1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Hashing.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/ConvertUTF.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Transforms/Utils/SanitizerStats.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 //===--------------------------------------------------------------------===// 43 // Miscellaneous Helper Methods 44 //===--------------------------------------------------------------------===// 45 46 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 47 unsigned addressSpace = 48 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 49 50 llvm::PointerType *destType = Int8PtrTy; 51 if (addressSpace) 52 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 53 54 if (value->getType() == destType) return value; 55 return Builder.CreateBitCast(value, destType); 56 } 57 58 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 59 /// block. 60 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 61 const Twine &Name) { 62 auto Alloca = CreateTempAlloca(Ty, Name); 63 Alloca->setAlignment(Align.getQuantity()); 64 return Address(Alloca, Align); 65 } 66 67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 68 /// block. 69 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 70 const Twine &Name) { 71 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 72 } 73 74 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 75 /// default alignment of the corresponding LLVM type, which is *not* 76 /// guaranteed to be related in any way to the expected alignment of 77 /// an AST type that might have been lowered to Ty. 78 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 79 const Twine &Name) { 80 CharUnits Align = 81 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 82 return CreateTempAlloca(Ty, Align, Name); 83 } 84 85 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 86 assert(isa<llvm::AllocaInst>(Var.getPointer())); 87 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 88 Store->setAlignment(Var.getAlignment().getQuantity()); 89 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 90 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 91 } 92 93 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 94 CharUnits Align = getContext().getTypeAlignInChars(Ty); 95 return CreateTempAlloca(ConvertType(Ty), Align, Name); 96 } 97 98 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 99 // FIXME: Should we prefer the preferred type alignment here? 100 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 101 } 102 103 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 104 const Twine &Name) { 105 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 106 } 107 108 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 109 /// expression and compare the result against zero, returning an Int1Ty value. 110 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 111 PGO.setCurrentStmt(E); 112 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 113 llvm::Value *MemPtr = EmitScalarExpr(E); 114 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 115 } 116 117 QualType BoolTy = getContext().BoolTy; 118 SourceLocation Loc = E->getExprLoc(); 119 if (!E->getType()->isAnyComplexType()) 120 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 121 122 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 123 Loc); 124 } 125 126 /// EmitIgnoredExpr - Emit code to compute the specified expression, 127 /// ignoring the result. 128 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 129 if (E->isRValue()) 130 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 131 132 // Just emit it as an l-value and drop the result. 133 EmitLValue(E); 134 } 135 136 /// EmitAnyExpr - Emit code to compute the specified expression which 137 /// can have any type. The result is returned as an RValue struct. 138 /// If this is an aggregate expression, AggSlot indicates where the 139 /// result should be returned. 140 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 141 AggValueSlot aggSlot, 142 bool ignoreResult) { 143 switch (getEvaluationKind(E->getType())) { 144 case TEK_Scalar: 145 return RValue::get(EmitScalarExpr(E, ignoreResult)); 146 case TEK_Complex: 147 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 148 case TEK_Aggregate: 149 if (!ignoreResult && aggSlot.isIgnored()) 150 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 151 EmitAggExpr(E, aggSlot); 152 return aggSlot.asRValue(); 153 } 154 llvm_unreachable("bad evaluation kind"); 155 } 156 157 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 158 /// always be accessible even if no aggregate location is provided. 159 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 160 AggValueSlot AggSlot = AggValueSlot::ignored(); 161 162 if (hasAggregateEvaluationKind(E->getType())) 163 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 164 return EmitAnyExpr(E, AggSlot); 165 } 166 167 /// EmitAnyExprToMem - Evaluate an expression into a given memory 168 /// location. 169 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 170 Address Location, 171 Qualifiers Quals, 172 bool IsInit) { 173 // FIXME: This function should take an LValue as an argument. 174 switch (getEvaluationKind(E->getType())) { 175 case TEK_Complex: 176 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 177 /*isInit*/ false); 178 return; 179 180 case TEK_Aggregate: { 181 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 182 AggValueSlot::IsDestructed_t(IsInit), 183 AggValueSlot::DoesNotNeedGCBarriers, 184 AggValueSlot::IsAliased_t(!IsInit))); 185 return; 186 } 187 188 case TEK_Scalar: { 189 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 190 LValue LV = MakeAddrLValue(Location, E->getType()); 191 EmitStoreThroughLValue(RV, LV); 192 return; 193 } 194 } 195 llvm_unreachable("bad evaluation kind"); 196 } 197 198 static void 199 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 200 const Expr *E, Address ReferenceTemporary) { 201 // Objective-C++ ARC: 202 // If we are binding a reference to a temporary that has ownership, we 203 // need to perform retain/release operations on the temporary. 204 // 205 // FIXME: This should be looking at E, not M. 206 if (auto Lifetime = M->getType().getObjCLifetime()) { 207 switch (Lifetime) { 208 case Qualifiers::OCL_None: 209 case Qualifiers::OCL_ExplicitNone: 210 // Carry on to normal cleanup handling. 211 break; 212 213 case Qualifiers::OCL_Autoreleasing: 214 // Nothing to do; cleaned up by an autorelease pool. 215 return; 216 217 case Qualifiers::OCL_Strong: 218 case Qualifiers::OCL_Weak: 219 switch (StorageDuration Duration = M->getStorageDuration()) { 220 case SD_Static: 221 // Note: we intentionally do not register a cleanup to release 222 // the object on program termination. 223 return; 224 225 case SD_Thread: 226 // FIXME: We should probably register a cleanup in this case. 227 return; 228 229 case SD_Automatic: 230 case SD_FullExpression: 231 CodeGenFunction::Destroyer *Destroy; 232 CleanupKind CleanupKind; 233 if (Lifetime == Qualifiers::OCL_Strong) { 234 const ValueDecl *VD = M->getExtendingDecl(); 235 bool Precise = 236 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 237 CleanupKind = CGF.getARCCleanupKind(); 238 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 239 : &CodeGenFunction::destroyARCStrongImprecise; 240 } else { 241 // __weak objects always get EH cleanups; otherwise, exceptions 242 // could cause really nasty crashes instead of mere leaks. 243 CleanupKind = NormalAndEHCleanup; 244 Destroy = &CodeGenFunction::destroyARCWeak; 245 } 246 if (Duration == SD_FullExpression) 247 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 248 M->getType(), *Destroy, 249 CleanupKind & EHCleanup); 250 else 251 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), 253 *Destroy, CleanupKind & EHCleanup); 254 return; 255 256 case SD_Dynamic: 257 llvm_unreachable("temporary cannot have dynamic storage duration"); 258 } 259 llvm_unreachable("unknown storage duration"); 260 } 261 } 262 263 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 264 if (const RecordType *RT = 265 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 266 // Get the destructor for the reference temporary. 267 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 268 if (!ClassDecl->hasTrivialDestructor()) 269 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 270 } 271 272 if (!ReferenceTemporaryDtor) 273 return; 274 275 // Call the destructor for the temporary. 276 switch (M->getStorageDuration()) { 277 case SD_Static: 278 case SD_Thread: { 279 llvm::Constant *CleanupFn; 280 llvm::Constant *CleanupArg; 281 if (E->getType()->isArrayType()) { 282 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 283 ReferenceTemporary, E->getType(), 284 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 285 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 286 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 287 } else { 288 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 289 StructorType::Complete); 290 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 291 } 292 CGF.CGM.getCXXABI().registerGlobalDtor( 293 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 294 break; 295 } 296 297 case SD_FullExpression: 298 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 299 CodeGenFunction::destroyCXXObject, 300 CGF.getLangOpts().Exceptions); 301 break; 302 303 case SD_Automatic: 304 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 305 ReferenceTemporary, E->getType(), 306 CodeGenFunction::destroyCXXObject, 307 CGF.getLangOpts().Exceptions); 308 break; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 } 314 315 static Address 316 createReferenceTemporary(CodeGenFunction &CGF, 317 const MaterializeTemporaryExpr *M, const Expr *Inner) { 318 switch (M->getStorageDuration()) { 319 case SD_FullExpression: 320 case SD_Automatic: { 321 // If we have a constant temporary array or record try to promote it into a 322 // constant global under the same rules a normal constant would've been 323 // promoted. This is easier on the optimizer and generally emits fewer 324 // instructions. 325 QualType Ty = Inner->getType(); 326 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 327 (Ty->isArrayType() || Ty->isRecordType()) && 328 CGF.CGM.isTypeConstant(Ty, true)) 329 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 330 auto *GV = new llvm::GlobalVariable( 331 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 332 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 333 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 334 GV->setAlignment(alignment.getQuantity()); 335 // FIXME: Should we put the new global into a COMDAT? 336 return Address(GV, alignment); 337 } 338 return CGF.CreateMemTemp(Ty, "ref.tmp"); 339 } 340 case SD_Thread: 341 case SD_Static: 342 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 343 344 case SD_Dynamic: 345 llvm_unreachable("temporary can't have dynamic storage duration"); 346 } 347 llvm_unreachable("unknown storage duration"); 348 } 349 350 LValue CodeGenFunction:: 351 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 352 const Expr *E = M->GetTemporaryExpr(); 353 354 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 355 // as that will cause the lifetime adjustment to be lost for ARC 356 auto ownership = M->getType().getObjCLifetime(); 357 if (ownership != Qualifiers::OCL_None && 358 ownership != Qualifiers::OCL_ExplicitNone) { 359 Address Object = createReferenceTemporary(*this, M, E); 360 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 361 Object = Address(llvm::ConstantExpr::getBitCast(Var, 362 ConvertTypeForMem(E->getType()) 363 ->getPointerTo(Object.getAddressSpace())), 364 Object.getAlignment()); 365 366 // createReferenceTemporary will promote the temporary to a global with a 367 // constant initializer if it can. It can only do this to a value of 368 // ARC-manageable type if the value is global and therefore "immune" to 369 // ref-counting operations. Therefore we have no need to emit either a 370 // dynamic initialization or a cleanup and we can just return the address 371 // of the temporary. 372 if (Var->hasInitializer()) 373 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 374 375 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 376 } 377 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 378 AlignmentSource::Decl); 379 380 switch (getEvaluationKind(E->getType())) { 381 default: llvm_unreachable("expected scalar or aggregate expression"); 382 case TEK_Scalar: 383 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 384 break; 385 case TEK_Aggregate: { 386 EmitAggExpr(E, AggValueSlot::forAddr(Object, 387 E->getType().getQualifiers(), 388 AggValueSlot::IsDestructed, 389 AggValueSlot::DoesNotNeedGCBarriers, 390 AggValueSlot::IsNotAliased)); 391 break; 392 } 393 } 394 395 pushTemporaryCleanup(*this, M, E, Object); 396 return RefTempDst; 397 } 398 399 SmallVector<const Expr *, 2> CommaLHSs; 400 SmallVector<SubobjectAdjustment, 2> Adjustments; 401 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 402 403 for (const auto &Ignored : CommaLHSs) 404 EmitIgnoredExpr(Ignored); 405 406 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 407 if (opaque->getType()->isRecordType()) { 408 assert(Adjustments.empty()); 409 return EmitOpaqueValueLValue(opaque); 410 } 411 } 412 413 // Create and initialize the reference temporary. 414 Address Object = createReferenceTemporary(*this, M, E); 415 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 416 Object = Address(llvm::ConstantExpr::getBitCast( 417 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 418 Object.getAlignment()); 419 // If the temporary is a global and has a constant initializer or is a 420 // constant temporary that we promoted to a global, we may have already 421 // initialized it. 422 if (!Var->hasInitializer()) { 423 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 424 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 425 } 426 } else { 427 switch (M->getStorageDuration()) { 428 case SD_Automatic: 429 case SD_FullExpression: 430 if (auto *Size = EmitLifetimeStart( 431 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 432 Object.getPointer())) { 433 if (M->getStorageDuration() == SD_Automatic) 434 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 435 Object, Size); 436 else 437 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 438 Size); 439 } 440 break; 441 default: 442 break; 443 } 444 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 445 } 446 pushTemporaryCleanup(*this, M, E, Object); 447 448 // Perform derived-to-base casts and/or field accesses, to get from the 449 // temporary object we created (and, potentially, for which we extended 450 // the lifetime) to the subobject we're binding the reference to. 451 for (unsigned I = Adjustments.size(); I != 0; --I) { 452 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 453 switch (Adjustment.Kind) { 454 case SubobjectAdjustment::DerivedToBaseAdjustment: 455 Object = 456 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 457 Adjustment.DerivedToBase.BasePath->path_begin(), 458 Adjustment.DerivedToBase.BasePath->path_end(), 459 /*NullCheckValue=*/ false, E->getExprLoc()); 460 break; 461 462 case SubobjectAdjustment::FieldAdjustment: { 463 LValue LV = MakeAddrLValue(Object, E->getType(), 464 AlignmentSource::Decl); 465 LV = EmitLValueForField(LV, Adjustment.Field); 466 assert(LV.isSimple() && 467 "materialized temporary field is not a simple lvalue"); 468 Object = LV.getAddress(); 469 break; 470 } 471 472 case SubobjectAdjustment::MemberPointerAdjustment: { 473 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 474 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 475 Adjustment.Ptr.MPT); 476 break; 477 } 478 } 479 } 480 481 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 482 } 483 484 RValue 485 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 486 // Emit the expression as an lvalue. 487 LValue LV = EmitLValue(E); 488 assert(LV.isSimple()); 489 llvm::Value *Value = LV.getPointer(); 490 491 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 492 // C++11 [dcl.ref]p5 (as amended by core issue 453): 493 // If a glvalue to which a reference is directly bound designates neither 494 // an existing object or function of an appropriate type nor a region of 495 // storage of suitable size and alignment to contain an object of the 496 // reference's type, the behavior is undefined. 497 QualType Ty = E->getType(); 498 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 499 } 500 501 return RValue::get(Value); 502 } 503 504 505 /// getAccessedFieldNo - Given an encoded value and a result number, return the 506 /// input field number being accessed. 507 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 508 const llvm::Constant *Elts) { 509 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 510 ->getZExtValue(); 511 } 512 513 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 514 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 515 llvm::Value *High) { 516 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 517 llvm::Value *K47 = Builder.getInt64(47); 518 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 519 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 520 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 521 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 522 return Builder.CreateMul(B1, KMul); 523 } 524 525 bool CodeGenFunction::sanitizePerformTypeCheck() const { 526 return SanOpts.has(SanitizerKind::Null) | 527 SanOpts.has(SanitizerKind::Alignment) | 528 SanOpts.has(SanitizerKind::ObjectSize) | 529 SanOpts.has(SanitizerKind::Vptr); 530 } 531 532 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 533 llvm::Value *Ptr, QualType Ty, 534 CharUnits Alignment, bool SkipNullCheck) { 535 if (!sanitizePerformTypeCheck()) 536 return; 537 538 // Don't check pointers outside the default address space. The null check 539 // isn't correct, the object-size check isn't supported by LLVM, and we can't 540 // communicate the addresses to the runtime handler for the vptr check. 541 if (Ptr->getType()->getPointerAddressSpace()) 542 return; 543 544 SanitizerScope SanScope(this); 545 546 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 547 llvm::BasicBlock *Done = nullptr; 548 549 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 550 TCK == TCK_UpcastToVirtualBase; 551 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 552 !SkipNullCheck) { 553 // The glvalue must not be an empty glvalue. 554 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 555 556 if (AllowNullPointers) { 557 // When performing pointer casts, it's OK if the value is null. 558 // Skip the remaining checks in that case. 559 Done = createBasicBlock("null"); 560 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 561 Builder.CreateCondBr(IsNonNull, Rest, Done); 562 EmitBlock(Rest); 563 } else { 564 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 565 } 566 } 567 568 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 569 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 570 571 // The glvalue must refer to a large enough storage region. 572 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 573 // to check this. 574 // FIXME: Get object address space 575 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 576 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 577 llvm::Value *Min = Builder.getFalse(); 578 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 579 llvm::Value *LargeEnough = 580 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 581 llvm::ConstantInt::get(IntPtrTy, Size)); 582 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 583 } 584 585 uint64_t AlignVal = 0; 586 587 if (SanOpts.has(SanitizerKind::Alignment)) { 588 AlignVal = Alignment.getQuantity(); 589 if (!Ty->isIncompleteType() && !AlignVal) 590 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 591 592 // The glvalue must be suitably aligned. 593 if (AlignVal) { 594 llvm::Value *Align = 595 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 596 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 597 llvm::Value *Aligned = 598 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 599 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 600 } 601 } 602 603 if (Checks.size() > 0) { 604 llvm::Constant *StaticData[] = { 605 EmitCheckSourceLocation(Loc), 606 EmitCheckTypeDescriptor(Ty), 607 llvm::ConstantInt::get(SizeTy, AlignVal), 608 llvm::ConstantInt::get(Int8Ty, TCK) 609 }; 610 EmitCheck(Checks, "type_mismatch", StaticData, Ptr); 611 } 612 613 // If possible, check that the vptr indicates that there is a subobject of 614 // type Ty at offset zero within this object. 615 // 616 // C++11 [basic.life]p5,6: 617 // [For storage which does not refer to an object within its lifetime] 618 // The program has undefined behavior if: 619 // -- the [pointer or glvalue] is used to access a non-static data member 620 // or call a non-static member function 621 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 622 if (SanOpts.has(SanitizerKind::Vptr) && 623 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 624 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 625 TCK == TCK_UpcastToVirtualBase) && 626 RD && RD->hasDefinition() && RD->isDynamicClass()) { 627 // Compute a hash of the mangled name of the type. 628 // 629 // FIXME: This is not guaranteed to be deterministic! Move to a 630 // fingerprinting mechanism once LLVM provides one. For the time 631 // being the implementation happens to be deterministic. 632 SmallString<64> MangledName; 633 llvm::raw_svector_ostream Out(MangledName); 634 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 635 Out); 636 637 // Blacklist based on the mangled type. 638 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 639 Out.str())) { 640 llvm::hash_code TypeHash = hash_value(Out.str()); 641 642 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 643 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 644 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 645 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 646 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 647 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 648 649 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 650 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 651 652 // Look the hash up in our cache. 653 const int CacheSize = 128; 654 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 655 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 656 "__ubsan_vptr_type_cache"); 657 llvm::Value *Slot = Builder.CreateAnd(Hash, 658 llvm::ConstantInt::get(IntPtrTy, 659 CacheSize-1)); 660 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 661 llvm::Value *CacheVal = 662 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 663 getPointerAlign()); 664 665 // If the hash isn't in the cache, call a runtime handler to perform the 666 // hard work of checking whether the vptr is for an object of the right 667 // type. This will either fill in the cache and return, or produce a 668 // diagnostic. 669 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 670 llvm::Constant *StaticData[] = { 671 EmitCheckSourceLocation(Loc), 672 EmitCheckTypeDescriptor(Ty), 673 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 674 llvm::ConstantInt::get(Int8Ty, TCK) 675 }; 676 llvm::Value *DynamicData[] = { Ptr, Hash }; 677 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 678 "dynamic_type_cache_miss", StaticData, DynamicData); 679 } 680 } 681 682 if (Done) { 683 Builder.CreateBr(Done); 684 EmitBlock(Done); 685 } 686 } 687 688 /// Determine whether this expression refers to a flexible array member in a 689 /// struct. We disable array bounds checks for such members. 690 static bool isFlexibleArrayMemberExpr(const Expr *E) { 691 // For compatibility with existing code, we treat arrays of length 0 or 692 // 1 as flexible array members. 693 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 694 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 695 if (CAT->getSize().ugt(1)) 696 return false; 697 } else if (!isa<IncompleteArrayType>(AT)) 698 return false; 699 700 E = E->IgnoreParens(); 701 702 // A flexible array member must be the last member in the class. 703 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 704 // FIXME: If the base type of the member expr is not FD->getParent(), 705 // this should not be treated as a flexible array member access. 706 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 707 RecordDecl::field_iterator FI( 708 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 709 return ++FI == FD->getParent()->field_end(); 710 } 711 } 712 713 return false; 714 } 715 716 /// If Base is known to point to the start of an array, return the length of 717 /// that array. Return 0 if the length cannot be determined. 718 static llvm::Value *getArrayIndexingBound( 719 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 720 // For the vector indexing extension, the bound is the number of elements. 721 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 722 IndexedType = Base->getType(); 723 return CGF.Builder.getInt32(VT->getNumElements()); 724 } 725 726 Base = Base->IgnoreParens(); 727 728 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 729 if (CE->getCastKind() == CK_ArrayToPointerDecay && 730 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 731 IndexedType = CE->getSubExpr()->getType(); 732 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 733 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 734 return CGF.Builder.getInt(CAT->getSize()); 735 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 736 return CGF.getVLASize(VAT).first; 737 } 738 } 739 740 return nullptr; 741 } 742 743 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 744 llvm::Value *Index, QualType IndexType, 745 bool Accessed) { 746 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 747 "should not be called unless adding bounds checks"); 748 SanitizerScope SanScope(this); 749 750 QualType IndexedType; 751 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 752 if (!Bound) 753 return; 754 755 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 756 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 757 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 758 759 llvm::Constant *StaticData[] = { 760 EmitCheckSourceLocation(E->getExprLoc()), 761 EmitCheckTypeDescriptor(IndexedType), 762 EmitCheckTypeDescriptor(IndexType) 763 }; 764 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 765 : Builder.CreateICmpULE(IndexVal, BoundVal); 766 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 767 StaticData, Index); 768 } 769 770 771 CodeGenFunction::ComplexPairTy CodeGenFunction:: 772 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 773 bool isInc, bool isPre) { 774 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 775 776 llvm::Value *NextVal; 777 if (isa<llvm::IntegerType>(InVal.first->getType())) { 778 uint64_t AmountVal = isInc ? 1 : -1; 779 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 780 781 // Add the inc/dec to the real part. 782 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 783 } else { 784 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 785 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 786 if (!isInc) 787 FVal.changeSign(); 788 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 789 790 // Add the inc/dec to the real part. 791 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 792 } 793 794 ComplexPairTy IncVal(NextVal, InVal.second); 795 796 // Store the updated result through the lvalue. 797 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 798 799 // If this is a postinc, return the value read from memory, otherwise use the 800 // updated value. 801 return isPre ? IncVal : InVal; 802 } 803 804 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 805 CodeGenFunction *CGF) { 806 // Bind VLAs in the cast type. 807 if (CGF && E->getType()->isVariablyModifiedType()) 808 CGF->EmitVariablyModifiedType(E->getType()); 809 810 if (CGDebugInfo *DI = getModuleDebugInfo()) 811 DI->EmitExplicitCastType(E->getType()); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // LValue Expression Emission 816 //===----------------------------------------------------------------------===// 817 818 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 819 /// derive a more accurate bound on the alignment of the pointer. 820 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 821 AlignmentSource *Source) { 822 // We allow this with ObjC object pointers because of fragile ABIs. 823 assert(E->getType()->isPointerType() || 824 E->getType()->isObjCObjectPointerType()); 825 E = E->IgnoreParens(); 826 827 // Casts: 828 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 829 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 830 CGM.EmitExplicitCastExprType(ECE, this); 831 832 switch (CE->getCastKind()) { 833 // Non-converting casts (but not C's implicit conversion from void*). 834 case CK_BitCast: 835 case CK_NoOp: 836 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 837 if (PtrTy->getPointeeType()->isVoidType()) 838 break; 839 840 AlignmentSource InnerSource; 841 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 842 if (Source) *Source = InnerSource; 843 844 // If this is an explicit bitcast, and the source l-value is 845 // opaque, honor the alignment of the casted-to type. 846 if (isa<ExplicitCastExpr>(CE) && 847 InnerSource != AlignmentSource::Decl) { 848 Addr = Address(Addr.getPointer(), 849 getNaturalPointeeTypeAlignment(E->getType(), Source)); 850 } 851 852 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 853 CE->getCastKind() == CK_BitCast) { 854 if (auto PT = E->getType()->getAs<PointerType>()) 855 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 856 /*MayBeNull=*/true, 857 CodeGenFunction::CFITCK_UnrelatedCast, 858 CE->getLocStart()); 859 } 860 861 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 862 } 863 break; 864 865 // Array-to-pointer decay. 866 case CK_ArrayToPointerDecay: 867 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 868 869 // Derived-to-base conversions. 870 case CK_UncheckedDerivedToBase: 871 case CK_DerivedToBase: { 872 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 873 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 874 return GetAddressOfBaseClass(Addr, Derived, 875 CE->path_begin(), CE->path_end(), 876 ShouldNullCheckClassCastValue(CE), 877 CE->getExprLoc()); 878 } 879 880 // TODO: Is there any reason to treat base-to-derived conversions 881 // specially? 882 default: 883 break; 884 } 885 } 886 887 // Unary &. 888 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 889 if (UO->getOpcode() == UO_AddrOf) { 890 LValue LV = EmitLValue(UO->getSubExpr()); 891 if (Source) *Source = LV.getAlignmentSource(); 892 return LV.getAddress(); 893 } 894 } 895 896 // TODO: conditional operators, comma. 897 898 // Otherwise, use the alignment of the type. 899 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 900 return Address(EmitScalarExpr(E), Align); 901 } 902 903 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 904 if (Ty->isVoidType()) 905 return RValue::get(nullptr); 906 907 switch (getEvaluationKind(Ty)) { 908 case TEK_Complex: { 909 llvm::Type *EltTy = 910 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 911 llvm::Value *U = llvm::UndefValue::get(EltTy); 912 return RValue::getComplex(std::make_pair(U, U)); 913 } 914 915 // If this is a use of an undefined aggregate type, the aggregate must have an 916 // identifiable address. Just because the contents of the value are undefined 917 // doesn't mean that the address can't be taken and compared. 918 case TEK_Aggregate: { 919 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 920 return RValue::getAggregate(DestPtr); 921 } 922 923 case TEK_Scalar: 924 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 925 } 926 llvm_unreachable("bad evaluation kind"); 927 } 928 929 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 930 const char *Name) { 931 ErrorUnsupported(E, Name); 932 return GetUndefRValue(E->getType()); 933 } 934 935 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 936 const char *Name) { 937 ErrorUnsupported(E, Name); 938 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 939 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 940 E->getType()); 941 } 942 943 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 944 LValue LV; 945 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 946 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 947 else 948 LV = EmitLValue(E); 949 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 950 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 951 E->getType(), LV.getAlignment()); 952 return LV; 953 } 954 955 /// EmitLValue - Emit code to compute a designator that specifies the location 956 /// of the expression. 957 /// 958 /// This can return one of two things: a simple address or a bitfield reference. 959 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 960 /// an LLVM pointer type. 961 /// 962 /// If this returns a bitfield reference, nothing about the pointee type of the 963 /// LLVM value is known: For example, it may not be a pointer to an integer. 964 /// 965 /// If this returns a normal address, and if the lvalue's C type is fixed size, 966 /// this method guarantees that the returned pointer type will point to an LLVM 967 /// type of the same size of the lvalue's type. If the lvalue has a variable 968 /// length type, this is not possible. 969 /// 970 LValue CodeGenFunction::EmitLValue(const Expr *E) { 971 ApplyDebugLocation DL(*this, E); 972 switch (E->getStmtClass()) { 973 default: return EmitUnsupportedLValue(E, "l-value expression"); 974 975 case Expr::ObjCPropertyRefExprClass: 976 llvm_unreachable("cannot emit a property reference directly"); 977 978 case Expr::ObjCSelectorExprClass: 979 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 980 case Expr::ObjCIsaExprClass: 981 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 982 case Expr::BinaryOperatorClass: 983 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 984 case Expr::CompoundAssignOperatorClass: { 985 QualType Ty = E->getType(); 986 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 987 Ty = AT->getValueType(); 988 if (!Ty->isAnyComplexType()) 989 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 990 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 991 } 992 case Expr::CallExprClass: 993 case Expr::CXXMemberCallExprClass: 994 case Expr::CXXOperatorCallExprClass: 995 case Expr::UserDefinedLiteralClass: 996 return EmitCallExprLValue(cast<CallExpr>(E)); 997 case Expr::VAArgExprClass: 998 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 999 case Expr::DeclRefExprClass: 1000 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1001 case Expr::ParenExprClass: 1002 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1003 case Expr::GenericSelectionExprClass: 1004 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1005 case Expr::PredefinedExprClass: 1006 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1007 case Expr::StringLiteralClass: 1008 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1009 case Expr::ObjCEncodeExprClass: 1010 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1011 case Expr::PseudoObjectExprClass: 1012 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1013 case Expr::InitListExprClass: 1014 return EmitInitListLValue(cast<InitListExpr>(E)); 1015 case Expr::CXXTemporaryObjectExprClass: 1016 case Expr::CXXConstructExprClass: 1017 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1018 case Expr::CXXBindTemporaryExprClass: 1019 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1020 case Expr::CXXUuidofExprClass: 1021 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1022 case Expr::LambdaExprClass: 1023 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1024 1025 case Expr::ExprWithCleanupsClass: { 1026 const auto *cleanups = cast<ExprWithCleanups>(E); 1027 enterFullExpression(cleanups); 1028 RunCleanupsScope Scope(*this); 1029 return EmitLValue(cleanups->getSubExpr()); 1030 } 1031 1032 case Expr::CXXDefaultArgExprClass: 1033 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1034 case Expr::CXXDefaultInitExprClass: { 1035 CXXDefaultInitExprScope Scope(*this); 1036 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1037 } 1038 case Expr::CXXTypeidExprClass: 1039 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1040 1041 case Expr::ObjCMessageExprClass: 1042 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1043 case Expr::ObjCIvarRefExprClass: 1044 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1045 case Expr::StmtExprClass: 1046 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1047 case Expr::UnaryOperatorClass: 1048 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1049 case Expr::ArraySubscriptExprClass: 1050 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1051 case Expr::OMPArraySectionExprClass: 1052 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1053 case Expr::ExtVectorElementExprClass: 1054 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1055 case Expr::MemberExprClass: 1056 return EmitMemberExpr(cast<MemberExpr>(E)); 1057 case Expr::CompoundLiteralExprClass: 1058 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1059 case Expr::ConditionalOperatorClass: 1060 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1061 case Expr::BinaryConditionalOperatorClass: 1062 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1063 case Expr::ChooseExprClass: 1064 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1065 case Expr::OpaqueValueExprClass: 1066 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1067 case Expr::SubstNonTypeTemplateParmExprClass: 1068 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1069 case Expr::ImplicitCastExprClass: 1070 case Expr::CStyleCastExprClass: 1071 case Expr::CXXFunctionalCastExprClass: 1072 case Expr::CXXStaticCastExprClass: 1073 case Expr::CXXDynamicCastExprClass: 1074 case Expr::CXXReinterpretCastExprClass: 1075 case Expr::CXXConstCastExprClass: 1076 case Expr::ObjCBridgedCastExprClass: 1077 return EmitCastLValue(cast<CastExpr>(E)); 1078 1079 case Expr::MaterializeTemporaryExprClass: 1080 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1081 } 1082 } 1083 1084 /// Given an object of the given canonical type, can we safely copy a 1085 /// value out of it based on its initializer? 1086 static bool isConstantEmittableObjectType(QualType type) { 1087 assert(type.isCanonical()); 1088 assert(!type->isReferenceType()); 1089 1090 // Must be const-qualified but non-volatile. 1091 Qualifiers qs = type.getLocalQualifiers(); 1092 if (!qs.hasConst() || qs.hasVolatile()) return false; 1093 1094 // Otherwise, all object types satisfy this except C++ classes with 1095 // mutable subobjects or non-trivial copy/destroy behavior. 1096 if (const auto *RT = dyn_cast<RecordType>(type)) 1097 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1098 if (RD->hasMutableFields() || !RD->isTrivial()) 1099 return false; 1100 1101 return true; 1102 } 1103 1104 /// Can we constant-emit a load of a reference to a variable of the 1105 /// given type? This is different from predicates like 1106 /// Decl::isUsableInConstantExpressions because we do want it to apply 1107 /// in situations that don't necessarily satisfy the language's rules 1108 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1109 /// to do this with const float variables even if those variables 1110 /// aren't marked 'constexpr'. 1111 enum ConstantEmissionKind { 1112 CEK_None, 1113 CEK_AsReferenceOnly, 1114 CEK_AsValueOrReference, 1115 CEK_AsValueOnly 1116 }; 1117 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1118 type = type.getCanonicalType(); 1119 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1120 if (isConstantEmittableObjectType(ref->getPointeeType())) 1121 return CEK_AsValueOrReference; 1122 return CEK_AsReferenceOnly; 1123 } 1124 if (isConstantEmittableObjectType(type)) 1125 return CEK_AsValueOnly; 1126 return CEK_None; 1127 } 1128 1129 /// Try to emit a reference to the given value without producing it as 1130 /// an l-value. This is actually more than an optimization: we can't 1131 /// produce an l-value for variables that we never actually captured 1132 /// in a block or lambda, which means const int variables or constexpr 1133 /// literals or similar. 1134 CodeGenFunction::ConstantEmission 1135 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1136 ValueDecl *value = refExpr->getDecl(); 1137 1138 // The value needs to be an enum constant or a constant variable. 1139 ConstantEmissionKind CEK; 1140 if (isa<ParmVarDecl>(value)) { 1141 CEK = CEK_None; 1142 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1143 CEK = checkVarTypeForConstantEmission(var->getType()); 1144 } else if (isa<EnumConstantDecl>(value)) { 1145 CEK = CEK_AsValueOnly; 1146 } else { 1147 CEK = CEK_None; 1148 } 1149 if (CEK == CEK_None) return ConstantEmission(); 1150 1151 Expr::EvalResult result; 1152 bool resultIsReference; 1153 QualType resultType; 1154 1155 // It's best to evaluate all the way as an r-value if that's permitted. 1156 if (CEK != CEK_AsReferenceOnly && 1157 refExpr->EvaluateAsRValue(result, getContext())) { 1158 resultIsReference = false; 1159 resultType = refExpr->getType(); 1160 1161 // Otherwise, try to evaluate as an l-value. 1162 } else if (CEK != CEK_AsValueOnly && 1163 refExpr->EvaluateAsLValue(result, getContext())) { 1164 resultIsReference = true; 1165 resultType = value->getType(); 1166 1167 // Failure. 1168 } else { 1169 return ConstantEmission(); 1170 } 1171 1172 // In any case, if the initializer has side-effects, abandon ship. 1173 if (result.HasSideEffects) 1174 return ConstantEmission(); 1175 1176 // Emit as a constant. 1177 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1178 1179 // Make sure we emit a debug reference to the global variable. 1180 // This should probably fire even for 1181 if (isa<VarDecl>(value)) { 1182 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1183 EmitDeclRefExprDbgValue(refExpr, result.Val); 1184 } else { 1185 assert(isa<EnumConstantDecl>(value)); 1186 EmitDeclRefExprDbgValue(refExpr, result.Val); 1187 } 1188 1189 // If we emitted a reference constant, we need to dereference that. 1190 if (resultIsReference) 1191 return ConstantEmission::forReference(C); 1192 1193 return ConstantEmission::forValue(C); 1194 } 1195 1196 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1197 SourceLocation Loc) { 1198 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1199 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1200 lvalue.getTBAAInfo(), 1201 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1202 lvalue.isNontemporal()); 1203 } 1204 1205 static bool hasBooleanRepresentation(QualType Ty) { 1206 if (Ty->isBooleanType()) 1207 return true; 1208 1209 if (const EnumType *ET = Ty->getAs<EnumType>()) 1210 return ET->getDecl()->getIntegerType()->isBooleanType(); 1211 1212 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1213 return hasBooleanRepresentation(AT->getValueType()); 1214 1215 return false; 1216 } 1217 1218 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1219 llvm::APInt &Min, llvm::APInt &End, 1220 bool StrictEnums) { 1221 const EnumType *ET = Ty->getAs<EnumType>(); 1222 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1223 ET && !ET->getDecl()->isFixed(); 1224 bool IsBool = hasBooleanRepresentation(Ty); 1225 if (!IsBool && !IsRegularCPlusPlusEnum) 1226 return false; 1227 1228 if (IsBool) { 1229 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1230 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1231 } else { 1232 const EnumDecl *ED = ET->getDecl(); 1233 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1234 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1235 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1236 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1237 1238 if (NumNegativeBits) { 1239 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1240 assert(NumBits <= Bitwidth); 1241 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1242 Min = -End; 1243 } else { 1244 assert(NumPositiveBits <= Bitwidth); 1245 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1246 Min = llvm::APInt(Bitwidth, 0); 1247 } 1248 } 1249 return true; 1250 } 1251 1252 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1253 llvm::APInt Min, End; 1254 if (!getRangeForType(*this, Ty, Min, End, 1255 CGM.getCodeGenOpts().StrictEnums)) 1256 return nullptr; 1257 1258 llvm::MDBuilder MDHelper(getLLVMContext()); 1259 return MDHelper.createRange(Min, End); 1260 } 1261 1262 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1263 QualType Ty, 1264 SourceLocation Loc, 1265 AlignmentSource AlignSource, 1266 llvm::MDNode *TBAAInfo, 1267 QualType TBAABaseType, 1268 uint64_t TBAAOffset, 1269 bool isNontemporal) { 1270 // For better performance, handle vector loads differently. 1271 if (Ty->isVectorType()) { 1272 const llvm::Type *EltTy = Addr.getElementType(); 1273 1274 const auto *VTy = cast<llvm::VectorType>(EltTy); 1275 1276 // Handle vectors of size 3 like size 4 for better performance. 1277 if (VTy->getNumElements() == 3) { 1278 1279 // Bitcast to vec4 type. 1280 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1281 4); 1282 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1283 // Now load value. 1284 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1285 1286 // Shuffle vector to get vec3. 1287 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1288 {0, 1, 2}, "extractVec"); 1289 return EmitFromMemory(V, Ty); 1290 } 1291 } 1292 1293 // Atomic operations have to be done on integral types. 1294 LValue AtomicLValue = 1295 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1296 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1297 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1298 } 1299 1300 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1301 if (isNontemporal) { 1302 llvm::MDNode *Node = llvm::MDNode::get( 1303 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1304 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1305 } 1306 if (TBAAInfo) { 1307 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1308 TBAAOffset); 1309 if (TBAAPath) 1310 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1311 false /*ConvertTypeToTag*/); 1312 } 1313 1314 bool NeedsBoolCheck = 1315 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1316 bool NeedsEnumCheck = 1317 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1318 if (NeedsBoolCheck || NeedsEnumCheck) { 1319 SanitizerScope SanScope(this); 1320 llvm::APInt Min, End; 1321 if (getRangeForType(*this, Ty, Min, End, true)) { 1322 --End; 1323 llvm::Value *Check; 1324 if (!Min) 1325 Check = Builder.CreateICmpULE( 1326 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1327 else { 1328 llvm::Value *Upper = Builder.CreateICmpSLE( 1329 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1330 llvm::Value *Lower = Builder.CreateICmpSGE( 1331 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1332 Check = Builder.CreateAnd(Upper, Lower); 1333 } 1334 llvm::Constant *StaticArgs[] = { 1335 EmitCheckSourceLocation(Loc), 1336 EmitCheckTypeDescriptor(Ty) 1337 }; 1338 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1339 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1340 EmitCheckValue(Load)); 1341 } 1342 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1343 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1344 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1345 1346 return EmitFromMemory(Load, Ty); 1347 } 1348 1349 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1350 // Bool has a different representation in memory than in registers. 1351 if (hasBooleanRepresentation(Ty)) { 1352 // This should really always be an i1, but sometimes it's already 1353 // an i8, and it's awkward to track those cases down. 1354 if (Value->getType()->isIntegerTy(1)) 1355 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1356 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1357 "wrong value rep of bool"); 1358 } 1359 1360 return Value; 1361 } 1362 1363 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1364 // Bool has a different representation in memory than in registers. 1365 if (hasBooleanRepresentation(Ty)) { 1366 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1367 "wrong value rep of bool"); 1368 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1369 } 1370 1371 return Value; 1372 } 1373 1374 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1375 bool Volatile, QualType Ty, 1376 AlignmentSource AlignSource, 1377 llvm::MDNode *TBAAInfo, 1378 bool isInit, QualType TBAABaseType, 1379 uint64_t TBAAOffset, 1380 bool isNontemporal) { 1381 1382 // Handle vectors differently to get better performance. 1383 if (Ty->isVectorType()) { 1384 llvm::Type *SrcTy = Value->getType(); 1385 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1386 // Handle vec3 special. 1387 if (VecTy->getNumElements() == 3) { 1388 // Our source is a vec3, do a shuffle vector to make it a vec4. 1389 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1390 Builder.getInt32(2), 1391 llvm::UndefValue::get(Builder.getInt32Ty())}; 1392 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1393 Value = Builder.CreateShuffleVector(Value, 1394 llvm::UndefValue::get(VecTy), 1395 MaskV, "extractVec"); 1396 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1397 } 1398 if (Addr.getElementType() != SrcTy) { 1399 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1400 } 1401 } 1402 1403 Value = EmitToMemory(Value, Ty); 1404 1405 LValue AtomicLValue = 1406 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1407 if (Ty->isAtomicType() || 1408 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1409 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1410 return; 1411 } 1412 1413 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1414 if (isNontemporal) { 1415 llvm::MDNode *Node = 1416 llvm::MDNode::get(Store->getContext(), 1417 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1418 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1419 } 1420 if (TBAAInfo) { 1421 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1422 TBAAOffset); 1423 if (TBAAPath) 1424 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1425 false /*ConvertTypeToTag*/); 1426 } 1427 } 1428 1429 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1430 bool isInit) { 1431 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1432 lvalue.getType(), lvalue.getAlignmentSource(), 1433 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1434 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1435 } 1436 1437 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1438 /// method emits the address of the lvalue, then loads the result as an rvalue, 1439 /// returning the rvalue. 1440 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1441 if (LV.isObjCWeak()) { 1442 // load of a __weak object. 1443 Address AddrWeakObj = LV.getAddress(); 1444 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1445 AddrWeakObj)); 1446 } 1447 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1448 // In MRC mode, we do a load+autorelease. 1449 if (!getLangOpts().ObjCAutoRefCount) { 1450 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1451 } 1452 1453 // In ARC mode, we load retained and then consume the value. 1454 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1455 Object = EmitObjCConsumeObject(LV.getType(), Object); 1456 return RValue::get(Object); 1457 } 1458 1459 if (LV.isSimple()) { 1460 assert(!LV.getType()->isFunctionType()); 1461 1462 // Everything needs a load. 1463 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1464 } 1465 1466 if (LV.isVectorElt()) { 1467 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1468 LV.isVolatileQualified()); 1469 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1470 "vecext")); 1471 } 1472 1473 // If this is a reference to a subset of the elements of a vector, either 1474 // shuffle the input or extract/insert them as appropriate. 1475 if (LV.isExtVectorElt()) 1476 return EmitLoadOfExtVectorElementLValue(LV); 1477 1478 // Global Register variables always invoke intrinsics 1479 if (LV.isGlobalReg()) 1480 return EmitLoadOfGlobalRegLValue(LV); 1481 1482 assert(LV.isBitField() && "Unknown LValue type!"); 1483 return EmitLoadOfBitfieldLValue(LV); 1484 } 1485 1486 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1487 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1488 1489 // Get the output type. 1490 llvm::Type *ResLTy = ConvertType(LV.getType()); 1491 1492 Address Ptr = LV.getBitFieldAddress(); 1493 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1494 1495 if (Info.IsSigned) { 1496 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1497 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1498 if (HighBits) 1499 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1500 if (Info.Offset + HighBits) 1501 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1502 } else { 1503 if (Info.Offset) 1504 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1505 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1506 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1507 Info.Size), 1508 "bf.clear"); 1509 } 1510 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1511 1512 return RValue::get(Val); 1513 } 1514 1515 // If this is a reference to a subset of the elements of a vector, create an 1516 // appropriate shufflevector. 1517 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1518 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1519 LV.isVolatileQualified()); 1520 1521 const llvm::Constant *Elts = LV.getExtVectorElts(); 1522 1523 // If the result of the expression is a non-vector type, we must be extracting 1524 // a single element. Just codegen as an extractelement. 1525 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1526 if (!ExprVT) { 1527 unsigned InIdx = getAccessedFieldNo(0, Elts); 1528 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1529 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1530 } 1531 1532 // Always use shuffle vector to try to retain the original program structure 1533 unsigned NumResultElts = ExprVT->getNumElements(); 1534 1535 SmallVector<llvm::Constant*, 4> Mask; 1536 for (unsigned i = 0; i != NumResultElts; ++i) 1537 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1538 1539 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1540 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1541 MaskV); 1542 return RValue::get(Vec); 1543 } 1544 1545 /// @brief Generates lvalue for partial ext_vector access. 1546 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1547 Address VectorAddress = LV.getExtVectorAddress(); 1548 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1549 QualType EQT = ExprVT->getElementType(); 1550 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1551 1552 Address CastToPointerElement = 1553 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1554 "conv.ptr.element"); 1555 1556 const llvm::Constant *Elts = LV.getExtVectorElts(); 1557 unsigned ix = getAccessedFieldNo(0, Elts); 1558 1559 Address VectorBasePtrPlusIx = 1560 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1561 getContext().getTypeSizeInChars(EQT), 1562 "vector.elt"); 1563 1564 return VectorBasePtrPlusIx; 1565 } 1566 1567 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1568 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1569 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1570 "Bad type for register variable"); 1571 llvm::MDNode *RegName = cast<llvm::MDNode>( 1572 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1573 1574 // We accept integer and pointer types only 1575 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1576 llvm::Type *Ty = OrigTy; 1577 if (OrigTy->isPointerTy()) 1578 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1579 llvm::Type *Types[] = { Ty }; 1580 1581 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1582 llvm::Value *Call = Builder.CreateCall( 1583 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1584 if (OrigTy->isPointerTy()) 1585 Call = Builder.CreateIntToPtr(Call, OrigTy); 1586 return RValue::get(Call); 1587 } 1588 1589 1590 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1591 /// lvalue, where both are guaranteed to the have the same type, and that type 1592 /// is 'Ty'. 1593 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1594 bool isInit) { 1595 if (!Dst.isSimple()) { 1596 if (Dst.isVectorElt()) { 1597 // Read/modify/write the vector, inserting the new element. 1598 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1599 Dst.isVolatileQualified()); 1600 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1601 Dst.getVectorIdx(), "vecins"); 1602 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1603 Dst.isVolatileQualified()); 1604 return; 1605 } 1606 1607 // If this is an update of extended vector elements, insert them as 1608 // appropriate. 1609 if (Dst.isExtVectorElt()) 1610 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1611 1612 if (Dst.isGlobalReg()) 1613 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1614 1615 assert(Dst.isBitField() && "Unknown LValue type"); 1616 return EmitStoreThroughBitfieldLValue(Src, Dst); 1617 } 1618 1619 // There's special magic for assigning into an ARC-qualified l-value. 1620 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1621 switch (Lifetime) { 1622 case Qualifiers::OCL_None: 1623 llvm_unreachable("present but none"); 1624 1625 case Qualifiers::OCL_ExplicitNone: 1626 // nothing special 1627 break; 1628 1629 case Qualifiers::OCL_Strong: 1630 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1631 return; 1632 1633 case Qualifiers::OCL_Weak: 1634 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1635 return; 1636 1637 case Qualifiers::OCL_Autoreleasing: 1638 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1639 Src.getScalarVal())); 1640 // fall into the normal path 1641 break; 1642 } 1643 } 1644 1645 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1646 // load of a __weak object. 1647 Address LvalueDst = Dst.getAddress(); 1648 llvm::Value *src = Src.getScalarVal(); 1649 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1650 return; 1651 } 1652 1653 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1654 // load of a __strong object. 1655 Address LvalueDst = Dst.getAddress(); 1656 llvm::Value *src = Src.getScalarVal(); 1657 if (Dst.isObjCIvar()) { 1658 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1659 llvm::Type *ResultType = IntPtrTy; 1660 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1661 llvm::Value *RHS = dst.getPointer(); 1662 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1663 llvm::Value *LHS = 1664 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1665 "sub.ptr.lhs.cast"); 1666 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1667 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1668 BytesBetween); 1669 } else if (Dst.isGlobalObjCRef()) { 1670 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1671 Dst.isThreadLocalRef()); 1672 } 1673 else 1674 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1675 return; 1676 } 1677 1678 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1679 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1680 } 1681 1682 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1683 llvm::Value **Result) { 1684 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1685 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1686 Address Ptr = Dst.getBitFieldAddress(); 1687 1688 // Get the source value, truncated to the width of the bit-field. 1689 llvm::Value *SrcVal = Src.getScalarVal(); 1690 1691 // Cast the source to the storage type and shift it into place. 1692 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1693 /*IsSigned=*/false); 1694 llvm::Value *MaskedVal = SrcVal; 1695 1696 // See if there are other bits in the bitfield's storage we'll need to load 1697 // and mask together with source before storing. 1698 if (Info.StorageSize != Info.Size) { 1699 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1700 llvm::Value *Val = 1701 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1702 1703 // Mask the source value as needed. 1704 if (!hasBooleanRepresentation(Dst.getType())) 1705 SrcVal = Builder.CreateAnd(SrcVal, 1706 llvm::APInt::getLowBitsSet(Info.StorageSize, 1707 Info.Size), 1708 "bf.value"); 1709 MaskedVal = SrcVal; 1710 if (Info.Offset) 1711 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1712 1713 // Mask out the original value. 1714 Val = Builder.CreateAnd(Val, 1715 ~llvm::APInt::getBitsSet(Info.StorageSize, 1716 Info.Offset, 1717 Info.Offset + Info.Size), 1718 "bf.clear"); 1719 1720 // Or together the unchanged values and the source value. 1721 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1722 } else { 1723 assert(Info.Offset == 0); 1724 } 1725 1726 // Write the new value back out. 1727 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1728 1729 // Return the new value of the bit-field, if requested. 1730 if (Result) { 1731 llvm::Value *ResultVal = MaskedVal; 1732 1733 // Sign extend the value if needed. 1734 if (Info.IsSigned) { 1735 assert(Info.Size <= Info.StorageSize); 1736 unsigned HighBits = Info.StorageSize - Info.Size; 1737 if (HighBits) { 1738 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1739 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1740 } 1741 } 1742 1743 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1744 "bf.result.cast"); 1745 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1746 } 1747 } 1748 1749 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1750 LValue Dst) { 1751 // This access turns into a read/modify/write of the vector. Load the input 1752 // value now. 1753 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1754 Dst.isVolatileQualified()); 1755 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1756 1757 llvm::Value *SrcVal = Src.getScalarVal(); 1758 1759 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1760 unsigned NumSrcElts = VTy->getNumElements(); 1761 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1762 if (NumDstElts == NumSrcElts) { 1763 // Use shuffle vector is the src and destination are the same number of 1764 // elements and restore the vector mask since it is on the side it will be 1765 // stored. 1766 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1767 for (unsigned i = 0; i != NumSrcElts; ++i) 1768 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1769 1770 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1771 Vec = Builder.CreateShuffleVector(SrcVal, 1772 llvm::UndefValue::get(Vec->getType()), 1773 MaskV); 1774 } else if (NumDstElts > NumSrcElts) { 1775 // Extended the source vector to the same length and then shuffle it 1776 // into the destination. 1777 // FIXME: since we're shuffling with undef, can we just use the indices 1778 // into that? This could be simpler. 1779 SmallVector<llvm::Constant*, 4> ExtMask; 1780 for (unsigned i = 0; i != NumSrcElts; ++i) 1781 ExtMask.push_back(Builder.getInt32(i)); 1782 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1783 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1784 llvm::Value *ExtSrcVal = 1785 Builder.CreateShuffleVector(SrcVal, 1786 llvm::UndefValue::get(SrcVal->getType()), 1787 ExtMaskV); 1788 // build identity 1789 SmallVector<llvm::Constant*, 4> Mask; 1790 for (unsigned i = 0; i != NumDstElts; ++i) 1791 Mask.push_back(Builder.getInt32(i)); 1792 1793 // When the vector size is odd and .odd or .hi is used, the last element 1794 // of the Elts constant array will be one past the size of the vector. 1795 // Ignore the last element here, if it is greater than the mask size. 1796 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1797 NumSrcElts--; 1798 1799 // modify when what gets shuffled in 1800 for (unsigned i = 0; i != NumSrcElts; ++i) 1801 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1802 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1803 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1804 } else { 1805 // We should never shorten the vector 1806 llvm_unreachable("unexpected shorten vector length"); 1807 } 1808 } else { 1809 // If the Src is a scalar (not a vector) it must be updating one element. 1810 unsigned InIdx = getAccessedFieldNo(0, Elts); 1811 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1812 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1813 } 1814 1815 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1816 Dst.isVolatileQualified()); 1817 } 1818 1819 /// @brief Store of global named registers are always calls to intrinsics. 1820 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1821 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1822 "Bad type for register variable"); 1823 llvm::MDNode *RegName = cast<llvm::MDNode>( 1824 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1825 assert(RegName && "Register LValue is not metadata"); 1826 1827 // We accept integer and pointer types only 1828 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1829 llvm::Type *Ty = OrigTy; 1830 if (OrigTy->isPointerTy()) 1831 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1832 llvm::Type *Types[] = { Ty }; 1833 1834 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1835 llvm::Value *Value = Src.getScalarVal(); 1836 if (OrigTy->isPointerTy()) 1837 Value = Builder.CreatePtrToInt(Value, Ty); 1838 Builder.CreateCall( 1839 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1840 } 1841 1842 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1843 // generating write-barries API. It is currently a global, ivar, 1844 // or neither. 1845 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1846 LValue &LV, 1847 bool IsMemberAccess=false) { 1848 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1849 return; 1850 1851 if (isa<ObjCIvarRefExpr>(E)) { 1852 QualType ExpTy = E->getType(); 1853 if (IsMemberAccess && ExpTy->isPointerType()) { 1854 // If ivar is a structure pointer, assigning to field of 1855 // this struct follows gcc's behavior and makes it a non-ivar 1856 // writer-barrier conservatively. 1857 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1858 if (ExpTy->isRecordType()) { 1859 LV.setObjCIvar(false); 1860 return; 1861 } 1862 } 1863 LV.setObjCIvar(true); 1864 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1865 LV.setBaseIvarExp(Exp->getBase()); 1866 LV.setObjCArray(E->getType()->isArrayType()); 1867 return; 1868 } 1869 1870 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1871 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1872 if (VD->hasGlobalStorage()) { 1873 LV.setGlobalObjCRef(true); 1874 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1875 } 1876 } 1877 LV.setObjCArray(E->getType()->isArrayType()); 1878 return; 1879 } 1880 1881 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1882 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1883 return; 1884 } 1885 1886 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1887 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1888 if (LV.isObjCIvar()) { 1889 // If cast is to a structure pointer, follow gcc's behavior and make it 1890 // a non-ivar write-barrier. 1891 QualType ExpTy = E->getType(); 1892 if (ExpTy->isPointerType()) 1893 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1894 if (ExpTy->isRecordType()) 1895 LV.setObjCIvar(false); 1896 } 1897 return; 1898 } 1899 1900 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1901 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1902 return; 1903 } 1904 1905 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1906 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1907 return; 1908 } 1909 1910 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1911 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1912 return; 1913 } 1914 1915 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1916 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1917 return; 1918 } 1919 1920 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1921 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1922 if (LV.isObjCIvar() && !LV.isObjCArray()) 1923 // Using array syntax to assigning to what an ivar points to is not 1924 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1925 LV.setObjCIvar(false); 1926 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1927 // Using array syntax to assigning to what global points to is not 1928 // same as assigning to the global itself. {id *G;} G[i] = 0; 1929 LV.setGlobalObjCRef(false); 1930 return; 1931 } 1932 1933 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1934 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1935 // We don't know if member is an 'ivar', but this flag is looked at 1936 // only in the context of LV.isObjCIvar(). 1937 LV.setObjCArray(E->getType()->isArrayType()); 1938 return; 1939 } 1940 } 1941 1942 static llvm::Value * 1943 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1944 llvm::Value *V, llvm::Type *IRType, 1945 StringRef Name = StringRef()) { 1946 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1947 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1948 } 1949 1950 static LValue EmitThreadPrivateVarDeclLValue( 1951 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 1952 llvm::Type *RealVarTy, SourceLocation Loc) { 1953 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 1954 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 1955 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 1956 } 1957 1958 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 1959 const ReferenceType *RefTy, 1960 AlignmentSource *Source) { 1961 llvm::Value *Ptr = Builder.CreateLoad(Addr); 1962 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 1963 Source, /*forPointee*/ true)); 1964 1965 } 1966 1967 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 1968 const ReferenceType *RefTy) { 1969 AlignmentSource Source; 1970 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 1971 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 1972 } 1973 1974 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 1975 const PointerType *PtrTy, 1976 AlignmentSource *Source) { 1977 llvm::Value *Addr = Builder.CreateLoad(Ptr); 1978 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 1979 /*forPointeeType=*/true)); 1980 } 1981 1982 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 1983 const PointerType *PtrTy) { 1984 AlignmentSource Source; 1985 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 1986 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 1987 } 1988 1989 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1990 const Expr *E, const VarDecl *VD) { 1991 QualType T = E->getType(); 1992 1993 // If it's thread_local, emit a call to its wrapper function instead. 1994 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1995 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1996 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1997 1998 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1999 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2000 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2001 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2002 Address Addr(V, Alignment); 2003 LValue LV; 2004 // Emit reference to the private copy of the variable if it is an OpenMP 2005 // threadprivate variable. 2006 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2007 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2008 E->getExprLoc()); 2009 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2010 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2011 } else { 2012 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2013 } 2014 setObjCGCLValueClass(CGF.getContext(), E, LV); 2015 return LV; 2016 } 2017 2018 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2019 const Expr *E, const FunctionDecl *FD) { 2020 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 2021 if (!FD->hasPrototype()) { 2022 if (const FunctionProtoType *Proto = 2023 FD->getType()->getAs<FunctionProtoType>()) { 2024 // Ugly case: for a K&R-style definition, the type of the definition 2025 // isn't the same as the type of a use. Correct for this with a 2026 // bitcast. 2027 QualType NoProtoType = 2028 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2029 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 2030 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 2031 } 2032 } 2033 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2034 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2035 } 2036 2037 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2038 llvm::Value *ThisValue) { 2039 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2040 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2041 return CGF.EmitLValueForField(LV, FD); 2042 } 2043 2044 /// Named Registers are named metadata pointing to the register name 2045 /// which will be read from/written to as an argument to the intrinsic 2046 /// @llvm.read/write_register. 2047 /// So far, only the name is being passed down, but other options such as 2048 /// register type, allocation type or even optimization options could be 2049 /// passed down via the metadata node. 2050 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2051 SmallString<64> Name("llvm.named.register."); 2052 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2053 assert(Asm->getLabel().size() < 64-Name.size() && 2054 "Register name too big"); 2055 Name.append(Asm->getLabel()); 2056 llvm::NamedMDNode *M = 2057 CGM.getModule().getOrInsertNamedMetadata(Name); 2058 if (M->getNumOperands() == 0) { 2059 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2060 Asm->getLabel()); 2061 llvm::Metadata *Ops[] = {Str}; 2062 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2063 } 2064 2065 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2066 2067 llvm::Value *Ptr = 2068 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2069 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2070 } 2071 2072 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2073 const NamedDecl *ND = E->getDecl(); 2074 QualType T = E->getType(); 2075 2076 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2077 // Global Named registers access via intrinsics only 2078 if (VD->getStorageClass() == SC_Register && 2079 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2080 return EmitGlobalNamedRegister(VD, CGM); 2081 2082 // A DeclRefExpr for a reference initialized by a constant expression can 2083 // appear without being odr-used. Directly emit the constant initializer. 2084 const Expr *Init = VD->getAnyInitializer(VD); 2085 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2086 VD->isUsableInConstantExpressions(getContext()) && 2087 VD->checkInitIsICE() && 2088 // Do not emit if it is private OpenMP variable. 2089 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2090 LocalDeclMap.count(VD))) { 2091 llvm::Constant *Val = 2092 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2093 assert(Val && "failed to emit reference constant expression"); 2094 // FIXME: Eventually we will want to emit vector element references. 2095 2096 // Should we be using the alignment of the constant pointer we emitted? 2097 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2098 /*pointee*/ true); 2099 2100 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2101 } 2102 2103 // Check for captured variables. 2104 if (E->refersToEnclosingVariableOrCapture()) { 2105 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2106 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2107 else if (CapturedStmtInfo) { 2108 auto it = LocalDeclMap.find(VD); 2109 if (it != LocalDeclMap.end()) { 2110 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2111 return EmitLoadOfReferenceLValue(it->second, RefTy); 2112 } 2113 return MakeAddrLValue(it->second, T); 2114 } 2115 LValue CapLVal = 2116 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2117 CapturedStmtInfo->getContextValue()); 2118 return MakeAddrLValue( 2119 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2120 CapLVal.getType(), AlignmentSource::Decl); 2121 } 2122 2123 assert(isa<BlockDecl>(CurCodeDecl)); 2124 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2125 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2126 } 2127 } 2128 2129 // FIXME: We should be able to assert this for FunctionDecls as well! 2130 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2131 // those with a valid source location. 2132 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2133 !E->getLocation().isValid()) && 2134 "Should not use decl without marking it used!"); 2135 2136 if (ND->hasAttr<WeakRefAttr>()) { 2137 const auto *VD = cast<ValueDecl>(ND); 2138 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2139 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2140 } 2141 2142 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2143 // Check if this is a global variable. 2144 if (VD->hasLinkage() || VD->isStaticDataMember()) 2145 return EmitGlobalVarDeclLValue(*this, E, VD); 2146 2147 Address addr = Address::invalid(); 2148 2149 // The variable should generally be present in the local decl map. 2150 auto iter = LocalDeclMap.find(VD); 2151 if (iter != LocalDeclMap.end()) { 2152 addr = iter->second; 2153 2154 // Otherwise, it might be static local we haven't emitted yet for 2155 // some reason; most likely, because it's in an outer function. 2156 } else if (VD->isStaticLocal()) { 2157 addr = Address(CGM.getOrCreateStaticVarDecl( 2158 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2159 getContext().getDeclAlign(VD)); 2160 2161 // No other cases for now. 2162 } else { 2163 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2164 } 2165 2166 2167 // Check for OpenMP threadprivate variables. 2168 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2169 return EmitThreadPrivateVarDeclLValue( 2170 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2171 E->getExprLoc()); 2172 } 2173 2174 // Drill into block byref variables. 2175 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2176 if (isBlockByref) { 2177 addr = emitBlockByrefAddress(addr, VD); 2178 } 2179 2180 // Drill into reference types. 2181 LValue LV; 2182 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2183 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2184 } else { 2185 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2186 } 2187 2188 bool isLocalStorage = VD->hasLocalStorage(); 2189 2190 bool NonGCable = isLocalStorage && 2191 !VD->getType()->isReferenceType() && 2192 !isBlockByref; 2193 if (NonGCable) { 2194 LV.getQuals().removeObjCGCAttr(); 2195 LV.setNonGC(true); 2196 } 2197 2198 bool isImpreciseLifetime = 2199 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2200 if (isImpreciseLifetime) 2201 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2202 setObjCGCLValueClass(getContext(), E, LV); 2203 return LV; 2204 } 2205 2206 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2207 return EmitFunctionDeclLValue(*this, E, FD); 2208 2209 // FIXME: While we're emitting a binding from an enclosing scope, all other 2210 // DeclRefExprs we see should be implicitly treated as if they also refer to 2211 // an enclosing scope. 2212 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2213 return EmitLValue(BD->getBinding()); 2214 2215 llvm_unreachable("Unhandled DeclRefExpr"); 2216 } 2217 2218 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2219 // __extension__ doesn't affect lvalue-ness. 2220 if (E->getOpcode() == UO_Extension) 2221 return EmitLValue(E->getSubExpr()); 2222 2223 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2224 switch (E->getOpcode()) { 2225 default: llvm_unreachable("Unknown unary operator lvalue!"); 2226 case UO_Deref: { 2227 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2228 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2229 2230 AlignmentSource AlignSource; 2231 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2232 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2233 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2234 2235 // We should not generate __weak write barrier on indirect reference 2236 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2237 // But, we continue to generate __strong write barrier on indirect write 2238 // into a pointer to object. 2239 if (getLangOpts().ObjC1 && 2240 getLangOpts().getGC() != LangOptions::NonGC && 2241 LV.isObjCWeak()) 2242 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2243 return LV; 2244 } 2245 case UO_Real: 2246 case UO_Imag: { 2247 LValue LV = EmitLValue(E->getSubExpr()); 2248 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2249 2250 // __real is valid on scalars. This is a faster way of testing that. 2251 // __imag can only produce an rvalue on scalars. 2252 if (E->getOpcode() == UO_Real && 2253 !LV.getAddress().getElementType()->isStructTy()) { 2254 assert(E->getSubExpr()->getType()->isArithmeticType()); 2255 return LV; 2256 } 2257 2258 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2259 2260 Address Component = 2261 (E->getOpcode() == UO_Real 2262 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2263 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2264 return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource()); 2265 } 2266 case UO_PreInc: 2267 case UO_PreDec: { 2268 LValue LV = EmitLValue(E->getSubExpr()); 2269 bool isInc = E->getOpcode() == UO_PreInc; 2270 2271 if (E->getType()->isAnyComplexType()) 2272 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2273 else 2274 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2275 return LV; 2276 } 2277 } 2278 } 2279 2280 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2281 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2282 E->getType(), AlignmentSource::Decl); 2283 } 2284 2285 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2286 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2287 E->getType(), AlignmentSource::Decl); 2288 } 2289 2290 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2291 auto SL = E->getFunctionName(); 2292 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2293 StringRef FnName = CurFn->getName(); 2294 if (FnName.startswith("\01")) 2295 FnName = FnName.substr(1); 2296 StringRef NameItems[] = { 2297 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2298 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2299 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2300 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2301 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2302 } 2303 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2304 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2305 } 2306 2307 /// Emit a type description suitable for use by a runtime sanitizer library. The 2308 /// format of a type descriptor is 2309 /// 2310 /// \code 2311 /// { i16 TypeKind, i16 TypeInfo } 2312 /// \endcode 2313 /// 2314 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2315 /// integer, 1 for a floating point value, and -1 for anything else. 2316 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2317 // Only emit each type's descriptor once. 2318 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2319 return C; 2320 2321 uint16_t TypeKind = -1; 2322 uint16_t TypeInfo = 0; 2323 2324 if (T->isIntegerType()) { 2325 TypeKind = 0; 2326 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2327 (T->isSignedIntegerType() ? 1 : 0); 2328 } else if (T->isFloatingType()) { 2329 TypeKind = 1; 2330 TypeInfo = getContext().getTypeSize(T); 2331 } 2332 2333 // Format the type name as if for a diagnostic, including quotes and 2334 // optionally an 'aka'. 2335 SmallString<32> Buffer; 2336 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2337 (intptr_t)T.getAsOpaquePtr(), 2338 StringRef(), StringRef(), None, Buffer, 2339 None); 2340 2341 llvm::Constant *Components[] = { 2342 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2343 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2344 }; 2345 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2346 2347 auto *GV = new llvm::GlobalVariable( 2348 CGM.getModule(), Descriptor->getType(), 2349 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2350 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2351 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2352 2353 // Remember the descriptor for this type. 2354 CGM.setTypeDescriptorInMap(T, GV); 2355 2356 return GV; 2357 } 2358 2359 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2360 llvm::Type *TargetTy = IntPtrTy; 2361 2362 // Floating-point types which fit into intptr_t are bitcast to integers 2363 // and then passed directly (after zero-extension, if necessary). 2364 if (V->getType()->isFloatingPointTy()) { 2365 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2366 if (Bits <= TargetTy->getIntegerBitWidth()) 2367 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2368 Bits)); 2369 } 2370 2371 // Integers which fit in intptr_t are zero-extended and passed directly. 2372 if (V->getType()->isIntegerTy() && 2373 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2374 return Builder.CreateZExt(V, TargetTy); 2375 2376 // Pointers are passed directly, everything else is passed by address. 2377 if (!V->getType()->isPointerTy()) { 2378 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2379 Builder.CreateStore(V, Ptr); 2380 V = Ptr.getPointer(); 2381 } 2382 return Builder.CreatePtrToInt(V, TargetTy); 2383 } 2384 2385 /// \brief Emit a representation of a SourceLocation for passing to a handler 2386 /// in a sanitizer runtime library. The format for this data is: 2387 /// \code 2388 /// struct SourceLocation { 2389 /// const char *Filename; 2390 /// int32_t Line, Column; 2391 /// }; 2392 /// \endcode 2393 /// For an invalid SourceLocation, the Filename pointer is null. 2394 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2395 llvm::Constant *Filename; 2396 int Line, Column; 2397 2398 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2399 if (PLoc.isValid()) { 2400 StringRef FilenameString = PLoc.getFilename(); 2401 2402 int PathComponentsToStrip = 2403 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2404 if (PathComponentsToStrip < 0) { 2405 assert(PathComponentsToStrip != INT_MIN); 2406 int PathComponentsToKeep = -PathComponentsToStrip; 2407 auto I = llvm::sys::path::rbegin(FilenameString); 2408 auto E = llvm::sys::path::rend(FilenameString); 2409 while (I != E && --PathComponentsToKeep) 2410 ++I; 2411 2412 FilenameString = FilenameString.substr(I - E); 2413 } else if (PathComponentsToStrip > 0) { 2414 auto I = llvm::sys::path::begin(FilenameString); 2415 auto E = llvm::sys::path::end(FilenameString); 2416 while (I != E && PathComponentsToStrip--) 2417 ++I; 2418 2419 if (I != E) 2420 FilenameString = 2421 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2422 else 2423 FilenameString = llvm::sys::path::filename(FilenameString); 2424 } 2425 2426 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2427 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2428 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2429 Filename = FilenameGV.getPointer(); 2430 Line = PLoc.getLine(); 2431 Column = PLoc.getColumn(); 2432 } else { 2433 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2434 Line = Column = 0; 2435 } 2436 2437 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2438 Builder.getInt32(Column)}; 2439 2440 return llvm::ConstantStruct::getAnon(Data); 2441 } 2442 2443 namespace { 2444 /// \brief Specify under what conditions this check can be recovered 2445 enum class CheckRecoverableKind { 2446 /// Always terminate program execution if this check fails. 2447 Unrecoverable, 2448 /// Check supports recovering, runtime has both fatal (noreturn) and 2449 /// non-fatal handlers for this check. 2450 Recoverable, 2451 /// Runtime conditionally aborts, always need to support recovery. 2452 AlwaysRecoverable 2453 }; 2454 } 2455 2456 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2457 assert(llvm::countPopulation(Kind) == 1); 2458 switch (Kind) { 2459 case SanitizerKind::Vptr: 2460 return CheckRecoverableKind::AlwaysRecoverable; 2461 case SanitizerKind::Return: 2462 case SanitizerKind::Unreachable: 2463 return CheckRecoverableKind::Unrecoverable; 2464 default: 2465 return CheckRecoverableKind::Recoverable; 2466 } 2467 } 2468 2469 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2470 llvm::FunctionType *FnType, 2471 ArrayRef<llvm::Value *> FnArgs, 2472 StringRef CheckName, 2473 CheckRecoverableKind RecoverKind, bool IsFatal, 2474 llvm::BasicBlock *ContBB) { 2475 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2476 bool NeedsAbortSuffix = 2477 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2478 std::string FnName = ("__ubsan_handle_" + CheckName + 2479 (NeedsAbortSuffix ? "_abort" : "")).str(); 2480 bool MayReturn = 2481 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2482 2483 llvm::AttrBuilder B; 2484 if (!MayReturn) { 2485 B.addAttribute(llvm::Attribute::NoReturn) 2486 .addAttribute(llvm::Attribute::NoUnwind); 2487 } 2488 B.addAttribute(llvm::Attribute::UWTable); 2489 2490 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2491 FnType, FnName, 2492 llvm::AttributeSet::get(CGF.getLLVMContext(), 2493 llvm::AttributeSet::FunctionIndex, B)); 2494 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2495 if (!MayReturn) { 2496 HandlerCall->setDoesNotReturn(); 2497 CGF.Builder.CreateUnreachable(); 2498 } else { 2499 CGF.Builder.CreateBr(ContBB); 2500 } 2501 } 2502 2503 void CodeGenFunction::EmitCheck( 2504 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2505 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2506 ArrayRef<llvm::Value *> DynamicArgs) { 2507 assert(IsSanitizerScope); 2508 assert(Checked.size() > 0); 2509 2510 llvm::Value *FatalCond = nullptr; 2511 llvm::Value *RecoverableCond = nullptr; 2512 llvm::Value *TrapCond = nullptr; 2513 for (int i = 0, n = Checked.size(); i < n; ++i) { 2514 llvm::Value *Check = Checked[i].first; 2515 // -fsanitize-trap= overrides -fsanitize-recover=. 2516 llvm::Value *&Cond = 2517 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2518 ? TrapCond 2519 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2520 ? RecoverableCond 2521 : FatalCond; 2522 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2523 } 2524 2525 if (TrapCond) 2526 EmitTrapCheck(TrapCond); 2527 if (!FatalCond && !RecoverableCond) 2528 return; 2529 2530 llvm::Value *JointCond; 2531 if (FatalCond && RecoverableCond) 2532 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2533 else 2534 JointCond = FatalCond ? FatalCond : RecoverableCond; 2535 assert(JointCond); 2536 2537 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2538 assert(SanOpts.has(Checked[0].second)); 2539 #ifndef NDEBUG 2540 for (int i = 1, n = Checked.size(); i < n; ++i) { 2541 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2542 "All recoverable kinds in a single check must be same!"); 2543 assert(SanOpts.has(Checked[i].second)); 2544 } 2545 #endif 2546 2547 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2548 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2549 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2550 // Give hint that we very much don't expect to execute the handler 2551 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2552 llvm::MDBuilder MDHelper(getLLVMContext()); 2553 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2554 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2555 EmitBlock(Handlers); 2556 2557 // Handler functions take an i8* pointing to the (handler-specific) static 2558 // information block, followed by a sequence of intptr_t arguments 2559 // representing operand values. 2560 SmallVector<llvm::Value *, 4> Args; 2561 SmallVector<llvm::Type *, 4> ArgTypes; 2562 Args.reserve(DynamicArgs.size() + 1); 2563 ArgTypes.reserve(DynamicArgs.size() + 1); 2564 2565 // Emit handler arguments and create handler function type. 2566 if (!StaticArgs.empty()) { 2567 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2568 auto *InfoPtr = 2569 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2570 llvm::GlobalVariable::PrivateLinkage, Info); 2571 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2572 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2573 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2574 ArgTypes.push_back(Int8PtrTy); 2575 } 2576 2577 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2578 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2579 ArgTypes.push_back(IntPtrTy); 2580 } 2581 2582 llvm::FunctionType *FnType = 2583 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2584 2585 if (!FatalCond || !RecoverableCond) { 2586 // Simple case: we need to generate a single handler call, either 2587 // fatal, or non-fatal. 2588 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2589 (FatalCond != nullptr), Cont); 2590 } else { 2591 // Emit two handler calls: first one for set of unrecoverable checks, 2592 // another one for recoverable. 2593 llvm::BasicBlock *NonFatalHandlerBB = 2594 createBasicBlock("non_fatal." + CheckName); 2595 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2596 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2597 EmitBlock(FatalHandlerBB); 2598 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2599 NonFatalHandlerBB); 2600 EmitBlock(NonFatalHandlerBB); 2601 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2602 Cont); 2603 } 2604 2605 EmitBlock(Cont); 2606 } 2607 2608 void CodeGenFunction::EmitCfiSlowPathCheck( 2609 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2610 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2611 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2612 2613 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2614 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2615 2616 llvm::MDBuilder MDHelper(getLLVMContext()); 2617 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2618 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2619 2620 EmitBlock(CheckBB); 2621 2622 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2623 2624 llvm::CallInst *CheckCall; 2625 if (WithDiag) { 2626 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2627 auto *InfoPtr = 2628 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2629 llvm::GlobalVariable::PrivateLinkage, Info); 2630 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2631 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2632 2633 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2634 "__cfi_slowpath_diag", 2635 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2636 false)); 2637 CheckCall = Builder.CreateCall( 2638 SlowPathDiagFn, 2639 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2640 } else { 2641 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2642 "__cfi_slowpath", 2643 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2644 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2645 } 2646 2647 CheckCall->setDoesNotThrow(); 2648 2649 EmitBlock(Cont); 2650 } 2651 2652 // This function is basically a switch over the CFI failure kind, which is 2653 // extracted from CFICheckFailData (1st function argument). Each case is either 2654 // llvm.trap or a call to one of the two runtime handlers, based on 2655 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2656 // failure kind) traps, but this should really never happen. CFICheckFailData 2657 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2658 // check kind; in this case __cfi_check_fail traps as well. 2659 void CodeGenFunction::EmitCfiCheckFail() { 2660 SanitizerScope SanScope(this); 2661 FunctionArgList Args; 2662 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2663 getContext().VoidPtrTy); 2664 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2665 getContext().VoidPtrTy); 2666 Args.push_back(&ArgData); 2667 Args.push_back(&ArgAddr); 2668 2669 const CGFunctionInfo &FI = 2670 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2671 2672 llvm::Function *F = llvm::Function::Create( 2673 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2674 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2675 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2676 2677 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2678 SourceLocation()); 2679 2680 llvm::Value *Data = 2681 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2682 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2683 llvm::Value *Addr = 2684 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2685 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2686 2687 // Data == nullptr means the calling module has trap behaviour for this check. 2688 llvm::Value *DataIsNotNullPtr = 2689 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2690 EmitTrapCheck(DataIsNotNullPtr); 2691 2692 llvm::StructType *SourceLocationTy = 2693 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2694 llvm::StructType *CfiCheckFailDataTy = 2695 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2696 2697 llvm::Value *V = Builder.CreateConstGEP2_32( 2698 CfiCheckFailDataTy, 2699 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2700 0); 2701 Address CheckKindAddr(V, getIntAlign()); 2702 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2703 2704 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2705 CGM.getLLVMContext(), 2706 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2707 llvm::Value *ValidVtable = Builder.CreateZExt( 2708 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2709 {Addr, AllVtables}), 2710 IntPtrTy); 2711 2712 const std::pair<int, SanitizerMask> CheckKinds[] = { 2713 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2714 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2715 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2716 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2717 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2718 2719 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2720 for (auto CheckKindMaskPair : CheckKinds) { 2721 int Kind = CheckKindMaskPair.first; 2722 SanitizerMask Mask = CheckKindMaskPair.second; 2723 llvm::Value *Cond = 2724 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2725 if (CGM.getLangOpts().Sanitize.has(Mask)) 2726 EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {}, 2727 {Data, Addr, ValidVtable}); 2728 else 2729 EmitTrapCheck(Cond); 2730 } 2731 2732 FinishFunction(); 2733 // The only reference to this function will be created during LTO link. 2734 // Make sure it survives until then. 2735 CGM.addUsedGlobal(F); 2736 } 2737 2738 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2739 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2740 2741 // If we're optimizing, collapse all calls to trap down to just one per 2742 // function to save on code size. 2743 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2744 TrapBB = createBasicBlock("trap"); 2745 Builder.CreateCondBr(Checked, Cont, TrapBB); 2746 EmitBlock(TrapBB); 2747 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2748 TrapCall->setDoesNotReturn(); 2749 TrapCall->setDoesNotThrow(); 2750 Builder.CreateUnreachable(); 2751 } else { 2752 Builder.CreateCondBr(Checked, Cont, TrapBB); 2753 } 2754 2755 EmitBlock(Cont); 2756 } 2757 2758 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2759 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2760 2761 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2762 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2763 CGM.getCodeGenOpts().TrapFuncName); 2764 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A); 2765 } 2766 2767 return TrapCall; 2768 } 2769 2770 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2771 AlignmentSource *AlignSource) { 2772 assert(E->getType()->isArrayType() && 2773 "Array to pointer decay must have array source type!"); 2774 2775 // Expressions of array type can't be bitfields or vector elements. 2776 LValue LV = EmitLValue(E); 2777 Address Addr = LV.getAddress(); 2778 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2779 2780 // If the array type was an incomplete type, we need to make sure 2781 // the decay ends up being the right type. 2782 llvm::Type *NewTy = ConvertType(E->getType()); 2783 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2784 2785 // Note that VLA pointers are always decayed, so we don't need to do 2786 // anything here. 2787 if (!E->getType()->isVariableArrayType()) { 2788 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2789 "Expected pointer to array"); 2790 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2791 } 2792 2793 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2794 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2795 } 2796 2797 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2798 /// array to pointer, return the array subexpression. 2799 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2800 // If this isn't just an array->pointer decay, bail out. 2801 const auto *CE = dyn_cast<CastExpr>(E); 2802 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2803 return nullptr; 2804 2805 // If this is a decay from variable width array, bail out. 2806 const Expr *SubExpr = CE->getSubExpr(); 2807 if (SubExpr->getType()->isVariableArrayType()) 2808 return nullptr; 2809 2810 return SubExpr; 2811 } 2812 2813 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2814 llvm::Value *ptr, 2815 ArrayRef<llvm::Value*> indices, 2816 bool inbounds, 2817 const llvm::Twine &name = "arrayidx") { 2818 if (inbounds) { 2819 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2820 } else { 2821 return CGF.Builder.CreateGEP(ptr, indices, name); 2822 } 2823 } 2824 2825 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2826 llvm::Value *idx, 2827 CharUnits eltSize) { 2828 // If we have a constant index, we can use the exact offset of the 2829 // element we're accessing. 2830 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2831 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2832 return arrayAlign.alignmentAtOffset(offset); 2833 2834 // Otherwise, use the worst-case alignment for any element. 2835 } else { 2836 return arrayAlign.alignmentOfArrayElement(eltSize); 2837 } 2838 } 2839 2840 static QualType getFixedSizeElementType(const ASTContext &ctx, 2841 const VariableArrayType *vla) { 2842 QualType eltType; 2843 do { 2844 eltType = vla->getElementType(); 2845 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2846 return eltType; 2847 } 2848 2849 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 2850 ArrayRef<llvm::Value*> indices, 2851 QualType eltType, bool inbounds, 2852 const llvm::Twine &name = "arrayidx") { 2853 // All the indices except that last must be zero. 2854 #ifndef NDEBUG 2855 for (auto idx : indices.drop_back()) 2856 assert(isa<llvm::ConstantInt>(idx) && 2857 cast<llvm::ConstantInt>(idx)->isZero()); 2858 #endif 2859 2860 // Determine the element size of the statically-sized base. This is 2861 // the thing that the indices are expressed in terms of. 2862 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 2863 eltType = getFixedSizeElementType(CGF.getContext(), vla); 2864 } 2865 2866 // We can use that to compute the best alignment of the element. 2867 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2868 CharUnits eltAlign = 2869 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 2870 2871 llvm::Value *eltPtr = 2872 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 2873 return Address(eltPtr, eltAlign); 2874 } 2875 2876 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2877 bool Accessed) { 2878 // The index must always be an integer, which is not an aggregate. Emit it. 2879 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2880 QualType IdxTy = E->getIdx()->getType(); 2881 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2882 2883 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2884 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2885 2886 // If the base is a vector type, then we are forming a vector element lvalue 2887 // with this subscript. 2888 if (E->getBase()->getType()->isVectorType() && 2889 !isa<ExtVectorElementExpr>(E->getBase())) { 2890 // Emit the vector as an lvalue to get its address. 2891 LValue LHS = EmitLValue(E->getBase()); 2892 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2893 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2894 E->getBase()->getType(), 2895 LHS.getAlignmentSource()); 2896 } 2897 2898 // All the other cases basically behave like simple offsetting. 2899 2900 // Extend or truncate the index type to 32 or 64-bits. 2901 if (Idx->getType() != IntPtrTy) 2902 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2903 2904 // Handle the extvector case we ignored above. 2905 if (isa<ExtVectorElementExpr>(E->getBase())) { 2906 LValue LV = EmitLValue(E->getBase()); 2907 Address Addr = EmitExtVectorElementLValue(LV); 2908 2909 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 2910 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 2911 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 2912 } 2913 2914 AlignmentSource AlignSource; 2915 Address Addr = Address::invalid(); 2916 if (const VariableArrayType *vla = 2917 getContext().getAsVariableArrayType(E->getType())) { 2918 // The base must be a pointer, which is not an aggregate. Emit 2919 // it. It needs to be emitted first in case it's what captures 2920 // the VLA bounds. 2921 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2922 2923 // The element count here is the total number of non-VLA elements. 2924 llvm::Value *numElements = getVLASize(vla).first; 2925 2926 // Effectively, the multiply by the VLA size is part of the GEP. 2927 // GEP indexes are signed, and scaling an index isn't permitted to 2928 // signed-overflow, so we use the same semantics for our explicit 2929 // multiply. We suppress this if overflow is not undefined behavior. 2930 if (getLangOpts().isSignedOverflowDefined()) { 2931 Idx = Builder.CreateMul(Idx, numElements); 2932 } else { 2933 Idx = Builder.CreateNSWMul(Idx, numElements); 2934 } 2935 2936 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 2937 !getLangOpts().isSignedOverflowDefined()); 2938 2939 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2940 // Indexing over an interface, as in "NSString *P; P[4];" 2941 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 2942 llvm::Value *InterfaceSizeVal = 2943 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());; 2944 2945 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 2946 2947 // Emit the base pointer. 2948 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2949 2950 // We don't necessarily build correct LLVM struct types for ObjC 2951 // interfaces, so we can't rely on GEP to do this scaling 2952 // correctly, so we need to cast to i8*. FIXME: is this actually 2953 // true? A lot of other things in the fragile ABI would break... 2954 llvm::Type *OrigBaseTy = Addr.getType(); 2955 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 2956 2957 // Do the GEP. 2958 CharUnits EltAlign = 2959 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 2960 llvm::Value *EltPtr = 2961 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 2962 Addr = Address(EltPtr, EltAlign); 2963 2964 // Cast back. 2965 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 2966 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2967 // If this is A[i] where A is an array, the frontend will have decayed the 2968 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2969 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2970 // "gep x, i" here. Emit one "gep A, 0, i". 2971 assert(Array->getType()->isArrayType() && 2972 "Array to pointer decay must have array source type!"); 2973 LValue ArrayLV; 2974 // For simple multidimensional array indexing, set the 'accessed' flag for 2975 // better bounds-checking of the base expression. 2976 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2977 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2978 else 2979 ArrayLV = EmitLValue(Array); 2980 2981 // Propagate the alignment from the array itself to the result. 2982 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 2983 {CGM.getSize(CharUnits::Zero()), Idx}, 2984 E->getType(), 2985 !getLangOpts().isSignedOverflowDefined()); 2986 AlignSource = ArrayLV.getAlignmentSource(); 2987 } else { 2988 // The base must be a pointer; emit it with an estimate of its alignment. 2989 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2990 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 2991 !getLangOpts().isSignedOverflowDefined()); 2992 } 2993 2994 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 2995 2996 // TODO: Preserve/extend path TBAA metadata? 2997 2998 if (getLangOpts().ObjC1 && 2999 getLangOpts().getGC() != LangOptions::NonGC) { 3000 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3001 setObjCGCLValueClass(getContext(), E, LV); 3002 } 3003 return LV; 3004 } 3005 3006 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3007 AlignmentSource &AlignSource, 3008 QualType BaseTy, QualType ElTy, 3009 bool IsLowerBound) { 3010 LValue BaseLVal; 3011 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3012 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3013 if (BaseTy->isArrayType()) { 3014 Address Addr = BaseLVal.getAddress(); 3015 AlignSource = BaseLVal.getAlignmentSource(); 3016 3017 // If the array type was an incomplete type, we need to make sure 3018 // the decay ends up being the right type. 3019 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3020 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3021 3022 // Note that VLA pointers are always decayed, so we don't need to do 3023 // anything here. 3024 if (!BaseTy->isVariableArrayType()) { 3025 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3026 "Expected pointer to array"); 3027 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3028 "arraydecay"); 3029 } 3030 3031 return CGF.Builder.CreateElementBitCast(Addr, 3032 CGF.ConvertTypeForMem(ElTy)); 3033 } 3034 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3035 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3036 } 3037 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3038 } 3039 3040 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3041 bool IsLowerBound) { 3042 QualType BaseTy; 3043 if (auto *ASE = 3044 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3045 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3046 else 3047 BaseTy = E->getBase()->getType(); 3048 QualType ResultExprTy; 3049 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3050 ResultExprTy = AT->getElementType(); 3051 else 3052 ResultExprTy = BaseTy->getPointeeType(); 3053 llvm::Value *Idx = nullptr; 3054 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3055 // Requesting lower bound or upper bound, but without provided length and 3056 // without ':' symbol for the default length -> length = 1. 3057 // Idx = LowerBound ?: 0; 3058 if (auto *LowerBound = E->getLowerBound()) { 3059 Idx = Builder.CreateIntCast( 3060 EmitScalarExpr(LowerBound), IntPtrTy, 3061 LowerBound->getType()->hasSignedIntegerRepresentation()); 3062 } else 3063 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3064 } else { 3065 // Try to emit length or lower bound as constant. If this is possible, 1 3066 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3067 // IR (LB + Len) - 1. 3068 auto &C = CGM.getContext(); 3069 auto *Length = E->getLength(); 3070 llvm::APSInt ConstLength; 3071 if (Length) { 3072 // Idx = LowerBound + Length - 1; 3073 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3074 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3075 Length = nullptr; 3076 } 3077 auto *LowerBound = E->getLowerBound(); 3078 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3079 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3080 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3081 LowerBound = nullptr; 3082 } 3083 if (!Length) 3084 --ConstLength; 3085 else if (!LowerBound) 3086 --ConstLowerBound; 3087 3088 if (Length || LowerBound) { 3089 auto *LowerBoundVal = 3090 LowerBound 3091 ? Builder.CreateIntCast( 3092 EmitScalarExpr(LowerBound), IntPtrTy, 3093 LowerBound->getType()->hasSignedIntegerRepresentation()) 3094 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3095 auto *LengthVal = 3096 Length 3097 ? Builder.CreateIntCast( 3098 EmitScalarExpr(Length), IntPtrTy, 3099 Length->getType()->hasSignedIntegerRepresentation()) 3100 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3101 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3102 /*HasNUW=*/false, 3103 !getLangOpts().isSignedOverflowDefined()); 3104 if (Length && LowerBound) { 3105 Idx = Builder.CreateSub( 3106 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3107 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3108 } 3109 } else 3110 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3111 } else { 3112 // Idx = ArraySize - 1; 3113 QualType ArrayTy = BaseTy->isPointerType() 3114 ? E->getBase()->IgnoreParenImpCasts()->getType() 3115 : BaseTy; 3116 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3117 Length = VAT->getSizeExpr(); 3118 if (Length->isIntegerConstantExpr(ConstLength, C)) 3119 Length = nullptr; 3120 } else { 3121 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3122 ConstLength = CAT->getSize(); 3123 } 3124 if (Length) { 3125 auto *LengthVal = Builder.CreateIntCast( 3126 EmitScalarExpr(Length), IntPtrTy, 3127 Length->getType()->hasSignedIntegerRepresentation()); 3128 Idx = Builder.CreateSub( 3129 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3130 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3131 } else { 3132 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3133 --ConstLength; 3134 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3135 } 3136 } 3137 } 3138 assert(Idx); 3139 3140 Address EltPtr = Address::invalid(); 3141 AlignmentSource AlignSource; 3142 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3143 // The base must be a pointer, which is not an aggregate. Emit 3144 // it. It needs to be emitted first in case it's what captures 3145 // the VLA bounds. 3146 Address Base = 3147 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3148 VLA->getElementType(), IsLowerBound); 3149 // The element count here is the total number of non-VLA elements. 3150 llvm::Value *NumElements = getVLASize(VLA).first; 3151 3152 // Effectively, the multiply by the VLA size is part of the GEP. 3153 // GEP indexes are signed, and scaling an index isn't permitted to 3154 // signed-overflow, so we use the same semantics for our explicit 3155 // multiply. We suppress this if overflow is not undefined behavior. 3156 if (getLangOpts().isSignedOverflowDefined()) 3157 Idx = Builder.CreateMul(Idx, NumElements); 3158 else 3159 Idx = Builder.CreateNSWMul(Idx, NumElements); 3160 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3161 !getLangOpts().isSignedOverflowDefined()); 3162 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3163 // If this is A[i] where A is an array, the frontend will have decayed the 3164 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3165 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3166 // "gep x, i" here. Emit one "gep A, 0, i". 3167 assert(Array->getType()->isArrayType() && 3168 "Array to pointer decay must have array source type!"); 3169 LValue ArrayLV; 3170 // For simple multidimensional array indexing, set the 'accessed' flag for 3171 // better bounds-checking of the base expression. 3172 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3173 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3174 else 3175 ArrayLV = EmitLValue(Array); 3176 3177 // Propagate the alignment from the array itself to the result. 3178 EltPtr = emitArraySubscriptGEP( 3179 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3180 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3181 AlignSource = ArrayLV.getAlignmentSource(); 3182 } else { 3183 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3184 BaseTy, ResultExprTy, IsLowerBound); 3185 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3186 !getLangOpts().isSignedOverflowDefined()); 3187 } 3188 3189 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3190 } 3191 3192 LValue CodeGenFunction:: 3193 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3194 // Emit the base vector as an l-value. 3195 LValue Base; 3196 3197 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3198 if (E->isArrow()) { 3199 // If it is a pointer to a vector, emit the address and form an lvalue with 3200 // it. 3201 AlignmentSource AlignSource; 3202 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3203 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3204 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3205 Base.getQuals().removeObjCGCAttr(); 3206 } else if (E->getBase()->isGLValue()) { 3207 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3208 // emit the base as an lvalue. 3209 assert(E->getBase()->getType()->isVectorType()); 3210 Base = EmitLValue(E->getBase()); 3211 } else { 3212 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3213 assert(E->getBase()->getType()->isVectorType() && 3214 "Result must be a vector"); 3215 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3216 3217 // Store the vector to memory (because LValue wants an address). 3218 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3219 Builder.CreateStore(Vec, VecMem); 3220 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3221 AlignmentSource::Decl); 3222 } 3223 3224 QualType type = 3225 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3226 3227 // Encode the element access list into a vector of unsigned indices. 3228 SmallVector<uint32_t, 4> Indices; 3229 E->getEncodedElementAccess(Indices); 3230 3231 if (Base.isSimple()) { 3232 llvm::Constant *CV = 3233 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3234 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3235 Base.getAlignmentSource()); 3236 } 3237 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3238 3239 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3240 SmallVector<llvm::Constant *, 4> CElts; 3241 3242 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3243 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3244 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3245 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3246 Base.getAlignmentSource()); 3247 } 3248 3249 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3250 Expr *BaseExpr = E->getBase(); 3251 3252 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3253 LValue BaseLV; 3254 if (E->isArrow()) { 3255 AlignmentSource AlignSource; 3256 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3257 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3258 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy); 3259 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3260 } else 3261 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3262 3263 NamedDecl *ND = E->getMemberDecl(); 3264 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3265 LValue LV = EmitLValueForField(BaseLV, Field); 3266 setObjCGCLValueClass(getContext(), E, LV); 3267 return LV; 3268 } 3269 3270 if (auto *VD = dyn_cast<VarDecl>(ND)) 3271 return EmitGlobalVarDeclLValue(*this, E, VD); 3272 3273 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3274 return EmitFunctionDeclLValue(*this, E, FD); 3275 3276 llvm_unreachable("Unhandled member declaration!"); 3277 } 3278 3279 /// Given that we are currently emitting a lambda, emit an l-value for 3280 /// one of its members. 3281 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3282 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3283 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3284 QualType LambdaTagType = 3285 getContext().getTagDeclType(Field->getParent()); 3286 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3287 return EmitLValueForField(LambdaLV, Field); 3288 } 3289 3290 /// Drill down to the storage of a field without walking into 3291 /// reference types. 3292 /// 3293 /// The resulting address doesn't necessarily have the right type. 3294 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3295 const FieldDecl *field) { 3296 const RecordDecl *rec = field->getParent(); 3297 3298 unsigned idx = 3299 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3300 3301 CharUnits offset; 3302 // Adjust the alignment down to the given offset. 3303 // As a special case, if the LLVM field index is 0, we know that this 3304 // is zero. 3305 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3306 .getFieldOffset(field->getFieldIndex()) == 0) && 3307 "LLVM field at index zero had non-zero offset?"); 3308 if (idx != 0) { 3309 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3310 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3311 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3312 } 3313 3314 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3315 } 3316 3317 LValue CodeGenFunction::EmitLValueForField(LValue base, 3318 const FieldDecl *field) { 3319 AlignmentSource fieldAlignSource = 3320 getFieldAlignmentSource(base.getAlignmentSource()); 3321 3322 if (field->isBitField()) { 3323 const CGRecordLayout &RL = 3324 CGM.getTypes().getCGRecordLayout(field->getParent()); 3325 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3326 Address Addr = base.getAddress(); 3327 unsigned Idx = RL.getLLVMFieldNo(field); 3328 if (Idx != 0) 3329 // For structs, we GEP to the field that the record layout suggests. 3330 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3331 field->getName()); 3332 // Get the access type. 3333 llvm::Type *FieldIntTy = 3334 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3335 if (Addr.getElementType() != FieldIntTy) 3336 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3337 3338 QualType fieldType = 3339 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3340 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3341 } 3342 3343 const RecordDecl *rec = field->getParent(); 3344 QualType type = field->getType(); 3345 3346 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3347 3348 Address addr = base.getAddress(); 3349 unsigned cvr = base.getVRQualifiers(); 3350 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3351 if (rec->isUnion()) { 3352 // For unions, there is no pointer adjustment. 3353 assert(!type->isReferenceType() && "union has reference member"); 3354 // TODO: handle path-aware TBAA for union. 3355 TBAAPath = false; 3356 } else { 3357 // For structs, we GEP to the field that the record layout suggests. 3358 addr = emitAddrOfFieldStorage(*this, addr, field); 3359 3360 // If this is a reference field, load the reference right now. 3361 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3362 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3363 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3364 3365 // Loading the reference will disable path-aware TBAA. 3366 TBAAPath = false; 3367 if (CGM.shouldUseTBAA()) { 3368 llvm::MDNode *tbaa; 3369 if (mayAlias) 3370 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3371 else 3372 tbaa = CGM.getTBAAInfo(type); 3373 if (tbaa) 3374 CGM.DecorateInstructionWithTBAA(load, tbaa); 3375 } 3376 3377 mayAlias = false; 3378 type = refType->getPointeeType(); 3379 3380 CharUnits alignment = 3381 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3382 addr = Address(load, alignment); 3383 3384 // Qualifiers on the struct don't apply to the referencee, and 3385 // we'll pick up CVR from the actual type later, so reset these 3386 // additional qualifiers now. 3387 cvr = 0; 3388 } 3389 } 3390 3391 // Make sure that the address is pointing to the right type. This is critical 3392 // for both unions and structs. A union needs a bitcast, a struct element 3393 // will need a bitcast if the LLVM type laid out doesn't match the desired 3394 // type. 3395 addr = Builder.CreateElementBitCast(addr, 3396 CGM.getTypes().ConvertTypeForMem(type), 3397 field->getName()); 3398 3399 if (field->hasAttr<AnnotateAttr>()) 3400 addr = EmitFieldAnnotations(field, addr); 3401 3402 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3403 LV.getQuals().addCVRQualifiers(cvr); 3404 if (TBAAPath) { 3405 const ASTRecordLayout &Layout = 3406 getContext().getASTRecordLayout(field->getParent()); 3407 // Set the base type to be the base type of the base LValue and 3408 // update offset to be relative to the base type. 3409 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3410 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3411 Layout.getFieldOffset(field->getFieldIndex()) / 3412 getContext().getCharWidth()); 3413 } 3414 3415 // __weak attribute on a field is ignored. 3416 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3417 LV.getQuals().removeObjCGCAttr(); 3418 3419 // Fields of may_alias structs act like 'char' for TBAA purposes. 3420 // FIXME: this should get propagated down through anonymous structs 3421 // and unions. 3422 if (mayAlias && LV.getTBAAInfo()) 3423 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3424 3425 return LV; 3426 } 3427 3428 LValue 3429 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3430 const FieldDecl *Field) { 3431 QualType FieldType = Field->getType(); 3432 3433 if (!FieldType->isReferenceType()) 3434 return EmitLValueForField(Base, Field); 3435 3436 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3437 3438 // Make sure that the address is pointing to the right type. 3439 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3440 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3441 3442 // TODO: access-path TBAA? 3443 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3444 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3445 } 3446 3447 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3448 if (E->isFileScope()) { 3449 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3450 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3451 } 3452 if (E->getType()->isVariablyModifiedType()) 3453 // make sure to emit the VLA size. 3454 EmitVariablyModifiedType(E->getType()); 3455 3456 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3457 const Expr *InitExpr = E->getInitializer(); 3458 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3459 3460 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3461 /*Init*/ true); 3462 3463 return Result; 3464 } 3465 3466 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3467 if (!E->isGLValue()) 3468 // Initializing an aggregate temporary in C++11: T{...}. 3469 return EmitAggExprToLValue(E); 3470 3471 // An lvalue initializer list must be initializing a reference. 3472 assert(E->getNumInits() == 1 && "reference init with multiple values"); 3473 return EmitLValue(E->getInit(0)); 3474 } 3475 3476 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3477 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3478 /// LValue is returned and the current block has been terminated. 3479 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3480 const Expr *Operand) { 3481 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3482 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3483 return None; 3484 } 3485 3486 return CGF.EmitLValue(Operand); 3487 } 3488 3489 LValue CodeGenFunction:: 3490 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3491 if (!expr->isGLValue()) { 3492 // ?: here should be an aggregate. 3493 assert(hasAggregateEvaluationKind(expr->getType()) && 3494 "Unexpected conditional operator!"); 3495 return EmitAggExprToLValue(expr); 3496 } 3497 3498 OpaqueValueMapping binding(*this, expr); 3499 3500 const Expr *condExpr = expr->getCond(); 3501 bool CondExprBool; 3502 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3503 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3504 if (!CondExprBool) std::swap(live, dead); 3505 3506 if (!ContainsLabel(dead)) { 3507 // If the true case is live, we need to track its region. 3508 if (CondExprBool) 3509 incrementProfileCounter(expr); 3510 return EmitLValue(live); 3511 } 3512 } 3513 3514 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3515 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3516 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3517 3518 ConditionalEvaluation eval(*this); 3519 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3520 3521 // Any temporaries created here are conditional. 3522 EmitBlock(lhsBlock); 3523 incrementProfileCounter(expr); 3524 eval.begin(*this); 3525 Optional<LValue> lhs = 3526 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3527 eval.end(*this); 3528 3529 if (lhs && !lhs->isSimple()) 3530 return EmitUnsupportedLValue(expr, "conditional operator"); 3531 3532 lhsBlock = Builder.GetInsertBlock(); 3533 if (lhs) 3534 Builder.CreateBr(contBlock); 3535 3536 // Any temporaries created here are conditional. 3537 EmitBlock(rhsBlock); 3538 eval.begin(*this); 3539 Optional<LValue> rhs = 3540 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3541 eval.end(*this); 3542 if (rhs && !rhs->isSimple()) 3543 return EmitUnsupportedLValue(expr, "conditional operator"); 3544 rhsBlock = Builder.GetInsertBlock(); 3545 3546 EmitBlock(contBlock); 3547 3548 if (lhs && rhs) { 3549 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3550 2, "cond-lvalue"); 3551 phi->addIncoming(lhs->getPointer(), lhsBlock); 3552 phi->addIncoming(rhs->getPointer(), rhsBlock); 3553 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3554 AlignmentSource alignSource = 3555 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3556 return MakeAddrLValue(result, expr->getType(), alignSource); 3557 } else { 3558 assert((lhs || rhs) && 3559 "both operands of glvalue conditional are throw-expressions?"); 3560 return lhs ? *lhs : *rhs; 3561 } 3562 } 3563 3564 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3565 /// type. If the cast is to a reference, we can have the usual lvalue result, 3566 /// otherwise if a cast is needed by the code generator in an lvalue context, 3567 /// then it must mean that we need the address of an aggregate in order to 3568 /// access one of its members. This can happen for all the reasons that casts 3569 /// are permitted with aggregate result, including noop aggregate casts, and 3570 /// cast from scalar to union. 3571 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3572 switch (E->getCastKind()) { 3573 case CK_ToVoid: 3574 case CK_BitCast: 3575 case CK_ArrayToPointerDecay: 3576 case CK_FunctionToPointerDecay: 3577 case CK_NullToMemberPointer: 3578 case CK_NullToPointer: 3579 case CK_IntegralToPointer: 3580 case CK_PointerToIntegral: 3581 case CK_PointerToBoolean: 3582 case CK_VectorSplat: 3583 case CK_IntegralCast: 3584 case CK_BooleanToSignedIntegral: 3585 case CK_IntegralToBoolean: 3586 case CK_IntegralToFloating: 3587 case CK_FloatingToIntegral: 3588 case CK_FloatingToBoolean: 3589 case CK_FloatingCast: 3590 case CK_FloatingRealToComplex: 3591 case CK_FloatingComplexToReal: 3592 case CK_FloatingComplexToBoolean: 3593 case CK_FloatingComplexCast: 3594 case CK_FloatingComplexToIntegralComplex: 3595 case CK_IntegralRealToComplex: 3596 case CK_IntegralComplexToReal: 3597 case CK_IntegralComplexToBoolean: 3598 case CK_IntegralComplexCast: 3599 case CK_IntegralComplexToFloatingComplex: 3600 case CK_DerivedToBaseMemberPointer: 3601 case CK_BaseToDerivedMemberPointer: 3602 case CK_MemberPointerToBoolean: 3603 case CK_ReinterpretMemberPointer: 3604 case CK_AnyPointerToBlockPointerCast: 3605 case CK_ARCProduceObject: 3606 case CK_ARCConsumeObject: 3607 case CK_ARCReclaimReturnedObject: 3608 case CK_ARCExtendBlockObject: 3609 case CK_CopyAndAutoreleaseBlockObject: 3610 case CK_AddressSpaceConversion: 3611 case CK_IntToOCLSampler: 3612 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3613 3614 case CK_Dependent: 3615 llvm_unreachable("dependent cast kind in IR gen!"); 3616 3617 case CK_BuiltinFnToFnPtr: 3618 llvm_unreachable("builtin functions are handled elsewhere"); 3619 3620 // These are never l-values; just use the aggregate emission code. 3621 case CK_NonAtomicToAtomic: 3622 case CK_AtomicToNonAtomic: 3623 return EmitAggExprToLValue(E); 3624 3625 case CK_Dynamic: { 3626 LValue LV = EmitLValue(E->getSubExpr()); 3627 Address V = LV.getAddress(); 3628 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3629 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3630 } 3631 3632 case CK_ConstructorConversion: 3633 case CK_UserDefinedConversion: 3634 case CK_CPointerToObjCPointerCast: 3635 case CK_BlockPointerToObjCPointerCast: 3636 case CK_NoOp: 3637 case CK_LValueToRValue: 3638 return EmitLValue(E->getSubExpr()); 3639 3640 case CK_UncheckedDerivedToBase: 3641 case CK_DerivedToBase: { 3642 const RecordType *DerivedClassTy = 3643 E->getSubExpr()->getType()->getAs<RecordType>(); 3644 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3645 3646 LValue LV = EmitLValue(E->getSubExpr()); 3647 Address This = LV.getAddress(); 3648 3649 // Perform the derived-to-base conversion 3650 Address Base = GetAddressOfBaseClass( 3651 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3652 /*NullCheckValue=*/false, E->getExprLoc()); 3653 3654 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3655 } 3656 case CK_ToUnion: 3657 return EmitAggExprToLValue(E); 3658 case CK_BaseToDerived: { 3659 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3660 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3661 3662 LValue LV = EmitLValue(E->getSubExpr()); 3663 3664 // Perform the base-to-derived conversion 3665 Address Derived = 3666 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3667 E->path_begin(), E->path_end(), 3668 /*NullCheckValue=*/false); 3669 3670 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3671 // performed and the object is not of the derived type. 3672 if (sanitizePerformTypeCheck()) 3673 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3674 Derived.getPointer(), E->getType()); 3675 3676 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3677 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3678 /*MayBeNull=*/false, 3679 CFITCK_DerivedCast, E->getLocStart()); 3680 3681 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3682 } 3683 case CK_LValueBitCast: { 3684 // This must be a reinterpret_cast (or c-style equivalent). 3685 const auto *CE = cast<ExplicitCastExpr>(E); 3686 3687 CGM.EmitExplicitCastExprType(CE, this); 3688 LValue LV = EmitLValue(E->getSubExpr()); 3689 Address V = Builder.CreateBitCast(LV.getAddress(), 3690 ConvertType(CE->getTypeAsWritten())); 3691 3692 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3693 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3694 /*MayBeNull=*/false, 3695 CFITCK_UnrelatedCast, E->getLocStart()); 3696 3697 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3698 } 3699 case CK_ObjCObjectLValueCast: { 3700 LValue LV = EmitLValue(E->getSubExpr()); 3701 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3702 ConvertType(E->getType())); 3703 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3704 } 3705 case CK_ZeroToOCLEvent: 3706 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3707 } 3708 3709 llvm_unreachable("Unhandled lvalue cast kind?"); 3710 } 3711 3712 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3713 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3714 return getOpaqueLValueMapping(e); 3715 } 3716 3717 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3718 const FieldDecl *FD, 3719 SourceLocation Loc) { 3720 QualType FT = FD->getType(); 3721 LValue FieldLV = EmitLValueForField(LV, FD); 3722 switch (getEvaluationKind(FT)) { 3723 case TEK_Complex: 3724 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3725 case TEK_Aggregate: 3726 return FieldLV.asAggregateRValue(); 3727 case TEK_Scalar: 3728 // This routine is used to load fields one-by-one to perform a copy, so 3729 // don't load reference fields. 3730 if (FD->getType()->isReferenceType()) 3731 return RValue::get(FieldLV.getPointer()); 3732 return EmitLoadOfLValue(FieldLV, Loc); 3733 } 3734 llvm_unreachable("bad evaluation kind"); 3735 } 3736 3737 //===--------------------------------------------------------------------===// 3738 // Expression Emission 3739 //===--------------------------------------------------------------------===// 3740 3741 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3742 ReturnValueSlot ReturnValue) { 3743 // Builtins never have block type. 3744 if (E->getCallee()->getType()->isBlockPointerType()) 3745 return EmitBlockCallExpr(E, ReturnValue); 3746 3747 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3748 return EmitCXXMemberCallExpr(CE, ReturnValue); 3749 3750 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3751 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3752 3753 const Decl *TargetDecl = E->getCalleeDecl(); 3754 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3755 if (unsigned builtinID = FD->getBuiltinID()) 3756 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3757 } 3758 3759 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3760 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3761 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3762 3763 if (const auto *PseudoDtor = 3764 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3765 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3766 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 3767 // Automatic Reference Counting: 3768 // If the pseudo-expression names a retainable object with weak or 3769 // strong lifetime, the object shall be released. 3770 Expr *BaseExpr = PseudoDtor->getBase(); 3771 Address BaseValue = Address::invalid(); 3772 Qualifiers BaseQuals; 3773 3774 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3775 if (PseudoDtor->isArrow()) { 3776 BaseValue = EmitPointerWithAlignment(BaseExpr); 3777 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3778 BaseQuals = PTy->getPointeeType().getQualifiers(); 3779 } else { 3780 LValue BaseLV = EmitLValue(BaseExpr); 3781 BaseValue = BaseLV.getAddress(); 3782 QualType BaseTy = BaseExpr->getType(); 3783 BaseQuals = BaseTy.getQualifiers(); 3784 } 3785 3786 switch (DestroyedType.getObjCLifetime()) { 3787 case Qualifiers::OCL_None: 3788 case Qualifiers::OCL_ExplicitNone: 3789 case Qualifiers::OCL_Autoreleasing: 3790 break; 3791 3792 case Qualifiers::OCL_Strong: 3793 EmitARCRelease(Builder.CreateLoad(BaseValue, 3794 PseudoDtor->getDestroyedType().isVolatileQualified()), 3795 ARCPreciseLifetime); 3796 break; 3797 3798 case Qualifiers::OCL_Weak: 3799 EmitARCDestroyWeak(BaseValue); 3800 break; 3801 } 3802 } else { 3803 // C++ [expr.pseudo]p1: 3804 // The result shall only be used as the operand for the function call 3805 // operator (), and the result of such a call has type void. The only 3806 // effect is the evaluation of the postfix-expression before the dot or 3807 // arrow. 3808 EmitScalarExpr(E->getCallee()); 3809 } 3810 3811 return RValue::get(nullptr); 3812 } 3813 3814 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3815 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3816 TargetDecl); 3817 } 3818 3819 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3820 // Comma expressions just emit their LHS then their RHS as an l-value. 3821 if (E->getOpcode() == BO_Comma) { 3822 EmitIgnoredExpr(E->getLHS()); 3823 EnsureInsertPoint(); 3824 return EmitLValue(E->getRHS()); 3825 } 3826 3827 if (E->getOpcode() == BO_PtrMemD || 3828 E->getOpcode() == BO_PtrMemI) 3829 return EmitPointerToDataMemberBinaryExpr(E); 3830 3831 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3832 3833 // Note that in all of these cases, __block variables need the RHS 3834 // evaluated first just in case the variable gets moved by the RHS. 3835 3836 switch (getEvaluationKind(E->getType())) { 3837 case TEK_Scalar: { 3838 switch (E->getLHS()->getType().getObjCLifetime()) { 3839 case Qualifiers::OCL_Strong: 3840 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3841 3842 case Qualifiers::OCL_Autoreleasing: 3843 return EmitARCStoreAutoreleasing(E).first; 3844 3845 // No reason to do any of these differently. 3846 case Qualifiers::OCL_None: 3847 case Qualifiers::OCL_ExplicitNone: 3848 case Qualifiers::OCL_Weak: 3849 break; 3850 } 3851 3852 RValue RV = EmitAnyExpr(E->getRHS()); 3853 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3854 EmitStoreThroughLValue(RV, LV); 3855 return LV; 3856 } 3857 3858 case TEK_Complex: 3859 return EmitComplexAssignmentLValue(E); 3860 3861 case TEK_Aggregate: 3862 return EmitAggExprToLValue(E); 3863 } 3864 llvm_unreachable("bad evaluation kind"); 3865 } 3866 3867 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3868 RValue RV = EmitCallExpr(E); 3869 3870 if (!RV.isScalar()) 3871 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3872 AlignmentSource::Decl); 3873 3874 assert(E->getCallReturnType(getContext())->isReferenceType() && 3875 "Can't have a scalar return unless the return type is a " 3876 "reference type!"); 3877 3878 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3879 } 3880 3881 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3882 // FIXME: This shouldn't require another copy. 3883 return EmitAggExprToLValue(E); 3884 } 3885 3886 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3887 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3888 && "binding l-value to type which needs a temporary"); 3889 AggValueSlot Slot = CreateAggTemp(E->getType()); 3890 EmitCXXConstructExpr(E, Slot); 3891 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3892 AlignmentSource::Decl); 3893 } 3894 3895 LValue 3896 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3897 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3898 } 3899 3900 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3901 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 3902 ConvertType(E->getType())); 3903 } 3904 3905 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3906 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 3907 AlignmentSource::Decl); 3908 } 3909 3910 LValue 3911 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3912 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3913 Slot.setExternallyDestructed(); 3914 EmitAggExpr(E->getSubExpr(), Slot); 3915 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 3916 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3917 AlignmentSource::Decl); 3918 } 3919 3920 LValue 3921 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3922 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3923 EmitLambdaExpr(E, Slot); 3924 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3925 AlignmentSource::Decl); 3926 } 3927 3928 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3929 RValue RV = EmitObjCMessageExpr(E); 3930 3931 if (!RV.isScalar()) 3932 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3933 AlignmentSource::Decl); 3934 3935 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3936 "Can't have a scalar return unless the return type is a " 3937 "reference type!"); 3938 3939 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3940 } 3941 3942 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3943 Address V = 3944 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 3945 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 3946 } 3947 3948 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3949 const ObjCIvarDecl *Ivar) { 3950 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3951 } 3952 3953 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3954 llvm::Value *BaseValue, 3955 const ObjCIvarDecl *Ivar, 3956 unsigned CVRQualifiers) { 3957 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3958 Ivar, CVRQualifiers); 3959 } 3960 3961 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3962 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3963 llvm::Value *BaseValue = nullptr; 3964 const Expr *BaseExpr = E->getBase(); 3965 Qualifiers BaseQuals; 3966 QualType ObjectTy; 3967 if (E->isArrow()) { 3968 BaseValue = EmitScalarExpr(BaseExpr); 3969 ObjectTy = BaseExpr->getType()->getPointeeType(); 3970 BaseQuals = ObjectTy.getQualifiers(); 3971 } else { 3972 LValue BaseLV = EmitLValue(BaseExpr); 3973 BaseValue = BaseLV.getPointer(); 3974 ObjectTy = BaseExpr->getType(); 3975 BaseQuals = ObjectTy.getQualifiers(); 3976 } 3977 3978 LValue LV = 3979 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3980 BaseQuals.getCVRQualifiers()); 3981 setObjCGCLValueClass(getContext(), E, LV); 3982 return LV; 3983 } 3984 3985 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3986 // Can only get l-value for message expression returning aggregate type 3987 RValue RV = EmitAnyExprToTemp(E); 3988 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3989 AlignmentSource::Decl); 3990 } 3991 3992 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3993 const CallExpr *E, ReturnValueSlot ReturnValue, 3994 CGCalleeInfo CalleeInfo, llvm::Value *Chain) { 3995 // Get the actual function type. The callee type will always be a pointer to 3996 // function type or a block pointer type. 3997 assert(CalleeType->isFunctionPointerType() && 3998 "Call must have function pointer type!"); 3999 4000 // Preserve the non-canonical function type because things like exception 4001 // specifications disappear in the canonical type. That information is useful 4002 // to drive the generation of more accurate code for this call later on. 4003 const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>() 4004 ->getPointeeType() 4005 ->getAs<FunctionProtoType>(); 4006 4007 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 4008 4009 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4010 // We can only guarantee that a function is called from the correct 4011 // context/function based on the appropriate target attributes, 4012 // so only check in the case where we have both always_inline and target 4013 // since otherwise we could be making a conditional call after a check for 4014 // the proper cpu features (and it won't cause code generation issues due to 4015 // function based code generation). 4016 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4017 TargetDecl->hasAttr<TargetAttr>()) 4018 checkTargetFeatures(E, FD); 4019 4020 CalleeType = getContext().getCanonicalType(CalleeType); 4021 4022 const auto *FnType = 4023 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4024 4025 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4026 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4027 if (llvm::Constant *PrefixSig = 4028 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4029 SanitizerScope SanScope(this); 4030 llvm::Constant *FTRTTIConst = 4031 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4032 llvm::Type *PrefixStructTyElems[] = { 4033 PrefixSig->getType(), 4034 FTRTTIConst->getType() 4035 }; 4036 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4037 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4038 4039 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4040 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 4041 llvm::Value *CalleeSigPtr = 4042 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4043 llvm::Value *CalleeSig = 4044 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4045 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4046 4047 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4048 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4049 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4050 4051 EmitBlock(TypeCheck); 4052 llvm::Value *CalleeRTTIPtr = 4053 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4054 llvm::Value *CalleeRTTI = 4055 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4056 llvm::Value *CalleeRTTIMatch = 4057 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4058 llvm::Constant *StaticData[] = { 4059 EmitCheckSourceLocation(E->getLocStart()), 4060 EmitCheckTypeDescriptor(CalleeType) 4061 }; 4062 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4063 "function_type_mismatch", StaticData, Callee); 4064 4065 Builder.CreateBr(Cont); 4066 EmitBlock(Cont); 4067 } 4068 } 4069 4070 // If we are checking indirect calls and this call is indirect, check that the 4071 // function pointer is a member of the bit set for the function type. 4072 if (SanOpts.has(SanitizerKind::CFIICall) && 4073 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4074 SanitizerScope SanScope(this); 4075 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4076 4077 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4078 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4079 4080 llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy); 4081 llvm::Value *TypeTest = Builder.CreateCall( 4082 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4083 4084 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4085 llvm::Constant *StaticData[] = { 4086 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4087 EmitCheckSourceLocation(E->getLocStart()), 4088 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4089 }; 4090 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4091 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4092 CastedCallee, StaticData); 4093 } else { 4094 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4095 "cfi_check_fail", StaticData, 4096 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4097 } 4098 } 4099 4100 CallArgList Args; 4101 if (Chain) 4102 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4103 CGM.getContext().VoidPtrTy); 4104 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4105 E->getDirectCallee(), /*ParamsToSkip*/ 0); 4106 4107 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4108 Args, FnType, /*isChainCall=*/Chain); 4109 4110 // C99 6.5.2.2p6: 4111 // If the expression that denotes the called function has a type 4112 // that does not include a prototype, [the default argument 4113 // promotions are performed]. If the number of arguments does not 4114 // equal the number of parameters, the behavior is undefined. If 4115 // the function is defined with a type that includes a prototype, 4116 // and either the prototype ends with an ellipsis (, ...) or the 4117 // types of the arguments after promotion are not compatible with 4118 // the types of the parameters, the behavior is undefined. If the 4119 // function is defined with a type that does not include a 4120 // prototype, and the types of the arguments after promotion are 4121 // not compatible with those of the parameters after promotion, 4122 // the behavior is undefined [except in some trivial cases]. 4123 // That is, in the general case, we should assume that a call 4124 // through an unprototyped function type works like a *non-variadic* 4125 // call. The way we make this work is to cast to the exact type 4126 // of the promoted arguments. 4127 // 4128 // Chain calls use this same code path to add the invisible chain parameter 4129 // to the function type. 4130 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4131 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4132 CalleeTy = CalleeTy->getPointerTo(); 4133 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 4134 } 4135 4136 return EmitCall(FnInfo, Callee, ReturnValue, Args, 4137 CGCalleeInfo(NonCanonicalFTP, TargetDecl)); 4138 } 4139 4140 LValue CodeGenFunction:: 4141 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4142 Address BaseAddr = Address::invalid(); 4143 if (E->getOpcode() == BO_PtrMemI) { 4144 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4145 } else { 4146 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4147 } 4148 4149 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4150 4151 const MemberPointerType *MPT 4152 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4153 4154 AlignmentSource AlignSource; 4155 Address MemberAddr = 4156 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4157 &AlignSource); 4158 4159 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4160 } 4161 4162 /// Given the address of a temporary variable, produce an r-value of 4163 /// its type. 4164 RValue CodeGenFunction::convertTempToRValue(Address addr, 4165 QualType type, 4166 SourceLocation loc) { 4167 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4168 switch (getEvaluationKind(type)) { 4169 case TEK_Complex: 4170 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4171 case TEK_Aggregate: 4172 return lvalue.asAggregateRValue(); 4173 case TEK_Scalar: 4174 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4175 } 4176 llvm_unreachable("bad evaluation kind"); 4177 } 4178 4179 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4180 assert(Val->getType()->isFPOrFPVectorTy()); 4181 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4182 return; 4183 4184 llvm::MDBuilder MDHelper(getLLVMContext()); 4185 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4186 4187 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4188 } 4189 4190 namespace { 4191 struct LValueOrRValue { 4192 LValue LV; 4193 RValue RV; 4194 }; 4195 } 4196 4197 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4198 const PseudoObjectExpr *E, 4199 bool forLValue, 4200 AggValueSlot slot) { 4201 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4202 4203 // Find the result expression, if any. 4204 const Expr *resultExpr = E->getResultExpr(); 4205 LValueOrRValue result; 4206 4207 for (PseudoObjectExpr::const_semantics_iterator 4208 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4209 const Expr *semantic = *i; 4210 4211 // If this semantic expression is an opaque value, bind it 4212 // to the result of its source expression. 4213 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4214 4215 // If this is the result expression, we may need to evaluate 4216 // directly into the slot. 4217 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4218 OVMA opaqueData; 4219 if (ov == resultExpr && ov->isRValue() && !forLValue && 4220 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4221 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4222 4223 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4224 AlignmentSource::Decl); 4225 opaqueData = OVMA::bind(CGF, ov, LV); 4226 result.RV = slot.asRValue(); 4227 4228 // Otherwise, emit as normal. 4229 } else { 4230 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4231 4232 // If this is the result, also evaluate the result now. 4233 if (ov == resultExpr) { 4234 if (forLValue) 4235 result.LV = CGF.EmitLValue(ov); 4236 else 4237 result.RV = CGF.EmitAnyExpr(ov, slot); 4238 } 4239 } 4240 4241 opaques.push_back(opaqueData); 4242 4243 // Otherwise, if the expression is the result, evaluate it 4244 // and remember the result. 4245 } else if (semantic == resultExpr) { 4246 if (forLValue) 4247 result.LV = CGF.EmitLValue(semantic); 4248 else 4249 result.RV = CGF.EmitAnyExpr(semantic, slot); 4250 4251 // Otherwise, evaluate the expression in an ignored context. 4252 } else { 4253 CGF.EmitIgnoredExpr(semantic); 4254 } 4255 } 4256 4257 // Unbind all the opaques now. 4258 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4259 opaques[i].unbind(CGF); 4260 4261 return result; 4262 } 4263 4264 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4265 AggValueSlot slot) { 4266 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4267 } 4268 4269 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4270 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4271 } 4272