1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
78     Builder.SetInsertPoint(AllocaInsertPt);
79     V = getTargetHooks().performAddrSpaceCast(
80         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
81         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
82   }
83 
84   return Address(V, Align);
85 }
86 
87 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
88 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
89 /// insertion point of the builder.
90 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
91                                                     const Twine &Name,
92                                                     llvm::Value *ArraySize) {
93   if (ArraySize)
94     return Builder.CreateAlloca(Ty, ArraySize, Name);
95   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
96                               ArraySize, Name, AllocaInsertPt);
97 }
98 
99 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
100 /// default alignment of the corresponding LLVM type, which is *not*
101 /// guaranteed to be related in any way to the expected alignment of
102 /// an AST type that might have been lowered to Ty.
103 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
104                                                       const Twine &Name) {
105   CharUnits Align =
106     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
107   return CreateTempAlloca(Ty, Align, Name);
108 }
109 
110 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
111   assert(isa<llvm::AllocaInst>(Var.getPointer()));
112   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
113   Store->setAlignment(Var.getAlignment().getQuantity());
114   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
115   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
116 }
117 
118 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
119   CharUnits Align = getContext().getTypeAlignInChars(Ty);
120   return CreateTempAlloca(ConvertType(Ty), Align, Name);
121 }
122 
123 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
124                                        bool CastToDefaultAddrSpace) {
125   // FIXME: Should we prefer the preferred type alignment here?
126   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
127                        CastToDefaultAddrSpace);
128 }
129 
130 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
131                                        const Twine &Name,
132                                        bool CastToDefaultAddrSpace) {
133   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
134                           CastToDefaultAddrSpace);
135 }
136 
137 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
138 /// expression and compare the result against zero, returning an Int1Ty value.
139 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
140   PGO.setCurrentStmt(E);
141   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
142     llvm::Value *MemPtr = EmitScalarExpr(E);
143     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
144   }
145 
146   QualType BoolTy = getContext().BoolTy;
147   SourceLocation Loc = E->getExprLoc();
148   if (!E->getType()->isAnyComplexType())
149     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
150 
151   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
152                                        Loc);
153 }
154 
155 /// EmitIgnoredExpr - Emit code to compute the specified expression,
156 /// ignoring the result.
157 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
158   if (E->isRValue())
159     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
160 
161   // Just emit it as an l-value and drop the result.
162   EmitLValue(E);
163 }
164 
165 /// EmitAnyExpr - Emit code to compute the specified expression which
166 /// can have any type.  The result is returned as an RValue struct.
167 /// If this is an aggregate expression, AggSlot indicates where the
168 /// result should be returned.
169 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
170                                     AggValueSlot aggSlot,
171                                     bool ignoreResult) {
172   switch (getEvaluationKind(E->getType())) {
173   case TEK_Scalar:
174     return RValue::get(EmitScalarExpr(E, ignoreResult));
175   case TEK_Complex:
176     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
177   case TEK_Aggregate:
178     if (!ignoreResult && aggSlot.isIgnored())
179       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
180     EmitAggExpr(E, aggSlot);
181     return aggSlot.asRValue();
182   }
183   llvm_unreachable("bad evaluation kind");
184 }
185 
186 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
187 /// always be accessible even if no aggregate location is provided.
188 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
189   AggValueSlot AggSlot = AggValueSlot::ignored();
190 
191   if (hasAggregateEvaluationKind(E->getType()))
192     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
193   return EmitAnyExpr(E, AggSlot);
194 }
195 
196 /// EmitAnyExprToMem - Evaluate an expression into a given memory
197 /// location.
198 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
199                                        Address Location,
200                                        Qualifiers Quals,
201                                        bool IsInit) {
202   // FIXME: This function should take an LValue as an argument.
203   switch (getEvaluationKind(E->getType())) {
204   case TEK_Complex:
205     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
206                               /*isInit*/ false);
207     return;
208 
209   case TEK_Aggregate: {
210     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
211                                          AggValueSlot::IsDestructed_t(IsInit),
212                                          AggValueSlot::DoesNotNeedGCBarriers,
213                                          AggValueSlot::IsAliased_t(!IsInit)));
214     return;
215   }
216 
217   case TEK_Scalar: {
218     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
219     LValue LV = MakeAddrLValue(Location, E->getType());
220     EmitStoreThroughLValue(RV, LV);
221     return;
222   }
223   }
224   llvm_unreachable("bad evaluation kind");
225 }
226 
227 static void
228 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
229                      const Expr *E, Address ReferenceTemporary) {
230   // Objective-C++ ARC:
231   //   If we are binding a reference to a temporary that has ownership, we
232   //   need to perform retain/release operations on the temporary.
233   //
234   // FIXME: This should be looking at E, not M.
235   if (auto Lifetime = M->getType().getObjCLifetime()) {
236     switch (Lifetime) {
237     case Qualifiers::OCL_None:
238     case Qualifiers::OCL_ExplicitNone:
239       // Carry on to normal cleanup handling.
240       break;
241 
242     case Qualifiers::OCL_Autoreleasing:
243       // Nothing to do; cleaned up by an autorelease pool.
244       return;
245 
246     case Qualifiers::OCL_Strong:
247     case Qualifiers::OCL_Weak:
248       switch (StorageDuration Duration = M->getStorageDuration()) {
249       case SD_Static:
250         // Note: we intentionally do not register a cleanup to release
251         // the object on program termination.
252         return;
253 
254       case SD_Thread:
255         // FIXME: We should probably register a cleanup in this case.
256         return;
257 
258       case SD_Automatic:
259       case SD_FullExpression:
260         CodeGenFunction::Destroyer *Destroy;
261         CleanupKind CleanupKind;
262         if (Lifetime == Qualifiers::OCL_Strong) {
263           const ValueDecl *VD = M->getExtendingDecl();
264           bool Precise =
265               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
266           CleanupKind = CGF.getARCCleanupKind();
267           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
268                             : &CodeGenFunction::destroyARCStrongImprecise;
269         } else {
270           // __weak objects always get EH cleanups; otherwise, exceptions
271           // could cause really nasty crashes instead of mere leaks.
272           CleanupKind = NormalAndEHCleanup;
273           Destroy = &CodeGenFunction::destroyARCWeak;
274         }
275         if (Duration == SD_FullExpression)
276           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
277                           M->getType(), *Destroy,
278                           CleanupKind & EHCleanup);
279         else
280           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
281                                           M->getType(),
282                                           *Destroy, CleanupKind & EHCleanup);
283         return;
284 
285       case SD_Dynamic:
286         llvm_unreachable("temporary cannot have dynamic storage duration");
287       }
288       llvm_unreachable("unknown storage duration");
289     }
290   }
291 
292   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
293   if (const RecordType *RT =
294           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
295     // Get the destructor for the reference temporary.
296     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
297     if (!ClassDecl->hasTrivialDestructor())
298       ReferenceTemporaryDtor = ClassDecl->getDestructor();
299   }
300 
301   if (!ReferenceTemporaryDtor)
302     return;
303 
304   // Call the destructor for the temporary.
305   switch (M->getStorageDuration()) {
306   case SD_Static:
307   case SD_Thread: {
308     llvm::Constant *CleanupFn;
309     llvm::Constant *CleanupArg;
310     if (E->getType()->isArrayType()) {
311       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
312           ReferenceTemporary, E->getType(),
313           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
314           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
315       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
316     } else {
317       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
318                                                StructorType::Complete);
319       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
320     }
321     CGF.CGM.getCXXABI().registerGlobalDtor(
322         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
323     break;
324   }
325 
326   case SD_FullExpression:
327     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
328                     CodeGenFunction::destroyCXXObject,
329                     CGF.getLangOpts().Exceptions);
330     break;
331 
332   case SD_Automatic:
333     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
334                                     ReferenceTemporary, E->getType(),
335                                     CodeGenFunction::destroyCXXObject,
336                                     CGF.getLangOpts().Exceptions);
337     break;
338 
339   case SD_Dynamic:
340     llvm_unreachable("temporary cannot have dynamic storage duration");
341   }
342 }
343 
344 static Address createReferenceTemporary(CodeGenFunction &CGF,
345                                         const MaterializeTemporaryExpr *M,
346                                         const Expr *Inner) {
347   auto &TCG = CGF.getTargetHooks();
348   switch (M->getStorageDuration()) {
349   case SD_FullExpression:
350   case SD_Automatic: {
351     // If we have a constant temporary array or record try to promote it into a
352     // constant global under the same rules a normal constant would've been
353     // promoted. This is easier on the optimizer and generally emits fewer
354     // instructions.
355     QualType Ty = Inner->getType();
356     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
357         (Ty->isArrayType() || Ty->isRecordType()) &&
358         CGF.CGM.isTypeConstant(Ty, true))
359       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
360         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
361           auto AS = AddrSpace.getValue();
362           auto *GV = new llvm::GlobalVariable(
363               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
364               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
365               llvm::GlobalValue::NotThreadLocal,
366               CGF.getContext().getTargetAddressSpace(AS));
367           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
368           GV->setAlignment(alignment.getQuantity());
369           llvm::Constant *C = GV;
370           if (AS != LangAS::Default)
371             C = TCG.performAddrSpaceCast(
372                 CGF.CGM, GV, AS, LangAS::Default,
373                 GV->getValueType()->getPointerTo(
374                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
375           // FIXME: Should we put the new global into a COMDAT?
376           return Address(C, alignment);
377         }
378       }
379     return CGF.CreateMemTemp(Ty, "ref.tmp");
380   }
381   case SD_Thread:
382   case SD_Static:
383     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
384 
385   case SD_Dynamic:
386     llvm_unreachable("temporary can't have dynamic storage duration");
387   }
388   llvm_unreachable("unknown storage duration");
389 }
390 
391 LValue CodeGenFunction::
392 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
393   const Expr *E = M->GetTemporaryExpr();
394 
395     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
396     // as that will cause the lifetime adjustment to be lost for ARC
397   auto ownership = M->getType().getObjCLifetime();
398   if (ownership != Qualifiers::OCL_None &&
399       ownership != Qualifiers::OCL_ExplicitNone) {
400     Address Object = createReferenceTemporary(*this, M, E);
401     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
402       Object = Address(llvm::ConstantExpr::getBitCast(Var,
403                            ConvertTypeForMem(E->getType())
404                              ->getPointerTo(Object.getAddressSpace())),
405                        Object.getAlignment());
406 
407       // createReferenceTemporary will promote the temporary to a global with a
408       // constant initializer if it can.  It can only do this to a value of
409       // ARC-manageable type if the value is global and therefore "immune" to
410       // ref-counting operations.  Therefore we have no need to emit either a
411       // dynamic initialization or a cleanup and we can just return the address
412       // of the temporary.
413       if (Var->hasInitializer())
414         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
415 
416       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
417     }
418     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
419                                        AlignmentSource::Decl);
420 
421     switch (getEvaluationKind(E->getType())) {
422     default: llvm_unreachable("expected scalar or aggregate expression");
423     case TEK_Scalar:
424       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
425       break;
426     case TEK_Aggregate: {
427       EmitAggExpr(E, AggValueSlot::forAddr(Object,
428                                            E->getType().getQualifiers(),
429                                            AggValueSlot::IsDestructed,
430                                            AggValueSlot::DoesNotNeedGCBarriers,
431                                            AggValueSlot::IsNotAliased));
432       break;
433     }
434     }
435 
436     pushTemporaryCleanup(*this, M, E, Object);
437     return RefTempDst;
438   }
439 
440   SmallVector<const Expr *, 2> CommaLHSs;
441   SmallVector<SubobjectAdjustment, 2> Adjustments;
442   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
443 
444   for (const auto &Ignored : CommaLHSs)
445     EmitIgnoredExpr(Ignored);
446 
447   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
448     if (opaque->getType()->isRecordType()) {
449       assert(Adjustments.empty());
450       return EmitOpaqueValueLValue(opaque);
451     }
452   }
453 
454   // Create and initialize the reference temporary.
455   Address Object = createReferenceTemporary(*this, M, E);
456   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
457           Object.getPointer()->stripPointerCasts())) {
458     Object = Address(llvm::ConstantExpr::getBitCast(
459                          cast<llvm::Constant>(Object.getPointer()),
460                          ConvertTypeForMem(E->getType())->getPointerTo()),
461                      Object.getAlignment());
462     // If the temporary is a global and has a constant initializer or is a
463     // constant temporary that we promoted to a global, we may have already
464     // initialized it.
465     if (!Var->hasInitializer()) {
466       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
467       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
468     }
469   } else {
470     switch (M->getStorageDuration()) {
471     case SD_Automatic:
472     case SD_FullExpression:
473       if (auto *Size = EmitLifetimeStart(
474               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
475               Object.getPointer())) {
476         if (M->getStorageDuration() == SD_Automatic)
477           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
478                                                     Object, Size);
479         else
480           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
481                                                Size);
482       }
483       break;
484     default:
485       break;
486     }
487     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
488   }
489   pushTemporaryCleanup(*this, M, E, Object);
490 
491   // Perform derived-to-base casts and/or field accesses, to get from the
492   // temporary object we created (and, potentially, for which we extended
493   // the lifetime) to the subobject we're binding the reference to.
494   for (unsigned I = Adjustments.size(); I != 0; --I) {
495     SubobjectAdjustment &Adjustment = Adjustments[I-1];
496     switch (Adjustment.Kind) {
497     case SubobjectAdjustment::DerivedToBaseAdjustment:
498       Object =
499           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
500                                 Adjustment.DerivedToBase.BasePath->path_begin(),
501                                 Adjustment.DerivedToBase.BasePath->path_end(),
502                                 /*NullCheckValue=*/ false, E->getExprLoc());
503       break;
504 
505     case SubobjectAdjustment::FieldAdjustment: {
506       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
507       LV = EmitLValueForField(LV, Adjustment.Field);
508       assert(LV.isSimple() &&
509              "materialized temporary field is not a simple lvalue");
510       Object = LV.getAddress();
511       break;
512     }
513 
514     case SubobjectAdjustment::MemberPointerAdjustment: {
515       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
516       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
517                                                Adjustment.Ptr.MPT);
518       break;
519     }
520     }
521   }
522 
523   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
524 }
525 
526 RValue
527 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
528   // Emit the expression as an lvalue.
529   LValue LV = EmitLValue(E);
530   assert(LV.isSimple());
531   llvm::Value *Value = LV.getPointer();
532 
533   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
534     // C++11 [dcl.ref]p5 (as amended by core issue 453):
535     //   If a glvalue to which a reference is directly bound designates neither
536     //   an existing object or function of an appropriate type nor a region of
537     //   storage of suitable size and alignment to contain an object of the
538     //   reference's type, the behavior is undefined.
539     QualType Ty = E->getType();
540     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
541   }
542 
543   return RValue::get(Value);
544 }
545 
546 
547 /// getAccessedFieldNo - Given an encoded value and a result number, return the
548 /// input field number being accessed.
549 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
550                                              const llvm::Constant *Elts) {
551   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
552       ->getZExtValue();
553 }
554 
555 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
556 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
557                                     llvm::Value *High) {
558   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
559   llvm::Value *K47 = Builder.getInt64(47);
560   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
561   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
562   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
563   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
564   return Builder.CreateMul(B1, KMul);
565 }
566 
567 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
568   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
569          TCK == TCK_UpcastToVirtualBase;
570 }
571 
572 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
573   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
574   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
575          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
576           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
577           TCK == TCK_UpcastToVirtualBase);
578 }
579 
580 bool CodeGenFunction::sanitizePerformTypeCheck() const {
581   return SanOpts.has(SanitizerKind::Null) |
582          SanOpts.has(SanitizerKind::Alignment) |
583          SanOpts.has(SanitizerKind::ObjectSize) |
584          SanOpts.has(SanitizerKind::Vptr);
585 }
586 
587 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
588                                     llvm::Value *Ptr, QualType Ty,
589                                     CharUnits Alignment,
590                                     SanitizerSet SkippedChecks) {
591   if (!sanitizePerformTypeCheck())
592     return;
593 
594   // Don't check pointers outside the default address space. The null check
595   // isn't correct, the object-size check isn't supported by LLVM, and we can't
596   // communicate the addresses to the runtime handler for the vptr check.
597   if (Ptr->getType()->getPointerAddressSpace())
598     return;
599 
600   // Don't check pointers to volatile data. The behavior here is implementation-
601   // defined.
602   if (Ty.isVolatileQualified())
603     return;
604 
605   SanitizerScope SanScope(this);
606 
607   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
608   llvm::BasicBlock *Done = nullptr;
609 
610   // Quickly determine whether we have a pointer to an alloca. It's possible
611   // to skip null checks, and some alignment checks, for these pointers. This
612   // can reduce compile-time significantly.
613   auto PtrToAlloca =
614       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
615 
616   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
617   llvm::Value *IsNonNull = nullptr;
618   bool IsGuaranteedNonNull =
619       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
620   bool AllowNullPointers = isNullPointerAllowed(TCK);
621   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
622       !IsGuaranteedNonNull) {
623     // The glvalue must not be an empty glvalue.
624     IsNonNull = Builder.CreateIsNotNull(Ptr);
625 
626     // The IR builder can constant-fold the null check if the pointer points to
627     // a constant.
628     IsGuaranteedNonNull = IsNonNull == True;
629 
630     // Skip the null check if the pointer is known to be non-null.
631     if (!IsGuaranteedNonNull) {
632       if (AllowNullPointers) {
633         // When performing pointer casts, it's OK if the value is null.
634         // Skip the remaining checks in that case.
635         Done = createBasicBlock("null");
636         llvm::BasicBlock *Rest = createBasicBlock("not.null");
637         Builder.CreateCondBr(IsNonNull, Rest, Done);
638         EmitBlock(Rest);
639       } else {
640         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
641       }
642     }
643   }
644 
645   if (SanOpts.has(SanitizerKind::ObjectSize) &&
646       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
647       !Ty->isIncompleteType()) {
648     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
649 
650     // The glvalue must refer to a large enough storage region.
651     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
652     //        to check this.
653     // FIXME: Get object address space
654     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
655     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
656     llvm::Value *Min = Builder.getFalse();
657     llvm::Value *NullIsUnknown = Builder.getFalse();
658     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
659     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
660         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
661         llvm::ConstantInt::get(IntPtrTy, Size));
662     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
663   }
664 
665   uint64_t AlignVal = 0;
666   llvm::Value *PtrAsInt = nullptr;
667 
668   if (SanOpts.has(SanitizerKind::Alignment) &&
669       !SkippedChecks.has(SanitizerKind::Alignment)) {
670     AlignVal = Alignment.getQuantity();
671     if (!Ty->isIncompleteType() && !AlignVal)
672       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
673 
674     // The glvalue must be suitably aligned.
675     if (AlignVal > 1 &&
676         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
677       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
678       llvm::Value *Align = Builder.CreateAnd(
679           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
680       llvm::Value *Aligned =
681           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
682       if (Aligned != True)
683         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
684     }
685   }
686 
687   if (Checks.size() > 0) {
688     // Make sure we're not losing information. Alignment needs to be a power of
689     // 2
690     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
691     llvm::Constant *StaticData[] = {
692         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
693         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
694         llvm::ConstantInt::get(Int8Ty, TCK)};
695     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
696               PtrAsInt ? PtrAsInt : Ptr);
697   }
698 
699   // If possible, check that the vptr indicates that there is a subobject of
700   // type Ty at offset zero within this object.
701   //
702   // C++11 [basic.life]p5,6:
703   //   [For storage which does not refer to an object within its lifetime]
704   //   The program has undefined behavior if:
705   //    -- the [pointer or glvalue] is used to access a non-static data member
706   //       or call a non-static member function
707   if (SanOpts.has(SanitizerKind::Vptr) &&
708       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
709     // Ensure that the pointer is non-null before loading it. If there is no
710     // compile-time guarantee, reuse the run-time null check or emit a new one.
711     if (!IsGuaranteedNonNull) {
712       if (!IsNonNull)
713         IsNonNull = Builder.CreateIsNotNull(Ptr);
714       if (!Done)
715         Done = createBasicBlock("vptr.null");
716       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
717       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
718       EmitBlock(VptrNotNull);
719     }
720 
721     // Compute a hash of the mangled name of the type.
722     //
723     // FIXME: This is not guaranteed to be deterministic! Move to a
724     //        fingerprinting mechanism once LLVM provides one. For the time
725     //        being the implementation happens to be deterministic.
726     SmallString<64> MangledName;
727     llvm::raw_svector_ostream Out(MangledName);
728     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
729                                                      Out);
730 
731     // Blacklist based on the mangled type.
732     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
733             SanitizerKind::Vptr, Out.str())) {
734       llvm::hash_code TypeHash = hash_value(Out.str());
735 
736       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
737       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
738       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
739       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
740       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
741       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
742 
743       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
744       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
745 
746       // Look the hash up in our cache.
747       const int CacheSize = 128;
748       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
749       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
750                                                      "__ubsan_vptr_type_cache");
751       llvm::Value *Slot = Builder.CreateAnd(Hash,
752                                             llvm::ConstantInt::get(IntPtrTy,
753                                                                    CacheSize-1));
754       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
755       llvm::Value *CacheVal =
756         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
757                                   getPointerAlign());
758 
759       // If the hash isn't in the cache, call a runtime handler to perform the
760       // hard work of checking whether the vptr is for an object of the right
761       // type. This will either fill in the cache and return, or produce a
762       // diagnostic.
763       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
764       llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc),
766         EmitCheckTypeDescriptor(Ty),
767         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
768         llvm::ConstantInt::get(Int8Ty, TCK)
769       };
770       llvm::Value *DynamicData[] = { Ptr, Hash };
771       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
772                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
773                 DynamicData);
774     }
775   }
776 
777   if (Done) {
778     Builder.CreateBr(Done);
779     EmitBlock(Done);
780   }
781 }
782 
783 /// Determine whether this expression refers to a flexible array member in a
784 /// struct. We disable array bounds checks for such members.
785 static bool isFlexibleArrayMemberExpr(const Expr *E) {
786   // For compatibility with existing code, we treat arrays of length 0 or
787   // 1 as flexible array members.
788   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
789   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
790     if (CAT->getSize().ugt(1))
791       return false;
792   } else if (!isa<IncompleteArrayType>(AT))
793     return false;
794 
795   E = E->IgnoreParens();
796 
797   // A flexible array member must be the last member in the class.
798   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
799     // FIXME: If the base type of the member expr is not FD->getParent(),
800     // this should not be treated as a flexible array member access.
801     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
802       RecordDecl::field_iterator FI(
803           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
804       return ++FI == FD->getParent()->field_end();
805     }
806   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
807     return IRE->getDecl()->getNextIvar() == nullptr;
808   }
809 
810   return false;
811 }
812 
813 /// If Base is known to point to the start of an array, return the length of
814 /// that array. Return 0 if the length cannot be determined.
815 static llvm::Value *getArrayIndexingBound(
816     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
817   // For the vector indexing extension, the bound is the number of elements.
818   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
819     IndexedType = Base->getType();
820     return CGF.Builder.getInt32(VT->getNumElements());
821   }
822 
823   Base = Base->IgnoreParens();
824 
825   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
826     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
827         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
828       IndexedType = CE->getSubExpr()->getType();
829       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
830       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
831         return CGF.Builder.getInt(CAT->getSize());
832       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
833         return CGF.getVLASize(VAT).first;
834     }
835   }
836 
837   return nullptr;
838 }
839 
840 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
841                                       llvm::Value *Index, QualType IndexType,
842                                       bool Accessed) {
843   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
844          "should not be called unless adding bounds checks");
845   SanitizerScope SanScope(this);
846 
847   QualType IndexedType;
848   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
849   if (!Bound)
850     return;
851 
852   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
853   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
854   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
855 
856   llvm::Constant *StaticData[] = {
857     EmitCheckSourceLocation(E->getExprLoc()),
858     EmitCheckTypeDescriptor(IndexedType),
859     EmitCheckTypeDescriptor(IndexType)
860   };
861   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
862                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
863   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
864             SanitizerHandler::OutOfBounds, StaticData, Index);
865 }
866 
867 
868 CodeGenFunction::ComplexPairTy CodeGenFunction::
869 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
870                          bool isInc, bool isPre) {
871   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
872 
873   llvm::Value *NextVal;
874   if (isa<llvm::IntegerType>(InVal.first->getType())) {
875     uint64_t AmountVal = isInc ? 1 : -1;
876     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
877 
878     // Add the inc/dec to the real part.
879     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
880   } else {
881     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
882     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
883     if (!isInc)
884       FVal.changeSign();
885     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
886 
887     // Add the inc/dec to the real part.
888     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
889   }
890 
891   ComplexPairTy IncVal(NextVal, InVal.second);
892 
893   // Store the updated result through the lvalue.
894   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
895 
896   // If this is a postinc, return the value read from memory, otherwise use the
897   // updated value.
898   return isPre ? IncVal : InVal;
899 }
900 
901 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
902                                              CodeGenFunction *CGF) {
903   // Bind VLAs in the cast type.
904   if (CGF && E->getType()->isVariablyModifiedType())
905     CGF->EmitVariablyModifiedType(E->getType());
906 
907   if (CGDebugInfo *DI = getModuleDebugInfo())
908     DI->EmitExplicitCastType(E->getType());
909 }
910 
911 //===----------------------------------------------------------------------===//
912 //                         LValue Expression Emission
913 //===----------------------------------------------------------------------===//
914 
915 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
916 /// derive a more accurate bound on the alignment of the pointer.
917 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
918                                                   LValueBaseInfo *BaseInfo,
919                                                   TBAAAccessInfo *TBAAInfo) {
920   // We allow this with ObjC object pointers because of fragile ABIs.
921   assert(E->getType()->isPointerType() ||
922          E->getType()->isObjCObjectPointerType());
923   E = E->IgnoreParens();
924 
925   // Casts:
926   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
927     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
928       CGM.EmitExplicitCastExprType(ECE, this);
929 
930     switch (CE->getCastKind()) {
931     // Non-converting casts (but not C's implicit conversion from void*).
932     case CK_BitCast:
933     case CK_NoOp:
934     case CK_AddressSpaceConversion:
935       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
936         if (PtrTy->getPointeeType()->isVoidType())
937           break;
938 
939         LValueBaseInfo InnerBaseInfo;
940         TBAAAccessInfo InnerTBAAInfo;
941         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
942                                                 &InnerBaseInfo,
943                                                 &InnerTBAAInfo);
944         if (BaseInfo) *BaseInfo = InnerBaseInfo;
945         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
946 
947         if (isa<ExplicitCastExpr>(CE)) {
948           LValueBaseInfo TargetTypeBaseInfo;
949           TBAAAccessInfo TargetTypeTBAAInfo;
950           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
951                                                            &TargetTypeBaseInfo,
952                                                            &TargetTypeTBAAInfo);
953           if (TBAAInfo)
954             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
955                                                  TargetTypeTBAAInfo);
956           // If the source l-value is opaque, honor the alignment of the
957           // casted-to type.
958           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
959             if (BaseInfo)
960               BaseInfo->mergeForCast(TargetTypeBaseInfo);
961             Addr = Address(Addr.getPointer(), Align);
962           }
963         }
964 
965         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
966             CE->getCastKind() == CK_BitCast) {
967           if (auto PT = E->getType()->getAs<PointerType>())
968             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
969                                       /*MayBeNull=*/true,
970                                       CodeGenFunction::CFITCK_UnrelatedCast,
971                                       CE->getLocStart());
972         }
973         return CE->getCastKind() != CK_AddressSpaceConversion
974                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
975                    : Builder.CreateAddrSpaceCast(Addr,
976                                                  ConvertType(E->getType()));
977       }
978       break;
979 
980     // Array-to-pointer decay.
981     case CK_ArrayToPointerDecay:
982       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
983 
984     // Derived-to-base conversions.
985     case CK_UncheckedDerivedToBase:
986     case CK_DerivedToBase: {
987       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo,
988                                               TBAAInfo);
989       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
990       return GetAddressOfBaseClass(Addr, Derived,
991                                    CE->path_begin(), CE->path_end(),
992                                    ShouldNullCheckClassCastValue(CE),
993                                    CE->getExprLoc());
994     }
995 
996     // TODO: Is there any reason to treat base-to-derived conversions
997     // specially?
998     default:
999       break;
1000     }
1001   }
1002 
1003   // Unary &.
1004   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1005     if (UO->getOpcode() == UO_AddrOf) {
1006       LValue LV = EmitLValue(UO->getSubExpr());
1007       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1008       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1009       return LV.getAddress();
1010     }
1011   }
1012 
1013   // TODO: conditional operators, comma.
1014 
1015   // Otherwise, use the alignment of the type.
1016   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1017                                                    TBAAInfo);
1018   return Address(EmitScalarExpr(E), Align);
1019 }
1020 
1021 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1022   if (Ty->isVoidType())
1023     return RValue::get(nullptr);
1024 
1025   switch (getEvaluationKind(Ty)) {
1026   case TEK_Complex: {
1027     llvm::Type *EltTy =
1028       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1029     llvm::Value *U = llvm::UndefValue::get(EltTy);
1030     return RValue::getComplex(std::make_pair(U, U));
1031   }
1032 
1033   // If this is a use of an undefined aggregate type, the aggregate must have an
1034   // identifiable address.  Just because the contents of the value are undefined
1035   // doesn't mean that the address can't be taken and compared.
1036   case TEK_Aggregate: {
1037     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1038     return RValue::getAggregate(DestPtr);
1039   }
1040 
1041   case TEK_Scalar:
1042     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1043   }
1044   llvm_unreachable("bad evaluation kind");
1045 }
1046 
1047 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1048                                               const char *Name) {
1049   ErrorUnsupported(E, Name);
1050   return GetUndefRValue(E->getType());
1051 }
1052 
1053 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1054                                               const char *Name) {
1055   ErrorUnsupported(E, Name);
1056   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1057   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1058                         E->getType());
1059 }
1060 
1061 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1062   const Expr *Base = Obj;
1063   while (!isa<CXXThisExpr>(Base)) {
1064     // The result of a dynamic_cast can be null.
1065     if (isa<CXXDynamicCastExpr>(Base))
1066       return false;
1067 
1068     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1069       Base = CE->getSubExpr();
1070     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1071       Base = PE->getSubExpr();
1072     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1073       if (UO->getOpcode() == UO_Extension)
1074         Base = UO->getSubExpr();
1075       else
1076         return false;
1077     } else {
1078       return false;
1079     }
1080   }
1081   return true;
1082 }
1083 
1084 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1085   LValue LV;
1086   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1087     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1088   else
1089     LV = EmitLValue(E);
1090   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1091     SanitizerSet SkippedChecks;
1092     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1093       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1094       if (IsBaseCXXThis)
1095         SkippedChecks.set(SanitizerKind::Alignment, true);
1096       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1097         SkippedChecks.set(SanitizerKind::Null, true);
1098     }
1099     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1100                   E->getType(), LV.getAlignment(), SkippedChecks);
1101   }
1102   return LV;
1103 }
1104 
1105 /// EmitLValue - Emit code to compute a designator that specifies the location
1106 /// of the expression.
1107 ///
1108 /// This can return one of two things: a simple address or a bitfield reference.
1109 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1110 /// an LLVM pointer type.
1111 ///
1112 /// If this returns a bitfield reference, nothing about the pointee type of the
1113 /// LLVM value is known: For example, it may not be a pointer to an integer.
1114 ///
1115 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1116 /// this method guarantees that the returned pointer type will point to an LLVM
1117 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1118 /// length type, this is not possible.
1119 ///
1120 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1121   ApplyDebugLocation DL(*this, E);
1122   switch (E->getStmtClass()) {
1123   default: return EmitUnsupportedLValue(E, "l-value expression");
1124 
1125   case Expr::ObjCPropertyRefExprClass:
1126     llvm_unreachable("cannot emit a property reference directly");
1127 
1128   case Expr::ObjCSelectorExprClass:
1129     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1130   case Expr::ObjCIsaExprClass:
1131     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1132   case Expr::BinaryOperatorClass:
1133     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1134   case Expr::CompoundAssignOperatorClass: {
1135     QualType Ty = E->getType();
1136     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1137       Ty = AT->getValueType();
1138     if (!Ty->isAnyComplexType())
1139       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1140     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1141   }
1142   case Expr::CallExprClass:
1143   case Expr::CXXMemberCallExprClass:
1144   case Expr::CXXOperatorCallExprClass:
1145   case Expr::UserDefinedLiteralClass:
1146     return EmitCallExprLValue(cast<CallExpr>(E));
1147   case Expr::VAArgExprClass:
1148     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1149   case Expr::DeclRefExprClass:
1150     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1151   case Expr::ParenExprClass:
1152     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1153   case Expr::GenericSelectionExprClass:
1154     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1155   case Expr::PredefinedExprClass:
1156     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1157   case Expr::StringLiteralClass:
1158     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1159   case Expr::ObjCEncodeExprClass:
1160     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1161   case Expr::PseudoObjectExprClass:
1162     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1163   case Expr::InitListExprClass:
1164     return EmitInitListLValue(cast<InitListExpr>(E));
1165   case Expr::CXXTemporaryObjectExprClass:
1166   case Expr::CXXConstructExprClass:
1167     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1168   case Expr::CXXBindTemporaryExprClass:
1169     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1170   case Expr::CXXUuidofExprClass:
1171     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1172   case Expr::LambdaExprClass:
1173     return EmitLambdaLValue(cast<LambdaExpr>(E));
1174 
1175   case Expr::ExprWithCleanupsClass: {
1176     const auto *cleanups = cast<ExprWithCleanups>(E);
1177     enterFullExpression(cleanups);
1178     RunCleanupsScope Scope(*this);
1179     LValue LV = EmitLValue(cleanups->getSubExpr());
1180     if (LV.isSimple()) {
1181       // Defend against branches out of gnu statement expressions surrounded by
1182       // cleanups.
1183       llvm::Value *V = LV.getPointer();
1184       Scope.ForceCleanup({&V});
1185       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1186                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1187     }
1188     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1189     // bitfield lvalue or some other non-simple lvalue?
1190     return LV;
1191   }
1192 
1193   case Expr::CXXDefaultArgExprClass:
1194     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1195   case Expr::CXXDefaultInitExprClass: {
1196     CXXDefaultInitExprScope Scope(*this);
1197     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1198   }
1199   case Expr::CXXTypeidExprClass:
1200     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1201 
1202   case Expr::ObjCMessageExprClass:
1203     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1204   case Expr::ObjCIvarRefExprClass:
1205     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1206   case Expr::StmtExprClass:
1207     return EmitStmtExprLValue(cast<StmtExpr>(E));
1208   case Expr::UnaryOperatorClass:
1209     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1210   case Expr::ArraySubscriptExprClass:
1211     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1212   case Expr::OMPArraySectionExprClass:
1213     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1214   case Expr::ExtVectorElementExprClass:
1215     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1216   case Expr::MemberExprClass:
1217     return EmitMemberExpr(cast<MemberExpr>(E));
1218   case Expr::CompoundLiteralExprClass:
1219     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1220   case Expr::ConditionalOperatorClass:
1221     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1222   case Expr::BinaryConditionalOperatorClass:
1223     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1224   case Expr::ChooseExprClass:
1225     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1226   case Expr::OpaqueValueExprClass:
1227     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1228   case Expr::SubstNonTypeTemplateParmExprClass:
1229     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1230   case Expr::ImplicitCastExprClass:
1231   case Expr::CStyleCastExprClass:
1232   case Expr::CXXFunctionalCastExprClass:
1233   case Expr::CXXStaticCastExprClass:
1234   case Expr::CXXDynamicCastExprClass:
1235   case Expr::CXXReinterpretCastExprClass:
1236   case Expr::CXXConstCastExprClass:
1237   case Expr::ObjCBridgedCastExprClass:
1238     return EmitCastLValue(cast<CastExpr>(E));
1239 
1240   case Expr::MaterializeTemporaryExprClass:
1241     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1242 
1243   case Expr::CoawaitExprClass:
1244     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1245   case Expr::CoyieldExprClass:
1246     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1247   }
1248 }
1249 
1250 /// Given an object of the given canonical type, can we safely copy a
1251 /// value out of it based on its initializer?
1252 static bool isConstantEmittableObjectType(QualType type) {
1253   assert(type.isCanonical());
1254   assert(!type->isReferenceType());
1255 
1256   // Must be const-qualified but non-volatile.
1257   Qualifiers qs = type.getLocalQualifiers();
1258   if (!qs.hasConst() || qs.hasVolatile()) return false;
1259 
1260   // Otherwise, all object types satisfy this except C++ classes with
1261   // mutable subobjects or non-trivial copy/destroy behavior.
1262   if (const auto *RT = dyn_cast<RecordType>(type))
1263     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1264       if (RD->hasMutableFields() || !RD->isTrivial())
1265         return false;
1266 
1267   return true;
1268 }
1269 
1270 /// Can we constant-emit a load of a reference to a variable of the
1271 /// given type?  This is different from predicates like
1272 /// Decl::isUsableInConstantExpressions because we do want it to apply
1273 /// in situations that don't necessarily satisfy the language's rules
1274 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1275 /// to do this with const float variables even if those variables
1276 /// aren't marked 'constexpr'.
1277 enum ConstantEmissionKind {
1278   CEK_None,
1279   CEK_AsReferenceOnly,
1280   CEK_AsValueOrReference,
1281   CEK_AsValueOnly
1282 };
1283 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1284   type = type.getCanonicalType();
1285   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1286     if (isConstantEmittableObjectType(ref->getPointeeType()))
1287       return CEK_AsValueOrReference;
1288     return CEK_AsReferenceOnly;
1289   }
1290   if (isConstantEmittableObjectType(type))
1291     return CEK_AsValueOnly;
1292   return CEK_None;
1293 }
1294 
1295 /// Try to emit a reference to the given value without producing it as
1296 /// an l-value.  This is actually more than an optimization: we can't
1297 /// produce an l-value for variables that we never actually captured
1298 /// in a block or lambda, which means const int variables or constexpr
1299 /// literals or similar.
1300 CodeGenFunction::ConstantEmission
1301 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1302   ValueDecl *value = refExpr->getDecl();
1303 
1304   // The value needs to be an enum constant or a constant variable.
1305   ConstantEmissionKind CEK;
1306   if (isa<ParmVarDecl>(value)) {
1307     CEK = CEK_None;
1308   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1309     CEK = checkVarTypeForConstantEmission(var->getType());
1310   } else if (isa<EnumConstantDecl>(value)) {
1311     CEK = CEK_AsValueOnly;
1312   } else {
1313     CEK = CEK_None;
1314   }
1315   if (CEK == CEK_None) return ConstantEmission();
1316 
1317   Expr::EvalResult result;
1318   bool resultIsReference;
1319   QualType resultType;
1320 
1321   // It's best to evaluate all the way as an r-value if that's permitted.
1322   if (CEK != CEK_AsReferenceOnly &&
1323       refExpr->EvaluateAsRValue(result, getContext())) {
1324     resultIsReference = false;
1325     resultType = refExpr->getType();
1326 
1327   // Otherwise, try to evaluate as an l-value.
1328   } else if (CEK != CEK_AsValueOnly &&
1329              refExpr->EvaluateAsLValue(result, getContext())) {
1330     resultIsReference = true;
1331     resultType = value->getType();
1332 
1333   // Failure.
1334   } else {
1335     return ConstantEmission();
1336   }
1337 
1338   // In any case, if the initializer has side-effects, abandon ship.
1339   if (result.HasSideEffects)
1340     return ConstantEmission();
1341 
1342   // Emit as a constant.
1343   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1344                                                result.Val, resultType);
1345 
1346   // Make sure we emit a debug reference to the global variable.
1347   // This should probably fire even for
1348   if (isa<VarDecl>(value)) {
1349     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1350       EmitDeclRefExprDbgValue(refExpr, result.Val);
1351   } else {
1352     assert(isa<EnumConstantDecl>(value));
1353     EmitDeclRefExprDbgValue(refExpr, result.Val);
1354   }
1355 
1356   // If we emitted a reference constant, we need to dereference that.
1357   if (resultIsReference)
1358     return ConstantEmission::forReference(C);
1359 
1360   return ConstantEmission::forValue(C);
1361 }
1362 
1363 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1364                                                         const MemberExpr *ME) {
1365   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1366     // Try to emit static variable member expressions as DREs.
1367     return DeclRefExpr::Create(
1368         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1369         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1370         ME->getType(), ME->getValueKind());
1371   }
1372   return nullptr;
1373 }
1374 
1375 CodeGenFunction::ConstantEmission
1376 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1377   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1378     return tryEmitAsConstant(DRE);
1379   return ConstantEmission();
1380 }
1381 
1382 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1383                                                SourceLocation Loc) {
1384   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1385                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1386                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1387 }
1388 
1389 static bool hasBooleanRepresentation(QualType Ty) {
1390   if (Ty->isBooleanType())
1391     return true;
1392 
1393   if (const EnumType *ET = Ty->getAs<EnumType>())
1394     return ET->getDecl()->getIntegerType()->isBooleanType();
1395 
1396   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1397     return hasBooleanRepresentation(AT->getValueType());
1398 
1399   return false;
1400 }
1401 
1402 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1403                             llvm::APInt &Min, llvm::APInt &End,
1404                             bool StrictEnums, bool IsBool) {
1405   const EnumType *ET = Ty->getAs<EnumType>();
1406   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1407                                 ET && !ET->getDecl()->isFixed();
1408   if (!IsBool && !IsRegularCPlusPlusEnum)
1409     return false;
1410 
1411   if (IsBool) {
1412     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1413     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1414   } else {
1415     const EnumDecl *ED = ET->getDecl();
1416     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1417     unsigned Bitwidth = LTy->getScalarSizeInBits();
1418     unsigned NumNegativeBits = ED->getNumNegativeBits();
1419     unsigned NumPositiveBits = ED->getNumPositiveBits();
1420 
1421     if (NumNegativeBits) {
1422       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1423       assert(NumBits <= Bitwidth);
1424       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1425       Min = -End;
1426     } else {
1427       assert(NumPositiveBits <= Bitwidth);
1428       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1429       Min = llvm::APInt(Bitwidth, 0);
1430     }
1431   }
1432   return true;
1433 }
1434 
1435 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1436   llvm::APInt Min, End;
1437   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1438                        hasBooleanRepresentation(Ty)))
1439     return nullptr;
1440 
1441   llvm::MDBuilder MDHelper(getLLVMContext());
1442   return MDHelper.createRange(Min, End);
1443 }
1444 
1445 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1446                                            SourceLocation Loc) {
1447   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1448   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1449   if (!HasBoolCheck && !HasEnumCheck)
1450     return false;
1451 
1452   bool IsBool = hasBooleanRepresentation(Ty) ||
1453                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1454   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1455   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1456   if (!NeedsBoolCheck && !NeedsEnumCheck)
1457     return false;
1458 
1459   // Single-bit booleans don't need to be checked. Special-case this to avoid
1460   // a bit width mismatch when handling bitfield values. This is handled by
1461   // EmitFromMemory for the non-bitfield case.
1462   if (IsBool &&
1463       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1464     return false;
1465 
1466   llvm::APInt Min, End;
1467   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1468     return true;
1469 
1470   auto &Ctx = getLLVMContext();
1471   SanitizerScope SanScope(this);
1472   llvm::Value *Check;
1473   --End;
1474   if (!Min) {
1475     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1476   } else {
1477     llvm::Value *Upper =
1478         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1479     llvm::Value *Lower =
1480         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1481     Check = Builder.CreateAnd(Upper, Lower);
1482   }
1483   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1484                                   EmitCheckTypeDescriptor(Ty)};
1485   SanitizerMask Kind =
1486       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1487   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1488             StaticArgs, EmitCheckValue(Value));
1489   return true;
1490 }
1491 
1492 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1493                                                QualType Ty,
1494                                                SourceLocation Loc,
1495                                                LValueBaseInfo BaseInfo,
1496                                                TBAAAccessInfo TBAAInfo,
1497                                                bool isNontemporal) {
1498   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1499     // For better performance, handle vector loads differently.
1500     if (Ty->isVectorType()) {
1501       const llvm::Type *EltTy = Addr.getElementType();
1502 
1503       const auto *VTy = cast<llvm::VectorType>(EltTy);
1504 
1505       // Handle vectors of size 3 like size 4 for better performance.
1506       if (VTy->getNumElements() == 3) {
1507 
1508         // Bitcast to vec4 type.
1509         llvm::VectorType *vec4Ty =
1510             llvm::VectorType::get(VTy->getElementType(), 4);
1511         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1512         // Now load value.
1513         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1514 
1515         // Shuffle vector to get vec3.
1516         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1517                                         {0, 1, 2}, "extractVec");
1518         return EmitFromMemory(V, Ty);
1519       }
1520     }
1521   }
1522 
1523   // Atomic operations have to be done on integral types.
1524   LValue AtomicLValue =
1525       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1526   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1527     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1528   }
1529 
1530   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1531   if (isNontemporal) {
1532     llvm::MDNode *Node = llvm::MDNode::get(
1533         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1534     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1535   }
1536 
1537   if (BaseInfo.getMayAlias())
1538     TBAAInfo = CGM.getTBAAMayAliasAccessInfo();
1539   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1540 
1541   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1542     // In order to prevent the optimizer from throwing away the check, don't
1543     // attach range metadata to the load.
1544   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1545     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1546       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1547 
1548   return EmitFromMemory(Load, Ty);
1549 }
1550 
1551 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1552   // Bool has a different representation in memory than in registers.
1553   if (hasBooleanRepresentation(Ty)) {
1554     // This should really always be an i1, but sometimes it's already
1555     // an i8, and it's awkward to track those cases down.
1556     if (Value->getType()->isIntegerTy(1))
1557       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1558     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1559            "wrong value rep of bool");
1560   }
1561 
1562   return Value;
1563 }
1564 
1565 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1566   // Bool has a different representation in memory than in registers.
1567   if (hasBooleanRepresentation(Ty)) {
1568     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1569            "wrong value rep of bool");
1570     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1571   }
1572 
1573   return Value;
1574 }
1575 
1576 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1577                                         bool Volatile, QualType Ty,
1578                                         LValueBaseInfo BaseInfo,
1579                                         TBAAAccessInfo TBAAInfo,
1580                                         bool isInit, bool isNontemporal) {
1581   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1582     // Handle vectors differently to get better performance.
1583     if (Ty->isVectorType()) {
1584       llvm::Type *SrcTy = Value->getType();
1585       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1586       // Handle vec3 special.
1587       if (VecTy && VecTy->getNumElements() == 3) {
1588         // Our source is a vec3, do a shuffle vector to make it a vec4.
1589         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1590                                   Builder.getInt32(2),
1591                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1592         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1593         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1594                                             MaskV, "extractVec");
1595         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1596       }
1597       if (Addr.getElementType() != SrcTy) {
1598         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1599       }
1600     }
1601   }
1602 
1603   Value = EmitToMemory(Value, Ty);
1604 
1605   LValue AtomicLValue =
1606       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1607   if (Ty->isAtomicType() ||
1608       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1609     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1610     return;
1611   }
1612 
1613   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1614   if (isNontemporal) {
1615     llvm::MDNode *Node =
1616         llvm::MDNode::get(Store->getContext(),
1617                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1618     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1619   }
1620 
1621   if (BaseInfo.getMayAlias())
1622     TBAAInfo = CGM.getTBAAMayAliasAccessInfo();
1623   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1624 }
1625 
1626 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1627                                         bool isInit) {
1628   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1629                     lvalue.getType(), lvalue.getBaseInfo(),
1630                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1631 }
1632 
1633 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1634 /// method emits the address of the lvalue, then loads the result as an rvalue,
1635 /// returning the rvalue.
1636 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1637   if (LV.isObjCWeak()) {
1638     // load of a __weak object.
1639     Address AddrWeakObj = LV.getAddress();
1640     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1641                                                              AddrWeakObj));
1642   }
1643   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1644     // In MRC mode, we do a load+autorelease.
1645     if (!getLangOpts().ObjCAutoRefCount) {
1646       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1647     }
1648 
1649     // In ARC mode, we load retained and then consume the value.
1650     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1651     Object = EmitObjCConsumeObject(LV.getType(), Object);
1652     return RValue::get(Object);
1653   }
1654 
1655   if (LV.isSimple()) {
1656     assert(!LV.getType()->isFunctionType());
1657 
1658     // Everything needs a load.
1659     return RValue::get(EmitLoadOfScalar(LV, Loc));
1660   }
1661 
1662   if (LV.isVectorElt()) {
1663     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1664                                               LV.isVolatileQualified());
1665     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1666                                                     "vecext"));
1667   }
1668 
1669   // If this is a reference to a subset of the elements of a vector, either
1670   // shuffle the input or extract/insert them as appropriate.
1671   if (LV.isExtVectorElt())
1672     return EmitLoadOfExtVectorElementLValue(LV);
1673 
1674   // Global Register variables always invoke intrinsics
1675   if (LV.isGlobalReg())
1676     return EmitLoadOfGlobalRegLValue(LV);
1677 
1678   assert(LV.isBitField() && "Unknown LValue type!");
1679   return EmitLoadOfBitfieldLValue(LV, Loc);
1680 }
1681 
1682 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1683                                                  SourceLocation Loc) {
1684   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1685 
1686   // Get the output type.
1687   llvm::Type *ResLTy = ConvertType(LV.getType());
1688 
1689   Address Ptr = LV.getBitFieldAddress();
1690   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1691 
1692   if (Info.IsSigned) {
1693     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1694     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1695     if (HighBits)
1696       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1697     if (Info.Offset + HighBits)
1698       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1699   } else {
1700     if (Info.Offset)
1701       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1702     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1703       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1704                                                               Info.Size),
1705                               "bf.clear");
1706   }
1707   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1708   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1709   return RValue::get(Val);
1710 }
1711 
1712 // If this is a reference to a subset of the elements of a vector, create an
1713 // appropriate shufflevector.
1714 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1715   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1716                                         LV.isVolatileQualified());
1717 
1718   const llvm::Constant *Elts = LV.getExtVectorElts();
1719 
1720   // If the result of the expression is a non-vector type, we must be extracting
1721   // a single element.  Just codegen as an extractelement.
1722   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1723   if (!ExprVT) {
1724     unsigned InIdx = getAccessedFieldNo(0, Elts);
1725     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1726     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1727   }
1728 
1729   // Always use shuffle vector to try to retain the original program structure
1730   unsigned NumResultElts = ExprVT->getNumElements();
1731 
1732   SmallVector<llvm::Constant*, 4> Mask;
1733   for (unsigned i = 0; i != NumResultElts; ++i)
1734     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1735 
1736   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1737   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1738                                     MaskV);
1739   return RValue::get(Vec);
1740 }
1741 
1742 /// @brief Generates lvalue for partial ext_vector access.
1743 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1744   Address VectorAddress = LV.getExtVectorAddress();
1745   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1746   QualType EQT = ExprVT->getElementType();
1747   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1748 
1749   Address CastToPointerElement =
1750     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1751                                  "conv.ptr.element");
1752 
1753   const llvm::Constant *Elts = LV.getExtVectorElts();
1754   unsigned ix = getAccessedFieldNo(0, Elts);
1755 
1756   Address VectorBasePtrPlusIx =
1757     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1758                                    getContext().getTypeSizeInChars(EQT),
1759                                    "vector.elt");
1760 
1761   return VectorBasePtrPlusIx;
1762 }
1763 
1764 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1765 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1766   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1767          "Bad type for register variable");
1768   llvm::MDNode *RegName = cast<llvm::MDNode>(
1769       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1770 
1771   // We accept integer and pointer types only
1772   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1773   llvm::Type *Ty = OrigTy;
1774   if (OrigTy->isPointerTy())
1775     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1776   llvm::Type *Types[] = { Ty };
1777 
1778   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1779   llvm::Value *Call = Builder.CreateCall(
1780       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1781   if (OrigTy->isPointerTy())
1782     Call = Builder.CreateIntToPtr(Call, OrigTy);
1783   return RValue::get(Call);
1784 }
1785 
1786 
1787 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1788 /// lvalue, where both are guaranteed to the have the same type, and that type
1789 /// is 'Ty'.
1790 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1791                                              bool isInit) {
1792   if (!Dst.isSimple()) {
1793     if (Dst.isVectorElt()) {
1794       // Read/modify/write the vector, inserting the new element.
1795       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1796                                             Dst.isVolatileQualified());
1797       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1798                                         Dst.getVectorIdx(), "vecins");
1799       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1800                           Dst.isVolatileQualified());
1801       return;
1802     }
1803 
1804     // If this is an update of extended vector elements, insert them as
1805     // appropriate.
1806     if (Dst.isExtVectorElt())
1807       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1808 
1809     if (Dst.isGlobalReg())
1810       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1811 
1812     assert(Dst.isBitField() && "Unknown LValue type");
1813     return EmitStoreThroughBitfieldLValue(Src, Dst);
1814   }
1815 
1816   // There's special magic for assigning into an ARC-qualified l-value.
1817   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1818     switch (Lifetime) {
1819     case Qualifiers::OCL_None:
1820       llvm_unreachable("present but none");
1821 
1822     case Qualifiers::OCL_ExplicitNone:
1823       // nothing special
1824       break;
1825 
1826     case Qualifiers::OCL_Strong:
1827       if (isInit) {
1828         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1829         break;
1830       }
1831       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1832       return;
1833 
1834     case Qualifiers::OCL_Weak:
1835       if (isInit)
1836         // Initialize and then skip the primitive store.
1837         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1838       else
1839         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1840       return;
1841 
1842     case Qualifiers::OCL_Autoreleasing:
1843       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1844                                                      Src.getScalarVal()));
1845       // fall into the normal path
1846       break;
1847     }
1848   }
1849 
1850   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1851     // load of a __weak object.
1852     Address LvalueDst = Dst.getAddress();
1853     llvm::Value *src = Src.getScalarVal();
1854      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1855     return;
1856   }
1857 
1858   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1859     // load of a __strong object.
1860     Address LvalueDst = Dst.getAddress();
1861     llvm::Value *src = Src.getScalarVal();
1862     if (Dst.isObjCIvar()) {
1863       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1864       llvm::Type *ResultType = IntPtrTy;
1865       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1866       llvm::Value *RHS = dst.getPointer();
1867       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1868       llvm::Value *LHS =
1869         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1870                                "sub.ptr.lhs.cast");
1871       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1872       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1873                                               BytesBetween);
1874     } else if (Dst.isGlobalObjCRef()) {
1875       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1876                                                 Dst.isThreadLocalRef());
1877     }
1878     else
1879       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1880     return;
1881   }
1882 
1883   assert(Src.isScalar() && "Can't emit an agg store with this method");
1884   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1885 }
1886 
1887 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1888                                                      llvm::Value **Result) {
1889   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1890   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1891   Address Ptr = Dst.getBitFieldAddress();
1892 
1893   // Get the source value, truncated to the width of the bit-field.
1894   llvm::Value *SrcVal = Src.getScalarVal();
1895 
1896   // Cast the source to the storage type and shift it into place.
1897   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1898                                  /*IsSigned=*/false);
1899   llvm::Value *MaskedVal = SrcVal;
1900 
1901   // See if there are other bits in the bitfield's storage we'll need to load
1902   // and mask together with source before storing.
1903   if (Info.StorageSize != Info.Size) {
1904     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1905     llvm::Value *Val =
1906       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1907 
1908     // Mask the source value as needed.
1909     if (!hasBooleanRepresentation(Dst.getType()))
1910       SrcVal = Builder.CreateAnd(SrcVal,
1911                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1912                                                             Info.Size),
1913                                  "bf.value");
1914     MaskedVal = SrcVal;
1915     if (Info.Offset)
1916       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1917 
1918     // Mask out the original value.
1919     Val = Builder.CreateAnd(Val,
1920                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1921                                                      Info.Offset,
1922                                                      Info.Offset + Info.Size),
1923                             "bf.clear");
1924 
1925     // Or together the unchanged values and the source value.
1926     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1927   } else {
1928     assert(Info.Offset == 0);
1929   }
1930 
1931   // Write the new value back out.
1932   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1933 
1934   // Return the new value of the bit-field, if requested.
1935   if (Result) {
1936     llvm::Value *ResultVal = MaskedVal;
1937 
1938     // Sign extend the value if needed.
1939     if (Info.IsSigned) {
1940       assert(Info.Size <= Info.StorageSize);
1941       unsigned HighBits = Info.StorageSize - Info.Size;
1942       if (HighBits) {
1943         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1944         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1945       }
1946     }
1947 
1948     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1949                                       "bf.result.cast");
1950     *Result = EmitFromMemory(ResultVal, Dst.getType());
1951   }
1952 }
1953 
1954 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1955                                                                LValue Dst) {
1956   // This access turns into a read/modify/write of the vector.  Load the input
1957   // value now.
1958   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1959                                         Dst.isVolatileQualified());
1960   const llvm::Constant *Elts = Dst.getExtVectorElts();
1961 
1962   llvm::Value *SrcVal = Src.getScalarVal();
1963 
1964   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1965     unsigned NumSrcElts = VTy->getNumElements();
1966     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1967     if (NumDstElts == NumSrcElts) {
1968       // Use shuffle vector is the src and destination are the same number of
1969       // elements and restore the vector mask since it is on the side it will be
1970       // stored.
1971       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1972       for (unsigned i = 0; i != NumSrcElts; ++i)
1973         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1974 
1975       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1976       Vec = Builder.CreateShuffleVector(SrcVal,
1977                                         llvm::UndefValue::get(Vec->getType()),
1978                                         MaskV);
1979     } else if (NumDstElts > NumSrcElts) {
1980       // Extended the source vector to the same length and then shuffle it
1981       // into the destination.
1982       // FIXME: since we're shuffling with undef, can we just use the indices
1983       //        into that?  This could be simpler.
1984       SmallVector<llvm::Constant*, 4> ExtMask;
1985       for (unsigned i = 0; i != NumSrcElts; ++i)
1986         ExtMask.push_back(Builder.getInt32(i));
1987       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1988       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1989       llvm::Value *ExtSrcVal =
1990         Builder.CreateShuffleVector(SrcVal,
1991                                     llvm::UndefValue::get(SrcVal->getType()),
1992                                     ExtMaskV);
1993       // build identity
1994       SmallVector<llvm::Constant*, 4> Mask;
1995       for (unsigned i = 0; i != NumDstElts; ++i)
1996         Mask.push_back(Builder.getInt32(i));
1997 
1998       // When the vector size is odd and .odd or .hi is used, the last element
1999       // of the Elts constant array will be one past the size of the vector.
2000       // Ignore the last element here, if it is greater than the mask size.
2001       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2002         NumSrcElts--;
2003 
2004       // modify when what gets shuffled in
2005       for (unsigned i = 0; i != NumSrcElts; ++i)
2006         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2007       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2008       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2009     } else {
2010       // We should never shorten the vector
2011       llvm_unreachable("unexpected shorten vector length");
2012     }
2013   } else {
2014     // If the Src is a scalar (not a vector) it must be updating one element.
2015     unsigned InIdx = getAccessedFieldNo(0, Elts);
2016     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2017     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2018   }
2019 
2020   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2021                       Dst.isVolatileQualified());
2022 }
2023 
2024 /// @brief Store of global named registers are always calls to intrinsics.
2025 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2026   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2027          "Bad type for register variable");
2028   llvm::MDNode *RegName = cast<llvm::MDNode>(
2029       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2030   assert(RegName && "Register LValue is not metadata");
2031 
2032   // We accept integer and pointer types only
2033   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2034   llvm::Type *Ty = OrigTy;
2035   if (OrigTy->isPointerTy())
2036     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2037   llvm::Type *Types[] = { Ty };
2038 
2039   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2040   llvm::Value *Value = Src.getScalarVal();
2041   if (OrigTy->isPointerTy())
2042     Value = Builder.CreatePtrToInt(Value, Ty);
2043   Builder.CreateCall(
2044       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2045 }
2046 
2047 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2048 // generating write-barries API. It is currently a global, ivar,
2049 // or neither.
2050 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2051                                  LValue &LV,
2052                                  bool IsMemberAccess=false) {
2053   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2054     return;
2055 
2056   if (isa<ObjCIvarRefExpr>(E)) {
2057     QualType ExpTy = E->getType();
2058     if (IsMemberAccess && ExpTy->isPointerType()) {
2059       // If ivar is a structure pointer, assigning to field of
2060       // this struct follows gcc's behavior and makes it a non-ivar
2061       // writer-barrier conservatively.
2062       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2063       if (ExpTy->isRecordType()) {
2064         LV.setObjCIvar(false);
2065         return;
2066       }
2067     }
2068     LV.setObjCIvar(true);
2069     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2070     LV.setBaseIvarExp(Exp->getBase());
2071     LV.setObjCArray(E->getType()->isArrayType());
2072     return;
2073   }
2074 
2075   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2076     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2077       if (VD->hasGlobalStorage()) {
2078         LV.setGlobalObjCRef(true);
2079         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2080       }
2081     }
2082     LV.setObjCArray(E->getType()->isArrayType());
2083     return;
2084   }
2085 
2086   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2087     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2088     return;
2089   }
2090 
2091   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2092     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2093     if (LV.isObjCIvar()) {
2094       // If cast is to a structure pointer, follow gcc's behavior and make it
2095       // a non-ivar write-barrier.
2096       QualType ExpTy = E->getType();
2097       if (ExpTy->isPointerType())
2098         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2099       if (ExpTy->isRecordType())
2100         LV.setObjCIvar(false);
2101     }
2102     return;
2103   }
2104 
2105   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2106     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2107     return;
2108   }
2109 
2110   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2111     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2112     return;
2113   }
2114 
2115   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2116     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2117     return;
2118   }
2119 
2120   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2121     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2122     return;
2123   }
2124 
2125   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2126     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2127     if (LV.isObjCIvar() && !LV.isObjCArray())
2128       // Using array syntax to assigning to what an ivar points to is not
2129       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2130       LV.setObjCIvar(false);
2131     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2132       // Using array syntax to assigning to what global points to is not
2133       // same as assigning to the global itself. {id *G;} G[i] = 0;
2134       LV.setGlobalObjCRef(false);
2135     return;
2136   }
2137 
2138   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2139     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2140     // We don't know if member is an 'ivar', but this flag is looked at
2141     // only in the context of LV.isObjCIvar().
2142     LV.setObjCArray(E->getType()->isArrayType());
2143     return;
2144   }
2145 }
2146 
2147 static llvm::Value *
2148 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2149                                 llvm::Value *V, llvm::Type *IRType,
2150                                 StringRef Name = StringRef()) {
2151   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2152   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2153 }
2154 
2155 static LValue EmitThreadPrivateVarDeclLValue(
2156     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2157     llvm::Type *RealVarTy, SourceLocation Loc) {
2158   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2159   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2160   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2161 }
2162 
2163 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2164                                              const ReferenceType *RefTy,
2165                                              LValueBaseInfo *BaseInfo,
2166                                              TBAAAccessInfo *TBAAInfo) {
2167   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2168   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2169                                               BaseInfo, TBAAInfo,
2170                                               /* forPointeeType= */ true));
2171 }
2172 
2173 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2174                                                   const ReferenceType *RefTy) {
2175   LValueBaseInfo BaseInfo;
2176   TBAAAccessInfo TBAAInfo;
2177   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo, &TBAAInfo);
2178   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo, TBAAInfo);
2179 }
2180 
2181 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2182                                            const PointerType *PtrTy,
2183                                            LValueBaseInfo *BaseInfo,
2184                                            TBAAAccessInfo *TBAAInfo) {
2185   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2186   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2187                                                BaseInfo, TBAAInfo,
2188                                                /*forPointeeType=*/true));
2189 }
2190 
2191 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2192                                                 const PointerType *PtrTy) {
2193   LValueBaseInfo BaseInfo;
2194   TBAAAccessInfo TBAAInfo;
2195   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2196   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2197 }
2198 
2199 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2200                                       const Expr *E, const VarDecl *VD) {
2201   QualType T = E->getType();
2202 
2203   // If it's thread_local, emit a call to its wrapper function instead.
2204   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2205       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2206     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2207 
2208   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2209   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2210   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2211   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2212   Address Addr(V, Alignment);
2213   LValue LV;
2214   // Emit reference to the private copy of the variable if it is an OpenMP
2215   // threadprivate variable.
2216   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2217     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2218                                           E->getExprLoc());
2219   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2220     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2221   } else {
2222     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2223   }
2224   setObjCGCLValueClass(CGF.getContext(), E, LV);
2225   return LV;
2226 }
2227 
2228 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2229                                                const FunctionDecl *FD) {
2230   if (FD->hasAttr<WeakRefAttr>()) {
2231     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2232     return aliasee.getPointer();
2233   }
2234 
2235   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2236   if (!FD->hasPrototype()) {
2237     if (const FunctionProtoType *Proto =
2238             FD->getType()->getAs<FunctionProtoType>()) {
2239       // Ugly case: for a K&R-style definition, the type of the definition
2240       // isn't the same as the type of a use.  Correct for this with a
2241       // bitcast.
2242       QualType NoProtoType =
2243           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2244       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2245       V = llvm::ConstantExpr::getBitCast(V,
2246                                       CGM.getTypes().ConvertType(NoProtoType));
2247     }
2248   }
2249   return V;
2250 }
2251 
2252 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2253                                      const Expr *E, const FunctionDecl *FD) {
2254   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2255   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2256   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2257                             AlignmentSource::Decl);
2258 }
2259 
2260 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2261                                       llvm::Value *ThisValue) {
2262   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2263   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2264   return CGF.EmitLValueForField(LV, FD);
2265 }
2266 
2267 /// Named Registers are named metadata pointing to the register name
2268 /// which will be read from/written to as an argument to the intrinsic
2269 /// @llvm.read/write_register.
2270 /// So far, only the name is being passed down, but other options such as
2271 /// register type, allocation type or even optimization options could be
2272 /// passed down via the metadata node.
2273 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2274   SmallString<64> Name("llvm.named.register.");
2275   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2276   assert(Asm->getLabel().size() < 64-Name.size() &&
2277       "Register name too big");
2278   Name.append(Asm->getLabel());
2279   llvm::NamedMDNode *M =
2280     CGM.getModule().getOrInsertNamedMetadata(Name);
2281   if (M->getNumOperands() == 0) {
2282     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2283                                               Asm->getLabel());
2284     llvm::Metadata *Ops[] = {Str};
2285     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2286   }
2287 
2288   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2289 
2290   llvm::Value *Ptr =
2291     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2292   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2293 }
2294 
2295 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2296   const NamedDecl *ND = E->getDecl();
2297   QualType T = E->getType();
2298 
2299   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2300     // Global Named registers access via intrinsics only
2301     if (VD->getStorageClass() == SC_Register &&
2302         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2303       return EmitGlobalNamedRegister(VD, CGM);
2304 
2305     // A DeclRefExpr for a reference initialized by a constant expression can
2306     // appear without being odr-used. Directly emit the constant initializer.
2307     const Expr *Init = VD->getAnyInitializer(VD);
2308     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2309         VD->isUsableInConstantExpressions(getContext()) &&
2310         VD->checkInitIsICE() &&
2311         // Do not emit if it is private OpenMP variable.
2312         !(E->refersToEnclosingVariableOrCapture() &&
2313           ((CapturedStmtInfo &&
2314             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2315              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2316            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2317            isa<BlockDecl>(CurCodeDecl)))) {
2318       llvm::Constant *Val =
2319         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2320                                             *VD->evaluateValue(),
2321                                             VD->getType());
2322       assert(Val && "failed to emit reference constant expression");
2323       // FIXME: Eventually we will want to emit vector element references.
2324 
2325       // Should we be using the alignment of the constant pointer we emitted?
2326       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2327                                                     /* BaseInfo= */ nullptr,
2328                                                     /* TBAAInfo= */ nullptr,
2329                                                     /* forPointeeType= */ true);
2330       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2331     }
2332 
2333     // Check for captured variables.
2334     if (E->refersToEnclosingVariableOrCapture()) {
2335       VD = VD->getCanonicalDecl();
2336       if (auto *FD = LambdaCaptureFields.lookup(VD))
2337         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2338       else if (CapturedStmtInfo) {
2339         auto I = LocalDeclMap.find(VD);
2340         if (I != LocalDeclMap.end()) {
2341           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2342             return EmitLoadOfReferenceLValue(I->second, RefTy);
2343           return MakeAddrLValue(I->second, T);
2344         }
2345         LValue CapLVal =
2346             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2347                                     CapturedStmtInfo->getContextValue());
2348         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2349         return MakeAddrLValue(
2350             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2351             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias),
2352             CGM.getTBAAAccessInfo(CapLVal.getType()));
2353       }
2354 
2355       assert(isa<BlockDecl>(CurCodeDecl));
2356       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2357       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2358     }
2359   }
2360 
2361   // FIXME: We should be able to assert this for FunctionDecls as well!
2362   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2363   // those with a valid source location.
2364   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2365           !E->getLocation().isValid()) &&
2366          "Should not use decl without marking it used!");
2367 
2368   if (ND->hasAttr<WeakRefAttr>()) {
2369     const auto *VD = cast<ValueDecl>(ND);
2370     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2371     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2372   }
2373 
2374   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2375     // Check if this is a global variable.
2376     if (VD->hasLinkage() || VD->isStaticDataMember())
2377       return EmitGlobalVarDeclLValue(*this, E, VD);
2378 
2379     Address addr = Address::invalid();
2380 
2381     // The variable should generally be present in the local decl map.
2382     auto iter = LocalDeclMap.find(VD);
2383     if (iter != LocalDeclMap.end()) {
2384       addr = iter->second;
2385 
2386     // Otherwise, it might be static local we haven't emitted yet for
2387     // some reason; most likely, because it's in an outer function.
2388     } else if (VD->isStaticLocal()) {
2389       addr = Address(CGM.getOrCreateStaticVarDecl(
2390           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2391                      getContext().getDeclAlign(VD));
2392 
2393     // No other cases for now.
2394     } else {
2395       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2396     }
2397 
2398 
2399     // Check for OpenMP threadprivate variables.
2400     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2401       return EmitThreadPrivateVarDeclLValue(
2402           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2403           E->getExprLoc());
2404     }
2405 
2406     // Drill into block byref variables.
2407     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2408     if (isBlockByref) {
2409       addr = emitBlockByrefAddress(addr, VD);
2410     }
2411 
2412     // Drill into reference types.
2413     LValue LV;
2414     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2415       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2416     } else {
2417       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2418     }
2419 
2420     bool isLocalStorage = VD->hasLocalStorage();
2421 
2422     bool NonGCable = isLocalStorage &&
2423                      !VD->getType()->isReferenceType() &&
2424                      !isBlockByref;
2425     if (NonGCable) {
2426       LV.getQuals().removeObjCGCAttr();
2427       LV.setNonGC(true);
2428     }
2429 
2430     bool isImpreciseLifetime =
2431       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2432     if (isImpreciseLifetime)
2433       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2434     setObjCGCLValueClass(getContext(), E, LV);
2435     return LV;
2436   }
2437 
2438   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2439     return EmitFunctionDeclLValue(*this, E, FD);
2440 
2441   // FIXME: While we're emitting a binding from an enclosing scope, all other
2442   // DeclRefExprs we see should be implicitly treated as if they also refer to
2443   // an enclosing scope.
2444   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2445     return EmitLValue(BD->getBinding());
2446 
2447   llvm_unreachable("Unhandled DeclRefExpr");
2448 }
2449 
2450 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2451   // __extension__ doesn't affect lvalue-ness.
2452   if (E->getOpcode() == UO_Extension)
2453     return EmitLValue(E->getSubExpr());
2454 
2455   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2456   switch (E->getOpcode()) {
2457   default: llvm_unreachable("Unknown unary operator lvalue!");
2458   case UO_Deref: {
2459     QualType T = E->getSubExpr()->getType()->getPointeeType();
2460     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2461 
2462     LValueBaseInfo BaseInfo;
2463     TBAAAccessInfo TBAAInfo;
2464     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2465                                             &TBAAInfo);
2466     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2467     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2468 
2469     // We should not generate __weak write barrier on indirect reference
2470     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2471     // But, we continue to generate __strong write barrier on indirect write
2472     // into a pointer to object.
2473     if (getLangOpts().ObjC1 &&
2474         getLangOpts().getGC() != LangOptions::NonGC &&
2475         LV.isObjCWeak())
2476       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2477     return LV;
2478   }
2479   case UO_Real:
2480   case UO_Imag: {
2481     LValue LV = EmitLValue(E->getSubExpr());
2482     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2483 
2484     // __real is valid on scalars.  This is a faster way of testing that.
2485     // __imag can only produce an rvalue on scalars.
2486     if (E->getOpcode() == UO_Real &&
2487         !LV.getAddress().getElementType()->isStructTy()) {
2488       assert(E->getSubExpr()->getType()->isArithmeticType());
2489       return LV;
2490     }
2491 
2492     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2493 
2494     Address Component =
2495       (E->getOpcode() == UO_Real
2496          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2497          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2498     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2499                                    CGM.getTBAAAccessInfo(T));
2500     ElemLV.getQuals().addQualifiers(LV.getQuals());
2501     return ElemLV;
2502   }
2503   case UO_PreInc:
2504   case UO_PreDec: {
2505     LValue LV = EmitLValue(E->getSubExpr());
2506     bool isInc = E->getOpcode() == UO_PreInc;
2507 
2508     if (E->getType()->isAnyComplexType())
2509       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2510     else
2511       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2512     return LV;
2513   }
2514   }
2515 }
2516 
2517 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2518   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2519                         E->getType(), AlignmentSource::Decl);
2520 }
2521 
2522 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2523   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2524                         E->getType(), AlignmentSource::Decl);
2525 }
2526 
2527 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2528   auto SL = E->getFunctionName();
2529   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2530   StringRef FnName = CurFn->getName();
2531   if (FnName.startswith("\01"))
2532     FnName = FnName.substr(1);
2533   StringRef NameItems[] = {
2534       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2535   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2536   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2537     std::string Name = SL->getString();
2538     if (!Name.empty()) {
2539       unsigned Discriminator =
2540           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2541       if (Discriminator)
2542         Name += "_" + Twine(Discriminator + 1).str();
2543       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2544       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2545     } else {
2546       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2547       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2548     }
2549   }
2550   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2551   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2552 }
2553 
2554 /// Emit a type description suitable for use by a runtime sanitizer library. The
2555 /// format of a type descriptor is
2556 ///
2557 /// \code
2558 ///   { i16 TypeKind, i16 TypeInfo }
2559 /// \endcode
2560 ///
2561 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2562 /// integer, 1 for a floating point value, and -1 for anything else.
2563 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2564   // Only emit each type's descriptor once.
2565   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2566     return C;
2567 
2568   uint16_t TypeKind = -1;
2569   uint16_t TypeInfo = 0;
2570 
2571   if (T->isIntegerType()) {
2572     TypeKind = 0;
2573     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2574                (T->isSignedIntegerType() ? 1 : 0);
2575   } else if (T->isFloatingType()) {
2576     TypeKind = 1;
2577     TypeInfo = getContext().getTypeSize(T);
2578   }
2579 
2580   // Format the type name as if for a diagnostic, including quotes and
2581   // optionally an 'aka'.
2582   SmallString<32> Buffer;
2583   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2584                                     (intptr_t)T.getAsOpaquePtr(),
2585                                     StringRef(), StringRef(), None, Buffer,
2586                                     None);
2587 
2588   llvm::Constant *Components[] = {
2589     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2590     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2591   };
2592   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2593 
2594   auto *GV = new llvm::GlobalVariable(
2595       CGM.getModule(), Descriptor->getType(),
2596       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2597   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2598   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2599 
2600   // Remember the descriptor for this type.
2601   CGM.setTypeDescriptorInMap(T, GV);
2602 
2603   return GV;
2604 }
2605 
2606 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2607   llvm::Type *TargetTy = IntPtrTy;
2608 
2609   if (V->getType() == TargetTy)
2610     return V;
2611 
2612   // Floating-point types which fit into intptr_t are bitcast to integers
2613   // and then passed directly (after zero-extension, if necessary).
2614   if (V->getType()->isFloatingPointTy()) {
2615     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2616     if (Bits <= TargetTy->getIntegerBitWidth())
2617       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2618                                                          Bits));
2619   }
2620 
2621   // Integers which fit in intptr_t are zero-extended and passed directly.
2622   if (V->getType()->isIntegerTy() &&
2623       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2624     return Builder.CreateZExt(V, TargetTy);
2625 
2626   // Pointers are passed directly, everything else is passed by address.
2627   if (!V->getType()->isPointerTy()) {
2628     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2629     Builder.CreateStore(V, Ptr);
2630     V = Ptr.getPointer();
2631   }
2632   return Builder.CreatePtrToInt(V, TargetTy);
2633 }
2634 
2635 /// \brief Emit a representation of a SourceLocation for passing to a handler
2636 /// in a sanitizer runtime library. The format for this data is:
2637 /// \code
2638 ///   struct SourceLocation {
2639 ///     const char *Filename;
2640 ///     int32_t Line, Column;
2641 ///   };
2642 /// \endcode
2643 /// For an invalid SourceLocation, the Filename pointer is null.
2644 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2645   llvm::Constant *Filename;
2646   int Line, Column;
2647 
2648   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2649   if (PLoc.isValid()) {
2650     StringRef FilenameString = PLoc.getFilename();
2651 
2652     int PathComponentsToStrip =
2653         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2654     if (PathComponentsToStrip < 0) {
2655       assert(PathComponentsToStrip != INT_MIN);
2656       int PathComponentsToKeep = -PathComponentsToStrip;
2657       auto I = llvm::sys::path::rbegin(FilenameString);
2658       auto E = llvm::sys::path::rend(FilenameString);
2659       while (I != E && --PathComponentsToKeep)
2660         ++I;
2661 
2662       FilenameString = FilenameString.substr(I - E);
2663     } else if (PathComponentsToStrip > 0) {
2664       auto I = llvm::sys::path::begin(FilenameString);
2665       auto E = llvm::sys::path::end(FilenameString);
2666       while (I != E && PathComponentsToStrip--)
2667         ++I;
2668 
2669       if (I != E)
2670         FilenameString =
2671             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2672       else
2673         FilenameString = llvm::sys::path::filename(FilenameString);
2674     }
2675 
2676     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2677     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2678                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2679     Filename = FilenameGV.getPointer();
2680     Line = PLoc.getLine();
2681     Column = PLoc.getColumn();
2682   } else {
2683     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2684     Line = Column = 0;
2685   }
2686 
2687   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2688                             Builder.getInt32(Column)};
2689 
2690   return llvm::ConstantStruct::getAnon(Data);
2691 }
2692 
2693 namespace {
2694 /// \brief Specify under what conditions this check can be recovered
2695 enum class CheckRecoverableKind {
2696   /// Always terminate program execution if this check fails.
2697   Unrecoverable,
2698   /// Check supports recovering, runtime has both fatal (noreturn) and
2699   /// non-fatal handlers for this check.
2700   Recoverable,
2701   /// Runtime conditionally aborts, always need to support recovery.
2702   AlwaysRecoverable
2703 };
2704 }
2705 
2706 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2707   assert(llvm::countPopulation(Kind) == 1);
2708   switch (Kind) {
2709   case SanitizerKind::Vptr:
2710     return CheckRecoverableKind::AlwaysRecoverable;
2711   case SanitizerKind::Return:
2712   case SanitizerKind::Unreachable:
2713     return CheckRecoverableKind::Unrecoverable;
2714   default:
2715     return CheckRecoverableKind::Recoverable;
2716   }
2717 }
2718 
2719 namespace {
2720 struct SanitizerHandlerInfo {
2721   char const *const Name;
2722   unsigned Version;
2723 };
2724 }
2725 
2726 const SanitizerHandlerInfo SanitizerHandlers[] = {
2727 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2728     LIST_SANITIZER_CHECKS
2729 #undef SANITIZER_CHECK
2730 };
2731 
2732 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2733                                  llvm::FunctionType *FnType,
2734                                  ArrayRef<llvm::Value *> FnArgs,
2735                                  SanitizerHandler CheckHandler,
2736                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2737                                  llvm::BasicBlock *ContBB) {
2738   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2739   bool NeedsAbortSuffix =
2740       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2741   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2742   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2743   const StringRef CheckName = CheckInfo.Name;
2744   std::string FnName = "__ubsan_handle_" + CheckName.str();
2745   if (CheckInfo.Version && !MinimalRuntime)
2746     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2747   if (MinimalRuntime)
2748     FnName += "_minimal";
2749   if (NeedsAbortSuffix)
2750     FnName += "_abort";
2751   bool MayReturn =
2752       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2753 
2754   llvm::AttrBuilder B;
2755   if (!MayReturn) {
2756     B.addAttribute(llvm::Attribute::NoReturn)
2757         .addAttribute(llvm::Attribute::NoUnwind);
2758   }
2759   B.addAttribute(llvm::Attribute::UWTable);
2760 
2761   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2762       FnType, FnName,
2763       llvm::AttributeList::get(CGF.getLLVMContext(),
2764                                llvm::AttributeList::FunctionIndex, B),
2765       /*Local=*/true);
2766   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2767   if (!MayReturn) {
2768     HandlerCall->setDoesNotReturn();
2769     CGF.Builder.CreateUnreachable();
2770   } else {
2771     CGF.Builder.CreateBr(ContBB);
2772   }
2773 }
2774 
2775 void CodeGenFunction::EmitCheck(
2776     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2777     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2778     ArrayRef<llvm::Value *> DynamicArgs) {
2779   assert(IsSanitizerScope);
2780   assert(Checked.size() > 0);
2781   assert(CheckHandler >= 0 &&
2782          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2783   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2784 
2785   llvm::Value *FatalCond = nullptr;
2786   llvm::Value *RecoverableCond = nullptr;
2787   llvm::Value *TrapCond = nullptr;
2788   for (int i = 0, n = Checked.size(); i < n; ++i) {
2789     llvm::Value *Check = Checked[i].first;
2790     // -fsanitize-trap= overrides -fsanitize-recover=.
2791     llvm::Value *&Cond =
2792         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2793             ? TrapCond
2794             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2795                   ? RecoverableCond
2796                   : FatalCond;
2797     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2798   }
2799 
2800   if (TrapCond)
2801     EmitTrapCheck(TrapCond);
2802   if (!FatalCond && !RecoverableCond)
2803     return;
2804 
2805   llvm::Value *JointCond;
2806   if (FatalCond && RecoverableCond)
2807     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2808   else
2809     JointCond = FatalCond ? FatalCond : RecoverableCond;
2810   assert(JointCond);
2811 
2812   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2813   assert(SanOpts.has(Checked[0].second));
2814 #ifndef NDEBUG
2815   for (int i = 1, n = Checked.size(); i < n; ++i) {
2816     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2817            "All recoverable kinds in a single check must be same!");
2818     assert(SanOpts.has(Checked[i].second));
2819   }
2820 #endif
2821 
2822   llvm::BasicBlock *Cont = createBasicBlock("cont");
2823   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2824   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2825   // Give hint that we very much don't expect to execute the handler
2826   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2827   llvm::MDBuilder MDHelper(getLLVMContext());
2828   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2829   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2830   EmitBlock(Handlers);
2831 
2832   // Handler functions take an i8* pointing to the (handler-specific) static
2833   // information block, followed by a sequence of intptr_t arguments
2834   // representing operand values.
2835   SmallVector<llvm::Value *, 4> Args;
2836   SmallVector<llvm::Type *, 4> ArgTypes;
2837   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2838     Args.reserve(DynamicArgs.size() + 1);
2839     ArgTypes.reserve(DynamicArgs.size() + 1);
2840 
2841     // Emit handler arguments and create handler function type.
2842     if (!StaticArgs.empty()) {
2843       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2844       auto *InfoPtr =
2845           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2846                                    llvm::GlobalVariable::PrivateLinkage, Info);
2847       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2848       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2849       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2850       ArgTypes.push_back(Int8PtrTy);
2851     }
2852 
2853     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2854       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2855       ArgTypes.push_back(IntPtrTy);
2856     }
2857   }
2858 
2859   llvm::FunctionType *FnType =
2860     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2861 
2862   if (!FatalCond || !RecoverableCond) {
2863     // Simple case: we need to generate a single handler call, either
2864     // fatal, or non-fatal.
2865     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2866                          (FatalCond != nullptr), Cont);
2867   } else {
2868     // Emit two handler calls: first one for set of unrecoverable checks,
2869     // another one for recoverable.
2870     llvm::BasicBlock *NonFatalHandlerBB =
2871         createBasicBlock("non_fatal." + CheckName);
2872     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2873     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2874     EmitBlock(FatalHandlerBB);
2875     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2876                          NonFatalHandlerBB);
2877     EmitBlock(NonFatalHandlerBB);
2878     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2879                          Cont);
2880   }
2881 
2882   EmitBlock(Cont);
2883 }
2884 
2885 void CodeGenFunction::EmitCfiSlowPathCheck(
2886     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2887     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2888   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2889 
2890   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2891   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2892 
2893   llvm::MDBuilder MDHelper(getLLVMContext());
2894   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2895   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2896 
2897   EmitBlock(CheckBB);
2898 
2899   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2900 
2901   llvm::CallInst *CheckCall;
2902   if (WithDiag) {
2903     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2904     auto *InfoPtr =
2905         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2906                                  llvm::GlobalVariable::PrivateLinkage, Info);
2907     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2908     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2909 
2910     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2911         "__cfi_slowpath_diag",
2912         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2913                                 false));
2914     CheckCall = Builder.CreateCall(
2915         SlowPathDiagFn,
2916         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2917   } else {
2918     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2919         "__cfi_slowpath",
2920         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2921     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2922   }
2923 
2924   CheckCall->setDoesNotThrow();
2925 
2926   EmitBlock(Cont);
2927 }
2928 
2929 // Emit a stub for __cfi_check function so that the linker knows about this
2930 // symbol in LTO mode.
2931 void CodeGenFunction::EmitCfiCheckStub() {
2932   llvm::Module *M = &CGM.getModule();
2933   auto &Ctx = M->getContext();
2934   llvm::Function *F = llvm::Function::Create(
2935       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2936       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2937   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2938   // FIXME: consider emitting an intrinsic call like
2939   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2940   // which can be lowered in CrossDSOCFI pass to the actual contents of
2941   // __cfi_check. This would allow inlining of __cfi_check calls.
2942   llvm::CallInst::Create(
2943       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2944   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2945 }
2946 
2947 // This function is basically a switch over the CFI failure kind, which is
2948 // extracted from CFICheckFailData (1st function argument). Each case is either
2949 // llvm.trap or a call to one of the two runtime handlers, based on
2950 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2951 // failure kind) traps, but this should really never happen.  CFICheckFailData
2952 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2953 // check kind; in this case __cfi_check_fail traps as well.
2954 void CodeGenFunction::EmitCfiCheckFail() {
2955   SanitizerScope SanScope(this);
2956   FunctionArgList Args;
2957   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2958                             ImplicitParamDecl::Other);
2959   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2960                             ImplicitParamDecl::Other);
2961   Args.push_back(&ArgData);
2962   Args.push_back(&ArgAddr);
2963 
2964   const CGFunctionInfo &FI =
2965     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2966 
2967   llvm::Function *F = llvm::Function::Create(
2968       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2969       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2970   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2971 
2972   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2973                 SourceLocation());
2974 
2975   llvm::Value *Data =
2976       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2977                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2978   llvm::Value *Addr =
2979       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2980                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2981 
2982   // Data == nullptr means the calling module has trap behaviour for this check.
2983   llvm::Value *DataIsNotNullPtr =
2984       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2985   EmitTrapCheck(DataIsNotNullPtr);
2986 
2987   llvm::StructType *SourceLocationTy =
2988       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2989   llvm::StructType *CfiCheckFailDataTy =
2990       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2991 
2992   llvm::Value *V = Builder.CreateConstGEP2_32(
2993       CfiCheckFailDataTy,
2994       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2995       0);
2996   Address CheckKindAddr(V, getIntAlign());
2997   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2998 
2999   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3000       CGM.getLLVMContext(),
3001       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3002   llvm::Value *ValidVtable = Builder.CreateZExt(
3003       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3004                          {Addr, AllVtables}),
3005       IntPtrTy);
3006 
3007   const std::pair<int, SanitizerMask> CheckKinds[] = {
3008       {CFITCK_VCall, SanitizerKind::CFIVCall},
3009       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3010       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3011       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3012       {CFITCK_ICall, SanitizerKind::CFIICall}};
3013 
3014   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3015   for (auto CheckKindMaskPair : CheckKinds) {
3016     int Kind = CheckKindMaskPair.first;
3017     SanitizerMask Mask = CheckKindMaskPair.second;
3018     llvm::Value *Cond =
3019         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3020     if (CGM.getLangOpts().Sanitize.has(Mask))
3021       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3022                 {Data, Addr, ValidVtable});
3023     else
3024       EmitTrapCheck(Cond);
3025   }
3026 
3027   FinishFunction();
3028   // The only reference to this function will be created during LTO link.
3029   // Make sure it survives until then.
3030   CGM.addUsedGlobal(F);
3031 }
3032 
3033 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3034   llvm::BasicBlock *Cont = createBasicBlock("cont");
3035 
3036   // If we're optimizing, collapse all calls to trap down to just one per
3037   // function to save on code size.
3038   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3039     TrapBB = createBasicBlock("trap");
3040     Builder.CreateCondBr(Checked, Cont, TrapBB);
3041     EmitBlock(TrapBB);
3042     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3043     TrapCall->setDoesNotReturn();
3044     TrapCall->setDoesNotThrow();
3045     Builder.CreateUnreachable();
3046   } else {
3047     Builder.CreateCondBr(Checked, Cont, TrapBB);
3048   }
3049 
3050   EmitBlock(Cont);
3051 }
3052 
3053 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3054   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3055 
3056   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3057     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3058                                   CGM.getCodeGenOpts().TrapFuncName);
3059     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3060   }
3061 
3062   return TrapCall;
3063 }
3064 
3065 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3066                                                  LValueBaseInfo *BaseInfo,
3067                                                  TBAAAccessInfo *TBAAInfo) {
3068   assert(E->getType()->isArrayType() &&
3069          "Array to pointer decay must have array source type!");
3070 
3071   // Expressions of array type can't be bitfields or vector elements.
3072   LValue LV = EmitLValue(E);
3073   Address Addr = LV.getAddress();
3074 
3075   // If the array type was an incomplete type, we need to make sure
3076   // the decay ends up being the right type.
3077   llvm::Type *NewTy = ConvertType(E->getType());
3078   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3079 
3080   // Note that VLA pointers are always decayed, so we don't need to do
3081   // anything here.
3082   if (!E->getType()->isVariableArrayType()) {
3083     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3084            "Expected pointer to array");
3085     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3086   }
3087 
3088   // The result of this decay conversion points to an array element within the
3089   // base lvalue. However, since TBAA currently does not support representing
3090   // accesses to elements of member arrays, we conservatively represent accesses
3091   // to the pointee object as if it had no any base lvalue specified.
3092   // TODO: Support TBAA for member arrays.
3093   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3094   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3095   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3096 
3097   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3098 }
3099 
3100 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3101 /// array to pointer, return the array subexpression.
3102 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3103   // If this isn't just an array->pointer decay, bail out.
3104   const auto *CE = dyn_cast<CastExpr>(E);
3105   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3106     return nullptr;
3107 
3108   // If this is a decay from variable width array, bail out.
3109   const Expr *SubExpr = CE->getSubExpr();
3110   if (SubExpr->getType()->isVariableArrayType())
3111     return nullptr;
3112 
3113   return SubExpr;
3114 }
3115 
3116 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3117                                           llvm::Value *ptr,
3118                                           ArrayRef<llvm::Value*> indices,
3119                                           bool inbounds,
3120                                           bool signedIndices,
3121                                           SourceLocation loc,
3122                                     const llvm::Twine &name = "arrayidx") {
3123   if (inbounds) {
3124     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3125                                       CodeGenFunction::NotSubtraction, loc,
3126                                       name);
3127   } else {
3128     return CGF.Builder.CreateGEP(ptr, indices, name);
3129   }
3130 }
3131 
3132 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3133                                       llvm::Value *idx,
3134                                       CharUnits eltSize) {
3135   // If we have a constant index, we can use the exact offset of the
3136   // element we're accessing.
3137   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3138     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3139     return arrayAlign.alignmentAtOffset(offset);
3140 
3141   // Otherwise, use the worst-case alignment for any element.
3142   } else {
3143     return arrayAlign.alignmentOfArrayElement(eltSize);
3144   }
3145 }
3146 
3147 static QualType getFixedSizeElementType(const ASTContext &ctx,
3148                                         const VariableArrayType *vla) {
3149   QualType eltType;
3150   do {
3151     eltType = vla->getElementType();
3152   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3153   return eltType;
3154 }
3155 
3156 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3157                                      ArrayRef<llvm::Value *> indices,
3158                                      QualType eltType, bool inbounds,
3159                                      bool signedIndices, SourceLocation loc,
3160                                      const llvm::Twine &name = "arrayidx") {
3161   // All the indices except that last must be zero.
3162 #ifndef NDEBUG
3163   for (auto idx : indices.drop_back())
3164     assert(isa<llvm::ConstantInt>(idx) &&
3165            cast<llvm::ConstantInt>(idx)->isZero());
3166 #endif
3167 
3168   // Determine the element size of the statically-sized base.  This is
3169   // the thing that the indices are expressed in terms of.
3170   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3171     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3172   }
3173 
3174   // We can use that to compute the best alignment of the element.
3175   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3176   CharUnits eltAlign =
3177     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3178 
3179   llvm::Value *eltPtr = emitArraySubscriptGEP(
3180       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3181   return Address(eltPtr, eltAlign);
3182 }
3183 
3184 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3185                                                bool Accessed) {
3186   // The index must always be an integer, which is not an aggregate.  Emit it
3187   // in lexical order (this complexity is, sadly, required by C++17).
3188   llvm::Value *IdxPre =
3189       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3190   bool SignedIndices = false;
3191   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3192     auto *Idx = IdxPre;
3193     if (E->getLHS() != E->getIdx()) {
3194       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3195       Idx = EmitScalarExpr(E->getIdx());
3196     }
3197 
3198     QualType IdxTy = E->getIdx()->getType();
3199     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3200     SignedIndices |= IdxSigned;
3201 
3202     if (SanOpts.has(SanitizerKind::ArrayBounds))
3203       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3204 
3205     // Extend or truncate the index type to 32 or 64-bits.
3206     if (Promote && Idx->getType() != IntPtrTy)
3207       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3208 
3209     return Idx;
3210   };
3211   IdxPre = nullptr;
3212 
3213   // If the base is a vector type, then we are forming a vector element lvalue
3214   // with this subscript.
3215   if (E->getBase()->getType()->isVectorType() &&
3216       !isa<ExtVectorElementExpr>(E->getBase())) {
3217     // Emit the vector as an lvalue to get its address.
3218     LValue LHS = EmitLValue(E->getBase());
3219     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3220     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3221     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3222                                  LHS.getBaseInfo(), TBAAAccessInfo());
3223   }
3224 
3225   // All the other cases basically behave like simple offsetting.
3226 
3227   // Handle the extvector case we ignored above.
3228   if (isa<ExtVectorElementExpr>(E->getBase())) {
3229     LValue LV = EmitLValue(E->getBase());
3230     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3231     Address Addr = EmitExtVectorElementLValue(LV);
3232 
3233     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3234     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3235                                  SignedIndices, E->getExprLoc());
3236     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3237                           CGM.getTBAAAccessInfo(EltType));
3238   }
3239 
3240   LValueBaseInfo BaseInfo;
3241   TBAAAccessInfo TBAAInfo;
3242   Address Addr = Address::invalid();
3243   if (const VariableArrayType *vla =
3244            getContext().getAsVariableArrayType(E->getType())) {
3245     // The base must be a pointer, which is not an aggregate.  Emit
3246     // it.  It needs to be emitted first in case it's what captures
3247     // the VLA bounds.
3248     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3249     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3250 
3251     // The element count here is the total number of non-VLA elements.
3252     llvm::Value *numElements = getVLASize(vla).first;
3253 
3254     // Effectively, the multiply by the VLA size is part of the GEP.
3255     // GEP indexes are signed, and scaling an index isn't permitted to
3256     // signed-overflow, so we use the same semantics for our explicit
3257     // multiply.  We suppress this if overflow is not undefined behavior.
3258     if (getLangOpts().isSignedOverflowDefined()) {
3259       Idx = Builder.CreateMul(Idx, numElements);
3260     } else {
3261       Idx = Builder.CreateNSWMul(Idx, numElements);
3262     }
3263 
3264     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3265                                  !getLangOpts().isSignedOverflowDefined(),
3266                                  SignedIndices, E->getExprLoc());
3267 
3268   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3269     // Indexing over an interface, as in "NSString *P; P[4];"
3270 
3271     // Emit the base pointer.
3272     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3273     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3274 
3275     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3276     llvm::Value *InterfaceSizeVal =
3277         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3278 
3279     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3280 
3281     // We don't necessarily build correct LLVM struct types for ObjC
3282     // interfaces, so we can't rely on GEP to do this scaling
3283     // correctly, so we need to cast to i8*.  FIXME: is this actually
3284     // true?  A lot of other things in the fragile ABI would break...
3285     llvm::Type *OrigBaseTy = Addr.getType();
3286     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3287 
3288     // Do the GEP.
3289     CharUnits EltAlign =
3290       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3291     llvm::Value *EltPtr =
3292         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3293                               SignedIndices, E->getExprLoc());
3294     Addr = Address(EltPtr, EltAlign);
3295 
3296     // Cast back.
3297     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3298   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3299     // If this is A[i] where A is an array, the frontend will have decayed the
3300     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3301     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3302     // "gep x, i" here.  Emit one "gep A, 0, i".
3303     assert(Array->getType()->isArrayType() &&
3304            "Array to pointer decay must have array source type!");
3305     LValue ArrayLV;
3306     // For simple multidimensional array indexing, set the 'accessed' flag for
3307     // better bounds-checking of the base expression.
3308     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3309       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3310     else
3311       ArrayLV = EmitLValue(Array);
3312     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3313 
3314     // Propagate the alignment from the array itself to the result.
3315     Addr = emitArraySubscriptGEP(
3316         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3317         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3318         E->getExprLoc());
3319     BaseInfo = ArrayLV.getBaseInfo();
3320     TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
3321   } else {
3322     // The base must be a pointer; emit it with an estimate of its alignment.
3323     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3324     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3325     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3326                                  !getLangOpts().isSignedOverflowDefined(),
3327                                  SignedIndices, E->getExprLoc());
3328   }
3329 
3330   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo, TBAAInfo);
3331 
3332   if (getLangOpts().ObjC1 &&
3333       getLangOpts().getGC() != LangOptions::NonGC) {
3334     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3335     setObjCGCLValueClass(getContext(), E, LV);
3336   }
3337   return LV;
3338 }
3339 
3340 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3341                                        LValueBaseInfo &BaseInfo,
3342                                        TBAAAccessInfo &TBAAInfo,
3343                                        QualType BaseTy, QualType ElTy,
3344                                        bool IsLowerBound) {
3345   LValue BaseLVal;
3346   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3347     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3348     if (BaseTy->isArrayType()) {
3349       Address Addr = BaseLVal.getAddress();
3350       BaseInfo = BaseLVal.getBaseInfo();
3351 
3352       // If the array type was an incomplete type, we need to make sure
3353       // the decay ends up being the right type.
3354       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3355       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3356 
3357       // Note that VLA pointers are always decayed, so we don't need to do
3358       // anything here.
3359       if (!BaseTy->isVariableArrayType()) {
3360         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3361                "Expected pointer to array");
3362         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3363                                            "arraydecay");
3364       }
3365 
3366       return CGF.Builder.CreateElementBitCast(Addr,
3367                                               CGF.ConvertTypeForMem(ElTy));
3368     }
3369     LValueBaseInfo TypeInfo;
3370     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3371     BaseInfo.mergeForCast(TypeInfo);
3372     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3373   }
3374   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3375 }
3376 
3377 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3378                                                 bool IsLowerBound) {
3379   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3380   QualType ResultExprTy;
3381   if (auto *AT = getContext().getAsArrayType(BaseTy))
3382     ResultExprTy = AT->getElementType();
3383   else
3384     ResultExprTy = BaseTy->getPointeeType();
3385   llvm::Value *Idx = nullptr;
3386   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3387     // Requesting lower bound or upper bound, but without provided length and
3388     // without ':' symbol for the default length -> length = 1.
3389     // Idx = LowerBound ?: 0;
3390     if (auto *LowerBound = E->getLowerBound()) {
3391       Idx = Builder.CreateIntCast(
3392           EmitScalarExpr(LowerBound), IntPtrTy,
3393           LowerBound->getType()->hasSignedIntegerRepresentation());
3394     } else
3395       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3396   } else {
3397     // Try to emit length or lower bound as constant. If this is possible, 1
3398     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3399     // IR (LB + Len) - 1.
3400     auto &C = CGM.getContext();
3401     auto *Length = E->getLength();
3402     llvm::APSInt ConstLength;
3403     if (Length) {
3404       // Idx = LowerBound + Length - 1;
3405       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3406         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3407         Length = nullptr;
3408       }
3409       auto *LowerBound = E->getLowerBound();
3410       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3411       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3412         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3413         LowerBound = nullptr;
3414       }
3415       if (!Length)
3416         --ConstLength;
3417       else if (!LowerBound)
3418         --ConstLowerBound;
3419 
3420       if (Length || LowerBound) {
3421         auto *LowerBoundVal =
3422             LowerBound
3423                 ? Builder.CreateIntCast(
3424                       EmitScalarExpr(LowerBound), IntPtrTy,
3425                       LowerBound->getType()->hasSignedIntegerRepresentation())
3426                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3427         auto *LengthVal =
3428             Length
3429                 ? Builder.CreateIntCast(
3430                       EmitScalarExpr(Length), IntPtrTy,
3431                       Length->getType()->hasSignedIntegerRepresentation())
3432                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3433         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3434                                 /*HasNUW=*/false,
3435                                 !getLangOpts().isSignedOverflowDefined());
3436         if (Length && LowerBound) {
3437           Idx = Builder.CreateSub(
3438               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3439               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3440         }
3441       } else
3442         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3443     } else {
3444       // Idx = ArraySize - 1;
3445       QualType ArrayTy = BaseTy->isPointerType()
3446                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3447                              : BaseTy;
3448       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3449         Length = VAT->getSizeExpr();
3450         if (Length->isIntegerConstantExpr(ConstLength, C))
3451           Length = nullptr;
3452       } else {
3453         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3454         ConstLength = CAT->getSize();
3455       }
3456       if (Length) {
3457         auto *LengthVal = Builder.CreateIntCast(
3458             EmitScalarExpr(Length), IntPtrTy,
3459             Length->getType()->hasSignedIntegerRepresentation());
3460         Idx = Builder.CreateSub(
3461             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3462             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3463       } else {
3464         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3465         --ConstLength;
3466         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3467       }
3468     }
3469   }
3470   assert(Idx);
3471 
3472   Address EltPtr = Address::invalid();
3473   LValueBaseInfo BaseInfo;
3474   TBAAAccessInfo TBAAInfo;
3475   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3476     // The base must be a pointer, which is not an aggregate.  Emit
3477     // it.  It needs to be emitted first in case it's what captures
3478     // the VLA bounds.
3479     Address Base =
3480         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3481                                 BaseTy, VLA->getElementType(), IsLowerBound);
3482     // The element count here is the total number of non-VLA elements.
3483     llvm::Value *NumElements = getVLASize(VLA).first;
3484 
3485     // Effectively, the multiply by the VLA size is part of the GEP.
3486     // GEP indexes are signed, and scaling an index isn't permitted to
3487     // signed-overflow, so we use the same semantics for our explicit
3488     // multiply.  We suppress this if overflow is not undefined behavior.
3489     if (getLangOpts().isSignedOverflowDefined())
3490       Idx = Builder.CreateMul(Idx, NumElements);
3491     else
3492       Idx = Builder.CreateNSWMul(Idx, NumElements);
3493     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3494                                    !getLangOpts().isSignedOverflowDefined(),
3495                                    /*SignedIndices=*/false, E->getExprLoc());
3496   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3497     // If this is A[i] where A is an array, the frontend will have decayed the
3498     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3499     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3500     // "gep x, i" here.  Emit one "gep A, 0, i".
3501     assert(Array->getType()->isArrayType() &&
3502            "Array to pointer decay must have array source type!");
3503     LValue ArrayLV;
3504     // For simple multidimensional array indexing, set the 'accessed' flag for
3505     // better bounds-checking of the base expression.
3506     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3507       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3508     else
3509       ArrayLV = EmitLValue(Array);
3510 
3511     // Propagate the alignment from the array itself to the result.
3512     EltPtr = emitArraySubscriptGEP(
3513         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3514         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3515         /*SignedIndices=*/false, E->getExprLoc());
3516     BaseInfo = ArrayLV.getBaseInfo();
3517     TBAAInfo = CGM.getTBAAAccessInfo(ResultExprTy);
3518   } else {
3519     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3520                                            TBAAInfo, BaseTy, ResultExprTy,
3521                                            IsLowerBound);
3522     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3523                                    !getLangOpts().isSignedOverflowDefined(),
3524                                    /*SignedIndices=*/false, E->getExprLoc());
3525   }
3526 
3527   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3528 }
3529 
3530 LValue CodeGenFunction::
3531 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3532   // Emit the base vector as an l-value.
3533   LValue Base;
3534 
3535   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3536   if (E->isArrow()) {
3537     // If it is a pointer to a vector, emit the address and form an lvalue with
3538     // it.
3539     LValueBaseInfo BaseInfo;
3540     TBAAAccessInfo TBAAInfo;
3541     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3542     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3543     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3544     Base.getQuals().removeObjCGCAttr();
3545   } else if (E->getBase()->isGLValue()) {
3546     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3547     // emit the base as an lvalue.
3548     assert(E->getBase()->getType()->isVectorType());
3549     Base = EmitLValue(E->getBase());
3550   } else {
3551     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3552     assert(E->getBase()->getType()->isVectorType() &&
3553            "Result must be a vector");
3554     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3555 
3556     // Store the vector to memory (because LValue wants an address).
3557     Address VecMem = CreateMemTemp(E->getBase()->getType());
3558     Builder.CreateStore(Vec, VecMem);
3559     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3560                           AlignmentSource::Decl);
3561   }
3562 
3563   QualType type =
3564     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3565 
3566   // Encode the element access list into a vector of unsigned indices.
3567   SmallVector<uint32_t, 4> Indices;
3568   E->getEncodedElementAccess(Indices);
3569 
3570   if (Base.isSimple()) {
3571     llvm::Constant *CV =
3572         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3573     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3574                                     Base.getBaseInfo(), TBAAAccessInfo());
3575   }
3576   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3577 
3578   llvm::Constant *BaseElts = Base.getExtVectorElts();
3579   SmallVector<llvm::Constant *, 4> CElts;
3580 
3581   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3582     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3583   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3584   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3585                                   Base.getBaseInfo(), TBAAAccessInfo());
3586 }
3587 
3588 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3589   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3590     EmitIgnoredExpr(E->getBase());
3591     return EmitDeclRefLValue(DRE);
3592   }
3593 
3594   Expr *BaseExpr = E->getBase();
3595   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3596   LValue BaseLV;
3597   if (E->isArrow()) {
3598     LValueBaseInfo BaseInfo;
3599     TBAAAccessInfo TBAAInfo;
3600     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3601     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3602     SanitizerSet SkippedChecks;
3603     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3604     if (IsBaseCXXThis)
3605       SkippedChecks.set(SanitizerKind::Alignment, true);
3606     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3607       SkippedChecks.set(SanitizerKind::Null, true);
3608     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3609                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3610     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3611   } else
3612     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3613 
3614   NamedDecl *ND = E->getMemberDecl();
3615   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3616     LValue LV = EmitLValueForField(BaseLV, Field);
3617     setObjCGCLValueClass(getContext(), E, LV);
3618     return LV;
3619   }
3620 
3621   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3622     return EmitFunctionDeclLValue(*this, E, FD);
3623 
3624   llvm_unreachable("Unhandled member declaration!");
3625 }
3626 
3627 /// Given that we are currently emitting a lambda, emit an l-value for
3628 /// one of its members.
3629 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3630   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3631   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3632   QualType LambdaTagType =
3633     getContext().getTagDeclType(Field->getParent());
3634   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3635   return EmitLValueForField(LambdaLV, Field);
3636 }
3637 
3638 /// Drill down to the storage of a field without walking into
3639 /// reference types.
3640 ///
3641 /// The resulting address doesn't necessarily have the right type.
3642 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3643                                       const FieldDecl *field) {
3644   const RecordDecl *rec = field->getParent();
3645 
3646   unsigned idx =
3647     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3648 
3649   CharUnits offset;
3650   // Adjust the alignment down to the given offset.
3651   // As a special case, if the LLVM field index is 0, we know that this
3652   // is zero.
3653   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3654                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3655          "LLVM field at index zero had non-zero offset?");
3656   if (idx != 0) {
3657     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3658     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3659     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3660   }
3661 
3662   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3663 }
3664 
3665 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3666   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3667   if (!RD)
3668     return false;
3669 
3670   if (RD->isDynamicClass())
3671     return true;
3672 
3673   for (const auto &Base : RD->bases())
3674     if (hasAnyVptr(Base.getType(), Context))
3675       return true;
3676 
3677   for (const FieldDecl *Field : RD->fields())
3678     if (hasAnyVptr(Field->getType(), Context))
3679       return true;
3680 
3681   return false;
3682 }
3683 
3684 LValue CodeGenFunction::EmitLValueForField(LValue base,
3685                                            const FieldDecl *field) {
3686   LValueBaseInfo BaseInfo = base.getBaseInfo();
3687 
3688   if (field->isBitField()) {
3689     const CGRecordLayout &RL =
3690       CGM.getTypes().getCGRecordLayout(field->getParent());
3691     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3692     Address Addr = base.getAddress();
3693     unsigned Idx = RL.getLLVMFieldNo(field);
3694     if (Idx != 0)
3695       // For structs, we GEP to the field that the record layout suggests.
3696       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3697                                      field->getName());
3698     // Get the access type.
3699     llvm::Type *FieldIntTy =
3700       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3701     if (Addr.getElementType() != FieldIntTy)
3702       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3703 
3704     QualType fieldType =
3705       field->getType().withCVRQualifiers(base.getVRQualifiers());
3706     // TODO: Support TBAA for bit fields.
3707     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource(), false);
3708     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3709                                 TBAAAccessInfo());
3710   }
3711 
3712   // Fields of may-alias structures are may-alias themselves.
3713   // FIXME: this should get propagated down through anonymous structs
3714   // and unions.
3715   QualType FieldType = field->getType();
3716   const RecordDecl *rec = field->getParent();
3717   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3718   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource), false);
3719   TBAAAccessInfo FieldTBAAInfo;
3720   if (BaseInfo.getMayAlias() || rec->hasAttr<MayAliasAttr>() ||
3721           FieldType->isVectorType()) {
3722     FieldBaseInfo.setMayAlias(true);
3723     FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo();
3724   } else if (rec->isUnion()) {
3725     // TODO: Support TBAA for unions.
3726     FieldBaseInfo.setMayAlias(true);
3727     FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo();
3728   } else {
3729     // If no base type been assigned for the base access, then try to generate
3730     // one for this base lvalue.
3731     FieldTBAAInfo = base.getTBAAInfo();
3732     if (!FieldTBAAInfo.BaseType) {
3733         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3734         assert(!FieldTBAAInfo.Offset &&
3735                "Nonzero offset for an access with no base type!");
3736     }
3737 
3738     // Adjust offset to be relative to the base type.
3739     const ASTRecordLayout &Layout =
3740         getContext().getASTRecordLayout(field->getParent());
3741     unsigned CharWidth = getContext().getCharWidth();
3742     if (FieldTBAAInfo.BaseType)
3743       FieldTBAAInfo.Offset +=
3744           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3745 
3746     // Update the final access type.
3747     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3748   }
3749 
3750   Address addr = base.getAddress();
3751   unsigned cvr = base.getVRQualifiers();
3752   if (rec->isUnion()) {
3753     // For unions, there is no pointer adjustment.
3754     assert(!FieldType->isReferenceType() && "union has reference member");
3755     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3756         hasAnyVptr(FieldType, getContext()))
3757       // Because unions can easily skip invariant.barriers, we need to add
3758       // a barrier every time CXXRecord field with vptr is referenced.
3759       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3760                      addr.getAlignment());
3761   } else {
3762     // For structs, we GEP to the field that the record layout suggests.
3763     addr = emitAddrOfFieldStorage(*this, addr, field);
3764 
3765     // If this is a reference field, load the reference right now.
3766     if (const ReferenceType *refType = FieldType->getAs<ReferenceType>()) {
3767       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3768       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3769 
3770       CGM.DecorateInstructionWithTBAA(load, FieldTBAAInfo);
3771 
3772       FieldType = refType->getPointeeType();
3773       CharUnits Align = getNaturalTypeAlignment(FieldType, &FieldBaseInfo,
3774                                                 &FieldTBAAInfo,
3775                                                 /* forPointeeType= */ true);
3776       addr = Address(load, Align);
3777 
3778       // Qualifiers on the struct don't apply to the referencee, and
3779       // we'll pick up CVR from the actual type later, so reset these
3780       // additional qualifiers now.
3781       cvr = 0;
3782     }
3783   }
3784 
3785   // Make sure that the address is pointing to the right type.  This is critical
3786   // for both unions and structs.  A union needs a bitcast, a struct element
3787   // will need a bitcast if the LLVM type laid out doesn't match the desired
3788   // type.
3789   addr = Builder.CreateElementBitCast(
3790       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3791 
3792   if (field->hasAttr<AnnotateAttr>())
3793     addr = EmitFieldAnnotations(field, addr);
3794 
3795   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3796   LV.getQuals().addCVRQualifiers(cvr);
3797 
3798   // __weak attribute on a field is ignored.
3799   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3800     LV.getQuals().removeObjCGCAttr();
3801 
3802   return LV;
3803 }
3804 
3805 LValue
3806 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3807                                                   const FieldDecl *Field) {
3808   QualType FieldType = Field->getType();
3809 
3810   if (!FieldType->isReferenceType())
3811     return EmitLValueForField(Base, Field);
3812 
3813   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3814 
3815   // Make sure that the address is pointing to the right type.
3816   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3817   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3818 
3819   // TODO: access-path TBAA?
3820   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3821   LValueBaseInfo FieldBaseInfo(
3822       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3823       BaseInfo.getMayAlias());
3824   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3825                         CGM.getTBAAAccessInfo(FieldType));
3826 }
3827 
3828 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3829   if (E->isFileScope()) {
3830     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3831     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3832   }
3833   if (E->getType()->isVariablyModifiedType())
3834     // make sure to emit the VLA size.
3835     EmitVariablyModifiedType(E->getType());
3836 
3837   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3838   const Expr *InitExpr = E->getInitializer();
3839   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3840 
3841   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3842                    /*Init*/ true);
3843 
3844   return Result;
3845 }
3846 
3847 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3848   if (!E->isGLValue())
3849     // Initializing an aggregate temporary in C++11: T{...}.
3850     return EmitAggExprToLValue(E);
3851 
3852   // An lvalue initializer list must be initializing a reference.
3853   assert(E->isTransparent() && "non-transparent glvalue init list");
3854   return EmitLValue(E->getInit(0));
3855 }
3856 
3857 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3858 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3859 /// LValue is returned and the current block has been terminated.
3860 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3861                                                     const Expr *Operand) {
3862   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3863     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3864     return None;
3865   }
3866 
3867   return CGF.EmitLValue(Operand);
3868 }
3869 
3870 LValue CodeGenFunction::
3871 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3872   if (!expr->isGLValue()) {
3873     // ?: here should be an aggregate.
3874     assert(hasAggregateEvaluationKind(expr->getType()) &&
3875            "Unexpected conditional operator!");
3876     return EmitAggExprToLValue(expr);
3877   }
3878 
3879   OpaqueValueMapping binding(*this, expr);
3880 
3881   const Expr *condExpr = expr->getCond();
3882   bool CondExprBool;
3883   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3884     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3885     if (!CondExprBool) std::swap(live, dead);
3886 
3887     if (!ContainsLabel(dead)) {
3888       // If the true case is live, we need to track its region.
3889       if (CondExprBool)
3890         incrementProfileCounter(expr);
3891       return EmitLValue(live);
3892     }
3893   }
3894 
3895   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3896   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3897   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3898 
3899   ConditionalEvaluation eval(*this);
3900   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3901 
3902   // Any temporaries created here are conditional.
3903   EmitBlock(lhsBlock);
3904   incrementProfileCounter(expr);
3905   eval.begin(*this);
3906   Optional<LValue> lhs =
3907       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3908   eval.end(*this);
3909 
3910   if (lhs && !lhs->isSimple())
3911     return EmitUnsupportedLValue(expr, "conditional operator");
3912 
3913   lhsBlock = Builder.GetInsertBlock();
3914   if (lhs)
3915     Builder.CreateBr(contBlock);
3916 
3917   // Any temporaries created here are conditional.
3918   EmitBlock(rhsBlock);
3919   eval.begin(*this);
3920   Optional<LValue> rhs =
3921       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3922   eval.end(*this);
3923   if (rhs && !rhs->isSimple())
3924     return EmitUnsupportedLValue(expr, "conditional operator");
3925   rhsBlock = Builder.GetInsertBlock();
3926 
3927   EmitBlock(contBlock);
3928 
3929   if (lhs && rhs) {
3930     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3931                                            2, "cond-lvalue");
3932     phi->addIncoming(lhs->getPointer(), lhsBlock);
3933     phi->addIncoming(rhs->getPointer(), rhsBlock);
3934     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3935     AlignmentSource alignSource =
3936       std::max(lhs->getBaseInfo().getAlignmentSource(),
3937                rhs->getBaseInfo().getAlignmentSource());
3938     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3939                     rhs->getBaseInfo().getMayAlias();
3940     return MakeAddrLValue(result, expr->getType(),
3941                           LValueBaseInfo(alignSource, MayAlias),
3942                           CGM.getTBAAAccessInfo(expr->getType()));
3943   } else {
3944     assert((lhs || rhs) &&
3945            "both operands of glvalue conditional are throw-expressions?");
3946     return lhs ? *lhs : *rhs;
3947   }
3948 }
3949 
3950 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3951 /// type. If the cast is to a reference, we can have the usual lvalue result,
3952 /// otherwise if a cast is needed by the code generator in an lvalue context,
3953 /// then it must mean that we need the address of an aggregate in order to
3954 /// access one of its members.  This can happen for all the reasons that casts
3955 /// are permitted with aggregate result, including noop aggregate casts, and
3956 /// cast from scalar to union.
3957 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3958   switch (E->getCastKind()) {
3959   case CK_ToVoid:
3960   case CK_BitCast:
3961   case CK_ArrayToPointerDecay:
3962   case CK_FunctionToPointerDecay:
3963   case CK_NullToMemberPointer:
3964   case CK_NullToPointer:
3965   case CK_IntegralToPointer:
3966   case CK_PointerToIntegral:
3967   case CK_PointerToBoolean:
3968   case CK_VectorSplat:
3969   case CK_IntegralCast:
3970   case CK_BooleanToSignedIntegral:
3971   case CK_IntegralToBoolean:
3972   case CK_IntegralToFloating:
3973   case CK_FloatingToIntegral:
3974   case CK_FloatingToBoolean:
3975   case CK_FloatingCast:
3976   case CK_FloatingRealToComplex:
3977   case CK_FloatingComplexToReal:
3978   case CK_FloatingComplexToBoolean:
3979   case CK_FloatingComplexCast:
3980   case CK_FloatingComplexToIntegralComplex:
3981   case CK_IntegralRealToComplex:
3982   case CK_IntegralComplexToReal:
3983   case CK_IntegralComplexToBoolean:
3984   case CK_IntegralComplexCast:
3985   case CK_IntegralComplexToFloatingComplex:
3986   case CK_DerivedToBaseMemberPointer:
3987   case CK_BaseToDerivedMemberPointer:
3988   case CK_MemberPointerToBoolean:
3989   case CK_ReinterpretMemberPointer:
3990   case CK_AnyPointerToBlockPointerCast:
3991   case CK_ARCProduceObject:
3992   case CK_ARCConsumeObject:
3993   case CK_ARCReclaimReturnedObject:
3994   case CK_ARCExtendBlockObject:
3995   case CK_CopyAndAutoreleaseBlockObject:
3996   case CK_AddressSpaceConversion:
3997   case CK_IntToOCLSampler:
3998     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3999 
4000   case CK_Dependent:
4001     llvm_unreachable("dependent cast kind in IR gen!");
4002 
4003   case CK_BuiltinFnToFnPtr:
4004     llvm_unreachable("builtin functions are handled elsewhere");
4005 
4006   // These are never l-values; just use the aggregate emission code.
4007   case CK_NonAtomicToAtomic:
4008   case CK_AtomicToNonAtomic:
4009     return EmitAggExprToLValue(E);
4010 
4011   case CK_Dynamic: {
4012     LValue LV = EmitLValue(E->getSubExpr());
4013     Address V = LV.getAddress();
4014     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4015     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4016   }
4017 
4018   case CK_ConstructorConversion:
4019   case CK_UserDefinedConversion:
4020   case CK_CPointerToObjCPointerCast:
4021   case CK_BlockPointerToObjCPointerCast:
4022   case CK_NoOp:
4023   case CK_LValueToRValue:
4024     return EmitLValue(E->getSubExpr());
4025 
4026   case CK_UncheckedDerivedToBase:
4027   case CK_DerivedToBase: {
4028     const RecordType *DerivedClassTy =
4029       E->getSubExpr()->getType()->getAs<RecordType>();
4030     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4031 
4032     LValue LV = EmitLValue(E->getSubExpr());
4033     Address This = LV.getAddress();
4034 
4035     // Perform the derived-to-base conversion
4036     Address Base = GetAddressOfBaseClass(
4037         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4038         /*NullCheckValue=*/false, E->getExprLoc());
4039 
4040     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4041                           CGM.getTBAAAccessInfo(E->getType()));
4042   }
4043   case CK_ToUnion:
4044     return EmitAggExprToLValue(E);
4045   case CK_BaseToDerived: {
4046     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4047     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4048 
4049     LValue LV = EmitLValue(E->getSubExpr());
4050 
4051     // Perform the base-to-derived conversion
4052     Address Derived =
4053       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4054                                E->path_begin(), E->path_end(),
4055                                /*NullCheckValue=*/false);
4056 
4057     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4058     // performed and the object is not of the derived type.
4059     if (sanitizePerformTypeCheck())
4060       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4061                     Derived.getPointer(), E->getType());
4062 
4063     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4064       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4065                                 /*MayBeNull=*/false,
4066                                 CFITCK_DerivedCast, E->getLocStart());
4067 
4068     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4069                           CGM.getTBAAAccessInfo(E->getType()));
4070   }
4071   case CK_LValueBitCast: {
4072     // This must be a reinterpret_cast (or c-style equivalent).
4073     const auto *CE = cast<ExplicitCastExpr>(E);
4074 
4075     CGM.EmitExplicitCastExprType(CE, this);
4076     LValue LV = EmitLValue(E->getSubExpr());
4077     Address V = Builder.CreateBitCast(LV.getAddress(),
4078                                       ConvertType(CE->getTypeAsWritten()));
4079 
4080     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4081       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4082                                 /*MayBeNull=*/false,
4083                                 CFITCK_UnrelatedCast, E->getLocStart());
4084 
4085     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4086                           CGM.getTBAAAccessInfo(E->getType()));
4087   }
4088   case CK_ObjCObjectLValueCast: {
4089     LValue LV = EmitLValue(E->getSubExpr());
4090     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4091                                              ConvertType(E->getType()));
4092     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4093                           CGM.getTBAAAccessInfo(E->getType()));
4094   }
4095   case CK_ZeroToOCLQueue:
4096     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4097   case CK_ZeroToOCLEvent:
4098     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4099   }
4100 
4101   llvm_unreachable("Unhandled lvalue cast kind?");
4102 }
4103 
4104 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4105   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4106   return getOpaqueLValueMapping(e);
4107 }
4108 
4109 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4110                                            const FieldDecl *FD,
4111                                            SourceLocation Loc) {
4112   QualType FT = FD->getType();
4113   LValue FieldLV = EmitLValueForField(LV, FD);
4114   switch (getEvaluationKind(FT)) {
4115   case TEK_Complex:
4116     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4117   case TEK_Aggregate:
4118     return FieldLV.asAggregateRValue();
4119   case TEK_Scalar:
4120     // This routine is used to load fields one-by-one to perform a copy, so
4121     // don't load reference fields.
4122     if (FD->getType()->isReferenceType())
4123       return RValue::get(FieldLV.getPointer());
4124     return EmitLoadOfLValue(FieldLV, Loc);
4125   }
4126   llvm_unreachable("bad evaluation kind");
4127 }
4128 
4129 //===--------------------------------------------------------------------===//
4130 //                             Expression Emission
4131 //===--------------------------------------------------------------------===//
4132 
4133 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4134                                      ReturnValueSlot ReturnValue) {
4135   // Builtins never have block type.
4136   if (E->getCallee()->getType()->isBlockPointerType())
4137     return EmitBlockCallExpr(E, ReturnValue);
4138 
4139   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4140     return EmitCXXMemberCallExpr(CE, ReturnValue);
4141 
4142   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4143     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4144 
4145   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4146     if (const CXXMethodDecl *MD =
4147           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4148       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4149 
4150   CGCallee callee = EmitCallee(E->getCallee());
4151 
4152   if (callee.isBuiltin()) {
4153     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4154                            E, ReturnValue);
4155   }
4156 
4157   if (callee.isPseudoDestructor()) {
4158     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4159   }
4160 
4161   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4162 }
4163 
4164 /// Emit a CallExpr without considering whether it might be a subclass.
4165 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4166                                            ReturnValueSlot ReturnValue) {
4167   CGCallee Callee = EmitCallee(E->getCallee());
4168   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4169 }
4170 
4171 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4172   if (auto builtinID = FD->getBuiltinID()) {
4173     return CGCallee::forBuiltin(builtinID, FD);
4174   }
4175 
4176   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4177   return CGCallee::forDirect(calleePtr, FD);
4178 }
4179 
4180 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4181   E = E->IgnoreParens();
4182 
4183   // Look through function-to-pointer decay.
4184   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4185     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4186         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4187       return EmitCallee(ICE->getSubExpr());
4188     }
4189 
4190   // Resolve direct calls.
4191   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4192     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4193       return EmitDirectCallee(*this, FD);
4194     }
4195   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4196     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4197       EmitIgnoredExpr(ME->getBase());
4198       return EmitDirectCallee(*this, FD);
4199     }
4200 
4201   // Look through template substitutions.
4202   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4203     return EmitCallee(NTTP->getReplacement());
4204 
4205   // Treat pseudo-destructor calls differently.
4206   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4207     return CGCallee::forPseudoDestructor(PDE);
4208   }
4209 
4210   // Otherwise, we have an indirect reference.
4211   llvm::Value *calleePtr;
4212   QualType functionType;
4213   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4214     calleePtr = EmitScalarExpr(E);
4215     functionType = ptrType->getPointeeType();
4216   } else {
4217     functionType = E->getType();
4218     calleePtr = EmitLValue(E).getPointer();
4219   }
4220   assert(functionType->isFunctionType());
4221   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4222                           E->getReferencedDeclOfCallee());
4223   CGCallee callee(calleeInfo, calleePtr);
4224   return callee;
4225 }
4226 
4227 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4228   // Comma expressions just emit their LHS then their RHS as an l-value.
4229   if (E->getOpcode() == BO_Comma) {
4230     EmitIgnoredExpr(E->getLHS());
4231     EnsureInsertPoint();
4232     return EmitLValue(E->getRHS());
4233   }
4234 
4235   if (E->getOpcode() == BO_PtrMemD ||
4236       E->getOpcode() == BO_PtrMemI)
4237     return EmitPointerToDataMemberBinaryExpr(E);
4238 
4239   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4240 
4241   // Note that in all of these cases, __block variables need the RHS
4242   // evaluated first just in case the variable gets moved by the RHS.
4243 
4244   switch (getEvaluationKind(E->getType())) {
4245   case TEK_Scalar: {
4246     switch (E->getLHS()->getType().getObjCLifetime()) {
4247     case Qualifiers::OCL_Strong:
4248       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4249 
4250     case Qualifiers::OCL_Autoreleasing:
4251       return EmitARCStoreAutoreleasing(E).first;
4252 
4253     // No reason to do any of these differently.
4254     case Qualifiers::OCL_None:
4255     case Qualifiers::OCL_ExplicitNone:
4256     case Qualifiers::OCL_Weak:
4257       break;
4258     }
4259 
4260     RValue RV = EmitAnyExpr(E->getRHS());
4261     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4262     if (RV.isScalar())
4263       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4264     EmitStoreThroughLValue(RV, LV);
4265     return LV;
4266   }
4267 
4268   case TEK_Complex:
4269     return EmitComplexAssignmentLValue(E);
4270 
4271   case TEK_Aggregate:
4272     return EmitAggExprToLValue(E);
4273   }
4274   llvm_unreachable("bad evaluation kind");
4275 }
4276 
4277 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4278   RValue RV = EmitCallExpr(E);
4279 
4280   if (!RV.isScalar())
4281     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4282                           AlignmentSource::Decl);
4283 
4284   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4285          "Can't have a scalar return unless the return type is a "
4286          "reference type!");
4287 
4288   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4289 }
4290 
4291 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4292   // FIXME: This shouldn't require another copy.
4293   return EmitAggExprToLValue(E);
4294 }
4295 
4296 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4297   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4298          && "binding l-value to type which needs a temporary");
4299   AggValueSlot Slot = CreateAggTemp(E->getType());
4300   EmitCXXConstructExpr(E, Slot);
4301   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4302 }
4303 
4304 LValue
4305 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4306   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4307 }
4308 
4309 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4310   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4311                                       ConvertType(E->getType()));
4312 }
4313 
4314 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4315   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4316                         AlignmentSource::Decl);
4317 }
4318 
4319 LValue
4320 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4321   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4322   Slot.setExternallyDestructed();
4323   EmitAggExpr(E->getSubExpr(), Slot);
4324   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4325   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4326 }
4327 
4328 LValue
4329 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4330   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4331   EmitLambdaExpr(E, Slot);
4332   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4333 }
4334 
4335 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4336   RValue RV = EmitObjCMessageExpr(E);
4337 
4338   if (!RV.isScalar())
4339     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4340                           AlignmentSource::Decl);
4341 
4342   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4343          "Can't have a scalar return unless the return type is a "
4344          "reference type!");
4345 
4346   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4347 }
4348 
4349 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4350   Address V =
4351     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4352   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4353 }
4354 
4355 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4356                                              const ObjCIvarDecl *Ivar) {
4357   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4358 }
4359 
4360 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4361                                           llvm::Value *BaseValue,
4362                                           const ObjCIvarDecl *Ivar,
4363                                           unsigned CVRQualifiers) {
4364   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4365                                                    Ivar, CVRQualifiers);
4366 }
4367 
4368 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4369   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4370   llvm::Value *BaseValue = nullptr;
4371   const Expr *BaseExpr = E->getBase();
4372   Qualifiers BaseQuals;
4373   QualType ObjectTy;
4374   if (E->isArrow()) {
4375     BaseValue = EmitScalarExpr(BaseExpr);
4376     ObjectTy = BaseExpr->getType()->getPointeeType();
4377     BaseQuals = ObjectTy.getQualifiers();
4378   } else {
4379     LValue BaseLV = EmitLValue(BaseExpr);
4380     BaseValue = BaseLV.getPointer();
4381     ObjectTy = BaseExpr->getType();
4382     BaseQuals = ObjectTy.getQualifiers();
4383   }
4384 
4385   LValue LV =
4386     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4387                       BaseQuals.getCVRQualifiers());
4388   setObjCGCLValueClass(getContext(), E, LV);
4389   return LV;
4390 }
4391 
4392 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4393   // Can only get l-value for message expression returning aggregate type
4394   RValue RV = EmitAnyExprToTemp(E);
4395   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4396                         AlignmentSource::Decl);
4397 }
4398 
4399 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4400                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4401                                  llvm::Value *Chain) {
4402   // Get the actual function type. The callee type will always be a pointer to
4403   // function type or a block pointer type.
4404   assert(CalleeType->isFunctionPointerType() &&
4405          "Call must have function pointer type!");
4406 
4407   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4408 
4409   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4410     // We can only guarantee that a function is called from the correct
4411     // context/function based on the appropriate target attributes,
4412     // so only check in the case where we have both always_inline and target
4413     // since otherwise we could be making a conditional call after a check for
4414     // the proper cpu features (and it won't cause code generation issues due to
4415     // function based code generation).
4416     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4417         TargetDecl->hasAttr<TargetAttr>())
4418       checkTargetFeatures(E, FD);
4419 
4420   CalleeType = getContext().getCanonicalType(CalleeType);
4421 
4422   const auto *FnType =
4423       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4424 
4425   CGCallee Callee = OrigCallee;
4426 
4427   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4428       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4429     if (llvm::Constant *PrefixSig =
4430             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4431       SanitizerScope SanScope(this);
4432       llvm::Constant *FTRTTIConst =
4433           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4434       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4435       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4436           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4437 
4438       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4439 
4440       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4441           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4442       llvm::Value *CalleeSigPtr =
4443           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4444       llvm::Value *CalleeSig =
4445           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4446       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4447 
4448       llvm::BasicBlock *Cont = createBasicBlock("cont");
4449       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4450       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4451 
4452       EmitBlock(TypeCheck);
4453       llvm::Value *CalleeRTTIPtr =
4454           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4455       llvm::Value *CalleeRTTIEncoded =
4456           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4457       llvm::Value *CalleeRTTI =
4458           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4459       llvm::Value *CalleeRTTIMatch =
4460           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4461       llvm::Constant *StaticData[] = {
4462         EmitCheckSourceLocation(E->getLocStart()),
4463         EmitCheckTypeDescriptor(CalleeType)
4464       };
4465       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4466                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4467 
4468       Builder.CreateBr(Cont);
4469       EmitBlock(Cont);
4470     }
4471   }
4472 
4473   // If we are checking indirect calls and this call is indirect, check that the
4474   // function pointer is a member of the bit set for the function type.
4475   if (SanOpts.has(SanitizerKind::CFIICall) &&
4476       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4477     SanitizerScope SanScope(this);
4478     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4479 
4480     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4481     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4482 
4483     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4484     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4485     llvm::Value *TypeTest = Builder.CreateCall(
4486         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4487 
4488     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4489     llvm::Constant *StaticData[] = {
4490         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4491         EmitCheckSourceLocation(E->getLocStart()),
4492         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4493     };
4494     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4495       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4496                            CastedCallee, StaticData);
4497     } else {
4498       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4499                 SanitizerHandler::CFICheckFail, StaticData,
4500                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4501     }
4502   }
4503 
4504   CallArgList Args;
4505   if (Chain)
4506     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4507              CGM.getContext().VoidPtrTy);
4508 
4509   // C++17 requires that we evaluate arguments to a call using assignment syntax
4510   // right-to-left, and that we evaluate arguments to certain other operators
4511   // left-to-right. Note that we allow this to override the order dictated by
4512   // the calling convention on the MS ABI, which means that parameter
4513   // destruction order is not necessarily reverse construction order.
4514   // FIXME: Revisit this based on C++ committee response to unimplementability.
4515   EvaluationOrder Order = EvaluationOrder::Default;
4516   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4517     if (OCE->isAssignmentOp())
4518       Order = EvaluationOrder::ForceRightToLeft;
4519     else {
4520       switch (OCE->getOperator()) {
4521       case OO_LessLess:
4522       case OO_GreaterGreater:
4523       case OO_AmpAmp:
4524       case OO_PipePipe:
4525       case OO_Comma:
4526       case OO_ArrowStar:
4527         Order = EvaluationOrder::ForceLeftToRight;
4528         break;
4529       default:
4530         break;
4531       }
4532     }
4533   }
4534 
4535   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4536                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4537 
4538   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4539       Args, FnType, /*isChainCall=*/Chain);
4540 
4541   // C99 6.5.2.2p6:
4542   //   If the expression that denotes the called function has a type
4543   //   that does not include a prototype, [the default argument
4544   //   promotions are performed]. If the number of arguments does not
4545   //   equal the number of parameters, the behavior is undefined. If
4546   //   the function is defined with a type that includes a prototype,
4547   //   and either the prototype ends with an ellipsis (, ...) or the
4548   //   types of the arguments after promotion are not compatible with
4549   //   the types of the parameters, the behavior is undefined. If the
4550   //   function is defined with a type that does not include a
4551   //   prototype, and the types of the arguments after promotion are
4552   //   not compatible with those of the parameters after promotion,
4553   //   the behavior is undefined [except in some trivial cases].
4554   // That is, in the general case, we should assume that a call
4555   // through an unprototyped function type works like a *non-variadic*
4556   // call.  The way we make this work is to cast to the exact type
4557   // of the promoted arguments.
4558   //
4559   // Chain calls use this same code path to add the invisible chain parameter
4560   // to the function type.
4561   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4562     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4563     CalleeTy = CalleeTy->getPointerTo();
4564 
4565     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4566     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4567     Callee.setFunctionPointer(CalleePtr);
4568   }
4569 
4570   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4571 }
4572 
4573 LValue CodeGenFunction::
4574 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4575   Address BaseAddr = Address::invalid();
4576   if (E->getOpcode() == BO_PtrMemI) {
4577     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4578   } else {
4579     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4580   }
4581 
4582   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4583 
4584   const MemberPointerType *MPT
4585     = E->getRHS()->getType()->getAs<MemberPointerType>();
4586 
4587   LValueBaseInfo BaseInfo;
4588   TBAAAccessInfo TBAAInfo;
4589   Address MemberAddr =
4590     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4591                                     &TBAAInfo);
4592 
4593   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4594 }
4595 
4596 /// Given the address of a temporary variable, produce an r-value of
4597 /// its type.
4598 RValue CodeGenFunction::convertTempToRValue(Address addr,
4599                                             QualType type,
4600                                             SourceLocation loc) {
4601   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4602   switch (getEvaluationKind(type)) {
4603   case TEK_Complex:
4604     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4605   case TEK_Aggregate:
4606     return lvalue.asAggregateRValue();
4607   case TEK_Scalar:
4608     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4609   }
4610   llvm_unreachable("bad evaluation kind");
4611 }
4612 
4613 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4614   assert(Val->getType()->isFPOrFPVectorTy());
4615   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4616     return;
4617 
4618   llvm::MDBuilder MDHelper(getLLVMContext());
4619   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4620 
4621   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4622 }
4623 
4624 namespace {
4625   struct LValueOrRValue {
4626     LValue LV;
4627     RValue RV;
4628   };
4629 }
4630 
4631 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4632                                            const PseudoObjectExpr *E,
4633                                            bool forLValue,
4634                                            AggValueSlot slot) {
4635   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4636 
4637   // Find the result expression, if any.
4638   const Expr *resultExpr = E->getResultExpr();
4639   LValueOrRValue result;
4640 
4641   for (PseudoObjectExpr::const_semantics_iterator
4642          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4643     const Expr *semantic = *i;
4644 
4645     // If this semantic expression is an opaque value, bind it
4646     // to the result of its source expression.
4647     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4648 
4649       // If this is the result expression, we may need to evaluate
4650       // directly into the slot.
4651       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4652       OVMA opaqueData;
4653       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4654           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4655         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4656         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4657                                        AlignmentSource::Decl);
4658         opaqueData = OVMA::bind(CGF, ov, LV);
4659         result.RV = slot.asRValue();
4660 
4661       // Otherwise, emit as normal.
4662       } else {
4663         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4664 
4665         // If this is the result, also evaluate the result now.
4666         if (ov == resultExpr) {
4667           if (forLValue)
4668             result.LV = CGF.EmitLValue(ov);
4669           else
4670             result.RV = CGF.EmitAnyExpr(ov, slot);
4671         }
4672       }
4673 
4674       opaques.push_back(opaqueData);
4675 
4676     // Otherwise, if the expression is the result, evaluate it
4677     // and remember the result.
4678     } else if (semantic == resultExpr) {
4679       if (forLValue)
4680         result.LV = CGF.EmitLValue(semantic);
4681       else
4682         result.RV = CGF.EmitAnyExpr(semantic, slot);
4683 
4684     // Otherwise, evaluate the expression in an ignored context.
4685     } else {
4686       CGF.EmitIgnoredExpr(semantic);
4687     }
4688   }
4689 
4690   // Unbind all the opaques now.
4691   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4692     opaques[i].unbind(CGF);
4693 
4694   return result;
4695 }
4696 
4697 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4698                                                AggValueSlot slot) {
4699   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4700 }
4701 
4702 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4703   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4704 }
4705