   //   function is defined with a type that does not include a
5301   //   prototype, and the types of the arguments after promotion are
5302   //   not compatible with those of the parameters after promotion,
5303   //   the behavior is undefined [except in some trivial cases].
5304   // That is, in the general case, we should assume that a call
5305   // through an unprototyped function type works like a *non-variadic*
5306   // call.  The way we make this work is to cast to the exact type
5307   // of the promoted arguments.
5308   //
5309   // Chain calls use this same code path to add the invisible chain parameter
5310   // to the function type.
5311   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5312     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5313     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5314     CalleeTy = CalleeTy->getPointerTo(AS);
5315 
5316     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5317     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5318     Callee.setFunctionPointer(CalleePtr);
5319   }
5320 
5321   // HIP function pointer contains kernel handle when it is used in triple
5322   // chevron. The kernel stub needs to be loaded from kernel handle and used
5323   // as callee.
5324   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5325       isa<CUDAKernelCallExpr>(E) &&
5326       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5327     llvm::Value *Handle = Callee.getFunctionPointer();
5328     auto *Cast =
5329         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5330     auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5331     Callee.setFunctionPointer(Stub);
5332   }
5333   llvm::CallBase *CallOrInvoke = nullptr;
5334   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5335                          E == MustTailCall, E->getExprLoc());
5336 
5337   // Generate function declaration DISuprogram in order to be used
5338   // in debug info about call sites.
5339   if (CGDebugInfo *DI = getDebugInfo()) {
5340     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5341       FunctionArgList Args;
5342       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5343       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5344                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5345                                   CalleeDecl);
5346     }
5347   }
5348 
5349   return Call;
5350 }
5351 
5352 LValue CodeGenFunction::
5353 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5354   Address BaseAddr = Address::invalid();
5355   if (E->getOpcode() == BO_PtrMemI) {
5356     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5357   } else {
5358     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5359   }
5360 
5361   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5362   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5363 
5364   LValueBaseInfo BaseInfo;
5365   TBAAAccessInfo TBAAInfo;
5366   Address MemberAddr =
5367     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5368                                     &TBAAInfo);
5369 
5370   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5371 }
5372 
5373 /// Given the address of a temporary variable, produce an r-value of
5374 /// its type.
5375 RValue CodeGenFunction::convertTempToRValue(Address addr,
5376                                             QualType type,
5377                                             SourceLocation loc) {
5378   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5379   switch (getEvaluationKind(type)) {
5380   case TEK_Complex:
5381     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5382   case TEK_Aggregate:
5383     return lvalue.asAggregateRValue(*this);
5384   case TEK_Scalar:
5385     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5386   }
5387   llvm_unreachable("bad evaluation kind");
5388 }
5389 
5390 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5391   assert(Val->getType()->isFPOrFPVectorTy());
5392   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5393     return;
5394 
5395   llvm::MDBuilder MDHelper(getLLVMContext());
5396   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5397 
5398   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5399 }
5400 
5401 namespace {
5402   struct LValueOrRValue {
5403     LValue LV;
5404     RValue RV;
5405   };
5406 }
5407 
5408 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5409                                            const PseudoObjectExpr *E,
5410                                            bool forLValue,
5411                                            AggValueSlot slot) {
5412   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5413 
5414   // Find the result expression, if any.
5415   const Expr *resultExpr = E->getResultExpr();
5416   LValueOrRValue result;
5417 
5418   for (PseudoObjectExpr::const_semantics_iterator
5419          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5420     const Expr *semantic = *i;
5421 
5422     // If this semantic expression is an opaque value, bind it
5423     // to the result of its source expression.
5424     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5425       // Skip unique OVEs.
5426       if (ov->isUnique()) {
5427         assert(ov != resultExpr &&
5428                "A unique OVE cannot be used as the result expression");
5429         continue;
5430       }
5431 
5432       // If this is the result expression, we may need to evaluate
5433       // directly into the slot.
5434       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5435       OVMA opaqueData;
5436       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5437           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5438         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5439         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5440                                        AlignmentSource::Decl);
5441         opaqueData = OVMA::bind(CGF, ov, LV);
5442         result.RV = slot.asRValue();
5443 
5444       // Otherwise, emit as normal.
5445       } else {
5446         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5447 
5448         // If this is the result, also evaluate the result now.
5449         if (ov == resultExpr) {
5450           if (forLValue)
5451             result.LV = CGF.EmitLValue(ov);
5452           else
5453             result.RV = CGF.EmitAnyExpr(ov, slot);
5454         }
5455       }
5456 
5457       opaques.push_back(opaqueData);
5458 
5459     // Otherwise, if the expression is the result, evaluate it
5460     // and remember the result.
5461     } else if (semantic == resultExpr) {
5462       if (forLValue)
5463         result.LV = CGF.EmitLValue(semantic);
5464       else
5465         result.RV = CGF.EmitAnyExpr(semantic, slot);
5466 
5467     // Otherwise, evaluate the expression in an ignored context.
5468     } else {
5469       CGF.EmitIgnoredExpr(semantic);
5470     }
5471   }
5472 
5473   // Unbind all the opaques now.
5474   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5475     opaques[i].unbind(CGF);
5476 
5477   return result;
5478 }
5479 
5480 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5481                                                AggValueSlot slot) {
5482   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5483 }
5484 
5485 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5486   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5487 }
5488