1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getQuantity()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::FunctionCallee CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 344 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getQuantity()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->GetTemporaryExpr(); 421 422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 424 "Reference should never be pseudo-strong!"); 425 426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 427 // as that will cause the lifetime adjustment to be lost for ARC 428 auto ownership = M->getType().getObjCLifetime(); 429 if (ownership != Qualifiers::OCL_None && 430 ownership != Qualifiers::OCL_ExplicitNone) { 431 Address Object = createReferenceTemporary(*this, M, E); 432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 433 Object = Address(llvm::ConstantExpr::getBitCast(Var, 434 ConvertTypeForMem(E->getType()) 435 ->getPointerTo(Object.getAddressSpace())), 436 Object.getAlignment()); 437 438 // createReferenceTemporary will promote the temporary to a global with a 439 // constant initializer if it can. It can only do this to a value of 440 // ARC-manageable type if the value is global and therefore "immune" to 441 // ref-counting operations. Therefore we have no need to emit either a 442 // dynamic initialization or a cleanup and we can just return the address 443 // of the temporary. 444 if (Var->hasInitializer()) 445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 446 447 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 448 } 449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 450 AlignmentSource::Decl); 451 452 switch (getEvaluationKind(E->getType())) { 453 default: llvm_unreachable("expected scalar or aggregate expression"); 454 case TEK_Scalar: 455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 456 break; 457 case TEK_Aggregate: { 458 EmitAggExpr(E, AggValueSlot::forAddr(Object, 459 E->getType().getQualifiers(), 460 AggValueSlot::IsDestructed, 461 AggValueSlot::DoesNotNeedGCBarriers, 462 AggValueSlot::IsNotAliased, 463 AggValueSlot::DoesNotOverlap)); 464 break; 465 } 466 } 467 468 pushTemporaryCleanup(*this, M, E, Object); 469 return RefTempDst; 470 } 471 472 SmallVector<const Expr *, 2> CommaLHSs; 473 SmallVector<SubobjectAdjustment, 2> Adjustments; 474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 475 476 for (const auto &Ignored : CommaLHSs) 477 EmitIgnoredExpr(Ignored); 478 479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 480 if (opaque->getType()->isRecordType()) { 481 assert(Adjustments.empty()); 482 return EmitOpaqueValueLValue(opaque); 483 } 484 } 485 486 // Create and initialize the reference temporary. 487 Address Alloca = Address::invalid(); 488 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 489 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 490 Object.getPointer()->stripPointerCasts())) { 491 Object = Address(llvm::ConstantExpr::getBitCast( 492 cast<llvm::Constant>(Object.getPointer()), 493 ConvertTypeForMem(E->getType())->getPointerTo()), 494 Object.getAlignment()); 495 // If the temporary is a global and has a constant initializer or is a 496 // constant temporary that we promoted to a global, we may have already 497 // initialized it. 498 if (!Var->hasInitializer()) { 499 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 } else { 503 switch (M->getStorageDuration()) { 504 case SD_Automatic: 505 if (auto *Size = EmitLifetimeStart( 506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 507 Alloca.getPointer())) { 508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 509 Alloca, Size); 510 } 511 break; 512 513 case SD_FullExpression: { 514 if (!ShouldEmitLifetimeMarkers) 515 break; 516 517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 518 // marker. Instead, start the lifetime of a conditional temporary earlier 519 // so that it's unconditional. Don't do this with sanitizers which need 520 // more precise lifetime marks. 521 ConditionalEvaluation *OldConditional = nullptr; 522 CGBuilderTy::InsertPoint OldIP; 523 if (isInConditionalBranch() && !E->getType().isDestructedType() && 524 !SanOpts.has(SanitizerKind::Memory) && 525 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 526 OldConditional = OutermostConditional; 527 OutermostConditional = nullptr; 528 529 OldIP = Builder.saveIP(); 530 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 531 Builder.restoreIP(CGBuilderTy::InsertPoint( 532 Block, llvm::BasicBlock::iterator(Block->back()))); 533 } 534 535 if (auto *Size = EmitLifetimeStart( 536 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 537 Alloca.getPointer())) { 538 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 539 Size); 540 } 541 542 if (OldConditional) { 543 OutermostConditional = OldConditional; 544 Builder.restoreIP(OldIP); 545 } 546 break; 547 } 548 549 default: 550 break; 551 } 552 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 553 } 554 pushTemporaryCleanup(*this, M, E, Object); 555 556 // Perform derived-to-base casts and/or field accesses, to get from the 557 // temporary object we created (and, potentially, for which we extended 558 // the lifetime) to the subobject we're binding the reference to. 559 for (unsigned I = Adjustments.size(); I != 0; --I) { 560 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 561 switch (Adjustment.Kind) { 562 case SubobjectAdjustment::DerivedToBaseAdjustment: 563 Object = 564 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 565 Adjustment.DerivedToBase.BasePath->path_begin(), 566 Adjustment.DerivedToBase.BasePath->path_end(), 567 /*NullCheckValue=*/ false, E->getExprLoc()); 568 break; 569 570 case SubobjectAdjustment::FieldAdjustment: { 571 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 572 LV = EmitLValueForField(LV, Adjustment.Field); 573 assert(LV.isSimple() && 574 "materialized temporary field is not a simple lvalue"); 575 Object = LV.getAddress(); 576 break; 577 } 578 579 case SubobjectAdjustment::MemberPointerAdjustment: { 580 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 581 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 582 Adjustment.Ptr.MPT); 583 break; 584 } 585 } 586 } 587 588 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 589 } 590 591 RValue 592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 593 // Emit the expression as an lvalue. 594 LValue LV = EmitLValue(E); 595 assert(LV.isSimple()); 596 llvm::Value *Value = LV.getPointer(); 597 598 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 599 // C++11 [dcl.ref]p5 (as amended by core issue 453): 600 // If a glvalue to which a reference is directly bound designates neither 601 // an existing object or function of an appropriate type nor a region of 602 // storage of suitable size and alignment to contain an object of the 603 // reference's type, the behavior is undefined. 604 QualType Ty = E->getType(); 605 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 606 } 607 608 return RValue::get(Value); 609 } 610 611 612 /// getAccessedFieldNo - Given an encoded value and a result number, return the 613 /// input field number being accessed. 614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 615 const llvm::Constant *Elts) { 616 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 617 ->getZExtValue(); 618 } 619 620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 622 llvm::Value *High) { 623 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 624 llvm::Value *K47 = Builder.getInt64(47); 625 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 626 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 627 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 628 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 629 return Builder.CreateMul(B1, KMul); 630 } 631 632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 633 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 634 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 635 } 636 637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 638 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 639 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 640 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 641 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 642 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 643 } 644 645 bool CodeGenFunction::sanitizePerformTypeCheck() const { 646 return SanOpts.has(SanitizerKind::Null) | 647 SanOpts.has(SanitizerKind::Alignment) | 648 SanOpts.has(SanitizerKind::ObjectSize) | 649 SanOpts.has(SanitizerKind::Vptr); 650 } 651 652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 653 llvm::Value *Ptr, QualType Ty, 654 CharUnits Alignment, 655 SanitizerSet SkippedChecks, 656 llvm::Value *ArraySize) { 657 if (!sanitizePerformTypeCheck()) 658 return; 659 660 // Don't check pointers outside the default address space. The null check 661 // isn't correct, the object-size check isn't supported by LLVM, and we can't 662 // communicate the addresses to the runtime handler for the vptr check. 663 if (Ptr->getType()->getPointerAddressSpace()) 664 return; 665 666 // Don't check pointers to volatile data. The behavior here is implementation- 667 // defined. 668 if (Ty.isVolatileQualified()) 669 return; 670 671 SanitizerScope SanScope(this); 672 673 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 674 llvm::BasicBlock *Done = nullptr; 675 676 // Quickly determine whether we have a pointer to an alloca. It's possible 677 // to skip null checks, and some alignment checks, for these pointers. This 678 // can reduce compile-time significantly. 679 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 680 681 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 682 llvm::Value *IsNonNull = nullptr; 683 bool IsGuaranteedNonNull = 684 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 685 bool AllowNullPointers = isNullPointerAllowed(TCK); 686 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 687 !IsGuaranteedNonNull) { 688 // The glvalue must not be an empty glvalue. 689 IsNonNull = Builder.CreateIsNotNull(Ptr); 690 691 // The IR builder can constant-fold the null check if the pointer points to 692 // a constant. 693 IsGuaranteedNonNull = IsNonNull == True; 694 695 // Skip the null check if the pointer is known to be non-null. 696 if (!IsGuaranteedNonNull) { 697 if (AllowNullPointers) { 698 // When performing pointer casts, it's OK if the value is null. 699 // Skip the remaining checks in that case. 700 Done = createBasicBlock("null"); 701 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 702 Builder.CreateCondBr(IsNonNull, Rest, Done); 703 EmitBlock(Rest); 704 } else { 705 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 706 } 707 } 708 } 709 710 if (SanOpts.has(SanitizerKind::ObjectSize) && 711 !SkippedChecks.has(SanitizerKind::ObjectSize) && 712 !Ty->isIncompleteType()) { 713 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 714 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 715 if (ArraySize) 716 Size = Builder.CreateMul(Size, ArraySize); 717 718 // Degenerate case: new X[0] does not need an objectsize check. 719 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 720 if (!ConstantSize || !ConstantSize->isNullValue()) { 721 // The glvalue must refer to a large enough storage region. 722 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 723 // to check this. 724 // FIXME: Get object address space 725 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 726 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 727 llvm::Value *Min = Builder.getFalse(); 728 llvm::Value *NullIsUnknown = Builder.getFalse(); 729 llvm::Value *Dynamic = Builder.getFalse(); 730 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 731 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 732 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 733 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 734 } 735 } 736 737 uint64_t AlignVal = 0; 738 llvm::Value *PtrAsInt = nullptr; 739 740 if (SanOpts.has(SanitizerKind::Alignment) && 741 !SkippedChecks.has(SanitizerKind::Alignment)) { 742 AlignVal = Alignment.getQuantity(); 743 if (!Ty->isIncompleteType() && !AlignVal) 744 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 745 746 // The glvalue must be suitably aligned. 747 if (AlignVal > 1 && 748 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 749 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 750 llvm::Value *Align = Builder.CreateAnd( 751 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 752 llvm::Value *Aligned = 753 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 754 if (Aligned != True) 755 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 756 } 757 } 758 759 if (Checks.size() > 0) { 760 // Make sure we're not losing information. Alignment needs to be a power of 761 // 2 762 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 763 llvm::Constant *StaticData[] = { 764 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 765 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 766 llvm::ConstantInt::get(Int8Ty, TCK)}; 767 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 768 PtrAsInt ? PtrAsInt : Ptr); 769 } 770 771 // If possible, check that the vptr indicates that there is a subobject of 772 // type Ty at offset zero within this object. 773 // 774 // C++11 [basic.life]p5,6: 775 // [For storage which does not refer to an object within its lifetime] 776 // The program has undefined behavior if: 777 // -- the [pointer or glvalue] is used to access a non-static data member 778 // or call a non-static member function 779 if (SanOpts.has(SanitizerKind::Vptr) && 780 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 781 // Ensure that the pointer is non-null before loading it. If there is no 782 // compile-time guarantee, reuse the run-time null check or emit a new one. 783 if (!IsGuaranteedNonNull) { 784 if (!IsNonNull) 785 IsNonNull = Builder.CreateIsNotNull(Ptr); 786 if (!Done) 787 Done = createBasicBlock("vptr.null"); 788 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 789 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 790 EmitBlock(VptrNotNull); 791 } 792 793 // Compute a hash of the mangled name of the type. 794 // 795 // FIXME: This is not guaranteed to be deterministic! Move to a 796 // fingerprinting mechanism once LLVM provides one. For the time 797 // being the implementation happens to be deterministic. 798 SmallString<64> MangledName; 799 llvm::raw_svector_ostream Out(MangledName); 800 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 801 Out); 802 803 // Blacklist based on the mangled type. 804 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 805 SanitizerKind::Vptr, Out.str())) { 806 llvm::hash_code TypeHash = hash_value(Out.str()); 807 808 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 809 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 810 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 811 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 812 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 813 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 814 815 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 816 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 817 818 // Look the hash up in our cache. 819 const int CacheSize = 128; 820 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 821 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 822 "__ubsan_vptr_type_cache"); 823 llvm::Value *Slot = Builder.CreateAnd(Hash, 824 llvm::ConstantInt::get(IntPtrTy, 825 CacheSize-1)); 826 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 827 llvm::Value *CacheVal = 828 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 829 getPointerAlign()); 830 831 // If the hash isn't in the cache, call a runtime handler to perform the 832 // hard work of checking whether the vptr is for an object of the right 833 // type. This will either fill in the cache and return, or produce a 834 // diagnostic. 835 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 836 llvm::Constant *StaticData[] = { 837 EmitCheckSourceLocation(Loc), 838 EmitCheckTypeDescriptor(Ty), 839 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 840 llvm::ConstantInt::get(Int8Ty, TCK) 841 }; 842 llvm::Value *DynamicData[] = { Ptr, Hash }; 843 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 844 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 845 DynamicData); 846 } 847 } 848 849 if (Done) { 850 Builder.CreateBr(Done); 851 EmitBlock(Done); 852 } 853 } 854 855 /// Determine whether this expression refers to a flexible array member in a 856 /// struct. We disable array bounds checks for such members. 857 static bool isFlexibleArrayMemberExpr(const Expr *E) { 858 // For compatibility with existing code, we treat arrays of length 0 or 859 // 1 as flexible array members. 860 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 861 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 862 if (CAT->getSize().ugt(1)) 863 return false; 864 } else if (!isa<IncompleteArrayType>(AT)) 865 return false; 866 867 E = E->IgnoreParens(); 868 869 // A flexible array member must be the last member in the class. 870 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 871 // FIXME: If the base type of the member expr is not FD->getParent(), 872 // this should not be treated as a flexible array member access. 873 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 874 RecordDecl::field_iterator FI( 875 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 876 return ++FI == FD->getParent()->field_end(); 877 } 878 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 879 return IRE->getDecl()->getNextIvar() == nullptr; 880 } 881 882 return false; 883 } 884 885 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 886 QualType EltTy) { 887 ASTContext &C = getContext(); 888 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 889 if (!EltSize) 890 return nullptr; 891 892 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 893 if (!ArrayDeclRef) 894 return nullptr; 895 896 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 897 if (!ParamDecl) 898 return nullptr; 899 900 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 901 if (!POSAttr) 902 return nullptr; 903 904 // Don't load the size if it's a lower bound. 905 int POSType = POSAttr->getType(); 906 if (POSType != 0 && POSType != 1) 907 return nullptr; 908 909 // Find the implicit size parameter. 910 auto PassedSizeIt = SizeArguments.find(ParamDecl); 911 if (PassedSizeIt == SizeArguments.end()) 912 return nullptr; 913 914 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 915 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 916 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 917 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 918 C.getSizeType(), E->getExprLoc()); 919 llvm::Value *SizeOfElement = 920 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 921 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 922 } 923 924 /// If Base is known to point to the start of an array, return the length of 925 /// that array. Return 0 if the length cannot be determined. 926 static llvm::Value *getArrayIndexingBound( 927 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 928 // For the vector indexing extension, the bound is the number of elements. 929 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 930 IndexedType = Base->getType(); 931 return CGF.Builder.getInt32(VT->getNumElements()); 932 } 933 934 Base = Base->IgnoreParens(); 935 936 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 937 if (CE->getCastKind() == CK_ArrayToPointerDecay && 938 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 939 IndexedType = CE->getSubExpr()->getType(); 940 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 941 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 942 return CGF.Builder.getInt(CAT->getSize()); 943 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 944 return CGF.getVLASize(VAT).NumElts; 945 // Ignore pass_object_size here. It's not applicable on decayed pointers. 946 } 947 } 948 949 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 950 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 951 IndexedType = Base->getType(); 952 return POS; 953 } 954 955 return nullptr; 956 } 957 958 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 959 llvm::Value *Index, QualType IndexType, 960 bool Accessed) { 961 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 962 "should not be called unless adding bounds checks"); 963 SanitizerScope SanScope(this); 964 965 QualType IndexedType; 966 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 967 if (!Bound) 968 return; 969 970 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 971 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 972 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 973 974 llvm::Constant *StaticData[] = { 975 EmitCheckSourceLocation(E->getExprLoc()), 976 EmitCheckTypeDescriptor(IndexedType), 977 EmitCheckTypeDescriptor(IndexType) 978 }; 979 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 980 : Builder.CreateICmpULE(IndexVal, BoundVal); 981 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 982 SanitizerHandler::OutOfBounds, StaticData, Index); 983 } 984 985 986 CodeGenFunction::ComplexPairTy CodeGenFunction:: 987 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 988 bool isInc, bool isPre) { 989 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 990 991 llvm::Value *NextVal; 992 if (isa<llvm::IntegerType>(InVal.first->getType())) { 993 uint64_t AmountVal = isInc ? 1 : -1; 994 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 995 996 // Add the inc/dec to the real part. 997 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 998 } else { 999 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 1000 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1001 if (!isInc) 1002 FVal.changeSign(); 1003 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1004 1005 // Add the inc/dec to the real part. 1006 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1007 } 1008 1009 ComplexPairTy IncVal(NextVal, InVal.second); 1010 1011 // Store the updated result through the lvalue. 1012 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1013 1014 // If this is a postinc, return the value read from memory, otherwise use the 1015 // updated value. 1016 return isPre ? IncVal : InVal; 1017 } 1018 1019 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1020 CodeGenFunction *CGF) { 1021 // Bind VLAs in the cast type. 1022 if (CGF && E->getType()->isVariablyModifiedType()) 1023 CGF->EmitVariablyModifiedType(E->getType()); 1024 1025 if (CGDebugInfo *DI = getModuleDebugInfo()) 1026 DI->EmitExplicitCastType(E->getType()); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // LValue Expression Emission 1031 //===----------------------------------------------------------------------===// 1032 1033 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1034 /// derive a more accurate bound on the alignment of the pointer. 1035 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1036 LValueBaseInfo *BaseInfo, 1037 TBAAAccessInfo *TBAAInfo) { 1038 // We allow this with ObjC object pointers because of fragile ABIs. 1039 assert(E->getType()->isPointerType() || 1040 E->getType()->isObjCObjectPointerType()); 1041 E = E->IgnoreParens(); 1042 1043 // Casts: 1044 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1045 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1046 CGM.EmitExplicitCastExprType(ECE, this); 1047 1048 switch (CE->getCastKind()) { 1049 // Non-converting casts (but not C's implicit conversion from void*). 1050 case CK_BitCast: 1051 case CK_NoOp: 1052 case CK_AddressSpaceConversion: 1053 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1054 if (PtrTy->getPointeeType()->isVoidType()) 1055 break; 1056 1057 LValueBaseInfo InnerBaseInfo; 1058 TBAAAccessInfo InnerTBAAInfo; 1059 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1060 &InnerBaseInfo, 1061 &InnerTBAAInfo); 1062 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1063 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1064 1065 if (isa<ExplicitCastExpr>(CE)) { 1066 LValueBaseInfo TargetTypeBaseInfo; 1067 TBAAAccessInfo TargetTypeTBAAInfo; 1068 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1069 &TargetTypeBaseInfo, 1070 &TargetTypeTBAAInfo); 1071 if (TBAAInfo) 1072 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1073 TargetTypeTBAAInfo); 1074 // If the source l-value is opaque, honor the alignment of the 1075 // casted-to type. 1076 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1077 if (BaseInfo) 1078 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1079 Addr = Address(Addr.getPointer(), Align); 1080 } 1081 } 1082 1083 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1084 CE->getCastKind() == CK_BitCast) { 1085 if (auto PT = E->getType()->getAs<PointerType>()) 1086 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1087 /*MayBeNull=*/true, 1088 CodeGenFunction::CFITCK_UnrelatedCast, 1089 CE->getBeginLoc()); 1090 } 1091 return CE->getCastKind() != CK_AddressSpaceConversion 1092 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1093 : Builder.CreateAddrSpaceCast(Addr, 1094 ConvertType(E->getType())); 1095 } 1096 break; 1097 1098 // Array-to-pointer decay. 1099 case CK_ArrayToPointerDecay: 1100 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1101 1102 // Derived-to-base conversions. 1103 case CK_UncheckedDerivedToBase: 1104 case CK_DerivedToBase: { 1105 // TODO: Support accesses to members of base classes in TBAA. For now, we 1106 // conservatively pretend that the complete object is of the base class 1107 // type. 1108 if (TBAAInfo) 1109 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1110 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1111 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1112 return GetAddressOfBaseClass(Addr, Derived, 1113 CE->path_begin(), CE->path_end(), 1114 ShouldNullCheckClassCastValue(CE), 1115 CE->getExprLoc()); 1116 } 1117 1118 // TODO: Is there any reason to treat base-to-derived conversions 1119 // specially? 1120 default: 1121 break; 1122 } 1123 } 1124 1125 // Unary &. 1126 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1127 if (UO->getOpcode() == UO_AddrOf) { 1128 LValue LV = EmitLValue(UO->getSubExpr()); 1129 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1130 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1131 return LV.getAddress(); 1132 } 1133 } 1134 1135 // TODO: conditional operators, comma. 1136 1137 // Otherwise, use the alignment of the type. 1138 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1139 TBAAInfo); 1140 return Address(EmitScalarExpr(E), Align); 1141 } 1142 1143 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1144 if (Ty->isVoidType()) 1145 return RValue::get(nullptr); 1146 1147 switch (getEvaluationKind(Ty)) { 1148 case TEK_Complex: { 1149 llvm::Type *EltTy = 1150 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1151 llvm::Value *U = llvm::UndefValue::get(EltTy); 1152 return RValue::getComplex(std::make_pair(U, U)); 1153 } 1154 1155 // If this is a use of an undefined aggregate type, the aggregate must have an 1156 // identifiable address. Just because the contents of the value are undefined 1157 // doesn't mean that the address can't be taken and compared. 1158 case TEK_Aggregate: { 1159 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1160 return RValue::getAggregate(DestPtr); 1161 } 1162 1163 case TEK_Scalar: 1164 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1165 } 1166 llvm_unreachable("bad evaluation kind"); 1167 } 1168 1169 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1170 const char *Name) { 1171 ErrorUnsupported(E, Name); 1172 return GetUndefRValue(E->getType()); 1173 } 1174 1175 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1176 const char *Name) { 1177 ErrorUnsupported(E, Name); 1178 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1179 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1180 E->getType()); 1181 } 1182 1183 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1184 const Expr *Base = Obj; 1185 while (!isa<CXXThisExpr>(Base)) { 1186 // The result of a dynamic_cast can be null. 1187 if (isa<CXXDynamicCastExpr>(Base)) 1188 return false; 1189 1190 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1191 Base = CE->getSubExpr(); 1192 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1193 Base = PE->getSubExpr(); 1194 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1195 if (UO->getOpcode() == UO_Extension) 1196 Base = UO->getSubExpr(); 1197 else 1198 return false; 1199 } else { 1200 return false; 1201 } 1202 } 1203 return true; 1204 } 1205 1206 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1207 LValue LV; 1208 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1209 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1210 else 1211 LV = EmitLValue(E); 1212 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1213 SanitizerSet SkippedChecks; 1214 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1215 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1216 if (IsBaseCXXThis) 1217 SkippedChecks.set(SanitizerKind::Alignment, true); 1218 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1219 SkippedChecks.set(SanitizerKind::Null, true); 1220 } 1221 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1222 E->getType(), LV.getAlignment(), SkippedChecks); 1223 } 1224 return LV; 1225 } 1226 1227 /// EmitLValue - Emit code to compute a designator that specifies the location 1228 /// of the expression. 1229 /// 1230 /// This can return one of two things: a simple address or a bitfield reference. 1231 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1232 /// an LLVM pointer type. 1233 /// 1234 /// If this returns a bitfield reference, nothing about the pointee type of the 1235 /// LLVM value is known: For example, it may not be a pointer to an integer. 1236 /// 1237 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1238 /// this method guarantees that the returned pointer type will point to an LLVM 1239 /// type of the same size of the lvalue's type. If the lvalue has a variable 1240 /// length type, this is not possible. 1241 /// 1242 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1243 ApplyDebugLocation DL(*this, E); 1244 switch (E->getStmtClass()) { 1245 default: return EmitUnsupportedLValue(E, "l-value expression"); 1246 1247 case Expr::ObjCPropertyRefExprClass: 1248 llvm_unreachable("cannot emit a property reference directly"); 1249 1250 case Expr::ObjCSelectorExprClass: 1251 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1252 case Expr::ObjCIsaExprClass: 1253 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1254 case Expr::BinaryOperatorClass: 1255 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1256 case Expr::CompoundAssignOperatorClass: { 1257 QualType Ty = E->getType(); 1258 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1259 Ty = AT->getValueType(); 1260 if (!Ty->isAnyComplexType()) 1261 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1262 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1263 } 1264 case Expr::CallExprClass: 1265 case Expr::CXXMemberCallExprClass: 1266 case Expr::CXXOperatorCallExprClass: 1267 case Expr::UserDefinedLiteralClass: 1268 return EmitCallExprLValue(cast<CallExpr>(E)); 1269 case Expr::VAArgExprClass: 1270 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1271 case Expr::DeclRefExprClass: 1272 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1273 case Expr::ConstantExprClass: 1274 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1275 case Expr::ParenExprClass: 1276 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1277 case Expr::GenericSelectionExprClass: 1278 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1279 case Expr::PredefinedExprClass: 1280 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1281 case Expr::StringLiteralClass: 1282 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1283 case Expr::ObjCEncodeExprClass: 1284 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1285 case Expr::PseudoObjectExprClass: 1286 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1287 case Expr::InitListExprClass: 1288 return EmitInitListLValue(cast<InitListExpr>(E)); 1289 case Expr::CXXTemporaryObjectExprClass: 1290 case Expr::CXXConstructExprClass: 1291 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1292 case Expr::CXXBindTemporaryExprClass: 1293 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1294 case Expr::CXXUuidofExprClass: 1295 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1296 case Expr::LambdaExprClass: 1297 return EmitAggExprToLValue(E); 1298 1299 case Expr::ExprWithCleanupsClass: { 1300 const auto *cleanups = cast<ExprWithCleanups>(E); 1301 enterFullExpression(cleanups); 1302 RunCleanupsScope Scope(*this); 1303 LValue LV = EmitLValue(cleanups->getSubExpr()); 1304 if (LV.isSimple()) { 1305 // Defend against branches out of gnu statement expressions surrounded by 1306 // cleanups. 1307 llvm::Value *V = LV.getPointer(); 1308 Scope.ForceCleanup({&V}); 1309 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1310 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1311 } 1312 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1313 // bitfield lvalue or some other non-simple lvalue? 1314 return LV; 1315 } 1316 1317 case Expr::CXXDefaultArgExprClass: { 1318 auto *DAE = cast<CXXDefaultArgExpr>(E); 1319 CXXDefaultArgExprScope Scope(*this, DAE); 1320 return EmitLValue(DAE->getExpr()); 1321 } 1322 case Expr::CXXDefaultInitExprClass: { 1323 auto *DIE = cast<CXXDefaultInitExpr>(E); 1324 CXXDefaultInitExprScope Scope(*this, DIE); 1325 return EmitLValue(DIE->getExpr()); 1326 } 1327 case Expr::CXXTypeidExprClass: 1328 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1329 1330 case Expr::ObjCMessageExprClass: 1331 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1332 case Expr::ObjCIvarRefExprClass: 1333 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1334 case Expr::StmtExprClass: 1335 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1336 case Expr::UnaryOperatorClass: 1337 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1338 case Expr::ArraySubscriptExprClass: 1339 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1340 case Expr::OMPArraySectionExprClass: 1341 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1342 case Expr::ExtVectorElementExprClass: 1343 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1344 case Expr::MemberExprClass: 1345 return EmitMemberExpr(cast<MemberExpr>(E)); 1346 case Expr::CompoundLiteralExprClass: 1347 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1348 case Expr::ConditionalOperatorClass: 1349 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1350 case Expr::BinaryConditionalOperatorClass: 1351 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1352 case Expr::ChooseExprClass: 1353 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1354 case Expr::OpaqueValueExprClass: 1355 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1356 case Expr::SubstNonTypeTemplateParmExprClass: 1357 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1358 case Expr::ImplicitCastExprClass: 1359 case Expr::CStyleCastExprClass: 1360 case Expr::CXXFunctionalCastExprClass: 1361 case Expr::CXXStaticCastExprClass: 1362 case Expr::CXXDynamicCastExprClass: 1363 case Expr::CXXReinterpretCastExprClass: 1364 case Expr::CXXConstCastExprClass: 1365 case Expr::ObjCBridgedCastExprClass: 1366 return EmitCastLValue(cast<CastExpr>(E)); 1367 1368 case Expr::MaterializeTemporaryExprClass: 1369 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1370 1371 case Expr::CoawaitExprClass: 1372 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1373 case Expr::CoyieldExprClass: 1374 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1375 } 1376 } 1377 1378 /// Given an object of the given canonical type, can we safely copy a 1379 /// value out of it based on its initializer? 1380 static bool isConstantEmittableObjectType(QualType type) { 1381 assert(type.isCanonical()); 1382 assert(!type->isReferenceType()); 1383 1384 // Must be const-qualified but non-volatile. 1385 Qualifiers qs = type.getLocalQualifiers(); 1386 if (!qs.hasConst() || qs.hasVolatile()) return false; 1387 1388 // Otherwise, all object types satisfy this except C++ classes with 1389 // mutable subobjects or non-trivial copy/destroy behavior. 1390 if (const auto *RT = dyn_cast<RecordType>(type)) 1391 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1392 if (RD->hasMutableFields() || !RD->isTrivial()) 1393 return false; 1394 1395 return true; 1396 } 1397 1398 /// Can we constant-emit a load of a reference to a variable of the 1399 /// given type? This is different from predicates like 1400 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1401 /// in situations that don't necessarily satisfy the language's rules 1402 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1403 /// to do this with const float variables even if those variables 1404 /// aren't marked 'constexpr'. 1405 enum ConstantEmissionKind { 1406 CEK_None, 1407 CEK_AsReferenceOnly, 1408 CEK_AsValueOrReference, 1409 CEK_AsValueOnly 1410 }; 1411 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1412 type = type.getCanonicalType(); 1413 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1414 if (isConstantEmittableObjectType(ref->getPointeeType())) 1415 return CEK_AsValueOrReference; 1416 return CEK_AsReferenceOnly; 1417 } 1418 if (isConstantEmittableObjectType(type)) 1419 return CEK_AsValueOnly; 1420 return CEK_None; 1421 } 1422 1423 /// Try to emit a reference to the given value without producing it as 1424 /// an l-value. This is just an optimization, but it avoids us needing 1425 /// to emit global copies of variables if they're named without triggering 1426 /// a formal use in a context where we can't emit a direct reference to them, 1427 /// for instance if a block or lambda or a member of a local class uses a 1428 /// const int variable or constexpr variable from an enclosing function. 1429 CodeGenFunction::ConstantEmission 1430 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1431 ValueDecl *value = refExpr->getDecl(); 1432 1433 // The value needs to be an enum constant or a constant variable. 1434 ConstantEmissionKind CEK; 1435 if (isa<ParmVarDecl>(value)) { 1436 CEK = CEK_None; 1437 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1438 CEK = checkVarTypeForConstantEmission(var->getType()); 1439 } else if (isa<EnumConstantDecl>(value)) { 1440 CEK = CEK_AsValueOnly; 1441 } else { 1442 CEK = CEK_None; 1443 } 1444 if (CEK == CEK_None) return ConstantEmission(); 1445 1446 Expr::EvalResult result; 1447 bool resultIsReference; 1448 QualType resultType; 1449 1450 // It's best to evaluate all the way as an r-value if that's permitted. 1451 if (CEK != CEK_AsReferenceOnly && 1452 refExpr->EvaluateAsRValue(result, getContext())) { 1453 resultIsReference = false; 1454 resultType = refExpr->getType(); 1455 1456 // Otherwise, try to evaluate as an l-value. 1457 } else if (CEK != CEK_AsValueOnly && 1458 refExpr->EvaluateAsLValue(result, getContext())) { 1459 resultIsReference = true; 1460 resultType = value->getType(); 1461 1462 // Failure. 1463 } else { 1464 return ConstantEmission(); 1465 } 1466 1467 // In any case, if the initializer has side-effects, abandon ship. 1468 if (result.HasSideEffects) 1469 return ConstantEmission(); 1470 1471 // Emit as a constant. 1472 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1473 result.Val, resultType); 1474 1475 // Make sure we emit a debug reference to the global variable. 1476 // This should probably fire even for 1477 if (isa<VarDecl>(value)) { 1478 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1479 EmitDeclRefExprDbgValue(refExpr, result.Val); 1480 } else { 1481 assert(isa<EnumConstantDecl>(value)); 1482 EmitDeclRefExprDbgValue(refExpr, result.Val); 1483 } 1484 1485 // If we emitted a reference constant, we need to dereference that. 1486 if (resultIsReference) 1487 return ConstantEmission::forReference(C); 1488 1489 return ConstantEmission::forValue(C); 1490 } 1491 1492 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1493 const MemberExpr *ME) { 1494 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1495 // Try to emit static variable member expressions as DREs. 1496 return DeclRefExpr::Create( 1497 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1498 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1499 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1500 } 1501 return nullptr; 1502 } 1503 1504 CodeGenFunction::ConstantEmission 1505 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1506 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1507 return tryEmitAsConstant(DRE); 1508 return ConstantEmission(); 1509 } 1510 1511 llvm::Value *CodeGenFunction::emitScalarConstant( 1512 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1513 assert(Constant && "not a constant"); 1514 if (Constant.isReference()) 1515 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1516 E->getExprLoc()) 1517 .getScalarVal(); 1518 return Constant.getValue(); 1519 } 1520 1521 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1522 SourceLocation Loc) { 1523 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1524 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1525 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1526 } 1527 1528 static bool hasBooleanRepresentation(QualType Ty) { 1529 if (Ty->isBooleanType()) 1530 return true; 1531 1532 if (const EnumType *ET = Ty->getAs<EnumType>()) 1533 return ET->getDecl()->getIntegerType()->isBooleanType(); 1534 1535 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1536 return hasBooleanRepresentation(AT->getValueType()); 1537 1538 return false; 1539 } 1540 1541 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1542 llvm::APInt &Min, llvm::APInt &End, 1543 bool StrictEnums, bool IsBool) { 1544 const EnumType *ET = Ty->getAs<EnumType>(); 1545 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1546 ET && !ET->getDecl()->isFixed(); 1547 if (!IsBool && !IsRegularCPlusPlusEnum) 1548 return false; 1549 1550 if (IsBool) { 1551 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1552 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1553 } else { 1554 const EnumDecl *ED = ET->getDecl(); 1555 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1556 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1557 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1558 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1559 1560 if (NumNegativeBits) { 1561 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1562 assert(NumBits <= Bitwidth); 1563 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1564 Min = -End; 1565 } else { 1566 assert(NumPositiveBits <= Bitwidth); 1567 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1568 Min = llvm::APInt(Bitwidth, 0); 1569 } 1570 } 1571 return true; 1572 } 1573 1574 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1575 llvm::APInt Min, End; 1576 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1577 hasBooleanRepresentation(Ty))) 1578 return nullptr; 1579 1580 llvm::MDBuilder MDHelper(getLLVMContext()); 1581 return MDHelper.createRange(Min, End); 1582 } 1583 1584 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1585 SourceLocation Loc) { 1586 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1587 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1588 if (!HasBoolCheck && !HasEnumCheck) 1589 return false; 1590 1591 bool IsBool = hasBooleanRepresentation(Ty) || 1592 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1593 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1594 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1595 if (!NeedsBoolCheck && !NeedsEnumCheck) 1596 return false; 1597 1598 // Single-bit booleans don't need to be checked. Special-case this to avoid 1599 // a bit width mismatch when handling bitfield values. This is handled by 1600 // EmitFromMemory for the non-bitfield case. 1601 if (IsBool && 1602 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1603 return false; 1604 1605 llvm::APInt Min, End; 1606 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1607 return true; 1608 1609 auto &Ctx = getLLVMContext(); 1610 SanitizerScope SanScope(this); 1611 llvm::Value *Check; 1612 --End; 1613 if (!Min) { 1614 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1615 } else { 1616 llvm::Value *Upper = 1617 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1618 llvm::Value *Lower = 1619 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1620 Check = Builder.CreateAnd(Upper, Lower); 1621 } 1622 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1623 EmitCheckTypeDescriptor(Ty)}; 1624 SanitizerMask Kind = 1625 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1626 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1627 StaticArgs, EmitCheckValue(Value)); 1628 return true; 1629 } 1630 1631 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1632 QualType Ty, 1633 SourceLocation Loc, 1634 LValueBaseInfo BaseInfo, 1635 TBAAAccessInfo TBAAInfo, 1636 bool isNontemporal) { 1637 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1638 // For better performance, handle vector loads differently. 1639 if (Ty->isVectorType()) { 1640 const llvm::Type *EltTy = Addr.getElementType(); 1641 1642 const auto *VTy = cast<llvm::VectorType>(EltTy); 1643 1644 // Handle vectors of size 3 like size 4 for better performance. 1645 if (VTy->getNumElements() == 3) { 1646 1647 // Bitcast to vec4 type. 1648 llvm::VectorType *vec4Ty = 1649 llvm::VectorType::get(VTy->getElementType(), 4); 1650 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1651 // Now load value. 1652 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1653 1654 // Shuffle vector to get vec3. 1655 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1656 {0, 1, 2}, "extractVec"); 1657 return EmitFromMemory(V, Ty); 1658 } 1659 } 1660 } 1661 1662 // Atomic operations have to be done on integral types. 1663 LValue AtomicLValue = 1664 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1665 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1666 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1667 } 1668 1669 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1670 if (isNontemporal) { 1671 llvm::MDNode *Node = llvm::MDNode::get( 1672 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1673 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1674 } 1675 1676 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1677 1678 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1679 // In order to prevent the optimizer from throwing away the check, don't 1680 // attach range metadata to the load. 1681 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1682 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1683 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1684 1685 return EmitFromMemory(Load, Ty); 1686 } 1687 1688 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1689 // Bool has a different representation in memory than in registers. 1690 if (hasBooleanRepresentation(Ty)) { 1691 // This should really always be an i1, but sometimes it's already 1692 // an i8, and it's awkward to track those cases down. 1693 if (Value->getType()->isIntegerTy(1)) 1694 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1695 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1696 "wrong value rep of bool"); 1697 } 1698 1699 return Value; 1700 } 1701 1702 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1703 // Bool has a different representation in memory than in registers. 1704 if (hasBooleanRepresentation(Ty)) { 1705 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1706 "wrong value rep of bool"); 1707 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1708 } 1709 1710 return Value; 1711 } 1712 1713 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1714 bool Volatile, QualType Ty, 1715 LValueBaseInfo BaseInfo, 1716 TBAAAccessInfo TBAAInfo, 1717 bool isInit, bool isNontemporal) { 1718 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1719 // Handle vectors differently to get better performance. 1720 if (Ty->isVectorType()) { 1721 llvm::Type *SrcTy = Value->getType(); 1722 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1723 // Handle vec3 special. 1724 if (VecTy && VecTy->getNumElements() == 3) { 1725 // Our source is a vec3, do a shuffle vector to make it a vec4. 1726 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1727 Builder.getInt32(2), 1728 llvm::UndefValue::get(Builder.getInt32Ty())}; 1729 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1730 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1731 MaskV, "extractVec"); 1732 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1733 } 1734 if (Addr.getElementType() != SrcTy) { 1735 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1736 } 1737 } 1738 } 1739 1740 Value = EmitToMemory(Value, Ty); 1741 1742 LValue AtomicLValue = 1743 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1744 if (Ty->isAtomicType() || 1745 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1746 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1747 return; 1748 } 1749 1750 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1751 if (isNontemporal) { 1752 llvm::MDNode *Node = 1753 llvm::MDNode::get(Store->getContext(), 1754 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1755 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1756 } 1757 1758 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1759 } 1760 1761 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1762 bool isInit) { 1763 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1764 lvalue.getType(), lvalue.getBaseInfo(), 1765 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1766 } 1767 1768 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1769 /// method emits the address of the lvalue, then loads the result as an rvalue, 1770 /// returning the rvalue. 1771 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1772 if (LV.isObjCWeak()) { 1773 // load of a __weak object. 1774 Address AddrWeakObj = LV.getAddress(); 1775 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1776 AddrWeakObj)); 1777 } 1778 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1779 // In MRC mode, we do a load+autorelease. 1780 if (!getLangOpts().ObjCAutoRefCount) { 1781 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1782 } 1783 1784 // In ARC mode, we load retained and then consume the value. 1785 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1786 Object = EmitObjCConsumeObject(LV.getType(), Object); 1787 return RValue::get(Object); 1788 } 1789 1790 if (LV.isSimple()) { 1791 assert(!LV.getType()->isFunctionType()); 1792 1793 // Everything needs a load. 1794 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1795 } 1796 1797 if (LV.isVectorElt()) { 1798 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1799 LV.isVolatileQualified()); 1800 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1801 "vecext")); 1802 } 1803 1804 // If this is a reference to a subset of the elements of a vector, either 1805 // shuffle the input or extract/insert them as appropriate. 1806 if (LV.isExtVectorElt()) 1807 return EmitLoadOfExtVectorElementLValue(LV); 1808 1809 // Global Register variables always invoke intrinsics 1810 if (LV.isGlobalReg()) 1811 return EmitLoadOfGlobalRegLValue(LV); 1812 1813 assert(LV.isBitField() && "Unknown LValue type!"); 1814 return EmitLoadOfBitfieldLValue(LV, Loc); 1815 } 1816 1817 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1818 SourceLocation Loc) { 1819 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1820 1821 // Get the output type. 1822 llvm::Type *ResLTy = ConvertType(LV.getType()); 1823 1824 Address Ptr = LV.getBitFieldAddress(); 1825 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1826 1827 if (Info.IsSigned) { 1828 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1829 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1830 if (HighBits) 1831 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1832 if (Info.Offset + HighBits) 1833 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1834 } else { 1835 if (Info.Offset) 1836 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1837 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1838 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1839 Info.Size), 1840 "bf.clear"); 1841 } 1842 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1843 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1844 return RValue::get(Val); 1845 } 1846 1847 // If this is a reference to a subset of the elements of a vector, create an 1848 // appropriate shufflevector. 1849 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1850 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1851 LV.isVolatileQualified()); 1852 1853 const llvm::Constant *Elts = LV.getExtVectorElts(); 1854 1855 // If the result of the expression is a non-vector type, we must be extracting 1856 // a single element. Just codegen as an extractelement. 1857 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1858 if (!ExprVT) { 1859 unsigned InIdx = getAccessedFieldNo(0, Elts); 1860 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1861 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1862 } 1863 1864 // Always use shuffle vector to try to retain the original program structure 1865 unsigned NumResultElts = ExprVT->getNumElements(); 1866 1867 SmallVector<llvm::Constant*, 4> Mask; 1868 for (unsigned i = 0; i != NumResultElts; ++i) 1869 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1870 1871 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1872 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1873 MaskV); 1874 return RValue::get(Vec); 1875 } 1876 1877 /// Generates lvalue for partial ext_vector access. 1878 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1879 Address VectorAddress = LV.getExtVectorAddress(); 1880 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1881 QualType EQT = ExprVT->getElementType(); 1882 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1883 1884 Address CastToPointerElement = 1885 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1886 "conv.ptr.element"); 1887 1888 const llvm::Constant *Elts = LV.getExtVectorElts(); 1889 unsigned ix = getAccessedFieldNo(0, Elts); 1890 1891 Address VectorBasePtrPlusIx = 1892 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1893 "vector.elt"); 1894 1895 return VectorBasePtrPlusIx; 1896 } 1897 1898 /// Load of global gamed gegisters are always calls to intrinsics. 1899 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1900 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1901 "Bad type for register variable"); 1902 llvm::MDNode *RegName = cast<llvm::MDNode>( 1903 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1904 1905 // We accept integer and pointer types only 1906 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1907 llvm::Type *Ty = OrigTy; 1908 if (OrigTy->isPointerTy()) 1909 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1910 llvm::Type *Types[] = { Ty }; 1911 1912 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1913 llvm::Value *Call = Builder.CreateCall( 1914 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1915 if (OrigTy->isPointerTy()) 1916 Call = Builder.CreateIntToPtr(Call, OrigTy); 1917 return RValue::get(Call); 1918 } 1919 1920 1921 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1922 /// lvalue, where both are guaranteed to the have the same type, and that type 1923 /// is 'Ty'. 1924 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1925 bool isInit) { 1926 if (!Dst.isSimple()) { 1927 if (Dst.isVectorElt()) { 1928 // Read/modify/write the vector, inserting the new element. 1929 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1930 Dst.isVolatileQualified()); 1931 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1932 Dst.getVectorIdx(), "vecins"); 1933 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1934 Dst.isVolatileQualified()); 1935 return; 1936 } 1937 1938 // If this is an update of extended vector elements, insert them as 1939 // appropriate. 1940 if (Dst.isExtVectorElt()) 1941 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1942 1943 if (Dst.isGlobalReg()) 1944 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1945 1946 assert(Dst.isBitField() && "Unknown LValue type"); 1947 return EmitStoreThroughBitfieldLValue(Src, Dst); 1948 } 1949 1950 // There's special magic for assigning into an ARC-qualified l-value. 1951 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1952 switch (Lifetime) { 1953 case Qualifiers::OCL_None: 1954 llvm_unreachable("present but none"); 1955 1956 case Qualifiers::OCL_ExplicitNone: 1957 // nothing special 1958 break; 1959 1960 case Qualifiers::OCL_Strong: 1961 if (isInit) { 1962 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1963 break; 1964 } 1965 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1966 return; 1967 1968 case Qualifiers::OCL_Weak: 1969 if (isInit) 1970 // Initialize and then skip the primitive store. 1971 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1972 else 1973 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1974 return; 1975 1976 case Qualifiers::OCL_Autoreleasing: 1977 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1978 Src.getScalarVal())); 1979 // fall into the normal path 1980 break; 1981 } 1982 } 1983 1984 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1985 // load of a __weak object. 1986 Address LvalueDst = Dst.getAddress(); 1987 llvm::Value *src = Src.getScalarVal(); 1988 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1989 return; 1990 } 1991 1992 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1993 // load of a __strong object. 1994 Address LvalueDst = Dst.getAddress(); 1995 llvm::Value *src = Src.getScalarVal(); 1996 if (Dst.isObjCIvar()) { 1997 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1998 llvm::Type *ResultType = IntPtrTy; 1999 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2000 llvm::Value *RHS = dst.getPointer(); 2001 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2002 llvm::Value *LHS = 2003 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2004 "sub.ptr.lhs.cast"); 2005 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2006 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2007 BytesBetween); 2008 } else if (Dst.isGlobalObjCRef()) { 2009 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2010 Dst.isThreadLocalRef()); 2011 } 2012 else 2013 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2014 return; 2015 } 2016 2017 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2018 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2019 } 2020 2021 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2022 llvm::Value **Result) { 2023 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2024 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2025 Address Ptr = Dst.getBitFieldAddress(); 2026 2027 // Get the source value, truncated to the width of the bit-field. 2028 llvm::Value *SrcVal = Src.getScalarVal(); 2029 2030 // Cast the source to the storage type and shift it into place. 2031 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2032 /*isSigned=*/false); 2033 llvm::Value *MaskedVal = SrcVal; 2034 2035 // See if there are other bits in the bitfield's storage we'll need to load 2036 // and mask together with source before storing. 2037 if (Info.StorageSize != Info.Size) { 2038 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2039 llvm::Value *Val = 2040 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2041 2042 // Mask the source value as needed. 2043 if (!hasBooleanRepresentation(Dst.getType())) 2044 SrcVal = Builder.CreateAnd(SrcVal, 2045 llvm::APInt::getLowBitsSet(Info.StorageSize, 2046 Info.Size), 2047 "bf.value"); 2048 MaskedVal = SrcVal; 2049 if (Info.Offset) 2050 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2051 2052 // Mask out the original value. 2053 Val = Builder.CreateAnd(Val, 2054 ~llvm::APInt::getBitsSet(Info.StorageSize, 2055 Info.Offset, 2056 Info.Offset + Info.Size), 2057 "bf.clear"); 2058 2059 // Or together the unchanged values and the source value. 2060 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2061 } else { 2062 assert(Info.Offset == 0); 2063 } 2064 2065 // Write the new value back out. 2066 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2067 2068 // Return the new value of the bit-field, if requested. 2069 if (Result) { 2070 llvm::Value *ResultVal = MaskedVal; 2071 2072 // Sign extend the value if needed. 2073 if (Info.IsSigned) { 2074 assert(Info.Size <= Info.StorageSize); 2075 unsigned HighBits = Info.StorageSize - Info.Size; 2076 if (HighBits) { 2077 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2078 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2079 } 2080 } 2081 2082 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2083 "bf.result.cast"); 2084 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2085 } 2086 } 2087 2088 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2089 LValue Dst) { 2090 // This access turns into a read/modify/write of the vector. Load the input 2091 // value now. 2092 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2093 Dst.isVolatileQualified()); 2094 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2095 2096 llvm::Value *SrcVal = Src.getScalarVal(); 2097 2098 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2099 unsigned NumSrcElts = VTy->getNumElements(); 2100 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2101 if (NumDstElts == NumSrcElts) { 2102 // Use shuffle vector is the src and destination are the same number of 2103 // elements and restore the vector mask since it is on the side it will be 2104 // stored. 2105 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2106 for (unsigned i = 0; i != NumSrcElts; ++i) 2107 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2108 2109 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2110 Vec = Builder.CreateShuffleVector(SrcVal, 2111 llvm::UndefValue::get(Vec->getType()), 2112 MaskV); 2113 } else if (NumDstElts > NumSrcElts) { 2114 // Extended the source vector to the same length and then shuffle it 2115 // into the destination. 2116 // FIXME: since we're shuffling with undef, can we just use the indices 2117 // into that? This could be simpler. 2118 SmallVector<llvm::Constant*, 4> ExtMask; 2119 for (unsigned i = 0; i != NumSrcElts; ++i) 2120 ExtMask.push_back(Builder.getInt32(i)); 2121 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2122 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2123 llvm::Value *ExtSrcVal = 2124 Builder.CreateShuffleVector(SrcVal, 2125 llvm::UndefValue::get(SrcVal->getType()), 2126 ExtMaskV); 2127 // build identity 2128 SmallVector<llvm::Constant*, 4> Mask; 2129 for (unsigned i = 0; i != NumDstElts; ++i) 2130 Mask.push_back(Builder.getInt32(i)); 2131 2132 // When the vector size is odd and .odd or .hi is used, the last element 2133 // of the Elts constant array will be one past the size of the vector. 2134 // Ignore the last element here, if it is greater than the mask size. 2135 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2136 NumSrcElts--; 2137 2138 // modify when what gets shuffled in 2139 for (unsigned i = 0; i != NumSrcElts; ++i) 2140 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2141 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2142 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2143 } else { 2144 // We should never shorten the vector 2145 llvm_unreachable("unexpected shorten vector length"); 2146 } 2147 } else { 2148 // If the Src is a scalar (not a vector) it must be updating one element. 2149 unsigned InIdx = getAccessedFieldNo(0, Elts); 2150 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2151 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2152 } 2153 2154 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2155 Dst.isVolatileQualified()); 2156 } 2157 2158 /// Store of global named registers are always calls to intrinsics. 2159 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2160 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2161 "Bad type for register variable"); 2162 llvm::MDNode *RegName = cast<llvm::MDNode>( 2163 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2164 assert(RegName && "Register LValue is not metadata"); 2165 2166 // We accept integer and pointer types only 2167 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2168 llvm::Type *Ty = OrigTy; 2169 if (OrigTy->isPointerTy()) 2170 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2171 llvm::Type *Types[] = { Ty }; 2172 2173 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2174 llvm::Value *Value = Src.getScalarVal(); 2175 if (OrigTy->isPointerTy()) 2176 Value = Builder.CreatePtrToInt(Value, Ty); 2177 Builder.CreateCall( 2178 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2179 } 2180 2181 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2182 // generating write-barries API. It is currently a global, ivar, 2183 // or neither. 2184 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2185 LValue &LV, 2186 bool IsMemberAccess=false) { 2187 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2188 return; 2189 2190 if (isa<ObjCIvarRefExpr>(E)) { 2191 QualType ExpTy = E->getType(); 2192 if (IsMemberAccess && ExpTy->isPointerType()) { 2193 // If ivar is a structure pointer, assigning to field of 2194 // this struct follows gcc's behavior and makes it a non-ivar 2195 // writer-barrier conservatively. 2196 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2197 if (ExpTy->isRecordType()) { 2198 LV.setObjCIvar(false); 2199 return; 2200 } 2201 } 2202 LV.setObjCIvar(true); 2203 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2204 LV.setBaseIvarExp(Exp->getBase()); 2205 LV.setObjCArray(E->getType()->isArrayType()); 2206 return; 2207 } 2208 2209 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2210 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2211 if (VD->hasGlobalStorage()) { 2212 LV.setGlobalObjCRef(true); 2213 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2214 } 2215 } 2216 LV.setObjCArray(E->getType()->isArrayType()); 2217 return; 2218 } 2219 2220 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2221 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2222 return; 2223 } 2224 2225 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2226 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2227 if (LV.isObjCIvar()) { 2228 // If cast is to a structure pointer, follow gcc's behavior and make it 2229 // a non-ivar write-barrier. 2230 QualType ExpTy = E->getType(); 2231 if (ExpTy->isPointerType()) 2232 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2233 if (ExpTy->isRecordType()) 2234 LV.setObjCIvar(false); 2235 } 2236 return; 2237 } 2238 2239 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2240 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2241 return; 2242 } 2243 2244 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2245 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2246 return; 2247 } 2248 2249 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2250 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2251 return; 2252 } 2253 2254 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2255 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2256 return; 2257 } 2258 2259 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2260 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2261 if (LV.isObjCIvar() && !LV.isObjCArray()) 2262 // Using array syntax to assigning to what an ivar points to is not 2263 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2264 LV.setObjCIvar(false); 2265 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2266 // Using array syntax to assigning to what global points to is not 2267 // same as assigning to the global itself. {id *G;} G[i] = 0; 2268 LV.setGlobalObjCRef(false); 2269 return; 2270 } 2271 2272 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2273 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2274 // We don't know if member is an 'ivar', but this flag is looked at 2275 // only in the context of LV.isObjCIvar(). 2276 LV.setObjCArray(E->getType()->isArrayType()); 2277 return; 2278 } 2279 } 2280 2281 static llvm::Value * 2282 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2283 llvm::Value *V, llvm::Type *IRType, 2284 StringRef Name = StringRef()) { 2285 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2286 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2287 } 2288 2289 static LValue EmitThreadPrivateVarDeclLValue( 2290 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2291 llvm::Type *RealVarTy, SourceLocation Loc) { 2292 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2293 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2294 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2295 } 2296 2297 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2298 const VarDecl *VD, QualType T) { 2299 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2300 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2301 // Return an invalid address if variable is MT_To and unified 2302 // memory is not enabled. For all other cases: MT_Link and 2303 // MT_To with unified memory, return a valid address. 2304 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2305 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2306 return Address::invalid(); 2307 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2308 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2309 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2310 "Expected link clause OR to clause with unified memory enabled."); 2311 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2312 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2313 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2314 } 2315 2316 Address 2317 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2318 LValueBaseInfo *PointeeBaseInfo, 2319 TBAAAccessInfo *PointeeTBAAInfo) { 2320 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2321 RefLVal.isVolatile()); 2322 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2323 2324 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2325 PointeeBaseInfo, PointeeTBAAInfo, 2326 /* forPointeeType= */ true); 2327 return Address(Load, Align); 2328 } 2329 2330 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2331 LValueBaseInfo PointeeBaseInfo; 2332 TBAAAccessInfo PointeeTBAAInfo; 2333 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2334 &PointeeTBAAInfo); 2335 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2336 PointeeBaseInfo, PointeeTBAAInfo); 2337 } 2338 2339 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2340 const PointerType *PtrTy, 2341 LValueBaseInfo *BaseInfo, 2342 TBAAAccessInfo *TBAAInfo) { 2343 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2344 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2345 BaseInfo, TBAAInfo, 2346 /*forPointeeType=*/true)); 2347 } 2348 2349 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2350 const PointerType *PtrTy) { 2351 LValueBaseInfo BaseInfo; 2352 TBAAAccessInfo TBAAInfo; 2353 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2354 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2355 } 2356 2357 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2358 const Expr *E, const VarDecl *VD) { 2359 QualType T = E->getType(); 2360 2361 // If it's thread_local, emit a call to its wrapper function instead. 2362 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2363 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2364 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2365 // Check if the variable is marked as declare target with link clause in 2366 // device codegen. 2367 if (CGF.getLangOpts().OpenMPIsDevice) { 2368 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2369 if (Addr.isValid()) 2370 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2371 } 2372 2373 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2374 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2375 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2376 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2377 Address Addr(V, Alignment); 2378 // Emit reference to the private copy of the variable if it is an OpenMP 2379 // threadprivate variable. 2380 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2381 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2382 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2383 E->getExprLoc()); 2384 } 2385 LValue LV = VD->getType()->isReferenceType() ? 2386 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2387 AlignmentSource::Decl) : 2388 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2389 setObjCGCLValueClass(CGF.getContext(), E, LV); 2390 return LV; 2391 } 2392 2393 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2394 const FunctionDecl *FD) { 2395 if (FD->hasAttr<WeakRefAttr>()) { 2396 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2397 return aliasee.getPointer(); 2398 } 2399 2400 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2401 if (!FD->hasPrototype()) { 2402 if (const FunctionProtoType *Proto = 2403 FD->getType()->getAs<FunctionProtoType>()) { 2404 // Ugly case: for a K&R-style definition, the type of the definition 2405 // isn't the same as the type of a use. Correct for this with a 2406 // bitcast. 2407 QualType NoProtoType = 2408 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2409 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2410 V = llvm::ConstantExpr::getBitCast(V, 2411 CGM.getTypes().ConvertType(NoProtoType)); 2412 } 2413 } 2414 return V; 2415 } 2416 2417 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2418 const Expr *E, const FunctionDecl *FD) { 2419 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2420 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2421 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2422 AlignmentSource::Decl); 2423 } 2424 2425 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2426 llvm::Value *ThisValue) { 2427 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2428 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2429 return CGF.EmitLValueForField(LV, FD); 2430 } 2431 2432 /// Named Registers are named metadata pointing to the register name 2433 /// which will be read from/written to as an argument to the intrinsic 2434 /// @llvm.read/write_register. 2435 /// So far, only the name is being passed down, but other options such as 2436 /// register type, allocation type or even optimization options could be 2437 /// passed down via the metadata node. 2438 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2439 SmallString<64> Name("llvm.named.register."); 2440 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2441 assert(Asm->getLabel().size() < 64-Name.size() && 2442 "Register name too big"); 2443 Name.append(Asm->getLabel()); 2444 llvm::NamedMDNode *M = 2445 CGM.getModule().getOrInsertNamedMetadata(Name); 2446 if (M->getNumOperands() == 0) { 2447 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2448 Asm->getLabel()); 2449 llvm::Metadata *Ops[] = {Str}; 2450 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2451 } 2452 2453 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2454 2455 llvm::Value *Ptr = 2456 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2457 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2458 } 2459 2460 /// Determine whether we can emit a reference to \p VD from the current 2461 /// context, despite not necessarily having seen an odr-use of the variable in 2462 /// this context. 2463 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2464 const DeclRefExpr *E, 2465 const VarDecl *VD, 2466 bool IsConstant) { 2467 // For a variable declared in an enclosing scope, do not emit a spurious 2468 // reference even if we have a capture, as that will emit an unwarranted 2469 // reference to our capture state, and will likely generate worse code than 2470 // emitting a local copy. 2471 if (E->refersToEnclosingVariableOrCapture()) 2472 return false; 2473 2474 // For a local declaration declared in this function, we can always reference 2475 // it even if we don't have an odr-use. 2476 if (VD->hasLocalStorage()) { 2477 return VD->getDeclContext() == 2478 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2479 } 2480 2481 // For a global declaration, we can emit a reference to it if we know 2482 // for sure that we are able to emit a definition of it. 2483 VD = VD->getDefinition(CGF.getContext()); 2484 if (!VD) 2485 return false; 2486 2487 // Don't emit a spurious reference if it might be to a variable that only 2488 // exists on a different device / target. 2489 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2490 // cross-target reference. 2491 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2492 CGF.getLangOpts().OpenCL) { 2493 return false; 2494 } 2495 2496 // We can emit a spurious reference only if the linkage implies that we'll 2497 // be emitting a non-interposable symbol that will be retained until link 2498 // time. 2499 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2500 case llvm::GlobalValue::ExternalLinkage: 2501 case llvm::GlobalValue::LinkOnceODRLinkage: 2502 case llvm::GlobalValue::WeakODRLinkage: 2503 case llvm::GlobalValue::InternalLinkage: 2504 case llvm::GlobalValue::PrivateLinkage: 2505 return true; 2506 default: 2507 return false; 2508 } 2509 } 2510 2511 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2512 const NamedDecl *ND = E->getDecl(); 2513 QualType T = E->getType(); 2514 2515 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2516 "should not emit an unevaluated operand"); 2517 2518 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2519 // Global Named registers access via intrinsics only 2520 if (VD->getStorageClass() == SC_Register && 2521 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2522 return EmitGlobalNamedRegister(VD, CGM); 2523 2524 // If this DeclRefExpr does not constitute an odr-use of the variable, 2525 // we're not permitted to emit a reference to it in general, and it might 2526 // not be captured if capture would be necessary for a use. Emit the 2527 // constant value directly instead. 2528 if (E->isNonOdrUse() == NOUR_Constant && 2529 (VD->getType()->isReferenceType() || 2530 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2531 VD->getAnyInitializer(VD); 2532 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2533 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2534 assert(Val && "failed to emit constant expression"); 2535 2536 Address Addr = Address::invalid(); 2537 if (!VD->getType()->isReferenceType()) { 2538 // Spill the constant value to a global. 2539 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2540 getContext().getDeclAlign(VD)); 2541 } else { 2542 // Should we be using the alignment of the constant pointer we emitted? 2543 CharUnits Alignment = 2544 getNaturalTypeAlignment(E->getType(), 2545 /* BaseInfo= */ nullptr, 2546 /* TBAAInfo= */ nullptr, 2547 /* forPointeeType= */ true); 2548 Addr = Address(Val, Alignment); 2549 } 2550 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2551 } 2552 2553 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2554 2555 // Check for captured variables. 2556 if (E->refersToEnclosingVariableOrCapture()) { 2557 VD = VD->getCanonicalDecl(); 2558 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2559 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2560 else if (CapturedStmtInfo) { 2561 auto I = LocalDeclMap.find(VD); 2562 if (I != LocalDeclMap.end()) { 2563 if (VD->getType()->isReferenceType()) 2564 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2565 AlignmentSource::Decl); 2566 return MakeAddrLValue(I->second, T); 2567 } 2568 LValue CapLVal = 2569 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2570 CapturedStmtInfo->getContextValue()); 2571 return MakeAddrLValue( 2572 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2573 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2574 CapLVal.getTBAAInfo()); 2575 } 2576 2577 assert(isa<BlockDecl>(CurCodeDecl)); 2578 Address addr = GetAddrOfBlockDecl(VD); 2579 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2580 } 2581 } 2582 2583 // FIXME: We should be able to assert this for FunctionDecls as well! 2584 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2585 // those with a valid source location. 2586 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2587 !E->getLocation().isValid()) && 2588 "Should not use decl without marking it used!"); 2589 2590 if (ND->hasAttr<WeakRefAttr>()) { 2591 const auto *VD = cast<ValueDecl>(ND); 2592 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2593 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2594 } 2595 2596 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2597 // Check if this is a global variable. 2598 if (VD->hasLinkage() || VD->isStaticDataMember()) 2599 return EmitGlobalVarDeclLValue(*this, E, VD); 2600 2601 Address addr = Address::invalid(); 2602 2603 // The variable should generally be present in the local decl map. 2604 auto iter = LocalDeclMap.find(VD); 2605 if (iter != LocalDeclMap.end()) { 2606 addr = iter->second; 2607 2608 // Otherwise, it might be static local we haven't emitted yet for 2609 // some reason; most likely, because it's in an outer function. 2610 } else if (VD->isStaticLocal()) { 2611 addr = Address(CGM.getOrCreateStaticVarDecl( 2612 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2613 getContext().getDeclAlign(VD)); 2614 2615 // No other cases for now. 2616 } else { 2617 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2618 } 2619 2620 2621 // Check for OpenMP threadprivate variables. 2622 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2623 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2624 return EmitThreadPrivateVarDeclLValue( 2625 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2626 E->getExprLoc()); 2627 } 2628 2629 // Drill into block byref variables. 2630 bool isBlockByref = VD->isEscapingByref(); 2631 if (isBlockByref) { 2632 addr = emitBlockByrefAddress(addr, VD); 2633 } 2634 2635 // Drill into reference types. 2636 LValue LV = VD->getType()->isReferenceType() ? 2637 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2638 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2639 2640 bool isLocalStorage = VD->hasLocalStorage(); 2641 2642 bool NonGCable = isLocalStorage && 2643 !VD->getType()->isReferenceType() && 2644 !isBlockByref; 2645 if (NonGCable) { 2646 LV.getQuals().removeObjCGCAttr(); 2647 LV.setNonGC(true); 2648 } 2649 2650 bool isImpreciseLifetime = 2651 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2652 if (isImpreciseLifetime) 2653 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2654 setObjCGCLValueClass(getContext(), E, LV); 2655 return LV; 2656 } 2657 2658 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2659 return EmitFunctionDeclLValue(*this, E, FD); 2660 2661 // FIXME: While we're emitting a binding from an enclosing scope, all other 2662 // DeclRefExprs we see should be implicitly treated as if they also refer to 2663 // an enclosing scope. 2664 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2665 return EmitLValue(BD->getBinding()); 2666 2667 llvm_unreachable("Unhandled DeclRefExpr"); 2668 } 2669 2670 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2671 // __extension__ doesn't affect lvalue-ness. 2672 if (E->getOpcode() == UO_Extension) 2673 return EmitLValue(E->getSubExpr()); 2674 2675 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2676 switch (E->getOpcode()) { 2677 default: llvm_unreachable("Unknown unary operator lvalue!"); 2678 case UO_Deref: { 2679 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2680 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2681 2682 LValueBaseInfo BaseInfo; 2683 TBAAAccessInfo TBAAInfo; 2684 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2685 &TBAAInfo); 2686 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2687 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2688 2689 // We should not generate __weak write barrier on indirect reference 2690 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2691 // But, we continue to generate __strong write barrier on indirect write 2692 // into a pointer to object. 2693 if (getLangOpts().ObjC && 2694 getLangOpts().getGC() != LangOptions::NonGC && 2695 LV.isObjCWeak()) 2696 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2697 return LV; 2698 } 2699 case UO_Real: 2700 case UO_Imag: { 2701 LValue LV = EmitLValue(E->getSubExpr()); 2702 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2703 2704 // __real is valid on scalars. This is a faster way of testing that. 2705 // __imag can only produce an rvalue on scalars. 2706 if (E->getOpcode() == UO_Real && 2707 !LV.getAddress().getElementType()->isStructTy()) { 2708 assert(E->getSubExpr()->getType()->isArithmeticType()); 2709 return LV; 2710 } 2711 2712 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2713 2714 Address Component = 2715 (E->getOpcode() == UO_Real 2716 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2717 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2718 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2719 CGM.getTBAAInfoForSubobject(LV, T)); 2720 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2721 return ElemLV; 2722 } 2723 case UO_PreInc: 2724 case UO_PreDec: { 2725 LValue LV = EmitLValue(E->getSubExpr()); 2726 bool isInc = E->getOpcode() == UO_PreInc; 2727 2728 if (E->getType()->isAnyComplexType()) 2729 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2730 else 2731 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2732 return LV; 2733 } 2734 } 2735 } 2736 2737 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2738 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2739 E->getType(), AlignmentSource::Decl); 2740 } 2741 2742 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2743 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2744 E->getType(), AlignmentSource::Decl); 2745 } 2746 2747 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2748 auto SL = E->getFunctionName(); 2749 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2750 StringRef FnName = CurFn->getName(); 2751 if (FnName.startswith("\01")) 2752 FnName = FnName.substr(1); 2753 StringRef NameItems[] = { 2754 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2755 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2756 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2757 std::string Name = SL->getString(); 2758 if (!Name.empty()) { 2759 unsigned Discriminator = 2760 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2761 if (Discriminator) 2762 Name += "_" + Twine(Discriminator + 1).str(); 2763 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2764 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2765 } else { 2766 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2767 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2768 } 2769 } 2770 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2771 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2772 } 2773 2774 /// Emit a type description suitable for use by a runtime sanitizer library. The 2775 /// format of a type descriptor is 2776 /// 2777 /// \code 2778 /// { i16 TypeKind, i16 TypeInfo } 2779 /// \endcode 2780 /// 2781 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2782 /// integer, 1 for a floating point value, and -1 for anything else. 2783 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2784 // Only emit each type's descriptor once. 2785 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2786 return C; 2787 2788 uint16_t TypeKind = -1; 2789 uint16_t TypeInfo = 0; 2790 2791 if (T->isIntegerType()) { 2792 TypeKind = 0; 2793 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2794 (T->isSignedIntegerType() ? 1 : 0); 2795 } else if (T->isFloatingType()) { 2796 TypeKind = 1; 2797 TypeInfo = getContext().getTypeSize(T); 2798 } 2799 2800 // Format the type name as if for a diagnostic, including quotes and 2801 // optionally an 'aka'. 2802 SmallString<32> Buffer; 2803 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2804 (intptr_t)T.getAsOpaquePtr(), 2805 StringRef(), StringRef(), None, Buffer, 2806 None); 2807 2808 llvm::Constant *Components[] = { 2809 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2810 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2811 }; 2812 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2813 2814 auto *GV = new llvm::GlobalVariable( 2815 CGM.getModule(), Descriptor->getType(), 2816 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2817 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2818 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2819 2820 // Remember the descriptor for this type. 2821 CGM.setTypeDescriptorInMap(T, GV); 2822 2823 return GV; 2824 } 2825 2826 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2827 llvm::Type *TargetTy = IntPtrTy; 2828 2829 if (V->getType() == TargetTy) 2830 return V; 2831 2832 // Floating-point types which fit into intptr_t are bitcast to integers 2833 // and then passed directly (after zero-extension, if necessary). 2834 if (V->getType()->isFloatingPointTy()) { 2835 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2836 if (Bits <= TargetTy->getIntegerBitWidth()) 2837 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2838 Bits)); 2839 } 2840 2841 // Integers which fit in intptr_t are zero-extended and passed directly. 2842 if (V->getType()->isIntegerTy() && 2843 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2844 return Builder.CreateZExt(V, TargetTy); 2845 2846 // Pointers are passed directly, everything else is passed by address. 2847 if (!V->getType()->isPointerTy()) { 2848 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2849 Builder.CreateStore(V, Ptr); 2850 V = Ptr.getPointer(); 2851 } 2852 return Builder.CreatePtrToInt(V, TargetTy); 2853 } 2854 2855 /// Emit a representation of a SourceLocation for passing to a handler 2856 /// in a sanitizer runtime library. The format for this data is: 2857 /// \code 2858 /// struct SourceLocation { 2859 /// const char *Filename; 2860 /// int32_t Line, Column; 2861 /// }; 2862 /// \endcode 2863 /// For an invalid SourceLocation, the Filename pointer is null. 2864 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2865 llvm::Constant *Filename; 2866 int Line, Column; 2867 2868 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2869 if (PLoc.isValid()) { 2870 StringRef FilenameString = PLoc.getFilename(); 2871 2872 int PathComponentsToStrip = 2873 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2874 if (PathComponentsToStrip < 0) { 2875 assert(PathComponentsToStrip != INT_MIN); 2876 int PathComponentsToKeep = -PathComponentsToStrip; 2877 auto I = llvm::sys::path::rbegin(FilenameString); 2878 auto E = llvm::sys::path::rend(FilenameString); 2879 while (I != E && --PathComponentsToKeep) 2880 ++I; 2881 2882 FilenameString = FilenameString.substr(I - E); 2883 } else if (PathComponentsToStrip > 0) { 2884 auto I = llvm::sys::path::begin(FilenameString); 2885 auto E = llvm::sys::path::end(FilenameString); 2886 while (I != E && PathComponentsToStrip--) 2887 ++I; 2888 2889 if (I != E) 2890 FilenameString = 2891 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2892 else 2893 FilenameString = llvm::sys::path::filename(FilenameString); 2894 } 2895 2896 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2897 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2898 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2899 Filename = FilenameGV.getPointer(); 2900 Line = PLoc.getLine(); 2901 Column = PLoc.getColumn(); 2902 } else { 2903 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2904 Line = Column = 0; 2905 } 2906 2907 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2908 Builder.getInt32(Column)}; 2909 2910 return llvm::ConstantStruct::getAnon(Data); 2911 } 2912 2913 namespace { 2914 /// Specify under what conditions this check can be recovered 2915 enum class CheckRecoverableKind { 2916 /// Always terminate program execution if this check fails. 2917 Unrecoverable, 2918 /// Check supports recovering, runtime has both fatal (noreturn) and 2919 /// non-fatal handlers for this check. 2920 Recoverable, 2921 /// Runtime conditionally aborts, always need to support recovery. 2922 AlwaysRecoverable 2923 }; 2924 } 2925 2926 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2927 assert(Kind.countPopulation() == 1); 2928 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2929 return CheckRecoverableKind::AlwaysRecoverable; 2930 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2931 return CheckRecoverableKind::Unrecoverable; 2932 else 2933 return CheckRecoverableKind::Recoverable; 2934 } 2935 2936 namespace { 2937 struct SanitizerHandlerInfo { 2938 char const *const Name; 2939 unsigned Version; 2940 }; 2941 } 2942 2943 const SanitizerHandlerInfo SanitizerHandlers[] = { 2944 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2945 LIST_SANITIZER_CHECKS 2946 #undef SANITIZER_CHECK 2947 }; 2948 2949 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2950 llvm::FunctionType *FnType, 2951 ArrayRef<llvm::Value *> FnArgs, 2952 SanitizerHandler CheckHandler, 2953 CheckRecoverableKind RecoverKind, bool IsFatal, 2954 llvm::BasicBlock *ContBB) { 2955 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2956 Optional<ApplyDebugLocation> DL; 2957 if (!CGF.Builder.getCurrentDebugLocation()) { 2958 // Ensure that the call has at least an artificial debug location. 2959 DL.emplace(CGF, SourceLocation()); 2960 } 2961 bool NeedsAbortSuffix = 2962 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2963 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2964 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2965 const StringRef CheckName = CheckInfo.Name; 2966 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2967 if (CheckInfo.Version && !MinimalRuntime) 2968 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2969 if (MinimalRuntime) 2970 FnName += "_minimal"; 2971 if (NeedsAbortSuffix) 2972 FnName += "_abort"; 2973 bool MayReturn = 2974 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2975 2976 llvm::AttrBuilder B; 2977 if (!MayReturn) { 2978 B.addAttribute(llvm::Attribute::NoReturn) 2979 .addAttribute(llvm::Attribute::NoUnwind); 2980 } 2981 B.addAttribute(llvm::Attribute::UWTable); 2982 2983 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 2984 FnType, FnName, 2985 llvm::AttributeList::get(CGF.getLLVMContext(), 2986 llvm::AttributeList::FunctionIndex, B), 2987 /*Local=*/true); 2988 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2989 if (!MayReturn) { 2990 HandlerCall->setDoesNotReturn(); 2991 CGF.Builder.CreateUnreachable(); 2992 } else { 2993 CGF.Builder.CreateBr(ContBB); 2994 } 2995 } 2996 2997 void CodeGenFunction::EmitCheck( 2998 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2999 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3000 ArrayRef<llvm::Value *> DynamicArgs) { 3001 assert(IsSanitizerScope); 3002 assert(Checked.size() > 0); 3003 assert(CheckHandler >= 0 && 3004 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3005 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3006 3007 llvm::Value *FatalCond = nullptr; 3008 llvm::Value *RecoverableCond = nullptr; 3009 llvm::Value *TrapCond = nullptr; 3010 for (int i = 0, n = Checked.size(); i < n; ++i) { 3011 llvm::Value *Check = Checked[i].first; 3012 // -fsanitize-trap= overrides -fsanitize-recover=. 3013 llvm::Value *&Cond = 3014 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3015 ? TrapCond 3016 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3017 ? RecoverableCond 3018 : FatalCond; 3019 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3020 } 3021 3022 if (TrapCond) 3023 EmitTrapCheck(TrapCond); 3024 if (!FatalCond && !RecoverableCond) 3025 return; 3026 3027 llvm::Value *JointCond; 3028 if (FatalCond && RecoverableCond) 3029 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3030 else 3031 JointCond = FatalCond ? FatalCond : RecoverableCond; 3032 assert(JointCond); 3033 3034 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3035 assert(SanOpts.has(Checked[0].second)); 3036 #ifndef NDEBUG 3037 for (int i = 1, n = Checked.size(); i < n; ++i) { 3038 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3039 "All recoverable kinds in a single check must be same!"); 3040 assert(SanOpts.has(Checked[i].second)); 3041 } 3042 #endif 3043 3044 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3045 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3046 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3047 // Give hint that we very much don't expect to execute the handler 3048 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3049 llvm::MDBuilder MDHelper(getLLVMContext()); 3050 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3051 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3052 EmitBlock(Handlers); 3053 3054 // Handler functions take an i8* pointing to the (handler-specific) static 3055 // information block, followed by a sequence of intptr_t arguments 3056 // representing operand values. 3057 SmallVector<llvm::Value *, 4> Args; 3058 SmallVector<llvm::Type *, 4> ArgTypes; 3059 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3060 Args.reserve(DynamicArgs.size() + 1); 3061 ArgTypes.reserve(DynamicArgs.size() + 1); 3062 3063 // Emit handler arguments and create handler function type. 3064 if (!StaticArgs.empty()) { 3065 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3066 auto *InfoPtr = 3067 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3068 llvm::GlobalVariable::PrivateLinkage, Info); 3069 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3070 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3071 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3072 ArgTypes.push_back(Int8PtrTy); 3073 } 3074 3075 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3076 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3077 ArgTypes.push_back(IntPtrTy); 3078 } 3079 } 3080 3081 llvm::FunctionType *FnType = 3082 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3083 3084 if (!FatalCond || !RecoverableCond) { 3085 // Simple case: we need to generate a single handler call, either 3086 // fatal, or non-fatal. 3087 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3088 (FatalCond != nullptr), Cont); 3089 } else { 3090 // Emit two handler calls: first one for set of unrecoverable checks, 3091 // another one for recoverable. 3092 llvm::BasicBlock *NonFatalHandlerBB = 3093 createBasicBlock("non_fatal." + CheckName); 3094 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3095 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3096 EmitBlock(FatalHandlerBB); 3097 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3098 NonFatalHandlerBB); 3099 EmitBlock(NonFatalHandlerBB); 3100 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3101 Cont); 3102 } 3103 3104 EmitBlock(Cont); 3105 } 3106 3107 void CodeGenFunction::EmitCfiSlowPathCheck( 3108 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3109 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3110 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3111 3112 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3113 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3114 3115 llvm::MDBuilder MDHelper(getLLVMContext()); 3116 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3117 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3118 3119 EmitBlock(CheckBB); 3120 3121 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3122 3123 llvm::CallInst *CheckCall; 3124 llvm::FunctionCallee SlowPathFn; 3125 if (WithDiag) { 3126 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3127 auto *InfoPtr = 3128 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3129 llvm::GlobalVariable::PrivateLinkage, Info); 3130 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3131 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3132 3133 SlowPathFn = CGM.getModule().getOrInsertFunction( 3134 "__cfi_slowpath_diag", 3135 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3136 false)); 3137 CheckCall = Builder.CreateCall( 3138 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3139 } else { 3140 SlowPathFn = CGM.getModule().getOrInsertFunction( 3141 "__cfi_slowpath", 3142 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3143 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3144 } 3145 3146 CGM.setDSOLocal( 3147 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3148 CheckCall->setDoesNotThrow(); 3149 3150 EmitBlock(Cont); 3151 } 3152 3153 // Emit a stub for __cfi_check function so that the linker knows about this 3154 // symbol in LTO mode. 3155 void CodeGenFunction::EmitCfiCheckStub() { 3156 llvm::Module *M = &CGM.getModule(); 3157 auto &Ctx = M->getContext(); 3158 llvm::Function *F = llvm::Function::Create( 3159 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3160 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3161 CGM.setDSOLocal(F); 3162 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3163 // FIXME: consider emitting an intrinsic call like 3164 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3165 // which can be lowered in CrossDSOCFI pass to the actual contents of 3166 // __cfi_check. This would allow inlining of __cfi_check calls. 3167 llvm::CallInst::Create( 3168 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3169 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3170 } 3171 3172 // This function is basically a switch over the CFI failure kind, which is 3173 // extracted from CFICheckFailData (1st function argument). Each case is either 3174 // llvm.trap or a call to one of the two runtime handlers, based on 3175 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3176 // failure kind) traps, but this should really never happen. CFICheckFailData 3177 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3178 // check kind; in this case __cfi_check_fail traps as well. 3179 void CodeGenFunction::EmitCfiCheckFail() { 3180 SanitizerScope SanScope(this); 3181 FunctionArgList Args; 3182 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3183 ImplicitParamDecl::Other); 3184 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3185 ImplicitParamDecl::Other); 3186 Args.push_back(&ArgData); 3187 Args.push_back(&ArgAddr); 3188 3189 const CGFunctionInfo &FI = 3190 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3191 3192 llvm::Function *F = llvm::Function::Create( 3193 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3194 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3195 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3196 3197 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3198 SourceLocation()); 3199 3200 // This function should not be affected by blacklist. This function does 3201 // not have a source location, but "src:*" would still apply. Revert any 3202 // changes to SanOpts made in StartFunction. 3203 SanOpts = CGM.getLangOpts().Sanitize; 3204 3205 llvm::Value *Data = 3206 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3207 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3208 llvm::Value *Addr = 3209 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3210 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3211 3212 // Data == nullptr means the calling module has trap behaviour for this check. 3213 llvm::Value *DataIsNotNullPtr = 3214 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3215 EmitTrapCheck(DataIsNotNullPtr); 3216 3217 llvm::StructType *SourceLocationTy = 3218 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3219 llvm::StructType *CfiCheckFailDataTy = 3220 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3221 3222 llvm::Value *V = Builder.CreateConstGEP2_32( 3223 CfiCheckFailDataTy, 3224 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3225 0); 3226 Address CheckKindAddr(V, getIntAlign()); 3227 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3228 3229 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3230 CGM.getLLVMContext(), 3231 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3232 llvm::Value *ValidVtable = Builder.CreateZExt( 3233 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3234 {Addr, AllVtables}), 3235 IntPtrTy); 3236 3237 const std::pair<int, SanitizerMask> CheckKinds[] = { 3238 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3239 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3240 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3241 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3242 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3243 3244 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3245 for (auto CheckKindMaskPair : CheckKinds) { 3246 int Kind = CheckKindMaskPair.first; 3247 SanitizerMask Mask = CheckKindMaskPair.second; 3248 llvm::Value *Cond = 3249 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3250 if (CGM.getLangOpts().Sanitize.has(Mask)) 3251 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3252 {Data, Addr, ValidVtable}); 3253 else 3254 EmitTrapCheck(Cond); 3255 } 3256 3257 FinishFunction(); 3258 // The only reference to this function will be created during LTO link. 3259 // Make sure it survives until then. 3260 CGM.addUsedGlobal(F); 3261 } 3262 3263 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3264 if (SanOpts.has(SanitizerKind::Unreachable)) { 3265 SanitizerScope SanScope(this); 3266 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3267 SanitizerKind::Unreachable), 3268 SanitizerHandler::BuiltinUnreachable, 3269 EmitCheckSourceLocation(Loc), None); 3270 } 3271 Builder.CreateUnreachable(); 3272 } 3273 3274 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3275 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3276 3277 // If we're optimizing, collapse all calls to trap down to just one per 3278 // function to save on code size. 3279 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3280 TrapBB = createBasicBlock("trap"); 3281 Builder.CreateCondBr(Checked, Cont, TrapBB); 3282 EmitBlock(TrapBB); 3283 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3284 TrapCall->setDoesNotReturn(); 3285 TrapCall->setDoesNotThrow(); 3286 Builder.CreateUnreachable(); 3287 } else { 3288 Builder.CreateCondBr(Checked, Cont, TrapBB); 3289 } 3290 3291 EmitBlock(Cont); 3292 } 3293 3294 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3295 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3296 3297 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3298 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3299 CGM.getCodeGenOpts().TrapFuncName); 3300 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3301 } 3302 3303 return TrapCall; 3304 } 3305 3306 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3307 LValueBaseInfo *BaseInfo, 3308 TBAAAccessInfo *TBAAInfo) { 3309 assert(E->getType()->isArrayType() && 3310 "Array to pointer decay must have array source type!"); 3311 3312 // Expressions of array type can't be bitfields or vector elements. 3313 LValue LV = EmitLValue(E); 3314 Address Addr = LV.getAddress(); 3315 3316 // If the array type was an incomplete type, we need to make sure 3317 // the decay ends up being the right type. 3318 llvm::Type *NewTy = ConvertType(E->getType()); 3319 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3320 3321 // Note that VLA pointers are always decayed, so we don't need to do 3322 // anything here. 3323 if (!E->getType()->isVariableArrayType()) { 3324 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3325 "Expected pointer to array"); 3326 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3327 } 3328 3329 // The result of this decay conversion points to an array element within the 3330 // base lvalue. However, since TBAA currently does not support representing 3331 // accesses to elements of member arrays, we conservatively represent accesses 3332 // to the pointee object as if it had no any base lvalue specified. 3333 // TODO: Support TBAA for member arrays. 3334 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3335 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3336 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3337 3338 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3339 } 3340 3341 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3342 /// array to pointer, return the array subexpression. 3343 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3344 // If this isn't just an array->pointer decay, bail out. 3345 const auto *CE = dyn_cast<CastExpr>(E); 3346 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3347 return nullptr; 3348 3349 // If this is a decay from variable width array, bail out. 3350 const Expr *SubExpr = CE->getSubExpr(); 3351 if (SubExpr->getType()->isVariableArrayType()) 3352 return nullptr; 3353 3354 return SubExpr; 3355 } 3356 3357 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3358 llvm::Value *ptr, 3359 ArrayRef<llvm::Value*> indices, 3360 bool inbounds, 3361 bool signedIndices, 3362 SourceLocation loc, 3363 const llvm::Twine &name = "arrayidx") { 3364 if (inbounds) { 3365 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3366 CodeGenFunction::NotSubtraction, loc, 3367 name); 3368 } else { 3369 return CGF.Builder.CreateGEP(ptr, indices, name); 3370 } 3371 } 3372 3373 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3374 llvm::Value *idx, 3375 CharUnits eltSize) { 3376 // If we have a constant index, we can use the exact offset of the 3377 // element we're accessing. 3378 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3379 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3380 return arrayAlign.alignmentAtOffset(offset); 3381 3382 // Otherwise, use the worst-case alignment for any element. 3383 } else { 3384 return arrayAlign.alignmentOfArrayElement(eltSize); 3385 } 3386 } 3387 3388 static QualType getFixedSizeElementType(const ASTContext &ctx, 3389 const VariableArrayType *vla) { 3390 QualType eltType; 3391 do { 3392 eltType = vla->getElementType(); 3393 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3394 return eltType; 3395 } 3396 3397 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3398 ArrayRef<llvm::Value *> indices, 3399 QualType eltType, bool inbounds, 3400 bool signedIndices, SourceLocation loc, 3401 QualType *arrayType = nullptr, 3402 const llvm::Twine &name = "arrayidx") { 3403 // All the indices except that last must be zero. 3404 #ifndef NDEBUG 3405 for (auto idx : indices.drop_back()) 3406 assert(isa<llvm::ConstantInt>(idx) && 3407 cast<llvm::ConstantInt>(idx)->isZero()); 3408 #endif 3409 3410 // Determine the element size of the statically-sized base. This is 3411 // the thing that the indices are expressed in terms of. 3412 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3413 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3414 } 3415 3416 // We can use that to compute the best alignment of the element. 3417 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3418 CharUnits eltAlign = 3419 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3420 3421 llvm::Value *eltPtr; 3422 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3423 if (!CGF.IsInPreservedAIRegion || !LastIndex) { 3424 eltPtr = emitArraySubscriptGEP( 3425 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3426 loc, name); 3427 } else { 3428 // Remember the original array subscript for bpf target 3429 unsigned idx = LastIndex->getZExtValue(); 3430 llvm::DIType *DbgInfo = nullptr; 3431 if (arrayType) 3432 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3433 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getPointer(), 3434 indices.size() - 1, 3435 idx, DbgInfo); 3436 } 3437 3438 return Address(eltPtr, eltAlign); 3439 } 3440 3441 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3442 bool Accessed) { 3443 // The index must always be an integer, which is not an aggregate. Emit it 3444 // in lexical order (this complexity is, sadly, required by C++17). 3445 llvm::Value *IdxPre = 3446 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3447 bool SignedIndices = false; 3448 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3449 auto *Idx = IdxPre; 3450 if (E->getLHS() != E->getIdx()) { 3451 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3452 Idx = EmitScalarExpr(E->getIdx()); 3453 } 3454 3455 QualType IdxTy = E->getIdx()->getType(); 3456 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3457 SignedIndices |= IdxSigned; 3458 3459 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3460 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3461 3462 // Extend or truncate the index type to 32 or 64-bits. 3463 if (Promote && Idx->getType() != IntPtrTy) 3464 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3465 3466 return Idx; 3467 }; 3468 IdxPre = nullptr; 3469 3470 // If the base is a vector type, then we are forming a vector element lvalue 3471 // with this subscript. 3472 if (E->getBase()->getType()->isVectorType() && 3473 !isa<ExtVectorElementExpr>(E->getBase())) { 3474 // Emit the vector as an lvalue to get its address. 3475 LValue LHS = EmitLValue(E->getBase()); 3476 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3477 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3478 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3479 LHS.getBaseInfo(), TBAAAccessInfo()); 3480 } 3481 3482 // All the other cases basically behave like simple offsetting. 3483 3484 // Handle the extvector case we ignored above. 3485 if (isa<ExtVectorElementExpr>(E->getBase())) { 3486 LValue LV = EmitLValue(E->getBase()); 3487 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3488 Address Addr = EmitExtVectorElementLValue(LV); 3489 3490 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3491 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3492 SignedIndices, E->getExprLoc()); 3493 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3494 CGM.getTBAAInfoForSubobject(LV, EltType)); 3495 } 3496 3497 LValueBaseInfo EltBaseInfo; 3498 TBAAAccessInfo EltTBAAInfo; 3499 Address Addr = Address::invalid(); 3500 if (const VariableArrayType *vla = 3501 getContext().getAsVariableArrayType(E->getType())) { 3502 // The base must be a pointer, which is not an aggregate. Emit 3503 // it. It needs to be emitted first in case it's what captures 3504 // the VLA bounds. 3505 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3506 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3507 3508 // The element count here is the total number of non-VLA elements. 3509 llvm::Value *numElements = getVLASize(vla).NumElts; 3510 3511 // Effectively, the multiply by the VLA size is part of the GEP. 3512 // GEP indexes are signed, and scaling an index isn't permitted to 3513 // signed-overflow, so we use the same semantics for our explicit 3514 // multiply. We suppress this if overflow is not undefined behavior. 3515 if (getLangOpts().isSignedOverflowDefined()) { 3516 Idx = Builder.CreateMul(Idx, numElements); 3517 } else { 3518 Idx = Builder.CreateNSWMul(Idx, numElements); 3519 } 3520 3521 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3522 !getLangOpts().isSignedOverflowDefined(), 3523 SignedIndices, E->getExprLoc()); 3524 3525 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3526 // Indexing over an interface, as in "NSString *P; P[4];" 3527 3528 // Emit the base pointer. 3529 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3530 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3531 3532 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3533 llvm::Value *InterfaceSizeVal = 3534 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3535 3536 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3537 3538 // We don't necessarily build correct LLVM struct types for ObjC 3539 // interfaces, so we can't rely on GEP to do this scaling 3540 // correctly, so we need to cast to i8*. FIXME: is this actually 3541 // true? A lot of other things in the fragile ABI would break... 3542 llvm::Type *OrigBaseTy = Addr.getType(); 3543 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3544 3545 // Do the GEP. 3546 CharUnits EltAlign = 3547 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3548 llvm::Value *EltPtr = 3549 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3550 SignedIndices, E->getExprLoc()); 3551 Addr = Address(EltPtr, EltAlign); 3552 3553 // Cast back. 3554 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3555 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3556 // If this is A[i] where A is an array, the frontend will have decayed the 3557 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3558 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3559 // "gep x, i" here. Emit one "gep A, 0, i". 3560 assert(Array->getType()->isArrayType() && 3561 "Array to pointer decay must have array source type!"); 3562 LValue ArrayLV; 3563 // For simple multidimensional array indexing, set the 'accessed' flag for 3564 // better bounds-checking of the base expression. 3565 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3566 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3567 else 3568 ArrayLV = EmitLValue(Array); 3569 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3570 3571 // Propagate the alignment from the array itself to the result. 3572 QualType arrayType = Array->getType(); 3573 Addr = emitArraySubscriptGEP( 3574 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3575 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3576 E->getExprLoc(), &arrayType); 3577 EltBaseInfo = ArrayLV.getBaseInfo(); 3578 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3579 } else { 3580 // The base must be a pointer; emit it with an estimate of its alignment. 3581 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3582 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3583 QualType ptrType = E->getBase()->getType(); 3584 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3585 !getLangOpts().isSignedOverflowDefined(), 3586 SignedIndices, E->getExprLoc(), &ptrType); 3587 } 3588 3589 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3590 3591 if (getLangOpts().ObjC && 3592 getLangOpts().getGC() != LangOptions::NonGC) { 3593 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3594 setObjCGCLValueClass(getContext(), E, LV); 3595 } 3596 return LV; 3597 } 3598 3599 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3600 LValueBaseInfo &BaseInfo, 3601 TBAAAccessInfo &TBAAInfo, 3602 QualType BaseTy, QualType ElTy, 3603 bool IsLowerBound) { 3604 LValue BaseLVal; 3605 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3606 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3607 if (BaseTy->isArrayType()) { 3608 Address Addr = BaseLVal.getAddress(); 3609 BaseInfo = BaseLVal.getBaseInfo(); 3610 3611 // If the array type was an incomplete type, we need to make sure 3612 // the decay ends up being the right type. 3613 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3614 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3615 3616 // Note that VLA pointers are always decayed, so we don't need to do 3617 // anything here. 3618 if (!BaseTy->isVariableArrayType()) { 3619 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3620 "Expected pointer to array"); 3621 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3622 } 3623 3624 return CGF.Builder.CreateElementBitCast(Addr, 3625 CGF.ConvertTypeForMem(ElTy)); 3626 } 3627 LValueBaseInfo TypeBaseInfo; 3628 TBAAAccessInfo TypeTBAAInfo; 3629 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3630 &TypeTBAAInfo); 3631 BaseInfo.mergeForCast(TypeBaseInfo); 3632 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3633 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3634 } 3635 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3636 } 3637 3638 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3639 bool IsLowerBound) { 3640 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3641 QualType ResultExprTy; 3642 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3643 ResultExprTy = AT->getElementType(); 3644 else 3645 ResultExprTy = BaseTy->getPointeeType(); 3646 llvm::Value *Idx = nullptr; 3647 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3648 // Requesting lower bound or upper bound, but without provided length and 3649 // without ':' symbol for the default length -> length = 1. 3650 // Idx = LowerBound ?: 0; 3651 if (auto *LowerBound = E->getLowerBound()) { 3652 Idx = Builder.CreateIntCast( 3653 EmitScalarExpr(LowerBound), IntPtrTy, 3654 LowerBound->getType()->hasSignedIntegerRepresentation()); 3655 } else 3656 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3657 } else { 3658 // Try to emit length or lower bound as constant. If this is possible, 1 3659 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3660 // IR (LB + Len) - 1. 3661 auto &C = CGM.getContext(); 3662 auto *Length = E->getLength(); 3663 llvm::APSInt ConstLength; 3664 if (Length) { 3665 // Idx = LowerBound + Length - 1; 3666 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3667 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3668 Length = nullptr; 3669 } 3670 auto *LowerBound = E->getLowerBound(); 3671 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3672 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3673 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3674 LowerBound = nullptr; 3675 } 3676 if (!Length) 3677 --ConstLength; 3678 else if (!LowerBound) 3679 --ConstLowerBound; 3680 3681 if (Length || LowerBound) { 3682 auto *LowerBoundVal = 3683 LowerBound 3684 ? Builder.CreateIntCast( 3685 EmitScalarExpr(LowerBound), IntPtrTy, 3686 LowerBound->getType()->hasSignedIntegerRepresentation()) 3687 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3688 auto *LengthVal = 3689 Length 3690 ? Builder.CreateIntCast( 3691 EmitScalarExpr(Length), IntPtrTy, 3692 Length->getType()->hasSignedIntegerRepresentation()) 3693 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3694 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3695 /*HasNUW=*/false, 3696 !getLangOpts().isSignedOverflowDefined()); 3697 if (Length && LowerBound) { 3698 Idx = Builder.CreateSub( 3699 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3700 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3701 } 3702 } else 3703 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3704 } else { 3705 // Idx = ArraySize - 1; 3706 QualType ArrayTy = BaseTy->isPointerType() 3707 ? E->getBase()->IgnoreParenImpCasts()->getType() 3708 : BaseTy; 3709 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3710 Length = VAT->getSizeExpr(); 3711 if (Length->isIntegerConstantExpr(ConstLength, C)) 3712 Length = nullptr; 3713 } else { 3714 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3715 ConstLength = CAT->getSize(); 3716 } 3717 if (Length) { 3718 auto *LengthVal = Builder.CreateIntCast( 3719 EmitScalarExpr(Length), IntPtrTy, 3720 Length->getType()->hasSignedIntegerRepresentation()); 3721 Idx = Builder.CreateSub( 3722 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3723 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3724 } else { 3725 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3726 --ConstLength; 3727 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3728 } 3729 } 3730 } 3731 assert(Idx); 3732 3733 Address EltPtr = Address::invalid(); 3734 LValueBaseInfo BaseInfo; 3735 TBAAAccessInfo TBAAInfo; 3736 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3737 // The base must be a pointer, which is not an aggregate. Emit 3738 // it. It needs to be emitted first in case it's what captures 3739 // the VLA bounds. 3740 Address Base = 3741 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3742 BaseTy, VLA->getElementType(), IsLowerBound); 3743 // The element count here is the total number of non-VLA elements. 3744 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3745 3746 // Effectively, the multiply by the VLA size is part of the GEP. 3747 // GEP indexes are signed, and scaling an index isn't permitted to 3748 // signed-overflow, so we use the same semantics for our explicit 3749 // multiply. We suppress this if overflow is not undefined behavior. 3750 if (getLangOpts().isSignedOverflowDefined()) 3751 Idx = Builder.CreateMul(Idx, NumElements); 3752 else 3753 Idx = Builder.CreateNSWMul(Idx, NumElements); 3754 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3755 !getLangOpts().isSignedOverflowDefined(), 3756 /*signedIndices=*/false, E->getExprLoc()); 3757 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3758 // If this is A[i] where A is an array, the frontend will have decayed the 3759 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3760 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3761 // "gep x, i" here. Emit one "gep A, 0, i". 3762 assert(Array->getType()->isArrayType() && 3763 "Array to pointer decay must have array source type!"); 3764 LValue ArrayLV; 3765 // For simple multidimensional array indexing, set the 'accessed' flag for 3766 // better bounds-checking of the base expression. 3767 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3768 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3769 else 3770 ArrayLV = EmitLValue(Array); 3771 3772 // Propagate the alignment from the array itself to the result. 3773 EltPtr = emitArraySubscriptGEP( 3774 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3775 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3776 /*signedIndices=*/false, E->getExprLoc()); 3777 BaseInfo = ArrayLV.getBaseInfo(); 3778 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3779 } else { 3780 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3781 TBAAInfo, BaseTy, ResultExprTy, 3782 IsLowerBound); 3783 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3784 !getLangOpts().isSignedOverflowDefined(), 3785 /*signedIndices=*/false, E->getExprLoc()); 3786 } 3787 3788 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3789 } 3790 3791 LValue CodeGenFunction:: 3792 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3793 // Emit the base vector as an l-value. 3794 LValue Base; 3795 3796 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3797 if (E->isArrow()) { 3798 // If it is a pointer to a vector, emit the address and form an lvalue with 3799 // it. 3800 LValueBaseInfo BaseInfo; 3801 TBAAAccessInfo TBAAInfo; 3802 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3803 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3804 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3805 Base.getQuals().removeObjCGCAttr(); 3806 } else if (E->getBase()->isGLValue()) { 3807 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3808 // emit the base as an lvalue. 3809 assert(E->getBase()->getType()->isVectorType()); 3810 Base = EmitLValue(E->getBase()); 3811 } else { 3812 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3813 assert(E->getBase()->getType()->isVectorType() && 3814 "Result must be a vector"); 3815 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3816 3817 // Store the vector to memory (because LValue wants an address). 3818 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3819 Builder.CreateStore(Vec, VecMem); 3820 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3821 AlignmentSource::Decl); 3822 } 3823 3824 QualType type = 3825 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3826 3827 // Encode the element access list into a vector of unsigned indices. 3828 SmallVector<uint32_t, 4> Indices; 3829 E->getEncodedElementAccess(Indices); 3830 3831 if (Base.isSimple()) { 3832 llvm::Constant *CV = 3833 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3834 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3835 Base.getBaseInfo(), TBAAAccessInfo()); 3836 } 3837 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3838 3839 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3840 SmallVector<llvm::Constant *, 4> CElts; 3841 3842 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3843 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3844 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3845 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3846 Base.getBaseInfo(), TBAAAccessInfo()); 3847 } 3848 3849 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3850 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3851 EmitIgnoredExpr(E->getBase()); 3852 return EmitDeclRefLValue(DRE); 3853 } 3854 3855 Expr *BaseExpr = E->getBase(); 3856 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3857 LValue BaseLV; 3858 if (E->isArrow()) { 3859 LValueBaseInfo BaseInfo; 3860 TBAAAccessInfo TBAAInfo; 3861 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3862 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3863 SanitizerSet SkippedChecks; 3864 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3865 if (IsBaseCXXThis) 3866 SkippedChecks.set(SanitizerKind::Alignment, true); 3867 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3868 SkippedChecks.set(SanitizerKind::Null, true); 3869 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3870 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3871 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3872 } else 3873 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3874 3875 NamedDecl *ND = E->getMemberDecl(); 3876 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3877 LValue LV = EmitLValueForField(BaseLV, Field); 3878 setObjCGCLValueClass(getContext(), E, LV); 3879 return LV; 3880 } 3881 3882 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3883 return EmitFunctionDeclLValue(*this, E, FD); 3884 3885 llvm_unreachable("Unhandled member declaration!"); 3886 } 3887 3888 /// Given that we are currently emitting a lambda, emit an l-value for 3889 /// one of its members. 3890 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3891 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3892 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3893 QualType LambdaTagType = 3894 getContext().getTagDeclType(Field->getParent()); 3895 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3896 return EmitLValueForField(LambdaLV, Field); 3897 } 3898 3899 /// Get the field index in the debug info. The debug info structure/union 3900 /// will ignore the unnamed bitfields. 3901 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3902 unsigned FieldIndex) { 3903 unsigned I = 0, Skipped = 0; 3904 3905 for (auto F : Rec->getDefinition()->fields()) { 3906 if (I == FieldIndex) 3907 break; 3908 if (F->isUnnamedBitfield()) 3909 Skipped++; 3910 I++; 3911 } 3912 3913 return FieldIndex - Skipped; 3914 } 3915 3916 /// Get the address of a zero-sized field within a record. The resulting 3917 /// address doesn't necessarily have the right type. 3918 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 3919 const FieldDecl *Field) { 3920 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 3921 CGF.getContext().getFieldOffset(Field)); 3922 if (Offset.isZero()) 3923 return Base; 3924 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 3925 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 3926 } 3927 3928 /// Drill down to the storage of a field without walking into 3929 /// reference types. 3930 /// 3931 /// The resulting address doesn't necessarily have the right type. 3932 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3933 const FieldDecl *field) { 3934 if (field->isZeroSize(CGF.getContext())) 3935 return emitAddrOfZeroSizeField(CGF, base, field); 3936 3937 const RecordDecl *rec = field->getParent(); 3938 3939 unsigned idx = 3940 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3941 3942 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 3943 } 3944 3945 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base, 3946 const FieldDecl *field) { 3947 const RecordDecl *rec = field->getParent(); 3948 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType( 3949 CGF.getContext().getRecordType(rec), rec->getLocation()); 3950 3951 unsigned idx = 3952 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3953 3954 return CGF.Builder.CreatePreserveStructAccessIndex( 3955 base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 3956 } 3957 3958 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3959 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3960 if (!RD) 3961 return false; 3962 3963 if (RD->isDynamicClass()) 3964 return true; 3965 3966 for (const auto &Base : RD->bases()) 3967 if (hasAnyVptr(Base.getType(), Context)) 3968 return true; 3969 3970 for (const FieldDecl *Field : RD->fields()) 3971 if (hasAnyVptr(Field->getType(), Context)) 3972 return true; 3973 3974 return false; 3975 } 3976 3977 LValue CodeGenFunction::EmitLValueForField(LValue base, 3978 const FieldDecl *field) { 3979 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3980 3981 if (field->isBitField()) { 3982 const CGRecordLayout &RL = 3983 CGM.getTypes().getCGRecordLayout(field->getParent()); 3984 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3985 Address Addr = base.getAddress(); 3986 unsigned Idx = RL.getLLVMFieldNo(field); 3987 if (Idx != 0) 3988 // For structs, we GEP to the field that the record layout suggests. 3989 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 3990 // Get the access type. 3991 llvm::Type *FieldIntTy = 3992 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3993 if (Addr.getElementType() != FieldIntTy) 3994 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3995 3996 QualType fieldType = 3997 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3998 // TODO: Support TBAA for bit fields. 3999 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4000 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4001 TBAAAccessInfo()); 4002 } 4003 4004 // Fields of may-alias structures are may-alias themselves. 4005 // FIXME: this should get propagated down through anonymous structs 4006 // and unions. 4007 QualType FieldType = field->getType(); 4008 const RecordDecl *rec = field->getParent(); 4009 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4010 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4011 TBAAAccessInfo FieldTBAAInfo; 4012 if (base.getTBAAInfo().isMayAlias() || 4013 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4014 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4015 } else if (rec->isUnion()) { 4016 // TODO: Support TBAA for unions. 4017 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4018 } else { 4019 // If no base type been assigned for the base access, then try to generate 4020 // one for this base lvalue. 4021 FieldTBAAInfo = base.getTBAAInfo(); 4022 if (!FieldTBAAInfo.BaseType) { 4023 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4024 assert(!FieldTBAAInfo.Offset && 4025 "Nonzero offset for an access with no base type!"); 4026 } 4027 4028 // Adjust offset to be relative to the base type. 4029 const ASTRecordLayout &Layout = 4030 getContext().getASTRecordLayout(field->getParent()); 4031 unsigned CharWidth = getContext().getCharWidth(); 4032 if (FieldTBAAInfo.BaseType) 4033 FieldTBAAInfo.Offset += 4034 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4035 4036 // Update the final access type and size. 4037 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4038 FieldTBAAInfo.Size = 4039 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4040 } 4041 4042 Address addr = base.getAddress(); 4043 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4044 if (CGM.getCodeGenOpts().StrictVTablePointers && 4045 ClassDef->isDynamicClass()) { 4046 // Getting to any field of dynamic object requires stripping dynamic 4047 // information provided by invariant.group. This is because accessing 4048 // fields may leak the real address of dynamic object, which could result 4049 // in miscompilation when leaked pointer would be compared. 4050 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4051 addr = Address(stripped, addr.getAlignment()); 4052 } 4053 } 4054 4055 unsigned RecordCVR = base.getVRQualifiers(); 4056 if (rec->isUnion()) { 4057 // For unions, there is no pointer adjustment. 4058 assert(!FieldType->isReferenceType() && "union has reference member"); 4059 if (CGM.getCodeGenOpts().StrictVTablePointers && 4060 hasAnyVptr(FieldType, getContext())) 4061 // Because unions can easily skip invariant.barriers, we need to add 4062 // a barrier every time CXXRecord field with vptr is referenced. 4063 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4064 addr.getAlignment()); 4065 4066 if (IsInPreservedAIRegion) { 4067 // Remember the original union field index 4068 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4069 getContext().getRecordType(rec), rec->getLocation()); 4070 addr = Address( 4071 Builder.CreatePreserveUnionAccessIndex( 4072 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4073 addr.getAlignment()); 4074 } 4075 } else { 4076 4077 if (!IsInPreservedAIRegion) 4078 // For structs, we GEP to the field that the record layout suggests. 4079 addr = emitAddrOfFieldStorage(*this, addr, field); 4080 else 4081 // Remember the original struct field index 4082 addr = emitPreserveStructAccess(*this, addr, field); 4083 4084 // If this is a reference field, load the reference right now. 4085 if (FieldType->isReferenceType()) { 4086 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 4087 FieldTBAAInfo); 4088 if (RecordCVR & Qualifiers::Volatile) 4089 RefLVal.getQuals().addVolatile(); 4090 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4091 4092 // Qualifiers on the struct don't apply to the referencee. 4093 RecordCVR = 0; 4094 FieldType = FieldType->getPointeeType(); 4095 } 4096 } 4097 4098 // Make sure that the address is pointing to the right type. This is critical 4099 // for both unions and structs. A union needs a bitcast, a struct element 4100 // will need a bitcast if the LLVM type laid out doesn't match the desired 4101 // type. 4102 addr = Builder.CreateElementBitCast( 4103 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4104 4105 if (field->hasAttr<AnnotateAttr>()) 4106 addr = EmitFieldAnnotations(field, addr); 4107 4108 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4109 LV.getQuals().addCVRQualifiers(RecordCVR); 4110 4111 // __weak attribute on a field is ignored. 4112 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4113 LV.getQuals().removeObjCGCAttr(); 4114 4115 return LV; 4116 } 4117 4118 LValue 4119 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4120 const FieldDecl *Field) { 4121 QualType FieldType = Field->getType(); 4122 4123 if (!FieldType->isReferenceType()) 4124 return EmitLValueForField(Base, Field); 4125 4126 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 4127 4128 // Make sure that the address is pointing to the right type. 4129 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4130 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4131 4132 // TODO: Generate TBAA information that describes this access as a structure 4133 // member access and not just an access to an object of the field's type. This 4134 // should be similar to what we do in EmitLValueForField(). 4135 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4136 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4137 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4138 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4139 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4140 } 4141 4142 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4143 if (E->isFileScope()) { 4144 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4145 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4146 } 4147 if (E->getType()->isVariablyModifiedType()) 4148 // make sure to emit the VLA size. 4149 EmitVariablyModifiedType(E->getType()); 4150 4151 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4152 const Expr *InitExpr = E->getInitializer(); 4153 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4154 4155 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4156 /*Init*/ true); 4157 4158 return Result; 4159 } 4160 4161 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4162 if (!E->isGLValue()) 4163 // Initializing an aggregate temporary in C++11: T{...}. 4164 return EmitAggExprToLValue(E); 4165 4166 // An lvalue initializer list must be initializing a reference. 4167 assert(E->isTransparent() && "non-transparent glvalue init list"); 4168 return EmitLValue(E->getInit(0)); 4169 } 4170 4171 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4172 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4173 /// LValue is returned and the current block has been terminated. 4174 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4175 const Expr *Operand) { 4176 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4177 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4178 return None; 4179 } 4180 4181 return CGF.EmitLValue(Operand); 4182 } 4183 4184 LValue CodeGenFunction:: 4185 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4186 if (!expr->isGLValue()) { 4187 // ?: here should be an aggregate. 4188 assert(hasAggregateEvaluationKind(expr->getType()) && 4189 "Unexpected conditional operator!"); 4190 return EmitAggExprToLValue(expr); 4191 } 4192 4193 OpaqueValueMapping binding(*this, expr); 4194 4195 const Expr *condExpr = expr->getCond(); 4196 bool CondExprBool; 4197 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4198 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4199 if (!CondExprBool) std::swap(live, dead); 4200 4201 if (!ContainsLabel(dead)) { 4202 // If the true case is live, we need to track its region. 4203 if (CondExprBool) 4204 incrementProfileCounter(expr); 4205 return EmitLValue(live); 4206 } 4207 } 4208 4209 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4210 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4211 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4212 4213 ConditionalEvaluation eval(*this); 4214 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4215 4216 // Any temporaries created here are conditional. 4217 EmitBlock(lhsBlock); 4218 incrementProfileCounter(expr); 4219 eval.begin(*this); 4220 Optional<LValue> lhs = 4221 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4222 eval.end(*this); 4223 4224 if (lhs && !lhs->isSimple()) 4225 return EmitUnsupportedLValue(expr, "conditional operator"); 4226 4227 lhsBlock = Builder.GetInsertBlock(); 4228 if (lhs) 4229 Builder.CreateBr(contBlock); 4230 4231 // Any temporaries created here are conditional. 4232 EmitBlock(rhsBlock); 4233 eval.begin(*this); 4234 Optional<LValue> rhs = 4235 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4236 eval.end(*this); 4237 if (rhs && !rhs->isSimple()) 4238 return EmitUnsupportedLValue(expr, "conditional operator"); 4239 rhsBlock = Builder.GetInsertBlock(); 4240 4241 EmitBlock(contBlock); 4242 4243 if (lhs && rhs) { 4244 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4245 2, "cond-lvalue"); 4246 phi->addIncoming(lhs->getPointer(), lhsBlock); 4247 phi->addIncoming(rhs->getPointer(), rhsBlock); 4248 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4249 AlignmentSource alignSource = 4250 std::max(lhs->getBaseInfo().getAlignmentSource(), 4251 rhs->getBaseInfo().getAlignmentSource()); 4252 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4253 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4254 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4255 TBAAInfo); 4256 } else { 4257 assert((lhs || rhs) && 4258 "both operands of glvalue conditional are throw-expressions?"); 4259 return lhs ? *lhs : *rhs; 4260 } 4261 } 4262 4263 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4264 /// type. If the cast is to a reference, we can have the usual lvalue result, 4265 /// otherwise if a cast is needed by the code generator in an lvalue context, 4266 /// then it must mean that we need the address of an aggregate in order to 4267 /// access one of its members. This can happen for all the reasons that casts 4268 /// are permitted with aggregate result, including noop aggregate casts, and 4269 /// cast from scalar to union. 4270 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4271 switch (E->getCastKind()) { 4272 case CK_ToVoid: 4273 case CK_BitCast: 4274 case CK_LValueToRValueBitCast: 4275 case CK_ArrayToPointerDecay: 4276 case CK_FunctionToPointerDecay: 4277 case CK_NullToMemberPointer: 4278 case CK_NullToPointer: 4279 case CK_IntegralToPointer: 4280 case CK_PointerToIntegral: 4281 case CK_PointerToBoolean: 4282 case CK_VectorSplat: 4283 case CK_IntegralCast: 4284 case CK_BooleanToSignedIntegral: 4285 case CK_IntegralToBoolean: 4286 case CK_IntegralToFloating: 4287 case CK_FloatingToIntegral: 4288 case CK_FloatingToBoolean: 4289 case CK_FloatingCast: 4290 case CK_FloatingRealToComplex: 4291 case CK_FloatingComplexToReal: 4292 case CK_FloatingComplexToBoolean: 4293 case CK_FloatingComplexCast: 4294 case CK_FloatingComplexToIntegralComplex: 4295 case CK_IntegralRealToComplex: 4296 case CK_IntegralComplexToReal: 4297 case CK_IntegralComplexToBoolean: 4298 case CK_IntegralComplexCast: 4299 case CK_IntegralComplexToFloatingComplex: 4300 case CK_DerivedToBaseMemberPointer: 4301 case CK_BaseToDerivedMemberPointer: 4302 case CK_MemberPointerToBoolean: 4303 case CK_ReinterpretMemberPointer: 4304 case CK_AnyPointerToBlockPointerCast: 4305 case CK_ARCProduceObject: 4306 case CK_ARCConsumeObject: 4307 case CK_ARCReclaimReturnedObject: 4308 case CK_ARCExtendBlockObject: 4309 case CK_CopyAndAutoreleaseBlockObject: 4310 case CK_IntToOCLSampler: 4311 case CK_FixedPointCast: 4312 case CK_FixedPointToBoolean: 4313 case CK_FixedPointToIntegral: 4314 case CK_IntegralToFixedPoint: 4315 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4316 4317 case CK_Dependent: 4318 llvm_unreachable("dependent cast kind in IR gen!"); 4319 4320 case CK_BuiltinFnToFnPtr: 4321 llvm_unreachable("builtin functions are handled elsewhere"); 4322 4323 // These are never l-values; just use the aggregate emission code. 4324 case CK_NonAtomicToAtomic: 4325 case CK_AtomicToNonAtomic: 4326 return EmitAggExprToLValue(E); 4327 4328 case CK_Dynamic: { 4329 LValue LV = EmitLValue(E->getSubExpr()); 4330 Address V = LV.getAddress(); 4331 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4332 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4333 } 4334 4335 case CK_ConstructorConversion: 4336 case CK_UserDefinedConversion: 4337 case CK_CPointerToObjCPointerCast: 4338 case CK_BlockPointerToObjCPointerCast: 4339 case CK_NoOp: 4340 case CK_LValueToRValue: 4341 return EmitLValue(E->getSubExpr()); 4342 4343 case CK_UncheckedDerivedToBase: 4344 case CK_DerivedToBase: { 4345 const RecordType *DerivedClassTy = 4346 E->getSubExpr()->getType()->getAs<RecordType>(); 4347 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4348 4349 LValue LV = EmitLValue(E->getSubExpr()); 4350 Address This = LV.getAddress(); 4351 4352 // Perform the derived-to-base conversion 4353 Address Base = GetAddressOfBaseClass( 4354 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4355 /*NullCheckValue=*/false, E->getExprLoc()); 4356 4357 // TODO: Support accesses to members of base classes in TBAA. For now, we 4358 // conservatively pretend that the complete object is of the base class 4359 // type. 4360 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4361 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4362 } 4363 case CK_ToUnion: 4364 return EmitAggExprToLValue(E); 4365 case CK_BaseToDerived: { 4366 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4367 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4368 4369 LValue LV = EmitLValue(E->getSubExpr()); 4370 4371 // Perform the base-to-derived conversion 4372 Address Derived = 4373 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4374 E->path_begin(), E->path_end(), 4375 /*NullCheckValue=*/false); 4376 4377 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4378 // performed and the object is not of the derived type. 4379 if (sanitizePerformTypeCheck()) 4380 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4381 Derived.getPointer(), E->getType()); 4382 4383 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4384 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4385 /*MayBeNull=*/false, CFITCK_DerivedCast, 4386 E->getBeginLoc()); 4387 4388 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4389 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4390 } 4391 case CK_LValueBitCast: { 4392 // This must be a reinterpret_cast (or c-style equivalent). 4393 const auto *CE = cast<ExplicitCastExpr>(E); 4394 4395 CGM.EmitExplicitCastExprType(CE, this); 4396 LValue LV = EmitLValue(E->getSubExpr()); 4397 Address V = Builder.CreateBitCast(LV.getAddress(), 4398 ConvertType(CE->getTypeAsWritten())); 4399 4400 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4401 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4402 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4403 E->getBeginLoc()); 4404 4405 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4406 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4407 } 4408 case CK_AddressSpaceConversion: { 4409 LValue LV = EmitLValue(E->getSubExpr()); 4410 QualType DestTy = getContext().getPointerType(E->getType()); 4411 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4412 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4413 E->getType().getAddressSpace(), ConvertType(DestTy)); 4414 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4415 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4416 } 4417 case CK_ObjCObjectLValueCast: { 4418 LValue LV = EmitLValue(E->getSubExpr()); 4419 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4420 ConvertType(E->getType())); 4421 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4422 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4423 } 4424 case CK_ZeroToOCLOpaqueType: 4425 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4426 } 4427 4428 llvm_unreachable("Unhandled lvalue cast kind?"); 4429 } 4430 4431 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4432 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4433 return getOrCreateOpaqueLValueMapping(e); 4434 } 4435 4436 LValue 4437 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4438 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4439 4440 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4441 it = OpaqueLValues.find(e); 4442 4443 if (it != OpaqueLValues.end()) 4444 return it->second; 4445 4446 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4447 return EmitLValue(e->getSourceExpr()); 4448 } 4449 4450 RValue 4451 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4452 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4453 4454 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4455 it = OpaqueRValues.find(e); 4456 4457 if (it != OpaqueRValues.end()) 4458 return it->second; 4459 4460 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4461 return EmitAnyExpr(e->getSourceExpr()); 4462 } 4463 4464 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4465 const FieldDecl *FD, 4466 SourceLocation Loc) { 4467 QualType FT = FD->getType(); 4468 LValue FieldLV = EmitLValueForField(LV, FD); 4469 switch (getEvaluationKind(FT)) { 4470 case TEK_Complex: 4471 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4472 case TEK_Aggregate: 4473 return FieldLV.asAggregateRValue(); 4474 case TEK_Scalar: 4475 // This routine is used to load fields one-by-one to perform a copy, so 4476 // don't load reference fields. 4477 if (FD->getType()->isReferenceType()) 4478 return RValue::get(FieldLV.getPointer()); 4479 return EmitLoadOfLValue(FieldLV, Loc); 4480 } 4481 llvm_unreachable("bad evaluation kind"); 4482 } 4483 4484 //===--------------------------------------------------------------------===// 4485 // Expression Emission 4486 //===--------------------------------------------------------------------===// 4487 4488 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4489 ReturnValueSlot ReturnValue) { 4490 // Builtins never have block type. 4491 if (E->getCallee()->getType()->isBlockPointerType()) 4492 return EmitBlockCallExpr(E, ReturnValue); 4493 4494 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4495 return EmitCXXMemberCallExpr(CE, ReturnValue); 4496 4497 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4498 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4499 4500 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4501 if (const CXXMethodDecl *MD = 4502 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4503 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4504 4505 CGCallee callee = EmitCallee(E->getCallee()); 4506 4507 if (callee.isBuiltin()) { 4508 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4509 E, ReturnValue); 4510 } 4511 4512 if (callee.isPseudoDestructor()) { 4513 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4514 } 4515 4516 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4517 } 4518 4519 /// Emit a CallExpr without considering whether it might be a subclass. 4520 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4521 ReturnValueSlot ReturnValue) { 4522 CGCallee Callee = EmitCallee(E->getCallee()); 4523 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4524 } 4525 4526 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4527 if (auto builtinID = FD->getBuiltinID()) { 4528 return CGCallee::forBuiltin(builtinID, FD); 4529 } 4530 4531 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4532 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4533 } 4534 4535 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4536 E = E->IgnoreParens(); 4537 4538 // Look through function-to-pointer decay. 4539 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4540 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4541 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4542 return EmitCallee(ICE->getSubExpr()); 4543 } 4544 4545 // Resolve direct calls. 4546 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4547 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4548 return EmitDirectCallee(*this, FD); 4549 } 4550 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4551 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4552 EmitIgnoredExpr(ME->getBase()); 4553 return EmitDirectCallee(*this, FD); 4554 } 4555 4556 // Look through template substitutions. 4557 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4558 return EmitCallee(NTTP->getReplacement()); 4559 4560 // Treat pseudo-destructor calls differently. 4561 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4562 return CGCallee::forPseudoDestructor(PDE); 4563 } 4564 4565 // Otherwise, we have an indirect reference. 4566 llvm::Value *calleePtr; 4567 QualType functionType; 4568 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4569 calleePtr = EmitScalarExpr(E); 4570 functionType = ptrType->getPointeeType(); 4571 } else { 4572 functionType = E->getType(); 4573 calleePtr = EmitLValue(E).getPointer(); 4574 } 4575 assert(functionType->isFunctionType()); 4576 4577 GlobalDecl GD; 4578 if (const auto *VD = 4579 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4580 GD = GlobalDecl(VD); 4581 4582 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4583 CGCallee callee(calleeInfo, calleePtr); 4584 return callee; 4585 } 4586 4587 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4588 // Comma expressions just emit their LHS then their RHS as an l-value. 4589 if (E->getOpcode() == BO_Comma) { 4590 EmitIgnoredExpr(E->getLHS()); 4591 EnsureInsertPoint(); 4592 return EmitLValue(E->getRHS()); 4593 } 4594 4595 if (E->getOpcode() == BO_PtrMemD || 4596 E->getOpcode() == BO_PtrMemI) 4597 return EmitPointerToDataMemberBinaryExpr(E); 4598 4599 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4600 4601 // Note that in all of these cases, __block variables need the RHS 4602 // evaluated first just in case the variable gets moved by the RHS. 4603 4604 switch (getEvaluationKind(E->getType())) { 4605 case TEK_Scalar: { 4606 switch (E->getLHS()->getType().getObjCLifetime()) { 4607 case Qualifiers::OCL_Strong: 4608 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4609 4610 case Qualifiers::OCL_Autoreleasing: 4611 return EmitARCStoreAutoreleasing(E).first; 4612 4613 // No reason to do any of these differently. 4614 case Qualifiers::OCL_None: 4615 case Qualifiers::OCL_ExplicitNone: 4616 case Qualifiers::OCL_Weak: 4617 break; 4618 } 4619 4620 RValue RV = EmitAnyExpr(E->getRHS()); 4621 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4622 if (RV.isScalar()) 4623 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4624 EmitStoreThroughLValue(RV, LV); 4625 return LV; 4626 } 4627 4628 case TEK_Complex: 4629 return EmitComplexAssignmentLValue(E); 4630 4631 case TEK_Aggregate: 4632 return EmitAggExprToLValue(E); 4633 } 4634 llvm_unreachable("bad evaluation kind"); 4635 } 4636 4637 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4638 RValue RV = EmitCallExpr(E); 4639 4640 if (!RV.isScalar()) 4641 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4642 AlignmentSource::Decl); 4643 4644 assert(E->getCallReturnType(getContext())->isReferenceType() && 4645 "Can't have a scalar return unless the return type is a " 4646 "reference type!"); 4647 4648 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4649 } 4650 4651 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4652 // FIXME: This shouldn't require another copy. 4653 return EmitAggExprToLValue(E); 4654 } 4655 4656 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4657 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4658 && "binding l-value to type which needs a temporary"); 4659 AggValueSlot Slot = CreateAggTemp(E->getType()); 4660 EmitCXXConstructExpr(E, Slot); 4661 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4662 } 4663 4664 LValue 4665 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4666 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4667 } 4668 4669 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4670 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4671 ConvertType(E->getType())); 4672 } 4673 4674 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4675 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4676 AlignmentSource::Decl); 4677 } 4678 4679 LValue 4680 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4681 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4682 Slot.setExternallyDestructed(); 4683 EmitAggExpr(E->getSubExpr(), Slot); 4684 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4685 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4686 } 4687 4688 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4689 RValue RV = EmitObjCMessageExpr(E); 4690 4691 if (!RV.isScalar()) 4692 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4693 AlignmentSource::Decl); 4694 4695 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4696 "Can't have a scalar return unless the return type is a " 4697 "reference type!"); 4698 4699 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4700 } 4701 4702 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4703 Address V = 4704 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4705 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4706 } 4707 4708 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4709 const ObjCIvarDecl *Ivar) { 4710 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4711 } 4712 4713 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4714 llvm::Value *BaseValue, 4715 const ObjCIvarDecl *Ivar, 4716 unsigned CVRQualifiers) { 4717 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4718 Ivar, CVRQualifiers); 4719 } 4720 4721 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4722 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4723 llvm::Value *BaseValue = nullptr; 4724 const Expr *BaseExpr = E->getBase(); 4725 Qualifiers BaseQuals; 4726 QualType ObjectTy; 4727 if (E->isArrow()) { 4728 BaseValue = EmitScalarExpr(BaseExpr); 4729 ObjectTy = BaseExpr->getType()->getPointeeType(); 4730 BaseQuals = ObjectTy.getQualifiers(); 4731 } else { 4732 LValue BaseLV = EmitLValue(BaseExpr); 4733 BaseValue = BaseLV.getPointer(); 4734 ObjectTy = BaseExpr->getType(); 4735 BaseQuals = ObjectTy.getQualifiers(); 4736 } 4737 4738 LValue LV = 4739 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4740 BaseQuals.getCVRQualifiers()); 4741 setObjCGCLValueClass(getContext(), E, LV); 4742 return LV; 4743 } 4744 4745 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4746 // Can only get l-value for message expression returning aggregate type 4747 RValue RV = EmitAnyExprToTemp(E); 4748 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4749 AlignmentSource::Decl); 4750 } 4751 4752 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4753 const CallExpr *E, ReturnValueSlot ReturnValue, 4754 llvm::Value *Chain) { 4755 // Get the actual function type. The callee type will always be a pointer to 4756 // function type or a block pointer type. 4757 assert(CalleeType->isFunctionPointerType() && 4758 "Call must have function pointer type!"); 4759 4760 const Decl *TargetDecl = 4761 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4762 4763 CalleeType = getContext().getCanonicalType(CalleeType); 4764 4765 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4766 4767 CGCallee Callee = OrigCallee; 4768 4769 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4770 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4771 if (llvm::Constant *PrefixSig = 4772 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4773 SanitizerScope SanScope(this); 4774 // Remove any (C++17) exception specifications, to allow calling e.g. a 4775 // noexcept function through a non-noexcept pointer. 4776 auto ProtoTy = 4777 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4778 llvm::Constant *FTRTTIConst = 4779 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4780 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4781 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4782 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4783 4784 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4785 4786 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4787 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4788 llvm::Value *CalleeSigPtr = 4789 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4790 llvm::Value *CalleeSig = 4791 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4792 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4793 4794 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4795 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4796 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4797 4798 EmitBlock(TypeCheck); 4799 llvm::Value *CalleeRTTIPtr = 4800 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4801 llvm::Value *CalleeRTTIEncoded = 4802 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4803 llvm::Value *CalleeRTTI = 4804 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4805 llvm::Value *CalleeRTTIMatch = 4806 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4807 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4808 EmitCheckTypeDescriptor(CalleeType)}; 4809 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4810 SanitizerHandler::FunctionTypeMismatch, StaticData, 4811 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4812 4813 Builder.CreateBr(Cont); 4814 EmitBlock(Cont); 4815 } 4816 } 4817 4818 const auto *FnType = cast<FunctionType>(PointeeType); 4819 4820 // If we are checking indirect calls and this call is indirect, check that the 4821 // function pointer is a member of the bit set for the function type. 4822 if (SanOpts.has(SanitizerKind::CFIICall) && 4823 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4824 SanitizerScope SanScope(this); 4825 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4826 4827 llvm::Metadata *MD; 4828 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4829 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4830 else 4831 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4832 4833 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4834 4835 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4836 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4837 llvm::Value *TypeTest = Builder.CreateCall( 4838 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4839 4840 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4841 llvm::Constant *StaticData[] = { 4842 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4843 EmitCheckSourceLocation(E->getBeginLoc()), 4844 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4845 }; 4846 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4847 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4848 CastedCallee, StaticData); 4849 } else { 4850 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4851 SanitizerHandler::CFICheckFail, StaticData, 4852 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4853 } 4854 } 4855 4856 CallArgList Args; 4857 if (Chain) 4858 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4859 CGM.getContext().VoidPtrTy); 4860 4861 // C++17 requires that we evaluate arguments to a call using assignment syntax 4862 // right-to-left, and that we evaluate arguments to certain other operators 4863 // left-to-right. Note that we allow this to override the order dictated by 4864 // the calling convention on the MS ABI, which means that parameter 4865 // destruction order is not necessarily reverse construction order. 4866 // FIXME: Revisit this based on C++ committee response to unimplementability. 4867 EvaluationOrder Order = EvaluationOrder::Default; 4868 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4869 if (OCE->isAssignmentOp()) 4870 Order = EvaluationOrder::ForceRightToLeft; 4871 else { 4872 switch (OCE->getOperator()) { 4873 case OO_LessLess: 4874 case OO_GreaterGreater: 4875 case OO_AmpAmp: 4876 case OO_PipePipe: 4877 case OO_Comma: 4878 case OO_ArrowStar: 4879 Order = EvaluationOrder::ForceLeftToRight; 4880 break; 4881 default: 4882 break; 4883 } 4884 } 4885 } 4886 4887 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4888 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4889 4890 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4891 Args, FnType, /*ChainCall=*/Chain); 4892 4893 // C99 6.5.2.2p6: 4894 // If the expression that denotes the called function has a type 4895 // that does not include a prototype, [the default argument 4896 // promotions are performed]. If the number of arguments does not 4897 // equal the number of parameters, the behavior is undefined. If 4898 // the function is defined with a type that includes a prototype, 4899 // and either the prototype ends with an ellipsis (, ...) or the 4900 // types of the arguments after promotion are not compatible with 4901 // the types of the parameters, the behavior is undefined. If the 4902 // function is defined with a type that does not include a 4903 // prototype, and the types of the arguments after promotion are 4904 // not compatible with those of the parameters after promotion, 4905 // the behavior is undefined [except in some trivial cases]. 4906 // That is, in the general case, we should assume that a call 4907 // through an unprototyped function type works like a *non-variadic* 4908 // call. The way we make this work is to cast to the exact type 4909 // of the promoted arguments. 4910 // 4911 // Chain calls use this same code path to add the invisible chain parameter 4912 // to the function type. 4913 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4914 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4915 CalleeTy = CalleeTy->getPointerTo(); 4916 4917 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4918 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4919 Callee.setFunctionPointer(CalleePtr); 4920 } 4921 4922 llvm::CallBase *CallOrInvoke = nullptr; 4923 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 4924 E->getExprLoc()); 4925 4926 // Generate function declaration DISuprogram in order to be used 4927 // in debug info about call sites. 4928 if (CGDebugInfo *DI = getDebugInfo()) { 4929 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4930 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 4931 CalleeDecl); 4932 } 4933 4934 return Call; 4935 } 4936 4937 LValue CodeGenFunction:: 4938 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4939 Address BaseAddr = Address::invalid(); 4940 if (E->getOpcode() == BO_PtrMemI) { 4941 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4942 } else { 4943 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4944 } 4945 4946 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4947 4948 const MemberPointerType *MPT 4949 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4950 4951 LValueBaseInfo BaseInfo; 4952 TBAAAccessInfo TBAAInfo; 4953 Address MemberAddr = 4954 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4955 &TBAAInfo); 4956 4957 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4958 } 4959 4960 /// Given the address of a temporary variable, produce an r-value of 4961 /// its type. 4962 RValue CodeGenFunction::convertTempToRValue(Address addr, 4963 QualType type, 4964 SourceLocation loc) { 4965 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4966 switch (getEvaluationKind(type)) { 4967 case TEK_Complex: 4968 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4969 case TEK_Aggregate: 4970 return lvalue.asAggregateRValue(); 4971 case TEK_Scalar: 4972 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4973 } 4974 llvm_unreachable("bad evaluation kind"); 4975 } 4976 4977 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4978 assert(Val->getType()->isFPOrFPVectorTy()); 4979 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4980 return; 4981 4982 llvm::MDBuilder MDHelper(getLLVMContext()); 4983 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4984 4985 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4986 } 4987 4988 namespace { 4989 struct LValueOrRValue { 4990 LValue LV; 4991 RValue RV; 4992 }; 4993 } 4994 4995 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4996 const PseudoObjectExpr *E, 4997 bool forLValue, 4998 AggValueSlot slot) { 4999 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5000 5001 // Find the result expression, if any. 5002 const Expr *resultExpr = E->getResultExpr(); 5003 LValueOrRValue result; 5004 5005 for (PseudoObjectExpr::const_semantics_iterator 5006 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5007 const Expr *semantic = *i; 5008 5009 // If this semantic expression is an opaque value, bind it 5010 // to the result of its source expression. 5011 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5012 // Skip unique OVEs. 5013 if (ov->isUnique()) { 5014 assert(ov != resultExpr && 5015 "A unique OVE cannot be used as the result expression"); 5016 continue; 5017 } 5018 5019 // If this is the result expression, we may need to evaluate 5020 // directly into the slot. 5021 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5022 OVMA opaqueData; 5023 if (ov == resultExpr && ov->isRValue() && !forLValue && 5024 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5025 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5026 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5027 AlignmentSource::Decl); 5028 opaqueData = OVMA::bind(CGF, ov, LV); 5029 result.RV = slot.asRValue(); 5030 5031 // Otherwise, emit as normal. 5032 } else { 5033 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5034 5035 // If this is the result, also evaluate the result now. 5036 if (ov == resultExpr) { 5037 if (forLValue) 5038 result.LV = CGF.EmitLValue(ov); 5039 else 5040 result.RV = CGF.EmitAnyExpr(ov, slot); 5041 } 5042 } 5043 5044 opaques.push_back(opaqueData); 5045 5046 // Otherwise, if the expression is the result, evaluate it 5047 // and remember the result. 5048 } else if (semantic == resultExpr) { 5049 if (forLValue) 5050 result.LV = CGF.EmitLValue(semantic); 5051 else 5052 result.RV = CGF.EmitAnyExpr(semantic, slot); 5053 5054 // Otherwise, evaluate the expression in an ignored context. 5055 } else { 5056 CGF.EmitIgnoredExpr(semantic); 5057 } 5058 } 5059 5060 // Unbind all the opaques now. 5061 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5062 opaques[i].unbind(CGF); 5063 5064 return result; 5065 } 5066 5067 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5068 AggValueSlot slot) { 5069 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5070 } 5071 5072 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5073 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5074 } 5075