1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===--------------------------------------------------------------------===//
40 //                        Miscellaneous Helper Methods
41 //===--------------------------------------------------------------------===//
42 
43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
44   unsigned addressSpace =
45     cast<llvm::PointerType>(value->getType())->getAddressSpace();
46 
47   llvm::PointerType *destType = Int8PtrTy;
48   if (addressSpace)
49     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
50 
51   if (value->getType() == destType) return value;
52   return Builder.CreateBitCast(value, destType);
53 }
54 
55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
56 /// block.
57 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
58                                           const Twine &Name) {
59   auto Alloca = CreateTempAlloca(Ty, Name);
60   Alloca->setAlignment(Align.getQuantity());
61   return Address(Alloca, Align);
62 }
63 
64 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
65 /// block.
66 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
67                                                     const Twine &Name) {
68   if (!Builder.isNamePreserving())
69     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
70   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
71 }
72 
73 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
74 /// default alignment of the corresponding LLVM type, which is *not*
75 /// guaranteed to be related in any way to the expected alignment of
76 /// an AST type that might have been lowered to Ty.
77 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
78                                                       const Twine &Name) {
79   CharUnits Align =
80     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
81   return CreateTempAlloca(Ty, Align, Name);
82 }
83 
84 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
85   assert(isa<llvm::AllocaInst>(Var.getPointer()));
86   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
87   Store->setAlignment(Var.getAlignment().getQuantity());
88   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
89   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
90 }
91 
92 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
93   CharUnits Align = getContext().getTypeAlignInChars(Ty);
94   return CreateTempAlloca(ConvertType(Ty), Align, Name);
95 }
96 
97 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
98   // FIXME: Should we prefer the preferred type alignment here?
99   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
100 }
101 
102 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
103                                        const Twine &Name) {
104   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
105 }
106 
107 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
108 /// expression and compare the result against zero, returning an Int1Ty value.
109 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
110   PGO.setCurrentStmt(E);
111   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
112     llvm::Value *MemPtr = EmitScalarExpr(E);
113     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
114   }
115 
116   QualType BoolTy = getContext().BoolTy;
117   SourceLocation Loc = E->getExprLoc();
118   if (!E->getType()->isAnyComplexType())
119     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
120 
121   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
122                                        Loc);
123 }
124 
125 /// EmitIgnoredExpr - Emit code to compute the specified expression,
126 /// ignoring the result.
127 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
128   if (E->isRValue())
129     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
130 
131   // Just emit it as an l-value and drop the result.
132   EmitLValue(E);
133 }
134 
135 /// EmitAnyExpr - Emit code to compute the specified expression which
136 /// can have any type.  The result is returned as an RValue struct.
137 /// If this is an aggregate expression, AggSlot indicates where the
138 /// result should be returned.
139 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
140                                     AggValueSlot aggSlot,
141                                     bool ignoreResult) {
142   switch (getEvaluationKind(E->getType())) {
143   case TEK_Scalar:
144     return RValue::get(EmitScalarExpr(E, ignoreResult));
145   case TEK_Complex:
146     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
147   case TEK_Aggregate:
148     if (!ignoreResult && aggSlot.isIgnored())
149       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
150     EmitAggExpr(E, aggSlot);
151     return aggSlot.asRValue();
152   }
153   llvm_unreachable("bad evaluation kind");
154 }
155 
156 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
157 /// always be accessible even if no aggregate location is provided.
158 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
159   AggValueSlot AggSlot = AggValueSlot::ignored();
160 
161   if (hasAggregateEvaluationKind(E->getType()))
162     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
163   return EmitAnyExpr(E, AggSlot);
164 }
165 
166 /// EmitAnyExprToMem - Evaluate an expression into a given memory
167 /// location.
168 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
169                                        Address Location,
170                                        Qualifiers Quals,
171                                        bool IsInit) {
172   // FIXME: This function should take an LValue as an argument.
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Complex:
175     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
176                               /*isInit*/ false);
177     return;
178 
179   case TEK_Aggregate: {
180     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
181                                          AggValueSlot::IsDestructed_t(IsInit),
182                                          AggValueSlot::DoesNotNeedGCBarriers,
183                                          AggValueSlot::IsAliased_t(!IsInit)));
184     return;
185   }
186 
187   case TEK_Scalar: {
188     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
189     LValue LV = MakeAddrLValue(Location, E->getType());
190     EmitStoreThroughLValue(RV, LV);
191     return;
192   }
193   }
194   llvm_unreachable("bad evaluation kind");
195 }
196 
197 static void
198 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
199                      const Expr *E, Address ReferenceTemporary) {
200   // Objective-C++ ARC:
201   //   If we are binding a reference to a temporary that has ownership, we
202   //   need to perform retain/release operations on the temporary.
203   //
204   // FIXME: This should be looking at E, not M.
205   if (CGF.getLangOpts().ObjCAutoRefCount &&
206       M->getType()->isObjCLifetimeType()) {
207     QualType ObjCARCReferenceLifetimeType = M->getType();
208     switch (Qualifiers::ObjCLifetime Lifetime =
209                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
210     case Qualifiers::OCL_None:
211     case Qualifiers::OCL_ExplicitNone:
212       // Carry on to normal cleanup handling.
213       break;
214 
215     case Qualifiers::OCL_Autoreleasing:
216       // Nothing to do; cleaned up by an autorelease pool.
217       return;
218 
219     case Qualifiers::OCL_Strong:
220     case Qualifiers::OCL_Weak:
221       switch (StorageDuration Duration = M->getStorageDuration()) {
222       case SD_Static:
223         // Note: we intentionally do not register a cleanup to release
224         // the object on program termination.
225         return;
226 
227       case SD_Thread:
228         // FIXME: We should probably register a cleanup in this case.
229         return;
230 
231       case SD_Automatic:
232       case SD_FullExpression:
233         CodeGenFunction::Destroyer *Destroy;
234         CleanupKind CleanupKind;
235         if (Lifetime == Qualifiers::OCL_Strong) {
236           const ValueDecl *VD = M->getExtendingDecl();
237           bool Precise =
238               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
239           CleanupKind = CGF.getARCCleanupKind();
240           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
241                             : &CodeGenFunction::destroyARCStrongImprecise;
242         } else {
243           // __weak objects always get EH cleanups; otherwise, exceptions
244           // could cause really nasty crashes instead of mere leaks.
245           CleanupKind = NormalAndEHCleanup;
246           Destroy = &CodeGenFunction::destroyARCWeak;
247         }
248         if (Duration == SD_FullExpression)
249           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
250                           ObjCARCReferenceLifetimeType, *Destroy,
251                           CleanupKind & EHCleanup);
252         else
253           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
254                                           ObjCARCReferenceLifetimeType,
255                                           *Destroy, CleanupKind & EHCleanup);
256         return;
257 
258       case SD_Dynamic:
259         llvm_unreachable("temporary cannot have dynamic storage duration");
260       }
261       llvm_unreachable("unknown storage duration");
262     }
263   }
264 
265   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
266   if (const RecordType *RT =
267           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
268     // Get the destructor for the reference temporary.
269     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
270     if (!ClassDecl->hasTrivialDestructor())
271       ReferenceTemporaryDtor = ClassDecl->getDestructor();
272   }
273 
274   if (!ReferenceTemporaryDtor)
275     return;
276 
277   // Call the destructor for the temporary.
278   switch (M->getStorageDuration()) {
279   case SD_Static:
280   case SD_Thread: {
281     llvm::Constant *CleanupFn;
282     llvm::Constant *CleanupArg;
283     if (E->getType()->isArrayType()) {
284       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
285           ReferenceTemporary, E->getType(),
286           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
287           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
288       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
289     } else {
290       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
291                                                StructorType::Complete);
292       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
293     }
294     CGF.CGM.getCXXABI().registerGlobalDtor(
295         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
296     break;
297   }
298 
299   case SD_FullExpression:
300     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
301                     CodeGenFunction::destroyCXXObject,
302                     CGF.getLangOpts().Exceptions);
303     break;
304 
305   case SD_Automatic:
306     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
307                                     ReferenceTemporary, E->getType(),
308                                     CodeGenFunction::destroyCXXObject,
309                                     CGF.getLangOpts().Exceptions);
310     break;
311 
312   case SD_Dynamic:
313     llvm_unreachable("temporary cannot have dynamic storage duration");
314   }
315 }
316 
317 static Address
318 createReferenceTemporary(CodeGenFunction &CGF,
319                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
320   switch (M->getStorageDuration()) {
321   case SD_FullExpression:
322   case SD_Automatic: {
323     // If we have a constant temporary array or record try to promote it into a
324     // constant global under the same rules a normal constant would've been
325     // promoted. This is easier on the optimizer and generally emits fewer
326     // instructions.
327     QualType Ty = Inner->getType();
328     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
329         (Ty->isArrayType() || Ty->isRecordType()) &&
330         CGF.CGM.isTypeConstant(Ty, true))
331       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
332         auto *GV = new llvm::GlobalVariable(
333             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
334             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
335         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
336         GV->setAlignment(alignment.getQuantity());
337         // FIXME: Should we put the new global into a COMDAT?
338         return Address(GV, alignment);
339       }
340     return CGF.CreateMemTemp(Ty, "ref.tmp");
341   }
342   case SD_Thread:
343   case SD_Static:
344     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
345 
346   case SD_Dynamic:
347     llvm_unreachable("temporary can't have dynamic storage duration");
348   }
349   llvm_unreachable("unknown storage duration");
350 }
351 
352 LValue CodeGenFunction::
353 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
354   const Expr *E = M->GetTemporaryExpr();
355 
356     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
357     // as that will cause the lifetime adjustment to be lost for ARC
358   if (getLangOpts().ObjCAutoRefCount &&
359       M->getType()->isObjCLifetimeType() &&
360       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
361       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
362     Address Object = createReferenceTemporary(*this, M, E);
363     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
364       Object = Address(llvm::ConstantExpr::getBitCast(Var,
365                            ConvertTypeForMem(E->getType())
366                              ->getPointerTo(Object.getAddressSpace())),
367                        Object.getAlignment());
368       // We should not have emitted the initializer for this temporary as a
369       // constant.
370       assert(!Var->hasInitializer());
371       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
372     }
373     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
374                                        AlignmentSource::Decl);
375 
376     switch (getEvaluationKind(E->getType())) {
377     default: llvm_unreachable("expected scalar or aggregate expression");
378     case TEK_Scalar:
379       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
380       break;
381     case TEK_Aggregate: {
382       EmitAggExpr(E, AggValueSlot::forAddr(Object,
383                                            E->getType().getQualifiers(),
384                                            AggValueSlot::IsDestructed,
385                                            AggValueSlot::DoesNotNeedGCBarriers,
386                                            AggValueSlot::IsNotAliased));
387       break;
388     }
389     }
390 
391     pushTemporaryCleanup(*this, M, E, Object);
392     return RefTempDst;
393   }
394 
395   SmallVector<const Expr *, 2> CommaLHSs;
396   SmallVector<SubobjectAdjustment, 2> Adjustments;
397   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
398 
399   for (const auto &Ignored : CommaLHSs)
400     EmitIgnoredExpr(Ignored);
401 
402   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
403     if (opaque->getType()->isRecordType()) {
404       assert(Adjustments.empty());
405       return EmitOpaqueValueLValue(opaque);
406     }
407   }
408 
409   // Create and initialize the reference temporary.
410   Address Object = createReferenceTemporary(*this, M, E);
411   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
412     Object = Address(llvm::ConstantExpr::getBitCast(
413         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
414                      Object.getAlignment());
415     // If the temporary is a global and has a constant initializer or is a
416     // constant temporary that we promoted to a global, we may have already
417     // initialized it.
418     if (!Var->hasInitializer()) {
419       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
420       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
421     }
422   } else {
423     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
424   }
425   pushTemporaryCleanup(*this, M, E, Object);
426 
427   // Perform derived-to-base casts and/or field accesses, to get from the
428   // temporary object we created (and, potentially, for which we extended
429   // the lifetime) to the subobject we're binding the reference to.
430   for (unsigned I = Adjustments.size(); I != 0; --I) {
431     SubobjectAdjustment &Adjustment = Adjustments[I-1];
432     switch (Adjustment.Kind) {
433     case SubobjectAdjustment::DerivedToBaseAdjustment:
434       Object =
435           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
436                                 Adjustment.DerivedToBase.BasePath->path_begin(),
437                                 Adjustment.DerivedToBase.BasePath->path_end(),
438                                 /*NullCheckValue=*/ false, E->getExprLoc());
439       break;
440 
441     case SubobjectAdjustment::FieldAdjustment: {
442       LValue LV = MakeAddrLValue(Object, E->getType(),
443                                  AlignmentSource::Decl);
444       LV = EmitLValueForField(LV, Adjustment.Field);
445       assert(LV.isSimple() &&
446              "materialized temporary field is not a simple lvalue");
447       Object = LV.getAddress();
448       break;
449     }
450 
451     case SubobjectAdjustment::MemberPointerAdjustment: {
452       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
453       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
454                                                Adjustment.Ptr.MPT);
455       break;
456     }
457     }
458   }
459 
460   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
461 }
462 
463 RValue
464 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
465   // Emit the expression as an lvalue.
466   LValue LV = EmitLValue(E);
467   assert(LV.isSimple());
468   llvm::Value *Value = LV.getPointer();
469 
470   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
471     // C++11 [dcl.ref]p5 (as amended by core issue 453):
472     //   If a glvalue to which a reference is directly bound designates neither
473     //   an existing object or function of an appropriate type nor a region of
474     //   storage of suitable size and alignment to contain an object of the
475     //   reference's type, the behavior is undefined.
476     QualType Ty = E->getType();
477     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
478   }
479 
480   return RValue::get(Value);
481 }
482 
483 
484 /// getAccessedFieldNo - Given an encoded value and a result number, return the
485 /// input field number being accessed.
486 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
487                                              const llvm::Constant *Elts) {
488   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
489       ->getZExtValue();
490 }
491 
492 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
493 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
494                                     llvm::Value *High) {
495   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
496   llvm::Value *K47 = Builder.getInt64(47);
497   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
498   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
499   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
500   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
501   return Builder.CreateMul(B1, KMul);
502 }
503 
504 bool CodeGenFunction::sanitizePerformTypeCheck() const {
505   return SanOpts.has(SanitizerKind::Null) |
506          SanOpts.has(SanitizerKind::Alignment) |
507          SanOpts.has(SanitizerKind::ObjectSize) |
508          SanOpts.has(SanitizerKind::Vptr);
509 }
510 
511 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
512                                     llvm::Value *Ptr, QualType Ty,
513                                     CharUnits Alignment, bool SkipNullCheck) {
514   if (!sanitizePerformTypeCheck())
515     return;
516 
517   // Don't check pointers outside the default address space. The null check
518   // isn't correct, the object-size check isn't supported by LLVM, and we can't
519   // communicate the addresses to the runtime handler for the vptr check.
520   if (Ptr->getType()->getPointerAddressSpace())
521     return;
522 
523   SanitizerScope SanScope(this);
524 
525   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
526   llvm::BasicBlock *Done = nullptr;
527 
528   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
529                            TCK == TCK_UpcastToVirtualBase;
530   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
531       !SkipNullCheck) {
532     // The glvalue must not be an empty glvalue.
533     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
534 
535     if (AllowNullPointers) {
536       // When performing pointer casts, it's OK if the value is null.
537       // Skip the remaining checks in that case.
538       Done = createBasicBlock("null");
539       llvm::BasicBlock *Rest = createBasicBlock("not.null");
540       Builder.CreateCondBr(IsNonNull, Rest, Done);
541       EmitBlock(Rest);
542     } else {
543       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
544     }
545   }
546 
547   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
548     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
549 
550     // The glvalue must refer to a large enough storage region.
551     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
552     //        to check this.
553     // FIXME: Get object address space
554     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
555     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
556     llvm::Value *Min = Builder.getFalse();
557     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
558     llvm::Value *LargeEnough =
559         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
560                               llvm::ConstantInt::get(IntPtrTy, Size));
561     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
562   }
563 
564   uint64_t AlignVal = 0;
565 
566   if (SanOpts.has(SanitizerKind::Alignment)) {
567     AlignVal = Alignment.getQuantity();
568     if (!Ty->isIncompleteType() && !AlignVal)
569       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
570 
571     // The glvalue must be suitably aligned.
572     if (AlignVal) {
573       llvm::Value *Align =
574           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
575                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
576       llvm::Value *Aligned =
577         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
578       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
579     }
580   }
581 
582   if (Checks.size() > 0) {
583     llvm::Constant *StaticData[] = {
584       EmitCheckSourceLocation(Loc),
585       EmitCheckTypeDescriptor(Ty),
586       llvm::ConstantInt::get(SizeTy, AlignVal),
587       llvm::ConstantInt::get(Int8Ty, TCK)
588     };
589     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
590   }
591 
592   // If possible, check that the vptr indicates that there is a subobject of
593   // type Ty at offset zero within this object.
594   //
595   // C++11 [basic.life]p5,6:
596   //   [For storage which does not refer to an object within its lifetime]
597   //   The program has undefined behavior if:
598   //    -- the [pointer or glvalue] is used to access a non-static data member
599   //       or call a non-static member function
600   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
601   if (SanOpts.has(SanitizerKind::Vptr) &&
602       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
603        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
604        TCK == TCK_UpcastToVirtualBase) &&
605       RD && RD->hasDefinition() && RD->isDynamicClass()) {
606     // Compute a hash of the mangled name of the type.
607     //
608     // FIXME: This is not guaranteed to be deterministic! Move to a
609     //        fingerprinting mechanism once LLVM provides one. For the time
610     //        being the implementation happens to be deterministic.
611     SmallString<64> MangledName;
612     llvm::raw_svector_ostream Out(MangledName);
613     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
614                                                      Out);
615 
616     // Blacklist based on the mangled type.
617     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
618             Out.str())) {
619       llvm::hash_code TypeHash = hash_value(Out.str());
620 
621       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
622       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
623       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
624       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
625       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
626       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
627 
628       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
629       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
630 
631       // Look the hash up in our cache.
632       const int CacheSize = 128;
633       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
634       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
635                                                      "__ubsan_vptr_type_cache");
636       llvm::Value *Slot = Builder.CreateAnd(Hash,
637                                             llvm::ConstantInt::get(IntPtrTy,
638                                                                    CacheSize-1));
639       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
640       llvm::Value *CacheVal =
641         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
642                                   getPointerAlign());
643 
644       // If the hash isn't in the cache, call a runtime handler to perform the
645       // hard work of checking whether the vptr is for an object of the right
646       // type. This will either fill in the cache and return, or produce a
647       // diagnostic.
648       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
649       llvm::Constant *StaticData[] = {
650         EmitCheckSourceLocation(Loc),
651         EmitCheckTypeDescriptor(Ty),
652         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
653         llvm::ConstantInt::get(Int8Ty, TCK)
654       };
655       llvm::Value *DynamicData[] = { Ptr, Hash };
656       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
657                 "dynamic_type_cache_miss", StaticData, DynamicData);
658     }
659   }
660 
661   if (Done) {
662     Builder.CreateBr(Done);
663     EmitBlock(Done);
664   }
665 }
666 
667 /// Determine whether this expression refers to a flexible array member in a
668 /// struct. We disable array bounds checks for such members.
669 static bool isFlexibleArrayMemberExpr(const Expr *E) {
670   // For compatibility with existing code, we treat arrays of length 0 or
671   // 1 as flexible array members.
672   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
673   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
674     if (CAT->getSize().ugt(1))
675       return false;
676   } else if (!isa<IncompleteArrayType>(AT))
677     return false;
678 
679   E = E->IgnoreParens();
680 
681   // A flexible array member must be the last member in the class.
682   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
683     // FIXME: If the base type of the member expr is not FD->getParent(),
684     // this should not be treated as a flexible array member access.
685     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
686       RecordDecl::field_iterator FI(
687           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
688       return ++FI == FD->getParent()->field_end();
689     }
690   }
691 
692   return false;
693 }
694 
695 /// If Base is known to point to the start of an array, return the length of
696 /// that array. Return 0 if the length cannot be determined.
697 static llvm::Value *getArrayIndexingBound(
698     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
699   // For the vector indexing extension, the bound is the number of elements.
700   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
701     IndexedType = Base->getType();
702     return CGF.Builder.getInt32(VT->getNumElements());
703   }
704 
705   Base = Base->IgnoreParens();
706 
707   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
708     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
709         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
710       IndexedType = CE->getSubExpr()->getType();
711       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
712       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
713         return CGF.Builder.getInt(CAT->getSize());
714       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
715         return CGF.getVLASize(VAT).first;
716     }
717   }
718 
719   return nullptr;
720 }
721 
722 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
723                                       llvm::Value *Index, QualType IndexType,
724                                       bool Accessed) {
725   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
726          "should not be called unless adding bounds checks");
727   SanitizerScope SanScope(this);
728 
729   QualType IndexedType;
730   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
731   if (!Bound)
732     return;
733 
734   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
735   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
736   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
737 
738   llvm::Constant *StaticData[] = {
739     EmitCheckSourceLocation(E->getExprLoc()),
740     EmitCheckTypeDescriptor(IndexedType),
741     EmitCheckTypeDescriptor(IndexType)
742   };
743   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
744                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
745   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
746             StaticData, Index);
747 }
748 
749 
750 CodeGenFunction::ComplexPairTy CodeGenFunction::
751 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
752                          bool isInc, bool isPre) {
753   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
754 
755   llvm::Value *NextVal;
756   if (isa<llvm::IntegerType>(InVal.first->getType())) {
757     uint64_t AmountVal = isInc ? 1 : -1;
758     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
759 
760     // Add the inc/dec to the real part.
761     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
762   } else {
763     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
764     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
765     if (!isInc)
766       FVal.changeSign();
767     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
768 
769     // Add the inc/dec to the real part.
770     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
771   }
772 
773   ComplexPairTy IncVal(NextVal, InVal.second);
774 
775   // Store the updated result through the lvalue.
776   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
777 
778   // If this is a postinc, return the value read from memory, otherwise use the
779   // updated value.
780   return isPre ? IncVal : InVal;
781 }
782 
783 //===----------------------------------------------------------------------===//
784 //                         LValue Expression Emission
785 //===----------------------------------------------------------------------===//
786 
787 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
788 /// derive a more accurate bound on the alignment of the pointer.
789 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
790                                                   AlignmentSource  *Source) {
791   // We allow this with ObjC object pointers because of fragile ABIs.
792   assert(E->getType()->isPointerType() ||
793          E->getType()->isObjCObjectPointerType());
794   E = E->IgnoreParens();
795 
796   // Casts:
797   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
798     // Bind VLAs in the cast type.
799     if (E->getType()->isVariablyModifiedType())
800       EmitVariablyModifiedType(E->getType());
801 
802     switch (CE->getCastKind()) {
803     // Non-converting casts (but not C's implicit conversion from void*).
804     case CK_BitCast:
805     case CK_NoOp:
806       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
807         if (PtrTy->getPointeeType()->isVoidType())
808           break;
809 
810         AlignmentSource InnerSource;
811         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
812         if (Source) *Source = InnerSource;
813 
814         // If this is an explicit bitcast, and the source l-value is
815         // opaque, honor the alignment of the casted-to type.
816         if (isa<ExplicitCastExpr>(CE) &&
817             InnerSource != AlignmentSource::Decl) {
818           Addr = Address(Addr.getPointer(),
819                          getNaturalPointeeTypeAlignment(E->getType(), Source));
820         }
821 
822         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
823           if (auto PT = E->getType()->getAs<PointerType>())
824             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
825                                       /*MayBeNull=*/true,
826                                       CodeGenFunction::CFITCK_UnrelatedCast,
827                                       CE->getLocStart());
828         }
829 
830         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
831       }
832       break;
833 
834     // Array-to-pointer decay.
835     case CK_ArrayToPointerDecay:
836       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
837 
838     // Derived-to-base conversions.
839     case CK_UncheckedDerivedToBase:
840     case CK_DerivedToBase: {
841       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
842       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
843       return GetAddressOfBaseClass(Addr, Derived,
844                                    CE->path_begin(), CE->path_end(),
845                                    ShouldNullCheckClassCastValue(CE),
846                                    CE->getExprLoc());
847     }
848 
849     // TODO: Is there any reason to treat base-to-derived conversions
850     // specially?
851     default:
852       break;
853     }
854   }
855 
856   // Unary &.
857   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
858     if (UO->getOpcode() == UO_AddrOf) {
859       LValue LV = EmitLValue(UO->getSubExpr());
860       if (Source) *Source = LV.getAlignmentSource();
861       return LV.getAddress();
862     }
863   }
864 
865   // TODO: conditional operators, comma.
866 
867   // Otherwise, use the alignment of the type.
868   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
869   return Address(EmitScalarExpr(E), Align);
870 }
871 
872 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
873   if (Ty->isVoidType())
874     return RValue::get(nullptr);
875 
876   switch (getEvaluationKind(Ty)) {
877   case TEK_Complex: {
878     llvm::Type *EltTy =
879       ConvertType(Ty->castAs<ComplexType>()->getElementType());
880     llvm::Value *U = llvm::UndefValue::get(EltTy);
881     return RValue::getComplex(std::make_pair(U, U));
882   }
883 
884   // If this is a use of an undefined aggregate type, the aggregate must have an
885   // identifiable address.  Just because the contents of the value are undefined
886   // doesn't mean that the address can't be taken and compared.
887   case TEK_Aggregate: {
888     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
889     return RValue::getAggregate(DestPtr);
890   }
891 
892   case TEK_Scalar:
893     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
894   }
895   llvm_unreachable("bad evaluation kind");
896 }
897 
898 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
899                                               const char *Name) {
900   ErrorUnsupported(E, Name);
901   return GetUndefRValue(E->getType());
902 }
903 
904 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
905                                               const char *Name) {
906   ErrorUnsupported(E, Name);
907   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
908   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
909                         E->getType());
910 }
911 
912 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
913   LValue LV;
914   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
915     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
916   else
917     LV = EmitLValue(E);
918   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
919     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
920                   E->getType(), LV.getAlignment());
921   return LV;
922 }
923 
924 /// EmitLValue - Emit code to compute a designator that specifies the location
925 /// of the expression.
926 ///
927 /// This can return one of two things: a simple address or a bitfield reference.
928 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
929 /// an LLVM pointer type.
930 ///
931 /// If this returns a bitfield reference, nothing about the pointee type of the
932 /// LLVM value is known: For example, it may not be a pointer to an integer.
933 ///
934 /// If this returns a normal address, and if the lvalue's C type is fixed size,
935 /// this method guarantees that the returned pointer type will point to an LLVM
936 /// type of the same size of the lvalue's type.  If the lvalue has a variable
937 /// length type, this is not possible.
938 ///
939 LValue CodeGenFunction::EmitLValue(const Expr *E) {
940   ApplyDebugLocation DL(*this, E);
941   switch (E->getStmtClass()) {
942   default: return EmitUnsupportedLValue(E, "l-value expression");
943 
944   case Expr::ObjCPropertyRefExprClass:
945     llvm_unreachable("cannot emit a property reference directly");
946 
947   case Expr::ObjCSelectorExprClass:
948     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
949   case Expr::ObjCIsaExprClass:
950     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
951   case Expr::BinaryOperatorClass:
952     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
953   case Expr::CompoundAssignOperatorClass: {
954     QualType Ty = E->getType();
955     if (const AtomicType *AT = Ty->getAs<AtomicType>())
956       Ty = AT->getValueType();
957     if (!Ty->isAnyComplexType())
958       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
959     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
960   }
961   case Expr::CallExprClass:
962   case Expr::CXXMemberCallExprClass:
963   case Expr::CXXOperatorCallExprClass:
964   case Expr::UserDefinedLiteralClass:
965     return EmitCallExprLValue(cast<CallExpr>(E));
966   case Expr::VAArgExprClass:
967     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
968   case Expr::DeclRefExprClass:
969     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
970   case Expr::ParenExprClass:
971     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
972   case Expr::GenericSelectionExprClass:
973     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
974   case Expr::PredefinedExprClass:
975     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
976   case Expr::StringLiteralClass:
977     return EmitStringLiteralLValue(cast<StringLiteral>(E));
978   case Expr::ObjCEncodeExprClass:
979     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
980   case Expr::PseudoObjectExprClass:
981     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
982   case Expr::InitListExprClass:
983     return EmitInitListLValue(cast<InitListExpr>(E));
984   case Expr::CXXTemporaryObjectExprClass:
985   case Expr::CXXConstructExprClass:
986     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
987   case Expr::CXXBindTemporaryExprClass:
988     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
989   case Expr::CXXUuidofExprClass:
990     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
991   case Expr::LambdaExprClass:
992     return EmitLambdaLValue(cast<LambdaExpr>(E));
993 
994   case Expr::ExprWithCleanupsClass: {
995     const auto *cleanups = cast<ExprWithCleanups>(E);
996     enterFullExpression(cleanups);
997     RunCleanupsScope Scope(*this);
998     return EmitLValue(cleanups->getSubExpr());
999   }
1000 
1001   case Expr::CXXDefaultArgExprClass:
1002     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1003   case Expr::CXXDefaultInitExprClass: {
1004     CXXDefaultInitExprScope Scope(*this);
1005     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1006   }
1007   case Expr::CXXTypeidExprClass:
1008     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1009 
1010   case Expr::ObjCMessageExprClass:
1011     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1012   case Expr::ObjCIvarRefExprClass:
1013     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1014   case Expr::StmtExprClass:
1015     return EmitStmtExprLValue(cast<StmtExpr>(E));
1016   case Expr::UnaryOperatorClass:
1017     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1018   case Expr::ArraySubscriptExprClass:
1019     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1020   case Expr::OMPArraySectionExprClass:
1021     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1022   case Expr::ExtVectorElementExprClass:
1023     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1024   case Expr::MemberExprClass:
1025     return EmitMemberExpr(cast<MemberExpr>(E));
1026   case Expr::CompoundLiteralExprClass:
1027     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1028   case Expr::ConditionalOperatorClass:
1029     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1030   case Expr::BinaryConditionalOperatorClass:
1031     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1032   case Expr::ChooseExprClass:
1033     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1034   case Expr::OpaqueValueExprClass:
1035     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1036   case Expr::SubstNonTypeTemplateParmExprClass:
1037     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1038   case Expr::ImplicitCastExprClass:
1039   case Expr::CStyleCastExprClass:
1040   case Expr::CXXFunctionalCastExprClass:
1041   case Expr::CXXStaticCastExprClass:
1042   case Expr::CXXDynamicCastExprClass:
1043   case Expr::CXXReinterpretCastExprClass:
1044   case Expr::CXXConstCastExprClass:
1045   case Expr::ObjCBridgedCastExprClass:
1046     return EmitCastLValue(cast<CastExpr>(E));
1047 
1048   case Expr::MaterializeTemporaryExprClass:
1049     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1050   }
1051 }
1052 
1053 /// Given an object of the given canonical type, can we safely copy a
1054 /// value out of it based on its initializer?
1055 static bool isConstantEmittableObjectType(QualType type) {
1056   assert(type.isCanonical());
1057   assert(!type->isReferenceType());
1058 
1059   // Must be const-qualified but non-volatile.
1060   Qualifiers qs = type.getLocalQualifiers();
1061   if (!qs.hasConst() || qs.hasVolatile()) return false;
1062 
1063   // Otherwise, all object types satisfy this except C++ classes with
1064   // mutable subobjects or non-trivial copy/destroy behavior.
1065   if (const auto *RT = dyn_cast<RecordType>(type))
1066     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1067       if (RD->hasMutableFields() || !RD->isTrivial())
1068         return false;
1069 
1070   return true;
1071 }
1072 
1073 /// Can we constant-emit a load of a reference to a variable of the
1074 /// given type?  This is different from predicates like
1075 /// Decl::isUsableInConstantExpressions because we do want it to apply
1076 /// in situations that don't necessarily satisfy the language's rules
1077 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1078 /// to do this with const float variables even if those variables
1079 /// aren't marked 'constexpr'.
1080 enum ConstantEmissionKind {
1081   CEK_None,
1082   CEK_AsReferenceOnly,
1083   CEK_AsValueOrReference,
1084   CEK_AsValueOnly
1085 };
1086 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1087   type = type.getCanonicalType();
1088   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1089     if (isConstantEmittableObjectType(ref->getPointeeType()))
1090       return CEK_AsValueOrReference;
1091     return CEK_AsReferenceOnly;
1092   }
1093   if (isConstantEmittableObjectType(type))
1094     return CEK_AsValueOnly;
1095   return CEK_None;
1096 }
1097 
1098 /// Try to emit a reference to the given value without producing it as
1099 /// an l-value.  This is actually more than an optimization: we can't
1100 /// produce an l-value for variables that we never actually captured
1101 /// in a block or lambda, which means const int variables or constexpr
1102 /// literals or similar.
1103 CodeGenFunction::ConstantEmission
1104 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1105   ValueDecl *value = refExpr->getDecl();
1106 
1107   // The value needs to be an enum constant or a constant variable.
1108   ConstantEmissionKind CEK;
1109   if (isa<ParmVarDecl>(value)) {
1110     CEK = CEK_None;
1111   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1112     CEK = checkVarTypeForConstantEmission(var->getType());
1113   } else if (isa<EnumConstantDecl>(value)) {
1114     CEK = CEK_AsValueOnly;
1115   } else {
1116     CEK = CEK_None;
1117   }
1118   if (CEK == CEK_None) return ConstantEmission();
1119 
1120   Expr::EvalResult result;
1121   bool resultIsReference;
1122   QualType resultType;
1123 
1124   // It's best to evaluate all the way as an r-value if that's permitted.
1125   if (CEK != CEK_AsReferenceOnly &&
1126       refExpr->EvaluateAsRValue(result, getContext())) {
1127     resultIsReference = false;
1128     resultType = refExpr->getType();
1129 
1130   // Otherwise, try to evaluate as an l-value.
1131   } else if (CEK != CEK_AsValueOnly &&
1132              refExpr->EvaluateAsLValue(result, getContext())) {
1133     resultIsReference = true;
1134     resultType = value->getType();
1135 
1136   // Failure.
1137   } else {
1138     return ConstantEmission();
1139   }
1140 
1141   // In any case, if the initializer has side-effects, abandon ship.
1142   if (result.HasSideEffects)
1143     return ConstantEmission();
1144 
1145   // Emit as a constant.
1146   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1147 
1148   // Make sure we emit a debug reference to the global variable.
1149   // This should probably fire even for
1150   if (isa<VarDecl>(value)) {
1151     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1152       EmitDeclRefExprDbgValue(refExpr, C);
1153   } else {
1154     assert(isa<EnumConstantDecl>(value));
1155     EmitDeclRefExprDbgValue(refExpr, C);
1156   }
1157 
1158   // If we emitted a reference constant, we need to dereference that.
1159   if (resultIsReference)
1160     return ConstantEmission::forReference(C);
1161 
1162   return ConstantEmission::forValue(C);
1163 }
1164 
1165 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1166                                                SourceLocation Loc) {
1167   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1168                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1169                           lvalue.getTBAAInfo(),
1170                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1171                           lvalue.isNontemporal());
1172 }
1173 
1174 static bool hasBooleanRepresentation(QualType Ty) {
1175   if (Ty->isBooleanType())
1176     return true;
1177 
1178   if (const EnumType *ET = Ty->getAs<EnumType>())
1179     return ET->getDecl()->getIntegerType()->isBooleanType();
1180 
1181   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1182     return hasBooleanRepresentation(AT->getValueType());
1183 
1184   return false;
1185 }
1186 
1187 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1188                             llvm::APInt &Min, llvm::APInt &End,
1189                             bool StrictEnums) {
1190   const EnumType *ET = Ty->getAs<EnumType>();
1191   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1192                                 ET && !ET->getDecl()->isFixed();
1193   bool IsBool = hasBooleanRepresentation(Ty);
1194   if (!IsBool && !IsRegularCPlusPlusEnum)
1195     return false;
1196 
1197   if (IsBool) {
1198     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1199     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1200   } else {
1201     const EnumDecl *ED = ET->getDecl();
1202     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1203     unsigned Bitwidth = LTy->getScalarSizeInBits();
1204     unsigned NumNegativeBits = ED->getNumNegativeBits();
1205     unsigned NumPositiveBits = ED->getNumPositiveBits();
1206 
1207     if (NumNegativeBits) {
1208       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1209       assert(NumBits <= Bitwidth);
1210       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1211       Min = -End;
1212     } else {
1213       assert(NumPositiveBits <= Bitwidth);
1214       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1215       Min = llvm::APInt(Bitwidth, 0);
1216     }
1217   }
1218   return true;
1219 }
1220 
1221 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1222   llvm::APInt Min, End;
1223   if (!getRangeForType(*this, Ty, Min, End,
1224                        CGM.getCodeGenOpts().StrictEnums))
1225     return nullptr;
1226 
1227   llvm::MDBuilder MDHelper(getLLVMContext());
1228   return MDHelper.createRange(Min, End);
1229 }
1230 
1231 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1232                                                QualType Ty,
1233                                                SourceLocation Loc,
1234                                                AlignmentSource AlignSource,
1235                                                llvm::MDNode *TBAAInfo,
1236                                                QualType TBAABaseType,
1237                                                uint64_t TBAAOffset,
1238                                                bool isNontemporal) {
1239   // For better performance, handle vector loads differently.
1240   if (Ty->isVectorType()) {
1241     const llvm::Type *EltTy = Addr.getElementType();
1242 
1243     const auto *VTy = cast<llvm::VectorType>(EltTy);
1244 
1245     // Handle vectors of size 3 like size 4 for better performance.
1246     if (VTy->getNumElements() == 3) {
1247 
1248       // Bitcast to vec4 type.
1249       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1250                                                          4);
1251       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1252       // Now load value.
1253       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1254 
1255       // Shuffle vector to get vec3.
1256       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1257                                       {0, 1, 2}, "extractVec");
1258       return EmitFromMemory(V, Ty);
1259     }
1260   }
1261 
1262   // Atomic operations have to be done on integral types.
1263   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1264     LValue lvalue =
1265       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1266     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1267   }
1268 
1269   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1270   if (isNontemporal) {
1271     llvm::MDNode *Node = llvm::MDNode::get(
1272         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1273     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1274   }
1275   if (TBAAInfo) {
1276     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1277                                                       TBAAOffset);
1278     if (TBAAPath)
1279       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1280                                       false /*ConvertTypeToTag*/);
1281   }
1282 
1283   bool NeedsBoolCheck =
1284       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1285   bool NeedsEnumCheck =
1286       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1287   if (NeedsBoolCheck || NeedsEnumCheck) {
1288     SanitizerScope SanScope(this);
1289     llvm::APInt Min, End;
1290     if (getRangeForType(*this, Ty, Min, End, true)) {
1291       --End;
1292       llvm::Value *Check;
1293       if (!Min)
1294         Check = Builder.CreateICmpULE(
1295           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1296       else {
1297         llvm::Value *Upper = Builder.CreateICmpSLE(
1298           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1299         llvm::Value *Lower = Builder.CreateICmpSGE(
1300           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1301         Check = Builder.CreateAnd(Upper, Lower);
1302       }
1303       llvm::Constant *StaticArgs[] = {
1304         EmitCheckSourceLocation(Loc),
1305         EmitCheckTypeDescriptor(Ty)
1306       };
1307       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1308       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1309                 EmitCheckValue(Load));
1310     }
1311   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1312     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1313       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1314 
1315   return EmitFromMemory(Load, Ty);
1316 }
1317 
1318 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1319   // Bool has a different representation in memory than in registers.
1320   if (hasBooleanRepresentation(Ty)) {
1321     // This should really always be an i1, but sometimes it's already
1322     // an i8, and it's awkward to track those cases down.
1323     if (Value->getType()->isIntegerTy(1))
1324       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1325     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1326            "wrong value rep of bool");
1327   }
1328 
1329   return Value;
1330 }
1331 
1332 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1333   // Bool has a different representation in memory than in registers.
1334   if (hasBooleanRepresentation(Ty)) {
1335     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1336            "wrong value rep of bool");
1337     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1338   }
1339 
1340   return Value;
1341 }
1342 
1343 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1344                                         bool Volatile, QualType Ty,
1345                                         AlignmentSource AlignSource,
1346                                         llvm::MDNode *TBAAInfo,
1347                                         bool isInit, QualType TBAABaseType,
1348                                         uint64_t TBAAOffset,
1349                                         bool isNontemporal) {
1350 
1351   // Handle vectors differently to get better performance.
1352   if (Ty->isVectorType()) {
1353     llvm::Type *SrcTy = Value->getType();
1354     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1355     // Handle vec3 special.
1356     if (VecTy->getNumElements() == 3) {
1357       // Our source is a vec3, do a shuffle vector to make it a vec4.
1358       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1359                                 Builder.getInt32(2),
1360                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1361       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1362       Value = Builder.CreateShuffleVector(Value,
1363                                           llvm::UndefValue::get(VecTy),
1364                                           MaskV, "extractVec");
1365       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1366     }
1367     if (Addr.getElementType() != SrcTy) {
1368       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1369     }
1370   }
1371 
1372   Value = EmitToMemory(Value, Ty);
1373 
1374   if (Ty->isAtomicType() ||
1375       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1376     EmitAtomicStore(RValue::get(Value),
1377                     LValue::MakeAddr(Addr, Ty, getContext(),
1378                                      AlignSource, TBAAInfo),
1379                     isInit);
1380     return;
1381   }
1382 
1383   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1384   if (isNontemporal) {
1385     llvm::MDNode *Node =
1386         llvm::MDNode::get(Store->getContext(),
1387                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1388     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1389   }
1390   if (TBAAInfo) {
1391     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1392                                                       TBAAOffset);
1393     if (TBAAPath)
1394       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1395                                       false /*ConvertTypeToTag*/);
1396   }
1397 }
1398 
1399 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1400                                         bool isInit) {
1401   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1402                     lvalue.getType(), lvalue.getAlignmentSource(),
1403                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1404                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1405 }
1406 
1407 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1408 /// method emits the address of the lvalue, then loads the result as an rvalue,
1409 /// returning the rvalue.
1410 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1411   if (LV.isObjCWeak()) {
1412     // load of a __weak object.
1413     Address AddrWeakObj = LV.getAddress();
1414     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1415                                                              AddrWeakObj));
1416   }
1417   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1418     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1419     Object = EmitObjCConsumeObject(LV.getType(), Object);
1420     return RValue::get(Object);
1421   }
1422 
1423   if (LV.isSimple()) {
1424     assert(!LV.getType()->isFunctionType());
1425 
1426     // Everything needs a load.
1427     return RValue::get(EmitLoadOfScalar(LV, Loc));
1428   }
1429 
1430   if (LV.isVectorElt()) {
1431     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1432                                               LV.isVolatileQualified());
1433     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1434                                                     "vecext"));
1435   }
1436 
1437   // If this is a reference to a subset of the elements of a vector, either
1438   // shuffle the input or extract/insert them as appropriate.
1439   if (LV.isExtVectorElt())
1440     return EmitLoadOfExtVectorElementLValue(LV);
1441 
1442   // Global Register variables always invoke intrinsics
1443   if (LV.isGlobalReg())
1444     return EmitLoadOfGlobalRegLValue(LV);
1445 
1446   assert(LV.isBitField() && "Unknown LValue type!");
1447   return EmitLoadOfBitfieldLValue(LV);
1448 }
1449 
1450 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1451   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1452 
1453   // Get the output type.
1454   llvm::Type *ResLTy = ConvertType(LV.getType());
1455 
1456   Address Ptr = LV.getBitFieldAddress();
1457   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1458 
1459   if (Info.IsSigned) {
1460     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1461     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1462     if (HighBits)
1463       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1464     if (Info.Offset + HighBits)
1465       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1466   } else {
1467     if (Info.Offset)
1468       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1469     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1470       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1471                                                               Info.Size),
1472                               "bf.clear");
1473   }
1474   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1475 
1476   return RValue::get(Val);
1477 }
1478 
1479 // If this is a reference to a subset of the elements of a vector, create an
1480 // appropriate shufflevector.
1481 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1482   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1483                                         LV.isVolatileQualified());
1484 
1485   const llvm::Constant *Elts = LV.getExtVectorElts();
1486 
1487   // If the result of the expression is a non-vector type, we must be extracting
1488   // a single element.  Just codegen as an extractelement.
1489   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1490   if (!ExprVT) {
1491     unsigned InIdx = getAccessedFieldNo(0, Elts);
1492     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1493     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1494   }
1495 
1496   // Always use shuffle vector to try to retain the original program structure
1497   unsigned NumResultElts = ExprVT->getNumElements();
1498 
1499   SmallVector<llvm::Constant*, 4> Mask;
1500   for (unsigned i = 0; i != NumResultElts; ++i)
1501     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1502 
1503   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1504   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1505                                     MaskV);
1506   return RValue::get(Vec);
1507 }
1508 
1509 /// @brief Generates lvalue for partial ext_vector access.
1510 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1511   Address VectorAddress = LV.getExtVectorAddress();
1512   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1513   QualType EQT = ExprVT->getElementType();
1514   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1515 
1516   Address CastToPointerElement =
1517     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1518                                  "conv.ptr.element");
1519 
1520   const llvm::Constant *Elts = LV.getExtVectorElts();
1521   unsigned ix = getAccessedFieldNo(0, Elts);
1522 
1523   Address VectorBasePtrPlusIx =
1524     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1525                                    getContext().getTypeSizeInChars(EQT),
1526                                    "vector.elt");
1527 
1528   return VectorBasePtrPlusIx;
1529 }
1530 
1531 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1532 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1533   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1534          "Bad type for register variable");
1535   llvm::MDNode *RegName = cast<llvm::MDNode>(
1536       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1537 
1538   // We accept integer and pointer types only
1539   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1540   llvm::Type *Ty = OrigTy;
1541   if (OrigTy->isPointerTy())
1542     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1543   llvm::Type *Types[] = { Ty };
1544 
1545   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1546   llvm::Value *Call = Builder.CreateCall(
1547       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1548   if (OrigTy->isPointerTy())
1549     Call = Builder.CreateIntToPtr(Call, OrigTy);
1550   return RValue::get(Call);
1551 }
1552 
1553 
1554 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1555 /// lvalue, where both are guaranteed to the have the same type, and that type
1556 /// is 'Ty'.
1557 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1558                                              bool isInit) {
1559   if (!Dst.isSimple()) {
1560     if (Dst.isVectorElt()) {
1561       // Read/modify/write the vector, inserting the new element.
1562       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1563                                             Dst.isVolatileQualified());
1564       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1565                                         Dst.getVectorIdx(), "vecins");
1566       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1567                           Dst.isVolatileQualified());
1568       return;
1569     }
1570 
1571     // If this is an update of extended vector elements, insert them as
1572     // appropriate.
1573     if (Dst.isExtVectorElt())
1574       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1575 
1576     if (Dst.isGlobalReg())
1577       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1578 
1579     assert(Dst.isBitField() && "Unknown LValue type");
1580     return EmitStoreThroughBitfieldLValue(Src, Dst);
1581   }
1582 
1583   // There's special magic for assigning into an ARC-qualified l-value.
1584   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1585     switch (Lifetime) {
1586     case Qualifiers::OCL_None:
1587       llvm_unreachable("present but none");
1588 
1589     case Qualifiers::OCL_ExplicitNone:
1590       // nothing special
1591       break;
1592 
1593     case Qualifiers::OCL_Strong:
1594       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1595       return;
1596 
1597     case Qualifiers::OCL_Weak:
1598       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1599       return;
1600 
1601     case Qualifiers::OCL_Autoreleasing:
1602       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1603                                                      Src.getScalarVal()));
1604       // fall into the normal path
1605       break;
1606     }
1607   }
1608 
1609   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1610     // load of a __weak object.
1611     Address LvalueDst = Dst.getAddress();
1612     llvm::Value *src = Src.getScalarVal();
1613      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1614     return;
1615   }
1616 
1617   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1618     // load of a __strong object.
1619     Address LvalueDst = Dst.getAddress();
1620     llvm::Value *src = Src.getScalarVal();
1621     if (Dst.isObjCIvar()) {
1622       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1623       llvm::Type *ResultType = IntPtrTy;
1624       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1625       llvm::Value *RHS = dst.getPointer();
1626       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1627       llvm::Value *LHS =
1628         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1629                                "sub.ptr.lhs.cast");
1630       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1631       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1632                                               BytesBetween);
1633     } else if (Dst.isGlobalObjCRef()) {
1634       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1635                                                 Dst.isThreadLocalRef());
1636     }
1637     else
1638       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1639     return;
1640   }
1641 
1642   assert(Src.isScalar() && "Can't emit an agg store with this method");
1643   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1644 }
1645 
1646 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1647                                                      llvm::Value **Result) {
1648   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1649   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1650   Address Ptr = Dst.getBitFieldAddress();
1651 
1652   // Get the source value, truncated to the width of the bit-field.
1653   llvm::Value *SrcVal = Src.getScalarVal();
1654 
1655   // Cast the source to the storage type and shift it into place.
1656   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1657                                  /*IsSigned=*/false);
1658   llvm::Value *MaskedVal = SrcVal;
1659 
1660   // See if there are other bits in the bitfield's storage we'll need to load
1661   // and mask together with source before storing.
1662   if (Info.StorageSize != Info.Size) {
1663     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1664     llvm::Value *Val =
1665       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1666 
1667     // Mask the source value as needed.
1668     if (!hasBooleanRepresentation(Dst.getType()))
1669       SrcVal = Builder.CreateAnd(SrcVal,
1670                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1671                                                             Info.Size),
1672                                  "bf.value");
1673     MaskedVal = SrcVal;
1674     if (Info.Offset)
1675       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1676 
1677     // Mask out the original value.
1678     Val = Builder.CreateAnd(Val,
1679                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1680                                                      Info.Offset,
1681                                                      Info.Offset + Info.Size),
1682                             "bf.clear");
1683 
1684     // Or together the unchanged values and the source value.
1685     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1686   } else {
1687     assert(Info.Offset == 0);
1688   }
1689 
1690   // Write the new value back out.
1691   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1692 
1693   // Return the new value of the bit-field, if requested.
1694   if (Result) {
1695     llvm::Value *ResultVal = MaskedVal;
1696 
1697     // Sign extend the value if needed.
1698     if (Info.IsSigned) {
1699       assert(Info.Size <= Info.StorageSize);
1700       unsigned HighBits = Info.StorageSize - Info.Size;
1701       if (HighBits) {
1702         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1703         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1704       }
1705     }
1706 
1707     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1708                                       "bf.result.cast");
1709     *Result = EmitFromMemory(ResultVal, Dst.getType());
1710   }
1711 }
1712 
1713 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1714                                                                LValue Dst) {
1715   // This access turns into a read/modify/write of the vector.  Load the input
1716   // value now.
1717   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1718                                         Dst.isVolatileQualified());
1719   const llvm::Constant *Elts = Dst.getExtVectorElts();
1720 
1721   llvm::Value *SrcVal = Src.getScalarVal();
1722 
1723   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1724     unsigned NumSrcElts = VTy->getNumElements();
1725     unsigned NumDstElts =
1726        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1727     if (NumDstElts == NumSrcElts) {
1728       // Use shuffle vector is the src and destination are the same number of
1729       // elements and restore the vector mask since it is on the side it will be
1730       // stored.
1731       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1732       for (unsigned i = 0; i != NumSrcElts; ++i)
1733         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1734 
1735       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1736       Vec = Builder.CreateShuffleVector(SrcVal,
1737                                         llvm::UndefValue::get(Vec->getType()),
1738                                         MaskV);
1739     } else if (NumDstElts > NumSrcElts) {
1740       // Extended the source vector to the same length and then shuffle it
1741       // into the destination.
1742       // FIXME: since we're shuffling with undef, can we just use the indices
1743       //        into that?  This could be simpler.
1744       SmallVector<llvm::Constant*, 4> ExtMask;
1745       for (unsigned i = 0; i != NumSrcElts; ++i)
1746         ExtMask.push_back(Builder.getInt32(i));
1747       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1748       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1749       llvm::Value *ExtSrcVal =
1750         Builder.CreateShuffleVector(SrcVal,
1751                                     llvm::UndefValue::get(SrcVal->getType()),
1752                                     ExtMaskV);
1753       // build identity
1754       SmallVector<llvm::Constant*, 4> Mask;
1755       for (unsigned i = 0; i != NumDstElts; ++i)
1756         Mask.push_back(Builder.getInt32(i));
1757 
1758       // When the vector size is odd and .odd or .hi is used, the last element
1759       // of the Elts constant array will be one past the size of the vector.
1760       // Ignore the last element here, if it is greater than the mask size.
1761       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1762         NumSrcElts--;
1763 
1764       // modify when what gets shuffled in
1765       for (unsigned i = 0; i != NumSrcElts; ++i)
1766         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1767       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1768       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1769     } else {
1770       // We should never shorten the vector
1771       llvm_unreachable("unexpected shorten vector length");
1772     }
1773   } else {
1774     // If the Src is a scalar (not a vector) it must be updating one element.
1775     unsigned InIdx = getAccessedFieldNo(0, Elts);
1776     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1777     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1778   }
1779 
1780   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1781                       Dst.isVolatileQualified());
1782 }
1783 
1784 /// @brief Store of global named registers are always calls to intrinsics.
1785 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1786   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1787          "Bad type for register variable");
1788   llvm::MDNode *RegName = cast<llvm::MDNode>(
1789       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1790   assert(RegName && "Register LValue is not metadata");
1791 
1792   // We accept integer and pointer types only
1793   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1794   llvm::Type *Ty = OrigTy;
1795   if (OrigTy->isPointerTy())
1796     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1797   llvm::Type *Types[] = { Ty };
1798 
1799   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1800   llvm::Value *Value = Src.getScalarVal();
1801   if (OrigTy->isPointerTy())
1802     Value = Builder.CreatePtrToInt(Value, Ty);
1803   Builder.CreateCall(
1804       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1805 }
1806 
1807 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1808 // generating write-barries API. It is currently a global, ivar,
1809 // or neither.
1810 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1811                                  LValue &LV,
1812                                  bool IsMemberAccess=false) {
1813   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1814     return;
1815 
1816   if (isa<ObjCIvarRefExpr>(E)) {
1817     QualType ExpTy = E->getType();
1818     if (IsMemberAccess && ExpTy->isPointerType()) {
1819       // If ivar is a structure pointer, assigning to field of
1820       // this struct follows gcc's behavior and makes it a non-ivar
1821       // writer-barrier conservatively.
1822       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1823       if (ExpTy->isRecordType()) {
1824         LV.setObjCIvar(false);
1825         return;
1826       }
1827     }
1828     LV.setObjCIvar(true);
1829     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1830     LV.setBaseIvarExp(Exp->getBase());
1831     LV.setObjCArray(E->getType()->isArrayType());
1832     return;
1833   }
1834 
1835   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1836     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1837       if (VD->hasGlobalStorage()) {
1838         LV.setGlobalObjCRef(true);
1839         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1840       }
1841     }
1842     LV.setObjCArray(E->getType()->isArrayType());
1843     return;
1844   }
1845 
1846   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1847     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1848     return;
1849   }
1850 
1851   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1852     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1853     if (LV.isObjCIvar()) {
1854       // If cast is to a structure pointer, follow gcc's behavior and make it
1855       // a non-ivar write-barrier.
1856       QualType ExpTy = E->getType();
1857       if (ExpTy->isPointerType())
1858         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1859       if (ExpTy->isRecordType())
1860         LV.setObjCIvar(false);
1861     }
1862     return;
1863   }
1864 
1865   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1866     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1867     return;
1868   }
1869 
1870   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1871     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1872     return;
1873   }
1874 
1875   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1876     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1877     return;
1878   }
1879 
1880   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1881     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1882     return;
1883   }
1884 
1885   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1886     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1887     if (LV.isObjCIvar() && !LV.isObjCArray())
1888       // Using array syntax to assigning to what an ivar points to is not
1889       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1890       LV.setObjCIvar(false);
1891     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1892       // Using array syntax to assigning to what global points to is not
1893       // same as assigning to the global itself. {id *G;} G[i] = 0;
1894       LV.setGlobalObjCRef(false);
1895     return;
1896   }
1897 
1898   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1899     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1900     // We don't know if member is an 'ivar', but this flag is looked at
1901     // only in the context of LV.isObjCIvar().
1902     LV.setObjCArray(E->getType()->isArrayType());
1903     return;
1904   }
1905 }
1906 
1907 static llvm::Value *
1908 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1909                                 llvm::Value *V, llvm::Type *IRType,
1910                                 StringRef Name = StringRef()) {
1911   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1912   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1913 }
1914 
1915 static LValue EmitThreadPrivateVarDeclLValue(
1916     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1917     llvm::Type *RealVarTy, SourceLocation Loc) {
1918   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1919   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1920   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1921 }
1922 
1923 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1924                                              const ReferenceType *RefTy,
1925                                              AlignmentSource *Source) {
1926   llvm::Value *Ptr = Builder.CreateLoad(Addr);
1927   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1928                                               Source, /*forPointee*/ true));
1929 
1930 }
1931 
1932 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1933                                                   const ReferenceType *RefTy) {
1934   AlignmentSource Source;
1935   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1936   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1937 }
1938 
1939 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1940                                       const Expr *E, const VarDecl *VD) {
1941   QualType T = E->getType();
1942 
1943   // If it's thread_local, emit a call to its wrapper function instead.
1944   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1945       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1946     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1947 
1948   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1949   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1950   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1951   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1952   Address Addr(V, Alignment);
1953   LValue LV;
1954   // Emit reference to the private copy of the variable if it is an OpenMP
1955   // threadprivate variable.
1956   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1957     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
1958                                           E->getExprLoc());
1959   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
1960     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
1961   } else {
1962     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1963   }
1964   setObjCGCLValueClass(CGF.getContext(), E, LV);
1965   return LV;
1966 }
1967 
1968 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1969                                      const Expr *E, const FunctionDecl *FD) {
1970   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1971   if (!FD->hasPrototype()) {
1972     if (const FunctionProtoType *Proto =
1973             FD->getType()->getAs<FunctionProtoType>()) {
1974       // Ugly case: for a K&R-style definition, the type of the definition
1975       // isn't the same as the type of a use.  Correct for this with a
1976       // bitcast.
1977       QualType NoProtoType =
1978           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1979       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1980       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1981     }
1982   }
1983   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1984   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
1985 }
1986 
1987 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1988                                       llvm::Value *ThisValue) {
1989   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1990   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1991   return CGF.EmitLValueForField(LV, FD);
1992 }
1993 
1994 /// Named Registers are named metadata pointing to the register name
1995 /// which will be read from/written to as an argument to the intrinsic
1996 /// @llvm.read/write_register.
1997 /// So far, only the name is being passed down, but other options such as
1998 /// register type, allocation type or even optimization options could be
1999 /// passed down via the metadata node.
2000 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2001   SmallString<64> Name("llvm.named.register.");
2002   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2003   assert(Asm->getLabel().size() < 64-Name.size() &&
2004       "Register name too big");
2005   Name.append(Asm->getLabel());
2006   llvm::NamedMDNode *M =
2007     CGM.getModule().getOrInsertNamedMetadata(Name);
2008   if (M->getNumOperands() == 0) {
2009     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2010                                               Asm->getLabel());
2011     llvm::Metadata *Ops[] = {Str};
2012     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2013   }
2014 
2015   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2016 
2017   llvm::Value *Ptr =
2018     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2019   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2020 }
2021 
2022 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2023   const NamedDecl *ND = E->getDecl();
2024   QualType T = E->getType();
2025 
2026   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2027     // Global Named registers access via intrinsics only
2028     if (VD->getStorageClass() == SC_Register &&
2029         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2030       return EmitGlobalNamedRegister(VD, CGM);
2031 
2032     // A DeclRefExpr for a reference initialized by a constant expression can
2033     // appear without being odr-used. Directly emit the constant initializer.
2034     const Expr *Init = VD->getAnyInitializer(VD);
2035     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2036         VD->isUsableInConstantExpressions(getContext()) &&
2037         VD->checkInitIsICE() &&
2038         // Do not emit if it is private OpenMP variable.
2039         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2040           LocalDeclMap.count(VD))) {
2041       llvm::Constant *Val =
2042         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2043       assert(Val && "failed to emit reference constant expression");
2044       // FIXME: Eventually we will want to emit vector element references.
2045 
2046       // Should we be using the alignment of the constant pointer we emitted?
2047       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2048                                                     /*pointee*/ true);
2049 
2050       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2051     }
2052 
2053     // Check for captured variables.
2054     if (E->refersToEnclosingVariableOrCapture()) {
2055       if (auto *FD = LambdaCaptureFields.lookup(VD))
2056         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2057       else if (CapturedStmtInfo) {
2058         auto it = LocalDeclMap.find(VD);
2059         if (it != LocalDeclMap.end()) {
2060           if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2061             return EmitLoadOfReferenceLValue(it->second, RefTy);
2062           }
2063           return MakeAddrLValue(it->second, T);
2064         }
2065         LValue CapLVal =
2066             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2067                                     CapturedStmtInfo->getContextValue());
2068         return MakeAddrLValue(
2069             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2070             CapLVal.getType(), AlignmentSource::Decl);
2071       }
2072 
2073       assert(isa<BlockDecl>(CurCodeDecl));
2074       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2075       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2076     }
2077   }
2078 
2079   // FIXME: We should be able to assert this for FunctionDecls as well!
2080   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2081   // those with a valid source location.
2082   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2083           !E->getLocation().isValid()) &&
2084          "Should not use decl without marking it used!");
2085 
2086   if (ND->hasAttr<WeakRefAttr>()) {
2087     const auto *VD = cast<ValueDecl>(ND);
2088     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2089     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2090   }
2091 
2092   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2093     // Check if this is a global variable.
2094     if (VD->hasLinkage() || VD->isStaticDataMember())
2095       return EmitGlobalVarDeclLValue(*this, E, VD);
2096 
2097     Address addr = Address::invalid();
2098 
2099     // The variable should generally be present in the local decl map.
2100     auto iter = LocalDeclMap.find(VD);
2101     if (iter != LocalDeclMap.end()) {
2102       addr = iter->second;
2103 
2104     // Otherwise, it might be static local we haven't emitted yet for
2105     // some reason; most likely, because it's in an outer function.
2106     } else if (VD->isStaticLocal()) {
2107       addr = Address(CGM.getOrCreateStaticVarDecl(
2108           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2109                      getContext().getDeclAlign(VD));
2110 
2111     // No other cases for now.
2112     } else {
2113       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2114     }
2115 
2116 
2117     // Check for OpenMP threadprivate variables.
2118     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2119       return EmitThreadPrivateVarDeclLValue(
2120           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2121           E->getExprLoc());
2122     }
2123 
2124     // Drill into block byref variables.
2125     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2126     if (isBlockByref) {
2127       addr = emitBlockByrefAddress(addr, VD);
2128     }
2129 
2130     // Drill into reference types.
2131     LValue LV;
2132     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2133       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2134     } else {
2135       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2136     }
2137 
2138     bool isLocalStorage = VD->hasLocalStorage();
2139 
2140     bool NonGCable = isLocalStorage &&
2141                      !VD->getType()->isReferenceType() &&
2142                      !isBlockByref;
2143     if (NonGCable) {
2144       LV.getQuals().removeObjCGCAttr();
2145       LV.setNonGC(true);
2146     }
2147 
2148     bool isImpreciseLifetime =
2149       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2150     if (isImpreciseLifetime)
2151       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2152     setObjCGCLValueClass(getContext(), E, LV);
2153     return LV;
2154   }
2155 
2156   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2157     return EmitFunctionDeclLValue(*this, E, FD);
2158 
2159   llvm_unreachable("Unhandled DeclRefExpr");
2160 }
2161 
2162 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2163   // __extension__ doesn't affect lvalue-ness.
2164   if (E->getOpcode() == UO_Extension)
2165     return EmitLValue(E->getSubExpr());
2166 
2167   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2168   switch (E->getOpcode()) {
2169   default: llvm_unreachable("Unknown unary operator lvalue!");
2170   case UO_Deref: {
2171     QualType T = E->getSubExpr()->getType()->getPointeeType();
2172     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2173 
2174     AlignmentSource AlignSource;
2175     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2176     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2177     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2178 
2179     // We should not generate __weak write barrier on indirect reference
2180     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2181     // But, we continue to generate __strong write barrier on indirect write
2182     // into a pointer to object.
2183     if (getLangOpts().ObjC1 &&
2184         getLangOpts().getGC() != LangOptions::NonGC &&
2185         LV.isObjCWeak())
2186       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2187     return LV;
2188   }
2189   case UO_Real:
2190   case UO_Imag: {
2191     LValue LV = EmitLValue(E->getSubExpr());
2192     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2193 
2194     // __real is valid on scalars.  This is a faster way of testing that.
2195     // __imag can only produce an rvalue on scalars.
2196     if (E->getOpcode() == UO_Real &&
2197         !LV.getAddress().getElementType()->isStructTy()) {
2198       assert(E->getSubExpr()->getType()->isArithmeticType());
2199       return LV;
2200     }
2201 
2202     assert(E->getSubExpr()->getType()->isAnyComplexType());
2203 
2204     Address Component =
2205       (E->getOpcode() == UO_Real
2206          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2207          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2208     return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
2209   }
2210   case UO_PreInc:
2211   case UO_PreDec: {
2212     LValue LV = EmitLValue(E->getSubExpr());
2213     bool isInc = E->getOpcode() == UO_PreInc;
2214 
2215     if (E->getType()->isAnyComplexType())
2216       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2217     else
2218       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2219     return LV;
2220   }
2221   }
2222 }
2223 
2224 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2225   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2226                         E->getType(), AlignmentSource::Decl);
2227 }
2228 
2229 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2230   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2231                         E->getType(), AlignmentSource::Decl);
2232 }
2233 
2234 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2235   auto SL = E->getFunctionName();
2236   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2237   StringRef FnName = CurFn->getName();
2238   if (FnName.startswith("\01"))
2239     FnName = FnName.substr(1);
2240   StringRef NameItems[] = {
2241       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2242   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2243   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2244     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2245     return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2246   }
2247   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2248   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2249 }
2250 
2251 /// Emit a type description suitable for use by a runtime sanitizer library. The
2252 /// format of a type descriptor is
2253 ///
2254 /// \code
2255 ///   { i16 TypeKind, i16 TypeInfo }
2256 /// \endcode
2257 ///
2258 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2259 /// integer, 1 for a floating point value, and -1 for anything else.
2260 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2261   // Only emit each type's descriptor once.
2262   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2263     return C;
2264 
2265   uint16_t TypeKind = -1;
2266   uint16_t TypeInfo = 0;
2267 
2268   if (T->isIntegerType()) {
2269     TypeKind = 0;
2270     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2271                (T->isSignedIntegerType() ? 1 : 0);
2272   } else if (T->isFloatingType()) {
2273     TypeKind = 1;
2274     TypeInfo = getContext().getTypeSize(T);
2275   }
2276 
2277   // Format the type name as if for a diagnostic, including quotes and
2278   // optionally an 'aka'.
2279   SmallString<32> Buffer;
2280   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2281                                     (intptr_t)T.getAsOpaquePtr(),
2282                                     StringRef(), StringRef(), None, Buffer,
2283                                     None);
2284 
2285   llvm::Constant *Components[] = {
2286     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2287     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2288   };
2289   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2290 
2291   auto *GV = new llvm::GlobalVariable(
2292       CGM.getModule(), Descriptor->getType(),
2293       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2294   GV->setUnnamedAddr(true);
2295   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2296 
2297   // Remember the descriptor for this type.
2298   CGM.setTypeDescriptorInMap(T, GV);
2299 
2300   return GV;
2301 }
2302 
2303 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2304   llvm::Type *TargetTy = IntPtrTy;
2305 
2306   // Floating-point types which fit into intptr_t are bitcast to integers
2307   // and then passed directly (after zero-extension, if necessary).
2308   if (V->getType()->isFloatingPointTy()) {
2309     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2310     if (Bits <= TargetTy->getIntegerBitWidth())
2311       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2312                                                          Bits));
2313   }
2314 
2315   // Integers which fit in intptr_t are zero-extended and passed directly.
2316   if (V->getType()->isIntegerTy() &&
2317       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2318     return Builder.CreateZExt(V, TargetTy);
2319 
2320   // Pointers are passed directly, everything else is passed by address.
2321   if (!V->getType()->isPointerTy()) {
2322     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2323     Builder.CreateStore(V, Ptr);
2324     V = Ptr.getPointer();
2325   }
2326   return Builder.CreatePtrToInt(V, TargetTy);
2327 }
2328 
2329 /// \brief Emit a representation of a SourceLocation for passing to a handler
2330 /// in a sanitizer runtime library. The format for this data is:
2331 /// \code
2332 ///   struct SourceLocation {
2333 ///     const char *Filename;
2334 ///     int32_t Line, Column;
2335 ///   };
2336 /// \endcode
2337 /// For an invalid SourceLocation, the Filename pointer is null.
2338 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2339   llvm::Constant *Filename;
2340   int Line, Column;
2341 
2342   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2343   if (PLoc.isValid()) {
2344     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2345     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2346                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2347     Filename = FilenameGV.getPointer();
2348     Line = PLoc.getLine();
2349     Column = PLoc.getColumn();
2350   } else {
2351     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2352     Line = Column = 0;
2353   }
2354 
2355   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2356                             Builder.getInt32(Column)};
2357 
2358   return llvm::ConstantStruct::getAnon(Data);
2359 }
2360 
2361 namespace {
2362 /// \brief Specify under what conditions this check can be recovered
2363 enum class CheckRecoverableKind {
2364   /// Always terminate program execution if this check fails.
2365   Unrecoverable,
2366   /// Check supports recovering, runtime has both fatal (noreturn) and
2367   /// non-fatal handlers for this check.
2368   Recoverable,
2369   /// Runtime conditionally aborts, always need to support recovery.
2370   AlwaysRecoverable
2371 };
2372 }
2373 
2374 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2375   assert(llvm::countPopulation(Kind) == 1);
2376   switch (Kind) {
2377   case SanitizerKind::Vptr:
2378     return CheckRecoverableKind::AlwaysRecoverable;
2379   case SanitizerKind::Return:
2380   case SanitizerKind::Unreachable:
2381     return CheckRecoverableKind::Unrecoverable;
2382   default:
2383     return CheckRecoverableKind::Recoverable;
2384   }
2385 }
2386 
2387 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2388                                  llvm::FunctionType *FnType,
2389                                  ArrayRef<llvm::Value *> FnArgs,
2390                                  StringRef CheckName,
2391                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2392                                  llvm::BasicBlock *ContBB) {
2393   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2394   bool NeedsAbortSuffix =
2395       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2396   std::string FnName = ("__ubsan_handle_" + CheckName +
2397                         (NeedsAbortSuffix ? "_abort" : "")).str();
2398   bool MayReturn =
2399       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2400 
2401   llvm::AttrBuilder B;
2402   if (!MayReturn) {
2403     B.addAttribute(llvm::Attribute::NoReturn)
2404         .addAttribute(llvm::Attribute::NoUnwind);
2405   }
2406   B.addAttribute(llvm::Attribute::UWTable);
2407 
2408   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2409       FnType, FnName,
2410       llvm::AttributeSet::get(CGF.getLLVMContext(),
2411                               llvm::AttributeSet::FunctionIndex, B));
2412   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2413   if (!MayReturn) {
2414     HandlerCall->setDoesNotReturn();
2415     CGF.Builder.CreateUnreachable();
2416   } else {
2417     CGF.Builder.CreateBr(ContBB);
2418   }
2419 }
2420 
2421 void CodeGenFunction::EmitCheck(
2422     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2423     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2424     ArrayRef<llvm::Value *> DynamicArgs) {
2425   assert(IsSanitizerScope);
2426   assert(Checked.size() > 0);
2427 
2428   llvm::Value *FatalCond = nullptr;
2429   llvm::Value *RecoverableCond = nullptr;
2430   llvm::Value *TrapCond = nullptr;
2431   for (int i = 0, n = Checked.size(); i < n; ++i) {
2432     llvm::Value *Check = Checked[i].first;
2433     // -fsanitize-trap= overrides -fsanitize-recover=.
2434     llvm::Value *&Cond =
2435         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2436             ? TrapCond
2437             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2438                   ? RecoverableCond
2439                   : FatalCond;
2440     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2441   }
2442 
2443   if (TrapCond)
2444     EmitTrapCheck(TrapCond);
2445   if (!FatalCond && !RecoverableCond)
2446     return;
2447 
2448   llvm::Value *JointCond;
2449   if (FatalCond && RecoverableCond)
2450     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2451   else
2452     JointCond = FatalCond ? FatalCond : RecoverableCond;
2453   assert(JointCond);
2454 
2455   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2456   assert(SanOpts.has(Checked[0].second));
2457 #ifndef NDEBUG
2458   for (int i = 1, n = Checked.size(); i < n; ++i) {
2459     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2460            "All recoverable kinds in a single check must be same!");
2461     assert(SanOpts.has(Checked[i].second));
2462   }
2463 #endif
2464 
2465   llvm::BasicBlock *Cont = createBasicBlock("cont");
2466   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2467   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2468   // Give hint that we very much don't expect to execute the handler
2469   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2470   llvm::MDBuilder MDHelper(getLLVMContext());
2471   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2472   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2473   EmitBlock(Handlers);
2474 
2475   // Emit handler arguments and create handler function type.
2476   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2477   auto *InfoPtr =
2478       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2479                                llvm::GlobalVariable::PrivateLinkage, Info);
2480   InfoPtr->setUnnamedAddr(true);
2481   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2482 
2483   SmallVector<llvm::Value *, 4> Args;
2484   SmallVector<llvm::Type *, 4> ArgTypes;
2485   Args.reserve(DynamicArgs.size() + 1);
2486   ArgTypes.reserve(DynamicArgs.size() + 1);
2487 
2488   // Handler functions take an i8* pointing to the (handler-specific) static
2489   // information block, followed by a sequence of intptr_t arguments
2490   // representing operand values.
2491   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2492   ArgTypes.push_back(Int8PtrTy);
2493   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2494     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2495     ArgTypes.push_back(IntPtrTy);
2496   }
2497 
2498   llvm::FunctionType *FnType =
2499     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2500 
2501   if (!FatalCond || !RecoverableCond) {
2502     // Simple case: we need to generate a single handler call, either
2503     // fatal, or non-fatal.
2504     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2505                          (FatalCond != nullptr), Cont);
2506   } else {
2507     // Emit two handler calls: first one for set of unrecoverable checks,
2508     // another one for recoverable.
2509     llvm::BasicBlock *NonFatalHandlerBB =
2510         createBasicBlock("non_fatal." + CheckName);
2511     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2512     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2513     EmitBlock(FatalHandlerBB);
2514     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2515                          NonFatalHandlerBB);
2516     EmitBlock(NonFatalHandlerBB);
2517     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2518                          Cont);
2519   }
2520 
2521   EmitBlock(Cont);
2522 }
2523 
2524 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2525   llvm::BasicBlock *Cont = createBasicBlock("cont");
2526 
2527   // If we're optimizing, collapse all calls to trap down to just one per
2528   // function to save on code size.
2529   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2530     TrapBB = createBasicBlock("trap");
2531     Builder.CreateCondBr(Checked, Cont, TrapBB);
2532     EmitBlock(TrapBB);
2533     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2534     TrapCall->setDoesNotReturn();
2535     TrapCall->setDoesNotThrow();
2536     Builder.CreateUnreachable();
2537   } else {
2538     Builder.CreateCondBr(Checked, Cont, TrapBB);
2539   }
2540 
2541   EmitBlock(Cont);
2542 }
2543 
2544 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2545   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2546 
2547   if (!CGM.getCodeGenOpts().TrapFuncName.empty())
2548     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
2549                            "trap-func-name",
2550                            CGM.getCodeGenOpts().TrapFuncName);
2551 
2552   return TrapCall;
2553 }
2554 
2555 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2556                                                  AlignmentSource *AlignSource) {
2557   assert(E->getType()->isArrayType() &&
2558          "Array to pointer decay must have array source type!");
2559 
2560   // Expressions of array type can't be bitfields or vector elements.
2561   LValue LV = EmitLValue(E);
2562   Address Addr = LV.getAddress();
2563   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2564 
2565   // If the array type was an incomplete type, we need to make sure
2566   // the decay ends up being the right type.
2567   llvm::Type *NewTy = ConvertType(E->getType());
2568   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2569 
2570   // Note that VLA pointers are always decayed, so we don't need to do
2571   // anything here.
2572   if (!E->getType()->isVariableArrayType()) {
2573     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2574            "Expected pointer to array");
2575     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2576   }
2577 
2578   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2579   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2580 }
2581 
2582 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2583 /// array to pointer, return the array subexpression.
2584 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2585   // If this isn't just an array->pointer decay, bail out.
2586   const auto *CE = dyn_cast<CastExpr>(E);
2587   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2588     return nullptr;
2589 
2590   // If this is a decay from variable width array, bail out.
2591   const Expr *SubExpr = CE->getSubExpr();
2592   if (SubExpr->getType()->isVariableArrayType())
2593     return nullptr;
2594 
2595   return SubExpr;
2596 }
2597 
2598 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2599                                           llvm::Value *ptr,
2600                                           ArrayRef<llvm::Value*> indices,
2601                                           bool inbounds,
2602                                     const llvm::Twine &name = "arrayidx") {
2603   if (inbounds) {
2604     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2605   } else {
2606     return CGF.Builder.CreateGEP(ptr, indices, name);
2607   }
2608 }
2609 
2610 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2611                                       llvm::Value *idx,
2612                                       CharUnits eltSize) {
2613   // If we have a constant index, we can use the exact offset of the
2614   // element we're accessing.
2615   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2616     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2617     return arrayAlign.alignmentAtOffset(offset);
2618 
2619   // Otherwise, use the worst-case alignment for any element.
2620   } else {
2621     return arrayAlign.alignmentOfArrayElement(eltSize);
2622   }
2623 }
2624 
2625 static QualType getFixedSizeElementType(const ASTContext &ctx,
2626                                         const VariableArrayType *vla) {
2627   QualType eltType;
2628   do {
2629     eltType = vla->getElementType();
2630   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2631   return eltType;
2632 }
2633 
2634 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2635                                      ArrayRef<llvm::Value*> indices,
2636                                      QualType eltType, bool inbounds,
2637                                      const llvm::Twine &name = "arrayidx") {
2638   // All the indices except that last must be zero.
2639 #ifndef NDEBUG
2640   for (auto idx : indices.drop_back())
2641     assert(isa<llvm::ConstantInt>(idx) &&
2642            cast<llvm::ConstantInt>(idx)->isZero());
2643 #endif
2644 
2645   // Determine the element size of the statically-sized base.  This is
2646   // the thing that the indices are expressed in terms of.
2647   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2648     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2649   }
2650 
2651   // We can use that to compute the best alignment of the element.
2652   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2653   CharUnits eltAlign =
2654     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2655 
2656   llvm::Value *eltPtr =
2657     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2658   return Address(eltPtr, eltAlign);
2659 }
2660 
2661 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2662                                                bool Accessed) {
2663   // The index must always be an integer, which is not an aggregate.  Emit it.
2664   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2665   QualType IdxTy  = E->getIdx()->getType();
2666   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2667 
2668   if (SanOpts.has(SanitizerKind::ArrayBounds))
2669     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2670 
2671   // If the base is a vector type, then we are forming a vector element lvalue
2672   // with this subscript.
2673   if (E->getBase()->getType()->isVectorType() &&
2674       !isa<ExtVectorElementExpr>(E->getBase())) {
2675     // Emit the vector as an lvalue to get its address.
2676     LValue LHS = EmitLValue(E->getBase());
2677     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2678     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2679                                  E->getBase()->getType(),
2680                                  LHS.getAlignmentSource());
2681   }
2682 
2683   // All the other cases basically behave like simple offsetting.
2684 
2685   // Extend or truncate the index type to 32 or 64-bits.
2686   if (Idx->getType() != IntPtrTy)
2687     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2688 
2689   // Handle the extvector case we ignored above.
2690   if (isa<ExtVectorElementExpr>(E->getBase())) {
2691     LValue LV = EmitLValue(E->getBase());
2692     Address Addr = EmitExtVectorElementLValue(LV);
2693 
2694     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2695     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2696     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2697   }
2698 
2699   AlignmentSource AlignSource;
2700   Address Addr = Address::invalid();
2701   if (const VariableArrayType *vla =
2702            getContext().getAsVariableArrayType(E->getType())) {
2703     // The base must be a pointer, which is not an aggregate.  Emit
2704     // it.  It needs to be emitted first in case it's what captures
2705     // the VLA bounds.
2706     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2707 
2708     // The element count here is the total number of non-VLA elements.
2709     llvm::Value *numElements = getVLASize(vla).first;
2710 
2711     // Effectively, the multiply by the VLA size is part of the GEP.
2712     // GEP indexes are signed, and scaling an index isn't permitted to
2713     // signed-overflow, so we use the same semantics for our explicit
2714     // multiply.  We suppress this if overflow is not undefined behavior.
2715     if (getLangOpts().isSignedOverflowDefined()) {
2716       Idx = Builder.CreateMul(Idx, numElements);
2717     } else {
2718       Idx = Builder.CreateNSWMul(Idx, numElements);
2719     }
2720 
2721     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2722                                  !getLangOpts().isSignedOverflowDefined());
2723 
2724   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2725     // Indexing over an interface, as in "NSString *P; P[4];"
2726     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2727     llvm::Value *InterfaceSizeVal =
2728       llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
2729 
2730     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
2731 
2732     // Emit the base pointer.
2733     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2734 
2735     // We don't necessarily build correct LLVM struct types for ObjC
2736     // interfaces, so we can't rely on GEP to do this scaling
2737     // correctly, so we need to cast to i8*.  FIXME: is this actually
2738     // true?  A lot of other things in the fragile ABI would break...
2739     llvm::Type *OrigBaseTy = Addr.getType();
2740     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
2741 
2742     // Do the GEP.
2743     CharUnits EltAlign =
2744       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
2745     llvm::Value *EltPtr =
2746       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
2747     Addr = Address(EltPtr, EltAlign);
2748 
2749     // Cast back.
2750     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
2751   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2752     // If this is A[i] where A is an array, the frontend will have decayed the
2753     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2754     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2755     // "gep x, i" here.  Emit one "gep A, 0, i".
2756     assert(Array->getType()->isArrayType() &&
2757            "Array to pointer decay must have array source type!");
2758     LValue ArrayLV;
2759     // For simple multidimensional array indexing, set the 'accessed' flag for
2760     // better bounds-checking of the base expression.
2761     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2762       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2763     else
2764       ArrayLV = EmitLValue(Array);
2765 
2766     // Propagate the alignment from the array itself to the result.
2767     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
2768                                  {CGM.getSize(CharUnits::Zero()), Idx},
2769                                  E->getType(),
2770                                  !getLangOpts().isSignedOverflowDefined());
2771     AlignSource = ArrayLV.getAlignmentSource();
2772   } else {
2773     // The base must be a pointer; emit it with an estimate of its alignment.
2774     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2775     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
2776                                  !getLangOpts().isSignedOverflowDefined());
2777   }
2778 
2779   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
2780 
2781   // TODO: Preserve/extend path TBAA metadata?
2782 
2783   if (getLangOpts().ObjC1 &&
2784       getLangOpts().getGC() != LangOptions::NonGC) {
2785     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2786     setObjCGCLValueClass(getContext(), E, LV);
2787   }
2788   return LV;
2789 }
2790 
2791 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2792                                                 bool IsLowerBound) {
2793   LValue Base;
2794   if (auto *ASE =
2795           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
2796     Base = EmitOMPArraySectionExpr(ASE, IsLowerBound);
2797   else
2798     Base = EmitLValue(E->getBase());
2799   QualType BaseTy = Base.getType();
2800   llvm::Value *Idx = nullptr;
2801   QualType ResultExprTy;
2802   if (auto *AT = getContext().getAsArrayType(BaseTy))
2803     ResultExprTy = AT->getElementType();
2804   else
2805     ResultExprTy = BaseTy->getPointeeType();
2806   if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) {
2807     // Requesting lower bound or upper bound, but without provided length and
2808     // without ':' symbol for the default length -> length = 1.
2809     // Idx = LowerBound ?: 0;
2810     if (auto *LowerBound = E->getLowerBound()) {
2811       Idx = Builder.CreateIntCast(
2812           EmitScalarExpr(LowerBound), IntPtrTy,
2813           LowerBound->getType()->hasSignedIntegerRepresentation());
2814     } else
2815       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
2816   } else {
2817     // Try to emit length or lower bound as constant. If this is possible, 1 is
2818     // subtracted from constant length or lower bound. Otherwise, emit LLVM IR
2819     // (LB + Len) - 1.
2820     auto &C = CGM.getContext();
2821     auto *Length = E->getLength();
2822     llvm::APSInt ConstLength;
2823     if (Length) {
2824       // Idx = LowerBound + Length - 1;
2825       if (Length->isIntegerConstantExpr(ConstLength, C)) {
2826         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2827         Length = nullptr;
2828       }
2829       auto *LowerBound = E->getLowerBound();
2830       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
2831       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
2832         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
2833         LowerBound = nullptr;
2834       }
2835       if (!Length)
2836         --ConstLength;
2837       else if (!LowerBound)
2838         --ConstLowerBound;
2839 
2840       if (Length || LowerBound) {
2841         auto *LowerBoundVal =
2842             LowerBound
2843                 ? Builder.CreateIntCast(
2844                       EmitScalarExpr(LowerBound), IntPtrTy,
2845                       LowerBound->getType()->hasSignedIntegerRepresentation())
2846                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
2847         auto *LengthVal =
2848             Length
2849                 ? Builder.CreateIntCast(
2850                       EmitScalarExpr(Length), IntPtrTy,
2851                       Length->getType()->hasSignedIntegerRepresentation())
2852                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
2853         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
2854                                 /*HasNUW=*/false,
2855                                 !getLangOpts().isSignedOverflowDefined());
2856         if (Length && LowerBound) {
2857           Idx = Builder.CreateSub(
2858               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
2859               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2860         }
2861       } else
2862         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
2863     } else {
2864       // Idx = ArraySize - 1;
2865       if (auto *VAT = C.getAsVariableArrayType(BaseTy)) {
2866         Length = VAT->getSizeExpr();
2867         if (Length->isIntegerConstantExpr(ConstLength, C))
2868           Length = nullptr;
2869       } else {
2870         auto *CAT = C.getAsConstantArrayType(BaseTy);
2871         ConstLength = CAT->getSize();
2872       }
2873       if (Length) {
2874         auto *LengthVal = Builder.CreateIntCast(
2875             EmitScalarExpr(Length), IntPtrTy,
2876             Length->getType()->hasSignedIntegerRepresentation());
2877         Idx = Builder.CreateSub(
2878             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
2879             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2880       } else {
2881         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2882         --ConstLength;
2883         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
2884       }
2885     }
2886   }
2887   assert(Idx);
2888 
2889   llvm::Value *EltPtr;
2890   QualType FixedSizeEltType = ResultExprTy;
2891   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
2892     // The element count here is the total number of non-VLA elements.
2893     llvm::Value *numElements = getVLASize(VLA).first;
2894     FixedSizeEltType = getFixedSizeElementType(getContext(), VLA);
2895 
2896     // Effectively, the multiply by the VLA size is part of the GEP.
2897     // GEP indexes are signed, and scaling an index isn't permitted to
2898     // signed-overflow, so we use the same semantics for our explicit
2899     // multiply.  We suppress this if overflow is not undefined behavior.
2900     if (getLangOpts().isSignedOverflowDefined()) {
2901       Idx = Builder.CreateMul(Idx, numElements);
2902       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2903     } else {
2904       Idx = Builder.CreateNSWMul(Idx, numElements);
2905       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2906     }
2907   } else if (BaseTy->isConstantArrayType()) {
2908     llvm::Value *ArrayPtr = Base.getPointer();
2909     llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
2910     llvm::Value *Args[] = {Zero, Idx};
2911 
2912     if (getLangOpts().isSignedOverflowDefined())
2913       EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2914     else
2915       EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2916   } else {
2917     // The base must be a pointer, which is not an aggregate.  Emit it.
2918     if (getLangOpts().isSignedOverflowDefined())
2919       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2920     else
2921       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2922   }
2923 
2924   CharUnits EltAlign =
2925     Base.getAlignment().alignmentOfArrayElement(
2926                           getContext().getTypeSizeInChars(FixedSizeEltType));
2927 
2928   // Limit the alignment to that of the result type.
2929   LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy,
2930                              Base.getAlignmentSource());
2931 
2932   LV.getQuals().setAddressSpace(BaseTy.getAddressSpace());
2933 
2934   return LV;
2935 }
2936 
2937 LValue CodeGenFunction::
2938 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2939   // Emit the base vector as an l-value.
2940   LValue Base;
2941 
2942   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2943   if (E->isArrow()) {
2944     // If it is a pointer to a vector, emit the address and form an lvalue with
2945     // it.
2946     AlignmentSource AlignSource;
2947     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2948     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2949     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
2950     Base.getQuals().removeObjCGCAttr();
2951   } else if (E->getBase()->isGLValue()) {
2952     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2953     // emit the base as an lvalue.
2954     assert(E->getBase()->getType()->isVectorType());
2955     Base = EmitLValue(E->getBase());
2956   } else {
2957     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2958     assert(E->getBase()->getType()->isVectorType() &&
2959            "Result must be a vector");
2960     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2961 
2962     // Store the vector to memory (because LValue wants an address).
2963     Address VecMem = CreateMemTemp(E->getBase()->getType());
2964     Builder.CreateStore(Vec, VecMem);
2965     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
2966                           AlignmentSource::Decl);
2967   }
2968 
2969   QualType type =
2970     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2971 
2972   // Encode the element access list into a vector of unsigned indices.
2973   SmallVector<uint32_t, 4> Indices;
2974   E->getEncodedElementAccess(Indices);
2975 
2976   if (Base.isSimple()) {
2977     llvm::Constant *CV =
2978         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
2979     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2980                                     Base.getAlignmentSource());
2981   }
2982   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2983 
2984   llvm::Constant *BaseElts = Base.getExtVectorElts();
2985   SmallVector<llvm::Constant *, 4> CElts;
2986 
2987   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2988     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2989   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2990   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
2991                                   Base.getAlignmentSource());
2992 }
2993 
2994 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2995   Expr *BaseExpr = E->getBase();
2996 
2997   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2998   LValue BaseLV;
2999   if (E->isArrow()) {
3000     AlignmentSource AlignSource;
3001     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3002     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3003     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3004     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3005   } else
3006     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3007 
3008   NamedDecl *ND = E->getMemberDecl();
3009   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3010     LValue LV = EmitLValueForField(BaseLV, Field);
3011     setObjCGCLValueClass(getContext(), E, LV);
3012     return LV;
3013   }
3014 
3015   if (auto *VD = dyn_cast<VarDecl>(ND))
3016     return EmitGlobalVarDeclLValue(*this, E, VD);
3017 
3018   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3019     return EmitFunctionDeclLValue(*this, E, FD);
3020 
3021   llvm_unreachable("Unhandled member declaration!");
3022 }
3023 
3024 /// Given that we are currently emitting a lambda, emit an l-value for
3025 /// one of its members.
3026 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3027   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3028   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3029   QualType LambdaTagType =
3030     getContext().getTagDeclType(Field->getParent());
3031   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3032   return EmitLValueForField(LambdaLV, Field);
3033 }
3034 
3035 /// Drill down to the storage of a field without walking into
3036 /// reference types.
3037 ///
3038 /// The resulting address doesn't necessarily have the right type.
3039 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3040                                       const FieldDecl *field) {
3041   const RecordDecl *rec = field->getParent();
3042 
3043   unsigned idx =
3044     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3045 
3046   CharUnits offset;
3047   // Adjust the alignment down to the given offset.
3048   // As a special case, if the LLVM field index is 0, we know that this
3049   // is zero.
3050   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3051                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3052          "LLVM field at index zero had non-zero offset?");
3053   if (idx != 0) {
3054     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3055     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3056     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3057   }
3058 
3059   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3060 }
3061 
3062 LValue CodeGenFunction::EmitLValueForField(LValue base,
3063                                            const FieldDecl *field) {
3064   AlignmentSource fieldAlignSource =
3065     getFieldAlignmentSource(base.getAlignmentSource());
3066 
3067   if (field->isBitField()) {
3068     const CGRecordLayout &RL =
3069       CGM.getTypes().getCGRecordLayout(field->getParent());
3070     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3071     Address Addr = base.getAddress();
3072     unsigned Idx = RL.getLLVMFieldNo(field);
3073     if (Idx != 0)
3074       // For structs, we GEP to the field that the record layout suggests.
3075       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3076                                      field->getName());
3077     // Get the access type.
3078     llvm::Type *FieldIntTy =
3079       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3080     if (Addr.getElementType() != FieldIntTy)
3081       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3082 
3083     QualType fieldType =
3084       field->getType().withCVRQualifiers(base.getVRQualifiers());
3085     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3086   }
3087 
3088   const RecordDecl *rec = field->getParent();
3089   QualType type = field->getType();
3090 
3091   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3092 
3093   Address addr = base.getAddress();
3094   unsigned cvr = base.getVRQualifiers();
3095   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3096   if (rec->isUnion()) {
3097     // For unions, there is no pointer adjustment.
3098     assert(!type->isReferenceType() && "union has reference member");
3099     // TODO: handle path-aware TBAA for union.
3100     TBAAPath = false;
3101   } else {
3102     // For structs, we GEP to the field that the record layout suggests.
3103     addr = emitAddrOfFieldStorage(*this, addr, field);
3104 
3105     // If this is a reference field, load the reference right now.
3106     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3107       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3108       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3109 
3110       // Loading the reference will disable path-aware TBAA.
3111       TBAAPath = false;
3112       if (CGM.shouldUseTBAA()) {
3113         llvm::MDNode *tbaa;
3114         if (mayAlias)
3115           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3116         else
3117           tbaa = CGM.getTBAAInfo(type);
3118         if (tbaa)
3119           CGM.DecorateInstructionWithTBAA(load, tbaa);
3120       }
3121 
3122       mayAlias = false;
3123       type = refType->getPointeeType();
3124 
3125       CharUnits alignment =
3126         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3127       addr = Address(load, alignment);
3128 
3129       // Qualifiers on the struct don't apply to the referencee, and
3130       // we'll pick up CVR from the actual type later, so reset these
3131       // additional qualifiers now.
3132       cvr = 0;
3133     }
3134   }
3135 
3136   // Make sure that the address is pointing to the right type.  This is critical
3137   // for both unions and structs.  A union needs a bitcast, a struct element
3138   // will need a bitcast if the LLVM type laid out doesn't match the desired
3139   // type.
3140   addr = Builder.CreateElementBitCast(addr,
3141                                       CGM.getTypes().ConvertTypeForMem(type),
3142                                       field->getName());
3143 
3144   if (field->hasAttr<AnnotateAttr>())
3145     addr = EmitFieldAnnotations(field, addr);
3146 
3147   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3148   LV.getQuals().addCVRQualifiers(cvr);
3149   if (TBAAPath) {
3150     const ASTRecordLayout &Layout =
3151         getContext().getASTRecordLayout(field->getParent());
3152     // Set the base type to be the base type of the base LValue and
3153     // update offset to be relative to the base type.
3154     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3155     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3156                      Layout.getFieldOffset(field->getFieldIndex()) /
3157                                            getContext().getCharWidth());
3158   }
3159 
3160   // __weak attribute on a field is ignored.
3161   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3162     LV.getQuals().removeObjCGCAttr();
3163 
3164   // Fields of may_alias structs act like 'char' for TBAA purposes.
3165   // FIXME: this should get propagated down through anonymous structs
3166   // and unions.
3167   if (mayAlias && LV.getTBAAInfo())
3168     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3169 
3170   return LV;
3171 }
3172 
3173 LValue
3174 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3175                                                   const FieldDecl *Field) {
3176   QualType FieldType = Field->getType();
3177 
3178   if (!FieldType->isReferenceType())
3179     return EmitLValueForField(Base, Field);
3180 
3181   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3182 
3183   // Make sure that the address is pointing to the right type.
3184   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3185   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3186 
3187   // TODO: access-path TBAA?
3188   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3189   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3190 }
3191 
3192 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3193   if (E->isFileScope()) {
3194     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3195     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3196   }
3197   if (E->getType()->isVariablyModifiedType())
3198     // make sure to emit the VLA size.
3199     EmitVariablyModifiedType(E->getType());
3200 
3201   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3202   const Expr *InitExpr = E->getInitializer();
3203   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3204 
3205   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3206                    /*Init*/ true);
3207 
3208   return Result;
3209 }
3210 
3211 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3212   if (!E->isGLValue())
3213     // Initializing an aggregate temporary in C++11: T{...}.
3214     return EmitAggExprToLValue(E);
3215 
3216   // An lvalue initializer list must be initializing a reference.
3217   assert(E->getNumInits() == 1 && "reference init with multiple values");
3218   return EmitLValue(E->getInit(0));
3219 }
3220 
3221 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3222 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3223 /// LValue is returned and the current block has been terminated.
3224 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3225                                                     const Expr *Operand) {
3226   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3227     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3228     return None;
3229   }
3230 
3231   return CGF.EmitLValue(Operand);
3232 }
3233 
3234 LValue CodeGenFunction::
3235 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3236   if (!expr->isGLValue()) {
3237     // ?: here should be an aggregate.
3238     assert(hasAggregateEvaluationKind(expr->getType()) &&
3239            "Unexpected conditional operator!");
3240     return EmitAggExprToLValue(expr);
3241   }
3242 
3243   OpaqueValueMapping binding(*this, expr);
3244 
3245   const Expr *condExpr = expr->getCond();
3246   bool CondExprBool;
3247   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3248     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3249     if (!CondExprBool) std::swap(live, dead);
3250 
3251     if (!ContainsLabel(dead)) {
3252       // If the true case is live, we need to track its region.
3253       if (CondExprBool)
3254         incrementProfileCounter(expr);
3255       return EmitLValue(live);
3256     }
3257   }
3258 
3259   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3260   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3261   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3262 
3263   ConditionalEvaluation eval(*this);
3264   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3265 
3266   // Any temporaries created here are conditional.
3267   EmitBlock(lhsBlock);
3268   incrementProfileCounter(expr);
3269   eval.begin(*this);
3270   Optional<LValue> lhs =
3271       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3272   eval.end(*this);
3273 
3274   if (lhs && !lhs->isSimple())
3275     return EmitUnsupportedLValue(expr, "conditional operator");
3276 
3277   lhsBlock = Builder.GetInsertBlock();
3278   if (lhs)
3279     Builder.CreateBr(contBlock);
3280 
3281   // Any temporaries created here are conditional.
3282   EmitBlock(rhsBlock);
3283   eval.begin(*this);
3284   Optional<LValue> rhs =
3285       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3286   eval.end(*this);
3287   if (rhs && !rhs->isSimple())
3288     return EmitUnsupportedLValue(expr, "conditional operator");
3289   rhsBlock = Builder.GetInsertBlock();
3290 
3291   EmitBlock(contBlock);
3292 
3293   if (lhs && rhs) {
3294     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3295                                            2, "cond-lvalue");
3296     phi->addIncoming(lhs->getPointer(), lhsBlock);
3297     phi->addIncoming(rhs->getPointer(), rhsBlock);
3298     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3299     AlignmentSource alignSource =
3300       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3301     return MakeAddrLValue(result, expr->getType(), alignSource);
3302   } else {
3303     assert((lhs || rhs) &&
3304            "both operands of glvalue conditional are throw-expressions?");
3305     return lhs ? *lhs : *rhs;
3306   }
3307 }
3308 
3309 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3310 /// type. If the cast is to a reference, we can have the usual lvalue result,
3311 /// otherwise if a cast is needed by the code generator in an lvalue context,
3312 /// then it must mean that we need the address of an aggregate in order to
3313 /// access one of its members.  This can happen for all the reasons that casts
3314 /// are permitted with aggregate result, including noop aggregate casts, and
3315 /// cast from scalar to union.
3316 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3317   switch (E->getCastKind()) {
3318   case CK_ToVoid:
3319   case CK_BitCast:
3320   case CK_ArrayToPointerDecay:
3321   case CK_FunctionToPointerDecay:
3322   case CK_NullToMemberPointer:
3323   case CK_NullToPointer:
3324   case CK_IntegralToPointer:
3325   case CK_PointerToIntegral:
3326   case CK_PointerToBoolean:
3327   case CK_VectorSplat:
3328   case CK_IntegralCast:
3329   case CK_IntegralToBoolean:
3330   case CK_IntegralToFloating:
3331   case CK_FloatingToIntegral:
3332   case CK_FloatingToBoolean:
3333   case CK_FloatingCast:
3334   case CK_FloatingRealToComplex:
3335   case CK_FloatingComplexToReal:
3336   case CK_FloatingComplexToBoolean:
3337   case CK_FloatingComplexCast:
3338   case CK_FloatingComplexToIntegralComplex:
3339   case CK_IntegralRealToComplex:
3340   case CK_IntegralComplexToReal:
3341   case CK_IntegralComplexToBoolean:
3342   case CK_IntegralComplexCast:
3343   case CK_IntegralComplexToFloatingComplex:
3344   case CK_DerivedToBaseMemberPointer:
3345   case CK_BaseToDerivedMemberPointer:
3346   case CK_MemberPointerToBoolean:
3347   case CK_ReinterpretMemberPointer:
3348   case CK_AnyPointerToBlockPointerCast:
3349   case CK_ARCProduceObject:
3350   case CK_ARCConsumeObject:
3351   case CK_ARCReclaimReturnedObject:
3352   case CK_ARCExtendBlockObject:
3353   case CK_CopyAndAutoreleaseBlockObject:
3354   case CK_AddressSpaceConversion:
3355     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3356 
3357   case CK_Dependent:
3358     llvm_unreachable("dependent cast kind in IR gen!");
3359 
3360   case CK_BuiltinFnToFnPtr:
3361     llvm_unreachable("builtin functions are handled elsewhere");
3362 
3363   // These are never l-values; just use the aggregate emission code.
3364   case CK_NonAtomicToAtomic:
3365   case CK_AtomicToNonAtomic:
3366     return EmitAggExprToLValue(E);
3367 
3368   case CK_Dynamic: {
3369     LValue LV = EmitLValue(E->getSubExpr());
3370     Address V = LV.getAddress();
3371     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3372     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3373   }
3374 
3375   case CK_ConstructorConversion:
3376   case CK_UserDefinedConversion:
3377   case CK_CPointerToObjCPointerCast:
3378   case CK_BlockPointerToObjCPointerCast:
3379   case CK_NoOp:
3380   case CK_LValueToRValue:
3381     return EmitLValue(E->getSubExpr());
3382 
3383   case CK_UncheckedDerivedToBase:
3384   case CK_DerivedToBase: {
3385     const RecordType *DerivedClassTy =
3386       E->getSubExpr()->getType()->getAs<RecordType>();
3387     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3388 
3389     LValue LV = EmitLValue(E->getSubExpr());
3390     Address This = LV.getAddress();
3391 
3392     // Perform the derived-to-base conversion
3393     Address Base = GetAddressOfBaseClass(
3394         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3395         /*NullCheckValue=*/false, E->getExprLoc());
3396 
3397     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3398   }
3399   case CK_ToUnion:
3400     return EmitAggExprToLValue(E);
3401   case CK_BaseToDerived: {
3402     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3403     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3404 
3405     LValue LV = EmitLValue(E->getSubExpr());
3406 
3407     // Perform the base-to-derived conversion
3408     Address Derived =
3409       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3410                                E->path_begin(), E->path_end(),
3411                                /*NullCheckValue=*/false);
3412 
3413     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3414     // performed and the object is not of the derived type.
3415     if (sanitizePerformTypeCheck())
3416       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3417                     Derived.getPointer(), E->getType());
3418 
3419     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3420       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3421                                 /*MayBeNull=*/false,
3422                                 CFITCK_DerivedCast, E->getLocStart());
3423 
3424     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3425   }
3426   case CK_LValueBitCast: {
3427     // This must be a reinterpret_cast (or c-style equivalent).
3428     const auto *CE = cast<ExplicitCastExpr>(E);
3429 
3430     LValue LV = EmitLValue(E->getSubExpr());
3431     Address V = Builder.CreateBitCast(LV.getAddress(),
3432                                       ConvertType(CE->getTypeAsWritten()));
3433 
3434     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3435       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3436                                 /*MayBeNull=*/false,
3437                                 CFITCK_UnrelatedCast, E->getLocStart());
3438 
3439     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3440   }
3441   case CK_ObjCObjectLValueCast: {
3442     LValue LV = EmitLValue(E->getSubExpr());
3443     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3444                                              ConvertType(E->getType()));
3445     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3446   }
3447   case CK_ZeroToOCLEvent:
3448     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3449   }
3450 
3451   llvm_unreachable("Unhandled lvalue cast kind?");
3452 }
3453 
3454 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3455   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3456   return getOpaqueLValueMapping(e);
3457 }
3458 
3459 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3460                                            const FieldDecl *FD,
3461                                            SourceLocation Loc) {
3462   QualType FT = FD->getType();
3463   LValue FieldLV = EmitLValueForField(LV, FD);
3464   switch (getEvaluationKind(FT)) {
3465   case TEK_Complex:
3466     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3467   case TEK_Aggregate:
3468     return FieldLV.asAggregateRValue();
3469   case TEK_Scalar:
3470     return EmitLoadOfLValue(FieldLV, Loc);
3471   }
3472   llvm_unreachable("bad evaluation kind");
3473 }
3474 
3475 //===--------------------------------------------------------------------===//
3476 //                             Expression Emission
3477 //===--------------------------------------------------------------------===//
3478 
3479 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3480                                      ReturnValueSlot ReturnValue) {
3481   // Builtins never have block type.
3482   if (E->getCallee()->getType()->isBlockPointerType())
3483     return EmitBlockCallExpr(E, ReturnValue);
3484 
3485   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3486     return EmitCXXMemberCallExpr(CE, ReturnValue);
3487 
3488   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3489     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3490 
3491   const Decl *TargetDecl = E->getCalleeDecl();
3492   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3493     if (unsigned builtinID = FD->getBuiltinID())
3494       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3495   }
3496 
3497   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3498     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3499       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3500 
3501   if (const auto *PseudoDtor =
3502           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3503     QualType DestroyedType = PseudoDtor->getDestroyedType();
3504     if (getLangOpts().ObjCAutoRefCount &&
3505         DestroyedType->isObjCLifetimeType() &&
3506         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3507          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3508       // Automatic Reference Counting:
3509       //   If the pseudo-expression names a retainable object with weak or
3510       //   strong lifetime, the object shall be released.
3511       Expr *BaseExpr = PseudoDtor->getBase();
3512       Address BaseValue = Address::invalid();
3513       Qualifiers BaseQuals;
3514 
3515       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3516       if (PseudoDtor->isArrow()) {
3517         BaseValue = EmitPointerWithAlignment(BaseExpr);
3518         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3519         BaseQuals = PTy->getPointeeType().getQualifiers();
3520       } else {
3521         LValue BaseLV = EmitLValue(BaseExpr);
3522         BaseValue = BaseLV.getAddress();
3523         QualType BaseTy = BaseExpr->getType();
3524         BaseQuals = BaseTy.getQualifiers();
3525       }
3526 
3527       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3528       case Qualifiers::OCL_None:
3529       case Qualifiers::OCL_ExplicitNone:
3530       case Qualifiers::OCL_Autoreleasing:
3531         break;
3532 
3533       case Qualifiers::OCL_Strong:
3534         EmitARCRelease(Builder.CreateLoad(BaseValue,
3535                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3536                        ARCPreciseLifetime);
3537         break;
3538 
3539       case Qualifiers::OCL_Weak:
3540         EmitARCDestroyWeak(BaseValue);
3541         break;
3542       }
3543     } else {
3544       // C++ [expr.pseudo]p1:
3545       //   The result shall only be used as the operand for the function call
3546       //   operator (), and the result of such a call has type void. The only
3547       //   effect is the evaluation of the postfix-expression before the dot or
3548       //   arrow.
3549       EmitScalarExpr(E->getCallee());
3550     }
3551 
3552     return RValue::get(nullptr);
3553   }
3554 
3555   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3556   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3557                   TargetDecl);
3558 }
3559 
3560 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3561   // Comma expressions just emit their LHS then their RHS as an l-value.
3562   if (E->getOpcode() == BO_Comma) {
3563     EmitIgnoredExpr(E->getLHS());
3564     EnsureInsertPoint();
3565     return EmitLValue(E->getRHS());
3566   }
3567 
3568   if (E->getOpcode() == BO_PtrMemD ||
3569       E->getOpcode() == BO_PtrMemI)
3570     return EmitPointerToDataMemberBinaryExpr(E);
3571 
3572   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3573 
3574   // Note that in all of these cases, __block variables need the RHS
3575   // evaluated first just in case the variable gets moved by the RHS.
3576 
3577   switch (getEvaluationKind(E->getType())) {
3578   case TEK_Scalar: {
3579     switch (E->getLHS()->getType().getObjCLifetime()) {
3580     case Qualifiers::OCL_Strong:
3581       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3582 
3583     case Qualifiers::OCL_Autoreleasing:
3584       return EmitARCStoreAutoreleasing(E).first;
3585 
3586     // No reason to do any of these differently.
3587     case Qualifiers::OCL_None:
3588     case Qualifiers::OCL_ExplicitNone:
3589     case Qualifiers::OCL_Weak:
3590       break;
3591     }
3592 
3593     RValue RV = EmitAnyExpr(E->getRHS());
3594     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3595     EmitStoreThroughLValue(RV, LV);
3596     return LV;
3597   }
3598 
3599   case TEK_Complex:
3600     return EmitComplexAssignmentLValue(E);
3601 
3602   case TEK_Aggregate:
3603     return EmitAggExprToLValue(E);
3604   }
3605   llvm_unreachable("bad evaluation kind");
3606 }
3607 
3608 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3609   RValue RV = EmitCallExpr(E);
3610 
3611   if (!RV.isScalar())
3612     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3613                           AlignmentSource::Decl);
3614 
3615   assert(E->getCallReturnType(getContext())->isReferenceType() &&
3616          "Can't have a scalar return unless the return type is a "
3617          "reference type!");
3618 
3619   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3620 }
3621 
3622 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3623   // FIXME: This shouldn't require another copy.
3624   return EmitAggExprToLValue(E);
3625 }
3626 
3627 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3628   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3629          && "binding l-value to type which needs a temporary");
3630   AggValueSlot Slot = CreateAggTemp(E->getType());
3631   EmitCXXConstructExpr(E, Slot);
3632   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3633                         AlignmentSource::Decl);
3634 }
3635 
3636 LValue
3637 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3638   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3639 }
3640 
3641 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3642   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3643                                       ConvertType(E->getType()));
3644 }
3645 
3646 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3647   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3648                         AlignmentSource::Decl);
3649 }
3650 
3651 LValue
3652 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3653   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3654   Slot.setExternallyDestructed();
3655   EmitAggExpr(E->getSubExpr(), Slot);
3656   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3657   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3658                         AlignmentSource::Decl);
3659 }
3660 
3661 LValue
3662 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3663   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3664   EmitLambdaExpr(E, Slot);
3665   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3666                         AlignmentSource::Decl);
3667 }
3668 
3669 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3670   RValue RV = EmitObjCMessageExpr(E);
3671 
3672   if (!RV.isScalar())
3673     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3674                           AlignmentSource::Decl);
3675 
3676   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3677          "Can't have a scalar return unless the return type is a "
3678          "reference type!");
3679 
3680   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3681 }
3682 
3683 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3684   Address V =
3685     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
3686   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
3687 }
3688 
3689 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3690                                              const ObjCIvarDecl *Ivar) {
3691   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3692 }
3693 
3694 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3695                                           llvm::Value *BaseValue,
3696                                           const ObjCIvarDecl *Ivar,
3697                                           unsigned CVRQualifiers) {
3698   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3699                                                    Ivar, CVRQualifiers);
3700 }
3701 
3702 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3703   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3704   llvm::Value *BaseValue = nullptr;
3705   const Expr *BaseExpr = E->getBase();
3706   Qualifiers BaseQuals;
3707   QualType ObjectTy;
3708   if (E->isArrow()) {
3709     BaseValue = EmitScalarExpr(BaseExpr);
3710     ObjectTy = BaseExpr->getType()->getPointeeType();
3711     BaseQuals = ObjectTy.getQualifiers();
3712   } else {
3713     LValue BaseLV = EmitLValue(BaseExpr);
3714     BaseValue = BaseLV.getPointer();
3715     ObjectTy = BaseExpr->getType();
3716     BaseQuals = ObjectTy.getQualifiers();
3717   }
3718 
3719   LValue LV =
3720     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3721                       BaseQuals.getCVRQualifiers());
3722   setObjCGCLValueClass(getContext(), E, LV);
3723   return LV;
3724 }
3725 
3726 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3727   // Can only get l-value for message expression returning aggregate type
3728   RValue RV = EmitAnyExprToTemp(E);
3729   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3730                         AlignmentSource::Decl);
3731 }
3732 
3733 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3734                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3735                                  const Decl *TargetDecl, llvm::Value *Chain) {
3736   // Get the actual function type. The callee type will always be a pointer to
3737   // function type or a block pointer type.
3738   assert(CalleeType->isFunctionPointerType() &&
3739          "Call must have function pointer type!");
3740 
3741   CalleeType = getContext().getCanonicalType(CalleeType);
3742 
3743   const auto *FnType =
3744       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3745 
3746   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3747       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3748     if (llvm::Constant *PrefixSig =
3749             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3750       SanitizerScope SanScope(this);
3751       llvm::Constant *FTRTTIConst =
3752           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3753       llvm::Type *PrefixStructTyElems[] = {
3754         PrefixSig->getType(),
3755         FTRTTIConst->getType()
3756       };
3757       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3758           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3759 
3760       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3761           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3762       llvm::Value *CalleeSigPtr =
3763           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
3764       llvm::Value *CalleeSig =
3765           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
3766       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3767 
3768       llvm::BasicBlock *Cont = createBasicBlock("cont");
3769       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3770       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3771 
3772       EmitBlock(TypeCheck);
3773       llvm::Value *CalleeRTTIPtr =
3774           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
3775       llvm::Value *CalleeRTTI =
3776           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
3777       llvm::Value *CalleeRTTIMatch =
3778           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3779       llvm::Constant *StaticData[] = {
3780         EmitCheckSourceLocation(E->getLocStart()),
3781         EmitCheckTypeDescriptor(CalleeType)
3782       };
3783       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3784                 "function_type_mismatch", StaticData, Callee);
3785 
3786       Builder.CreateBr(Cont);
3787       EmitBlock(Cont);
3788     }
3789   }
3790 
3791   // If we are checking indirect calls and this call is indirect, check that the
3792   // function pointer is a member of the bit set for the function type.
3793   if (SanOpts.has(SanitizerKind::CFIICall) &&
3794       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3795     SanitizerScope SanScope(this);
3796 
3797     llvm::Value *BitSetName = llvm::MetadataAsValue::get(
3798         getLLVMContext(),
3799         CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)));
3800 
3801     llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
3802     llvm::Value *BitSetTest =
3803         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
3804                            {CastedCallee, BitSetName});
3805 
3806     llvm::Constant *StaticData[] = {
3807       EmitCheckSourceLocation(E->getLocStart()),
3808       EmitCheckTypeDescriptor(QualType(FnType, 0)),
3809     };
3810     EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall),
3811               "cfi_bad_icall", StaticData, CastedCallee);
3812   }
3813 
3814   CallArgList Args;
3815   if (Chain)
3816     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3817              CGM.getContext().VoidPtrTy);
3818   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
3819                E->getDirectCallee(), /*ParamsToSkip*/ 0);
3820 
3821   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3822       Args, FnType, /*isChainCall=*/Chain);
3823 
3824   // C99 6.5.2.2p6:
3825   //   If the expression that denotes the called function has a type
3826   //   that does not include a prototype, [the default argument
3827   //   promotions are performed]. If the number of arguments does not
3828   //   equal the number of parameters, the behavior is undefined. If
3829   //   the function is defined with a type that includes a prototype,
3830   //   and either the prototype ends with an ellipsis (, ...) or the
3831   //   types of the arguments after promotion are not compatible with
3832   //   the types of the parameters, the behavior is undefined. If the
3833   //   function is defined with a type that does not include a
3834   //   prototype, and the types of the arguments after promotion are
3835   //   not compatible with those of the parameters after promotion,
3836   //   the behavior is undefined [except in some trivial cases].
3837   // That is, in the general case, we should assume that a call
3838   // through an unprototyped function type works like a *non-variadic*
3839   // call.  The way we make this work is to cast to the exact type
3840   // of the promoted arguments.
3841   //
3842   // Chain calls use this same code path to add the invisible chain parameter
3843   // to the function type.
3844   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3845     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3846     CalleeTy = CalleeTy->getPointerTo();
3847     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3848   }
3849 
3850   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3851 }
3852 
3853 LValue CodeGenFunction::
3854 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3855   Address BaseAddr = Address::invalid();
3856   if (E->getOpcode() == BO_PtrMemI) {
3857     BaseAddr = EmitPointerWithAlignment(E->getLHS());
3858   } else {
3859     BaseAddr = EmitLValue(E->getLHS()).getAddress();
3860   }
3861 
3862   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3863 
3864   const MemberPointerType *MPT
3865     = E->getRHS()->getType()->getAs<MemberPointerType>();
3866 
3867   AlignmentSource AlignSource;
3868   Address MemberAddr =
3869     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
3870                                     &AlignSource);
3871 
3872   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
3873 }
3874 
3875 /// Given the address of a temporary variable, produce an r-value of
3876 /// its type.
3877 RValue CodeGenFunction::convertTempToRValue(Address addr,
3878                                             QualType type,
3879                                             SourceLocation loc) {
3880   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
3881   switch (getEvaluationKind(type)) {
3882   case TEK_Complex:
3883     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3884   case TEK_Aggregate:
3885     return lvalue.asAggregateRValue();
3886   case TEK_Scalar:
3887     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3888   }
3889   llvm_unreachable("bad evaluation kind");
3890 }
3891 
3892 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3893   assert(Val->getType()->isFPOrFPVectorTy());
3894   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3895     return;
3896 
3897   llvm::MDBuilder MDHelper(getLLVMContext());
3898   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3899 
3900   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3901 }
3902 
3903 namespace {
3904   struct LValueOrRValue {
3905     LValue LV;
3906     RValue RV;
3907   };
3908 }
3909 
3910 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3911                                            const PseudoObjectExpr *E,
3912                                            bool forLValue,
3913                                            AggValueSlot slot) {
3914   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3915 
3916   // Find the result expression, if any.
3917   const Expr *resultExpr = E->getResultExpr();
3918   LValueOrRValue result;
3919 
3920   for (PseudoObjectExpr::const_semantics_iterator
3921          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3922     const Expr *semantic = *i;
3923 
3924     // If this semantic expression is an opaque value, bind it
3925     // to the result of its source expression.
3926     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3927 
3928       // If this is the result expression, we may need to evaluate
3929       // directly into the slot.
3930       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3931       OVMA opaqueData;
3932       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3933           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3934         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3935 
3936         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
3937                                        AlignmentSource::Decl);
3938         opaqueData = OVMA::bind(CGF, ov, LV);
3939         result.RV = slot.asRValue();
3940 
3941       // Otherwise, emit as normal.
3942       } else {
3943         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3944 
3945         // If this is the result, also evaluate the result now.
3946         if (ov == resultExpr) {
3947           if (forLValue)
3948             result.LV = CGF.EmitLValue(ov);
3949           else
3950             result.RV = CGF.EmitAnyExpr(ov, slot);
3951         }
3952       }
3953 
3954       opaques.push_back(opaqueData);
3955 
3956     // Otherwise, if the expression is the result, evaluate it
3957     // and remember the result.
3958     } else if (semantic == resultExpr) {
3959       if (forLValue)
3960         result.LV = CGF.EmitLValue(semantic);
3961       else
3962         result.RV = CGF.EmitAnyExpr(semantic, slot);
3963 
3964     // Otherwise, evaluate the expression in an ignored context.
3965     } else {
3966       CGF.EmitIgnoredExpr(semantic);
3967     }
3968   }
3969 
3970   // Unbind all the opaques now.
3971   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3972     opaques[i].unbind(CGF);
3973 
3974   return result;
3975 }
3976 
3977 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3978                                                AggValueSlot slot) {
3979   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3980 }
3981 
3982 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3983   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3984 }
3985