1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "llvm/ADT/Hashing.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/Path.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 #include <string> 43 44 using namespace clang; 45 using namespace CodeGen; 46 47 //===--------------------------------------------------------------------===// 48 // Miscellaneous Helper Methods 49 //===--------------------------------------------------------------------===// 50 51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 52 unsigned addressSpace = 53 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 54 55 llvm::PointerType *destType = Int8PtrTy; 56 if (addressSpace) 57 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 58 59 if (value->getType() == destType) return value; 60 return Builder.CreateBitCast(value, destType); 61 } 62 63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 64 /// block. 65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 66 CharUnits Align, 67 const Twine &Name, 68 llvm::Value *ArraySize) { 69 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 70 Alloca->setAlignment(Align.getAsAlign()); 71 return Address(Alloca, Align); 72 } 73 74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 75 /// block. The alloca is casted to default address space if necessary. 76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 77 const Twine &Name, 78 llvm::Value *ArraySize, 79 Address *AllocaAddr) { 80 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 81 if (AllocaAddr) 82 *AllocaAddr = Alloca; 83 llvm::Value *V = Alloca.getPointer(); 84 // Alloca always returns a pointer in alloca address space, which may 85 // be different from the type defined by the language. For example, 86 // in C++ the auto variables are in the default address space. Therefore 87 // cast alloca to the default address space when necessary. 88 if (getASTAllocaAddressSpace() != LangAS::Default) { 89 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 90 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 91 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 92 // otherwise alloca is inserted at the current insertion point of the 93 // builder. 94 if (!ArraySize) 95 Builder.SetInsertPoint(AllocaInsertPt); 96 V = getTargetHooks().performAddrSpaceCast( 97 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 98 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 99 } 100 101 return Address(V, Align); 102 } 103 104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 106 /// insertion point of the builder. 107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 108 const Twine &Name, 109 llvm::Value *ArraySize) { 110 if (ArraySize) 111 return Builder.CreateAlloca(Ty, ArraySize, Name); 112 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 113 ArraySize, Name, AllocaInsertPt); 114 } 115 116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 117 /// default alignment of the corresponding LLVM type, which is *not* 118 /// guaranteed to be related in any way to the expected alignment of 119 /// an AST type that might have been lowered to Ty. 120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 121 const Twine &Name) { 122 CharUnits Align = 123 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 124 return CreateTempAlloca(Ty, Align, Name); 125 } 126 127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 128 assert(isa<llvm::AllocaInst>(Var.getPointer())); 129 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 130 Store->setAlignment(Var.getAlignment().getAsAlign()); 131 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 132 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 133 } 134 135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 136 CharUnits Align = getContext().getTypeAlignInChars(Ty); 137 return CreateTempAlloca(ConvertType(Ty), Align, Name); 138 } 139 140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 141 Address *Alloca) { 142 // FIXME: Should we prefer the preferred type alignment here? 143 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 144 } 145 146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 147 const Twine &Name, Address *Alloca) { 148 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 149 /*ArraySize=*/nullptr, Alloca); 150 } 151 152 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 153 const Twine &Name) { 154 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 155 } 156 157 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 158 const Twine &Name) { 159 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 160 Name); 161 } 162 163 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 164 /// expression and compare the result against zero, returning an Int1Ty value. 165 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 166 PGO.setCurrentStmt(E); 167 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 168 llvm::Value *MemPtr = EmitScalarExpr(E); 169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 170 } 171 172 QualType BoolTy = getContext().BoolTy; 173 SourceLocation Loc = E->getExprLoc(); 174 if (!E->getType()->isAnyComplexType()) 175 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 176 177 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 178 Loc); 179 } 180 181 /// EmitIgnoredExpr - Emit code to compute the specified expression, 182 /// ignoring the result. 183 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 184 if (E->isRValue()) 185 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 186 187 // Just emit it as an l-value and drop the result. 188 EmitLValue(E); 189 } 190 191 /// EmitAnyExpr - Emit code to compute the specified expression which 192 /// can have any type. The result is returned as an RValue struct. 193 /// If this is an aggregate expression, AggSlot indicates where the 194 /// result should be returned. 195 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 196 AggValueSlot aggSlot, 197 bool ignoreResult) { 198 switch (getEvaluationKind(E->getType())) { 199 case TEK_Scalar: 200 return RValue::get(EmitScalarExpr(E, ignoreResult)); 201 case TEK_Complex: 202 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 203 case TEK_Aggregate: 204 if (!ignoreResult && aggSlot.isIgnored()) 205 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 206 EmitAggExpr(E, aggSlot); 207 return aggSlot.asRValue(); 208 } 209 llvm_unreachable("bad evaluation kind"); 210 } 211 212 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 213 /// always be accessible even if no aggregate location is provided. 214 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 215 AggValueSlot AggSlot = AggValueSlot::ignored(); 216 217 if (hasAggregateEvaluationKind(E->getType())) 218 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 219 return EmitAnyExpr(E, AggSlot); 220 } 221 222 /// EmitAnyExprToMem - Evaluate an expression into a given memory 223 /// location. 224 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 225 Address Location, 226 Qualifiers Quals, 227 bool IsInit) { 228 // FIXME: This function should take an LValue as an argument. 229 switch (getEvaluationKind(E->getType())) { 230 case TEK_Complex: 231 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 232 /*isInit*/ false); 233 return; 234 235 case TEK_Aggregate: { 236 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 237 AggValueSlot::IsDestructed_t(IsInit), 238 AggValueSlot::DoesNotNeedGCBarriers, 239 AggValueSlot::IsAliased_t(!IsInit), 240 AggValueSlot::MayOverlap)); 241 return; 242 } 243 244 case TEK_Scalar: { 245 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 246 LValue LV = MakeAddrLValue(Location, E->getType()); 247 EmitStoreThroughLValue(RV, LV); 248 return; 249 } 250 } 251 llvm_unreachable("bad evaluation kind"); 252 } 253 254 static void 255 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 256 const Expr *E, Address ReferenceTemporary) { 257 // Objective-C++ ARC: 258 // If we are binding a reference to a temporary that has ownership, we 259 // need to perform retain/release operations on the temporary. 260 // 261 // FIXME: This should be looking at E, not M. 262 if (auto Lifetime = M->getType().getObjCLifetime()) { 263 switch (Lifetime) { 264 case Qualifiers::OCL_None: 265 case Qualifiers::OCL_ExplicitNone: 266 // Carry on to normal cleanup handling. 267 break; 268 269 case Qualifiers::OCL_Autoreleasing: 270 // Nothing to do; cleaned up by an autorelease pool. 271 return; 272 273 case Qualifiers::OCL_Strong: 274 case Qualifiers::OCL_Weak: 275 switch (StorageDuration Duration = M->getStorageDuration()) { 276 case SD_Static: 277 // Note: we intentionally do not register a cleanup to release 278 // the object on program termination. 279 return; 280 281 case SD_Thread: 282 // FIXME: We should probably register a cleanup in this case. 283 return; 284 285 case SD_Automatic: 286 case SD_FullExpression: 287 CodeGenFunction::Destroyer *Destroy; 288 CleanupKind CleanupKind; 289 if (Lifetime == Qualifiers::OCL_Strong) { 290 const ValueDecl *VD = M->getExtendingDecl(); 291 bool Precise = 292 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 293 CleanupKind = CGF.getARCCleanupKind(); 294 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 295 : &CodeGenFunction::destroyARCStrongImprecise; 296 } else { 297 // __weak objects always get EH cleanups; otherwise, exceptions 298 // could cause really nasty crashes instead of mere leaks. 299 CleanupKind = NormalAndEHCleanup; 300 Destroy = &CodeGenFunction::destroyARCWeak; 301 } 302 if (Duration == SD_FullExpression) 303 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 304 M->getType(), *Destroy, 305 CleanupKind & EHCleanup); 306 else 307 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 308 M->getType(), 309 *Destroy, CleanupKind & EHCleanup); 310 return; 311 312 case SD_Dynamic: 313 llvm_unreachable("temporary cannot have dynamic storage duration"); 314 } 315 llvm_unreachable("unknown storage duration"); 316 } 317 } 318 319 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 320 if (const RecordType *RT = 321 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 322 // Get the destructor for the reference temporary. 323 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 324 if (!ClassDecl->hasTrivialDestructor()) 325 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 326 } 327 328 if (!ReferenceTemporaryDtor) 329 return; 330 331 // Call the destructor for the temporary. 332 switch (M->getStorageDuration()) { 333 case SD_Static: 334 case SD_Thread: { 335 llvm::FunctionCallee CleanupFn; 336 llvm::Constant *CleanupArg; 337 if (E->getType()->isArrayType()) { 338 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 339 ReferenceTemporary, E->getType(), 340 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 341 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 342 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 343 } else { 344 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 345 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 346 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 347 } 348 CGF.CGM.getCXXABI().registerGlobalDtor( 349 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 350 break; 351 } 352 353 case SD_FullExpression: 354 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 355 CodeGenFunction::destroyCXXObject, 356 CGF.getLangOpts().Exceptions); 357 break; 358 359 case SD_Automatic: 360 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 361 ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Dynamic: 367 llvm_unreachable("temporary cannot have dynamic storage duration"); 368 } 369 } 370 371 static Address createReferenceTemporary(CodeGenFunction &CGF, 372 const MaterializeTemporaryExpr *M, 373 const Expr *Inner, 374 Address *Alloca = nullptr) { 375 auto &TCG = CGF.getTargetHooks(); 376 switch (M->getStorageDuration()) { 377 case SD_FullExpression: 378 case SD_Automatic: { 379 // If we have a constant temporary array or record try to promote it into a 380 // constant global under the same rules a normal constant would've been 381 // promoted. This is easier on the optimizer and generally emits fewer 382 // instructions. 383 QualType Ty = Inner->getType(); 384 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 385 (Ty->isArrayType() || Ty->isRecordType()) && 386 CGF.CGM.isTypeConstant(Ty, true)) 387 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 388 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 389 auto AS = AddrSpace.getValue(); 390 auto *GV = new llvm::GlobalVariable( 391 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 392 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 393 llvm::GlobalValue::NotThreadLocal, 394 CGF.getContext().getTargetAddressSpace(AS)); 395 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 396 GV->setAlignment(alignment.getAsAlign()); 397 llvm::Constant *C = GV; 398 if (AS != LangAS::Default) 399 C = TCG.performAddrSpaceCast( 400 CGF.CGM, GV, AS, LangAS::Default, 401 GV->getValueType()->getPointerTo( 402 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 403 // FIXME: Should we put the new global into a COMDAT? 404 return Address(C, alignment); 405 } 406 } 407 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 408 } 409 case SD_Thread: 410 case SD_Static: 411 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 412 413 case SD_Dynamic: 414 llvm_unreachable("temporary can't have dynamic storage duration"); 415 } 416 llvm_unreachable("unknown storage duration"); 417 } 418 419 /// Helper method to check if the underlying ABI is AAPCS 420 static bool isAAPCS(const TargetInfo &TargetInfo) { 421 return TargetInfo.getABI().startswith("aapcs"); 422 } 423 424 LValue CodeGenFunction:: 425 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 426 const Expr *E = M->getSubExpr(); 427 428 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 429 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 430 "Reference should never be pseudo-strong!"); 431 432 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 433 // as that will cause the lifetime adjustment to be lost for ARC 434 auto ownership = M->getType().getObjCLifetime(); 435 if (ownership != Qualifiers::OCL_None && 436 ownership != Qualifiers::OCL_ExplicitNone) { 437 Address Object = createReferenceTemporary(*this, M, E); 438 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 439 Object = Address(llvm::ConstantExpr::getBitCast(Var, 440 ConvertTypeForMem(E->getType()) 441 ->getPointerTo(Object.getAddressSpace())), 442 Object.getAlignment()); 443 444 // createReferenceTemporary will promote the temporary to a global with a 445 // constant initializer if it can. It can only do this to a value of 446 // ARC-manageable type if the value is global and therefore "immune" to 447 // ref-counting operations. Therefore we have no need to emit either a 448 // dynamic initialization or a cleanup and we can just return the address 449 // of the temporary. 450 if (Var->hasInitializer()) 451 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 452 453 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 454 } 455 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 456 AlignmentSource::Decl); 457 458 switch (getEvaluationKind(E->getType())) { 459 default: llvm_unreachable("expected scalar or aggregate expression"); 460 case TEK_Scalar: 461 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 462 break; 463 case TEK_Aggregate: { 464 EmitAggExpr(E, AggValueSlot::forAddr(Object, 465 E->getType().getQualifiers(), 466 AggValueSlot::IsDestructed, 467 AggValueSlot::DoesNotNeedGCBarriers, 468 AggValueSlot::IsNotAliased, 469 AggValueSlot::DoesNotOverlap)); 470 break; 471 } 472 } 473 474 pushTemporaryCleanup(*this, M, E, Object); 475 return RefTempDst; 476 } 477 478 SmallVector<const Expr *, 2> CommaLHSs; 479 SmallVector<SubobjectAdjustment, 2> Adjustments; 480 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 481 482 for (const auto &Ignored : CommaLHSs) 483 EmitIgnoredExpr(Ignored); 484 485 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 486 if (opaque->getType()->isRecordType()) { 487 assert(Adjustments.empty()); 488 return EmitOpaqueValueLValue(opaque); 489 } 490 } 491 492 // Create and initialize the reference temporary. 493 Address Alloca = Address::invalid(); 494 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 495 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 496 Object.getPointer()->stripPointerCasts())) { 497 Object = Address(llvm::ConstantExpr::getBitCast( 498 cast<llvm::Constant>(Object.getPointer()), 499 ConvertTypeForMem(E->getType())->getPointerTo()), 500 Object.getAlignment()); 501 // If the temporary is a global and has a constant initializer or is a 502 // constant temporary that we promoted to a global, we may have already 503 // initialized it. 504 if (!Var->hasInitializer()) { 505 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 506 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 507 } 508 } else { 509 switch (M->getStorageDuration()) { 510 case SD_Automatic: 511 if (auto *Size = EmitLifetimeStart( 512 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 513 Alloca.getPointer())) { 514 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 515 Alloca, Size); 516 } 517 break; 518 519 case SD_FullExpression: { 520 if (!ShouldEmitLifetimeMarkers) 521 break; 522 523 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 524 // marker. Instead, start the lifetime of a conditional temporary earlier 525 // so that it's unconditional. Don't do this with sanitizers which need 526 // more precise lifetime marks. 527 ConditionalEvaluation *OldConditional = nullptr; 528 CGBuilderTy::InsertPoint OldIP; 529 if (isInConditionalBranch() && !E->getType().isDestructedType() && 530 !SanOpts.has(SanitizerKind::HWAddress) && 531 !SanOpts.has(SanitizerKind::Memory) && 532 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 533 OldConditional = OutermostConditional; 534 OutermostConditional = nullptr; 535 536 OldIP = Builder.saveIP(); 537 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 538 Builder.restoreIP(CGBuilderTy::InsertPoint( 539 Block, llvm::BasicBlock::iterator(Block->back()))); 540 } 541 542 if (auto *Size = EmitLifetimeStart( 543 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 544 Alloca.getPointer())) { 545 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 546 Size); 547 } 548 549 if (OldConditional) { 550 OutermostConditional = OldConditional; 551 Builder.restoreIP(OldIP); 552 } 553 break; 554 } 555 556 default: 557 break; 558 } 559 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 560 } 561 pushTemporaryCleanup(*this, M, E, Object); 562 563 // Perform derived-to-base casts and/or field accesses, to get from the 564 // temporary object we created (and, potentially, for which we extended 565 // the lifetime) to the subobject we're binding the reference to. 566 for (unsigned I = Adjustments.size(); I != 0; --I) { 567 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 568 switch (Adjustment.Kind) { 569 case SubobjectAdjustment::DerivedToBaseAdjustment: 570 Object = 571 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 572 Adjustment.DerivedToBase.BasePath->path_begin(), 573 Adjustment.DerivedToBase.BasePath->path_end(), 574 /*NullCheckValue=*/ false, E->getExprLoc()); 575 break; 576 577 case SubobjectAdjustment::FieldAdjustment: { 578 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 579 LV = EmitLValueForField(LV, Adjustment.Field); 580 assert(LV.isSimple() && 581 "materialized temporary field is not a simple lvalue"); 582 Object = LV.getAddress(*this); 583 break; 584 } 585 586 case SubobjectAdjustment::MemberPointerAdjustment: { 587 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 588 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 589 Adjustment.Ptr.MPT); 590 break; 591 } 592 } 593 } 594 595 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 596 } 597 598 RValue 599 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 600 // Emit the expression as an lvalue. 601 LValue LV = EmitLValue(E); 602 assert(LV.isSimple()); 603 llvm::Value *Value = LV.getPointer(*this); 604 605 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 606 // C++11 [dcl.ref]p5 (as amended by core issue 453): 607 // If a glvalue to which a reference is directly bound designates neither 608 // an existing object or function of an appropriate type nor a region of 609 // storage of suitable size and alignment to contain an object of the 610 // reference's type, the behavior is undefined. 611 QualType Ty = E->getType(); 612 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 613 } 614 615 return RValue::get(Value); 616 } 617 618 619 /// getAccessedFieldNo - Given an encoded value and a result number, return the 620 /// input field number being accessed. 621 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 622 const llvm::Constant *Elts) { 623 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 624 ->getZExtValue(); 625 } 626 627 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 628 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 629 llvm::Value *High) { 630 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 631 llvm::Value *K47 = Builder.getInt64(47); 632 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 633 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 634 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 635 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 636 return Builder.CreateMul(B1, KMul); 637 } 638 639 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 640 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 641 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 642 } 643 644 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 645 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 646 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 647 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 648 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 649 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 650 } 651 652 bool CodeGenFunction::sanitizePerformTypeCheck() const { 653 return SanOpts.has(SanitizerKind::Null) | 654 SanOpts.has(SanitizerKind::Alignment) | 655 SanOpts.has(SanitizerKind::ObjectSize) | 656 SanOpts.has(SanitizerKind::Vptr); 657 } 658 659 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 660 llvm::Value *Ptr, QualType Ty, 661 CharUnits Alignment, 662 SanitizerSet SkippedChecks, 663 llvm::Value *ArraySize) { 664 if (!sanitizePerformTypeCheck()) 665 return; 666 667 // Don't check pointers outside the default address space. The null check 668 // isn't correct, the object-size check isn't supported by LLVM, and we can't 669 // communicate the addresses to the runtime handler for the vptr check. 670 if (Ptr->getType()->getPointerAddressSpace()) 671 return; 672 673 // Don't check pointers to volatile data. The behavior here is implementation- 674 // defined. 675 if (Ty.isVolatileQualified()) 676 return; 677 678 SanitizerScope SanScope(this); 679 680 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 681 llvm::BasicBlock *Done = nullptr; 682 683 // Quickly determine whether we have a pointer to an alloca. It's possible 684 // to skip null checks, and some alignment checks, for these pointers. This 685 // can reduce compile-time significantly. 686 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 687 688 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 689 llvm::Value *IsNonNull = nullptr; 690 bool IsGuaranteedNonNull = 691 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 692 bool AllowNullPointers = isNullPointerAllowed(TCK); 693 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 694 !IsGuaranteedNonNull) { 695 // The glvalue must not be an empty glvalue. 696 IsNonNull = Builder.CreateIsNotNull(Ptr); 697 698 // The IR builder can constant-fold the null check if the pointer points to 699 // a constant. 700 IsGuaranteedNonNull = IsNonNull == True; 701 702 // Skip the null check if the pointer is known to be non-null. 703 if (!IsGuaranteedNonNull) { 704 if (AllowNullPointers) { 705 // When performing pointer casts, it's OK if the value is null. 706 // Skip the remaining checks in that case. 707 Done = createBasicBlock("null"); 708 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 709 Builder.CreateCondBr(IsNonNull, Rest, Done); 710 EmitBlock(Rest); 711 } else { 712 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 713 } 714 } 715 } 716 717 if (SanOpts.has(SanitizerKind::ObjectSize) && 718 !SkippedChecks.has(SanitizerKind::ObjectSize) && 719 !Ty->isIncompleteType()) { 720 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 721 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 722 if (ArraySize) 723 Size = Builder.CreateMul(Size, ArraySize); 724 725 // Degenerate case: new X[0] does not need an objectsize check. 726 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 727 if (!ConstantSize || !ConstantSize->isNullValue()) { 728 // The glvalue must refer to a large enough storage region. 729 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 730 // to check this. 731 // FIXME: Get object address space 732 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 733 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 734 llvm::Value *Min = Builder.getFalse(); 735 llvm::Value *NullIsUnknown = Builder.getFalse(); 736 llvm::Value *Dynamic = Builder.getFalse(); 737 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 738 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 739 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 740 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 741 } 742 } 743 744 uint64_t AlignVal = 0; 745 llvm::Value *PtrAsInt = nullptr; 746 747 if (SanOpts.has(SanitizerKind::Alignment) && 748 !SkippedChecks.has(SanitizerKind::Alignment)) { 749 AlignVal = Alignment.getQuantity(); 750 if (!Ty->isIncompleteType() && !AlignVal) 751 AlignVal = 752 getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true) 753 .getQuantity(); 754 755 // The glvalue must be suitably aligned. 756 if (AlignVal > 1 && 757 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 758 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 759 llvm::Value *Align = Builder.CreateAnd( 760 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 761 llvm::Value *Aligned = 762 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 763 if (Aligned != True) 764 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 765 } 766 } 767 768 if (Checks.size() > 0) { 769 // Make sure we're not losing information. Alignment needs to be a power of 770 // 2 771 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 772 llvm::Constant *StaticData[] = { 773 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 774 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 775 llvm::ConstantInt::get(Int8Ty, TCK)}; 776 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 777 PtrAsInt ? PtrAsInt : Ptr); 778 } 779 780 // If possible, check that the vptr indicates that there is a subobject of 781 // type Ty at offset zero within this object. 782 // 783 // C++11 [basic.life]p5,6: 784 // [For storage which does not refer to an object within its lifetime] 785 // The program has undefined behavior if: 786 // -- the [pointer or glvalue] is used to access a non-static data member 787 // or call a non-static member function 788 if (SanOpts.has(SanitizerKind::Vptr) && 789 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 790 // Ensure that the pointer is non-null before loading it. If there is no 791 // compile-time guarantee, reuse the run-time null check or emit a new one. 792 if (!IsGuaranteedNonNull) { 793 if (!IsNonNull) 794 IsNonNull = Builder.CreateIsNotNull(Ptr); 795 if (!Done) 796 Done = createBasicBlock("vptr.null"); 797 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 798 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 799 EmitBlock(VptrNotNull); 800 } 801 802 // Compute a hash of the mangled name of the type. 803 // 804 // FIXME: This is not guaranteed to be deterministic! Move to a 805 // fingerprinting mechanism once LLVM provides one. For the time 806 // being the implementation happens to be deterministic. 807 SmallString<64> MangledName; 808 llvm::raw_svector_ostream Out(MangledName); 809 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 810 Out); 811 812 // Blacklist based on the mangled type. 813 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 814 SanitizerKind::Vptr, Out.str())) { 815 llvm::hash_code TypeHash = hash_value(Out.str()); 816 817 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 818 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 819 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 820 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 821 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 822 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 823 824 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 825 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 826 827 // Look the hash up in our cache. 828 const int CacheSize = 128; 829 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 830 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 831 "__ubsan_vptr_type_cache"); 832 llvm::Value *Slot = Builder.CreateAnd(Hash, 833 llvm::ConstantInt::get(IntPtrTy, 834 CacheSize-1)); 835 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 836 llvm::Value *CacheVal = 837 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 838 getPointerAlign()); 839 840 // If the hash isn't in the cache, call a runtime handler to perform the 841 // hard work of checking whether the vptr is for an object of the right 842 // type. This will either fill in the cache and return, or produce a 843 // diagnostic. 844 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 845 llvm::Constant *StaticData[] = { 846 EmitCheckSourceLocation(Loc), 847 EmitCheckTypeDescriptor(Ty), 848 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 849 llvm::ConstantInt::get(Int8Ty, TCK) 850 }; 851 llvm::Value *DynamicData[] = { Ptr, Hash }; 852 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 853 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 854 DynamicData); 855 } 856 } 857 858 if (Done) { 859 Builder.CreateBr(Done); 860 EmitBlock(Done); 861 } 862 } 863 864 /// Determine whether this expression refers to a flexible array member in a 865 /// struct. We disable array bounds checks for such members. 866 static bool isFlexibleArrayMemberExpr(const Expr *E) { 867 // For compatibility with existing code, we treat arrays of length 0 or 868 // 1 as flexible array members. 869 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 870 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 871 if (CAT->getSize().ugt(1)) 872 return false; 873 } else if (!isa<IncompleteArrayType>(AT)) 874 return false; 875 876 E = E->IgnoreParens(); 877 878 // A flexible array member must be the last member in the class. 879 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 880 // FIXME: If the base type of the member expr is not FD->getParent(), 881 // this should not be treated as a flexible array member access. 882 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 883 RecordDecl::field_iterator FI( 884 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 885 return ++FI == FD->getParent()->field_end(); 886 } 887 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 888 return IRE->getDecl()->getNextIvar() == nullptr; 889 } 890 891 return false; 892 } 893 894 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 895 QualType EltTy) { 896 ASTContext &C = getContext(); 897 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 898 if (!EltSize) 899 return nullptr; 900 901 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 902 if (!ArrayDeclRef) 903 return nullptr; 904 905 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 906 if (!ParamDecl) 907 return nullptr; 908 909 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 910 if (!POSAttr) 911 return nullptr; 912 913 // Don't load the size if it's a lower bound. 914 int POSType = POSAttr->getType(); 915 if (POSType != 0 && POSType != 1) 916 return nullptr; 917 918 // Find the implicit size parameter. 919 auto PassedSizeIt = SizeArguments.find(ParamDecl); 920 if (PassedSizeIt == SizeArguments.end()) 921 return nullptr; 922 923 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 924 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 925 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 926 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 927 C.getSizeType(), E->getExprLoc()); 928 llvm::Value *SizeOfElement = 929 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 930 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 931 } 932 933 /// If Base is known to point to the start of an array, return the length of 934 /// that array. Return 0 if the length cannot be determined. 935 static llvm::Value *getArrayIndexingBound( 936 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 937 // For the vector indexing extension, the bound is the number of elements. 938 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 939 IndexedType = Base->getType(); 940 return CGF.Builder.getInt32(VT->getNumElements()); 941 } 942 943 Base = Base->IgnoreParens(); 944 945 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 946 if (CE->getCastKind() == CK_ArrayToPointerDecay && 947 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 948 IndexedType = CE->getSubExpr()->getType(); 949 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 950 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 951 return CGF.Builder.getInt(CAT->getSize()); 952 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 953 return CGF.getVLASize(VAT).NumElts; 954 // Ignore pass_object_size here. It's not applicable on decayed pointers. 955 } 956 } 957 958 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 959 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 960 IndexedType = Base->getType(); 961 return POS; 962 } 963 964 return nullptr; 965 } 966 967 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 968 llvm::Value *Index, QualType IndexType, 969 bool Accessed) { 970 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 971 "should not be called unless adding bounds checks"); 972 SanitizerScope SanScope(this); 973 974 QualType IndexedType; 975 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 976 if (!Bound) 977 return; 978 979 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 980 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 981 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 982 983 llvm::Constant *StaticData[] = { 984 EmitCheckSourceLocation(E->getExprLoc()), 985 EmitCheckTypeDescriptor(IndexedType), 986 EmitCheckTypeDescriptor(IndexType) 987 }; 988 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 989 : Builder.CreateICmpULE(IndexVal, BoundVal); 990 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 991 SanitizerHandler::OutOfBounds, StaticData, Index); 992 } 993 994 995 CodeGenFunction::ComplexPairTy CodeGenFunction:: 996 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 997 bool isInc, bool isPre) { 998 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 999 1000 llvm::Value *NextVal; 1001 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1002 uint64_t AmountVal = isInc ? 1 : -1; 1003 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1004 1005 // Add the inc/dec to the real part. 1006 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1007 } else { 1008 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1009 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1010 if (!isInc) 1011 FVal.changeSign(); 1012 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1013 1014 // Add the inc/dec to the real part. 1015 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1016 } 1017 1018 ComplexPairTy IncVal(NextVal, InVal.second); 1019 1020 // Store the updated result through the lvalue. 1021 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1022 if (getLangOpts().OpenMP) 1023 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1024 E->getSubExpr()); 1025 1026 // If this is a postinc, return the value read from memory, otherwise use the 1027 // updated value. 1028 return isPre ? IncVal : InVal; 1029 } 1030 1031 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1032 CodeGenFunction *CGF) { 1033 // Bind VLAs in the cast type. 1034 if (CGF && E->getType()->isVariablyModifiedType()) 1035 CGF->EmitVariablyModifiedType(E->getType()); 1036 1037 if (CGDebugInfo *DI = getModuleDebugInfo()) 1038 DI->EmitExplicitCastType(E->getType()); 1039 } 1040 1041 //===----------------------------------------------------------------------===// 1042 // LValue Expression Emission 1043 //===----------------------------------------------------------------------===// 1044 1045 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1046 /// derive a more accurate bound on the alignment of the pointer. 1047 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1048 LValueBaseInfo *BaseInfo, 1049 TBAAAccessInfo *TBAAInfo) { 1050 // We allow this with ObjC object pointers because of fragile ABIs. 1051 assert(E->getType()->isPointerType() || 1052 E->getType()->isObjCObjectPointerType()); 1053 E = E->IgnoreParens(); 1054 1055 // Casts: 1056 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1057 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1058 CGM.EmitExplicitCastExprType(ECE, this); 1059 1060 switch (CE->getCastKind()) { 1061 // Non-converting casts (but not C's implicit conversion from void*). 1062 case CK_BitCast: 1063 case CK_NoOp: 1064 case CK_AddressSpaceConversion: 1065 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1066 if (PtrTy->getPointeeType()->isVoidType()) 1067 break; 1068 1069 LValueBaseInfo InnerBaseInfo; 1070 TBAAAccessInfo InnerTBAAInfo; 1071 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1072 &InnerBaseInfo, 1073 &InnerTBAAInfo); 1074 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1075 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1076 1077 if (isa<ExplicitCastExpr>(CE)) { 1078 LValueBaseInfo TargetTypeBaseInfo; 1079 TBAAAccessInfo TargetTypeTBAAInfo; 1080 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1081 &TargetTypeBaseInfo, 1082 &TargetTypeTBAAInfo); 1083 if (TBAAInfo) 1084 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1085 TargetTypeTBAAInfo); 1086 // If the source l-value is opaque, honor the alignment of the 1087 // casted-to type. 1088 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1089 if (BaseInfo) 1090 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1091 Addr = Address(Addr.getPointer(), Align); 1092 } 1093 } 1094 1095 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1096 CE->getCastKind() == CK_BitCast) { 1097 if (auto PT = E->getType()->getAs<PointerType>()) 1098 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1099 /*MayBeNull=*/true, 1100 CodeGenFunction::CFITCK_UnrelatedCast, 1101 CE->getBeginLoc()); 1102 } 1103 return CE->getCastKind() != CK_AddressSpaceConversion 1104 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1105 : Builder.CreateAddrSpaceCast(Addr, 1106 ConvertType(E->getType())); 1107 } 1108 break; 1109 1110 // Array-to-pointer decay. 1111 case CK_ArrayToPointerDecay: 1112 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1113 1114 // Derived-to-base conversions. 1115 case CK_UncheckedDerivedToBase: 1116 case CK_DerivedToBase: { 1117 // TODO: Support accesses to members of base classes in TBAA. For now, we 1118 // conservatively pretend that the complete object is of the base class 1119 // type. 1120 if (TBAAInfo) 1121 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1122 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1123 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1124 return GetAddressOfBaseClass(Addr, Derived, 1125 CE->path_begin(), CE->path_end(), 1126 ShouldNullCheckClassCastValue(CE), 1127 CE->getExprLoc()); 1128 } 1129 1130 // TODO: Is there any reason to treat base-to-derived conversions 1131 // specially? 1132 default: 1133 break; 1134 } 1135 } 1136 1137 // Unary &. 1138 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1139 if (UO->getOpcode() == UO_AddrOf) { 1140 LValue LV = EmitLValue(UO->getSubExpr()); 1141 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1142 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1143 return LV.getAddress(*this); 1144 } 1145 } 1146 1147 // TODO: conditional operators, comma. 1148 1149 // Otherwise, use the alignment of the type. 1150 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1151 TBAAInfo); 1152 return Address(EmitScalarExpr(E), Align); 1153 } 1154 1155 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1156 if (Ty->isVoidType()) 1157 return RValue::get(nullptr); 1158 1159 switch (getEvaluationKind(Ty)) { 1160 case TEK_Complex: { 1161 llvm::Type *EltTy = 1162 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1163 llvm::Value *U = llvm::UndefValue::get(EltTy); 1164 return RValue::getComplex(std::make_pair(U, U)); 1165 } 1166 1167 // If this is a use of an undefined aggregate type, the aggregate must have an 1168 // identifiable address. Just because the contents of the value are undefined 1169 // doesn't mean that the address can't be taken and compared. 1170 case TEK_Aggregate: { 1171 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1172 return RValue::getAggregate(DestPtr); 1173 } 1174 1175 case TEK_Scalar: 1176 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1177 } 1178 llvm_unreachable("bad evaluation kind"); 1179 } 1180 1181 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1182 const char *Name) { 1183 ErrorUnsupported(E, Name); 1184 return GetUndefRValue(E->getType()); 1185 } 1186 1187 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1188 const char *Name) { 1189 ErrorUnsupported(E, Name); 1190 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1191 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1192 E->getType()); 1193 } 1194 1195 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1196 const Expr *Base = Obj; 1197 while (!isa<CXXThisExpr>(Base)) { 1198 // The result of a dynamic_cast can be null. 1199 if (isa<CXXDynamicCastExpr>(Base)) 1200 return false; 1201 1202 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1203 Base = CE->getSubExpr(); 1204 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1205 Base = PE->getSubExpr(); 1206 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1207 if (UO->getOpcode() == UO_Extension) 1208 Base = UO->getSubExpr(); 1209 else 1210 return false; 1211 } else { 1212 return false; 1213 } 1214 } 1215 return true; 1216 } 1217 1218 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1219 LValue LV; 1220 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1221 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1222 else 1223 LV = EmitLValue(E); 1224 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1225 SanitizerSet SkippedChecks; 1226 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1227 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1228 if (IsBaseCXXThis) 1229 SkippedChecks.set(SanitizerKind::Alignment, true); 1230 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1231 SkippedChecks.set(SanitizerKind::Null, true); 1232 } 1233 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1234 LV.getAlignment(), SkippedChecks); 1235 } 1236 return LV; 1237 } 1238 1239 /// EmitLValue - Emit code to compute a designator that specifies the location 1240 /// of the expression. 1241 /// 1242 /// This can return one of two things: a simple address or a bitfield reference. 1243 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1244 /// an LLVM pointer type. 1245 /// 1246 /// If this returns a bitfield reference, nothing about the pointee type of the 1247 /// LLVM value is known: For example, it may not be a pointer to an integer. 1248 /// 1249 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1250 /// this method guarantees that the returned pointer type will point to an LLVM 1251 /// type of the same size of the lvalue's type. If the lvalue has a variable 1252 /// length type, this is not possible. 1253 /// 1254 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1255 ApplyDebugLocation DL(*this, E); 1256 switch (E->getStmtClass()) { 1257 default: return EmitUnsupportedLValue(E, "l-value expression"); 1258 1259 case Expr::ObjCPropertyRefExprClass: 1260 llvm_unreachable("cannot emit a property reference directly"); 1261 1262 case Expr::ObjCSelectorExprClass: 1263 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1264 case Expr::ObjCIsaExprClass: 1265 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1266 case Expr::BinaryOperatorClass: 1267 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1268 case Expr::CompoundAssignOperatorClass: { 1269 QualType Ty = E->getType(); 1270 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1271 Ty = AT->getValueType(); 1272 if (!Ty->isAnyComplexType()) 1273 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1274 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1275 } 1276 case Expr::CallExprClass: 1277 case Expr::CXXMemberCallExprClass: 1278 case Expr::CXXOperatorCallExprClass: 1279 case Expr::UserDefinedLiteralClass: 1280 return EmitCallExprLValue(cast<CallExpr>(E)); 1281 case Expr::CXXRewrittenBinaryOperatorClass: 1282 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1283 case Expr::VAArgExprClass: 1284 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1285 case Expr::DeclRefExprClass: 1286 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1287 case Expr::ConstantExprClass: 1288 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1289 case Expr::ParenExprClass: 1290 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1291 case Expr::GenericSelectionExprClass: 1292 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1293 case Expr::PredefinedExprClass: 1294 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1295 case Expr::StringLiteralClass: 1296 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1297 case Expr::ObjCEncodeExprClass: 1298 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1299 case Expr::PseudoObjectExprClass: 1300 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1301 case Expr::InitListExprClass: 1302 return EmitInitListLValue(cast<InitListExpr>(E)); 1303 case Expr::CXXTemporaryObjectExprClass: 1304 case Expr::CXXConstructExprClass: 1305 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1306 case Expr::CXXBindTemporaryExprClass: 1307 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1308 case Expr::CXXUuidofExprClass: 1309 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1310 case Expr::LambdaExprClass: 1311 return EmitAggExprToLValue(E); 1312 1313 case Expr::ExprWithCleanupsClass: { 1314 const auto *cleanups = cast<ExprWithCleanups>(E); 1315 enterFullExpression(cleanups); 1316 RunCleanupsScope Scope(*this); 1317 LValue LV = EmitLValue(cleanups->getSubExpr()); 1318 if (LV.isSimple()) { 1319 // Defend against branches out of gnu statement expressions surrounded by 1320 // cleanups. 1321 llvm::Value *V = LV.getPointer(*this); 1322 Scope.ForceCleanup({&V}); 1323 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1324 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1325 } 1326 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1327 // bitfield lvalue or some other non-simple lvalue? 1328 return LV; 1329 } 1330 1331 case Expr::CXXDefaultArgExprClass: { 1332 auto *DAE = cast<CXXDefaultArgExpr>(E); 1333 CXXDefaultArgExprScope Scope(*this, DAE); 1334 return EmitLValue(DAE->getExpr()); 1335 } 1336 case Expr::CXXDefaultInitExprClass: { 1337 auto *DIE = cast<CXXDefaultInitExpr>(E); 1338 CXXDefaultInitExprScope Scope(*this, DIE); 1339 return EmitLValue(DIE->getExpr()); 1340 } 1341 case Expr::CXXTypeidExprClass: 1342 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1343 1344 case Expr::ObjCMessageExprClass: 1345 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1346 case Expr::ObjCIvarRefExprClass: 1347 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1348 case Expr::StmtExprClass: 1349 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1350 case Expr::UnaryOperatorClass: 1351 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1352 case Expr::ArraySubscriptExprClass: 1353 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1354 case Expr::OMPArraySectionExprClass: 1355 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1356 case Expr::ExtVectorElementExprClass: 1357 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1358 case Expr::MemberExprClass: 1359 return EmitMemberExpr(cast<MemberExpr>(E)); 1360 case Expr::CompoundLiteralExprClass: 1361 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1362 case Expr::ConditionalOperatorClass: 1363 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1364 case Expr::BinaryConditionalOperatorClass: 1365 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1366 case Expr::ChooseExprClass: 1367 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1368 case Expr::OpaqueValueExprClass: 1369 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1370 case Expr::SubstNonTypeTemplateParmExprClass: 1371 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1372 case Expr::ImplicitCastExprClass: 1373 case Expr::CStyleCastExprClass: 1374 case Expr::CXXFunctionalCastExprClass: 1375 case Expr::CXXStaticCastExprClass: 1376 case Expr::CXXDynamicCastExprClass: 1377 case Expr::CXXReinterpretCastExprClass: 1378 case Expr::CXXConstCastExprClass: 1379 case Expr::ObjCBridgedCastExprClass: 1380 return EmitCastLValue(cast<CastExpr>(E)); 1381 1382 case Expr::MaterializeTemporaryExprClass: 1383 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1384 1385 case Expr::CoawaitExprClass: 1386 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1387 case Expr::CoyieldExprClass: 1388 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1389 } 1390 } 1391 1392 /// Given an object of the given canonical type, can we safely copy a 1393 /// value out of it based on its initializer? 1394 static bool isConstantEmittableObjectType(QualType type) { 1395 assert(type.isCanonical()); 1396 assert(!type->isReferenceType()); 1397 1398 // Must be const-qualified but non-volatile. 1399 Qualifiers qs = type.getLocalQualifiers(); 1400 if (!qs.hasConst() || qs.hasVolatile()) return false; 1401 1402 // Otherwise, all object types satisfy this except C++ classes with 1403 // mutable subobjects or non-trivial copy/destroy behavior. 1404 if (const auto *RT = dyn_cast<RecordType>(type)) 1405 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1406 if (RD->hasMutableFields() || !RD->isTrivial()) 1407 return false; 1408 1409 return true; 1410 } 1411 1412 /// Can we constant-emit a load of a reference to a variable of the 1413 /// given type? This is different from predicates like 1414 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1415 /// in situations that don't necessarily satisfy the language's rules 1416 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1417 /// to do this with const float variables even if those variables 1418 /// aren't marked 'constexpr'. 1419 enum ConstantEmissionKind { 1420 CEK_None, 1421 CEK_AsReferenceOnly, 1422 CEK_AsValueOrReference, 1423 CEK_AsValueOnly 1424 }; 1425 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1426 type = type.getCanonicalType(); 1427 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1428 if (isConstantEmittableObjectType(ref->getPointeeType())) 1429 return CEK_AsValueOrReference; 1430 return CEK_AsReferenceOnly; 1431 } 1432 if (isConstantEmittableObjectType(type)) 1433 return CEK_AsValueOnly; 1434 return CEK_None; 1435 } 1436 1437 /// Try to emit a reference to the given value without producing it as 1438 /// an l-value. This is just an optimization, but it avoids us needing 1439 /// to emit global copies of variables if they're named without triggering 1440 /// a formal use in a context where we can't emit a direct reference to them, 1441 /// for instance if a block or lambda or a member of a local class uses a 1442 /// const int variable or constexpr variable from an enclosing function. 1443 CodeGenFunction::ConstantEmission 1444 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1445 ValueDecl *value = refExpr->getDecl(); 1446 1447 // The value needs to be an enum constant or a constant variable. 1448 ConstantEmissionKind CEK; 1449 if (isa<ParmVarDecl>(value)) { 1450 CEK = CEK_None; 1451 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1452 CEK = checkVarTypeForConstantEmission(var->getType()); 1453 } else if (isa<EnumConstantDecl>(value)) { 1454 CEK = CEK_AsValueOnly; 1455 } else { 1456 CEK = CEK_None; 1457 } 1458 if (CEK == CEK_None) return ConstantEmission(); 1459 1460 Expr::EvalResult result; 1461 bool resultIsReference; 1462 QualType resultType; 1463 1464 // It's best to evaluate all the way as an r-value if that's permitted. 1465 if (CEK != CEK_AsReferenceOnly && 1466 refExpr->EvaluateAsRValue(result, getContext())) { 1467 resultIsReference = false; 1468 resultType = refExpr->getType(); 1469 1470 // Otherwise, try to evaluate as an l-value. 1471 } else if (CEK != CEK_AsValueOnly && 1472 refExpr->EvaluateAsLValue(result, getContext())) { 1473 resultIsReference = true; 1474 resultType = value->getType(); 1475 1476 // Failure. 1477 } else { 1478 return ConstantEmission(); 1479 } 1480 1481 // In any case, if the initializer has side-effects, abandon ship. 1482 if (result.HasSideEffects) 1483 return ConstantEmission(); 1484 1485 // Emit as a constant. 1486 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1487 result.Val, resultType); 1488 1489 // Make sure we emit a debug reference to the global variable. 1490 // This should probably fire even for 1491 if (isa<VarDecl>(value)) { 1492 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1493 EmitDeclRefExprDbgValue(refExpr, result.Val); 1494 } else { 1495 assert(isa<EnumConstantDecl>(value)); 1496 EmitDeclRefExprDbgValue(refExpr, result.Val); 1497 } 1498 1499 // If we emitted a reference constant, we need to dereference that. 1500 if (resultIsReference) 1501 return ConstantEmission::forReference(C); 1502 1503 return ConstantEmission::forValue(C); 1504 } 1505 1506 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1507 const MemberExpr *ME) { 1508 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1509 // Try to emit static variable member expressions as DREs. 1510 return DeclRefExpr::Create( 1511 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1512 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1513 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1514 } 1515 return nullptr; 1516 } 1517 1518 CodeGenFunction::ConstantEmission 1519 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1520 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1521 return tryEmitAsConstant(DRE); 1522 return ConstantEmission(); 1523 } 1524 1525 llvm::Value *CodeGenFunction::emitScalarConstant( 1526 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1527 assert(Constant && "not a constant"); 1528 if (Constant.isReference()) 1529 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1530 E->getExprLoc()) 1531 .getScalarVal(); 1532 return Constant.getValue(); 1533 } 1534 1535 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1536 SourceLocation Loc) { 1537 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1538 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1539 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1540 } 1541 1542 static bool hasBooleanRepresentation(QualType Ty) { 1543 if (Ty->isBooleanType()) 1544 return true; 1545 1546 if (const EnumType *ET = Ty->getAs<EnumType>()) 1547 return ET->getDecl()->getIntegerType()->isBooleanType(); 1548 1549 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1550 return hasBooleanRepresentation(AT->getValueType()); 1551 1552 return false; 1553 } 1554 1555 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1556 llvm::APInt &Min, llvm::APInt &End, 1557 bool StrictEnums, bool IsBool) { 1558 const EnumType *ET = Ty->getAs<EnumType>(); 1559 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1560 ET && !ET->getDecl()->isFixed(); 1561 if (!IsBool && !IsRegularCPlusPlusEnum) 1562 return false; 1563 1564 if (IsBool) { 1565 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1566 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1567 } else { 1568 const EnumDecl *ED = ET->getDecl(); 1569 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1570 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1571 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1572 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1573 1574 if (NumNegativeBits) { 1575 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1576 assert(NumBits <= Bitwidth); 1577 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1578 Min = -End; 1579 } else { 1580 assert(NumPositiveBits <= Bitwidth); 1581 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1582 Min = llvm::APInt(Bitwidth, 0); 1583 } 1584 } 1585 return true; 1586 } 1587 1588 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1589 llvm::APInt Min, End; 1590 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1591 hasBooleanRepresentation(Ty))) 1592 return nullptr; 1593 1594 llvm::MDBuilder MDHelper(getLLVMContext()); 1595 return MDHelper.createRange(Min, End); 1596 } 1597 1598 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1599 SourceLocation Loc) { 1600 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1601 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1602 if (!HasBoolCheck && !HasEnumCheck) 1603 return false; 1604 1605 bool IsBool = hasBooleanRepresentation(Ty) || 1606 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1607 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1608 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1609 if (!NeedsBoolCheck && !NeedsEnumCheck) 1610 return false; 1611 1612 // Single-bit booleans don't need to be checked. Special-case this to avoid 1613 // a bit width mismatch when handling bitfield values. This is handled by 1614 // EmitFromMemory for the non-bitfield case. 1615 if (IsBool && 1616 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1617 return false; 1618 1619 llvm::APInt Min, End; 1620 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1621 return true; 1622 1623 auto &Ctx = getLLVMContext(); 1624 SanitizerScope SanScope(this); 1625 llvm::Value *Check; 1626 --End; 1627 if (!Min) { 1628 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1629 } else { 1630 llvm::Value *Upper = 1631 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1632 llvm::Value *Lower = 1633 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1634 Check = Builder.CreateAnd(Upper, Lower); 1635 } 1636 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1637 EmitCheckTypeDescriptor(Ty)}; 1638 SanitizerMask Kind = 1639 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1640 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1641 StaticArgs, EmitCheckValue(Value)); 1642 return true; 1643 } 1644 1645 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1646 QualType Ty, 1647 SourceLocation Loc, 1648 LValueBaseInfo BaseInfo, 1649 TBAAAccessInfo TBAAInfo, 1650 bool isNontemporal) { 1651 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1652 // For better performance, handle vector loads differently. 1653 if (Ty->isVectorType()) { 1654 const llvm::Type *EltTy = Addr.getElementType(); 1655 1656 const auto *VTy = cast<llvm::VectorType>(EltTy); 1657 1658 // Handle vectors of size 3 like size 4 for better performance. 1659 if (VTy->getNumElements() == 3) { 1660 1661 // Bitcast to vec4 type. 1662 llvm::VectorType *vec4Ty = 1663 llvm::VectorType::get(VTy->getElementType(), 4); 1664 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1665 // Now load value. 1666 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1667 1668 // Shuffle vector to get vec3. 1669 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1670 {0, 1, 2}, "extractVec"); 1671 return EmitFromMemory(V, Ty); 1672 } 1673 } 1674 } 1675 1676 // Atomic operations have to be done on integral types. 1677 LValue AtomicLValue = 1678 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1679 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1680 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1681 } 1682 1683 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1684 if (isNontemporal) { 1685 llvm::MDNode *Node = llvm::MDNode::get( 1686 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1687 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1688 } 1689 1690 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1691 1692 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1693 // In order to prevent the optimizer from throwing away the check, don't 1694 // attach range metadata to the load. 1695 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1696 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1697 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1698 1699 return EmitFromMemory(Load, Ty); 1700 } 1701 1702 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1703 // Bool has a different representation in memory than in registers. 1704 if (hasBooleanRepresentation(Ty)) { 1705 // This should really always be an i1, but sometimes it's already 1706 // an i8, and it's awkward to track those cases down. 1707 if (Value->getType()->isIntegerTy(1)) 1708 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1709 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1710 "wrong value rep of bool"); 1711 } 1712 1713 return Value; 1714 } 1715 1716 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1717 // Bool has a different representation in memory than in registers. 1718 if (hasBooleanRepresentation(Ty)) { 1719 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1720 "wrong value rep of bool"); 1721 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1722 } 1723 1724 return Value; 1725 } 1726 1727 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1728 bool Volatile, QualType Ty, 1729 LValueBaseInfo BaseInfo, 1730 TBAAAccessInfo TBAAInfo, 1731 bool isInit, bool isNontemporal) { 1732 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1733 // Handle vectors differently to get better performance. 1734 if (Ty->isVectorType()) { 1735 llvm::Type *SrcTy = Value->getType(); 1736 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1737 // Handle vec3 special. 1738 if (VecTy && VecTy->getNumElements() == 3) { 1739 // Our source is a vec3, do a shuffle vector to make it a vec4. 1740 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1741 Builder.getInt32(2), 1742 llvm::UndefValue::get(Builder.getInt32Ty())}; 1743 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1744 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1745 MaskV, "extractVec"); 1746 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1747 } 1748 if (Addr.getElementType() != SrcTy) { 1749 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1750 } 1751 } 1752 } 1753 1754 Value = EmitToMemory(Value, Ty); 1755 1756 LValue AtomicLValue = 1757 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1758 if (Ty->isAtomicType() || 1759 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1760 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1761 return; 1762 } 1763 1764 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1765 if (isNontemporal) { 1766 llvm::MDNode *Node = 1767 llvm::MDNode::get(Store->getContext(), 1768 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1769 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1770 } 1771 1772 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1773 } 1774 1775 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1776 bool isInit) { 1777 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1778 lvalue.getType(), lvalue.getBaseInfo(), 1779 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1780 } 1781 1782 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1783 /// method emits the address of the lvalue, then loads the result as an rvalue, 1784 /// returning the rvalue. 1785 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1786 if (LV.isObjCWeak()) { 1787 // load of a __weak object. 1788 Address AddrWeakObj = LV.getAddress(*this); 1789 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1790 AddrWeakObj)); 1791 } 1792 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1793 // In MRC mode, we do a load+autorelease. 1794 if (!getLangOpts().ObjCAutoRefCount) { 1795 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1796 } 1797 1798 // In ARC mode, we load retained and then consume the value. 1799 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1800 Object = EmitObjCConsumeObject(LV.getType(), Object); 1801 return RValue::get(Object); 1802 } 1803 1804 if (LV.isSimple()) { 1805 assert(!LV.getType()->isFunctionType()); 1806 1807 // Everything needs a load. 1808 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1809 } 1810 1811 if (LV.isVectorElt()) { 1812 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1813 LV.isVolatileQualified()); 1814 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1815 "vecext")); 1816 } 1817 1818 // If this is a reference to a subset of the elements of a vector, either 1819 // shuffle the input or extract/insert them as appropriate. 1820 if (LV.isExtVectorElt()) 1821 return EmitLoadOfExtVectorElementLValue(LV); 1822 1823 // Global Register variables always invoke intrinsics 1824 if (LV.isGlobalReg()) 1825 return EmitLoadOfGlobalRegLValue(LV); 1826 1827 assert(LV.isBitField() && "Unknown LValue type!"); 1828 return EmitLoadOfBitfieldLValue(LV, Loc); 1829 } 1830 1831 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1832 SourceLocation Loc) { 1833 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1834 1835 // Get the output type. 1836 llvm::Type *ResLTy = ConvertType(LV.getType()); 1837 1838 Address Ptr = LV.getBitFieldAddress(); 1839 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1840 1841 if (Info.IsSigned) { 1842 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1843 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1844 if (HighBits) 1845 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1846 if (Info.Offset + HighBits) 1847 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1848 } else { 1849 if (Info.Offset) 1850 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1851 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1852 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1853 Info.Size), 1854 "bf.clear"); 1855 } 1856 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1857 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1858 return RValue::get(Val); 1859 } 1860 1861 // If this is a reference to a subset of the elements of a vector, create an 1862 // appropriate shufflevector. 1863 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1864 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1865 LV.isVolatileQualified()); 1866 1867 const llvm::Constant *Elts = LV.getExtVectorElts(); 1868 1869 // If the result of the expression is a non-vector type, we must be extracting 1870 // a single element. Just codegen as an extractelement. 1871 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1872 if (!ExprVT) { 1873 unsigned InIdx = getAccessedFieldNo(0, Elts); 1874 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1875 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1876 } 1877 1878 // Always use shuffle vector to try to retain the original program structure 1879 unsigned NumResultElts = ExprVT->getNumElements(); 1880 1881 SmallVector<llvm::Constant*, 4> Mask; 1882 for (unsigned i = 0; i != NumResultElts; ++i) 1883 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1884 1885 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1886 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1887 MaskV); 1888 return RValue::get(Vec); 1889 } 1890 1891 /// Generates lvalue for partial ext_vector access. 1892 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1893 Address VectorAddress = LV.getExtVectorAddress(); 1894 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1895 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1896 1897 Address CastToPointerElement = 1898 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1899 "conv.ptr.element"); 1900 1901 const llvm::Constant *Elts = LV.getExtVectorElts(); 1902 unsigned ix = getAccessedFieldNo(0, Elts); 1903 1904 Address VectorBasePtrPlusIx = 1905 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1906 "vector.elt"); 1907 1908 return VectorBasePtrPlusIx; 1909 } 1910 1911 /// Load of global gamed gegisters are always calls to intrinsics. 1912 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1913 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1914 "Bad type for register variable"); 1915 llvm::MDNode *RegName = cast<llvm::MDNode>( 1916 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1917 1918 // We accept integer and pointer types only 1919 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1920 llvm::Type *Ty = OrigTy; 1921 if (OrigTy->isPointerTy()) 1922 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1923 llvm::Type *Types[] = { Ty }; 1924 1925 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1926 llvm::Value *Call = Builder.CreateCall( 1927 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1928 if (OrigTy->isPointerTy()) 1929 Call = Builder.CreateIntToPtr(Call, OrigTy); 1930 return RValue::get(Call); 1931 } 1932 1933 1934 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1935 /// lvalue, where both are guaranteed to the have the same type, and that type 1936 /// is 'Ty'. 1937 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1938 bool isInit) { 1939 if (!Dst.isSimple()) { 1940 if (Dst.isVectorElt()) { 1941 // Read/modify/write the vector, inserting the new element. 1942 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1943 Dst.isVolatileQualified()); 1944 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1945 Dst.getVectorIdx(), "vecins"); 1946 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1947 Dst.isVolatileQualified()); 1948 return; 1949 } 1950 1951 // If this is an update of extended vector elements, insert them as 1952 // appropriate. 1953 if (Dst.isExtVectorElt()) 1954 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1955 1956 if (Dst.isGlobalReg()) 1957 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1958 1959 assert(Dst.isBitField() && "Unknown LValue type"); 1960 return EmitStoreThroughBitfieldLValue(Src, Dst); 1961 } 1962 1963 // There's special magic for assigning into an ARC-qualified l-value. 1964 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1965 switch (Lifetime) { 1966 case Qualifiers::OCL_None: 1967 llvm_unreachable("present but none"); 1968 1969 case Qualifiers::OCL_ExplicitNone: 1970 // nothing special 1971 break; 1972 1973 case Qualifiers::OCL_Strong: 1974 if (isInit) { 1975 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1976 break; 1977 } 1978 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1979 return; 1980 1981 case Qualifiers::OCL_Weak: 1982 if (isInit) 1983 // Initialize and then skip the primitive store. 1984 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1985 else 1986 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1987 /*ignore*/ true); 1988 return; 1989 1990 case Qualifiers::OCL_Autoreleasing: 1991 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1992 Src.getScalarVal())); 1993 // fall into the normal path 1994 break; 1995 } 1996 } 1997 1998 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1999 // load of a __weak object. 2000 Address LvalueDst = Dst.getAddress(*this); 2001 llvm::Value *src = Src.getScalarVal(); 2002 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2003 return; 2004 } 2005 2006 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2007 // load of a __strong object. 2008 Address LvalueDst = Dst.getAddress(*this); 2009 llvm::Value *src = Src.getScalarVal(); 2010 if (Dst.isObjCIvar()) { 2011 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2012 llvm::Type *ResultType = IntPtrTy; 2013 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2014 llvm::Value *RHS = dst.getPointer(); 2015 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2016 llvm::Value *LHS = 2017 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2018 "sub.ptr.lhs.cast"); 2019 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2020 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2021 BytesBetween); 2022 } else if (Dst.isGlobalObjCRef()) { 2023 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2024 Dst.isThreadLocalRef()); 2025 } 2026 else 2027 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2028 return; 2029 } 2030 2031 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2032 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2033 } 2034 2035 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2036 llvm::Value **Result) { 2037 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2038 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2039 Address Ptr = Dst.getBitFieldAddress(); 2040 2041 // Get the source value, truncated to the width of the bit-field. 2042 llvm::Value *SrcVal = Src.getScalarVal(); 2043 2044 // Cast the source to the storage type and shift it into place. 2045 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2046 /*isSigned=*/false); 2047 llvm::Value *MaskedVal = SrcVal; 2048 2049 // See if there are other bits in the bitfield's storage we'll need to load 2050 // and mask together with source before storing. 2051 if (Info.StorageSize != Info.Size) { 2052 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2053 llvm::Value *Val = 2054 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2055 2056 // Mask the source value as needed. 2057 if (!hasBooleanRepresentation(Dst.getType())) 2058 SrcVal = Builder.CreateAnd(SrcVal, 2059 llvm::APInt::getLowBitsSet(Info.StorageSize, 2060 Info.Size), 2061 "bf.value"); 2062 MaskedVal = SrcVal; 2063 if (Info.Offset) 2064 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2065 2066 // Mask out the original value. 2067 Val = Builder.CreateAnd(Val, 2068 ~llvm::APInt::getBitsSet(Info.StorageSize, 2069 Info.Offset, 2070 Info.Offset + Info.Size), 2071 "bf.clear"); 2072 2073 // Or together the unchanged values and the source value. 2074 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2075 } else { 2076 assert(Info.Offset == 0); 2077 // According to the AACPS: 2078 // When a volatile bit-field is written, and its container does not overlap 2079 // with any non-bit-field member, its container must be read exactly once and 2080 // written exactly once using the access width appropriate to the type of the 2081 // container. The two accesses are not atomic. 2082 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2083 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2084 Builder.CreateLoad(Ptr, true, "bf.load"); 2085 } 2086 2087 // Write the new value back out. 2088 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2089 2090 // Return the new value of the bit-field, if requested. 2091 if (Result) { 2092 llvm::Value *ResultVal = MaskedVal; 2093 2094 // Sign extend the value if needed. 2095 if (Info.IsSigned) { 2096 assert(Info.Size <= Info.StorageSize); 2097 unsigned HighBits = Info.StorageSize - Info.Size; 2098 if (HighBits) { 2099 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2100 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2101 } 2102 } 2103 2104 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2105 "bf.result.cast"); 2106 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2107 } 2108 } 2109 2110 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2111 LValue Dst) { 2112 // This access turns into a read/modify/write of the vector. Load the input 2113 // value now. 2114 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2115 Dst.isVolatileQualified()); 2116 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2117 2118 llvm::Value *SrcVal = Src.getScalarVal(); 2119 2120 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2121 unsigned NumSrcElts = VTy->getNumElements(); 2122 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2123 if (NumDstElts == NumSrcElts) { 2124 // Use shuffle vector is the src and destination are the same number of 2125 // elements and restore the vector mask since it is on the side it will be 2126 // stored. 2127 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2128 for (unsigned i = 0; i != NumSrcElts; ++i) 2129 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2130 2131 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2132 Vec = Builder.CreateShuffleVector(SrcVal, 2133 llvm::UndefValue::get(Vec->getType()), 2134 MaskV); 2135 } else if (NumDstElts > NumSrcElts) { 2136 // Extended the source vector to the same length and then shuffle it 2137 // into the destination. 2138 // FIXME: since we're shuffling with undef, can we just use the indices 2139 // into that? This could be simpler. 2140 SmallVector<llvm::Constant*, 4> ExtMask; 2141 for (unsigned i = 0; i != NumSrcElts; ++i) 2142 ExtMask.push_back(Builder.getInt32(i)); 2143 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2144 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2145 llvm::Value *ExtSrcVal = 2146 Builder.CreateShuffleVector(SrcVal, 2147 llvm::UndefValue::get(SrcVal->getType()), 2148 ExtMaskV); 2149 // build identity 2150 SmallVector<llvm::Constant*, 4> Mask; 2151 for (unsigned i = 0; i != NumDstElts; ++i) 2152 Mask.push_back(Builder.getInt32(i)); 2153 2154 // When the vector size is odd and .odd or .hi is used, the last element 2155 // of the Elts constant array will be one past the size of the vector. 2156 // Ignore the last element here, if it is greater than the mask size. 2157 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2158 NumSrcElts--; 2159 2160 // modify when what gets shuffled in 2161 for (unsigned i = 0; i != NumSrcElts; ++i) 2162 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2163 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2164 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2165 } else { 2166 // We should never shorten the vector 2167 llvm_unreachable("unexpected shorten vector length"); 2168 } 2169 } else { 2170 // If the Src is a scalar (not a vector) it must be updating one element. 2171 unsigned InIdx = getAccessedFieldNo(0, Elts); 2172 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2173 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2174 } 2175 2176 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2177 Dst.isVolatileQualified()); 2178 } 2179 2180 /// Store of global named registers are always calls to intrinsics. 2181 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2182 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2183 "Bad type for register variable"); 2184 llvm::MDNode *RegName = cast<llvm::MDNode>( 2185 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2186 assert(RegName && "Register LValue is not metadata"); 2187 2188 // We accept integer and pointer types only 2189 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2190 llvm::Type *Ty = OrigTy; 2191 if (OrigTy->isPointerTy()) 2192 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2193 llvm::Type *Types[] = { Ty }; 2194 2195 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2196 llvm::Value *Value = Src.getScalarVal(); 2197 if (OrigTy->isPointerTy()) 2198 Value = Builder.CreatePtrToInt(Value, Ty); 2199 Builder.CreateCall( 2200 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2201 } 2202 2203 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2204 // generating write-barries API. It is currently a global, ivar, 2205 // or neither. 2206 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2207 LValue &LV, 2208 bool IsMemberAccess=false) { 2209 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2210 return; 2211 2212 if (isa<ObjCIvarRefExpr>(E)) { 2213 QualType ExpTy = E->getType(); 2214 if (IsMemberAccess && ExpTy->isPointerType()) { 2215 // If ivar is a structure pointer, assigning to field of 2216 // this struct follows gcc's behavior and makes it a non-ivar 2217 // writer-barrier conservatively. 2218 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2219 if (ExpTy->isRecordType()) { 2220 LV.setObjCIvar(false); 2221 return; 2222 } 2223 } 2224 LV.setObjCIvar(true); 2225 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2226 LV.setBaseIvarExp(Exp->getBase()); 2227 LV.setObjCArray(E->getType()->isArrayType()); 2228 return; 2229 } 2230 2231 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2232 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2233 if (VD->hasGlobalStorage()) { 2234 LV.setGlobalObjCRef(true); 2235 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2236 } 2237 } 2238 LV.setObjCArray(E->getType()->isArrayType()); 2239 return; 2240 } 2241 2242 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2243 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2244 return; 2245 } 2246 2247 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2248 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2249 if (LV.isObjCIvar()) { 2250 // If cast is to a structure pointer, follow gcc's behavior and make it 2251 // a non-ivar write-barrier. 2252 QualType ExpTy = E->getType(); 2253 if (ExpTy->isPointerType()) 2254 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2255 if (ExpTy->isRecordType()) 2256 LV.setObjCIvar(false); 2257 } 2258 return; 2259 } 2260 2261 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2262 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2263 return; 2264 } 2265 2266 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2267 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2268 return; 2269 } 2270 2271 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2272 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2273 return; 2274 } 2275 2276 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2277 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2278 return; 2279 } 2280 2281 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2282 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2283 if (LV.isObjCIvar() && !LV.isObjCArray()) 2284 // Using array syntax to assigning to what an ivar points to is not 2285 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2286 LV.setObjCIvar(false); 2287 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2288 // Using array syntax to assigning to what global points to is not 2289 // same as assigning to the global itself. {id *G;} G[i] = 0; 2290 LV.setGlobalObjCRef(false); 2291 return; 2292 } 2293 2294 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2295 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2296 // We don't know if member is an 'ivar', but this flag is looked at 2297 // only in the context of LV.isObjCIvar(). 2298 LV.setObjCArray(E->getType()->isArrayType()); 2299 return; 2300 } 2301 } 2302 2303 static llvm::Value * 2304 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2305 llvm::Value *V, llvm::Type *IRType, 2306 StringRef Name = StringRef()) { 2307 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2308 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2309 } 2310 2311 static LValue EmitThreadPrivateVarDeclLValue( 2312 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2313 llvm::Type *RealVarTy, SourceLocation Loc) { 2314 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2315 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2316 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2317 } 2318 2319 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2320 const VarDecl *VD, QualType T) { 2321 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2322 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2323 // Return an invalid address if variable is MT_To and unified 2324 // memory is not enabled. For all other cases: MT_Link and 2325 // MT_To with unified memory, return a valid address. 2326 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2327 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2328 return Address::invalid(); 2329 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2330 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2331 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2332 "Expected link clause OR to clause with unified memory enabled."); 2333 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2334 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2335 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2336 } 2337 2338 Address 2339 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2340 LValueBaseInfo *PointeeBaseInfo, 2341 TBAAAccessInfo *PointeeTBAAInfo) { 2342 llvm::LoadInst *Load = 2343 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2344 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2345 2346 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2347 PointeeBaseInfo, PointeeTBAAInfo, 2348 /* forPointeeType= */ true); 2349 return Address(Load, Align); 2350 } 2351 2352 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2353 LValueBaseInfo PointeeBaseInfo; 2354 TBAAAccessInfo PointeeTBAAInfo; 2355 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2356 &PointeeTBAAInfo); 2357 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2358 PointeeBaseInfo, PointeeTBAAInfo); 2359 } 2360 2361 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2362 const PointerType *PtrTy, 2363 LValueBaseInfo *BaseInfo, 2364 TBAAAccessInfo *TBAAInfo) { 2365 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2366 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2367 BaseInfo, TBAAInfo, 2368 /*forPointeeType=*/true)); 2369 } 2370 2371 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2372 const PointerType *PtrTy) { 2373 LValueBaseInfo BaseInfo; 2374 TBAAAccessInfo TBAAInfo; 2375 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2376 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2377 } 2378 2379 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2380 const Expr *E, const VarDecl *VD) { 2381 QualType T = E->getType(); 2382 2383 // If it's thread_local, emit a call to its wrapper function instead. 2384 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2385 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2386 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2387 // Check if the variable is marked as declare target with link clause in 2388 // device codegen. 2389 if (CGF.getLangOpts().OpenMPIsDevice) { 2390 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2391 if (Addr.isValid()) 2392 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2393 } 2394 2395 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2396 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2397 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2398 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2399 Address Addr(V, Alignment); 2400 // Emit reference to the private copy of the variable if it is an OpenMP 2401 // threadprivate variable. 2402 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2403 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2404 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2405 E->getExprLoc()); 2406 } 2407 LValue LV = VD->getType()->isReferenceType() ? 2408 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2409 AlignmentSource::Decl) : 2410 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2411 setObjCGCLValueClass(CGF.getContext(), E, LV); 2412 return LV; 2413 } 2414 2415 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2416 const FunctionDecl *FD) { 2417 if (FD->hasAttr<WeakRefAttr>()) { 2418 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2419 return aliasee.getPointer(); 2420 } 2421 2422 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2423 if (!FD->hasPrototype()) { 2424 if (const FunctionProtoType *Proto = 2425 FD->getType()->getAs<FunctionProtoType>()) { 2426 // Ugly case: for a K&R-style definition, the type of the definition 2427 // isn't the same as the type of a use. Correct for this with a 2428 // bitcast. 2429 QualType NoProtoType = 2430 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2431 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2432 V = llvm::ConstantExpr::getBitCast(V, 2433 CGM.getTypes().ConvertType(NoProtoType)); 2434 } 2435 } 2436 return V; 2437 } 2438 2439 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2440 const Expr *E, const FunctionDecl *FD) { 2441 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2442 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2443 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2444 AlignmentSource::Decl); 2445 } 2446 2447 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2448 llvm::Value *ThisValue) { 2449 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2450 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2451 return CGF.EmitLValueForField(LV, FD); 2452 } 2453 2454 /// Named Registers are named metadata pointing to the register name 2455 /// which will be read from/written to as an argument to the intrinsic 2456 /// @llvm.read/write_register. 2457 /// So far, only the name is being passed down, but other options such as 2458 /// register type, allocation type or even optimization options could be 2459 /// passed down via the metadata node. 2460 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2461 SmallString<64> Name("llvm.named.register."); 2462 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2463 assert(Asm->getLabel().size() < 64-Name.size() && 2464 "Register name too big"); 2465 Name.append(Asm->getLabel()); 2466 llvm::NamedMDNode *M = 2467 CGM.getModule().getOrInsertNamedMetadata(Name); 2468 if (M->getNumOperands() == 0) { 2469 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2470 Asm->getLabel()); 2471 llvm::Metadata *Ops[] = {Str}; 2472 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2473 } 2474 2475 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2476 2477 llvm::Value *Ptr = 2478 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2479 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2480 } 2481 2482 /// Determine whether we can emit a reference to \p VD from the current 2483 /// context, despite not necessarily having seen an odr-use of the variable in 2484 /// this context. 2485 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2486 const DeclRefExpr *E, 2487 const VarDecl *VD, 2488 bool IsConstant) { 2489 // For a variable declared in an enclosing scope, do not emit a spurious 2490 // reference even if we have a capture, as that will emit an unwarranted 2491 // reference to our capture state, and will likely generate worse code than 2492 // emitting a local copy. 2493 if (E->refersToEnclosingVariableOrCapture()) 2494 return false; 2495 2496 // For a local declaration declared in this function, we can always reference 2497 // it even if we don't have an odr-use. 2498 if (VD->hasLocalStorage()) { 2499 return VD->getDeclContext() == 2500 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2501 } 2502 2503 // For a global declaration, we can emit a reference to it if we know 2504 // for sure that we are able to emit a definition of it. 2505 VD = VD->getDefinition(CGF.getContext()); 2506 if (!VD) 2507 return false; 2508 2509 // Don't emit a spurious reference if it might be to a variable that only 2510 // exists on a different device / target. 2511 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2512 // cross-target reference. 2513 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2514 CGF.getLangOpts().OpenCL) { 2515 return false; 2516 } 2517 2518 // We can emit a spurious reference only if the linkage implies that we'll 2519 // be emitting a non-interposable symbol that will be retained until link 2520 // time. 2521 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2522 case llvm::GlobalValue::ExternalLinkage: 2523 case llvm::GlobalValue::LinkOnceODRLinkage: 2524 case llvm::GlobalValue::WeakODRLinkage: 2525 case llvm::GlobalValue::InternalLinkage: 2526 case llvm::GlobalValue::PrivateLinkage: 2527 return true; 2528 default: 2529 return false; 2530 } 2531 } 2532 2533 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2534 const NamedDecl *ND = E->getDecl(); 2535 QualType T = E->getType(); 2536 2537 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2538 "should not emit an unevaluated operand"); 2539 2540 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2541 // Global Named registers access via intrinsics only 2542 if (VD->getStorageClass() == SC_Register && 2543 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2544 return EmitGlobalNamedRegister(VD, CGM); 2545 2546 // If this DeclRefExpr does not constitute an odr-use of the variable, 2547 // we're not permitted to emit a reference to it in general, and it might 2548 // not be captured if capture would be necessary for a use. Emit the 2549 // constant value directly instead. 2550 if (E->isNonOdrUse() == NOUR_Constant && 2551 (VD->getType()->isReferenceType() || 2552 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2553 VD->getAnyInitializer(VD); 2554 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2555 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2556 assert(Val && "failed to emit constant expression"); 2557 2558 Address Addr = Address::invalid(); 2559 if (!VD->getType()->isReferenceType()) { 2560 // Spill the constant value to a global. 2561 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2562 getContext().getDeclAlign(VD)); 2563 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2564 auto *PTy = llvm::PointerType::get( 2565 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2566 if (PTy != Addr.getType()) 2567 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2568 } else { 2569 // Should we be using the alignment of the constant pointer we emitted? 2570 CharUnits Alignment = 2571 getNaturalTypeAlignment(E->getType(), 2572 /* BaseInfo= */ nullptr, 2573 /* TBAAInfo= */ nullptr, 2574 /* forPointeeType= */ true); 2575 Addr = Address(Val, Alignment); 2576 } 2577 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2578 } 2579 2580 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2581 2582 // Check for captured variables. 2583 if (E->refersToEnclosingVariableOrCapture()) { 2584 VD = VD->getCanonicalDecl(); 2585 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2586 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2587 if (CapturedStmtInfo) { 2588 auto I = LocalDeclMap.find(VD); 2589 if (I != LocalDeclMap.end()) { 2590 LValue CapLVal; 2591 if (VD->getType()->isReferenceType()) 2592 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2593 AlignmentSource::Decl); 2594 else 2595 CapLVal = MakeAddrLValue(I->second, T); 2596 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2597 // in simd context. 2598 if (getLangOpts().OpenMP && 2599 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2600 CapLVal.setNontemporal(/*Value=*/true); 2601 return CapLVal; 2602 } 2603 LValue CapLVal = 2604 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2605 CapturedStmtInfo->getContextValue()); 2606 CapLVal = MakeAddrLValue( 2607 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2608 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2609 CapLVal.getTBAAInfo()); 2610 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2611 // in simd context. 2612 if (getLangOpts().OpenMP && 2613 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2614 CapLVal.setNontemporal(/*Value=*/true); 2615 return CapLVal; 2616 } 2617 2618 assert(isa<BlockDecl>(CurCodeDecl)); 2619 Address addr = GetAddrOfBlockDecl(VD); 2620 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2621 } 2622 } 2623 2624 // FIXME: We should be able to assert this for FunctionDecls as well! 2625 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2626 // those with a valid source location. 2627 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2628 !E->getLocation().isValid()) && 2629 "Should not use decl without marking it used!"); 2630 2631 if (ND->hasAttr<WeakRefAttr>()) { 2632 const auto *VD = cast<ValueDecl>(ND); 2633 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2634 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2635 } 2636 2637 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2638 // Check if this is a global variable. 2639 if (VD->hasLinkage() || VD->isStaticDataMember()) 2640 return EmitGlobalVarDeclLValue(*this, E, VD); 2641 2642 Address addr = Address::invalid(); 2643 2644 // The variable should generally be present in the local decl map. 2645 auto iter = LocalDeclMap.find(VD); 2646 if (iter != LocalDeclMap.end()) { 2647 addr = iter->second; 2648 2649 // Otherwise, it might be static local we haven't emitted yet for 2650 // some reason; most likely, because it's in an outer function. 2651 } else if (VD->isStaticLocal()) { 2652 addr = Address(CGM.getOrCreateStaticVarDecl( 2653 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2654 getContext().getDeclAlign(VD)); 2655 2656 // No other cases for now. 2657 } else { 2658 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2659 } 2660 2661 2662 // Check for OpenMP threadprivate variables. 2663 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2664 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2665 return EmitThreadPrivateVarDeclLValue( 2666 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2667 E->getExprLoc()); 2668 } 2669 2670 // Drill into block byref variables. 2671 bool isBlockByref = VD->isEscapingByref(); 2672 if (isBlockByref) { 2673 addr = emitBlockByrefAddress(addr, VD); 2674 } 2675 2676 // Drill into reference types. 2677 LValue LV = VD->getType()->isReferenceType() ? 2678 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2679 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2680 2681 bool isLocalStorage = VD->hasLocalStorage(); 2682 2683 bool NonGCable = isLocalStorage && 2684 !VD->getType()->isReferenceType() && 2685 !isBlockByref; 2686 if (NonGCable) { 2687 LV.getQuals().removeObjCGCAttr(); 2688 LV.setNonGC(true); 2689 } 2690 2691 bool isImpreciseLifetime = 2692 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2693 if (isImpreciseLifetime) 2694 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2695 setObjCGCLValueClass(getContext(), E, LV); 2696 return LV; 2697 } 2698 2699 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2700 return EmitFunctionDeclLValue(*this, E, FD); 2701 2702 // FIXME: While we're emitting a binding from an enclosing scope, all other 2703 // DeclRefExprs we see should be implicitly treated as if they also refer to 2704 // an enclosing scope. 2705 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2706 return EmitLValue(BD->getBinding()); 2707 2708 llvm_unreachable("Unhandled DeclRefExpr"); 2709 } 2710 2711 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2712 // __extension__ doesn't affect lvalue-ness. 2713 if (E->getOpcode() == UO_Extension) 2714 return EmitLValue(E->getSubExpr()); 2715 2716 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2717 switch (E->getOpcode()) { 2718 default: llvm_unreachable("Unknown unary operator lvalue!"); 2719 case UO_Deref: { 2720 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2721 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2722 2723 LValueBaseInfo BaseInfo; 2724 TBAAAccessInfo TBAAInfo; 2725 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2726 &TBAAInfo); 2727 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2728 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2729 2730 // We should not generate __weak write barrier on indirect reference 2731 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2732 // But, we continue to generate __strong write barrier on indirect write 2733 // into a pointer to object. 2734 if (getLangOpts().ObjC && 2735 getLangOpts().getGC() != LangOptions::NonGC && 2736 LV.isObjCWeak()) 2737 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2738 return LV; 2739 } 2740 case UO_Real: 2741 case UO_Imag: { 2742 LValue LV = EmitLValue(E->getSubExpr()); 2743 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2744 2745 // __real is valid on scalars. This is a faster way of testing that. 2746 // __imag can only produce an rvalue on scalars. 2747 if (E->getOpcode() == UO_Real && 2748 !LV.getAddress(*this).getElementType()->isStructTy()) { 2749 assert(E->getSubExpr()->getType()->isArithmeticType()); 2750 return LV; 2751 } 2752 2753 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2754 2755 Address Component = 2756 (E->getOpcode() == UO_Real 2757 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2758 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2759 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2760 CGM.getTBAAInfoForSubobject(LV, T)); 2761 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2762 return ElemLV; 2763 } 2764 case UO_PreInc: 2765 case UO_PreDec: { 2766 LValue LV = EmitLValue(E->getSubExpr()); 2767 bool isInc = E->getOpcode() == UO_PreInc; 2768 2769 if (E->getType()->isAnyComplexType()) 2770 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2771 else 2772 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2773 return LV; 2774 } 2775 } 2776 } 2777 2778 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2779 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2780 E->getType(), AlignmentSource::Decl); 2781 } 2782 2783 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2784 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2785 E->getType(), AlignmentSource::Decl); 2786 } 2787 2788 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2789 auto SL = E->getFunctionName(); 2790 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2791 StringRef FnName = CurFn->getName(); 2792 if (FnName.startswith("\01")) 2793 FnName = FnName.substr(1); 2794 StringRef NameItems[] = { 2795 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2796 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2797 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2798 std::string Name = std::string(SL->getString()); 2799 if (!Name.empty()) { 2800 unsigned Discriminator = 2801 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2802 if (Discriminator) 2803 Name += "_" + Twine(Discriminator + 1).str(); 2804 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2805 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2806 } else { 2807 auto C = 2808 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2809 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2810 } 2811 } 2812 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2813 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2814 } 2815 2816 /// Emit a type description suitable for use by a runtime sanitizer library. The 2817 /// format of a type descriptor is 2818 /// 2819 /// \code 2820 /// { i16 TypeKind, i16 TypeInfo } 2821 /// \endcode 2822 /// 2823 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2824 /// integer, 1 for a floating point value, and -1 for anything else. 2825 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2826 // Only emit each type's descriptor once. 2827 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2828 return C; 2829 2830 uint16_t TypeKind = -1; 2831 uint16_t TypeInfo = 0; 2832 2833 if (T->isIntegerType()) { 2834 TypeKind = 0; 2835 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2836 (T->isSignedIntegerType() ? 1 : 0); 2837 } else if (T->isFloatingType()) { 2838 TypeKind = 1; 2839 TypeInfo = getContext().getTypeSize(T); 2840 } 2841 2842 // Format the type name as if for a diagnostic, including quotes and 2843 // optionally an 'aka'. 2844 SmallString<32> Buffer; 2845 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2846 (intptr_t)T.getAsOpaquePtr(), 2847 StringRef(), StringRef(), None, Buffer, 2848 None); 2849 2850 llvm::Constant *Components[] = { 2851 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2852 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2853 }; 2854 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2855 2856 auto *GV = new llvm::GlobalVariable( 2857 CGM.getModule(), Descriptor->getType(), 2858 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2859 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2860 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2861 2862 // Remember the descriptor for this type. 2863 CGM.setTypeDescriptorInMap(T, GV); 2864 2865 return GV; 2866 } 2867 2868 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2869 llvm::Type *TargetTy = IntPtrTy; 2870 2871 if (V->getType() == TargetTy) 2872 return V; 2873 2874 // Floating-point types which fit into intptr_t are bitcast to integers 2875 // and then passed directly (after zero-extension, if necessary). 2876 if (V->getType()->isFloatingPointTy()) { 2877 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2878 if (Bits <= TargetTy->getIntegerBitWidth()) 2879 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2880 Bits)); 2881 } 2882 2883 // Integers which fit in intptr_t are zero-extended and passed directly. 2884 if (V->getType()->isIntegerTy() && 2885 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2886 return Builder.CreateZExt(V, TargetTy); 2887 2888 // Pointers are passed directly, everything else is passed by address. 2889 if (!V->getType()->isPointerTy()) { 2890 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2891 Builder.CreateStore(V, Ptr); 2892 V = Ptr.getPointer(); 2893 } 2894 return Builder.CreatePtrToInt(V, TargetTy); 2895 } 2896 2897 /// Emit a representation of a SourceLocation for passing to a handler 2898 /// in a sanitizer runtime library. The format for this data is: 2899 /// \code 2900 /// struct SourceLocation { 2901 /// const char *Filename; 2902 /// int32_t Line, Column; 2903 /// }; 2904 /// \endcode 2905 /// For an invalid SourceLocation, the Filename pointer is null. 2906 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2907 llvm::Constant *Filename; 2908 int Line, Column; 2909 2910 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2911 if (PLoc.isValid()) { 2912 StringRef FilenameString = PLoc.getFilename(); 2913 2914 int PathComponentsToStrip = 2915 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2916 if (PathComponentsToStrip < 0) { 2917 assert(PathComponentsToStrip != INT_MIN); 2918 int PathComponentsToKeep = -PathComponentsToStrip; 2919 auto I = llvm::sys::path::rbegin(FilenameString); 2920 auto E = llvm::sys::path::rend(FilenameString); 2921 while (I != E && --PathComponentsToKeep) 2922 ++I; 2923 2924 FilenameString = FilenameString.substr(I - E); 2925 } else if (PathComponentsToStrip > 0) { 2926 auto I = llvm::sys::path::begin(FilenameString); 2927 auto E = llvm::sys::path::end(FilenameString); 2928 while (I != E && PathComponentsToStrip--) 2929 ++I; 2930 2931 if (I != E) 2932 FilenameString = 2933 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2934 else 2935 FilenameString = llvm::sys::path::filename(FilenameString); 2936 } 2937 2938 auto FilenameGV = 2939 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 2940 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2941 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2942 Filename = FilenameGV.getPointer(); 2943 Line = PLoc.getLine(); 2944 Column = PLoc.getColumn(); 2945 } else { 2946 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2947 Line = Column = 0; 2948 } 2949 2950 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2951 Builder.getInt32(Column)}; 2952 2953 return llvm::ConstantStruct::getAnon(Data); 2954 } 2955 2956 namespace { 2957 /// Specify under what conditions this check can be recovered 2958 enum class CheckRecoverableKind { 2959 /// Always terminate program execution if this check fails. 2960 Unrecoverable, 2961 /// Check supports recovering, runtime has both fatal (noreturn) and 2962 /// non-fatal handlers for this check. 2963 Recoverable, 2964 /// Runtime conditionally aborts, always need to support recovery. 2965 AlwaysRecoverable 2966 }; 2967 } 2968 2969 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2970 assert(Kind.countPopulation() == 1); 2971 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2972 return CheckRecoverableKind::AlwaysRecoverable; 2973 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2974 return CheckRecoverableKind::Unrecoverable; 2975 else 2976 return CheckRecoverableKind::Recoverable; 2977 } 2978 2979 namespace { 2980 struct SanitizerHandlerInfo { 2981 char const *const Name; 2982 unsigned Version; 2983 }; 2984 } 2985 2986 const SanitizerHandlerInfo SanitizerHandlers[] = { 2987 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2988 LIST_SANITIZER_CHECKS 2989 #undef SANITIZER_CHECK 2990 }; 2991 2992 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2993 llvm::FunctionType *FnType, 2994 ArrayRef<llvm::Value *> FnArgs, 2995 SanitizerHandler CheckHandler, 2996 CheckRecoverableKind RecoverKind, bool IsFatal, 2997 llvm::BasicBlock *ContBB) { 2998 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2999 Optional<ApplyDebugLocation> DL; 3000 if (!CGF.Builder.getCurrentDebugLocation()) { 3001 // Ensure that the call has at least an artificial debug location. 3002 DL.emplace(CGF, SourceLocation()); 3003 } 3004 bool NeedsAbortSuffix = 3005 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3006 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3007 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3008 const StringRef CheckName = CheckInfo.Name; 3009 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3010 if (CheckInfo.Version && !MinimalRuntime) 3011 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3012 if (MinimalRuntime) 3013 FnName += "_minimal"; 3014 if (NeedsAbortSuffix) 3015 FnName += "_abort"; 3016 bool MayReturn = 3017 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3018 3019 llvm::AttrBuilder B; 3020 if (!MayReturn) { 3021 B.addAttribute(llvm::Attribute::NoReturn) 3022 .addAttribute(llvm::Attribute::NoUnwind); 3023 } 3024 B.addAttribute(llvm::Attribute::UWTable); 3025 3026 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3027 FnType, FnName, 3028 llvm::AttributeList::get(CGF.getLLVMContext(), 3029 llvm::AttributeList::FunctionIndex, B), 3030 /*Local=*/true); 3031 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3032 if (!MayReturn) { 3033 HandlerCall->setDoesNotReturn(); 3034 CGF.Builder.CreateUnreachable(); 3035 } else { 3036 CGF.Builder.CreateBr(ContBB); 3037 } 3038 } 3039 3040 void CodeGenFunction::EmitCheck( 3041 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3042 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3043 ArrayRef<llvm::Value *> DynamicArgs) { 3044 assert(IsSanitizerScope); 3045 assert(Checked.size() > 0); 3046 assert(CheckHandler >= 0 && 3047 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3048 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3049 3050 llvm::Value *FatalCond = nullptr; 3051 llvm::Value *RecoverableCond = nullptr; 3052 llvm::Value *TrapCond = nullptr; 3053 for (int i = 0, n = Checked.size(); i < n; ++i) { 3054 llvm::Value *Check = Checked[i].first; 3055 // -fsanitize-trap= overrides -fsanitize-recover=. 3056 llvm::Value *&Cond = 3057 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3058 ? TrapCond 3059 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3060 ? RecoverableCond 3061 : FatalCond; 3062 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3063 } 3064 3065 if (TrapCond) 3066 EmitTrapCheck(TrapCond); 3067 if (!FatalCond && !RecoverableCond) 3068 return; 3069 3070 llvm::Value *JointCond; 3071 if (FatalCond && RecoverableCond) 3072 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3073 else 3074 JointCond = FatalCond ? FatalCond : RecoverableCond; 3075 assert(JointCond); 3076 3077 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3078 assert(SanOpts.has(Checked[0].second)); 3079 #ifndef NDEBUG 3080 for (int i = 1, n = Checked.size(); i < n; ++i) { 3081 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3082 "All recoverable kinds in a single check must be same!"); 3083 assert(SanOpts.has(Checked[i].second)); 3084 } 3085 #endif 3086 3087 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3088 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3089 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3090 // Give hint that we very much don't expect to execute the handler 3091 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3092 llvm::MDBuilder MDHelper(getLLVMContext()); 3093 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3094 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3095 EmitBlock(Handlers); 3096 3097 // Handler functions take an i8* pointing to the (handler-specific) static 3098 // information block, followed by a sequence of intptr_t arguments 3099 // representing operand values. 3100 SmallVector<llvm::Value *, 4> Args; 3101 SmallVector<llvm::Type *, 4> ArgTypes; 3102 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3103 Args.reserve(DynamicArgs.size() + 1); 3104 ArgTypes.reserve(DynamicArgs.size() + 1); 3105 3106 // Emit handler arguments and create handler function type. 3107 if (!StaticArgs.empty()) { 3108 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3109 auto *InfoPtr = 3110 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3111 llvm::GlobalVariable::PrivateLinkage, Info); 3112 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3113 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3114 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3115 ArgTypes.push_back(Int8PtrTy); 3116 } 3117 3118 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3119 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3120 ArgTypes.push_back(IntPtrTy); 3121 } 3122 } 3123 3124 llvm::FunctionType *FnType = 3125 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3126 3127 if (!FatalCond || !RecoverableCond) { 3128 // Simple case: we need to generate a single handler call, either 3129 // fatal, or non-fatal. 3130 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3131 (FatalCond != nullptr), Cont); 3132 } else { 3133 // Emit two handler calls: first one for set of unrecoverable checks, 3134 // another one for recoverable. 3135 llvm::BasicBlock *NonFatalHandlerBB = 3136 createBasicBlock("non_fatal." + CheckName); 3137 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3138 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3139 EmitBlock(FatalHandlerBB); 3140 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3141 NonFatalHandlerBB); 3142 EmitBlock(NonFatalHandlerBB); 3143 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3144 Cont); 3145 } 3146 3147 EmitBlock(Cont); 3148 } 3149 3150 void CodeGenFunction::EmitCfiSlowPathCheck( 3151 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3152 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3153 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3154 3155 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3156 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3157 3158 llvm::MDBuilder MDHelper(getLLVMContext()); 3159 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3160 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3161 3162 EmitBlock(CheckBB); 3163 3164 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3165 3166 llvm::CallInst *CheckCall; 3167 llvm::FunctionCallee SlowPathFn; 3168 if (WithDiag) { 3169 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3170 auto *InfoPtr = 3171 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3172 llvm::GlobalVariable::PrivateLinkage, Info); 3173 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3174 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3175 3176 SlowPathFn = CGM.getModule().getOrInsertFunction( 3177 "__cfi_slowpath_diag", 3178 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3179 false)); 3180 CheckCall = Builder.CreateCall( 3181 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3182 } else { 3183 SlowPathFn = CGM.getModule().getOrInsertFunction( 3184 "__cfi_slowpath", 3185 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3186 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3187 } 3188 3189 CGM.setDSOLocal( 3190 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3191 CheckCall->setDoesNotThrow(); 3192 3193 EmitBlock(Cont); 3194 } 3195 3196 // Emit a stub for __cfi_check function so that the linker knows about this 3197 // symbol in LTO mode. 3198 void CodeGenFunction::EmitCfiCheckStub() { 3199 llvm::Module *M = &CGM.getModule(); 3200 auto &Ctx = M->getContext(); 3201 llvm::Function *F = llvm::Function::Create( 3202 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3203 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3204 CGM.setDSOLocal(F); 3205 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3206 // FIXME: consider emitting an intrinsic call like 3207 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3208 // which can be lowered in CrossDSOCFI pass to the actual contents of 3209 // __cfi_check. This would allow inlining of __cfi_check calls. 3210 llvm::CallInst::Create( 3211 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3212 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3213 } 3214 3215 // This function is basically a switch over the CFI failure kind, which is 3216 // extracted from CFICheckFailData (1st function argument). Each case is either 3217 // llvm.trap or a call to one of the two runtime handlers, based on 3218 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3219 // failure kind) traps, but this should really never happen. CFICheckFailData 3220 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3221 // check kind; in this case __cfi_check_fail traps as well. 3222 void CodeGenFunction::EmitCfiCheckFail() { 3223 SanitizerScope SanScope(this); 3224 FunctionArgList Args; 3225 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3226 ImplicitParamDecl::Other); 3227 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3228 ImplicitParamDecl::Other); 3229 Args.push_back(&ArgData); 3230 Args.push_back(&ArgAddr); 3231 3232 const CGFunctionInfo &FI = 3233 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3234 3235 llvm::Function *F = llvm::Function::Create( 3236 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3237 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3238 3239 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3240 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3241 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3242 3243 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3244 SourceLocation()); 3245 3246 // This function should not be affected by blacklist. This function does 3247 // not have a source location, but "src:*" would still apply. Revert any 3248 // changes to SanOpts made in StartFunction. 3249 SanOpts = CGM.getLangOpts().Sanitize; 3250 3251 llvm::Value *Data = 3252 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3253 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3254 llvm::Value *Addr = 3255 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3256 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3257 3258 // Data == nullptr means the calling module has trap behaviour for this check. 3259 llvm::Value *DataIsNotNullPtr = 3260 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3261 EmitTrapCheck(DataIsNotNullPtr); 3262 3263 llvm::StructType *SourceLocationTy = 3264 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3265 llvm::StructType *CfiCheckFailDataTy = 3266 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3267 3268 llvm::Value *V = Builder.CreateConstGEP2_32( 3269 CfiCheckFailDataTy, 3270 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3271 0); 3272 Address CheckKindAddr(V, getIntAlign()); 3273 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3274 3275 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3276 CGM.getLLVMContext(), 3277 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3278 llvm::Value *ValidVtable = Builder.CreateZExt( 3279 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3280 {Addr, AllVtables}), 3281 IntPtrTy); 3282 3283 const std::pair<int, SanitizerMask> CheckKinds[] = { 3284 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3285 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3286 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3287 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3288 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3289 3290 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3291 for (auto CheckKindMaskPair : CheckKinds) { 3292 int Kind = CheckKindMaskPair.first; 3293 SanitizerMask Mask = CheckKindMaskPair.second; 3294 llvm::Value *Cond = 3295 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3296 if (CGM.getLangOpts().Sanitize.has(Mask)) 3297 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3298 {Data, Addr, ValidVtable}); 3299 else 3300 EmitTrapCheck(Cond); 3301 } 3302 3303 FinishFunction(); 3304 // The only reference to this function will be created during LTO link. 3305 // Make sure it survives until then. 3306 CGM.addUsedGlobal(F); 3307 } 3308 3309 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3310 if (SanOpts.has(SanitizerKind::Unreachable)) { 3311 SanitizerScope SanScope(this); 3312 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3313 SanitizerKind::Unreachable), 3314 SanitizerHandler::BuiltinUnreachable, 3315 EmitCheckSourceLocation(Loc), None); 3316 } 3317 Builder.CreateUnreachable(); 3318 } 3319 3320 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3321 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3322 3323 // If we're optimizing, collapse all calls to trap down to just one per 3324 // function to save on code size. 3325 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3326 TrapBB = createBasicBlock("trap"); 3327 Builder.CreateCondBr(Checked, Cont, TrapBB); 3328 EmitBlock(TrapBB); 3329 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3330 TrapCall->setDoesNotReturn(); 3331 TrapCall->setDoesNotThrow(); 3332 Builder.CreateUnreachable(); 3333 } else { 3334 Builder.CreateCondBr(Checked, Cont, TrapBB); 3335 } 3336 3337 EmitBlock(Cont); 3338 } 3339 3340 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3341 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3342 3343 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3344 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3345 CGM.getCodeGenOpts().TrapFuncName); 3346 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3347 } 3348 3349 return TrapCall; 3350 } 3351 3352 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3353 LValueBaseInfo *BaseInfo, 3354 TBAAAccessInfo *TBAAInfo) { 3355 assert(E->getType()->isArrayType() && 3356 "Array to pointer decay must have array source type!"); 3357 3358 // Expressions of array type can't be bitfields or vector elements. 3359 LValue LV = EmitLValue(E); 3360 Address Addr = LV.getAddress(*this); 3361 3362 // If the array type was an incomplete type, we need to make sure 3363 // the decay ends up being the right type. 3364 llvm::Type *NewTy = ConvertType(E->getType()); 3365 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3366 3367 // Note that VLA pointers are always decayed, so we don't need to do 3368 // anything here. 3369 if (!E->getType()->isVariableArrayType()) { 3370 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3371 "Expected pointer to array"); 3372 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3373 } 3374 3375 // The result of this decay conversion points to an array element within the 3376 // base lvalue. However, since TBAA currently does not support representing 3377 // accesses to elements of member arrays, we conservatively represent accesses 3378 // to the pointee object as if it had no any base lvalue specified. 3379 // TODO: Support TBAA for member arrays. 3380 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3381 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3382 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3383 3384 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3385 } 3386 3387 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3388 /// array to pointer, return the array subexpression. 3389 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3390 // If this isn't just an array->pointer decay, bail out. 3391 const auto *CE = dyn_cast<CastExpr>(E); 3392 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3393 return nullptr; 3394 3395 // If this is a decay from variable width array, bail out. 3396 const Expr *SubExpr = CE->getSubExpr(); 3397 if (SubExpr->getType()->isVariableArrayType()) 3398 return nullptr; 3399 3400 return SubExpr; 3401 } 3402 3403 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3404 llvm::Value *ptr, 3405 ArrayRef<llvm::Value*> indices, 3406 bool inbounds, 3407 bool signedIndices, 3408 SourceLocation loc, 3409 const llvm::Twine &name = "arrayidx") { 3410 if (inbounds) { 3411 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3412 CodeGenFunction::NotSubtraction, loc, 3413 name); 3414 } else { 3415 return CGF.Builder.CreateGEP(ptr, indices, name); 3416 } 3417 } 3418 3419 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3420 llvm::Value *idx, 3421 CharUnits eltSize) { 3422 // If we have a constant index, we can use the exact offset of the 3423 // element we're accessing. 3424 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3425 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3426 return arrayAlign.alignmentAtOffset(offset); 3427 3428 // Otherwise, use the worst-case alignment for any element. 3429 } else { 3430 return arrayAlign.alignmentOfArrayElement(eltSize); 3431 } 3432 } 3433 3434 static QualType getFixedSizeElementType(const ASTContext &ctx, 3435 const VariableArrayType *vla) { 3436 QualType eltType; 3437 do { 3438 eltType = vla->getElementType(); 3439 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3440 return eltType; 3441 } 3442 3443 /// Given an array base, check whether its member access belongs to a record 3444 /// with preserve_access_index attribute or not. 3445 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3446 if (!ArrayBase || !CGF.getDebugInfo()) 3447 return false; 3448 3449 // Only support base as either a MemberExpr or DeclRefExpr. 3450 // DeclRefExpr to cover cases like: 3451 // struct s { int a; int b[10]; }; 3452 // struct s *p; 3453 // p[1].a 3454 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3455 // p->b[5] is a MemberExpr example. 3456 const Expr *E = ArrayBase->IgnoreImpCasts(); 3457 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3458 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3459 3460 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3461 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3462 if (!VarDef) 3463 return false; 3464 3465 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3466 if (!PtrT) 3467 return false; 3468 3469 const auto *PointeeT = PtrT->getPointeeType() 3470 ->getUnqualifiedDesugaredType(); 3471 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3472 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3473 return false; 3474 } 3475 3476 return false; 3477 } 3478 3479 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3480 ArrayRef<llvm::Value *> indices, 3481 QualType eltType, bool inbounds, 3482 bool signedIndices, SourceLocation loc, 3483 QualType *arrayType = nullptr, 3484 const Expr *Base = nullptr, 3485 const llvm::Twine &name = "arrayidx") { 3486 // All the indices except that last must be zero. 3487 #ifndef NDEBUG 3488 for (auto idx : indices.drop_back()) 3489 assert(isa<llvm::ConstantInt>(idx) && 3490 cast<llvm::ConstantInt>(idx)->isZero()); 3491 #endif 3492 3493 // Determine the element size of the statically-sized base. This is 3494 // the thing that the indices are expressed in terms of. 3495 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3496 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3497 } 3498 3499 // We can use that to compute the best alignment of the element. 3500 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3501 CharUnits eltAlign = 3502 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3503 3504 llvm::Value *eltPtr; 3505 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3506 if (!LastIndex || 3507 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3508 eltPtr = emitArraySubscriptGEP( 3509 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3510 loc, name); 3511 } else { 3512 // Remember the original array subscript for bpf target 3513 unsigned idx = LastIndex->getZExtValue(); 3514 llvm::DIType *DbgInfo = nullptr; 3515 if (arrayType) 3516 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3517 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3518 addr.getPointer(), 3519 indices.size() - 1, 3520 idx, DbgInfo); 3521 } 3522 3523 return Address(eltPtr, eltAlign); 3524 } 3525 3526 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3527 bool Accessed) { 3528 // The index must always be an integer, which is not an aggregate. Emit it 3529 // in lexical order (this complexity is, sadly, required by C++17). 3530 llvm::Value *IdxPre = 3531 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3532 bool SignedIndices = false; 3533 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3534 auto *Idx = IdxPre; 3535 if (E->getLHS() != E->getIdx()) { 3536 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3537 Idx = EmitScalarExpr(E->getIdx()); 3538 } 3539 3540 QualType IdxTy = E->getIdx()->getType(); 3541 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3542 SignedIndices |= IdxSigned; 3543 3544 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3545 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3546 3547 // Extend or truncate the index type to 32 or 64-bits. 3548 if (Promote && Idx->getType() != IntPtrTy) 3549 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3550 3551 return Idx; 3552 }; 3553 IdxPre = nullptr; 3554 3555 // If the base is a vector type, then we are forming a vector element lvalue 3556 // with this subscript. 3557 if (E->getBase()->getType()->isVectorType() && 3558 !isa<ExtVectorElementExpr>(E->getBase())) { 3559 // Emit the vector as an lvalue to get its address. 3560 LValue LHS = EmitLValue(E->getBase()); 3561 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3562 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3563 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3564 E->getBase()->getType(), LHS.getBaseInfo(), 3565 TBAAAccessInfo()); 3566 } 3567 3568 // All the other cases basically behave like simple offsetting. 3569 3570 // Handle the extvector case we ignored above. 3571 if (isa<ExtVectorElementExpr>(E->getBase())) { 3572 LValue LV = EmitLValue(E->getBase()); 3573 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3574 Address Addr = EmitExtVectorElementLValue(LV); 3575 3576 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3577 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3578 SignedIndices, E->getExprLoc()); 3579 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3580 CGM.getTBAAInfoForSubobject(LV, EltType)); 3581 } 3582 3583 LValueBaseInfo EltBaseInfo; 3584 TBAAAccessInfo EltTBAAInfo; 3585 Address Addr = Address::invalid(); 3586 if (const VariableArrayType *vla = 3587 getContext().getAsVariableArrayType(E->getType())) { 3588 // The base must be a pointer, which is not an aggregate. Emit 3589 // it. It needs to be emitted first in case it's what captures 3590 // the VLA bounds. 3591 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3592 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3593 3594 // The element count here is the total number of non-VLA elements. 3595 llvm::Value *numElements = getVLASize(vla).NumElts; 3596 3597 // Effectively, the multiply by the VLA size is part of the GEP. 3598 // GEP indexes are signed, and scaling an index isn't permitted to 3599 // signed-overflow, so we use the same semantics for our explicit 3600 // multiply. We suppress this if overflow is not undefined behavior. 3601 if (getLangOpts().isSignedOverflowDefined()) { 3602 Idx = Builder.CreateMul(Idx, numElements); 3603 } else { 3604 Idx = Builder.CreateNSWMul(Idx, numElements); 3605 } 3606 3607 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3608 !getLangOpts().isSignedOverflowDefined(), 3609 SignedIndices, E->getExprLoc()); 3610 3611 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3612 // Indexing over an interface, as in "NSString *P; P[4];" 3613 3614 // Emit the base pointer. 3615 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3616 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3617 3618 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3619 llvm::Value *InterfaceSizeVal = 3620 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3621 3622 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3623 3624 // We don't necessarily build correct LLVM struct types for ObjC 3625 // interfaces, so we can't rely on GEP to do this scaling 3626 // correctly, so we need to cast to i8*. FIXME: is this actually 3627 // true? A lot of other things in the fragile ABI would break... 3628 llvm::Type *OrigBaseTy = Addr.getType(); 3629 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3630 3631 // Do the GEP. 3632 CharUnits EltAlign = 3633 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3634 llvm::Value *EltPtr = 3635 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3636 SignedIndices, E->getExprLoc()); 3637 Addr = Address(EltPtr, EltAlign); 3638 3639 // Cast back. 3640 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3641 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3642 // If this is A[i] where A is an array, the frontend will have decayed the 3643 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3644 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3645 // "gep x, i" here. Emit one "gep A, 0, i". 3646 assert(Array->getType()->isArrayType() && 3647 "Array to pointer decay must have array source type!"); 3648 LValue ArrayLV; 3649 // For simple multidimensional array indexing, set the 'accessed' flag for 3650 // better bounds-checking of the base expression. 3651 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3652 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3653 else 3654 ArrayLV = EmitLValue(Array); 3655 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3656 3657 // Propagate the alignment from the array itself to the result. 3658 QualType arrayType = Array->getType(); 3659 Addr = emitArraySubscriptGEP( 3660 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3661 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3662 E->getExprLoc(), &arrayType, E->getBase()); 3663 EltBaseInfo = ArrayLV.getBaseInfo(); 3664 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3665 } else { 3666 // The base must be a pointer; emit it with an estimate of its alignment. 3667 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3668 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3669 QualType ptrType = E->getBase()->getType(); 3670 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3671 !getLangOpts().isSignedOverflowDefined(), 3672 SignedIndices, E->getExprLoc(), &ptrType, 3673 E->getBase()); 3674 } 3675 3676 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3677 3678 if (getLangOpts().ObjC && 3679 getLangOpts().getGC() != LangOptions::NonGC) { 3680 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3681 setObjCGCLValueClass(getContext(), E, LV); 3682 } 3683 return LV; 3684 } 3685 3686 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3687 LValueBaseInfo &BaseInfo, 3688 TBAAAccessInfo &TBAAInfo, 3689 QualType BaseTy, QualType ElTy, 3690 bool IsLowerBound) { 3691 LValue BaseLVal; 3692 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3693 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3694 if (BaseTy->isArrayType()) { 3695 Address Addr = BaseLVal.getAddress(CGF); 3696 BaseInfo = BaseLVal.getBaseInfo(); 3697 3698 // If the array type was an incomplete type, we need to make sure 3699 // the decay ends up being the right type. 3700 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3701 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3702 3703 // Note that VLA pointers are always decayed, so we don't need to do 3704 // anything here. 3705 if (!BaseTy->isVariableArrayType()) { 3706 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3707 "Expected pointer to array"); 3708 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3709 } 3710 3711 return CGF.Builder.CreateElementBitCast(Addr, 3712 CGF.ConvertTypeForMem(ElTy)); 3713 } 3714 LValueBaseInfo TypeBaseInfo; 3715 TBAAAccessInfo TypeTBAAInfo; 3716 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3717 &TypeTBAAInfo); 3718 BaseInfo.mergeForCast(TypeBaseInfo); 3719 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3720 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3721 } 3722 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3723 } 3724 3725 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3726 bool IsLowerBound) { 3727 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3728 QualType ResultExprTy; 3729 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3730 ResultExprTy = AT->getElementType(); 3731 else 3732 ResultExprTy = BaseTy->getPointeeType(); 3733 llvm::Value *Idx = nullptr; 3734 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3735 // Requesting lower bound or upper bound, but without provided length and 3736 // without ':' symbol for the default length -> length = 1. 3737 // Idx = LowerBound ?: 0; 3738 if (auto *LowerBound = E->getLowerBound()) { 3739 Idx = Builder.CreateIntCast( 3740 EmitScalarExpr(LowerBound), IntPtrTy, 3741 LowerBound->getType()->hasSignedIntegerRepresentation()); 3742 } else 3743 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3744 } else { 3745 // Try to emit length or lower bound as constant. If this is possible, 1 3746 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3747 // IR (LB + Len) - 1. 3748 auto &C = CGM.getContext(); 3749 auto *Length = E->getLength(); 3750 llvm::APSInt ConstLength; 3751 if (Length) { 3752 // Idx = LowerBound + Length - 1; 3753 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3754 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3755 Length = nullptr; 3756 } 3757 auto *LowerBound = E->getLowerBound(); 3758 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3759 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3760 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3761 LowerBound = nullptr; 3762 } 3763 if (!Length) 3764 --ConstLength; 3765 else if (!LowerBound) 3766 --ConstLowerBound; 3767 3768 if (Length || LowerBound) { 3769 auto *LowerBoundVal = 3770 LowerBound 3771 ? Builder.CreateIntCast( 3772 EmitScalarExpr(LowerBound), IntPtrTy, 3773 LowerBound->getType()->hasSignedIntegerRepresentation()) 3774 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3775 auto *LengthVal = 3776 Length 3777 ? Builder.CreateIntCast( 3778 EmitScalarExpr(Length), IntPtrTy, 3779 Length->getType()->hasSignedIntegerRepresentation()) 3780 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3781 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3782 /*HasNUW=*/false, 3783 !getLangOpts().isSignedOverflowDefined()); 3784 if (Length && LowerBound) { 3785 Idx = Builder.CreateSub( 3786 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3787 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3788 } 3789 } else 3790 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3791 } else { 3792 // Idx = ArraySize - 1; 3793 QualType ArrayTy = BaseTy->isPointerType() 3794 ? E->getBase()->IgnoreParenImpCasts()->getType() 3795 : BaseTy; 3796 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3797 Length = VAT->getSizeExpr(); 3798 if (Length->isIntegerConstantExpr(ConstLength, C)) 3799 Length = nullptr; 3800 } else { 3801 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3802 ConstLength = CAT->getSize(); 3803 } 3804 if (Length) { 3805 auto *LengthVal = Builder.CreateIntCast( 3806 EmitScalarExpr(Length), IntPtrTy, 3807 Length->getType()->hasSignedIntegerRepresentation()); 3808 Idx = Builder.CreateSub( 3809 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3810 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3811 } else { 3812 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3813 --ConstLength; 3814 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3815 } 3816 } 3817 } 3818 assert(Idx); 3819 3820 Address EltPtr = Address::invalid(); 3821 LValueBaseInfo BaseInfo; 3822 TBAAAccessInfo TBAAInfo; 3823 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3824 // The base must be a pointer, which is not an aggregate. Emit 3825 // it. It needs to be emitted first in case it's what captures 3826 // the VLA bounds. 3827 Address Base = 3828 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3829 BaseTy, VLA->getElementType(), IsLowerBound); 3830 // The element count here is the total number of non-VLA elements. 3831 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3832 3833 // Effectively, the multiply by the VLA size is part of the GEP. 3834 // GEP indexes are signed, and scaling an index isn't permitted to 3835 // signed-overflow, so we use the same semantics for our explicit 3836 // multiply. We suppress this if overflow is not undefined behavior. 3837 if (getLangOpts().isSignedOverflowDefined()) 3838 Idx = Builder.CreateMul(Idx, NumElements); 3839 else 3840 Idx = Builder.CreateNSWMul(Idx, NumElements); 3841 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3842 !getLangOpts().isSignedOverflowDefined(), 3843 /*signedIndices=*/false, E->getExprLoc()); 3844 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3845 // If this is A[i] where A is an array, the frontend will have decayed the 3846 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3847 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3848 // "gep x, i" here. Emit one "gep A, 0, i". 3849 assert(Array->getType()->isArrayType() && 3850 "Array to pointer decay must have array source type!"); 3851 LValue ArrayLV; 3852 // For simple multidimensional array indexing, set the 'accessed' flag for 3853 // better bounds-checking of the base expression. 3854 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3855 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3856 else 3857 ArrayLV = EmitLValue(Array); 3858 3859 // Propagate the alignment from the array itself to the result. 3860 EltPtr = emitArraySubscriptGEP( 3861 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3862 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3863 /*signedIndices=*/false, E->getExprLoc()); 3864 BaseInfo = ArrayLV.getBaseInfo(); 3865 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3866 } else { 3867 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3868 TBAAInfo, BaseTy, ResultExprTy, 3869 IsLowerBound); 3870 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3871 !getLangOpts().isSignedOverflowDefined(), 3872 /*signedIndices=*/false, E->getExprLoc()); 3873 } 3874 3875 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3876 } 3877 3878 LValue CodeGenFunction:: 3879 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3880 // Emit the base vector as an l-value. 3881 LValue Base; 3882 3883 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3884 if (E->isArrow()) { 3885 // If it is a pointer to a vector, emit the address and form an lvalue with 3886 // it. 3887 LValueBaseInfo BaseInfo; 3888 TBAAAccessInfo TBAAInfo; 3889 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3890 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3891 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3892 Base.getQuals().removeObjCGCAttr(); 3893 } else if (E->getBase()->isGLValue()) { 3894 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3895 // emit the base as an lvalue. 3896 assert(E->getBase()->getType()->isVectorType()); 3897 Base = EmitLValue(E->getBase()); 3898 } else { 3899 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3900 assert(E->getBase()->getType()->isVectorType() && 3901 "Result must be a vector"); 3902 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3903 3904 // Store the vector to memory (because LValue wants an address). 3905 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3906 Builder.CreateStore(Vec, VecMem); 3907 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3908 AlignmentSource::Decl); 3909 } 3910 3911 QualType type = 3912 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3913 3914 // Encode the element access list into a vector of unsigned indices. 3915 SmallVector<uint32_t, 4> Indices; 3916 E->getEncodedElementAccess(Indices); 3917 3918 if (Base.isSimple()) { 3919 llvm::Constant *CV = 3920 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3921 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3922 Base.getBaseInfo(), TBAAAccessInfo()); 3923 } 3924 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3925 3926 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3927 SmallVector<llvm::Constant *, 4> CElts; 3928 3929 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3930 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3931 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3932 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3933 Base.getBaseInfo(), TBAAAccessInfo()); 3934 } 3935 3936 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3937 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3938 EmitIgnoredExpr(E->getBase()); 3939 return EmitDeclRefLValue(DRE); 3940 } 3941 3942 Expr *BaseExpr = E->getBase(); 3943 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3944 LValue BaseLV; 3945 if (E->isArrow()) { 3946 LValueBaseInfo BaseInfo; 3947 TBAAAccessInfo TBAAInfo; 3948 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3949 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3950 SanitizerSet SkippedChecks; 3951 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3952 if (IsBaseCXXThis) 3953 SkippedChecks.set(SanitizerKind::Alignment, true); 3954 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3955 SkippedChecks.set(SanitizerKind::Null, true); 3956 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3957 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3958 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3959 } else 3960 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3961 3962 NamedDecl *ND = E->getMemberDecl(); 3963 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3964 LValue LV = EmitLValueForField(BaseLV, Field); 3965 setObjCGCLValueClass(getContext(), E, LV); 3966 if (getLangOpts().OpenMP) { 3967 // If the member was explicitly marked as nontemporal, mark it as 3968 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3969 // to children as nontemporal too. 3970 if ((IsWrappedCXXThis(BaseExpr) && 3971 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3972 BaseLV.isNontemporal()) 3973 LV.setNontemporal(/*Value=*/true); 3974 } 3975 return LV; 3976 } 3977 3978 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3979 return EmitFunctionDeclLValue(*this, E, FD); 3980 3981 llvm_unreachable("Unhandled member declaration!"); 3982 } 3983 3984 /// Given that we are currently emitting a lambda, emit an l-value for 3985 /// one of its members. 3986 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3987 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3988 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3989 QualType LambdaTagType = 3990 getContext().getTagDeclType(Field->getParent()); 3991 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3992 return EmitLValueForField(LambdaLV, Field); 3993 } 3994 3995 /// Get the field index in the debug info. The debug info structure/union 3996 /// will ignore the unnamed bitfields. 3997 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3998 unsigned FieldIndex) { 3999 unsigned I = 0, Skipped = 0; 4000 4001 for (auto F : Rec->getDefinition()->fields()) { 4002 if (I == FieldIndex) 4003 break; 4004 if (F->isUnnamedBitfield()) 4005 Skipped++; 4006 I++; 4007 } 4008 4009 return FieldIndex - Skipped; 4010 } 4011 4012 /// Get the address of a zero-sized field within a record. The resulting 4013 /// address doesn't necessarily have the right type. 4014 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4015 const FieldDecl *Field) { 4016 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4017 CGF.getContext().getFieldOffset(Field)); 4018 if (Offset.isZero()) 4019 return Base; 4020 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4021 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4022 } 4023 4024 /// Drill down to the storage of a field without walking into 4025 /// reference types. 4026 /// 4027 /// The resulting address doesn't necessarily have the right type. 4028 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4029 const FieldDecl *field) { 4030 if (field->isZeroSize(CGF.getContext())) 4031 return emitAddrOfZeroSizeField(CGF, base, field); 4032 4033 const RecordDecl *rec = field->getParent(); 4034 4035 unsigned idx = 4036 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4037 4038 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4039 } 4040 4041 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4042 Address addr, const FieldDecl *field) { 4043 const RecordDecl *rec = field->getParent(); 4044 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4045 base.getType(), rec->getLocation()); 4046 4047 unsigned idx = 4048 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4049 4050 return CGF.Builder.CreatePreserveStructAccessIndex( 4051 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4052 } 4053 4054 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4055 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4056 if (!RD) 4057 return false; 4058 4059 if (RD->isDynamicClass()) 4060 return true; 4061 4062 for (const auto &Base : RD->bases()) 4063 if (hasAnyVptr(Base.getType(), Context)) 4064 return true; 4065 4066 for (const FieldDecl *Field : RD->fields()) 4067 if (hasAnyVptr(Field->getType(), Context)) 4068 return true; 4069 4070 return false; 4071 } 4072 4073 LValue CodeGenFunction::EmitLValueForField(LValue base, 4074 const FieldDecl *field) { 4075 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4076 4077 if (field->isBitField()) { 4078 const CGRecordLayout &RL = 4079 CGM.getTypes().getCGRecordLayout(field->getParent()); 4080 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4081 Address Addr = base.getAddress(*this); 4082 unsigned Idx = RL.getLLVMFieldNo(field); 4083 const RecordDecl *rec = field->getParent(); 4084 if (!IsInPreservedAIRegion && 4085 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4086 if (Idx != 0) 4087 // For structs, we GEP to the field that the record layout suggests. 4088 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4089 } else { 4090 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4091 getContext().getRecordType(rec), rec->getLocation()); 4092 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4093 getDebugInfoFIndex(rec, field->getFieldIndex()), 4094 DbgInfo); 4095 } 4096 4097 // Get the access type. 4098 llvm::Type *FieldIntTy = 4099 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4100 if (Addr.getElementType() != FieldIntTy) 4101 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4102 4103 QualType fieldType = 4104 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4105 // TODO: Support TBAA for bit fields. 4106 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4107 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4108 TBAAAccessInfo()); 4109 } 4110 4111 // Fields of may-alias structures are may-alias themselves. 4112 // FIXME: this should get propagated down through anonymous structs 4113 // and unions. 4114 QualType FieldType = field->getType(); 4115 const RecordDecl *rec = field->getParent(); 4116 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4117 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4118 TBAAAccessInfo FieldTBAAInfo; 4119 if (base.getTBAAInfo().isMayAlias() || 4120 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4121 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4122 } else if (rec->isUnion()) { 4123 // TODO: Support TBAA for unions. 4124 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4125 } else { 4126 // If no base type been assigned for the base access, then try to generate 4127 // one for this base lvalue. 4128 FieldTBAAInfo = base.getTBAAInfo(); 4129 if (!FieldTBAAInfo.BaseType) { 4130 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4131 assert(!FieldTBAAInfo.Offset && 4132 "Nonzero offset for an access with no base type!"); 4133 } 4134 4135 // Adjust offset to be relative to the base type. 4136 const ASTRecordLayout &Layout = 4137 getContext().getASTRecordLayout(field->getParent()); 4138 unsigned CharWidth = getContext().getCharWidth(); 4139 if (FieldTBAAInfo.BaseType) 4140 FieldTBAAInfo.Offset += 4141 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4142 4143 // Update the final access type and size. 4144 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4145 FieldTBAAInfo.Size = 4146 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4147 } 4148 4149 Address addr = base.getAddress(*this); 4150 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4151 if (CGM.getCodeGenOpts().StrictVTablePointers && 4152 ClassDef->isDynamicClass()) { 4153 // Getting to any field of dynamic object requires stripping dynamic 4154 // information provided by invariant.group. This is because accessing 4155 // fields may leak the real address of dynamic object, which could result 4156 // in miscompilation when leaked pointer would be compared. 4157 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4158 addr = Address(stripped, addr.getAlignment()); 4159 } 4160 } 4161 4162 unsigned RecordCVR = base.getVRQualifiers(); 4163 if (rec->isUnion()) { 4164 // For unions, there is no pointer adjustment. 4165 if (CGM.getCodeGenOpts().StrictVTablePointers && 4166 hasAnyVptr(FieldType, getContext())) 4167 // Because unions can easily skip invariant.barriers, we need to add 4168 // a barrier every time CXXRecord field with vptr is referenced. 4169 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4170 addr.getAlignment()); 4171 4172 if (IsInPreservedAIRegion || 4173 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4174 // Remember the original union field index 4175 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4176 rec->getLocation()); 4177 addr = Address( 4178 Builder.CreatePreserveUnionAccessIndex( 4179 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4180 addr.getAlignment()); 4181 } 4182 4183 if (FieldType->isReferenceType()) 4184 addr = Builder.CreateElementBitCast( 4185 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4186 } else { 4187 if (!IsInPreservedAIRegion && 4188 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4189 // For structs, we GEP to the field that the record layout suggests. 4190 addr = emitAddrOfFieldStorage(*this, addr, field); 4191 else 4192 // Remember the original struct field index 4193 addr = emitPreserveStructAccess(*this, base, addr, field); 4194 } 4195 4196 // If this is a reference field, load the reference right now. 4197 if (FieldType->isReferenceType()) { 4198 LValue RefLVal = 4199 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4200 if (RecordCVR & Qualifiers::Volatile) 4201 RefLVal.getQuals().addVolatile(); 4202 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4203 4204 // Qualifiers on the struct don't apply to the referencee. 4205 RecordCVR = 0; 4206 FieldType = FieldType->getPointeeType(); 4207 } 4208 4209 // Make sure that the address is pointing to the right type. This is critical 4210 // for both unions and structs. A union needs a bitcast, a struct element 4211 // will need a bitcast if the LLVM type laid out doesn't match the desired 4212 // type. 4213 addr = Builder.CreateElementBitCast( 4214 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4215 4216 if (field->hasAttr<AnnotateAttr>()) 4217 addr = EmitFieldAnnotations(field, addr); 4218 4219 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4220 LV.getQuals().addCVRQualifiers(RecordCVR); 4221 4222 // __weak attribute on a field is ignored. 4223 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4224 LV.getQuals().removeObjCGCAttr(); 4225 4226 return LV; 4227 } 4228 4229 LValue 4230 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4231 const FieldDecl *Field) { 4232 QualType FieldType = Field->getType(); 4233 4234 if (!FieldType->isReferenceType()) 4235 return EmitLValueForField(Base, Field); 4236 4237 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4238 4239 // Make sure that the address is pointing to the right type. 4240 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4241 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4242 4243 // TODO: Generate TBAA information that describes this access as a structure 4244 // member access and not just an access to an object of the field's type. This 4245 // should be similar to what we do in EmitLValueForField(). 4246 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4247 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4248 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4249 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4250 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4251 } 4252 4253 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4254 if (E->isFileScope()) { 4255 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4256 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4257 } 4258 if (E->getType()->isVariablyModifiedType()) 4259 // make sure to emit the VLA size. 4260 EmitVariablyModifiedType(E->getType()); 4261 4262 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4263 const Expr *InitExpr = E->getInitializer(); 4264 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4265 4266 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4267 /*Init*/ true); 4268 4269 return Result; 4270 } 4271 4272 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4273 if (!E->isGLValue()) 4274 // Initializing an aggregate temporary in C++11: T{...}. 4275 return EmitAggExprToLValue(E); 4276 4277 // An lvalue initializer list must be initializing a reference. 4278 assert(E->isTransparent() && "non-transparent glvalue init list"); 4279 return EmitLValue(E->getInit(0)); 4280 } 4281 4282 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4283 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4284 /// LValue is returned and the current block has been terminated. 4285 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4286 const Expr *Operand) { 4287 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4288 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4289 return None; 4290 } 4291 4292 return CGF.EmitLValue(Operand); 4293 } 4294 4295 LValue CodeGenFunction:: 4296 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4297 if (!expr->isGLValue()) { 4298 // ?: here should be an aggregate. 4299 assert(hasAggregateEvaluationKind(expr->getType()) && 4300 "Unexpected conditional operator!"); 4301 return EmitAggExprToLValue(expr); 4302 } 4303 4304 OpaqueValueMapping binding(*this, expr); 4305 4306 const Expr *condExpr = expr->getCond(); 4307 bool CondExprBool; 4308 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4309 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4310 if (!CondExprBool) std::swap(live, dead); 4311 4312 if (!ContainsLabel(dead)) { 4313 // If the true case is live, we need to track its region. 4314 if (CondExprBool) 4315 incrementProfileCounter(expr); 4316 return EmitLValue(live); 4317 } 4318 } 4319 4320 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4321 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4322 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4323 4324 ConditionalEvaluation eval(*this); 4325 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4326 4327 // Any temporaries created here are conditional. 4328 EmitBlock(lhsBlock); 4329 incrementProfileCounter(expr); 4330 eval.begin(*this); 4331 Optional<LValue> lhs = 4332 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4333 eval.end(*this); 4334 4335 if (lhs && !lhs->isSimple()) 4336 return EmitUnsupportedLValue(expr, "conditional operator"); 4337 4338 lhsBlock = Builder.GetInsertBlock(); 4339 if (lhs) 4340 Builder.CreateBr(contBlock); 4341 4342 // Any temporaries created here are conditional. 4343 EmitBlock(rhsBlock); 4344 eval.begin(*this); 4345 Optional<LValue> rhs = 4346 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4347 eval.end(*this); 4348 if (rhs && !rhs->isSimple()) 4349 return EmitUnsupportedLValue(expr, "conditional operator"); 4350 rhsBlock = Builder.GetInsertBlock(); 4351 4352 EmitBlock(contBlock); 4353 4354 if (lhs && rhs) { 4355 llvm::PHINode *phi = 4356 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4357 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4358 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4359 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4360 AlignmentSource alignSource = 4361 std::max(lhs->getBaseInfo().getAlignmentSource(), 4362 rhs->getBaseInfo().getAlignmentSource()); 4363 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4364 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4365 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4366 TBAAInfo); 4367 } else { 4368 assert((lhs || rhs) && 4369 "both operands of glvalue conditional are throw-expressions?"); 4370 return lhs ? *lhs : *rhs; 4371 } 4372 } 4373 4374 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4375 /// type. If the cast is to a reference, we can have the usual lvalue result, 4376 /// otherwise if a cast is needed by the code generator in an lvalue context, 4377 /// then it must mean that we need the address of an aggregate in order to 4378 /// access one of its members. This can happen for all the reasons that casts 4379 /// are permitted with aggregate result, including noop aggregate casts, and 4380 /// cast from scalar to union. 4381 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4382 switch (E->getCastKind()) { 4383 case CK_ToVoid: 4384 case CK_BitCast: 4385 case CK_LValueToRValueBitCast: 4386 case CK_ArrayToPointerDecay: 4387 case CK_FunctionToPointerDecay: 4388 case CK_NullToMemberPointer: 4389 case CK_NullToPointer: 4390 case CK_IntegralToPointer: 4391 case CK_PointerToIntegral: 4392 case CK_PointerToBoolean: 4393 case CK_VectorSplat: 4394 case CK_IntegralCast: 4395 case CK_BooleanToSignedIntegral: 4396 case CK_IntegralToBoolean: 4397 case CK_IntegralToFloating: 4398 case CK_FloatingToIntegral: 4399 case CK_FloatingToBoolean: 4400 case CK_FloatingCast: 4401 case CK_FloatingRealToComplex: 4402 case CK_FloatingComplexToReal: 4403 case CK_FloatingComplexToBoolean: 4404 case CK_FloatingComplexCast: 4405 case CK_FloatingComplexToIntegralComplex: 4406 case CK_IntegralRealToComplex: 4407 case CK_IntegralComplexToReal: 4408 case CK_IntegralComplexToBoolean: 4409 case CK_IntegralComplexCast: 4410 case CK_IntegralComplexToFloatingComplex: 4411 case CK_DerivedToBaseMemberPointer: 4412 case CK_BaseToDerivedMemberPointer: 4413 case CK_MemberPointerToBoolean: 4414 case CK_ReinterpretMemberPointer: 4415 case CK_AnyPointerToBlockPointerCast: 4416 case CK_ARCProduceObject: 4417 case CK_ARCConsumeObject: 4418 case CK_ARCReclaimReturnedObject: 4419 case CK_ARCExtendBlockObject: 4420 case CK_CopyAndAutoreleaseBlockObject: 4421 case CK_IntToOCLSampler: 4422 case CK_FixedPointCast: 4423 case CK_FixedPointToBoolean: 4424 case CK_FixedPointToIntegral: 4425 case CK_IntegralToFixedPoint: 4426 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4427 4428 case CK_Dependent: 4429 llvm_unreachable("dependent cast kind in IR gen!"); 4430 4431 case CK_BuiltinFnToFnPtr: 4432 llvm_unreachable("builtin functions are handled elsewhere"); 4433 4434 // These are never l-values; just use the aggregate emission code. 4435 case CK_NonAtomicToAtomic: 4436 case CK_AtomicToNonAtomic: 4437 return EmitAggExprToLValue(E); 4438 4439 case CK_Dynamic: { 4440 LValue LV = EmitLValue(E->getSubExpr()); 4441 Address V = LV.getAddress(*this); 4442 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4443 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4444 } 4445 4446 case CK_ConstructorConversion: 4447 case CK_UserDefinedConversion: 4448 case CK_CPointerToObjCPointerCast: 4449 case CK_BlockPointerToObjCPointerCast: 4450 case CK_NoOp: 4451 case CK_LValueToRValue: 4452 return EmitLValue(E->getSubExpr()); 4453 4454 case CK_UncheckedDerivedToBase: 4455 case CK_DerivedToBase: { 4456 const auto *DerivedClassTy = 4457 E->getSubExpr()->getType()->castAs<RecordType>(); 4458 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4459 4460 LValue LV = EmitLValue(E->getSubExpr()); 4461 Address This = LV.getAddress(*this); 4462 4463 // Perform the derived-to-base conversion 4464 Address Base = GetAddressOfBaseClass( 4465 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4466 /*NullCheckValue=*/false, E->getExprLoc()); 4467 4468 // TODO: Support accesses to members of base classes in TBAA. For now, we 4469 // conservatively pretend that the complete object is of the base class 4470 // type. 4471 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4472 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4473 } 4474 case CK_ToUnion: 4475 return EmitAggExprToLValue(E); 4476 case CK_BaseToDerived: { 4477 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4478 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4479 4480 LValue LV = EmitLValue(E->getSubExpr()); 4481 4482 // Perform the base-to-derived conversion 4483 Address Derived = GetAddressOfDerivedClass( 4484 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4485 /*NullCheckValue=*/false); 4486 4487 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4488 // performed and the object is not of the derived type. 4489 if (sanitizePerformTypeCheck()) 4490 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4491 Derived.getPointer(), E->getType()); 4492 4493 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4494 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4495 /*MayBeNull=*/false, CFITCK_DerivedCast, 4496 E->getBeginLoc()); 4497 4498 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4499 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4500 } 4501 case CK_LValueBitCast: { 4502 // This must be a reinterpret_cast (or c-style equivalent). 4503 const auto *CE = cast<ExplicitCastExpr>(E); 4504 4505 CGM.EmitExplicitCastExprType(CE, this); 4506 LValue LV = EmitLValue(E->getSubExpr()); 4507 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4508 ConvertType(CE->getTypeAsWritten())); 4509 4510 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4511 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4512 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4513 E->getBeginLoc()); 4514 4515 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4516 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4517 } 4518 case CK_AddressSpaceConversion: { 4519 LValue LV = EmitLValue(E->getSubExpr()); 4520 QualType DestTy = getContext().getPointerType(E->getType()); 4521 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4522 *this, LV.getPointer(*this), 4523 E->getSubExpr()->getType().getAddressSpace(), 4524 E->getType().getAddressSpace(), ConvertType(DestTy)); 4525 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4526 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4527 } 4528 case CK_ObjCObjectLValueCast: { 4529 LValue LV = EmitLValue(E->getSubExpr()); 4530 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4531 ConvertType(E->getType())); 4532 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4533 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4534 } 4535 case CK_ZeroToOCLOpaqueType: 4536 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4537 } 4538 4539 llvm_unreachable("Unhandled lvalue cast kind?"); 4540 } 4541 4542 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4543 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4544 return getOrCreateOpaqueLValueMapping(e); 4545 } 4546 4547 LValue 4548 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4549 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4550 4551 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4552 it = OpaqueLValues.find(e); 4553 4554 if (it != OpaqueLValues.end()) 4555 return it->second; 4556 4557 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4558 return EmitLValue(e->getSourceExpr()); 4559 } 4560 4561 RValue 4562 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4563 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4564 4565 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4566 it = OpaqueRValues.find(e); 4567 4568 if (it != OpaqueRValues.end()) 4569 return it->second; 4570 4571 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4572 return EmitAnyExpr(e->getSourceExpr()); 4573 } 4574 4575 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4576 const FieldDecl *FD, 4577 SourceLocation Loc) { 4578 QualType FT = FD->getType(); 4579 LValue FieldLV = EmitLValueForField(LV, FD); 4580 switch (getEvaluationKind(FT)) { 4581 case TEK_Complex: 4582 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4583 case TEK_Aggregate: 4584 return FieldLV.asAggregateRValue(*this); 4585 case TEK_Scalar: 4586 // This routine is used to load fields one-by-one to perform a copy, so 4587 // don't load reference fields. 4588 if (FD->getType()->isReferenceType()) 4589 return RValue::get(FieldLV.getPointer(*this)); 4590 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4591 // primitive load. 4592 if (FieldLV.isBitField()) 4593 return EmitLoadOfLValue(FieldLV, Loc); 4594 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4595 } 4596 llvm_unreachable("bad evaluation kind"); 4597 } 4598 4599 //===--------------------------------------------------------------------===// 4600 // Expression Emission 4601 //===--------------------------------------------------------------------===// 4602 4603 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4604 ReturnValueSlot ReturnValue) { 4605 // Builtins never have block type. 4606 if (E->getCallee()->getType()->isBlockPointerType()) 4607 return EmitBlockCallExpr(E, ReturnValue); 4608 4609 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4610 return EmitCXXMemberCallExpr(CE, ReturnValue); 4611 4612 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4613 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4614 4615 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4616 if (const CXXMethodDecl *MD = 4617 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4618 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4619 4620 CGCallee callee = EmitCallee(E->getCallee()); 4621 4622 if (callee.isBuiltin()) { 4623 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4624 E, ReturnValue); 4625 } 4626 4627 if (callee.isPseudoDestructor()) { 4628 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4629 } 4630 4631 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4632 } 4633 4634 /// Emit a CallExpr without considering whether it might be a subclass. 4635 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4636 ReturnValueSlot ReturnValue) { 4637 CGCallee Callee = EmitCallee(E->getCallee()); 4638 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4639 } 4640 4641 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4642 4643 if (auto builtinID = FD->getBuiltinID()) { 4644 // Replaceable builtin provide their own implementation of a builtin. Unless 4645 // we are in the builtin implementation itself, don't call the actual 4646 // builtin. If we are in the builtin implementation, avoid trivial infinite 4647 // recursion. 4648 if (!FD->isInlineBuiltinDeclaration() || 4649 CGF.CurFn->getName() == FD->getName()) 4650 return CGCallee::forBuiltin(builtinID, FD); 4651 } 4652 4653 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4654 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4655 } 4656 4657 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4658 E = E->IgnoreParens(); 4659 4660 // Look through function-to-pointer decay. 4661 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4662 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4663 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4664 return EmitCallee(ICE->getSubExpr()); 4665 } 4666 4667 // Resolve direct calls. 4668 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4669 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4670 return EmitDirectCallee(*this, FD); 4671 } 4672 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4673 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4674 EmitIgnoredExpr(ME->getBase()); 4675 return EmitDirectCallee(*this, FD); 4676 } 4677 4678 // Look through template substitutions. 4679 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4680 return EmitCallee(NTTP->getReplacement()); 4681 4682 // Treat pseudo-destructor calls differently. 4683 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4684 return CGCallee::forPseudoDestructor(PDE); 4685 } 4686 4687 // Otherwise, we have an indirect reference. 4688 llvm::Value *calleePtr; 4689 QualType functionType; 4690 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4691 calleePtr = EmitScalarExpr(E); 4692 functionType = ptrType->getPointeeType(); 4693 } else { 4694 functionType = E->getType(); 4695 calleePtr = EmitLValue(E).getPointer(*this); 4696 } 4697 assert(functionType->isFunctionType()); 4698 4699 GlobalDecl GD; 4700 if (const auto *VD = 4701 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4702 GD = GlobalDecl(VD); 4703 4704 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4705 CGCallee callee(calleeInfo, calleePtr); 4706 return callee; 4707 } 4708 4709 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4710 // Comma expressions just emit their LHS then their RHS as an l-value. 4711 if (E->getOpcode() == BO_Comma) { 4712 EmitIgnoredExpr(E->getLHS()); 4713 EnsureInsertPoint(); 4714 return EmitLValue(E->getRHS()); 4715 } 4716 4717 if (E->getOpcode() == BO_PtrMemD || 4718 E->getOpcode() == BO_PtrMemI) 4719 return EmitPointerToDataMemberBinaryExpr(E); 4720 4721 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4722 4723 // Note that in all of these cases, __block variables need the RHS 4724 // evaluated first just in case the variable gets moved by the RHS. 4725 4726 switch (getEvaluationKind(E->getType())) { 4727 case TEK_Scalar: { 4728 switch (E->getLHS()->getType().getObjCLifetime()) { 4729 case Qualifiers::OCL_Strong: 4730 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4731 4732 case Qualifiers::OCL_Autoreleasing: 4733 return EmitARCStoreAutoreleasing(E).first; 4734 4735 // No reason to do any of these differently. 4736 case Qualifiers::OCL_None: 4737 case Qualifiers::OCL_ExplicitNone: 4738 case Qualifiers::OCL_Weak: 4739 break; 4740 } 4741 4742 RValue RV = EmitAnyExpr(E->getRHS()); 4743 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4744 if (RV.isScalar()) 4745 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4746 EmitStoreThroughLValue(RV, LV); 4747 if (getLangOpts().OpenMP) 4748 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4749 E->getLHS()); 4750 return LV; 4751 } 4752 4753 case TEK_Complex: 4754 return EmitComplexAssignmentLValue(E); 4755 4756 case TEK_Aggregate: 4757 return EmitAggExprToLValue(E); 4758 } 4759 llvm_unreachable("bad evaluation kind"); 4760 } 4761 4762 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4763 RValue RV = EmitCallExpr(E); 4764 4765 if (!RV.isScalar()) 4766 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4767 AlignmentSource::Decl); 4768 4769 assert(E->getCallReturnType(getContext())->isReferenceType() && 4770 "Can't have a scalar return unless the return type is a " 4771 "reference type!"); 4772 4773 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4774 } 4775 4776 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4777 // FIXME: This shouldn't require another copy. 4778 return EmitAggExprToLValue(E); 4779 } 4780 4781 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4782 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4783 && "binding l-value to type which needs a temporary"); 4784 AggValueSlot Slot = CreateAggTemp(E->getType()); 4785 EmitCXXConstructExpr(E, Slot); 4786 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4787 } 4788 4789 LValue 4790 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4791 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4792 } 4793 4794 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4795 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4796 ConvertType(E->getType())); 4797 } 4798 4799 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4800 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4801 AlignmentSource::Decl); 4802 } 4803 4804 LValue 4805 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4806 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4807 Slot.setExternallyDestructed(); 4808 EmitAggExpr(E->getSubExpr(), Slot); 4809 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4810 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4811 } 4812 4813 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4814 RValue RV = EmitObjCMessageExpr(E); 4815 4816 if (!RV.isScalar()) 4817 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4818 AlignmentSource::Decl); 4819 4820 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4821 "Can't have a scalar return unless the return type is a " 4822 "reference type!"); 4823 4824 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4825 } 4826 4827 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4828 Address V = 4829 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4830 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4831 } 4832 4833 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4834 const ObjCIvarDecl *Ivar) { 4835 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4836 } 4837 4838 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4839 llvm::Value *BaseValue, 4840 const ObjCIvarDecl *Ivar, 4841 unsigned CVRQualifiers) { 4842 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4843 Ivar, CVRQualifiers); 4844 } 4845 4846 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4847 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4848 llvm::Value *BaseValue = nullptr; 4849 const Expr *BaseExpr = E->getBase(); 4850 Qualifiers BaseQuals; 4851 QualType ObjectTy; 4852 if (E->isArrow()) { 4853 BaseValue = EmitScalarExpr(BaseExpr); 4854 ObjectTy = BaseExpr->getType()->getPointeeType(); 4855 BaseQuals = ObjectTy.getQualifiers(); 4856 } else { 4857 LValue BaseLV = EmitLValue(BaseExpr); 4858 BaseValue = BaseLV.getPointer(*this); 4859 ObjectTy = BaseExpr->getType(); 4860 BaseQuals = ObjectTy.getQualifiers(); 4861 } 4862 4863 LValue LV = 4864 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4865 BaseQuals.getCVRQualifiers()); 4866 setObjCGCLValueClass(getContext(), E, LV); 4867 return LV; 4868 } 4869 4870 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4871 // Can only get l-value for message expression returning aggregate type 4872 RValue RV = EmitAnyExprToTemp(E); 4873 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4874 AlignmentSource::Decl); 4875 } 4876 4877 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4878 const CallExpr *E, ReturnValueSlot ReturnValue, 4879 llvm::Value *Chain) { 4880 // Get the actual function type. The callee type will always be a pointer to 4881 // function type or a block pointer type. 4882 assert(CalleeType->isFunctionPointerType() && 4883 "Call must have function pointer type!"); 4884 4885 const Decl *TargetDecl = 4886 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4887 4888 CalleeType = getContext().getCanonicalType(CalleeType); 4889 4890 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4891 4892 CGCallee Callee = OrigCallee; 4893 4894 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4895 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4896 if (llvm::Constant *PrefixSig = 4897 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4898 SanitizerScope SanScope(this); 4899 // Remove any (C++17) exception specifications, to allow calling e.g. a 4900 // noexcept function through a non-noexcept pointer. 4901 auto ProtoTy = 4902 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4903 llvm::Constant *FTRTTIConst = 4904 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4905 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4906 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4907 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4908 4909 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4910 4911 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4912 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4913 llvm::Value *CalleeSigPtr = 4914 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4915 llvm::Value *CalleeSig = 4916 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4917 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4918 4919 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4920 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4921 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4922 4923 EmitBlock(TypeCheck); 4924 llvm::Value *CalleeRTTIPtr = 4925 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4926 llvm::Value *CalleeRTTIEncoded = 4927 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4928 llvm::Value *CalleeRTTI = 4929 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4930 llvm::Value *CalleeRTTIMatch = 4931 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4932 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4933 EmitCheckTypeDescriptor(CalleeType)}; 4934 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4935 SanitizerHandler::FunctionTypeMismatch, StaticData, 4936 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4937 4938 Builder.CreateBr(Cont); 4939 EmitBlock(Cont); 4940 } 4941 } 4942 4943 const auto *FnType = cast<FunctionType>(PointeeType); 4944 4945 // If we are checking indirect calls and this call is indirect, check that the 4946 // function pointer is a member of the bit set for the function type. 4947 if (SanOpts.has(SanitizerKind::CFIICall) && 4948 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4949 SanitizerScope SanScope(this); 4950 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4951 4952 llvm::Metadata *MD; 4953 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4954 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4955 else 4956 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4957 4958 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4959 4960 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4961 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4962 llvm::Value *TypeTest = Builder.CreateCall( 4963 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4964 4965 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4966 llvm::Constant *StaticData[] = { 4967 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4968 EmitCheckSourceLocation(E->getBeginLoc()), 4969 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4970 }; 4971 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4972 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4973 CastedCallee, StaticData); 4974 } else { 4975 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4976 SanitizerHandler::CFICheckFail, StaticData, 4977 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4978 } 4979 } 4980 4981 CallArgList Args; 4982 if (Chain) 4983 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4984 CGM.getContext().VoidPtrTy); 4985 4986 // C++17 requires that we evaluate arguments to a call using assignment syntax 4987 // right-to-left, and that we evaluate arguments to certain other operators 4988 // left-to-right. Note that we allow this to override the order dictated by 4989 // the calling convention on the MS ABI, which means that parameter 4990 // destruction order is not necessarily reverse construction order. 4991 // FIXME: Revisit this based on C++ committee response to unimplementability. 4992 EvaluationOrder Order = EvaluationOrder::Default; 4993 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4994 if (OCE->isAssignmentOp()) 4995 Order = EvaluationOrder::ForceRightToLeft; 4996 else { 4997 switch (OCE->getOperator()) { 4998 case OO_LessLess: 4999 case OO_GreaterGreater: 5000 case OO_AmpAmp: 5001 case OO_PipePipe: 5002 case OO_Comma: 5003 case OO_ArrowStar: 5004 Order = EvaluationOrder::ForceLeftToRight; 5005 break; 5006 default: 5007 break; 5008 } 5009 } 5010 } 5011 5012 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5013 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5014 5015 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5016 Args, FnType, /*ChainCall=*/Chain); 5017 5018 // C99 6.5.2.2p6: 5019 // If the expression that denotes the called function has a type 5020 // that does not include a prototype, [the default argument 5021 // promotions are performed]. If the number of arguments does not 5022 // equal the number of parameters, the behavior is undefined. If 5023 // the function is defined with a type that includes a prototype, 5024 // and either the prototype ends with an ellipsis (, ...) or the 5025 // types of the arguments after promotion are not compatible with 5026 // the types of the parameters, the behavior is undefined. If the 5027 // function is defined with a type that does not include a 5028 // prototype, and the types of the arguments after promotion are 5029 // not compatible with those of the parameters after promotion, 5030 // the behavior is undefined [except in some trivial cases]. 5031 // That is, in the general case, we should assume that a call 5032 // through an unprototyped function type works like a *non-variadic* 5033 // call. The way we make this work is to cast to the exact type 5034 // of the promoted arguments. 5035 // 5036 // Chain calls use this same code path to add the invisible chain parameter 5037 // to the function type. 5038 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5039 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5040 CalleeTy = CalleeTy->getPointerTo(); 5041 5042 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5043 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5044 Callee.setFunctionPointer(CalleePtr); 5045 } 5046 5047 llvm::CallBase *CallOrInvoke = nullptr; 5048 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5049 E->getExprLoc()); 5050 5051 // Generate function declaration DISuprogram in order to be used 5052 // in debug info about call sites. 5053 if (CGDebugInfo *DI = getDebugInfo()) { 5054 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5055 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5056 CalleeDecl); 5057 } 5058 5059 return Call; 5060 } 5061 5062 LValue CodeGenFunction:: 5063 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5064 Address BaseAddr = Address::invalid(); 5065 if (E->getOpcode() == BO_PtrMemI) { 5066 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5067 } else { 5068 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5069 } 5070 5071 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5072 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5073 5074 LValueBaseInfo BaseInfo; 5075 TBAAAccessInfo TBAAInfo; 5076 Address MemberAddr = 5077 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5078 &TBAAInfo); 5079 5080 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5081 } 5082 5083 /// Given the address of a temporary variable, produce an r-value of 5084 /// its type. 5085 RValue CodeGenFunction::convertTempToRValue(Address addr, 5086 QualType type, 5087 SourceLocation loc) { 5088 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5089 switch (getEvaluationKind(type)) { 5090 case TEK_Complex: 5091 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5092 case TEK_Aggregate: 5093 return lvalue.asAggregateRValue(*this); 5094 case TEK_Scalar: 5095 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5096 } 5097 llvm_unreachable("bad evaluation kind"); 5098 } 5099 5100 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5101 assert(Val->getType()->isFPOrFPVectorTy()); 5102 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5103 return; 5104 5105 llvm::MDBuilder MDHelper(getLLVMContext()); 5106 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5107 5108 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5109 } 5110 5111 namespace { 5112 struct LValueOrRValue { 5113 LValue LV; 5114 RValue RV; 5115 }; 5116 } 5117 5118 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5119 const PseudoObjectExpr *E, 5120 bool forLValue, 5121 AggValueSlot slot) { 5122 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5123 5124 // Find the result expression, if any. 5125 const Expr *resultExpr = E->getResultExpr(); 5126 LValueOrRValue result; 5127 5128 for (PseudoObjectExpr::const_semantics_iterator 5129 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5130 const Expr *semantic = *i; 5131 5132 // If this semantic expression is an opaque value, bind it 5133 // to the result of its source expression. 5134 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5135 // Skip unique OVEs. 5136 if (ov->isUnique()) { 5137 assert(ov != resultExpr && 5138 "A unique OVE cannot be used as the result expression"); 5139 continue; 5140 } 5141 5142 // If this is the result expression, we may need to evaluate 5143 // directly into the slot. 5144 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5145 OVMA opaqueData; 5146 if (ov == resultExpr && ov->isRValue() && !forLValue && 5147 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5148 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5149 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5150 AlignmentSource::Decl); 5151 opaqueData = OVMA::bind(CGF, ov, LV); 5152 result.RV = slot.asRValue(); 5153 5154 // Otherwise, emit as normal. 5155 } else { 5156 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5157 5158 // If this is the result, also evaluate the result now. 5159 if (ov == resultExpr) { 5160 if (forLValue) 5161 result.LV = CGF.EmitLValue(ov); 5162 else 5163 result.RV = CGF.EmitAnyExpr(ov, slot); 5164 } 5165 } 5166 5167 opaques.push_back(opaqueData); 5168 5169 // Otherwise, if the expression is the result, evaluate it 5170 // and remember the result. 5171 } else if (semantic == resultExpr) { 5172 if (forLValue) 5173 result.LV = CGF.EmitLValue(semantic); 5174 else 5175 result.RV = CGF.EmitAnyExpr(semantic, slot); 5176 5177 // Otherwise, evaluate the expression in an ignored context. 5178 } else { 5179 CGF.EmitIgnoredExpr(semantic); 5180 } 5181 } 5182 5183 // Unbind all the opaques now. 5184 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5185 opaques[i].unbind(CGF); 5186 5187 return result; 5188 } 5189 5190 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5191 AggValueSlot slot) { 5192 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5193 } 5194 5195 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5196 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5197 } 5198