1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/ConvertUTF.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/LLVMContext.h" 28 #include "llvm/MDBuilder.h" 29 #include "llvm/DataLayout.h" 30 #include "llvm/ADT/Hashing.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===--------------------------------------------------------------------===// 35 // Miscellaneous Helper Methods 36 //===--------------------------------------------------------------------===// 37 38 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 39 unsigned addressSpace = 40 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 41 42 llvm::PointerType *destType = Int8PtrTy; 43 if (addressSpace) 44 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 45 46 if (value->getType() == destType) return value; 47 return Builder.CreateBitCast(value, destType); 48 } 49 50 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 51 /// block. 52 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 53 const Twine &Name) { 54 if (!Builder.isNamePreserving()) 55 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 56 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 57 } 58 59 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 60 llvm::Value *Init) { 61 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 62 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 63 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 64 } 65 66 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 67 const Twine &Name) { 68 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 69 // FIXME: Should we prefer the preferred type alignment here? 70 CharUnits Align = getContext().getTypeAlignInChars(Ty); 71 Alloc->setAlignment(Align.getQuantity()); 72 return Alloc; 73 } 74 75 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 76 const Twine &Name) { 77 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 78 // FIXME: Should we prefer the preferred type alignment here? 79 CharUnits Align = getContext().getTypeAlignInChars(Ty); 80 Alloc->setAlignment(Align.getQuantity()); 81 return Alloc; 82 } 83 84 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 85 /// expression and compare the result against zero, returning an Int1Ty value. 86 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 87 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 88 llvm::Value *MemPtr = EmitScalarExpr(E); 89 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 90 } 91 92 QualType BoolTy = getContext().BoolTy; 93 if (!E->getType()->isAnyComplexType()) 94 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 95 96 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 97 } 98 99 /// EmitIgnoredExpr - Emit code to compute the specified expression, 100 /// ignoring the result. 101 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 102 if (E->isRValue()) 103 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 104 105 // Just emit it as an l-value and drop the result. 106 EmitLValue(E); 107 } 108 109 /// EmitAnyExpr - Emit code to compute the specified expression which 110 /// can have any type. The result is returned as an RValue struct. 111 /// If this is an aggregate expression, AggSlot indicates where the 112 /// result should be returned. 113 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 114 AggValueSlot aggSlot, 115 bool ignoreResult) { 116 if (!hasAggregateLLVMType(E->getType())) 117 return RValue::get(EmitScalarExpr(E, ignoreResult)); 118 else if (E->getType()->isAnyComplexType()) 119 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 120 121 if (!ignoreResult && aggSlot.isIgnored()) 122 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 123 EmitAggExpr(E, aggSlot); 124 return aggSlot.asRValue(); 125 } 126 127 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 128 /// always be accessible even if no aggregate location is provided. 129 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 130 AggValueSlot AggSlot = AggValueSlot::ignored(); 131 132 if (hasAggregateLLVMType(E->getType()) && 133 !E->getType()->isAnyComplexType()) 134 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 135 return EmitAnyExpr(E, AggSlot); 136 } 137 138 /// EmitAnyExprToMem - Evaluate an expression into a given memory 139 /// location. 140 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 141 llvm::Value *Location, 142 Qualifiers Quals, 143 bool IsInit) { 144 // FIXME: This function should take an LValue as an argument. 145 if (E->getType()->isAnyComplexType()) { 146 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 147 } else if (hasAggregateLLVMType(E->getType())) { 148 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 149 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 150 AggValueSlot::IsDestructed_t(IsInit), 151 AggValueSlot::DoesNotNeedGCBarriers, 152 AggValueSlot::IsAliased_t(!IsInit))); 153 } else { 154 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 155 LValue LV = MakeAddrLValue(Location, E->getType()); 156 EmitStoreThroughLValue(RV, LV); 157 } 158 } 159 160 static llvm::Value * 161 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 162 const NamedDecl *InitializedDecl) { 163 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 164 if (VD->hasGlobalStorage()) { 165 SmallString<256> Name; 166 llvm::raw_svector_ostream Out(Name); 167 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 168 Out.flush(); 169 170 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 171 172 // Create the reference temporary. 173 llvm::GlobalValue *RefTemp = 174 new llvm::GlobalVariable(CGF.CGM.getModule(), 175 RefTempTy, /*isConstant=*/false, 176 llvm::GlobalValue::InternalLinkage, 177 llvm::Constant::getNullValue(RefTempTy), 178 Name.str()); 179 return RefTemp; 180 } 181 } 182 183 return CGF.CreateMemTemp(Type, "ref.tmp"); 184 } 185 186 static llvm::Value * 187 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 188 llvm::Value *&ReferenceTemporary, 189 const CXXDestructorDecl *&ReferenceTemporaryDtor, 190 QualType &ObjCARCReferenceLifetimeType, 191 const NamedDecl *InitializedDecl) { 192 const MaterializeTemporaryExpr *M = NULL; 193 E = E->findMaterializedTemporary(M); 194 // Objective-C++ ARC: 195 // If we are binding a reference to a temporary that has ownership, we 196 // need to perform retain/release operations on the temporary. 197 if (M && CGF.getLangOpts().ObjCAutoRefCount && 198 M->getType()->isObjCLifetimeType() && 199 (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 200 M->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 201 M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 202 ObjCARCReferenceLifetimeType = M->getType(); 203 204 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 205 CGF.enterFullExpression(EWC); 206 CodeGenFunction::RunCleanupsScope Scope(CGF); 207 208 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 209 ReferenceTemporary, 210 ReferenceTemporaryDtor, 211 ObjCARCReferenceLifetimeType, 212 InitializedDecl); 213 } 214 215 RValue RV; 216 if (E->isGLValue()) { 217 // Emit the expression as an lvalue. 218 LValue LV = CGF.EmitLValue(E); 219 220 if (LV.isSimple()) 221 return LV.getAddress(); 222 223 // We have to load the lvalue. 224 RV = CGF.EmitLoadOfLValue(LV); 225 } else { 226 if (!ObjCARCReferenceLifetimeType.isNull()) { 227 ReferenceTemporary = CreateReferenceTemporary(CGF, 228 ObjCARCReferenceLifetimeType, 229 InitializedDecl); 230 231 232 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 233 ObjCARCReferenceLifetimeType); 234 235 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 236 RefTempDst, false); 237 238 bool ExtendsLifeOfTemporary = false; 239 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 240 if (Var->extendsLifetimeOfTemporary()) 241 ExtendsLifeOfTemporary = true; 242 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 243 ExtendsLifeOfTemporary = true; 244 } 245 246 if (!ExtendsLifeOfTemporary) { 247 // Since the lifetime of this temporary isn't going to be extended, 248 // we need to clean it up ourselves at the end of the full expression. 249 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 250 case Qualifiers::OCL_None: 251 case Qualifiers::OCL_ExplicitNone: 252 case Qualifiers::OCL_Autoreleasing: 253 break; 254 255 case Qualifiers::OCL_Strong: { 256 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 257 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 258 CGF.pushDestroy(cleanupKind, 259 ReferenceTemporary, 260 ObjCARCReferenceLifetimeType, 261 CodeGenFunction::destroyARCStrongImprecise, 262 cleanupKind & EHCleanup); 263 break; 264 } 265 266 case Qualifiers::OCL_Weak: 267 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 268 CGF.pushDestroy(NormalAndEHCleanup, 269 ReferenceTemporary, 270 ObjCARCReferenceLifetimeType, 271 CodeGenFunction::destroyARCWeak, 272 /*useEHCleanupForArray*/ true); 273 break; 274 } 275 276 ObjCARCReferenceLifetimeType = QualType(); 277 } 278 279 return ReferenceTemporary; 280 } 281 282 SmallVector<SubobjectAdjustment, 2> Adjustments; 283 E = E->skipRValueSubobjectAdjustments(Adjustments); 284 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 285 if (opaque->getType()->isRecordType()) 286 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 287 288 // Create a reference temporary if necessary. 289 AggValueSlot AggSlot = AggValueSlot::ignored(); 290 if (CGF.hasAggregateLLVMType(E->getType()) && 291 !E->getType()->isAnyComplexType()) { 292 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 293 InitializedDecl); 294 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 295 AggValueSlot::IsDestructed_t isDestructed 296 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 297 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 298 Qualifiers(), isDestructed, 299 AggValueSlot::DoesNotNeedGCBarriers, 300 AggValueSlot::IsNotAliased); 301 } 302 303 if (InitializedDecl) { 304 // Get the destructor for the reference temporary. 305 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 306 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 307 if (!ClassDecl->hasTrivialDestructor()) 308 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 309 } 310 } 311 312 RV = CGF.EmitAnyExpr(E, AggSlot); 313 314 // Check if need to perform derived-to-base casts and/or field accesses, to 315 // get from the temporary object we created (and, potentially, for which we 316 // extended the lifetime) to the subobject we're binding the reference to. 317 if (!Adjustments.empty()) { 318 llvm::Value *Object = RV.getAggregateAddr(); 319 for (unsigned I = Adjustments.size(); I != 0; --I) { 320 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 321 switch (Adjustment.Kind) { 322 case SubobjectAdjustment::DerivedToBaseAdjustment: 323 Object = 324 CGF.GetAddressOfBaseClass(Object, 325 Adjustment.DerivedToBase.DerivedClass, 326 Adjustment.DerivedToBase.BasePath->path_begin(), 327 Adjustment.DerivedToBase.BasePath->path_end(), 328 /*NullCheckValue=*/false); 329 break; 330 331 case SubobjectAdjustment::FieldAdjustment: { 332 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 333 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 334 if (LV.isSimple()) { 335 Object = LV.getAddress(); 336 break; 337 } 338 339 // For non-simple lvalues, we actually have to create a copy of 340 // the object we're binding to. 341 QualType T = Adjustment.Field->getType().getNonReferenceType() 342 .getUnqualifiedType(); 343 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 344 LValue TempLV = CGF.MakeAddrLValue(Object, 345 Adjustment.Field->getType()); 346 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 347 break; 348 } 349 350 case SubobjectAdjustment::MemberPointerAdjustment: { 351 llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS); 352 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 353 CGF, Object, Ptr, Adjustment.Ptr.MPT); 354 break; 355 } 356 } 357 } 358 359 return Object; 360 } 361 } 362 363 if (RV.isAggregate()) 364 return RV.getAggregateAddr(); 365 366 // Create a temporary variable that we can bind the reference to. 367 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 368 InitializedDecl); 369 370 371 unsigned Alignment = 372 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 373 if (RV.isScalar()) 374 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 375 /*Volatile=*/false, Alignment, E->getType()); 376 else 377 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 378 /*Volatile=*/false); 379 return ReferenceTemporary; 380 } 381 382 RValue 383 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 384 const NamedDecl *InitializedDecl) { 385 llvm::Value *ReferenceTemporary = 0; 386 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 387 QualType ObjCARCReferenceLifetimeType; 388 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 389 ReferenceTemporaryDtor, 390 ObjCARCReferenceLifetimeType, 391 InitializedDecl); 392 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 393 // C++11 [dcl.ref]p5 (as amended by core issue 453): 394 // If a glvalue to which a reference is directly bound designates neither 395 // an existing object or function of an appropriate type nor a region of 396 // storage of suitable size and alignment to contain an object of the 397 // reference's type, the behavior is undefined. 398 QualType Ty = E->getType(); 399 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 400 } 401 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 402 return RValue::get(Value); 403 404 // Make sure to call the destructor for the reference temporary. 405 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 406 if (VD && VD->hasGlobalStorage()) { 407 if (ReferenceTemporaryDtor) { 408 llvm::Constant *DtorFn = 409 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 410 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 411 cast<llvm::Constant>(ReferenceTemporary)); 412 } else { 413 assert(!ObjCARCReferenceLifetimeType.isNull()); 414 // Note: We intentionally do not register a global "destructor" to 415 // release the object. 416 } 417 418 return RValue::get(Value); 419 } 420 421 if (ReferenceTemporaryDtor) 422 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 423 else { 424 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 425 case Qualifiers::OCL_None: 426 llvm_unreachable( 427 "Not a reference temporary that needs to be deallocated"); 428 case Qualifiers::OCL_ExplicitNone: 429 case Qualifiers::OCL_Autoreleasing: 430 // Nothing to do. 431 break; 432 433 case Qualifiers::OCL_Strong: { 434 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 435 CleanupKind cleanupKind = getARCCleanupKind(); 436 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 437 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 438 cleanupKind & EHCleanup); 439 break; 440 } 441 442 case Qualifiers::OCL_Weak: { 443 // __weak objects always get EH cleanups; otherwise, exceptions 444 // could cause really nasty crashes instead of mere leaks. 445 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 446 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 447 break; 448 } 449 } 450 } 451 452 return RValue::get(Value); 453 } 454 455 456 /// getAccessedFieldNo - Given an encoded value and a result number, return the 457 /// input field number being accessed. 458 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 459 const llvm::Constant *Elts) { 460 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 461 ->getZExtValue(); 462 } 463 464 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 465 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 466 llvm::Value *High) { 467 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 468 llvm::Value *K47 = Builder.getInt64(47); 469 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 470 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 471 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 472 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 473 return Builder.CreateMul(B1, KMul); 474 } 475 476 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 477 llvm::Value *Address, 478 QualType Ty, CharUnits Alignment) { 479 if (!SanitizePerformTypeCheck) 480 return; 481 482 // Don't check pointers outside the default address space. The null check 483 // isn't correct, the object-size check isn't supported by LLVM, and we can't 484 // communicate the addresses to the runtime handler for the vptr check. 485 if (Address->getType()->getPointerAddressSpace()) 486 return; 487 488 llvm::Value *Cond = 0; 489 490 if (getLangOpts().SanitizeNull) { 491 // The glvalue must not be an empty glvalue. 492 Cond = Builder.CreateICmpNE( 493 Address, llvm::Constant::getNullValue(Address->getType())); 494 } 495 496 if (getLangOpts().SanitizeObjectSize && !Ty->isIncompleteType()) { 497 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 498 499 // The glvalue must refer to a large enough storage region. 500 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 501 // to check this. 502 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 503 llvm::Value *Min = Builder.getFalse(); 504 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 505 llvm::Value *LargeEnough = 506 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 507 llvm::ConstantInt::get(IntPtrTy, Size)); 508 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 509 } 510 511 uint64_t AlignVal = 0; 512 513 if (getLangOpts().SanitizeAlignment) { 514 AlignVal = Alignment.getQuantity(); 515 if (!Ty->isIncompleteType() && !AlignVal) 516 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 517 518 // The glvalue must be suitably aligned. 519 if (AlignVal) { 520 llvm::Value *Align = 521 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 522 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 523 llvm::Value *Aligned = 524 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 525 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 526 } 527 } 528 529 if (Cond) { 530 llvm::Constant *StaticData[] = { 531 EmitCheckSourceLocation(Loc), 532 EmitCheckTypeDescriptor(Ty), 533 llvm::ConstantInt::get(SizeTy, AlignVal), 534 llvm::ConstantInt::get(Int8Ty, TCK) 535 }; 536 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 537 } 538 539 // If possible, check that the vptr indicates that there is a subobject of 540 // type Ty at offset zero within this object. 541 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 542 if (getLangOpts().SanitizeVptr && TCK != TCK_ConstructorCall && 543 RD && RD->hasDefinition() && RD->isDynamicClass()) { 544 // Compute a hash of the mangled name of the type. 545 // 546 // FIXME: This is not guaranteed to be deterministic! Move to a 547 // fingerprinting mechanism once LLVM provides one. For the time 548 // being the implementation happens to be deterministic. 549 llvm::SmallString<64> MangledName; 550 llvm::raw_svector_ostream Out(MangledName); 551 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 552 Out); 553 llvm::hash_code TypeHash = hash_value(Out.str()); 554 555 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 556 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 557 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 558 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 559 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 560 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 561 562 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 563 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 564 565 // Look the hash up in our cache. 566 const int CacheSize = 128; 567 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 568 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 569 "__ubsan_vptr_type_cache"); 570 llvm::Value *Slot = Builder.CreateAnd(Hash, 571 llvm::ConstantInt::get(IntPtrTy, 572 CacheSize-1)); 573 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 574 llvm::Value *CacheVal = 575 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 576 577 // If the hash isn't in the cache, call a runtime handler to perform the 578 // hard work of checking whether the vptr is for an object of the right 579 // type. This will either fill in the cache and return, or produce a 580 // diagnostic. 581 llvm::Constant *StaticData[] = { 582 EmitCheckSourceLocation(Loc), 583 EmitCheckTypeDescriptor(Ty), 584 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 585 llvm::ConstantInt::get(Int8Ty, TCK) 586 }; 587 llvm::Value *DynamicData[] = { Address, Hash }; 588 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 589 "dynamic_type_cache_miss", StaticData, DynamicData, 590 CRK_AlwaysRecoverable); 591 } 592 } 593 594 595 CodeGenFunction::ComplexPairTy CodeGenFunction:: 596 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 597 bool isInc, bool isPre) { 598 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 599 LV.isVolatileQualified()); 600 601 llvm::Value *NextVal; 602 if (isa<llvm::IntegerType>(InVal.first->getType())) { 603 uint64_t AmountVal = isInc ? 1 : -1; 604 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 605 606 // Add the inc/dec to the real part. 607 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 608 } else { 609 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 610 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 611 if (!isInc) 612 FVal.changeSign(); 613 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 614 615 // Add the inc/dec to the real part. 616 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 617 } 618 619 ComplexPairTy IncVal(NextVal, InVal.second); 620 621 // Store the updated result through the lvalue. 622 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 623 624 // If this is a postinc, return the value read from memory, otherwise use the 625 // updated value. 626 return isPre ? IncVal : InVal; 627 } 628 629 630 //===----------------------------------------------------------------------===// 631 // LValue Expression Emission 632 //===----------------------------------------------------------------------===// 633 634 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 635 if (Ty->isVoidType()) 636 return RValue::get(0); 637 638 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 639 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 640 llvm::Value *U = llvm::UndefValue::get(EltTy); 641 return RValue::getComplex(std::make_pair(U, U)); 642 } 643 644 // If this is a use of an undefined aggregate type, the aggregate must have an 645 // identifiable address. Just because the contents of the value are undefined 646 // doesn't mean that the address can't be taken and compared. 647 if (hasAggregateLLVMType(Ty)) { 648 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 649 return RValue::getAggregate(DestPtr); 650 } 651 652 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 653 } 654 655 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 656 const char *Name) { 657 ErrorUnsupported(E, Name); 658 return GetUndefRValue(E->getType()); 659 } 660 661 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 662 const char *Name) { 663 ErrorUnsupported(E, Name); 664 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 665 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 666 } 667 668 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 669 LValue LV = EmitLValue(E); 670 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 671 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 672 E->getType(), LV.getAlignment()); 673 return LV; 674 } 675 676 /// EmitLValue - Emit code to compute a designator that specifies the location 677 /// of the expression. 678 /// 679 /// This can return one of two things: a simple address or a bitfield reference. 680 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 681 /// an LLVM pointer type. 682 /// 683 /// If this returns a bitfield reference, nothing about the pointee type of the 684 /// LLVM value is known: For example, it may not be a pointer to an integer. 685 /// 686 /// If this returns a normal address, and if the lvalue's C type is fixed size, 687 /// this method guarantees that the returned pointer type will point to an LLVM 688 /// type of the same size of the lvalue's type. If the lvalue has a variable 689 /// length type, this is not possible. 690 /// 691 LValue CodeGenFunction::EmitLValue(const Expr *E) { 692 switch (E->getStmtClass()) { 693 default: return EmitUnsupportedLValue(E, "l-value expression"); 694 695 case Expr::ObjCPropertyRefExprClass: 696 llvm_unreachable("cannot emit a property reference directly"); 697 698 case Expr::ObjCSelectorExprClass: 699 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 700 case Expr::ObjCIsaExprClass: 701 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 702 case Expr::BinaryOperatorClass: 703 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 704 case Expr::CompoundAssignOperatorClass: 705 if (!E->getType()->isAnyComplexType()) 706 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 707 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 708 case Expr::CallExprClass: 709 case Expr::CXXMemberCallExprClass: 710 case Expr::CXXOperatorCallExprClass: 711 case Expr::UserDefinedLiteralClass: 712 return EmitCallExprLValue(cast<CallExpr>(E)); 713 case Expr::VAArgExprClass: 714 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 715 case Expr::DeclRefExprClass: 716 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 717 case Expr::ParenExprClass: 718 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 719 case Expr::GenericSelectionExprClass: 720 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 721 case Expr::PredefinedExprClass: 722 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 723 case Expr::StringLiteralClass: 724 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 725 case Expr::ObjCEncodeExprClass: 726 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 727 case Expr::PseudoObjectExprClass: 728 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 729 case Expr::InitListExprClass: 730 return EmitInitListLValue(cast<InitListExpr>(E)); 731 case Expr::CXXTemporaryObjectExprClass: 732 case Expr::CXXConstructExprClass: 733 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 734 case Expr::CXXBindTemporaryExprClass: 735 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 736 case Expr::CXXUuidofExprClass: 737 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 738 case Expr::LambdaExprClass: 739 return EmitLambdaLValue(cast<LambdaExpr>(E)); 740 741 case Expr::ExprWithCleanupsClass: { 742 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 743 enterFullExpression(cleanups); 744 RunCleanupsScope Scope(*this); 745 return EmitLValue(cleanups->getSubExpr()); 746 } 747 748 case Expr::CXXScalarValueInitExprClass: 749 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 750 case Expr::CXXDefaultArgExprClass: 751 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 752 case Expr::CXXTypeidExprClass: 753 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 754 755 case Expr::ObjCMessageExprClass: 756 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 757 case Expr::ObjCIvarRefExprClass: 758 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 759 case Expr::StmtExprClass: 760 return EmitStmtExprLValue(cast<StmtExpr>(E)); 761 case Expr::UnaryOperatorClass: 762 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 763 case Expr::ArraySubscriptExprClass: 764 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 765 case Expr::ExtVectorElementExprClass: 766 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 767 case Expr::MemberExprClass: 768 return EmitMemberExpr(cast<MemberExpr>(E)); 769 case Expr::CompoundLiteralExprClass: 770 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 771 case Expr::ConditionalOperatorClass: 772 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 773 case Expr::BinaryConditionalOperatorClass: 774 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 775 case Expr::ChooseExprClass: 776 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 777 case Expr::OpaqueValueExprClass: 778 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 779 case Expr::SubstNonTypeTemplateParmExprClass: 780 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 781 case Expr::ImplicitCastExprClass: 782 case Expr::CStyleCastExprClass: 783 case Expr::CXXFunctionalCastExprClass: 784 case Expr::CXXStaticCastExprClass: 785 case Expr::CXXDynamicCastExprClass: 786 case Expr::CXXReinterpretCastExprClass: 787 case Expr::CXXConstCastExprClass: 788 case Expr::ObjCBridgedCastExprClass: 789 return EmitCastLValue(cast<CastExpr>(E)); 790 791 case Expr::MaterializeTemporaryExprClass: 792 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 793 } 794 } 795 796 /// Given an object of the given canonical type, can we safely copy a 797 /// value out of it based on its initializer? 798 static bool isConstantEmittableObjectType(QualType type) { 799 assert(type.isCanonical()); 800 assert(!type->isReferenceType()); 801 802 // Must be const-qualified but non-volatile. 803 Qualifiers qs = type.getLocalQualifiers(); 804 if (!qs.hasConst() || qs.hasVolatile()) return false; 805 806 // Otherwise, all object types satisfy this except C++ classes with 807 // mutable subobjects or non-trivial copy/destroy behavior. 808 if (const RecordType *RT = dyn_cast<RecordType>(type)) 809 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 810 if (RD->hasMutableFields() || !RD->isTrivial()) 811 return false; 812 813 return true; 814 } 815 816 /// Can we constant-emit a load of a reference to a variable of the 817 /// given type? This is different from predicates like 818 /// Decl::isUsableInConstantExpressions because we do want it to apply 819 /// in situations that don't necessarily satisfy the language's rules 820 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 821 /// to do this with const float variables even if those variables 822 /// aren't marked 'constexpr'. 823 enum ConstantEmissionKind { 824 CEK_None, 825 CEK_AsReferenceOnly, 826 CEK_AsValueOrReference, 827 CEK_AsValueOnly 828 }; 829 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 830 type = type.getCanonicalType(); 831 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 832 if (isConstantEmittableObjectType(ref->getPointeeType())) 833 return CEK_AsValueOrReference; 834 return CEK_AsReferenceOnly; 835 } 836 if (isConstantEmittableObjectType(type)) 837 return CEK_AsValueOnly; 838 return CEK_None; 839 } 840 841 /// Try to emit a reference to the given value without producing it as 842 /// an l-value. This is actually more than an optimization: we can't 843 /// produce an l-value for variables that we never actually captured 844 /// in a block or lambda, which means const int variables or constexpr 845 /// literals or similar. 846 CodeGenFunction::ConstantEmission 847 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 848 ValueDecl *value = refExpr->getDecl(); 849 850 // The value needs to be an enum constant or a constant variable. 851 ConstantEmissionKind CEK; 852 if (isa<ParmVarDecl>(value)) { 853 CEK = CEK_None; 854 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 855 CEK = checkVarTypeForConstantEmission(var->getType()); 856 } else if (isa<EnumConstantDecl>(value)) { 857 CEK = CEK_AsValueOnly; 858 } else { 859 CEK = CEK_None; 860 } 861 if (CEK == CEK_None) return ConstantEmission(); 862 863 Expr::EvalResult result; 864 bool resultIsReference; 865 QualType resultType; 866 867 // It's best to evaluate all the way as an r-value if that's permitted. 868 if (CEK != CEK_AsReferenceOnly && 869 refExpr->EvaluateAsRValue(result, getContext())) { 870 resultIsReference = false; 871 resultType = refExpr->getType(); 872 873 // Otherwise, try to evaluate as an l-value. 874 } else if (CEK != CEK_AsValueOnly && 875 refExpr->EvaluateAsLValue(result, getContext())) { 876 resultIsReference = true; 877 resultType = value->getType(); 878 879 // Failure. 880 } else { 881 return ConstantEmission(); 882 } 883 884 // In any case, if the initializer has side-effects, abandon ship. 885 if (result.HasSideEffects) 886 return ConstantEmission(); 887 888 // Emit as a constant. 889 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 890 891 // Make sure we emit a debug reference to the global variable. 892 // This should probably fire even for 893 if (isa<VarDecl>(value)) { 894 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 895 EmitDeclRefExprDbgValue(refExpr, C); 896 } else { 897 assert(isa<EnumConstantDecl>(value)); 898 EmitDeclRefExprDbgValue(refExpr, C); 899 } 900 901 // If we emitted a reference constant, we need to dereference that. 902 if (resultIsReference) 903 return ConstantEmission::forReference(C); 904 905 return ConstantEmission::forValue(C); 906 } 907 908 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 909 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 910 lvalue.getAlignment().getQuantity(), 911 lvalue.getType(), lvalue.getTBAAInfo()); 912 } 913 914 static bool hasBooleanRepresentation(QualType Ty) { 915 if (Ty->isBooleanType()) 916 return true; 917 918 if (const EnumType *ET = Ty->getAs<EnumType>()) 919 return ET->getDecl()->getIntegerType()->isBooleanType(); 920 921 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 922 return hasBooleanRepresentation(AT->getValueType()); 923 924 return false; 925 } 926 927 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 928 const EnumType *ET = Ty->getAs<EnumType>(); 929 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 930 CGM.getCodeGenOpts().StrictEnums && 931 !ET->getDecl()->isFixed()); 932 bool IsBool = hasBooleanRepresentation(Ty); 933 if (!IsBool && !IsRegularCPlusPlusEnum) 934 return NULL; 935 936 llvm::APInt Min; 937 llvm::APInt End; 938 if (IsBool) { 939 Min = llvm::APInt(getContext().getTypeSize(Ty), 0); 940 End = llvm::APInt(getContext().getTypeSize(Ty), 2); 941 } else { 942 const EnumDecl *ED = ET->getDecl(); 943 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 944 unsigned Bitwidth = LTy->getScalarSizeInBits(); 945 unsigned NumNegativeBits = ED->getNumNegativeBits(); 946 unsigned NumPositiveBits = ED->getNumPositiveBits(); 947 948 if (NumNegativeBits) { 949 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 950 assert(NumBits <= Bitwidth); 951 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 952 Min = -End; 953 } else { 954 assert(NumPositiveBits <= Bitwidth); 955 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 956 Min = llvm::APInt(Bitwidth, 0); 957 } 958 } 959 960 llvm::MDBuilder MDHelper(getLLVMContext()); 961 return MDHelper.createRange(Min, End); 962 } 963 964 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 965 unsigned Alignment, QualType Ty, 966 llvm::MDNode *TBAAInfo) { 967 968 // For better performance, handle vector loads differently. 969 if (Ty->isVectorType()) { 970 llvm::Value *V; 971 const llvm::Type *EltTy = 972 cast<llvm::PointerType>(Addr->getType())->getElementType(); 973 974 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 975 976 // Handle vectors of size 3, like size 4 for better performance. 977 if (VTy->getNumElements() == 3) { 978 979 // Bitcast to vec4 type. 980 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 981 4); 982 llvm::PointerType *ptVec4Ty = 983 llvm::PointerType::get(vec4Ty, 984 (cast<llvm::PointerType>( 985 Addr->getType()))->getAddressSpace()); 986 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 987 "castToVec4"); 988 // Now load value. 989 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 990 991 // Shuffle vector to get vec3. 992 llvm::SmallVector<llvm::Constant*, 3> Mask; 993 Mask.push_back(llvm::ConstantInt::get( 994 llvm::Type::getInt32Ty(getLLVMContext()), 995 0)); 996 Mask.push_back(llvm::ConstantInt::get( 997 llvm::Type::getInt32Ty(getLLVMContext()), 998 1)); 999 Mask.push_back(llvm::ConstantInt::get( 1000 llvm::Type::getInt32Ty(getLLVMContext()), 1001 2)); 1002 1003 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1004 V = Builder.CreateShuffleVector(LoadVal, 1005 llvm::UndefValue::get(vec4Ty), 1006 MaskV, "extractVec"); 1007 return EmitFromMemory(V, Ty); 1008 } 1009 } 1010 1011 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1012 if (Volatile) 1013 Load->setVolatile(true); 1014 if (Alignment) 1015 Load->setAlignment(Alignment); 1016 if (TBAAInfo) 1017 CGM.DecorateInstruction(Load, TBAAInfo); 1018 // If this is an atomic type, all normal reads must be atomic 1019 if (Ty->isAtomicType()) 1020 Load->setAtomic(llvm::SequentiallyConsistent); 1021 1022 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1023 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1024 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1025 1026 return EmitFromMemory(Load, Ty); 1027 } 1028 1029 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1030 // Bool has a different representation in memory than in registers. 1031 if (hasBooleanRepresentation(Ty)) { 1032 // This should really always be an i1, but sometimes it's already 1033 // an i8, and it's awkward to track those cases down. 1034 if (Value->getType()->isIntegerTy(1)) 1035 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1036 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1037 "wrong value rep of bool"); 1038 } 1039 1040 return Value; 1041 } 1042 1043 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1044 // Bool has a different representation in memory than in registers. 1045 if (hasBooleanRepresentation(Ty)) { 1046 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1047 "wrong value rep of bool"); 1048 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1049 } 1050 1051 return Value; 1052 } 1053 1054 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1055 bool Volatile, unsigned Alignment, 1056 QualType Ty, 1057 llvm::MDNode *TBAAInfo, 1058 bool isInit) { 1059 1060 // Handle vectors differently to get better performance. 1061 if (Ty->isVectorType()) { 1062 llvm::Type *SrcTy = Value->getType(); 1063 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1064 // Handle vec3 special. 1065 if (VecTy->getNumElements() == 3) { 1066 llvm::LLVMContext &VMContext = getLLVMContext(); 1067 1068 // Our source is a vec3, do a shuffle vector to make it a vec4. 1069 llvm::SmallVector<llvm::Constant*, 4> Mask; 1070 Mask.push_back(llvm::ConstantInt::get( 1071 llvm::Type::getInt32Ty(VMContext), 1072 0)); 1073 Mask.push_back(llvm::ConstantInt::get( 1074 llvm::Type::getInt32Ty(VMContext), 1075 1)); 1076 Mask.push_back(llvm::ConstantInt::get( 1077 llvm::Type::getInt32Ty(VMContext), 1078 2)); 1079 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1080 1081 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1082 Value = Builder.CreateShuffleVector(Value, 1083 llvm::UndefValue::get(VecTy), 1084 MaskV, "extractVec"); 1085 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1086 } 1087 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1088 if (DstPtr->getElementType() != SrcTy) { 1089 llvm::Type *MemTy = 1090 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1091 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1092 } 1093 } 1094 1095 Value = EmitToMemory(Value, Ty); 1096 1097 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1098 if (Alignment) 1099 Store->setAlignment(Alignment); 1100 if (TBAAInfo) 1101 CGM.DecorateInstruction(Store, TBAAInfo); 1102 if (!isInit && Ty->isAtomicType()) 1103 Store->setAtomic(llvm::SequentiallyConsistent); 1104 } 1105 1106 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1107 bool isInit) { 1108 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1109 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1110 lvalue.getTBAAInfo(), isInit); 1111 } 1112 1113 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1114 /// method emits the address of the lvalue, then loads the result as an rvalue, 1115 /// returning the rvalue. 1116 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1117 if (LV.isObjCWeak()) { 1118 // load of a __weak object. 1119 llvm::Value *AddrWeakObj = LV.getAddress(); 1120 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1121 AddrWeakObj)); 1122 } 1123 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1124 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1125 Object = EmitObjCConsumeObject(LV.getType(), Object); 1126 return RValue::get(Object); 1127 } 1128 1129 if (LV.isSimple()) { 1130 assert(!LV.getType()->isFunctionType()); 1131 1132 // Everything needs a load. 1133 return RValue::get(EmitLoadOfScalar(LV)); 1134 } 1135 1136 if (LV.isVectorElt()) { 1137 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1138 LV.isVolatileQualified()); 1139 Load->setAlignment(LV.getAlignment().getQuantity()); 1140 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1141 "vecext")); 1142 } 1143 1144 // If this is a reference to a subset of the elements of a vector, either 1145 // shuffle the input or extract/insert them as appropriate. 1146 if (LV.isExtVectorElt()) 1147 return EmitLoadOfExtVectorElementLValue(LV); 1148 1149 assert(LV.isBitField() && "Unknown LValue type!"); 1150 return EmitLoadOfBitfieldLValue(LV); 1151 } 1152 1153 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1154 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1155 1156 // Get the output type. 1157 llvm::Type *ResLTy = ConvertType(LV.getType()); 1158 unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy); 1159 1160 // Compute the result as an OR of all of the individual component accesses. 1161 llvm::Value *Res = 0; 1162 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1163 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1164 CharUnits AccessAlignment = AI.AccessAlignment; 1165 if (!LV.getAlignment().isZero()) 1166 AccessAlignment = std::min(AccessAlignment, LV.getAlignment()); 1167 1168 // Get the field pointer. 1169 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1170 1171 // Only offset by the field index if used, so that incoming values are not 1172 // required to be structures. 1173 if (AI.FieldIndex) 1174 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1175 1176 // Offset by the byte offset, if used. 1177 if (!AI.FieldByteOffset.isZero()) { 1178 Ptr = EmitCastToVoidPtr(Ptr); 1179 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1180 "bf.field.offs"); 1181 } 1182 1183 // Cast to the access type. 1184 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1185 CGM.getContext().getTargetAddressSpace(LV.getType())); 1186 Ptr = Builder.CreateBitCast(Ptr, PTy); 1187 1188 // Perform the load. 1189 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1190 Load->setAlignment(AccessAlignment.getQuantity()); 1191 1192 // Shift out unused low bits and mask out unused high bits. 1193 llvm::Value *Val = Load; 1194 if (AI.FieldBitStart) 1195 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1196 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1197 AI.TargetBitWidth), 1198 "bf.clear"); 1199 1200 // Extend or truncate to the target size. 1201 if (AI.AccessWidth < ResSizeInBits) 1202 Val = Builder.CreateZExt(Val, ResLTy); 1203 else if (AI.AccessWidth > ResSizeInBits) 1204 Val = Builder.CreateTrunc(Val, ResLTy); 1205 1206 // Shift into place, and OR into the result. 1207 if (AI.TargetBitOffset) 1208 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1209 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1210 } 1211 1212 // If the bit-field is signed, perform the sign-extension. 1213 // 1214 // FIXME: This can easily be folded into the load of the high bits, which 1215 // could also eliminate the mask of high bits in some situations. 1216 if (Info.isSigned()) { 1217 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1218 if (ExtraBits) 1219 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1220 ExtraBits, "bf.val.sext"); 1221 } 1222 1223 return RValue::get(Res); 1224 } 1225 1226 // If this is a reference to a subset of the elements of a vector, create an 1227 // appropriate shufflevector. 1228 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1229 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1230 LV.isVolatileQualified()); 1231 Load->setAlignment(LV.getAlignment().getQuantity()); 1232 llvm::Value *Vec = Load; 1233 1234 const llvm::Constant *Elts = LV.getExtVectorElts(); 1235 1236 // If the result of the expression is a non-vector type, we must be extracting 1237 // a single element. Just codegen as an extractelement. 1238 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1239 if (!ExprVT) { 1240 unsigned InIdx = getAccessedFieldNo(0, Elts); 1241 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1242 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1243 } 1244 1245 // Always use shuffle vector to try to retain the original program structure 1246 unsigned NumResultElts = ExprVT->getNumElements(); 1247 1248 SmallVector<llvm::Constant*, 4> Mask; 1249 for (unsigned i = 0; i != NumResultElts; ++i) 1250 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1251 1252 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1253 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1254 MaskV); 1255 return RValue::get(Vec); 1256 } 1257 1258 1259 1260 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1261 /// lvalue, where both are guaranteed to the have the same type, and that type 1262 /// is 'Ty'. 1263 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1264 if (!Dst.isSimple()) { 1265 if (Dst.isVectorElt()) { 1266 // Read/modify/write the vector, inserting the new element. 1267 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1268 Dst.isVolatileQualified()); 1269 Load->setAlignment(Dst.getAlignment().getQuantity()); 1270 llvm::Value *Vec = Load; 1271 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1272 Dst.getVectorIdx(), "vecins"); 1273 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1274 Dst.isVolatileQualified()); 1275 Store->setAlignment(Dst.getAlignment().getQuantity()); 1276 return; 1277 } 1278 1279 // If this is an update of extended vector elements, insert them as 1280 // appropriate. 1281 if (Dst.isExtVectorElt()) 1282 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1283 1284 assert(Dst.isBitField() && "Unknown LValue type"); 1285 return EmitStoreThroughBitfieldLValue(Src, Dst); 1286 } 1287 1288 // There's special magic for assigning into an ARC-qualified l-value. 1289 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1290 switch (Lifetime) { 1291 case Qualifiers::OCL_None: 1292 llvm_unreachable("present but none"); 1293 1294 case Qualifiers::OCL_ExplicitNone: 1295 // nothing special 1296 break; 1297 1298 case Qualifiers::OCL_Strong: 1299 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1300 return; 1301 1302 case Qualifiers::OCL_Weak: 1303 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1304 return; 1305 1306 case Qualifiers::OCL_Autoreleasing: 1307 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1308 Src.getScalarVal())); 1309 // fall into the normal path 1310 break; 1311 } 1312 } 1313 1314 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1315 // load of a __weak object. 1316 llvm::Value *LvalueDst = Dst.getAddress(); 1317 llvm::Value *src = Src.getScalarVal(); 1318 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1319 return; 1320 } 1321 1322 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1323 // load of a __strong object. 1324 llvm::Value *LvalueDst = Dst.getAddress(); 1325 llvm::Value *src = Src.getScalarVal(); 1326 if (Dst.isObjCIvar()) { 1327 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1328 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1329 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1330 llvm::Value *dst = RHS; 1331 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1332 llvm::Value *LHS = 1333 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1334 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1335 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1336 BytesBetween); 1337 } else if (Dst.isGlobalObjCRef()) { 1338 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1339 Dst.isThreadLocalRef()); 1340 } 1341 else 1342 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1343 return; 1344 } 1345 1346 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1347 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1348 } 1349 1350 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1351 llvm::Value **Result) { 1352 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1353 1354 // Get the output type. 1355 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1356 unsigned ResSizeInBits = CGM.getDataLayout().getTypeSizeInBits(ResLTy); 1357 1358 // Get the source value, truncated to the width of the bit-field. 1359 llvm::Value *SrcVal = Src.getScalarVal(); 1360 1361 if (hasBooleanRepresentation(Dst.getType())) 1362 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1363 1364 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1365 Info.getSize()), 1366 "bf.value"); 1367 1368 // Return the new value of the bit-field, if requested. 1369 if (Result) { 1370 // Cast back to the proper type for result. 1371 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1372 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1373 "bf.reload.val"); 1374 1375 // Sign extend if necessary. 1376 if (Info.isSigned()) { 1377 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1378 if (ExtraBits) 1379 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1380 ExtraBits, "bf.reload.sext"); 1381 } 1382 1383 *Result = ReloadVal; 1384 } 1385 1386 // Iterate over the components, writing each piece to memory. 1387 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1388 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1389 CharUnits AccessAlignment = AI.AccessAlignment; 1390 if (!Dst.getAlignment().isZero()) 1391 AccessAlignment = std::min(AccessAlignment, Dst.getAlignment()); 1392 1393 // Get the field pointer. 1394 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1395 unsigned addressSpace = 1396 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1397 1398 // Only offset by the field index if used, so that incoming values are not 1399 // required to be structures. 1400 if (AI.FieldIndex) 1401 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1402 1403 // Offset by the byte offset, if used. 1404 if (!AI.FieldByteOffset.isZero()) { 1405 Ptr = EmitCastToVoidPtr(Ptr); 1406 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1407 "bf.field.offs"); 1408 } 1409 1410 // Cast to the access type. 1411 llvm::Type *AccessLTy = 1412 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1413 1414 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1415 Ptr = Builder.CreateBitCast(Ptr, PTy); 1416 1417 // Extract the piece of the bit-field value to write in this access, limited 1418 // to the values that are part of this access. 1419 llvm::Value *Val = SrcVal; 1420 if (AI.TargetBitOffset) 1421 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1422 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1423 AI.TargetBitWidth)); 1424 1425 // Extend or truncate to the access size. 1426 if (ResSizeInBits < AI.AccessWidth) 1427 Val = Builder.CreateZExt(Val, AccessLTy); 1428 else if (ResSizeInBits > AI.AccessWidth) 1429 Val = Builder.CreateTrunc(Val, AccessLTy); 1430 1431 // Shift into the position in memory. 1432 if (AI.FieldBitStart) 1433 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1434 1435 // If necessary, load and OR in bits that are outside of the bit-field. 1436 if (AI.TargetBitWidth != AI.AccessWidth) { 1437 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1438 Load->setAlignment(AccessAlignment.getQuantity()); 1439 1440 // Compute the mask for zeroing the bits that are part of the bit-field. 1441 llvm::APInt InvMask = 1442 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1443 AI.FieldBitStart + AI.TargetBitWidth); 1444 1445 // Apply the mask and OR in to the value to write. 1446 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1447 } 1448 1449 // Write the value. 1450 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1451 Dst.isVolatileQualified()); 1452 Store->setAlignment(AccessAlignment.getQuantity()); 1453 } 1454 } 1455 1456 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1457 LValue Dst) { 1458 // This access turns into a read/modify/write of the vector. Load the input 1459 // value now. 1460 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1461 Dst.isVolatileQualified()); 1462 Load->setAlignment(Dst.getAlignment().getQuantity()); 1463 llvm::Value *Vec = Load; 1464 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1465 1466 llvm::Value *SrcVal = Src.getScalarVal(); 1467 1468 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1469 unsigned NumSrcElts = VTy->getNumElements(); 1470 unsigned NumDstElts = 1471 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1472 if (NumDstElts == NumSrcElts) { 1473 // Use shuffle vector is the src and destination are the same number of 1474 // elements and restore the vector mask since it is on the side it will be 1475 // stored. 1476 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1477 for (unsigned i = 0; i != NumSrcElts; ++i) 1478 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1479 1480 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1481 Vec = Builder.CreateShuffleVector(SrcVal, 1482 llvm::UndefValue::get(Vec->getType()), 1483 MaskV); 1484 } else if (NumDstElts > NumSrcElts) { 1485 // Extended the source vector to the same length and then shuffle it 1486 // into the destination. 1487 // FIXME: since we're shuffling with undef, can we just use the indices 1488 // into that? This could be simpler. 1489 SmallVector<llvm::Constant*, 4> ExtMask; 1490 for (unsigned i = 0; i != NumSrcElts; ++i) 1491 ExtMask.push_back(Builder.getInt32(i)); 1492 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1493 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1494 llvm::Value *ExtSrcVal = 1495 Builder.CreateShuffleVector(SrcVal, 1496 llvm::UndefValue::get(SrcVal->getType()), 1497 ExtMaskV); 1498 // build identity 1499 SmallVector<llvm::Constant*, 4> Mask; 1500 for (unsigned i = 0; i != NumDstElts; ++i) 1501 Mask.push_back(Builder.getInt32(i)); 1502 1503 // modify when what gets shuffled in 1504 for (unsigned i = 0; i != NumSrcElts; ++i) 1505 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1506 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1507 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1508 } else { 1509 // We should never shorten the vector 1510 llvm_unreachable("unexpected shorten vector length"); 1511 } 1512 } else { 1513 // If the Src is a scalar (not a vector) it must be updating one element. 1514 unsigned InIdx = getAccessedFieldNo(0, Elts); 1515 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1516 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1517 } 1518 1519 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1520 Dst.isVolatileQualified()); 1521 Store->setAlignment(Dst.getAlignment().getQuantity()); 1522 } 1523 1524 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1525 // generating write-barries API. It is currently a global, ivar, 1526 // or neither. 1527 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1528 LValue &LV, 1529 bool IsMemberAccess=false) { 1530 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1531 return; 1532 1533 if (isa<ObjCIvarRefExpr>(E)) { 1534 QualType ExpTy = E->getType(); 1535 if (IsMemberAccess && ExpTy->isPointerType()) { 1536 // If ivar is a structure pointer, assigning to field of 1537 // this struct follows gcc's behavior and makes it a non-ivar 1538 // writer-barrier conservatively. 1539 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1540 if (ExpTy->isRecordType()) { 1541 LV.setObjCIvar(false); 1542 return; 1543 } 1544 } 1545 LV.setObjCIvar(true); 1546 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1547 LV.setBaseIvarExp(Exp->getBase()); 1548 LV.setObjCArray(E->getType()->isArrayType()); 1549 return; 1550 } 1551 1552 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1553 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1554 if (VD->hasGlobalStorage()) { 1555 LV.setGlobalObjCRef(true); 1556 LV.setThreadLocalRef(VD->isThreadSpecified()); 1557 } 1558 } 1559 LV.setObjCArray(E->getType()->isArrayType()); 1560 return; 1561 } 1562 1563 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1564 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1565 return; 1566 } 1567 1568 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1569 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1570 if (LV.isObjCIvar()) { 1571 // If cast is to a structure pointer, follow gcc's behavior and make it 1572 // a non-ivar write-barrier. 1573 QualType ExpTy = E->getType(); 1574 if (ExpTy->isPointerType()) 1575 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1576 if (ExpTy->isRecordType()) 1577 LV.setObjCIvar(false); 1578 } 1579 return; 1580 } 1581 1582 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1583 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1584 return; 1585 } 1586 1587 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1588 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1589 return; 1590 } 1591 1592 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1593 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1594 return; 1595 } 1596 1597 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1598 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1599 return; 1600 } 1601 1602 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1603 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1604 if (LV.isObjCIvar() && !LV.isObjCArray()) 1605 // Using array syntax to assigning to what an ivar points to is not 1606 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1607 LV.setObjCIvar(false); 1608 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1609 // Using array syntax to assigning to what global points to is not 1610 // same as assigning to the global itself. {id *G;} G[i] = 0; 1611 LV.setGlobalObjCRef(false); 1612 return; 1613 } 1614 1615 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1616 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1617 // We don't know if member is an 'ivar', but this flag is looked at 1618 // only in the context of LV.isObjCIvar(). 1619 LV.setObjCArray(E->getType()->isArrayType()); 1620 return; 1621 } 1622 } 1623 1624 static llvm::Value * 1625 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1626 llvm::Value *V, llvm::Type *IRType, 1627 StringRef Name = StringRef()) { 1628 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1629 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1630 } 1631 1632 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1633 const Expr *E, const VarDecl *VD) { 1634 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1635 "Var decl must have external storage or be a file var decl!"); 1636 1637 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1638 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1639 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1640 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1641 QualType T = E->getType(); 1642 LValue LV; 1643 if (VD->getType()->isReferenceType()) { 1644 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1645 LI->setAlignment(Alignment.getQuantity()); 1646 V = LI; 1647 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1648 } else { 1649 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1650 } 1651 setObjCGCLValueClass(CGF.getContext(), E, LV); 1652 return LV; 1653 } 1654 1655 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1656 const Expr *E, const FunctionDecl *FD) { 1657 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1658 if (!FD->hasPrototype()) { 1659 if (const FunctionProtoType *Proto = 1660 FD->getType()->getAs<FunctionProtoType>()) { 1661 // Ugly case: for a K&R-style definition, the type of the definition 1662 // isn't the same as the type of a use. Correct for this with a 1663 // bitcast. 1664 QualType NoProtoType = 1665 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1666 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1667 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1668 } 1669 } 1670 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1671 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1672 } 1673 1674 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1675 const NamedDecl *ND = E->getDecl(); 1676 CharUnits Alignment = getContext().getDeclAlign(ND); 1677 QualType T = E->getType(); 1678 1679 // A DeclRefExpr for a reference initialized by a constant expression can 1680 // appear without being odr-used. Directly emit the constant initializer. 1681 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1682 const Expr *Init = VD->getAnyInitializer(VD); 1683 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1684 VD->isUsableInConstantExpressions(getContext()) && 1685 VD->checkInitIsICE()) { 1686 llvm::Constant *Val = 1687 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1688 assert(Val && "failed to emit reference constant expression"); 1689 // FIXME: Eventually we will want to emit vector element references. 1690 return MakeAddrLValue(Val, T, Alignment); 1691 } 1692 } 1693 1694 // FIXME: We should be able to assert this for FunctionDecls as well! 1695 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1696 // those with a valid source location. 1697 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1698 !E->getLocation().isValid()) && 1699 "Should not use decl without marking it used!"); 1700 1701 if (ND->hasAttr<WeakRefAttr>()) { 1702 const ValueDecl *VD = cast<ValueDecl>(ND); 1703 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1704 return MakeAddrLValue(Aliasee, T, Alignment); 1705 } 1706 1707 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1708 // Check if this is a global variable. 1709 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1710 return EmitGlobalVarDeclLValue(*this, E, VD); 1711 1712 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1713 1714 bool NonGCable = VD->hasLocalStorage() && 1715 !VD->getType()->isReferenceType() && 1716 !isBlockVariable; 1717 1718 llvm::Value *V = LocalDeclMap[VD]; 1719 if (!V && VD->isStaticLocal()) 1720 V = CGM.getStaticLocalDeclAddress(VD); 1721 1722 // Use special handling for lambdas. 1723 if (!V) { 1724 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1725 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1726 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1727 LambdaTagType); 1728 return EmitLValueForField(LambdaLV, FD); 1729 } 1730 1731 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1732 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1733 T, Alignment); 1734 } 1735 1736 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1737 1738 if (isBlockVariable) 1739 V = BuildBlockByrefAddress(V, VD); 1740 1741 LValue LV; 1742 if (VD->getType()->isReferenceType()) { 1743 llvm::LoadInst *LI = Builder.CreateLoad(V); 1744 LI->setAlignment(Alignment.getQuantity()); 1745 V = LI; 1746 LV = MakeNaturalAlignAddrLValue(V, T); 1747 } else { 1748 LV = MakeAddrLValue(V, T, Alignment); 1749 } 1750 1751 if (NonGCable) { 1752 LV.getQuals().removeObjCGCAttr(); 1753 LV.setNonGC(true); 1754 } 1755 setObjCGCLValueClass(getContext(), E, LV); 1756 return LV; 1757 } 1758 1759 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1760 return EmitFunctionDeclLValue(*this, E, fn); 1761 1762 llvm_unreachable("Unhandled DeclRefExpr"); 1763 } 1764 1765 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1766 // __extension__ doesn't affect lvalue-ness. 1767 if (E->getOpcode() == UO_Extension) 1768 return EmitLValue(E->getSubExpr()); 1769 1770 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1771 switch (E->getOpcode()) { 1772 default: llvm_unreachable("Unknown unary operator lvalue!"); 1773 case UO_Deref: { 1774 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1775 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1776 1777 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1778 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1779 1780 // We should not generate __weak write barrier on indirect reference 1781 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1782 // But, we continue to generate __strong write barrier on indirect write 1783 // into a pointer to object. 1784 if (getLangOpts().ObjC1 && 1785 getLangOpts().getGC() != LangOptions::NonGC && 1786 LV.isObjCWeak()) 1787 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1788 return LV; 1789 } 1790 case UO_Real: 1791 case UO_Imag: { 1792 LValue LV = EmitLValue(E->getSubExpr()); 1793 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1794 llvm::Value *Addr = LV.getAddress(); 1795 1796 // __real is valid on scalars. This is a faster way of testing that. 1797 // __imag can only produce an rvalue on scalars. 1798 if (E->getOpcode() == UO_Real && 1799 !cast<llvm::PointerType>(Addr->getType()) 1800 ->getElementType()->isStructTy()) { 1801 assert(E->getSubExpr()->getType()->isArithmeticType()); 1802 return LV; 1803 } 1804 1805 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1806 1807 unsigned Idx = E->getOpcode() == UO_Imag; 1808 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1809 Idx, "idx"), 1810 ExprTy); 1811 } 1812 case UO_PreInc: 1813 case UO_PreDec: { 1814 LValue LV = EmitLValue(E->getSubExpr()); 1815 bool isInc = E->getOpcode() == UO_PreInc; 1816 1817 if (E->getType()->isAnyComplexType()) 1818 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1819 else 1820 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1821 return LV; 1822 } 1823 } 1824 } 1825 1826 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1827 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1828 E->getType()); 1829 } 1830 1831 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1832 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1833 E->getType()); 1834 } 1835 1836 static llvm::Constant* 1837 GetAddrOfConstantWideString(StringRef Str, 1838 const char *GlobalName, 1839 ASTContext &Context, 1840 QualType Ty, SourceLocation Loc, 1841 CodeGenModule &CGM) { 1842 1843 StringLiteral *SL = StringLiteral::Create(Context, 1844 Str, 1845 StringLiteral::Wide, 1846 /*Pascal = */false, 1847 Ty, Loc); 1848 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1849 llvm::GlobalVariable *GV = 1850 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1851 !CGM.getLangOpts().WritableStrings, 1852 llvm::GlobalValue::PrivateLinkage, 1853 C, GlobalName); 1854 const unsigned WideAlignment = 1855 Context.getTypeAlignInChars(Ty).getQuantity(); 1856 GV->setAlignment(WideAlignment); 1857 return GV; 1858 } 1859 1860 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1861 SmallString<32>& Target) { 1862 Target.resize(CharByteWidth * (Source.size() + 1)); 1863 char *ResultPtr = &Target[0]; 1864 const UTF8 *ErrorPtr; 1865 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1866 (void)success; 1867 assert(success); 1868 Target.resize(ResultPtr - &Target[0]); 1869 } 1870 1871 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1872 switch (E->getIdentType()) { 1873 default: 1874 return EmitUnsupportedLValue(E, "predefined expression"); 1875 1876 case PredefinedExpr::Func: 1877 case PredefinedExpr::Function: 1878 case PredefinedExpr::LFunction: 1879 case PredefinedExpr::PrettyFunction: { 1880 unsigned IdentType = E->getIdentType(); 1881 std::string GlobalVarName; 1882 1883 switch (IdentType) { 1884 default: llvm_unreachable("Invalid type"); 1885 case PredefinedExpr::Func: 1886 GlobalVarName = "__func__."; 1887 break; 1888 case PredefinedExpr::Function: 1889 GlobalVarName = "__FUNCTION__."; 1890 break; 1891 case PredefinedExpr::LFunction: 1892 GlobalVarName = "L__FUNCTION__."; 1893 break; 1894 case PredefinedExpr::PrettyFunction: 1895 GlobalVarName = "__PRETTY_FUNCTION__."; 1896 break; 1897 } 1898 1899 StringRef FnName = CurFn->getName(); 1900 if (FnName.startswith("\01")) 1901 FnName = FnName.substr(1); 1902 GlobalVarName += FnName; 1903 1904 const Decl *CurDecl = CurCodeDecl; 1905 if (CurDecl == 0) 1906 CurDecl = getContext().getTranslationUnitDecl(); 1907 1908 std::string FunctionName = 1909 (isa<BlockDecl>(CurDecl) 1910 ? FnName.str() 1911 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1912 CurDecl)); 1913 1914 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1915 llvm::Constant *C; 1916 if (ElemType->isWideCharType()) { 1917 SmallString<32> RawChars; 1918 ConvertUTF8ToWideString( 1919 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1920 FunctionName, RawChars); 1921 C = GetAddrOfConstantWideString(RawChars, 1922 GlobalVarName.c_str(), 1923 getContext(), 1924 E->getType(), 1925 E->getLocation(), 1926 CGM); 1927 } else { 1928 C = CGM.GetAddrOfConstantCString(FunctionName, 1929 GlobalVarName.c_str(), 1930 1); 1931 } 1932 return MakeAddrLValue(C, E->getType()); 1933 } 1934 } 1935 } 1936 1937 /// Emit a type description suitable for use by a runtime sanitizer library. The 1938 /// format of a type descriptor is 1939 /// 1940 /// \code 1941 /// { i16 TypeKind, i16 TypeInfo } 1942 /// \endcode 1943 /// 1944 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 1945 /// integer, 1 for a floating point value, and -1 for anything else. 1946 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 1947 // FIXME: Only emit each type's descriptor once. 1948 uint16_t TypeKind = -1; 1949 uint16_t TypeInfo = 0; 1950 1951 if (T->isIntegerType()) { 1952 TypeKind = 0; 1953 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 1954 (T->isSignedIntegerType() ? 1 : 0); 1955 } else if (T->isFloatingType()) { 1956 TypeKind = 1; 1957 TypeInfo = getContext().getTypeSize(T); 1958 } 1959 1960 // Format the type name as if for a diagnostic, including quotes and 1961 // optionally an 'aka'. 1962 llvm::SmallString<32> Buffer; 1963 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 1964 (intptr_t)T.getAsOpaquePtr(), 1965 0, 0, 0, 0, 0, 0, Buffer, 1966 ArrayRef<intptr_t>()); 1967 1968 llvm::Constant *Components[] = { 1969 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 1970 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 1971 }; 1972 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 1973 1974 llvm::GlobalVariable *GV = 1975 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 1976 /*isConstant=*/true, 1977 llvm::GlobalVariable::PrivateLinkage, 1978 Descriptor); 1979 GV->setUnnamedAddr(true); 1980 return GV; 1981 } 1982 1983 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 1984 llvm::Type *TargetTy = IntPtrTy; 1985 1986 // Integers which fit in intptr_t are zero-extended and passed directly. 1987 if (V->getType()->isIntegerTy() && 1988 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 1989 return Builder.CreateZExt(V, TargetTy); 1990 1991 // Pointers are passed directly, everything else is passed by address. 1992 if (!V->getType()->isPointerTy()) { 1993 llvm::Value *Ptr = Builder.CreateAlloca(V->getType()); 1994 Builder.CreateStore(V, Ptr); 1995 V = Ptr; 1996 } 1997 return Builder.CreatePtrToInt(V, TargetTy); 1998 } 1999 2000 /// \brief Emit a representation of a SourceLocation for passing to a handler 2001 /// in a sanitizer runtime library. The format for this data is: 2002 /// \code 2003 /// struct SourceLocation { 2004 /// const char *Filename; 2005 /// int32_t Line, Column; 2006 /// }; 2007 /// \endcode 2008 /// For an invalid SourceLocation, the Filename pointer is null. 2009 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2010 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2011 2012 llvm::Constant *Data[] = { 2013 // FIXME: Only emit each file name once. 2014 PLoc.isValid() ? cast<llvm::Constant>( 2015 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2016 : llvm::Constant::getNullValue(Int8PtrTy), 2017 Builder.getInt32(PLoc.getLine()), 2018 Builder.getInt32(PLoc.getColumn()) 2019 }; 2020 2021 return llvm::ConstantStruct::getAnon(Data); 2022 } 2023 2024 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2025 llvm::ArrayRef<llvm::Constant *> StaticArgs, 2026 llvm::ArrayRef<llvm::Value *> DynamicArgs, 2027 CheckRecoverableKind RecoverKind) { 2028 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2029 2030 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2031 Builder.CreateCondBr(Checked, Cont, Handler); 2032 EmitBlock(Handler); 2033 2034 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2035 llvm::GlobalValue *InfoPtr = 2036 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), true, 2037 llvm::GlobalVariable::PrivateLinkage, Info); 2038 InfoPtr->setUnnamedAddr(true); 2039 2040 llvm::SmallVector<llvm::Value *, 4> Args; 2041 llvm::SmallVector<llvm::Type *, 4> ArgTypes; 2042 Args.reserve(DynamicArgs.size() + 1); 2043 ArgTypes.reserve(DynamicArgs.size() + 1); 2044 2045 // Handler functions take an i8* pointing to the (handler-specific) static 2046 // information block, followed by a sequence of intptr_t arguments 2047 // representing operand values. 2048 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2049 ArgTypes.push_back(Int8PtrTy); 2050 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2051 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2052 ArgTypes.push_back(IntPtrTy); 2053 } 2054 2055 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2056 ((RecoverKind == CRK_Recoverable) && 2057 CGM.getCodeGenOpts().SanitizeRecover); 2058 2059 llvm::FunctionType *FnType = 2060 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2061 llvm::AttrBuilder B; 2062 if (!Recover) { 2063 B.addAttribute(llvm::Attributes::NoReturn) 2064 .addAttribute(llvm::Attributes::NoUnwind); 2065 } 2066 B.addAttribute(llvm::Attributes::UWTable); 2067 2068 // Checks that have two variants use a suffix to differentiate them 2069 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2070 !CGM.getCodeGenOpts().SanitizeRecover; 2071 Twine FunctionName = "__ubsan_handle_" + CheckName + 2072 Twine(NeedsAbortSuffix? "_abort" : ""); 2073 llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType, FunctionName.str(), 2074 llvm::Attributes::get(getLLVMContext(), 2075 B)); 2076 llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args); 2077 if (Recover) { 2078 Builder.CreateBr(Cont); 2079 } else { 2080 HandlerCall->setDoesNotReturn(); 2081 HandlerCall->setDoesNotThrow(); 2082 Builder.CreateUnreachable(); 2083 } 2084 2085 EmitBlock(Cont); 2086 } 2087 2088 void CodeGenFunction::EmitTrapvCheck(llvm::Value *Checked) { 2089 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2090 2091 // If we're optimizing, collapse all calls to trap down to just one per 2092 // function to save on code size. 2093 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2094 TrapBB = createBasicBlock("trap"); 2095 Builder.CreateCondBr(Checked, Cont, TrapBB); 2096 EmitBlock(TrapBB); 2097 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2098 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2099 TrapCall->setDoesNotReturn(); 2100 TrapCall->setDoesNotThrow(); 2101 Builder.CreateUnreachable(); 2102 } else { 2103 Builder.CreateCondBr(Checked, Cont, TrapBB); 2104 } 2105 2106 EmitBlock(Cont); 2107 } 2108 2109 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2110 /// array to pointer, return the array subexpression. 2111 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2112 // If this isn't just an array->pointer decay, bail out. 2113 const CastExpr *CE = dyn_cast<CastExpr>(E); 2114 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2115 return 0; 2116 2117 // If this is a decay from variable width array, bail out. 2118 const Expr *SubExpr = CE->getSubExpr(); 2119 if (SubExpr->getType()->isVariableArrayType()) 2120 return 0; 2121 2122 return SubExpr; 2123 } 2124 2125 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 2126 // The index must always be an integer, which is not an aggregate. Emit it. 2127 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2128 QualType IdxTy = E->getIdx()->getType(); 2129 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2130 2131 // If the base is a vector type, then we are forming a vector element lvalue 2132 // with this subscript. 2133 if (E->getBase()->getType()->isVectorType()) { 2134 // Emit the vector as an lvalue to get its address. 2135 LValue LHS = EmitLValue(E->getBase()); 2136 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2137 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2138 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2139 E->getBase()->getType(), LHS.getAlignment()); 2140 } 2141 2142 // Extend or truncate the index type to 32 or 64-bits. 2143 if (Idx->getType() != IntPtrTy) 2144 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2145 2146 // We know that the pointer points to a type of the correct size, unless the 2147 // size is a VLA or Objective-C interface. 2148 llvm::Value *Address = 0; 2149 CharUnits ArrayAlignment; 2150 if (const VariableArrayType *vla = 2151 getContext().getAsVariableArrayType(E->getType())) { 2152 // The base must be a pointer, which is not an aggregate. Emit 2153 // it. It needs to be emitted first in case it's what captures 2154 // the VLA bounds. 2155 Address = EmitScalarExpr(E->getBase()); 2156 2157 // The element count here is the total number of non-VLA elements. 2158 llvm::Value *numElements = getVLASize(vla).first; 2159 2160 // Effectively, the multiply by the VLA size is part of the GEP. 2161 // GEP indexes are signed, and scaling an index isn't permitted to 2162 // signed-overflow, so we use the same semantics for our explicit 2163 // multiply. We suppress this if overflow is not undefined behavior. 2164 if (getLangOpts().isSignedOverflowDefined()) { 2165 Idx = Builder.CreateMul(Idx, numElements); 2166 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2167 } else { 2168 Idx = Builder.CreateNSWMul(Idx, numElements); 2169 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2170 } 2171 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2172 // Indexing over an interface, as in "NSString *P; P[4];" 2173 llvm::Value *InterfaceSize = 2174 llvm::ConstantInt::get(Idx->getType(), 2175 getContext().getTypeSizeInChars(OIT).getQuantity()); 2176 2177 Idx = Builder.CreateMul(Idx, InterfaceSize); 2178 2179 // The base must be a pointer, which is not an aggregate. Emit it. 2180 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2181 Address = EmitCastToVoidPtr(Base); 2182 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2183 Address = Builder.CreateBitCast(Address, Base->getType()); 2184 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2185 // If this is A[i] where A is an array, the frontend will have decayed the 2186 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2187 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2188 // "gep x, i" here. Emit one "gep A, 0, i". 2189 assert(Array->getType()->isArrayType() && 2190 "Array to pointer decay must have array source type!"); 2191 LValue ArrayLV = EmitLValue(Array); 2192 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2193 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2194 llvm::Value *Args[] = { Zero, Idx }; 2195 2196 // Propagate the alignment from the array itself to the result. 2197 ArrayAlignment = ArrayLV.getAlignment(); 2198 2199 if (getLangOpts().isSignedOverflowDefined()) 2200 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2201 else 2202 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2203 } else { 2204 // The base must be a pointer, which is not an aggregate. Emit it. 2205 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2206 if (getLangOpts().isSignedOverflowDefined()) 2207 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2208 else 2209 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2210 } 2211 2212 QualType T = E->getBase()->getType()->getPointeeType(); 2213 assert(!T.isNull() && 2214 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2215 2216 2217 // Limit the alignment to that of the result type. 2218 LValue LV; 2219 if (!ArrayAlignment.isZero()) { 2220 CharUnits Align = getContext().getTypeAlignInChars(T); 2221 ArrayAlignment = std::min(Align, ArrayAlignment); 2222 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2223 } else { 2224 LV = MakeNaturalAlignAddrLValue(Address, T); 2225 } 2226 2227 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2228 2229 if (getLangOpts().ObjC1 && 2230 getLangOpts().getGC() != LangOptions::NonGC) { 2231 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2232 setObjCGCLValueClass(getContext(), E, LV); 2233 } 2234 return LV; 2235 } 2236 2237 static 2238 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2239 SmallVector<unsigned, 4> &Elts) { 2240 SmallVector<llvm::Constant*, 4> CElts; 2241 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2242 CElts.push_back(Builder.getInt32(Elts[i])); 2243 2244 return llvm::ConstantVector::get(CElts); 2245 } 2246 2247 LValue CodeGenFunction:: 2248 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2249 // Emit the base vector as an l-value. 2250 LValue Base; 2251 2252 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2253 if (E->isArrow()) { 2254 // If it is a pointer to a vector, emit the address and form an lvalue with 2255 // it. 2256 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2257 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2258 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2259 Base.getQuals().removeObjCGCAttr(); 2260 } else if (E->getBase()->isGLValue()) { 2261 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2262 // emit the base as an lvalue. 2263 assert(E->getBase()->getType()->isVectorType()); 2264 Base = EmitLValue(E->getBase()); 2265 } else { 2266 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2267 assert(E->getBase()->getType()->isVectorType() && 2268 "Result must be a vector"); 2269 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2270 2271 // Store the vector to memory (because LValue wants an address). 2272 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2273 Builder.CreateStore(Vec, VecMem); 2274 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2275 } 2276 2277 QualType type = 2278 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2279 2280 // Encode the element access list into a vector of unsigned indices. 2281 SmallVector<unsigned, 4> Indices; 2282 E->getEncodedElementAccess(Indices); 2283 2284 if (Base.isSimple()) { 2285 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2286 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2287 Base.getAlignment()); 2288 } 2289 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2290 2291 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2292 SmallVector<llvm::Constant *, 4> CElts; 2293 2294 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2295 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2296 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2297 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2298 Base.getAlignment()); 2299 } 2300 2301 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2302 Expr *BaseExpr = E->getBase(); 2303 2304 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2305 LValue BaseLV; 2306 if (E->isArrow()) { 2307 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2308 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2309 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2310 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2311 } else 2312 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2313 2314 NamedDecl *ND = E->getMemberDecl(); 2315 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2316 LValue LV = EmitLValueForField(BaseLV, Field); 2317 setObjCGCLValueClass(getContext(), E, LV); 2318 return LV; 2319 } 2320 2321 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2322 return EmitGlobalVarDeclLValue(*this, E, VD); 2323 2324 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2325 return EmitFunctionDeclLValue(*this, E, FD); 2326 2327 llvm_unreachable("Unhandled member declaration!"); 2328 } 2329 2330 LValue CodeGenFunction::EmitLValueForField(LValue base, 2331 const FieldDecl *field) { 2332 if (field->isBitField()) { 2333 const CGRecordLayout &RL = 2334 CGM.getTypes().getCGRecordLayout(field->getParent()); 2335 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2336 QualType fieldType = 2337 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2338 return LValue::MakeBitfield(base.getAddress(), Info, fieldType, 2339 base.getAlignment()); 2340 } 2341 2342 const RecordDecl *rec = field->getParent(); 2343 QualType type = field->getType(); 2344 CharUnits alignment = getContext().getDeclAlign(field); 2345 2346 // FIXME: It should be impossible to have an LValue without alignment for a 2347 // complete type. 2348 if (!base.getAlignment().isZero()) 2349 alignment = std::min(alignment, base.getAlignment()); 2350 2351 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2352 2353 llvm::Value *addr = base.getAddress(); 2354 unsigned cvr = base.getVRQualifiers(); 2355 if (rec->isUnion()) { 2356 // For unions, there is no pointer adjustment. 2357 assert(!type->isReferenceType() && "union has reference member"); 2358 } else { 2359 // For structs, we GEP to the field that the record layout suggests. 2360 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2361 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2362 2363 // If this is a reference field, load the reference right now. 2364 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2365 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2366 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2367 load->setAlignment(alignment.getQuantity()); 2368 2369 if (CGM.shouldUseTBAA()) { 2370 llvm::MDNode *tbaa; 2371 if (mayAlias) 2372 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2373 else 2374 tbaa = CGM.getTBAAInfo(type); 2375 CGM.DecorateInstruction(load, tbaa); 2376 } 2377 2378 addr = load; 2379 mayAlias = false; 2380 type = refType->getPointeeType(); 2381 if (type->isIncompleteType()) 2382 alignment = CharUnits(); 2383 else 2384 alignment = getContext().getTypeAlignInChars(type); 2385 cvr = 0; // qualifiers don't recursively apply to referencee 2386 } 2387 } 2388 2389 // Make sure that the address is pointing to the right type. This is critical 2390 // for both unions and structs. A union needs a bitcast, a struct element 2391 // will need a bitcast if the LLVM type laid out doesn't match the desired 2392 // type. 2393 addr = EmitBitCastOfLValueToProperType(*this, addr, 2394 CGM.getTypes().ConvertTypeForMem(type), 2395 field->getName()); 2396 2397 if (field->hasAttr<AnnotateAttr>()) 2398 addr = EmitFieldAnnotations(field, addr); 2399 2400 LValue LV = MakeAddrLValue(addr, type, alignment); 2401 LV.getQuals().addCVRQualifiers(cvr); 2402 2403 // __weak attribute on a field is ignored. 2404 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2405 LV.getQuals().removeObjCGCAttr(); 2406 2407 // Fields of may_alias structs act like 'char' for TBAA purposes. 2408 // FIXME: this should get propagated down through anonymous structs 2409 // and unions. 2410 if (mayAlias && LV.getTBAAInfo()) 2411 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2412 2413 return LV; 2414 } 2415 2416 LValue 2417 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2418 const FieldDecl *Field) { 2419 QualType FieldType = Field->getType(); 2420 2421 if (!FieldType->isReferenceType()) 2422 return EmitLValueForField(Base, Field); 2423 2424 const CGRecordLayout &RL = 2425 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2426 unsigned idx = RL.getLLVMFieldNo(Field); 2427 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2428 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2429 2430 // Make sure that the address is pointing to the right type. This is critical 2431 // for both unions and structs. A union needs a bitcast, a struct element 2432 // will need a bitcast if the LLVM type laid out doesn't match the desired 2433 // type. 2434 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2435 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2436 2437 CharUnits Alignment = getContext().getDeclAlign(Field); 2438 2439 // FIXME: It should be impossible to have an LValue without alignment for a 2440 // complete type. 2441 if (!Base.getAlignment().isZero()) 2442 Alignment = std::min(Alignment, Base.getAlignment()); 2443 2444 return MakeAddrLValue(V, FieldType, Alignment); 2445 } 2446 2447 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2448 if (E->isFileScope()) { 2449 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2450 return MakeAddrLValue(GlobalPtr, E->getType()); 2451 } 2452 if (E->getType()->isVariablyModifiedType()) 2453 // make sure to emit the VLA size. 2454 EmitVariablyModifiedType(E->getType()); 2455 2456 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2457 const Expr *InitExpr = E->getInitializer(); 2458 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2459 2460 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2461 /*Init*/ true); 2462 2463 return Result; 2464 } 2465 2466 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2467 if (!E->isGLValue()) 2468 // Initializing an aggregate temporary in C++11: T{...}. 2469 return EmitAggExprToLValue(E); 2470 2471 // An lvalue initializer list must be initializing a reference. 2472 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2473 return EmitLValue(E->getInit(0)); 2474 } 2475 2476 LValue CodeGenFunction:: 2477 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2478 if (!expr->isGLValue()) { 2479 // ?: here should be an aggregate. 2480 assert((hasAggregateLLVMType(expr->getType()) && 2481 !expr->getType()->isAnyComplexType()) && 2482 "Unexpected conditional operator!"); 2483 return EmitAggExprToLValue(expr); 2484 } 2485 2486 OpaqueValueMapping binding(*this, expr); 2487 2488 const Expr *condExpr = expr->getCond(); 2489 bool CondExprBool; 2490 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2491 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2492 if (!CondExprBool) std::swap(live, dead); 2493 2494 if (!ContainsLabel(dead)) 2495 return EmitLValue(live); 2496 } 2497 2498 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2499 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2500 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2501 2502 ConditionalEvaluation eval(*this); 2503 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2504 2505 // Any temporaries created here are conditional. 2506 EmitBlock(lhsBlock); 2507 eval.begin(*this); 2508 LValue lhs = EmitLValue(expr->getTrueExpr()); 2509 eval.end(*this); 2510 2511 if (!lhs.isSimple()) 2512 return EmitUnsupportedLValue(expr, "conditional operator"); 2513 2514 lhsBlock = Builder.GetInsertBlock(); 2515 Builder.CreateBr(contBlock); 2516 2517 // Any temporaries created here are conditional. 2518 EmitBlock(rhsBlock); 2519 eval.begin(*this); 2520 LValue rhs = EmitLValue(expr->getFalseExpr()); 2521 eval.end(*this); 2522 if (!rhs.isSimple()) 2523 return EmitUnsupportedLValue(expr, "conditional operator"); 2524 rhsBlock = Builder.GetInsertBlock(); 2525 2526 EmitBlock(contBlock); 2527 2528 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2529 "cond-lvalue"); 2530 phi->addIncoming(lhs.getAddress(), lhsBlock); 2531 phi->addIncoming(rhs.getAddress(), rhsBlock); 2532 return MakeAddrLValue(phi, expr->getType()); 2533 } 2534 2535 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2536 /// type. If the cast is to a reference, we can have the usual lvalue result, 2537 /// otherwise if a cast is needed by the code generator in an lvalue context, 2538 /// then it must mean that we need the address of an aggregate in order to 2539 /// access one of its members. This can happen for all the reasons that casts 2540 /// are permitted with aggregate result, including noop aggregate casts, and 2541 /// cast from scalar to union. 2542 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2543 switch (E->getCastKind()) { 2544 case CK_ToVoid: 2545 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2546 2547 case CK_Dependent: 2548 llvm_unreachable("dependent cast kind in IR gen!"); 2549 2550 case CK_BuiltinFnToFnPtr: 2551 llvm_unreachable("builtin functions are handled elsewhere"); 2552 2553 // These two casts are currently treated as no-ops, although they could 2554 // potentially be real operations depending on the target's ABI. 2555 case CK_NonAtomicToAtomic: 2556 case CK_AtomicToNonAtomic: 2557 2558 case CK_NoOp: 2559 case CK_LValueToRValue: 2560 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2561 || E->getType()->isRecordType()) 2562 return EmitLValue(E->getSubExpr()); 2563 // Fall through to synthesize a temporary. 2564 2565 case CK_BitCast: 2566 case CK_ArrayToPointerDecay: 2567 case CK_FunctionToPointerDecay: 2568 case CK_NullToMemberPointer: 2569 case CK_NullToPointer: 2570 case CK_IntegralToPointer: 2571 case CK_PointerToIntegral: 2572 case CK_PointerToBoolean: 2573 case CK_VectorSplat: 2574 case CK_IntegralCast: 2575 case CK_IntegralToBoolean: 2576 case CK_IntegralToFloating: 2577 case CK_FloatingToIntegral: 2578 case CK_FloatingToBoolean: 2579 case CK_FloatingCast: 2580 case CK_FloatingRealToComplex: 2581 case CK_FloatingComplexToReal: 2582 case CK_FloatingComplexToBoolean: 2583 case CK_FloatingComplexCast: 2584 case CK_FloatingComplexToIntegralComplex: 2585 case CK_IntegralRealToComplex: 2586 case CK_IntegralComplexToReal: 2587 case CK_IntegralComplexToBoolean: 2588 case CK_IntegralComplexCast: 2589 case CK_IntegralComplexToFloatingComplex: 2590 case CK_DerivedToBaseMemberPointer: 2591 case CK_BaseToDerivedMemberPointer: 2592 case CK_MemberPointerToBoolean: 2593 case CK_ReinterpretMemberPointer: 2594 case CK_AnyPointerToBlockPointerCast: 2595 case CK_ARCProduceObject: 2596 case CK_ARCConsumeObject: 2597 case CK_ARCReclaimReturnedObject: 2598 case CK_ARCExtendBlockObject: 2599 case CK_CopyAndAutoreleaseBlockObject: { 2600 // These casts only produce lvalues when we're binding a reference to a 2601 // temporary realized from a (converted) pure rvalue. Emit the expression 2602 // as a value, copy it into a temporary, and return an lvalue referring to 2603 // that temporary. 2604 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2605 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2606 return MakeAddrLValue(V, E->getType()); 2607 } 2608 2609 case CK_Dynamic: { 2610 LValue LV = EmitLValue(E->getSubExpr()); 2611 llvm::Value *V = LV.getAddress(); 2612 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2613 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2614 } 2615 2616 case CK_ConstructorConversion: 2617 case CK_UserDefinedConversion: 2618 case CK_CPointerToObjCPointerCast: 2619 case CK_BlockPointerToObjCPointerCast: 2620 return EmitLValue(E->getSubExpr()); 2621 2622 case CK_UncheckedDerivedToBase: 2623 case CK_DerivedToBase: { 2624 const RecordType *DerivedClassTy = 2625 E->getSubExpr()->getType()->getAs<RecordType>(); 2626 CXXRecordDecl *DerivedClassDecl = 2627 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2628 2629 LValue LV = EmitLValue(E->getSubExpr()); 2630 llvm::Value *This = LV.getAddress(); 2631 2632 // Perform the derived-to-base conversion 2633 llvm::Value *Base = 2634 GetAddressOfBaseClass(This, DerivedClassDecl, 2635 E->path_begin(), E->path_end(), 2636 /*NullCheckValue=*/false); 2637 2638 return MakeAddrLValue(Base, E->getType()); 2639 } 2640 case CK_ToUnion: 2641 return EmitAggExprToLValue(E); 2642 case CK_BaseToDerived: { 2643 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2644 CXXRecordDecl *DerivedClassDecl = 2645 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2646 2647 LValue LV = EmitLValue(E->getSubExpr()); 2648 2649 // Perform the base-to-derived conversion 2650 llvm::Value *Derived = 2651 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2652 E->path_begin(), E->path_end(), 2653 /*NullCheckValue=*/false); 2654 2655 return MakeAddrLValue(Derived, E->getType()); 2656 } 2657 case CK_LValueBitCast: { 2658 // This must be a reinterpret_cast (or c-style equivalent). 2659 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2660 2661 LValue LV = EmitLValue(E->getSubExpr()); 2662 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2663 ConvertType(CE->getTypeAsWritten())); 2664 return MakeAddrLValue(V, E->getType()); 2665 } 2666 case CK_ObjCObjectLValueCast: { 2667 LValue LV = EmitLValue(E->getSubExpr()); 2668 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2669 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2670 ConvertType(ToType)); 2671 return MakeAddrLValue(V, E->getType()); 2672 } 2673 } 2674 2675 llvm_unreachable("Unhandled lvalue cast kind?"); 2676 } 2677 2678 LValue CodeGenFunction::EmitNullInitializationLValue( 2679 const CXXScalarValueInitExpr *E) { 2680 QualType Ty = E->getType(); 2681 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2682 EmitNullInitialization(LV.getAddress(), Ty); 2683 return LV; 2684 } 2685 2686 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2687 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2688 return getOpaqueLValueMapping(e); 2689 } 2690 2691 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2692 const MaterializeTemporaryExpr *E) { 2693 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2694 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2695 } 2696 2697 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2698 const FieldDecl *FD) { 2699 QualType FT = FD->getType(); 2700 LValue FieldLV = EmitLValueForField(LV, FD); 2701 if (FT->isAnyComplexType()) 2702 return RValue::getComplex( 2703 LoadComplexFromAddr(FieldLV.getAddress(), 2704 FieldLV.isVolatileQualified())); 2705 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2706 return FieldLV.asAggregateRValue(); 2707 2708 return EmitLoadOfLValue(FieldLV); 2709 } 2710 2711 //===--------------------------------------------------------------------===// 2712 // Expression Emission 2713 //===--------------------------------------------------------------------===// 2714 2715 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2716 ReturnValueSlot ReturnValue) { 2717 if (CGDebugInfo *DI = getDebugInfo()) 2718 DI->EmitLocation(Builder, E->getLocStart()); 2719 2720 // Builtins never have block type. 2721 if (E->getCallee()->getType()->isBlockPointerType()) 2722 return EmitBlockCallExpr(E, ReturnValue); 2723 2724 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2725 return EmitCXXMemberCallExpr(CE, ReturnValue); 2726 2727 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2728 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2729 2730 const Decl *TargetDecl = E->getCalleeDecl(); 2731 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2732 if (unsigned builtinID = FD->getBuiltinID()) 2733 return EmitBuiltinExpr(FD, builtinID, E); 2734 } 2735 2736 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2737 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2738 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2739 2740 if (const CXXPseudoDestructorExpr *PseudoDtor 2741 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2742 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2743 if (getLangOpts().ObjCAutoRefCount && 2744 DestroyedType->isObjCLifetimeType() && 2745 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2746 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2747 // Automatic Reference Counting: 2748 // If the pseudo-expression names a retainable object with weak or 2749 // strong lifetime, the object shall be released. 2750 Expr *BaseExpr = PseudoDtor->getBase(); 2751 llvm::Value *BaseValue = NULL; 2752 Qualifiers BaseQuals; 2753 2754 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2755 if (PseudoDtor->isArrow()) { 2756 BaseValue = EmitScalarExpr(BaseExpr); 2757 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2758 BaseQuals = PTy->getPointeeType().getQualifiers(); 2759 } else { 2760 LValue BaseLV = EmitLValue(BaseExpr); 2761 BaseValue = BaseLV.getAddress(); 2762 QualType BaseTy = BaseExpr->getType(); 2763 BaseQuals = BaseTy.getQualifiers(); 2764 } 2765 2766 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2767 case Qualifiers::OCL_None: 2768 case Qualifiers::OCL_ExplicitNone: 2769 case Qualifiers::OCL_Autoreleasing: 2770 break; 2771 2772 case Qualifiers::OCL_Strong: 2773 EmitARCRelease(Builder.CreateLoad(BaseValue, 2774 PseudoDtor->getDestroyedType().isVolatileQualified()), 2775 /*precise*/ true); 2776 break; 2777 2778 case Qualifiers::OCL_Weak: 2779 EmitARCDestroyWeak(BaseValue); 2780 break; 2781 } 2782 } else { 2783 // C++ [expr.pseudo]p1: 2784 // The result shall only be used as the operand for the function call 2785 // operator (), and the result of such a call has type void. The only 2786 // effect is the evaluation of the postfix-expression before the dot or 2787 // arrow. 2788 EmitScalarExpr(E->getCallee()); 2789 } 2790 2791 return RValue::get(0); 2792 } 2793 2794 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2795 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2796 E->arg_begin(), E->arg_end(), TargetDecl); 2797 } 2798 2799 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2800 // Comma expressions just emit their LHS then their RHS as an l-value. 2801 if (E->getOpcode() == BO_Comma) { 2802 EmitIgnoredExpr(E->getLHS()); 2803 EnsureInsertPoint(); 2804 return EmitLValue(E->getRHS()); 2805 } 2806 2807 if (E->getOpcode() == BO_PtrMemD || 2808 E->getOpcode() == BO_PtrMemI) 2809 return EmitPointerToDataMemberBinaryExpr(E); 2810 2811 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2812 2813 // Note that in all of these cases, __block variables need the RHS 2814 // evaluated first just in case the variable gets moved by the RHS. 2815 2816 if (!hasAggregateLLVMType(E->getType())) { 2817 switch (E->getLHS()->getType().getObjCLifetime()) { 2818 case Qualifiers::OCL_Strong: 2819 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2820 2821 case Qualifiers::OCL_Autoreleasing: 2822 return EmitARCStoreAutoreleasing(E).first; 2823 2824 // No reason to do any of these differently. 2825 case Qualifiers::OCL_None: 2826 case Qualifiers::OCL_ExplicitNone: 2827 case Qualifiers::OCL_Weak: 2828 break; 2829 } 2830 2831 RValue RV = EmitAnyExpr(E->getRHS()); 2832 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2833 EmitStoreThroughLValue(RV, LV); 2834 return LV; 2835 } 2836 2837 if (E->getType()->isAnyComplexType()) 2838 return EmitComplexAssignmentLValue(E); 2839 2840 return EmitAggExprToLValue(E); 2841 } 2842 2843 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2844 RValue RV = EmitCallExpr(E); 2845 2846 if (!RV.isScalar()) 2847 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2848 2849 assert(E->getCallReturnType()->isReferenceType() && 2850 "Can't have a scalar return unless the return type is a " 2851 "reference type!"); 2852 2853 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2854 } 2855 2856 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2857 // FIXME: This shouldn't require another copy. 2858 return EmitAggExprToLValue(E); 2859 } 2860 2861 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2862 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2863 && "binding l-value to type which needs a temporary"); 2864 AggValueSlot Slot = CreateAggTemp(E->getType()); 2865 EmitCXXConstructExpr(E, Slot); 2866 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2867 } 2868 2869 LValue 2870 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2871 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2872 } 2873 2874 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 2875 return CGM.GetAddrOfUuidDescriptor(E); 2876 } 2877 2878 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 2879 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 2880 } 2881 2882 LValue 2883 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2884 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2885 Slot.setExternallyDestructed(); 2886 EmitAggExpr(E->getSubExpr(), Slot); 2887 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2888 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2889 } 2890 2891 LValue 2892 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2893 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2894 EmitLambdaExpr(E, Slot); 2895 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2896 } 2897 2898 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2899 RValue RV = EmitObjCMessageExpr(E); 2900 2901 if (!RV.isScalar()) 2902 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2903 2904 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2905 "Can't have a scalar return unless the return type is a " 2906 "reference type!"); 2907 2908 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2909 } 2910 2911 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2912 llvm::Value *V = 2913 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2914 return MakeAddrLValue(V, E->getType()); 2915 } 2916 2917 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2918 const ObjCIvarDecl *Ivar) { 2919 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2920 } 2921 2922 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2923 llvm::Value *BaseValue, 2924 const ObjCIvarDecl *Ivar, 2925 unsigned CVRQualifiers) { 2926 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2927 Ivar, CVRQualifiers); 2928 } 2929 2930 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2931 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2932 llvm::Value *BaseValue = 0; 2933 const Expr *BaseExpr = E->getBase(); 2934 Qualifiers BaseQuals; 2935 QualType ObjectTy; 2936 if (E->isArrow()) { 2937 BaseValue = EmitScalarExpr(BaseExpr); 2938 ObjectTy = BaseExpr->getType()->getPointeeType(); 2939 BaseQuals = ObjectTy.getQualifiers(); 2940 } else { 2941 LValue BaseLV = EmitLValue(BaseExpr); 2942 // FIXME: this isn't right for bitfields. 2943 BaseValue = BaseLV.getAddress(); 2944 ObjectTy = BaseExpr->getType(); 2945 BaseQuals = ObjectTy.getQualifiers(); 2946 } 2947 2948 LValue LV = 2949 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2950 BaseQuals.getCVRQualifiers()); 2951 setObjCGCLValueClass(getContext(), E, LV); 2952 return LV; 2953 } 2954 2955 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2956 // Can only get l-value for message expression returning aggregate type 2957 RValue RV = EmitAnyExprToTemp(E); 2958 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2959 } 2960 2961 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2962 ReturnValueSlot ReturnValue, 2963 CallExpr::const_arg_iterator ArgBeg, 2964 CallExpr::const_arg_iterator ArgEnd, 2965 const Decl *TargetDecl) { 2966 // Get the actual function type. The callee type will always be a pointer to 2967 // function type or a block pointer type. 2968 assert(CalleeType->isFunctionPointerType() && 2969 "Call must have function pointer type!"); 2970 2971 CalleeType = getContext().getCanonicalType(CalleeType); 2972 2973 const FunctionType *FnType 2974 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2975 2976 CallArgList Args; 2977 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2978 2979 const CGFunctionInfo &FnInfo = 2980 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 2981 2982 // C99 6.5.2.2p6: 2983 // If the expression that denotes the called function has a type 2984 // that does not include a prototype, [the default argument 2985 // promotions are performed]. If the number of arguments does not 2986 // equal the number of parameters, the behavior is undefined. If 2987 // the function is defined with a type that includes a prototype, 2988 // and either the prototype ends with an ellipsis (, ...) or the 2989 // types of the arguments after promotion are not compatible with 2990 // the types of the parameters, the behavior is undefined. If the 2991 // function is defined with a type that does not include a 2992 // prototype, and the types of the arguments after promotion are 2993 // not compatible with those of the parameters after promotion, 2994 // the behavior is undefined [except in some trivial cases]. 2995 // That is, in the general case, we should assume that a call 2996 // through an unprototyped function type works like a *non-variadic* 2997 // call. The way we make this work is to cast to the exact type 2998 // of the promoted arguments. 2999 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 3000 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3001 CalleeTy = CalleeTy->getPointerTo(); 3002 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3003 } 3004 3005 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3006 } 3007 3008 LValue CodeGenFunction:: 3009 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3010 llvm::Value *BaseV; 3011 if (E->getOpcode() == BO_PtrMemI) 3012 BaseV = EmitScalarExpr(E->getLHS()); 3013 else 3014 BaseV = EmitLValue(E->getLHS()).getAddress(); 3015 3016 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3017 3018 const MemberPointerType *MPT 3019 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3020 3021 llvm::Value *AddV = 3022 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3023 3024 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3025 } 3026 3027 static void 3028 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 3029 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 3030 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 3031 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 3032 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 3033 3034 switch (E->getOp()) { 3035 case AtomicExpr::AO__c11_atomic_init: 3036 llvm_unreachable("Already handled!"); 3037 3038 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3039 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3040 case AtomicExpr::AO__atomic_compare_exchange: 3041 case AtomicExpr::AO__atomic_compare_exchange_n: { 3042 // Note that cmpxchg only supports specifying one ordering and 3043 // doesn't support weak cmpxchg, at least at the moment. 3044 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3045 LoadVal1->setAlignment(Align); 3046 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 3047 LoadVal2->setAlignment(Align); 3048 llvm::AtomicCmpXchgInst *CXI = 3049 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 3050 CXI->setVolatile(E->isVolatile()); 3051 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 3052 StoreVal1->setAlignment(Align); 3053 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 3054 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 3055 return; 3056 } 3057 3058 case AtomicExpr::AO__c11_atomic_load: 3059 case AtomicExpr::AO__atomic_load_n: 3060 case AtomicExpr::AO__atomic_load: { 3061 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 3062 Load->setAtomic(Order); 3063 Load->setAlignment(Size); 3064 Load->setVolatile(E->isVolatile()); 3065 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 3066 StoreDest->setAlignment(Align); 3067 return; 3068 } 3069 3070 case AtomicExpr::AO__c11_atomic_store: 3071 case AtomicExpr::AO__atomic_store: 3072 case AtomicExpr::AO__atomic_store_n: { 3073 assert(!Dest && "Store does not return a value"); 3074 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3075 LoadVal1->setAlignment(Align); 3076 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 3077 Store->setAtomic(Order); 3078 Store->setAlignment(Size); 3079 Store->setVolatile(E->isVolatile()); 3080 return; 3081 } 3082 3083 case AtomicExpr::AO__c11_atomic_exchange: 3084 case AtomicExpr::AO__atomic_exchange_n: 3085 case AtomicExpr::AO__atomic_exchange: 3086 Op = llvm::AtomicRMWInst::Xchg; 3087 break; 3088 3089 case AtomicExpr::AO__atomic_add_fetch: 3090 PostOp = llvm::Instruction::Add; 3091 // Fall through. 3092 case AtomicExpr::AO__c11_atomic_fetch_add: 3093 case AtomicExpr::AO__atomic_fetch_add: 3094 Op = llvm::AtomicRMWInst::Add; 3095 break; 3096 3097 case AtomicExpr::AO__atomic_sub_fetch: 3098 PostOp = llvm::Instruction::Sub; 3099 // Fall through. 3100 case AtomicExpr::AO__c11_atomic_fetch_sub: 3101 case AtomicExpr::AO__atomic_fetch_sub: 3102 Op = llvm::AtomicRMWInst::Sub; 3103 break; 3104 3105 case AtomicExpr::AO__atomic_and_fetch: 3106 PostOp = llvm::Instruction::And; 3107 // Fall through. 3108 case AtomicExpr::AO__c11_atomic_fetch_and: 3109 case AtomicExpr::AO__atomic_fetch_and: 3110 Op = llvm::AtomicRMWInst::And; 3111 break; 3112 3113 case AtomicExpr::AO__atomic_or_fetch: 3114 PostOp = llvm::Instruction::Or; 3115 // Fall through. 3116 case AtomicExpr::AO__c11_atomic_fetch_or: 3117 case AtomicExpr::AO__atomic_fetch_or: 3118 Op = llvm::AtomicRMWInst::Or; 3119 break; 3120 3121 case AtomicExpr::AO__atomic_xor_fetch: 3122 PostOp = llvm::Instruction::Xor; 3123 // Fall through. 3124 case AtomicExpr::AO__c11_atomic_fetch_xor: 3125 case AtomicExpr::AO__atomic_fetch_xor: 3126 Op = llvm::AtomicRMWInst::Xor; 3127 break; 3128 3129 case AtomicExpr::AO__atomic_nand_fetch: 3130 PostOp = llvm::Instruction::And; 3131 // Fall through. 3132 case AtomicExpr::AO__atomic_fetch_nand: 3133 Op = llvm::AtomicRMWInst::Nand; 3134 break; 3135 } 3136 3137 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 3138 LoadVal1->setAlignment(Align); 3139 llvm::AtomicRMWInst *RMWI = 3140 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 3141 RMWI->setVolatile(E->isVolatile()); 3142 3143 // For __atomic_*_fetch operations, perform the operation again to 3144 // determine the value which was written. 3145 llvm::Value *Result = RMWI; 3146 if (PostOp) 3147 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 3148 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 3149 Result = CGF.Builder.CreateNot(Result); 3150 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 3151 StoreDest->setAlignment(Align); 3152 } 3153 3154 // This function emits any expression (scalar, complex, or aggregate) 3155 // into a temporary alloca. 3156 static llvm::Value * 3157 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 3158 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 3159 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 3160 /*Init*/ true); 3161 return DeclPtr; 3162 } 3163 3164 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 3165 llvm::Value *Dest) { 3166 if (Ty->isAnyComplexType()) 3167 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 3168 if (CGF.hasAggregateLLVMType(Ty)) 3169 return RValue::getAggregate(Dest); 3170 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 3171 } 3172 3173 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 3174 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 3175 QualType MemTy = AtomicTy; 3176 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 3177 MemTy = AT->getValueType(); 3178 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 3179 uint64_t Size = sizeChars.getQuantity(); 3180 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 3181 unsigned Align = alignChars.getQuantity(); 3182 unsigned MaxInlineWidthInBits = 3183 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 3184 bool UseLibcall = (Size != Align || 3185 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 3186 3187 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 3188 Ptr = EmitScalarExpr(E->getPtr()); 3189 3190 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 3191 assert(!Dest && "Init does not return a value"); 3192 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 3193 QualType PointeeType 3194 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 3195 EmitScalarInit(EmitScalarExpr(E->getVal1()), 3196 LValue::MakeAddr(Ptr, PointeeType, alignChars, 3197 getContext())); 3198 } else if (E->getType()->isAnyComplexType()) { 3199 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 3200 } else { 3201 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 3202 AtomicTy.getQualifiers(), 3203 AggValueSlot::IsNotDestructed, 3204 AggValueSlot::DoesNotNeedGCBarriers, 3205 AggValueSlot::IsNotAliased); 3206 EmitAggExpr(E->getVal1(), Slot); 3207 } 3208 return RValue::get(0); 3209 } 3210 3211 Order = EmitScalarExpr(E->getOrder()); 3212 3213 switch (E->getOp()) { 3214 case AtomicExpr::AO__c11_atomic_init: 3215 llvm_unreachable("Already handled!"); 3216 3217 case AtomicExpr::AO__c11_atomic_load: 3218 case AtomicExpr::AO__atomic_load_n: 3219 break; 3220 3221 case AtomicExpr::AO__atomic_load: 3222 Dest = EmitScalarExpr(E->getVal1()); 3223 break; 3224 3225 case AtomicExpr::AO__atomic_store: 3226 Val1 = EmitScalarExpr(E->getVal1()); 3227 break; 3228 3229 case AtomicExpr::AO__atomic_exchange: 3230 Val1 = EmitScalarExpr(E->getVal1()); 3231 Dest = EmitScalarExpr(E->getVal2()); 3232 break; 3233 3234 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3235 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3236 case AtomicExpr::AO__atomic_compare_exchange_n: 3237 case AtomicExpr::AO__atomic_compare_exchange: 3238 Val1 = EmitScalarExpr(E->getVal1()); 3239 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 3240 Val2 = EmitScalarExpr(E->getVal2()); 3241 else 3242 Val2 = EmitValToTemp(*this, E->getVal2()); 3243 OrderFail = EmitScalarExpr(E->getOrderFail()); 3244 // Evaluate and discard the 'weak' argument. 3245 if (E->getNumSubExprs() == 6) 3246 EmitScalarExpr(E->getWeak()); 3247 break; 3248 3249 case AtomicExpr::AO__c11_atomic_fetch_add: 3250 case AtomicExpr::AO__c11_atomic_fetch_sub: 3251 if (MemTy->isPointerType()) { 3252 // For pointer arithmetic, we're required to do a bit of math: 3253 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 3254 // ... but only for the C11 builtins. The GNU builtins expect the 3255 // user to multiply by sizeof(T). 3256 QualType Val1Ty = E->getVal1()->getType(); 3257 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 3258 CharUnits PointeeIncAmt = 3259 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 3260 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 3261 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 3262 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 3263 break; 3264 } 3265 // Fall through. 3266 case AtomicExpr::AO__atomic_fetch_add: 3267 case AtomicExpr::AO__atomic_fetch_sub: 3268 case AtomicExpr::AO__atomic_add_fetch: 3269 case AtomicExpr::AO__atomic_sub_fetch: 3270 case AtomicExpr::AO__c11_atomic_store: 3271 case AtomicExpr::AO__c11_atomic_exchange: 3272 case AtomicExpr::AO__atomic_store_n: 3273 case AtomicExpr::AO__atomic_exchange_n: 3274 case AtomicExpr::AO__c11_atomic_fetch_and: 3275 case AtomicExpr::AO__c11_atomic_fetch_or: 3276 case AtomicExpr::AO__c11_atomic_fetch_xor: 3277 case AtomicExpr::AO__atomic_fetch_and: 3278 case AtomicExpr::AO__atomic_fetch_or: 3279 case AtomicExpr::AO__atomic_fetch_xor: 3280 case AtomicExpr::AO__atomic_fetch_nand: 3281 case AtomicExpr::AO__atomic_and_fetch: 3282 case AtomicExpr::AO__atomic_or_fetch: 3283 case AtomicExpr::AO__atomic_xor_fetch: 3284 case AtomicExpr::AO__atomic_nand_fetch: 3285 Val1 = EmitValToTemp(*this, E->getVal1()); 3286 break; 3287 } 3288 3289 if (!E->getType()->isVoidType() && !Dest) 3290 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 3291 3292 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 3293 if (UseLibcall) { 3294 3295 llvm::SmallVector<QualType, 5> Params; 3296 CallArgList Args; 3297 // Size is always the first parameter 3298 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 3299 getContext().getSizeType()); 3300 // Atomic address is always the second parameter 3301 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 3302 getContext().VoidPtrTy); 3303 3304 const char* LibCallName; 3305 QualType RetTy = getContext().VoidTy; 3306 switch (E->getOp()) { 3307 // There is only one libcall for compare an exchange, because there is no 3308 // optimisation benefit possible from a libcall version of a weak compare 3309 // and exchange. 3310 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 3311 // void *desired, int success, int failure) 3312 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3313 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3314 case AtomicExpr::AO__atomic_compare_exchange: 3315 case AtomicExpr::AO__atomic_compare_exchange_n: 3316 LibCallName = "__atomic_compare_exchange"; 3317 RetTy = getContext().BoolTy; 3318 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3319 getContext().VoidPtrTy); 3320 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 3321 getContext().VoidPtrTy); 3322 Args.add(RValue::get(Order), 3323 getContext().IntTy); 3324 Order = OrderFail; 3325 break; 3326 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 3327 // int order) 3328 case AtomicExpr::AO__c11_atomic_exchange: 3329 case AtomicExpr::AO__atomic_exchange_n: 3330 case AtomicExpr::AO__atomic_exchange: 3331 LibCallName = "__atomic_exchange"; 3332 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3333 getContext().VoidPtrTy); 3334 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3335 getContext().VoidPtrTy); 3336 break; 3337 // void __atomic_store(size_t size, void *mem, void *val, int order) 3338 case AtomicExpr::AO__c11_atomic_store: 3339 case AtomicExpr::AO__atomic_store: 3340 case AtomicExpr::AO__atomic_store_n: 3341 LibCallName = "__atomic_store"; 3342 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3343 getContext().VoidPtrTy); 3344 break; 3345 // void __atomic_load(size_t size, void *mem, void *return, int order) 3346 case AtomicExpr::AO__c11_atomic_load: 3347 case AtomicExpr::AO__atomic_load: 3348 case AtomicExpr::AO__atomic_load_n: 3349 LibCallName = "__atomic_load"; 3350 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3351 getContext().VoidPtrTy); 3352 break; 3353 #if 0 3354 // These are only defined for 1-16 byte integers. It is not clear what 3355 // their semantics would be on anything else... 3356 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3357 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3358 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3359 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3360 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3361 #endif 3362 default: return EmitUnsupportedRValue(E, "atomic library call"); 3363 } 3364 // order is always the last parameter 3365 Args.add(RValue::get(Order), 3366 getContext().IntTy); 3367 3368 const CGFunctionInfo &FuncInfo = 3369 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, 3370 FunctionType::ExtInfo(), RequiredArgs::All); 3371 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3372 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3373 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3374 if (E->isCmpXChg()) 3375 return Res; 3376 if (E->getType()->isVoidType()) 3377 return RValue::get(0); 3378 return ConvertTempToRValue(*this, E->getType(), Dest); 3379 } 3380 3381 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3382 E->getOp() == AtomicExpr::AO__atomic_store || 3383 E->getOp() == AtomicExpr::AO__atomic_store_n; 3384 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3385 E->getOp() == AtomicExpr::AO__atomic_load || 3386 E->getOp() == AtomicExpr::AO__atomic_load_n; 3387 3388 llvm::Type *IPtrTy = 3389 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3390 llvm::Value *OrigDest = Dest; 3391 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3392 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3393 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3394 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3395 3396 if (isa<llvm::ConstantInt>(Order)) { 3397 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3398 switch (ord) { 3399 case 0: // memory_order_relaxed 3400 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3401 llvm::Monotonic); 3402 break; 3403 case 1: // memory_order_consume 3404 case 2: // memory_order_acquire 3405 if (IsStore) 3406 break; // Avoid crashing on code with undefined behavior 3407 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3408 llvm::Acquire); 3409 break; 3410 case 3: // memory_order_release 3411 if (IsLoad) 3412 break; // Avoid crashing on code with undefined behavior 3413 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3414 llvm::Release); 3415 break; 3416 case 4: // memory_order_acq_rel 3417 if (IsLoad || IsStore) 3418 break; // Avoid crashing on code with undefined behavior 3419 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3420 llvm::AcquireRelease); 3421 break; 3422 case 5: // memory_order_seq_cst 3423 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3424 llvm::SequentiallyConsistent); 3425 break; 3426 default: // invalid order 3427 // We should not ever get here normally, but it's hard to 3428 // enforce that in general. 3429 break; 3430 } 3431 if (E->getType()->isVoidType()) 3432 return RValue::get(0); 3433 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3434 } 3435 3436 // Long case, when Order isn't obviously constant. 3437 3438 // Create all the relevant BB's 3439 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3440 *AcqRelBB = 0, *SeqCstBB = 0; 3441 MonotonicBB = createBasicBlock("monotonic", CurFn); 3442 if (!IsStore) 3443 AcquireBB = createBasicBlock("acquire", CurFn); 3444 if (!IsLoad) 3445 ReleaseBB = createBasicBlock("release", CurFn); 3446 if (!IsLoad && !IsStore) 3447 AcqRelBB = createBasicBlock("acqrel", CurFn); 3448 SeqCstBB = createBasicBlock("seqcst", CurFn); 3449 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3450 3451 // Create the switch for the split 3452 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3453 // doesn't matter unless someone is crazy enough to use something that 3454 // doesn't fold to a constant for the ordering. 3455 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3456 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3457 3458 // Emit all the different atomics 3459 Builder.SetInsertPoint(MonotonicBB); 3460 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3461 llvm::Monotonic); 3462 Builder.CreateBr(ContBB); 3463 if (!IsStore) { 3464 Builder.SetInsertPoint(AcquireBB); 3465 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3466 llvm::Acquire); 3467 Builder.CreateBr(ContBB); 3468 SI->addCase(Builder.getInt32(1), AcquireBB); 3469 SI->addCase(Builder.getInt32(2), AcquireBB); 3470 } 3471 if (!IsLoad) { 3472 Builder.SetInsertPoint(ReleaseBB); 3473 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3474 llvm::Release); 3475 Builder.CreateBr(ContBB); 3476 SI->addCase(Builder.getInt32(3), ReleaseBB); 3477 } 3478 if (!IsLoad && !IsStore) { 3479 Builder.SetInsertPoint(AcqRelBB); 3480 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3481 llvm::AcquireRelease); 3482 Builder.CreateBr(ContBB); 3483 SI->addCase(Builder.getInt32(4), AcqRelBB); 3484 } 3485 Builder.SetInsertPoint(SeqCstBB); 3486 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3487 llvm::SequentiallyConsistent); 3488 Builder.CreateBr(ContBB); 3489 SI->addCase(Builder.getInt32(5), SeqCstBB); 3490 3491 // Cleanup and return 3492 Builder.SetInsertPoint(ContBB); 3493 if (E->getType()->isVoidType()) 3494 return RValue::get(0); 3495 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3496 } 3497 3498 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3499 assert(Val->getType()->isFPOrFPVectorTy()); 3500 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3501 return; 3502 3503 llvm::MDBuilder MDHelper(getLLVMContext()); 3504 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3505 3506 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3507 } 3508 3509 namespace { 3510 struct LValueOrRValue { 3511 LValue LV; 3512 RValue RV; 3513 }; 3514 } 3515 3516 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3517 const PseudoObjectExpr *E, 3518 bool forLValue, 3519 AggValueSlot slot) { 3520 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3521 3522 // Find the result expression, if any. 3523 const Expr *resultExpr = E->getResultExpr(); 3524 LValueOrRValue result; 3525 3526 for (PseudoObjectExpr::const_semantics_iterator 3527 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3528 const Expr *semantic = *i; 3529 3530 // If this semantic expression is an opaque value, bind it 3531 // to the result of its source expression. 3532 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3533 3534 // If this is the result expression, we may need to evaluate 3535 // directly into the slot. 3536 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3537 OVMA opaqueData; 3538 if (ov == resultExpr && ov->isRValue() && !forLValue && 3539 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3540 !ov->getType()->isAnyComplexType()) { 3541 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3542 3543 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3544 opaqueData = OVMA::bind(CGF, ov, LV); 3545 result.RV = slot.asRValue(); 3546 3547 // Otherwise, emit as normal. 3548 } else { 3549 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3550 3551 // If this is the result, also evaluate the result now. 3552 if (ov == resultExpr) { 3553 if (forLValue) 3554 result.LV = CGF.EmitLValue(ov); 3555 else 3556 result.RV = CGF.EmitAnyExpr(ov, slot); 3557 } 3558 } 3559 3560 opaques.push_back(opaqueData); 3561 3562 // Otherwise, if the expression is the result, evaluate it 3563 // and remember the result. 3564 } else if (semantic == resultExpr) { 3565 if (forLValue) 3566 result.LV = CGF.EmitLValue(semantic); 3567 else 3568 result.RV = CGF.EmitAnyExpr(semantic, slot); 3569 3570 // Otherwise, evaluate the expression in an ignored context. 3571 } else { 3572 CGF.EmitIgnoredExpr(semantic); 3573 } 3574 } 3575 3576 // Unbind all the opaques now. 3577 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3578 opaques[i].unbind(CGF); 3579 3580 return result; 3581 } 3582 3583 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3584 AggValueSlot slot) { 3585 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3586 } 3587 3588 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3589 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3590 } 3591