1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 78 Builder.SetInsertPoint(AllocaInsertPt); 79 V = getTargetHooks().performAddrSpaceCast( 80 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 81 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 82 } 83 84 return Address(V, Align); 85 } 86 87 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 88 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 89 /// insertion point of the builder. 90 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 91 const Twine &Name, 92 llvm::Value *ArraySize) { 93 if (ArraySize) 94 return Builder.CreateAlloca(Ty, ArraySize, Name); 95 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 96 ArraySize, Name, AllocaInsertPt); 97 } 98 99 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 100 /// default alignment of the corresponding LLVM type, which is *not* 101 /// guaranteed to be related in any way to the expected alignment of 102 /// an AST type that might have been lowered to Ty. 103 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 104 const Twine &Name) { 105 CharUnits Align = 106 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 107 return CreateTempAlloca(Ty, Align, Name); 108 } 109 110 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 111 assert(isa<llvm::AllocaInst>(Var.getPointer())); 112 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 113 Store->setAlignment(Var.getAlignment().getQuantity()); 114 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 115 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 116 } 117 118 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 119 CharUnits Align = getContext().getTypeAlignInChars(Ty); 120 return CreateTempAlloca(ConvertType(Ty), Align, Name); 121 } 122 123 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 124 bool CastToDefaultAddrSpace) { 125 // FIXME: Should we prefer the preferred type alignment here? 126 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 127 CastToDefaultAddrSpace); 128 } 129 130 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 131 const Twine &Name, 132 bool CastToDefaultAddrSpace) { 133 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 134 CastToDefaultAddrSpace); 135 } 136 137 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 138 /// expression and compare the result against zero, returning an Int1Ty value. 139 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 140 PGO.setCurrentStmt(E); 141 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 142 llvm::Value *MemPtr = EmitScalarExpr(E); 143 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 144 } 145 146 QualType BoolTy = getContext().BoolTy; 147 SourceLocation Loc = E->getExprLoc(); 148 if (!E->getType()->isAnyComplexType()) 149 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 150 151 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 152 Loc); 153 } 154 155 /// EmitIgnoredExpr - Emit code to compute the specified expression, 156 /// ignoring the result. 157 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 158 if (E->isRValue()) 159 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 160 161 // Just emit it as an l-value and drop the result. 162 EmitLValue(E); 163 } 164 165 /// EmitAnyExpr - Emit code to compute the specified expression which 166 /// can have any type. The result is returned as an RValue struct. 167 /// If this is an aggregate expression, AggSlot indicates where the 168 /// result should be returned. 169 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 170 AggValueSlot aggSlot, 171 bool ignoreResult) { 172 switch (getEvaluationKind(E->getType())) { 173 case TEK_Scalar: 174 return RValue::get(EmitScalarExpr(E, ignoreResult)); 175 case TEK_Complex: 176 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 177 case TEK_Aggregate: 178 if (!ignoreResult && aggSlot.isIgnored()) 179 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 180 EmitAggExpr(E, aggSlot); 181 return aggSlot.asRValue(); 182 } 183 llvm_unreachable("bad evaluation kind"); 184 } 185 186 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 187 /// always be accessible even if no aggregate location is provided. 188 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 189 AggValueSlot AggSlot = AggValueSlot::ignored(); 190 191 if (hasAggregateEvaluationKind(E->getType())) 192 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 193 return EmitAnyExpr(E, AggSlot); 194 } 195 196 /// EmitAnyExprToMem - Evaluate an expression into a given memory 197 /// location. 198 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 199 Address Location, 200 Qualifiers Quals, 201 bool IsInit) { 202 // FIXME: This function should take an LValue as an argument. 203 switch (getEvaluationKind(E->getType())) { 204 case TEK_Complex: 205 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 206 /*isInit*/ false); 207 return; 208 209 case TEK_Aggregate: { 210 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 211 AggValueSlot::IsDestructed_t(IsInit), 212 AggValueSlot::DoesNotNeedGCBarriers, 213 AggValueSlot::IsAliased_t(!IsInit))); 214 return; 215 } 216 217 case TEK_Scalar: { 218 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 219 LValue LV = MakeAddrLValue(Location, E->getType()); 220 EmitStoreThroughLValue(RV, LV); 221 return; 222 } 223 } 224 llvm_unreachable("bad evaluation kind"); 225 } 226 227 static void 228 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 229 const Expr *E, Address ReferenceTemporary) { 230 // Objective-C++ ARC: 231 // If we are binding a reference to a temporary that has ownership, we 232 // need to perform retain/release operations on the temporary. 233 // 234 // FIXME: This should be looking at E, not M. 235 if (auto Lifetime = M->getType().getObjCLifetime()) { 236 switch (Lifetime) { 237 case Qualifiers::OCL_None: 238 case Qualifiers::OCL_ExplicitNone: 239 // Carry on to normal cleanup handling. 240 break; 241 242 case Qualifiers::OCL_Autoreleasing: 243 // Nothing to do; cleaned up by an autorelease pool. 244 return; 245 246 case Qualifiers::OCL_Strong: 247 case Qualifiers::OCL_Weak: 248 switch (StorageDuration Duration = M->getStorageDuration()) { 249 case SD_Static: 250 // Note: we intentionally do not register a cleanup to release 251 // the object on program termination. 252 return; 253 254 case SD_Thread: 255 // FIXME: We should probably register a cleanup in this case. 256 return; 257 258 case SD_Automatic: 259 case SD_FullExpression: 260 CodeGenFunction::Destroyer *Destroy; 261 CleanupKind CleanupKind; 262 if (Lifetime == Qualifiers::OCL_Strong) { 263 const ValueDecl *VD = M->getExtendingDecl(); 264 bool Precise = 265 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 266 CleanupKind = CGF.getARCCleanupKind(); 267 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 268 : &CodeGenFunction::destroyARCStrongImprecise; 269 } else { 270 // __weak objects always get EH cleanups; otherwise, exceptions 271 // could cause really nasty crashes instead of mere leaks. 272 CleanupKind = NormalAndEHCleanup; 273 Destroy = &CodeGenFunction::destroyARCWeak; 274 } 275 if (Duration == SD_FullExpression) 276 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 277 M->getType(), *Destroy, 278 CleanupKind & EHCleanup); 279 else 280 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 281 M->getType(), 282 *Destroy, CleanupKind & EHCleanup); 283 return; 284 285 case SD_Dynamic: 286 llvm_unreachable("temporary cannot have dynamic storage duration"); 287 } 288 llvm_unreachable("unknown storage duration"); 289 } 290 } 291 292 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 293 if (const RecordType *RT = 294 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 295 // Get the destructor for the reference temporary. 296 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 297 if (!ClassDecl->hasTrivialDestructor()) 298 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 299 } 300 301 if (!ReferenceTemporaryDtor) 302 return; 303 304 // Call the destructor for the temporary. 305 switch (M->getStorageDuration()) { 306 case SD_Static: 307 case SD_Thread: { 308 llvm::Constant *CleanupFn; 309 llvm::Constant *CleanupArg; 310 if (E->getType()->isArrayType()) { 311 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 312 ReferenceTemporary, E->getType(), 313 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 314 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 315 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 316 } else { 317 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 318 StructorType::Complete); 319 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 320 } 321 CGF.CGM.getCXXABI().registerGlobalDtor( 322 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 323 break; 324 } 325 326 case SD_FullExpression: 327 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 328 CodeGenFunction::destroyCXXObject, 329 CGF.getLangOpts().Exceptions); 330 break; 331 332 case SD_Automatic: 333 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 334 ReferenceTemporary, E->getType(), 335 CodeGenFunction::destroyCXXObject, 336 CGF.getLangOpts().Exceptions); 337 break; 338 339 case SD_Dynamic: 340 llvm_unreachable("temporary cannot have dynamic storage duration"); 341 } 342 } 343 344 static Address createReferenceTemporary(CodeGenFunction &CGF, 345 const MaterializeTemporaryExpr *M, 346 const Expr *Inner) { 347 auto &TCG = CGF.getTargetHooks(); 348 switch (M->getStorageDuration()) { 349 case SD_FullExpression: 350 case SD_Automatic: { 351 // If we have a constant temporary array or record try to promote it into a 352 // constant global under the same rules a normal constant would've been 353 // promoted. This is easier on the optimizer and generally emits fewer 354 // instructions. 355 QualType Ty = Inner->getType(); 356 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 357 (Ty->isArrayType() || Ty->isRecordType()) && 358 CGF.CGM.isTypeConstant(Ty, true)) 359 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 360 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 361 auto AS = AddrSpace.getValue(); 362 auto *GV = new llvm::GlobalVariable( 363 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 364 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 365 llvm::GlobalValue::NotThreadLocal, 366 CGF.getContext().getTargetAddressSpace(AS)); 367 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 368 GV->setAlignment(alignment.getQuantity()); 369 llvm::Constant *C = GV; 370 if (AS != LangAS::Default) 371 C = TCG.performAddrSpaceCast( 372 CGF.CGM, GV, AS, LangAS::Default, 373 GV->getValueType()->getPointerTo( 374 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 375 // FIXME: Should we put the new global into a COMDAT? 376 return Address(C, alignment); 377 } 378 } 379 return CGF.CreateMemTemp(Ty, "ref.tmp"); 380 } 381 case SD_Thread: 382 case SD_Static: 383 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 384 385 case SD_Dynamic: 386 llvm_unreachable("temporary can't have dynamic storage duration"); 387 } 388 llvm_unreachable("unknown storage duration"); 389 } 390 391 LValue CodeGenFunction:: 392 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 393 const Expr *E = M->GetTemporaryExpr(); 394 395 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 396 // as that will cause the lifetime adjustment to be lost for ARC 397 auto ownership = M->getType().getObjCLifetime(); 398 if (ownership != Qualifiers::OCL_None && 399 ownership != Qualifiers::OCL_ExplicitNone) { 400 Address Object = createReferenceTemporary(*this, M, E); 401 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 402 Object = Address(llvm::ConstantExpr::getBitCast(Var, 403 ConvertTypeForMem(E->getType()) 404 ->getPointerTo(Object.getAddressSpace())), 405 Object.getAlignment()); 406 407 // createReferenceTemporary will promote the temporary to a global with a 408 // constant initializer if it can. It can only do this to a value of 409 // ARC-manageable type if the value is global and therefore "immune" to 410 // ref-counting operations. Therefore we have no need to emit either a 411 // dynamic initialization or a cleanup and we can just return the address 412 // of the temporary. 413 if (Var->hasInitializer()) 414 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 415 416 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 417 } 418 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 419 AlignmentSource::Decl); 420 421 switch (getEvaluationKind(E->getType())) { 422 default: llvm_unreachable("expected scalar or aggregate expression"); 423 case TEK_Scalar: 424 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 425 break; 426 case TEK_Aggregate: { 427 EmitAggExpr(E, AggValueSlot::forAddr(Object, 428 E->getType().getQualifiers(), 429 AggValueSlot::IsDestructed, 430 AggValueSlot::DoesNotNeedGCBarriers, 431 AggValueSlot::IsNotAliased)); 432 break; 433 } 434 } 435 436 pushTemporaryCleanup(*this, M, E, Object); 437 return RefTempDst; 438 } 439 440 SmallVector<const Expr *, 2> CommaLHSs; 441 SmallVector<SubobjectAdjustment, 2> Adjustments; 442 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 443 444 for (const auto &Ignored : CommaLHSs) 445 EmitIgnoredExpr(Ignored); 446 447 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 448 if (opaque->getType()->isRecordType()) { 449 assert(Adjustments.empty()); 450 return EmitOpaqueValueLValue(opaque); 451 } 452 } 453 454 // Create and initialize the reference temporary. 455 Address Object = createReferenceTemporary(*this, M, E); 456 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 457 Object.getPointer()->stripPointerCasts())) { 458 Object = Address(llvm::ConstantExpr::getBitCast( 459 cast<llvm::Constant>(Object.getPointer()), 460 ConvertTypeForMem(E->getType())->getPointerTo()), 461 Object.getAlignment()); 462 // If the temporary is a global and has a constant initializer or is a 463 // constant temporary that we promoted to a global, we may have already 464 // initialized it. 465 if (!Var->hasInitializer()) { 466 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 467 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 468 } 469 } else { 470 switch (M->getStorageDuration()) { 471 case SD_Automatic: 472 case SD_FullExpression: 473 if (auto *Size = EmitLifetimeStart( 474 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 475 Object.getPointer())) { 476 if (M->getStorageDuration() == SD_Automatic) 477 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 478 Object, Size); 479 else 480 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 481 Size); 482 } 483 break; 484 default: 485 break; 486 } 487 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 488 } 489 pushTemporaryCleanup(*this, M, E, Object); 490 491 // Perform derived-to-base casts and/or field accesses, to get from the 492 // temporary object we created (and, potentially, for which we extended 493 // the lifetime) to the subobject we're binding the reference to. 494 for (unsigned I = Adjustments.size(); I != 0; --I) { 495 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 496 switch (Adjustment.Kind) { 497 case SubobjectAdjustment::DerivedToBaseAdjustment: 498 Object = 499 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 500 Adjustment.DerivedToBase.BasePath->path_begin(), 501 Adjustment.DerivedToBase.BasePath->path_end(), 502 /*NullCheckValue=*/ false, E->getExprLoc()); 503 break; 504 505 case SubobjectAdjustment::FieldAdjustment: { 506 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 507 LV = EmitLValueForField(LV, Adjustment.Field); 508 assert(LV.isSimple() && 509 "materialized temporary field is not a simple lvalue"); 510 Object = LV.getAddress(); 511 break; 512 } 513 514 case SubobjectAdjustment::MemberPointerAdjustment: { 515 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 516 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 517 Adjustment.Ptr.MPT); 518 break; 519 } 520 } 521 } 522 523 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 524 } 525 526 RValue 527 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 528 // Emit the expression as an lvalue. 529 LValue LV = EmitLValue(E); 530 assert(LV.isSimple()); 531 llvm::Value *Value = LV.getPointer(); 532 533 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 534 // C++11 [dcl.ref]p5 (as amended by core issue 453): 535 // If a glvalue to which a reference is directly bound designates neither 536 // an existing object or function of an appropriate type nor a region of 537 // storage of suitable size and alignment to contain an object of the 538 // reference's type, the behavior is undefined. 539 QualType Ty = E->getType(); 540 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 541 } 542 543 return RValue::get(Value); 544 } 545 546 547 /// getAccessedFieldNo - Given an encoded value and a result number, return the 548 /// input field number being accessed. 549 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 550 const llvm::Constant *Elts) { 551 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 552 ->getZExtValue(); 553 } 554 555 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 556 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 557 llvm::Value *High) { 558 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 559 llvm::Value *K47 = Builder.getInt64(47); 560 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 561 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 562 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 563 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 564 return Builder.CreateMul(B1, KMul); 565 } 566 567 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 568 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 569 TCK == TCK_UpcastToVirtualBase; 570 } 571 572 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 573 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 574 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 575 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 576 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 577 TCK == TCK_UpcastToVirtualBase); 578 } 579 580 bool CodeGenFunction::sanitizePerformTypeCheck() const { 581 return SanOpts.has(SanitizerKind::Null) | 582 SanOpts.has(SanitizerKind::Alignment) | 583 SanOpts.has(SanitizerKind::ObjectSize) | 584 SanOpts.has(SanitizerKind::Vptr); 585 } 586 587 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 588 llvm::Value *Ptr, QualType Ty, 589 CharUnits Alignment, 590 SanitizerSet SkippedChecks) { 591 if (!sanitizePerformTypeCheck()) 592 return; 593 594 // Don't check pointers outside the default address space. The null check 595 // isn't correct, the object-size check isn't supported by LLVM, and we can't 596 // communicate the addresses to the runtime handler for the vptr check. 597 if (Ptr->getType()->getPointerAddressSpace()) 598 return; 599 600 // Don't check pointers to volatile data. The behavior here is implementation- 601 // defined. 602 if (Ty.isVolatileQualified()) 603 return; 604 605 SanitizerScope SanScope(this); 606 607 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 608 llvm::BasicBlock *Done = nullptr; 609 610 // Quickly determine whether we have a pointer to an alloca. It's possible 611 // to skip null checks, and some alignment checks, for these pointers. This 612 // can reduce compile-time significantly. 613 auto PtrToAlloca = 614 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 615 616 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 617 llvm::Value *IsNonNull = nullptr; 618 bool IsGuaranteedNonNull = 619 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 620 bool AllowNullPointers = isNullPointerAllowed(TCK); 621 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 622 !IsGuaranteedNonNull) { 623 // The glvalue must not be an empty glvalue. 624 IsNonNull = Builder.CreateIsNotNull(Ptr); 625 626 // The IR builder can constant-fold the null check if the pointer points to 627 // a constant. 628 IsGuaranteedNonNull = IsNonNull == True; 629 630 // Skip the null check if the pointer is known to be non-null. 631 if (!IsGuaranteedNonNull) { 632 if (AllowNullPointers) { 633 // When performing pointer casts, it's OK if the value is null. 634 // Skip the remaining checks in that case. 635 Done = createBasicBlock("null"); 636 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 637 Builder.CreateCondBr(IsNonNull, Rest, Done); 638 EmitBlock(Rest); 639 } else { 640 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 641 } 642 } 643 } 644 645 if (SanOpts.has(SanitizerKind::ObjectSize) && 646 !SkippedChecks.has(SanitizerKind::ObjectSize) && 647 !Ty->isIncompleteType()) { 648 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 649 650 // The glvalue must refer to a large enough storage region. 651 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 652 // to check this. 653 // FIXME: Get object address space 654 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 655 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 656 llvm::Value *Min = Builder.getFalse(); 657 llvm::Value *NullIsUnknown = Builder.getFalse(); 658 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 659 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 660 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 661 llvm::ConstantInt::get(IntPtrTy, Size)); 662 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 663 } 664 665 uint64_t AlignVal = 0; 666 llvm::Value *PtrAsInt = nullptr; 667 668 if (SanOpts.has(SanitizerKind::Alignment) && 669 !SkippedChecks.has(SanitizerKind::Alignment)) { 670 AlignVal = Alignment.getQuantity(); 671 if (!Ty->isIncompleteType() && !AlignVal) 672 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 673 674 // The glvalue must be suitably aligned. 675 if (AlignVal > 1 && 676 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 677 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 678 llvm::Value *Align = Builder.CreateAnd( 679 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 680 llvm::Value *Aligned = 681 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 682 if (Aligned != True) 683 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 684 } 685 } 686 687 if (Checks.size() > 0) { 688 // Make sure we're not losing information. Alignment needs to be a power of 689 // 2 690 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 691 llvm::Constant *StaticData[] = { 692 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 693 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 694 llvm::ConstantInt::get(Int8Ty, TCK)}; 695 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 696 PtrAsInt ? PtrAsInt : Ptr); 697 } 698 699 // If possible, check that the vptr indicates that there is a subobject of 700 // type Ty at offset zero within this object. 701 // 702 // C++11 [basic.life]p5,6: 703 // [For storage which does not refer to an object within its lifetime] 704 // The program has undefined behavior if: 705 // -- the [pointer or glvalue] is used to access a non-static data member 706 // or call a non-static member function 707 if (SanOpts.has(SanitizerKind::Vptr) && 708 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 709 // Ensure that the pointer is non-null before loading it. If there is no 710 // compile-time guarantee, reuse the run-time null check or emit a new one. 711 if (!IsGuaranteedNonNull) { 712 if (!IsNonNull) 713 IsNonNull = Builder.CreateIsNotNull(Ptr); 714 if (!Done) 715 Done = createBasicBlock("vptr.null"); 716 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 717 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 718 EmitBlock(VptrNotNull); 719 } 720 721 // Compute a hash of the mangled name of the type. 722 // 723 // FIXME: This is not guaranteed to be deterministic! Move to a 724 // fingerprinting mechanism once LLVM provides one. For the time 725 // being the implementation happens to be deterministic. 726 SmallString<64> MangledName; 727 llvm::raw_svector_ostream Out(MangledName); 728 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 729 Out); 730 731 // Blacklist based on the mangled type. 732 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 733 SanitizerKind::Vptr, Out.str())) { 734 llvm::hash_code TypeHash = hash_value(Out.str()); 735 736 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 737 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 738 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 739 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 740 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 741 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 742 743 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 744 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 745 746 // Look the hash up in our cache. 747 const int CacheSize = 128; 748 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 749 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 750 "__ubsan_vptr_type_cache"); 751 llvm::Value *Slot = Builder.CreateAnd(Hash, 752 llvm::ConstantInt::get(IntPtrTy, 753 CacheSize-1)); 754 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 755 llvm::Value *CacheVal = 756 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 757 getPointerAlign()); 758 759 // If the hash isn't in the cache, call a runtime handler to perform the 760 // hard work of checking whether the vptr is for an object of the right 761 // type. This will either fill in the cache and return, or produce a 762 // diagnostic. 763 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), 766 EmitCheckTypeDescriptor(Ty), 767 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 768 llvm::ConstantInt::get(Int8Ty, TCK) 769 }; 770 llvm::Value *DynamicData[] = { Ptr, Hash }; 771 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 772 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 773 DynamicData); 774 } 775 } 776 777 if (Done) { 778 Builder.CreateBr(Done); 779 EmitBlock(Done); 780 } 781 } 782 783 /// Determine whether this expression refers to a flexible array member in a 784 /// struct. We disable array bounds checks for such members. 785 static bool isFlexibleArrayMemberExpr(const Expr *E) { 786 // For compatibility with existing code, we treat arrays of length 0 or 787 // 1 as flexible array members. 788 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 789 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 790 if (CAT->getSize().ugt(1)) 791 return false; 792 } else if (!isa<IncompleteArrayType>(AT)) 793 return false; 794 795 E = E->IgnoreParens(); 796 797 // A flexible array member must be the last member in the class. 798 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 799 // FIXME: If the base type of the member expr is not FD->getParent(), 800 // this should not be treated as a flexible array member access. 801 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 802 RecordDecl::field_iterator FI( 803 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 804 return ++FI == FD->getParent()->field_end(); 805 } 806 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 807 return IRE->getDecl()->getNextIvar() == nullptr; 808 } 809 810 return false; 811 } 812 813 /// If Base is known to point to the start of an array, return the length of 814 /// that array. Return 0 if the length cannot be determined. 815 static llvm::Value *getArrayIndexingBound( 816 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 817 // For the vector indexing extension, the bound is the number of elements. 818 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 819 IndexedType = Base->getType(); 820 return CGF.Builder.getInt32(VT->getNumElements()); 821 } 822 823 Base = Base->IgnoreParens(); 824 825 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 826 if (CE->getCastKind() == CK_ArrayToPointerDecay && 827 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 828 IndexedType = CE->getSubExpr()->getType(); 829 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 830 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 831 return CGF.Builder.getInt(CAT->getSize()); 832 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 833 return CGF.getVLASize(VAT).first; 834 } 835 } 836 837 return nullptr; 838 } 839 840 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 841 llvm::Value *Index, QualType IndexType, 842 bool Accessed) { 843 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 844 "should not be called unless adding bounds checks"); 845 SanitizerScope SanScope(this); 846 847 QualType IndexedType; 848 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 849 if (!Bound) 850 return; 851 852 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 853 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 854 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 855 856 llvm::Constant *StaticData[] = { 857 EmitCheckSourceLocation(E->getExprLoc()), 858 EmitCheckTypeDescriptor(IndexedType), 859 EmitCheckTypeDescriptor(IndexType) 860 }; 861 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 862 : Builder.CreateICmpULE(IndexVal, BoundVal); 863 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 864 SanitizerHandler::OutOfBounds, StaticData, Index); 865 } 866 867 868 CodeGenFunction::ComplexPairTy CodeGenFunction:: 869 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 870 bool isInc, bool isPre) { 871 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 872 873 llvm::Value *NextVal; 874 if (isa<llvm::IntegerType>(InVal.first->getType())) { 875 uint64_t AmountVal = isInc ? 1 : -1; 876 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 877 878 // Add the inc/dec to the real part. 879 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 880 } else { 881 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 882 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 883 if (!isInc) 884 FVal.changeSign(); 885 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 886 887 // Add the inc/dec to the real part. 888 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 889 } 890 891 ComplexPairTy IncVal(NextVal, InVal.second); 892 893 // Store the updated result through the lvalue. 894 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 895 896 // If this is a postinc, return the value read from memory, otherwise use the 897 // updated value. 898 return isPre ? IncVal : InVal; 899 } 900 901 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 902 CodeGenFunction *CGF) { 903 // Bind VLAs in the cast type. 904 if (CGF && E->getType()->isVariablyModifiedType()) 905 CGF->EmitVariablyModifiedType(E->getType()); 906 907 if (CGDebugInfo *DI = getModuleDebugInfo()) 908 DI->EmitExplicitCastType(E->getType()); 909 } 910 911 //===----------------------------------------------------------------------===// 912 // LValue Expression Emission 913 //===----------------------------------------------------------------------===// 914 915 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 916 /// derive a more accurate bound on the alignment of the pointer. 917 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 918 LValueBaseInfo *BaseInfo, 919 TBAAAccessInfo *TBAAInfo) { 920 // We allow this with ObjC object pointers because of fragile ABIs. 921 assert(E->getType()->isPointerType() || 922 E->getType()->isObjCObjectPointerType()); 923 E = E->IgnoreParens(); 924 925 // Casts: 926 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 927 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 928 CGM.EmitExplicitCastExprType(ECE, this); 929 930 switch (CE->getCastKind()) { 931 // Non-converting casts (but not C's implicit conversion from void*). 932 case CK_BitCast: 933 case CK_NoOp: 934 case CK_AddressSpaceConversion: 935 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 936 if (PtrTy->getPointeeType()->isVoidType()) 937 break; 938 939 LValueBaseInfo InnerBaseInfo; 940 TBAAAccessInfo InnerTBAAInfo; 941 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 942 &InnerBaseInfo, 943 &InnerTBAAInfo); 944 if (BaseInfo) *BaseInfo = InnerBaseInfo; 945 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 946 947 if (isa<ExplicitCastExpr>(CE)) { 948 LValueBaseInfo TargetTypeBaseInfo; 949 TBAAAccessInfo TargetTypeTBAAInfo; 950 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 951 &TargetTypeBaseInfo, 952 &TargetTypeTBAAInfo); 953 if (TBAAInfo) 954 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 955 TargetTypeTBAAInfo); 956 // If the source l-value is opaque, honor the alignment of the 957 // casted-to type. 958 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 959 if (BaseInfo) 960 BaseInfo->mergeForCast(TargetTypeBaseInfo); 961 Addr = Address(Addr.getPointer(), Align); 962 } 963 } 964 965 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 966 CE->getCastKind() == CK_BitCast) { 967 if (auto PT = E->getType()->getAs<PointerType>()) 968 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 969 /*MayBeNull=*/true, 970 CodeGenFunction::CFITCK_UnrelatedCast, 971 CE->getLocStart()); 972 } 973 return CE->getCastKind() != CK_AddressSpaceConversion 974 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 975 : Builder.CreateAddrSpaceCast(Addr, 976 ConvertType(E->getType())); 977 } 978 break; 979 980 // Array-to-pointer decay. 981 case CK_ArrayToPointerDecay: 982 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 983 984 // Derived-to-base conversions. 985 case CK_UncheckedDerivedToBase: 986 case CK_DerivedToBase: { 987 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo, 988 TBAAInfo); 989 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 990 return GetAddressOfBaseClass(Addr, Derived, 991 CE->path_begin(), CE->path_end(), 992 ShouldNullCheckClassCastValue(CE), 993 CE->getExprLoc()); 994 } 995 996 // TODO: Is there any reason to treat base-to-derived conversions 997 // specially? 998 default: 999 break; 1000 } 1001 } 1002 1003 // Unary &. 1004 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1005 if (UO->getOpcode() == UO_AddrOf) { 1006 LValue LV = EmitLValue(UO->getSubExpr()); 1007 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1008 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1009 return LV.getAddress(); 1010 } 1011 } 1012 1013 // TODO: conditional operators, comma. 1014 1015 // Otherwise, use the alignment of the type. 1016 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1017 TBAAInfo); 1018 return Address(EmitScalarExpr(E), Align); 1019 } 1020 1021 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1022 if (Ty->isVoidType()) 1023 return RValue::get(nullptr); 1024 1025 switch (getEvaluationKind(Ty)) { 1026 case TEK_Complex: { 1027 llvm::Type *EltTy = 1028 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1029 llvm::Value *U = llvm::UndefValue::get(EltTy); 1030 return RValue::getComplex(std::make_pair(U, U)); 1031 } 1032 1033 // If this is a use of an undefined aggregate type, the aggregate must have an 1034 // identifiable address. Just because the contents of the value are undefined 1035 // doesn't mean that the address can't be taken and compared. 1036 case TEK_Aggregate: { 1037 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1038 return RValue::getAggregate(DestPtr); 1039 } 1040 1041 case TEK_Scalar: 1042 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1043 } 1044 llvm_unreachable("bad evaluation kind"); 1045 } 1046 1047 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1048 const char *Name) { 1049 ErrorUnsupported(E, Name); 1050 return GetUndefRValue(E->getType()); 1051 } 1052 1053 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1054 const char *Name) { 1055 ErrorUnsupported(E, Name); 1056 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1057 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1058 E->getType()); 1059 } 1060 1061 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1062 const Expr *Base = Obj; 1063 while (!isa<CXXThisExpr>(Base)) { 1064 // The result of a dynamic_cast can be null. 1065 if (isa<CXXDynamicCastExpr>(Base)) 1066 return false; 1067 1068 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1069 Base = CE->getSubExpr(); 1070 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1071 Base = PE->getSubExpr(); 1072 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1073 if (UO->getOpcode() == UO_Extension) 1074 Base = UO->getSubExpr(); 1075 else 1076 return false; 1077 } else { 1078 return false; 1079 } 1080 } 1081 return true; 1082 } 1083 1084 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1085 LValue LV; 1086 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1087 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1088 else 1089 LV = EmitLValue(E); 1090 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1091 SanitizerSet SkippedChecks; 1092 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1093 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1094 if (IsBaseCXXThis) 1095 SkippedChecks.set(SanitizerKind::Alignment, true); 1096 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1097 SkippedChecks.set(SanitizerKind::Null, true); 1098 } 1099 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1100 E->getType(), LV.getAlignment(), SkippedChecks); 1101 } 1102 return LV; 1103 } 1104 1105 /// EmitLValue - Emit code to compute a designator that specifies the location 1106 /// of the expression. 1107 /// 1108 /// This can return one of two things: a simple address or a bitfield reference. 1109 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1110 /// an LLVM pointer type. 1111 /// 1112 /// If this returns a bitfield reference, nothing about the pointee type of the 1113 /// LLVM value is known: For example, it may not be a pointer to an integer. 1114 /// 1115 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1116 /// this method guarantees that the returned pointer type will point to an LLVM 1117 /// type of the same size of the lvalue's type. If the lvalue has a variable 1118 /// length type, this is not possible. 1119 /// 1120 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1121 ApplyDebugLocation DL(*this, E); 1122 switch (E->getStmtClass()) { 1123 default: return EmitUnsupportedLValue(E, "l-value expression"); 1124 1125 case Expr::ObjCPropertyRefExprClass: 1126 llvm_unreachable("cannot emit a property reference directly"); 1127 1128 case Expr::ObjCSelectorExprClass: 1129 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1130 case Expr::ObjCIsaExprClass: 1131 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1132 case Expr::BinaryOperatorClass: 1133 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1134 case Expr::CompoundAssignOperatorClass: { 1135 QualType Ty = E->getType(); 1136 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1137 Ty = AT->getValueType(); 1138 if (!Ty->isAnyComplexType()) 1139 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1140 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1141 } 1142 case Expr::CallExprClass: 1143 case Expr::CXXMemberCallExprClass: 1144 case Expr::CXXOperatorCallExprClass: 1145 case Expr::UserDefinedLiteralClass: 1146 return EmitCallExprLValue(cast<CallExpr>(E)); 1147 case Expr::VAArgExprClass: 1148 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1149 case Expr::DeclRefExprClass: 1150 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1151 case Expr::ParenExprClass: 1152 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1153 case Expr::GenericSelectionExprClass: 1154 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1155 case Expr::PredefinedExprClass: 1156 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1157 case Expr::StringLiteralClass: 1158 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1159 case Expr::ObjCEncodeExprClass: 1160 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1161 case Expr::PseudoObjectExprClass: 1162 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1163 case Expr::InitListExprClass: 1164 return EmitInitListLValue(cast<InitListExpr>(E)); 1165 case Expr::CXXTemporaryObjectExprClass: 1166 case Expr::CXXConstructExprClass: 1167 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1168 case Expr::CXXBindTemporaryExprClass: 1169 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1170 case Expr::CXXUuidofExprClass: 1171 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1172 case Expr::LambdaExprClass: 1173 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1174 1175 case Expr::ExprWithCleanupsClass: { 1176 const auto *cleanups = cast<ExprWithCleanups>(E); 1177 enterFullExpression(cleanups); 1178 RunCleanupsScope Scope(*this); 1179 LValue LV = EmitLValue(cleanups->getSubExpr()); 1180 if (LV.isSimple()) { 1181 // Defend against branches out of gnu statement expressions surrounded by 1182 // cleanups. 1183 llvm::Value *V = LV.getPointer(); 1184 Scope.ForceCleanup({&V}); 1185 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1186 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1187 } 1188 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1189 // bitfield lvalue or some other non-simple lvalue? 1190 return LV; 1191 } 1192 1193 case Expr::CXXDefaultArgExprClass: 1194 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1195 case Expr::CXXDefaultInitExprClass: { 1196 CXXDefaultInitExprScope Scope(*this); 1197 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1198 } 1199 case Expr::CXXTypeidExprClass: 1200 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1201 1202 case Expr::ObjCMessageExprClass: 1203 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1204 case Expr::ObjCIvarRefExprClass: 1205 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1206 case Expr::StmtExprClass: 1207 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1208 case Expr::UnaryOperatorClass: 1209 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1210 case Expr::ArraySubscriptExprClass: 1211 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1212 case Expr::OMPArraySectionExprClass: 1213 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1214 case Expr::ExtVectorElementExprClass: 1215 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1216 case Expr::MemberExprClass: 1217 return EmitMemberExpr(cast<MemberExpr>(E)); 1218 case Expr::CompoundLiteralExprClass: 1219 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1220 case Expr::ConditionalOperatorClass: 1221 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1222 case Expr::BinaryConditionalOperatorClass: 1223 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1224 case Expr::ChooseExprClass: 1225 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1226 case Expr::OpaqueValueExprClass: 1227 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1228 case Expr::SubstNonTypeTemplateParmExprClass: 1229 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1230 case Expr::ImplicitCastExprClass: 1231 case Expr::CStyleCastExprClass: 1232 case Expr::CXXFunctionalCastExprClass: 1233 case Expr::CXXStaticCastExprClass: 1234 case Expr::CXXDynamicCastExprClass: 1235 case Expr::CXXReinterpretCastExprClass: 1236 case Expr::CXXConstCastExprClass: 1237 case Expr::ObjCBridgedCastExprClass: 1238 return EmitCastLValue(cast<CastExpr>(E)); 1239 1240 case Expr::MaterializeTemporaryExprClass: 1241 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1242 1243 case Expr::CoawaitExprClass: 1244 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1245 case Expr::CoyieldExprClass: 1246 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1247 } 1248 } 1249 1250 /// Given an object of the given canonical type, can we safely copy a 1251 /// value out of it based on its initializer? 1252 static bool isConstantEmittableObjectType(QualType type) { 1253 assert(type.isCanonical()); 1254 assert(!type->isReferenceType()); 1255 1256 // Must be const-qualified but non-volatile. 1257 Qualifiers qs = type.getLocalQualifiers(); 1258 if (!qs.hasConst() || qs.hasVolatile()) return false; 1259 1260 // Otherwise, all object types satisfy this except C++ classes with 1261 // mutable subobjects or non-trivial copy/destroy behavior. 1262 if (const auto *RT = dyn_cast<RecordType>(type)) 1263 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1264 if (RD->hasMutableFields() || !RD->isTrivial()) 1265 return false; 1266 1267 return true; 1268 } 1269 1270 /// Can we constant-emit a load of a reference to a variable of the 1271 /// given type? This is different from predicates like 1272 /// Decl::isUsableInConstantExpressions because we do want it to apply 1273 /// in situations that don't necessarily satisfy the language's rules 1274 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1275 /// to do this with const float variables even if those variables 1276 /// aren't marked 'constexpr'. 1277 enum ConstantEmissionKind { 1278 CEK_None, 1279 CEK_AsReferenceOnly, 1280 CEK_AsValueOrReference, 1281 CEK_AsValueOnly 1282 }; 1283 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1284 type = type.getCanonicalType(); 1285 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1286 if (isConstantEmittableObjectType(ref->getPointeeType())) 1287 return CEK_AsValueOrReference; 1288 return CEK_AsReferenceOnly; 1289 } 1290 if (isConstantEmittableObjectType(type)) 1291 return CEK_AsValueOnly; 1292 return CEK_None; 1293 } 1294 1295 /// Try to emit a reference to the given value without producing it as 1296 /// an l-value. This is actually more than an optimization: we can't 1297 /// produce an l-value for variables that we never actually captured 1298 /// in a block or lambda, which means const int variables or constexpr 1299 /// literals or similar. 1300 CodeGenFunction::ConstantEmission 1301 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1302 ValueDecl *value = refExpr->getDecl(); 1303 1304 // The value needs to be an enum constant or a constant variable. 1305 ConstantEmissionKind CEK; 1306 if (isa<ParmVarDecl>(value)) { 1307 CEK = CEK_None; 1308 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1309 CEK = checkVarTypeForConstantEmission(var->getType()); 1310 } else if (isa<EnumConstantDecl>(value)) { 1311 CEK = CEK_AsValueOnly; 1312 } else { 1313 CEK = CEK_None; 1314 } 1315 if (CEK == CEK_None) return ConstantEmission(); 1316 1317 Expr::EvalResult result; 1318 bool resultIsReference; 1319 QualType resultType; 1320 1321 // It's best to evaluate all the way as an r-value if that's permitted. 1322 if (CEK != CEK_AsReferenceOnly && 1323 refExpr->EvaluateAsRValue(result, getContext())) { 1324 resultIsReference = false; 1325 resultType = refExpr->getType(); 1326 1327 // Otherwise, try to evaluate as an l-value. 1328 } else if (CEK != CEK_AsValueOnly && 1329 refExpr->EvaluateAsLValue(result, getContext())) { 1330 resultIsReference = true; 1331 resultType = value->getType(); 1332 1333 // Failure. 1334 } else { 1335 return ConstantEmission(); 1336 } 1337 1338 // In any case, if the initializer has side-effects, abandon ship. 1339 if (result.HasSideEffects) 1340 return ConstantEmission(); 1341 1342 // Emit as a constant. 1343 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1344 result.Val, resultType); 1345 1346 // Make sure we emit a debug reference to the global variable. 1347 // This should probably fire even for 1348 if (isa<VarDecl>(value)) { 1349 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1350 EmitDeclRefExprDbgValue(refExpr, result.Val); 1351 } else { 1352 assert(isa<EnumConstantDecl>(value)); 1353 EmitDeclRefExprDbgValue(refExpr, result.Val); 1354 } 1355 1356 // If we emitted a reference constant, we need to dereference that. 1357 if (resultIsReference) 1358 return ConstantEmission::forReference(C); 1359 1360 return ConstantEmission::forValue(C); 1361 } 1362 1363 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1364 const MemberExpr *ME) { 1365 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1366 // Try to emit static variable member expressions as DREs. 1367 return DeclRefExpr::Create( 1368 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1369 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1370 ME->getType(), ME->getValueKind()); 1371 } 1372 return nullptr; 1373 } 1374 1375 CodeGenFunction::ConstantEmission 1376 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1377 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1378 return tryEmitAsConstant(DRE); 1379 return ConstantEmission(); 1380 } 1381 1382 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1383 SourceLocation Loc) { 1384 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1385 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1386 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1387 } 1388 1389 static bool hasBooleanRepresentation(QualType Ty) { 1390 if (Ty->isBooleanType()) 1391 return true; 1392 1393 if (const EnumType *ET = Ty->getAs<EnumType>()) 1394 return ET->getDecl()->getIntegerType()->isBooleanType(); 1395 1396 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1397 return hasBooleanRepresentation(AT->getValueType()); 1398 1399 return false; 1400 } 1401 1402 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1403 llvm::APInt &Min, llvm::APInt &End, 1404 bool StrictEnums, bool IsBool) { 1405 const EnumType *ET = Ty->getAs<EnumType>(); 1406 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1407 ET && !ET->getDecl()->isFixed(); 1408 if (!IsBool && !IsRegularCPlusPlusEnum) 1409 return false; 1410 1411 if (IsBool) { 1412 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1413 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1414 } else { 1415 const EnumDecl *ED = ET->getDecl(); 1416 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1417 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1418 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1419 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1420 1421 if (NumNegativeBits) { 1422 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1423 assert(NumBits <= Bitwidth); 1424 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1425 Min = -End; 1426 } else { 1427 assert(NumPositiveBits <= Bitwidth); 1428 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1429 Min = llvm::APInt(Bitwidth, 0); 1430 } 1431 } 1432 return true; 1433 } 1434 1435 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1436 llvm::APInt Min, End; 1437 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1438 hasBooleanRepresentation(Ty))) 1439 return nullptr; 1440 1441 llvm::MDBuilder MDHelper(getLLVMContext()); 1442 return MDHelper.createRange(Min, End); 1443 } 1444 1445 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1446 SourceLocation Loc) { 1447 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1448 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1449 if (!HasBoolCheck && !HasEnumCheck) 1450 return false; 1451 1452 bool IsBool = hasBooleanRepresentation(Ty) || 1453 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1454 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1455 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1456 if (!NeedsBoolCheck && !NeedsEnumCheck) 1457 return false; 1458 1459 // Single-bit booleans don't need to be checked. Special-case this to avoid 1460 // a bit width mismatch when handling bitfield values. This is handled by 1461 // EmitFromMemory for the non-bitfield case. 1462 if (IsBool && 1463 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1464 return false; 1465 1466 llvm::APInt Min, End; 1467 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1468 return true; 1469 1470 auto &Ctx = getLLVMContext(); 1471 SanitizerScope SanScope(this); 1472 llvm::Value *Check; 1473 --End; 1474 if (!Min) { 1475 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1476 } else { 1477 llvm::Value *Upper = 1478 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1479 llvm::Value *Lower = 1480 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1481 Check = Builder.CreateAnd(Upper, Lower); 1482 } 1483 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1484 EmitCheckTypeDescriptor(Ty)}; 1485 SanitizerMask Kind = 1486 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1487 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1488 StaticArgs, EmitCheckValue(Value)); 1489 return true; 1490 } 1491 1492 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1493 QualType Ty, 1494 SourceLocation Loc, 1495 LValueBaseInfo BaseInfo, 1496 TBAAAccessInfo TBAAInfo, 1497 bool isNontemporal) { 1498 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1499 // For better performance, handle vector loads differently. 1500 if (Ty->isVectorType()) { 1501 const llvm::Type *EltTy = Addr.getElementType(); 1502 1503 const auto *VTy = cast<llvm::VectorType>(EltTy); 1504 1505 // Handle vectors of size 3 like size 4 for better performance. 1506 if (VTy->getNumElements() == 3) { 1507 1508 // Bitcast to vec4 type. 1509 llvm::VectorType *vec4Ty = 1510 llvm::VectorType::get(VTy->getElementType(), 4); 1511 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1512 // Now load value. 1513 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1514 1515 // Shuffle vector to get vec3. 1516 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1517 {0, 1, 2}, "extractVec"); 1518 return EmitFromMemory(V, Ty); 1519 } 1520 } 1521 } 1522 1523 // Atomic operations have to be done on integral types. 1524 LValue AtomicLValue = 1525 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1526 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1527 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1528 } 1529 1530 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1531 if (isNontemporal) { 1532 llvm::MDNode *Node = llvm::MDNode::get( 1533 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1534 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1535 } 1536 1537 if (BaseInfo.getMayAlias()) 1538 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1539 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1540 1541 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1542 // In order to prevent the optimizer from throwing away the check, don't 1543 // attach range metadata to the load. 1544 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1545 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1546 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1547 1548 return EmitFromMemory(Load, Ty); 1549 } 1550 1551 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1552 // Bool has a different representation in memory than in registers. 1553 if (hasBooleanRepresentation(Ty)) { 1554 // This should really always be an i1, but sometimes it's already 1555 // an i8, and it's awkward to track those cases down. 1556 if (Value->getType()->isIntegerTy(1)) 1557 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1558 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1559 "wrong value rep of bool"); 1560 } 1561 1562 return Value; 1563 } 1564 1565 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1566 // Bool has a different representation in memory than in registers. 1567 if (hasBooleanRepresentation(Ty)) { 1568 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1569 "wrong value rep of bool"); 1570 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1571 } 1572 1573 return Value; 1574 } 1575 1576 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1577 bool Volatile, QualType Ty, 1578 LValueBaseInfo BaseInfo, 1579 TBAAAccessInfo TBAAInfo, 1580 bool isInit, bool isNontemporal) { 1581 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1582 // Handle vectors differently to get better performance. 1583 if (Ty->isVectorType()) { 1584 llvm::Type *SrcTy = Value->getType(); 1585 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1586 // Handle vec3 special. 1587 if (VecTy && VecTy->getNumElements() == 3) { 1588 // Our source is a vec3, do a shuffle vector to make it a vec4. 1589 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1590 Builder.getInt32(2), 1591 llvm::UndefValue::get(Builder.getInt32Ty())}; 1592 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1593 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1594 MaskV, "extractVec"); 1595 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1596 } 1597 if (Addr.getElementType() != SrcTy) { 1598 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1599 } 1600 } 1601 } 1602 1603 Value = EmitToMemory(Value, Ty); 1604 1605 LValue AtomicLValue = 1606 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1607 if (Ty->isAtomicType() || 1608 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1609 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1610 return; 1611 } 1612 1613 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1614 if (isNontemporal) { 1615 llvm::MDNode *Node = 1616 llvm::MDNode::get(Store->getContext(), 1617 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1618 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1619 } 1620 1621 if (BaseInfo.getMayAlias()) 1622 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1623 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1624 } 1625 1626 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1627 bool isInit) { 1628 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1629 lvalue.getType(), lvalue.getBaseInfo(), 1630 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1631 } 1632 1633 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1634 /// method emits the address of the lvalue, then loads the result as an rvalue, 1635 /// returning the rvalue. 1636 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1637 if (LV.isObjCWeak()) { 1638 // load of a __weak object. 1639 Address AddrWeakObj = LV.getAddress(); 1640 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1641 AddrWeakObj)); 1642 } 1643 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1644 // In MRC mode, we do a load+autorelease. 1645 if (!getLangOpts().ObjCAutoRefCount) { 1646 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1647 } 1648 1649 // In ARC mode, we load retained and then consume the value. 1650 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1651 Object = EmitObjCConsumeObject(LV.getType(), Object); 1652 return RValue::get(Object); 1653 } 1654 1655 if (LV.isSimple()) { 1656 assert(!LV.getType()->isFunctionType()); 1657 1658 // Everything needs a load. 1659 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1660 } 1661 1662 if (LV.isVectorElt()) { 1663 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1664 LV.isVolatileQualified()); 1665 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1666 "vecext")); 1667 } 1668 1669 // If this is a reference to a subset of the elements of a vector, either 1670 // shuffle the input or extract/insert them as appropriate. 1671 if (LV.isExtVectorElt()) 1672 return EmitLoadOfExtVectorElementLValue(LV); 1673 1674 // Global Register variables always invoke intrinsics 1675 if (LV.isGlobalReg()) 1676 return EmitLoadOfGlobalRegLValue(LV); 1677 1678 assert(LV.isBitField() && "Unknown LValue type!"); 1679 return EmitLoadOfBitfieldLValue(LV, Loc); 1680 } 1681 1682 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1683 SourceLocation Loc) { 1684 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1685 1686 // Get the output type. 1687 llvm::Type *ResLTy = ConvertType(LV.getType()); 1688 1689 Address Ptr = LV.getBitFieldAddress(); 1690 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1691 1692 if (Info.IsSigned) { 1693 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1694 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1695 if (HighBits) 1696 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1697 if (Info.Offset + HighBits) 1698 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1699 } else { 1700 if (Info.Offset) 1701 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1702 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1703 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1704 Info.Size), 1705 "bf.clear"); 1706 } 1707 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1708 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1709 return RValue::get(Val); 1710 } 1711 1712 // If this is a reference to a subset of the elements of a vector, create an 1713 // appropriate shufflevector. 1714 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1715 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1716 LV.isVolatileQualified()); 1717 1718 const llvm::Constant *Elts = LV.getExtVectorElts(); 1719 1720 // If the result of the expression is a non-vector type, we must be extracting 1721 // a single element. Just codegen as an extractelement. 1722 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1723 if (!ExprVT) { 1724 unsigned InIdx = getAccessedFieldNo(0, Elts); 1725 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1726 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1727 } 1728 1729 // Always use shuffle vector to try to retain the original program structure 1730 unsigned NumResultElts = ExprVT->getNumElements(); 1731 1732 SmallVector<llvm::Constant*, 4> Mask; 1733 for (unsigned i = 0; i != NumResultElts; ++i) 1734 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1735 1736 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1737 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1738 MaskV); 1739 return RValue::get(Vec); 1740 } 1741 1742 /// @brief Generates lvalue for partial ext_vector access. 1743 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1744 Address VectorAddress = LV.getExtVectorAddress(); 1745 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1746 QualType EQT = ExprVT->getElementType(); 1747 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1748 1749 Address CastToPointerElement = 1750 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1751 "conv.ptr.element"); 1752 1753 const llvm::Constant *Elts = LV.getExtVectorElts(); 1754 unsigned ix = getAccessedFieldNo(0, Elts); 1755 1756 Address VectorBasePtrPlusIx = 1757 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1758 getContext().getTypeSizeInChars(EQT), 1759 "vector.elt"); 1760 1761 return VectorBasePtrPlusIx; 1762 } 1763 1764 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1765 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1766 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1767 "Bad type for register variable"); 1768 llvm::MDNode *RegName = cast<llvm::MDNode>( 1769 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1770 1771 // We accept integer and pointer types only 1772 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1773 llvm::Type *Ty = OrigTy; 1774 if (OrigTy->isPointerTy()) 1775 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1776 llvm::Type *Types[] = { Ty }; 1777 1778 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1779 llvm::Value *Call = Builder.CreateCall( 1780 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1781 if (OrigTy->isPointerTy()) 1782 Call = Builder.CreateIntToPtr(Call, OrigTy); 1783 return RValue::get(Call); 1784 } 1785 1786 1787 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1788 /// lvalue, where both are guaranteed to the have the same type, and that type 1789 /// is 'Ty'. 1790 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1791 bool isInit) { 1792 if (!Dst.isSimple()) { 1793 if (Dst.isVectorElt()) { 1794 // Read/modify/write the vector, inserting the new element. 1795 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1796 Dst.isVolatileQualified()); 1797 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1798 Dst.getVectorIdx(), "vecins"); 1799 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1800 Dst.isVolatileQualified()); 1801 return; 1802 } 1803 1804 // If this is an update of extended vector elements, insert them as 1805 // appropriate. 1806 if (Dst.isExtVectorElt()) 1807 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1808 1809 if (Dst.isGlobalReg()) 1810 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1811 1812 assert(Dst.isBitField() && "Unknown LValue type"); 1813 return EmitStoreThroughBitfieldLValue(Src, Dst); 1814 } 1815 1816 // There's special magic for assigning into an ARC-qualified l-value. 1817 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1818 switch (Lifetime) { 1819 case Qualifiers::OCL_None: 1820 llvm_unreachable("present but none"); 1821 1822 case Qualifiers::OCL_ExplicitNone: 1823 // nothing special 1824 break; 1825 1826 case Qualifiers::OCL_Strong: 1827 if (isInit) { 1828 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1829 break; 1830 } 1831 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1832 return; 1833 1834 case Qualifiers::OCL_Weak: 1835 if (isInit) 1836 // Initialize and then skip the primitive store. 1837 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1838 else 1839 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1840 return; 1841 1842 case Qualifiers::OCL_Autoreleasing: 1843 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1844 Src.getScalarVal())); 1845 // fall into the normal path 1846 break; 1847 } 1848 } 1849 1850 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1851 // load of a __weak object. 1852 Address LvalueDst = Dst.getAddress(); 1853 llvm::Value *src = Src.getScalarVal(); 1854 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1855 return; 1856 } 1857 1858 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1859 // load of a __strong object. 1860 Address LvalueDst = Dst.getAddress(); 1861 llvm::Value *src = Src.getScalarVal(); 1862 if (Dst.isObjCIvar()) { 1863 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1864 llvm::Type *ResultType = IntPtrTy; 1865 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1866 llvm::Value *RHS = dst.getPointer(); 1867 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1868 llvm::Value *LHS = 1869 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1870 "sub.ptr.lhs.cast"); 1871 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1872 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1873 BytesBetween); 1874 } else if (Dst.isGlobalObjCRef()) { 1875 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1876 Dst.isThreadLocalRef()); 1877 } 1878 else 1879 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1880 return; 1881 } 1882 1883 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1884 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1885 } 1886 1887 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1888 llvm::Value **Result) { 1889 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1890 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1891 Address Ptr = Dst.getBitFieldAddress(); 1892 1893 // Get the source value, truncated to the width of the bit-field. 1894 llvm::Value *SrcVal = Src.getScalarVal(); 1895 1896 // Cast the source to the storage type and shift it into place. 1897 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1898 /*IsSigned=*/false); 1899 llvm::Value *MaskedVal = SrcVal; 1900 1901 // See if there are other bits in the bitfield's storage we'll need to load 1902 // and mask together with source before storing. 1903 if (Info.StorageSize != Info.Size) { 1904 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1905 llvm::Value *Val = 1906 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1907 1908 // Mask the source value as needed. 1909 if (!hasBooleanRepresentation(Dst.getType())) 1910 SrcVal = Builder.CreateAnd(SrcVal, 1911 llvm::APInt::getLowBitsSet(Info.StorageSize, 1912 Info.Size), 1913 "bf.value"); 1914 MaskedVal = SrcVal; 1915 if (Info.Offset) 1916 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1917 1918 // Mask out the original value. 1919 Val = Builder.CreateAnd(Val, 1920 ~llvm::APInt::getBitsSet(Info.StorageSize, 1921 Info.Offset, 1922 Info.Offset + Info.Size), 1923 "bf.clear"); 1924 1925 // Or together the unchanged values and the source value. 1926 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1927 } else { 1928 assert(Info.Offset == 0); 1929 } 1930 1931 // Write the new value back out. 1932 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1933 1934 // Return the new value of the bit-field, if requested. 1935 if (Result) { 1936 llvm::Value *ResultVal = MaskedVal; 1937 1938 // Sign extend the value if needed. 1939 if (Info.IsSigned) { 1940 assert(Info.Size <= Info.StorageSize); 1941 unsigned HighBits = Info.StorageSize - Info.Size; 1942 if (HighBits) { 1943 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1944 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1945 } 1946 } 1947 1948 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1949 "bf.result.cast"); 1950 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1951 } 1952 } 1953 1954 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1955 LValue Dst) { 1956 // This access turns into a read/modify/write of the vector. Load the input 1957 // value now. 1958 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1959 Dst.isVolatileQualified()); 1960 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1961 1962 llvm::Value *SrcVal = Src.getScalarVal(); 1963 1964 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1965 unsigned NumSrcElts = VTy->getNumElements(); 1966 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1967 if (NumDstElts == NumSrcElts) { 1968 // Use shuffle vector is the src and destination are the same number of 1969 // elements and restore the vector mask since it is on the side it will be 1970 // stored. 1971 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1972 for (unsigned i = 0; i != NumSrcElts; ++i) 1973 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1974 1975 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1976 Vec = Builder.CreateShuffleVector(SrcVal, 1977 llvm::UndefValue::get(Vec->getType()), 1978 MaskV); 1979 } else if (NumDstElts > NumSrcElts) { 1980 // Extended the source vector to the same length and then shuffle it 1981 // into the destination. 1982 // FIXME: since we're shuffling with undef, can we just use the indices 1983 // into that? This could be simpler. 1984 SmallVector<llvm::Constant*, 4> ExtMask; 1985 for (unsigned i = 0; i != NumSrcElts; ++i) 1986 ExtMask.push_back(Builder.getInt32(i)); 1987 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1988 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1989 llvm::Value *ExtSrcVal = 1990 Builder.CreateShuffleVector(SrcVal, 1991 llvm::UndefValue::get(SrcVal->getType()), 1992 ExtMaskV); 1993 // build identity 1994 SmallVector<llvm::Constant*, 4> Mask; 1995 for (unsigned i = 0; i != NumDstElts; ++i) 1996 Mask.push_back(Builder.getInt32(i)); 1997 1998 // When the vector size is odd and .odd or .hi is used, the last element 1999 // of the Elts constant array will be one past the size of the vector. 2000 // Ignore the last element here, if it is greater than the mask size. 2001 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2002 NumSrcElts--; 2003 2004 // modify when what gets shuffled in 2005 for (unsigned i = 0; i != NumSrcElts; ++i) 2006 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2007 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2008 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2009 } else { 2010 // We should never shorten the vector 2011 llvm_unreachable("unexpected shorten vector length"); 2012 } 2013 } else { 2014 // If the Src is a scalar (not a vector) it must be updating one element. 2015 unsigned InIdx = getAccessedFieldNo(0, Elts); 2016 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2017 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2018 } 2019 2020 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2021 Dst.isVolatileQualified()); 2022 } 2023 2024 /// @brief Store of global named registers are always calls to intrinsics. 2025 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2026 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2027 "Bad type for register variable"); 2028 llvm::MDNode *RegName = cast<llvm::MDNode>( 2029 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2030 assert(RegName && "Register LValue is not metadata"); 2031 2032 // We accept integer and pointer types only 2033 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2034 llvm::Type *Ty = OrigTy; 2035 if (OrigTy->isPointerTy()) 2036 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2037 llvm::Type *Types[] = { Ty }; 2038 2039 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2040 llvm::Value *Value = Src.getScalarVal(); 2041 if (OrigTy->isPointerTy()) 2042 Value = Builder.CreatePtrToInt(Value, Ty); 2043 Builder.CreateCall( 2044 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2045 } 2046 2047 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2048 // generating write-barries API. It is currently a global, ivar, 2049 // or neither. 2050 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2051 LValue &LV, 2052 bool IsMemberAccess=false) { 2053 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2054 return; 2055 2056 if (isa<ObjCIvarRefExpr>(E)) { 2057 QualType ExpTy = E->getType(); 2058 if (IsMemberAccess && ExpTy->isPointerType()) { 2059 // If ivar is a structure pointer, assigning to field of 2060 // this struct follows gcc's behavior and makes it a non-ivar 2061 // writer-barrier conservatively. 2062 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2063 if (ExpTy->isRecordType()) { 2064 LV.setObjCIvar(false); 2065 return; 2066 } 2067 } 2068 LV.setObjCIvar(true); 2069 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2070 LV.setBaseIvarExp(Exp->getBase()); 2071 LV.setObjCArray(E->getType()->isArrayType()); 2072 return; 2073 } 2074 2075 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2076 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2077 if (VD->hasGlobalStorage()) { 2078 LV.setGlobalObjCRef(true); 2079 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2080 } 2081 } 2082 LV.setObjCArray(E->getType()->isArrayType()); 2083 return; 2084 } 2085 2086 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2087 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2088 return; 2089 } 2090 2091 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2092 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2093 if (LV.isObjCIvar()) { 2094 // If cast is to a structure pointer, follow gcc's behavior and make it 2095 // a non-ivar write-barrier. 2096 QualType ExpTy = E->getType(); 2097 if (ExpTy->isPointerType()) 2098 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2099 if (ExpTy->isRecordType()) 2100 LV.setObjCIvar(false); 2101 } 2102 return; 2103 } 2104 2105 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2106 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2107 return; 2108 } 2109 2110 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2111 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2112 return; 2113 } 2114 2115 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2116 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2117 return; 2118 } 2119 2120 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2121 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2122 return; 2123 } 2124 2125 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2126 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2127 if (LV.isObjCIvar() && !LV.isObjCArray()) 2128 // Using array syntax to assigning to what an ivar points to is not 2129 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2130 LV.setObjCIvar(false); 2131 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2132 // Using array syntax to assigning to what global points to is not 2133 // same as assigning to the global itself. {id *G;} G[i] = 0; 2134 LV.setGlobalObjCRef(false); 2135 return; 2136 } 2137 2138 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2139 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2140 // We don't know if member is an 'ivar', but this flag is looked at 2141 // only in the context of LV.isObjCIvar(). 2142 LV.setObjCArray(E->getType()->isArrayType()); 2143 return; 2144 } 2145 } 2146 2147 static llvm::Value * 2148 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2149 llvm::Value *V, llvm::Type *IRType, 2150 StringRef Name = StringRef()) { 2151 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2152 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2153 } 2154 2155 static LValue EmitThreadPrivateVarDeclLValue( 2156 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2157 llvm::Type *RealVarTy, SourceLocation Loc) { 2158 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2159 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2160 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2161 } 2162 2163 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2164 const ReferenceType *RefTy, 2165 LValueBaseInfo *BaseInfo, 2166 TBAAAccessInfo *TBAAInfo) { 2167 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2168 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2169 BaseInfo, TBAAInfo, 2170 /* forPointeeType= */ true)); 2171 } 2172 2173 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2174 const ReferenceType *RefTy) { 2175 LValueBaseInfo BaseInfo; 2176 TBAAAccessInfo TBAAInfo; 2177 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo, &TBAAInfo); 2178 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo, TBAAInfo); 2179 } 2180 2181 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2182 const PointerType *PtrTy, 2183 LValueBaseInfo *BaseInfo, 2184 TBAAAccessInfo *TBAAInfo) { 2185 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2186 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2187 BaseInfo, TBAAInfo, 2188 /*forPointeeType=*/true)); 2189 } 2190 2191 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2192 const PointerType *PtrTy) { 2193 LValueBaseInfo BaseInfo; 2194 TBAAAccessInfo TBAAInfo; 2195 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2196 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2197 } 2198 2199 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2200 const Expr *E, const VarDecl *VD) { 2201 QualType T = E->getType(); 2202 2203 // If it's thread_local, emit a call to its wrapper function instead. 2204 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2205 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2206 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2207 2208 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2209 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2210 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2211 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2212 Address Addr(V, Alignment); 2213 LValue LV; 2214 // Emit reference to the private copy of the variable if it is an OpenMP 2215 // threadprivate variable. 2216 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2217 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2218 E->getExprLoc()); 2219 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2220 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2221 } else { 2222 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2223 } 2224 setObjCGCLValueClass(CGF.getContext(), E, LV); 2225 return LV; 2226 } 2227 2228 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2229 const FunctionDecl *FD) { 2230 if (FD->hasAttr<WeakRefAttr>()) { 2231 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2232 return aliasee.getPointer(); 2233 } 2234 2235 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2236 if (!FD->hasPrototype()) { 2237 if (const FunctionProtoType *Proto = 2238 FD->getType()->getAs<FunctionProtoType>()) { 2239 // Ugly case: for a K&R-style definition, the type of the definition 2240 // isn't the same as the type of a use. Correct for this with a 2241 // bitcast. 2242 QualType NoProtoType = 2243 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2244 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2245 V = llvm::ConstantExpr::getBitCast(V, 2246 CGM.getTypes().ConvertType(NoProtoType)); 2247 } 2248 } 2249 return V; 2250 } 2251 2252 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2253 const Expr *E, const FunctionDecl *FD) { 2254 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2255 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2256 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2257 AlignmentSource::Decl); 2258 } 2259 2260 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2261 llvm::Value *ThisValue) { 2262 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2263 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2264 return CGF.EmitLValueForField(LV, FD); 2265 } 2266 2267 /// Named Registers are named metadata pointing to the register name 2268 /// which will be read from/written to as an argument to the intrinsic 2269 /// @llvm.read/write_register. 2270 /// So far, only the name is being passed down, but other options such as 2271 /// register type, allocation type or even optimization options could be 2272 /// passed down via the metadata node. 2273 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2274 SmallString<64> Name("llvm.named.register."); 2275 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2276 assert(Asm->getLabel().size() < 64-Name.size() && 2277 "Register name too big"); 2278 Name.append(Asm->getLabel()); 2279 llvm::NamedMDNode *M = 2280 CGM.getModule().getOrInsertNamedMetadata(Name); 2281 if (M->getNumOperands() == 0) { 2282 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2283 Asm->getLabel()); 2284 llvm::Metadata *Ops[] = {Str}; 2285 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2286 } 2287 2288 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2289 2290 llvm::Value *Ptr = 2291 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2292 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2293 } 2294 2295 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2296 const NamedDecl *ND = E->getDecl(); 2297 QualType T = E->getType(); 2298 2299 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2300 // Global Named registers access via intrinsics only 2301 if (VD->getStorageClass() == SC_Register && 2302 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2303 return EmitGlobalNamedRegister(VD, CGM); 2304 2305 // A DeclRefExpr for a reference initialized by a constant expression can 2306 // appear without being odr-used. Directly emit the constant initializer. 2307 const Expr *Init = VD->getAnyInitializer(VD); 2308 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2309 VD->isUsableInConstantExpressions(getContext()) && 2310 VD->checkInitIsICE() && 2311 // Do not emit if it is private OpenMP variable. 2312 !(E->refersToEnclosingVariableOrCapture() && 2313 ((CapturedStmtInfo && 2314 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2315 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2316 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2317 isa<BlockDecl>(CurCodeDecl)))) { 2318 llvm::Constant *Val = 2319 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2320 *VD->evaluateValue(), 2321 VD->getType()); 2322 assert(Val && "failed to emit reference constant expression"); 2323 // FIXME: Eventually we will want to emit vector element references. 2324 2325 // Should we be using the alignment of the constant pointer we emitted? 2326 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2327 /* BaseInfo= */ nullptr, 2328 /* TBAAInfo= */ nullptr, 2329 /* forPointeeType= */ true); 2330 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2331 } 2332 2333 // Check for captured variables. 2334 if (E->refersToEnclosingVariableOrCapture()) { 2335 VD = VD->getCanonicalDecl(); 2336 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2337 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2338 else if (CapturedStmtInfo) { 2339 auto I = LocalDeclMap.find(VD); 2340 if (I != LocalDeclMap.end()) { 2341 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2342 return EmitLoadOfReferenceLValue(I->second, RefTy); 2343 return MakeAddrLValue(I->second, T); 2344 } 2345 LValue CapLVal = 2346 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2347 CapturedStmtInfo->getContextValue()); 2348 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2349 return MakeAddrLValue( 2350 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2351 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias), 2352 CGM.getTBAAAccessInfo(CapLVal.getType())); 2353 } 2354 2355 assert(isa<BlockDecl>(CurCodeDecl)); 2356 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2357 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2358 } 2359 } 2360 2361 // FIXME: We should be able to assert this for FunctionDecls as well! 2362 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2363 // those with a valid source location. 2364 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2365 !E->getLocation().isValid()) && 2366 "Should not use decl without marking it used!"); 2367 2368 if (ND->hasAttr<WeakRefAttr>()) { 2369 const auto *VD = cast<ValueDecl>(ND); 2370 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2371 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2372 } 2373 2374 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2375 // Check if this is a global variable. 2376 if (VD->hasLinkage() || VD->isStaticDataMember()) 2377 return EmitGlobalVarDeclLValue(*this, E, VD); 2378 2379 Address addr = Address::invalid(); 2380 2381 // The variable should generally be present in the local decl map. 2382 auto iter = LocalDeclMap.find(VD); 2383 if (iter != LocalDeclMap.end()) { 2384 addr = iter->second; 2385 2386 // Otherwise, it might be static local we haven't emitted yet for 2387 // some reason; most likely, because it's in an outer function. 2388 } else if (VD->isStaticLocal()) { 2389 addr = Address(CGM.getOrCreateStaticVarDecl( 2390 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2391 getContext().getDeclAlign(VD)); 2392 2393 // No other cases for now. 2394 } else { 2395 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2396 } 2397 2398 2399 // Check for OpenMP threadprivate variables. 2400 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2401 return EmitThreadPrivateVarDeclLValue( 2402 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2403 E->getExprLoc()); 2404 } 2405 2406 // Drill into block byref variables. 2407 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2408 if (isBlockByref) { 2409 addr = emitBlockByrefAddress(addr, VD); 2410 } 2411 2412 // Drill into reference types. 2413 LValue LV; 2414 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2415 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2416 } else { 2417 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2418 } 2419 2420 bool isLocalStorage = VD->hasLocalStorage(); 2421 2422 bool NonGCable = isLocalStorage && 2423 !VD->getType()->isReferenceType() && 2424 !isBlockByref; 2425 if (NonGCable) { 2426 LV.getQuals().removeObjCGCAttr(); 2427 LV.setNonGC(true); 2428 } 2429 2430 bool isImpreciseLifetime = 2431 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2432 if (isImpreciseLifetime) 2433 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2434 setObjCGCLValueClass(getContext(), E, LV); 2435 return LV; 2436 } 2437 2438 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2439 return EmitFunctionDeclLValue(*this, E, FD); 2440 2441 // FIXME: While we're emitting a binding from an enclosing scope, all other 2442 // DeclRefExprs we see should be implicitly treated as if they also refer to 2443 // an enclosing scope. 2444 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2445 return EmitLValue(BD->getBinding()); 2446 2447 llvm_unreachable("Unhandled DeclRefExpr"); 2448 } 2449 2450 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2451 // __extension__ doesn't affect lvalue-ness. 2452 if (E->getOpcode() == UO_Extension) 2453 return EmitLValue(E->getSubExpr()); 2454 2455 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2456 switch (E->getOpcode()) { 2457 default: llvm_unreachable("Unknown unary operator lvalue!"); 2458 case UO_Deref: { 2459 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2460 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2461 2462 LValueBaseInfo BaseInfo; 2463 TBAAAccessInfo TBAAInfo; 2464 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2465 &TBAAInfo); 2466 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2467 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2468 2469 // We should not generate __weak write barrier on indirect reference 2470 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2471 // But, we continue to generate __strong write barrier on indirect write 2472 // into a pointer to object. 2473 if (getLangOpts().ObjC1 && 2474 getLangOpts().getGC() != LangOptions::NonGC && 2475 LV.isObjCWeak()) 2476 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2477 return LV; 2478 } 2479 case UO_Real: 2480 case UO_Imag: { 2481 LValue LV = EmitLValue(E->getSubExpr()); 2482 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2483 2484 // __real is valid on scalars. This is a faster way of testing that. 2485 // __imag can only produce an rvalue on scalars. 2486 if (E->getOpcode() == UO_Real && 2487 !LV.getAddress().getElementType()->isStructTy()) { 2488 assert(E->getSubExpr()->getType()->isArithmeticType()); 2489 return LV; 2490 } 2491 2492 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2493 2494 Address Component = 2495 (E->getOpcode() == UO_Real 2496 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2497 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2498 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2499 CGM.getTBAAAccessInfo(T)); 2500 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2501 return ElemLV; 2502 } 2503 case UO_PreInc: 2504 case UO_PreDec: { 2505 LValue LV = EmitLValue(E->getSubExpr()); 2506 bool isInc = E->getOpcode() == UO_PreInc; 2507 2508 if (E->getType()->isAnyComplexType()) 2509 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2510 else 2511 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2512 return LV; 2513 } 2514 } 2515 } 2516 2517 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2518 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2519 E->getType(), AlignmentSource::Decl); 2520 } 2521 2522 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2523 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2524 E->getType(), AlignmentSource::Decl); 2525 } 2526 2527 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2528 auto SL = E->getFunctionName(); 2529 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2530 StringRef FnName = CurFn->getName(); 2531 if (FnName.startswith("\01")) 2532 FnName = FnName.substr(1); 2533 StringRef NameItems[] = { 2534 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2535 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2536 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2537 std::string Name = SL->getString(); 2538 if (!Name.empty()) { 2539 unsigned Discriminator = 2540 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2541 if (Discriminator) 2542 Name += "_" + Twine(Discriminator + 1).str(); 2543 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2544 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2545 } else { 2546 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2547 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2548 } 2549 } 2550 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2551 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2552 } 2553 2554 /// Emit a type description suitable for use by a runtime sanitizer library. The 2555 /// format of a type descriptor is 2556 /// 2557 /// \code 2558 /// { i16 TypeKind, i16 TypeInfo } 2559 /// \endcode 2560 /// 2561 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2562 /// integer, 1 for a floating point value, and -1 for anything else. 2563 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2564 // Only emit each type's descriptor once. 2565 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2566 return C; 2567 2568 uint16_t TypeKind = -1; 2569 uint16_t TypeInfo = 0; 2570 2571 if (T->isIntegerType()) { 2572 TypeKind = 0; 2573 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2574 (T->isSignedIntegerType() ? 1 : 0); 2575 } else if (T->isFloatingType()) { 2576 TypeKind = 1; 2577 TypeInfo = getContext().getTypeSize(T); 2578 } 2579 2580 // Format the type name as if for a diagnostic, including quotes and 2581 // optionally an 'aka'. 2582 SmallString<32> Buffer; 2583 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2584 (intptr_t)T.getAsOpaquePtr(), 2585 StringRef(), StringRef(), None, Buffer, 2586 None); 2587 2588 llvm::Constant *Components[] = { 2589 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2590 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2591 }; 2592 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2593 2594 auto *GV = new llvm::GlobalVariable( 2595 CGM.getModule(), Descriptor->getType(), 2596 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2597 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2598 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2599 2600 // Remember the descriptor for this type. 2601 CGM.setTypeDescriptorInMap(T, GV); 2602 2603 return GV; 2604 } 2605 2606 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2607 llvm::Type *TargetTy = IntPtrTy; 2608 2609 if (V->getType() == TargetTy) 2610 return V; 2611 2612 // Floating-point types which fit into intptr_t are bitcast to integers 2613 // and then passed directly (after zero-extension, if necessary). 2614 if (V->getType()->isFloatingPointTy()) { 2615 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2616 if (Bits <= TargetTy->getIntegerBitWidth()) 2617 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2618 Bits)); 2619 } 2620 2621 // Integers which fit in intptr_t are zero-extended and passed directly. 2622 if (V->getType()->isIntegerTy() && 2623 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2624 return Builder.CreateZExt(V, TargetTy); 2625 2626 // Pointers are passed directly, everything else is passed by address. 2627 if (!V->getType()->isPointerTy()) { 2628 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2629 Builder.CreateStore(V, Ptr); 2630 V = Ptr.getPointer(); 2631 } 2632 return Builder.CreatePtrToInt(V, TargetTy); 2633 } 2634 2635 /// \brief Emit a representation of a SourceLocation for passing to a handler 2636 /// in a sanitizer runtime library. The format for this data is: 2637 /// \code 2638 /// struct SourceLocation { 2639 /// const char *Filename; 2640 /// int32_t Line, Column; 2641 /// }; 2642 /// \endcode 2643 /// For an invalid SourceLocation, the Filename pointer is null. 2644 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2645 llvm::Constant *Filename; 2646 int Line, Column; 2647 2648 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2649 if (PLoc.isValid()) { 2650 StringRef FilenameString = PLoc.getFilename(); 2651 2652 int PathComponentsToStrip = 2653 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2654 if (PathComponentsToStrip < 0) { 2655 assert(PathComponentsToStrip != INT_MIN); 2656 int PathComponentsToKeep = -PathComponentsToStrip; 2657 auto I = llvm::sys::path::rbegin(FilenameString); 2658 auto E = llvm::sys::path::rend(FilenameString); 2659 while (I != E && --PathComponentsToKeep) 2660 ++I; 2661 2662 FilenameString = FilenameString.substr(I - E); 2663 } else if (PathComponentsToStrip > 0) { 2664 auto I = llvm::sys::path::begin(FilenameString); 2665 auto E = llvm::sys::path::end(FilenameString); 2666 while (I != E && PathComponentsToStrip--) 2667 ++I; 2668 2669 if (I != E) 2670 FilenameString = 2671 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2672 else 2673 FilenameString = llvm::sys::path::filename(FilenameString); 2674 } 2675 2676 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2677 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2678 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2679 Filename = FilenameGV.getPointer(); 2680 Line = PLoc.getLine(); 2681 Column = PLoc.getColumn(); 2682 } else { 2683 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2684 Line = Column = 0; 2685 } 2686 2687 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2688 Builder.getInt32(Column)}; 2689 2690 return llvm::ConstantStruct::getAnon(Data); 2691 } 2692 2693 namespace { 2694 /// \brief Specify under what conditions this check can be recovered 2695 enum class CheckRecoverableKind { 2696 /// Always terminate program execution if this check fails. 2697 Unrecoverable, 2698 /// Check supports recovering, runtime has both fatal (noreturn) and 2699 /// non-fatal handlers for this check. 2700 Recoverable, 2701 /// Runtime conditionally aborts, always need to support recovery. 2702 AlwaysRecoverable 2703 }; 2704 } 2705 2706 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2707 assert(llvm::countPopulation(Kind) == 1); 2708 switch (Kind) { 2709 case SanitizerKind::Vptr: 2710 return CheckRecoverableKind::AlwaysRecoverable; 2711 case SanitizerKind::Return: 2712 case SanitizerKind::Unreachable: 2713 return CheckRecoverableKind::Unrecoverable; 2714 default: 2715 return CheckRecoverableKind::Recoverable; 2716 } 2717 } 2718 2719 namespace { 2720 struct SanitizerHandlerInfo { 2721 char const *const Name; 2722 unsigned Version; 2723 }; 2724 } 2725 2726 const SanitizerHandlerInfo SanitizerHandlers[] = { 2727 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2728 LIST_SANITIZER_CHECKS 2729 #undef SANITIZER_CHECK 2730 }; 2731 2732 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2733 llvm::FunctionType *FnType, 2734 ArrayRef<llvm::Value *> FnArgs, 2735 SanitizerHandler CheckHandler, 2736 CheckRecoverableKind RecoverKind, bool IsFatal, 2737 llvm::BasicBlock *ContBB) { 2738 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2739 bool NeedsAbortSuffix = 2740 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2741 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2742 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2743 const StringRef CheckName = CheckInfo.Name; 2744 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2745 if (CheckInfo.Version && !MinimalRuntime) 2746 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2747 if (MinimalRuntime) 2748 FnName += "_minimal"; 2749 if (NeedsAbortSuffix) 2750 FnName += "_abort"; 2751 bool MayReturn = 2752 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2753 2754 llvm::AttrBuilder B; 2755 if (!MayReturn) { 2756 B.addAttribute(llvm::Attribute::NoReturn) 2757 .addAttribute(llvm::Attribute::NoUnwind); 2758 } 2759 B.addAttribute(llvm::Attribute::UWTable); 2760 2761 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2762 FnType, FnName, 2763 llvm::AttributeList::get(CGF.getLLVMContext(), 2764 llvm::AttributeList::FunctionIndex, B), 2765 /*Local=*/true); 2766 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2767 if (!MayReturn) { 2768 HandlerCall->setDoesNotReturn(); 2769 CGF.Builder.CreateUnreachable(); 2770 } else { 2771 CGF.Builder.CreateBr(ContBB); 2772 } 2773 } 2774 2775 void CodeGenFunction::EmitCheck( 2776 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2777 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2778 ArrayRef<llvm::Value *> DynamicArgs) { 2779 assert(IsSanitizerScope); 2780 assert(Checked.size() > 0); 2781 assert(CheckHandler >= 0 && 2782 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2783 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2784 2785 llvm::Value *FatalCond = nullptr; 2786 llvm::Value *RecoverableCond = nullptr; 2787 llvm::Value *TrapCond = nullptr; 2788 for (int i = 0, n = Checked.size(); i < n; ++i) { 2789 llvm::Value *Check = Checked[i].first; 2790 // -fsanitize-trap= overrides -fsanitize-recover=. 2791 llvm::Value *&Cond = 2792 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2793 ? TrapCond 2794 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2795 ? RecoverableCond 2796 : FatalCond; 2797 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2798 } 2799 2800 if (TrapCond) 2801 EmitTrapCheck(TrapCond); 2802 if (!FatalCond && !RecoverableCond) 2803 return; 2804 2805 llvm::Value *JointCond; 2806 if (FatalCond && RecoverableCond) 2807 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2808 else 2809 JointCond = FatalCond ? FatalCond : RecoverableCond; 2810 assert(JointCond); 2811 2812 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2813 assert(SanOpts.has(Checked[0].second)); 2814 #ifndef NDEBUG 2815 for (int i = 1, n = Checked.size(); i < n; ++i) { 2816 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2817 "All recoverable kinds in a single check must be same!"); 2818 assert(SanOpts.has(Checked[i].second)); 2819 } 2820 #endif 2821 2822 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2823 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2824 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2825 // Give hint that we very much don't expect to execute the handler 2826 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2827 llvm::MDBuilder MDHelper(getLLVMContext()); 2828 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2829 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2830 EmitBlock(Handlers); 2831 2832 // Handler functions take an i8* pointing to the (handler-specific) static 2833 // information block, followed by a sequence of intptr_t arguments 2834 // representing operand values. 2835 SmallVector<llvm::Value *, 4> Args; 2836 SmallVector<llvm::Type *, 4> ArgTypes; 2837 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2838 Args.reserve(DynamicArgs.size() + 1); 2839 ArgTypes.reserve(DynamicArgs.size() + 1); 2840 2841 // Emit handler arguments and create handler function type. 2842 if (!StaticArgs.empty()) { 2843 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2844 auto *InfoPtr = 2845 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2846 llvm::GlobalVariable::PrivateLinkage, Info); 2847 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2848 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2849 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2850 ArgTypes.push_back(Int8PtrTy); 2851 } 2852 2853 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2854 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2855 ArgTypes.push_back(IntPtrTy); 2856 } 2857 } 2858 2859 llvm::FunctionType *FnType = 2860 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2861 2862 if (!FatalCond || !RecoverableCond) { 2863 // Simple case: we need to generate a single handler call, either 2864 // fatal, or non-fatal. 2865 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2866 (FatalCond != nullptr), Cont); 2867 } else { 2868 // Emit two handler calls: first one for set of unrecoverable checks, 2869 // another one for recoverable. 2870 llvm::BasicBlock *NonFatalHandlerBB = 2871 createBasicBlock("non_fatal." + CheckName); 2872 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2873 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2874 EmitBlock(FatalHandlerBB); 2875 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2876 NonFatalHandlerBB); 2877 EmitBlock(NonFatalHandlerBB); 2878 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2879 Cont); 2880 } 2881 2882 EmitBlock(Cont); 2883 } 2884 2885 void CodeGenFunction::EmitCfiSlowPathCheck( 2886 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2887 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2888 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2889 2890 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2891 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2892 2893 llvm::MDBuilder MDHelper(getLLVMContext()); 2894 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2895 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2896 2897 EmitBlock(CheckBB); 2898 2899 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2900 2901 llvm::CallInst *CheckCall; 2902 if (WithDiag) { 2903 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2904 auto *InfoPtr = 2905 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2906 llvm::GlobalVariable::PrivateLinkage, Info); 2907 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2908 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2909 2910 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2911 "__cfi_slowpath_diag", 2912 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2913 false)); 2914 CheckCall = Builder.CreateCall( 2915 SlowPathDiagFn, 2916 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2917 } else { 2918 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2919 "__cfi_slowpath", 2920 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2921 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2922 } 2923 2924 CheckCall->setDoesNotThrow(); 2925 2926 EmitBlock(Cont); 2927 } 2928 2929 // Emit a stub for __cfi_check function so that the linker knows about this 2930 // symbol in LTO mode. 2931 void CodeGenFunction::EmitCfiCheckStub() { 2932 llvm::Module *M = &CGM.getModule(); 2933 auto &Ctx = M->getContext(); 2934 llvm::Function *F = llvm::Function::Create( 2935 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2936 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2937 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2938 // FIXME: consider emitting an intrinsic call like 2939 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2940 // which can be lowered in CrossDSOCFI pass to the actual contents of 2941 // __cfi_check. This would allow inlining of __cfi_check calls. 2942 llvm::CallInst::Create( 2943 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2944 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2945 } 2946 2947 // This function is basically a switch over the CFI failure kind, which is 2948 // extracted from CFICheckFailData (1st function argument). Each case is either 2949 // llvm.trap or a call to one of the two runtime handlers, based on 2950 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2951 // failure kind) traps, but this should really never happen. CFICheckFailData 2952 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2953 // check kind; in this case __cfi_check_fail traps as well. 2954 void CodeGenFunction::EmitCfiCheckFail() { 2955 SanitizerScope SanScope(this); 2956 FunctionArgList Args; 2957 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2958 ImplicitParamDecl::Other); 2959 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2960 ImplicitParamDecl::Other); 2961 Args.push_back(&ArgData); 2962 Args.push_back(&ArgAddr); 2963 2964 const CGFunctionInfo &FI = 2965 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2966 2967 llvm::Function *F = llvm::Function::Create( 2968 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2969 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2970 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2971 2972 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2973 SourceLocation()); 2974 2975 llvm::Value *Data = 2976 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2977 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2978 llvm::Value *Addr = 2979 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2980 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2981 2982 // Data == nullptr means the calling module has trap behaviour for this check. 2983 llvm::Value *DataIsNotNullPtr = 2984 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2985 EmitTrapCheck(DataIsNotNullPtr); 2986 2987 llvm::StructType *SourceLocationTy = 2988 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2989 llvm::StructType *CfiCheckFailDataTy = 2990 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2991 2992 llvm::Value *V = Builder.CreateConstGEP2_32( 2993 CfiCheckFailDataTy, 2994 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2995 0); 2996 Address CheckKindAddr(V, getIntAlign()); 2997 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2998 2999 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3000 CGM.getLLVMContext(), 3001 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3002 llvm::Value *ValidVtable = Builder.CreateZExt( 3003 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3004 {Addr, AllVtables}), 3005 IntPtrTy); 3006 3007 const std::pair<int, SanitizerMask> CheckKinds[] = { 3008 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3009 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3010 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3011 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3012 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3013 3014 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3015 for (auto CheckKindMaskPair : CheckKinds) { 3016 int Kind = CheckKindMaskPair.first; 3017 SanitizerMask Mask = CheckKindMaskPair.second; 3018 llvm::Value *Cond = 3019 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3020 if (CGM.getLangOpts().Sanitize.has(Mask)) 3021 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3022 {Data, Addr, ValidVtable}); 3023 else 3024 EmitTrapCheck(Cond); 3025 } 3026 3027 FinishFunction(); 3028 // The only reference to this function will be created during LTO link. 3029 // Make sure it survives until then. 3030 CGM.addUsedGlobal(F); 3031 } 3032 3033 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3034 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3035 3036 // If we're optimizing, collapse all calls to trap down to just one per 3037 // function to save on code size. 3038 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3039 TrapBB = createBasicBlock("trap"); 3040 Builder.CreateCondBr(Checked, Cont, TrapBB); 3041 EmitBlock(TrapBB); 3042 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3043 TrapCall->setDoesNotReturn(); 3044 TrapCall->setDoesNotThrow(); 3045 Builder.CreateUnreachable(); 3046 } else { 3047 Builder.CreateCondBr(Checked, Cont, TrapBB); 3048 } 3049 3050 EmitBlock(Cont); 3051 } 3052 3053 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3054 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3055 3056 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3057 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3058 CGM.getCodeGenOpts().TrapFuncName); 3059 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3060 } 3061 3062 return TrapCall; 3063 } 3064 3065 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3066 LValueBaseInfo *BaseInfo, 3067 TBAAAccessInfo *TBAAInfo) { 3068 assert(E->getType()->isArrayType() && 3069 "Array to pointer decay must have array source type!"); 3070 3071 // Expressions of array type can't be bitfields or vector elements. 3072 LValue LV = EmitLValue(E); 3073 Address Addr = LV.getAddress(); 3074 3075 // If the array type was an incomplete type, we need to make sure 3076 // the decay ends up being the right type. 3077 llvm::Type *NewTy = ConvertType(E->getType()); 3078 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3079 3080 // Note that VLA pointers are always decayed, so we don't need to do 3081 // anything here. 3082 if (!E->getType()->isVariableArrayType()) { 3083 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3084 "Expected pointer to array"); 3085 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3086 } 3087 3088 // The result of this decay conversion points to an array element within the 3089 // base lvalue. However, since TBAA currently does not support representing 3090 // accesses to elements of member arrays, we conservatively represent accesses 3091 // to the pointee object as if it had no any base lvalue specified. 3092 // TODO: Support TBAA for member arrays. 3093 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3094 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3095 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3096 3097 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3098 } 3099 3100 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3101 /// array to pointer, return the array subexpression. 3102 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3103 // If this isn't just an array->pointer decay, bail out. 3104 const auto *CE = dyn_cast<CastExpr>(E); 3105 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3106 return nullptr; 3107 3108 // If this is a decay from variable width array, bail out. 3109 const Expr *SubExpr = CE->getSubExpr(); 3110 if (SubExpr->getType()->isVariableArrayType()) 3111 return nullptr; 3112 3113 return SubExpr; 3114 } 3115 3116 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3117 llvm::Value *ptr, 3118 ArrayRef<llvm::Value*> indices, 3119 bool inbounds, 3120 bool signedIndices, 3121 SourceLocation loc, 3122 const llvm::Twine &name = "arrayidx") { 3123 if (inbounds) { 3124 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3125 CodeGenFunction::NotSubtraction, loc, 3126 name); 3127 } else { 3128 return CGF.Builder.CreateGEP(ptr, indices, name); 3129 } 3130 } 3131 3132 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3133 llvm::Value *idx, 3134 CharUnits eltSize) { 3135 // If we have a constant index, we can use the exact offset of the 3136 // element we're accessing. 3137 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3138 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3139 return arrayAlign.alignmentAtOffset(offset); 3140 3141 // Otherwise, use the worst-case alignment for any element. 3142 } else { 3143 return arrayAlign.alignmentOfArrayElement(eltSize); 3144 } 3145 } 3146 3147 static QualType getFixedSizeElementType(const ASTContext &ctx, 3148 const VariableArrayType *vla) { 3149 QualType eltType; 3150 do { 3151 eltType = vla->getElementType(); 3152 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3153 return eltType; 3154 } 3155 3156 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3157 ArrayRef<llvm::Value *> indices, 3158 QualType eltType, bool inbounds, 3159 bool signedIndices, SourceLocation loc, 3160 const llvm::Twine &name = "arrayidx") { 3161 // All the indices except that last must be zero. 3162 #ifndef NDEBUG 3163 for (auto idx : indices.drop_back()) 3164 assert(isa<llvm::ConstantInt>(idx) && 3165 cast<llvm::ConstantInt>(idx)->isZero()); 3166 #endif 3167 3168 // Determine the element size of the statically-sized base. This is 3169 // the thing that the indices are expressed in terms of. 3170 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3171 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3172 } 3173 3174 // We can use that to compute the best alignment of the element. 3175 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3176 CharUnits eltAlign = 3177 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3178 3179 llvm::Value *eltPtr = emitArraySubscriptGEP( 3180 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3181 return Address(eltPtr, eltAlign); 3182 } 3183 3184 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3185 bool Accessed) { 3186 // The index must always be an integer, which is not an aggregate. Emit it 3187 // in lexical order (this complexity is, sadly, required by C++17). 3188 llvm::Value *IdxPre = 3189 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3190 bool SignedIndices = false; 3191 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3192 auto *Idx = IdxPre; 3193 if (E->getLHS() != E->getIdx()) { 3194 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3195 Idx = EmitScalarExpr(E->getIdx()); 3196 } 3197 3198 QualType IdxTy = E->getIdx()->getType(); 3199 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3200 SignedIndices |= IdxSigned; 3201 3202 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3203 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3204 3205 // Extend or truncate the index type to 32 or 64-bits. 3206 if (Promote && Idx->getType() != IntPtrTy) 3207 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3208 3209 return Idx; 3210 }; 3211 IdxPre = nullptr; 3212 3213 // If the base is a vector type, then we are forming a vector element lvalue 3214 // with this subscript. 3215 if (E->getBase()->getType()->isVectorType() && 3216 !isa<ExtVectorElementExpr>(E->getBase())) { 3217 // Emit the vector as an lvalue to get its address. 3218 LValue LHS = EmitLValue(E->getBase()); 3219 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3220 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3221 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3222 LHS.getBaseInfo(), TBAAAccessInfo()); 3223 } 3224 3225 // All the other cases basically behave like simple offsetting. 3226 3227 // Handle the extvector case we ignored above. 3228 if (isa<ExtVectorElementExpr>(E->getBase())) { 3229 LValue LV = EmitLValue(E->getBase()); 3230 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3231 Address Addr = EmitExtVectorElementLValue(LV); 3232 3233 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3234 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3235 SignedIndices, E->getExprLoc()); 3236 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3237 CGM.getTBAAAccessInfo(EltType)); 3238 } 3239 3240 LValueBaseInfo BaseInfo; 3241 TBAAAccessInfo TBAAInfo; 3242 Address Addr = Address::invalid(); 3243 if (const VariableArrayType *vla = 3244 getContext().getAsVariableArrayType(E->getType())) { 3245 // The base must be a pointer, which is not an aggregate. Emit 3246 // it. It needs to be emitted first in case it's what captures 3247 // the VLA bounds. 3248 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3249 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3250 3251 // The element count here is the total number of non-VLA elements. 3252 llvm::Value *numElements = getVLASize(vla).first; 3253 3254 // Effectively, the multiply by the VLA size is part of the GEP. 3255 // GEP indexes are signed, and scaling an index isn't permitted to 3256 // signed-overflow, so we use the same semantics for our explicit 3257 // multiply. We suppress this if overflow is not undefined behavior. 3258 if (getLangOpts().isSignedOverflowDefined()) { 3259 Idx = Builder.CreateMul(Idx, numElements); 3260 } else { 3261 Idx = Builder.CreateNSWMul(Idx, numElements); 3262 } 3263 3264 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3265 !getLangOpts().isSignedOverflowDefined(), 3266 SignedIndices, E->getExprLoc()); 3267 3268 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3269 // Indexing over an interface, as in "NSString *P; P[4];" 3270 3271 // Emit the base pointer. 3272 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3273 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3274 3275 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3276 llvm::Value *InterfaceSizeVal = 3277 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3278 3279 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3280 3281 // We don't necessarily build correct LLVM struct types for ObjC 3282 // interfaces, so we can't rely on GEP to do this scaling 3283 // correctly, so we need to cast to i8*. FIXME: is this actually 3284 // true? A lot of other things in the fragile ABI would break... 3285 llvm::Type *OrigBaseTy = Addr.getType(); 3286 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3287 3288 // Do the GEP. 3289 CharUnits EltAlign = 3290 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3291 llvm::Value *EltPtr = 3292 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3293 SignedIndices, E->getExprLoc()); 3294 Addr = Address(EltPtr, EltAlign); 3295 3296 // Cast back. 3297 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3298 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3299 // If this is A[i] where A is an array, the frontend will have decayed the 3300 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3301 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3302 // "gep x, i" here. Emit one "gep A, 0, i". 3303 assert(Array->getType()->isArrayType() && 3304 "Array to pointer decay must have array source type!"); 3305 LValue ArrayLV; 3306 // For simple multidimensional array indexing, set the 'accessed' flag for 3307 // better bounds-checking of the base expression. 3308 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3309 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3310 else 3311 ArrayLV = EmitLValue(Array); 3312 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3313 3314 // Propagate the alignment from the array itself to the result. 3315 Addr = emitArraySubscriptGEP( 3316 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3317 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3318 E->getExprLoc()); 3319 BaseInfo = ArrayLV.getBaseInfo(); 3320 TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 3321 } else { 3322 // The base must be a pointer; emit it with an estimate of its alignment. 3323 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3324 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3325 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3326 !getLangOpts().isSignedOverflowDefined(), 3327 SignedIndices, E->getExprLoc()); 3328 } 3329 3330 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo, TBAAInfo); 3331 3332 if (getLangOpts().ObjC1 && 3333 getLangOpts().getGC() != LangOptions::NonGC) { 3334 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3335 setObjCGCLValueClass(getContext(), E, LV); 3336 } 3337 return LV; 3338 } 3339 3340 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3341 LValueBaseInfo &BaseInfo, 3342 TBAAAccessInfo &TBAAInfo, 3343 QualType BaseTy, QualType ElTy, 3344 bool IsLowerBound) { 3345 LValue BaseLVal; 3346 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3347 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3348 if (BaseTy->isArrayType()) { 3349 Address Addr = BaseLVal.getAddress(); 3350 BaseInfo = BaseLVal.getBaseInfo(); 3351 3352 // If the array type was an incomplete type, we need to make sure 3353 // the decay ends up being the right type. 3354 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3355 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3356 3357 // Note that VLA pointers are always decayed, so we don't need to do 3358 // anything here. 3359 if (!BaseTy->isVariableArrayType()) { 3360 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3361 "Expected pointer to array"); 3362 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3363 "arraydecay"); 3364 } 3365 3366 return CGF.Builder.CreateElementBitCast(Addr, 3367 CGF.ConvertTypeForMem(ElTy)); 3368 } 3369 LValueBaseInfo TypeInfo; 3370 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3371 BaseInfo.mergeForCast(TypeInfo); 3372 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3373 } 3374 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3375 } 3376 3377 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3378 bool IsLowerBound) { 3379 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3380 QualType ResultExprTy; 3381 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3382 ResultExprTy = AT->getElementType(); 3383 else 3384 ResultExprTy = BaseTy->getPointeeType(); 3385 llvm::Value *Idx = nullptr; 3386 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3387 // Requesting lower bound or upper bound, but without provided length and 3388 // without ':' symbol for the default length -> length = 1. 3389 // Idx = LowerBound ?: 0; 3390 if (auto *LowerBound = E->getLowerBound()) { 3391 Idx = Builder.CreateIntCast( 3392 EmitScalarExpr(LowerBound), IntPtrTy, 3393 LowerBound->getType()->hasSignedIntegerRepresentation()); 3394 } else 3395 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3396 } else { 3397 // Try to emit length or lower bound as constant. If this is possible, 1 3398 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3399 // IR (LB + Len) - 1. 3400 auto &C = CGM.getContext(); 3401 auto *Length = E->getLength(); 3402 llvm::APSInt ConstLength; 3403 if (Length) { 3404 // Idx = LowerBound + Length - 1; 3405 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3406 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3407 Length = nullptr; 3408 } 3409 auto *LowerBound = E->getLowerBound(); 3410 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3411 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3412 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3413 LowerBound = nullptr; 3414 } 3415 if (!Length) 3416 --ConstLength; 3417 else if (!LowerBound) 3418 --ConstLowerBound; 3419 3420 if (Length || LowerBound) { 3421 auto *LowerBoundVal = 3422 LowerBound 3423 ? Builder.CreateIntCast( 3424 EmitScalarExpr(LowerBound), IntPtrTy, 3425 LowerBound->getType()->hasSignedIntegerRepresentation()) 3426 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3427 auto *LengthVal = 3428 Length 3429 ? Builder.CreateIntCast( 3430 EmitScalarExpr(Length), IntPtrTy, 3431 Length->getType()->hasSignedIntegerRepresentation()) 3432 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3433 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3434 /*HasNUW=*/false, 3435 !getLangOpts().isSignedOverflowDefined()); 3436 if (Length && LowerBound) { 3437 Idx = Builder.CreateSub( 3438 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3439 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3440 } 3441 } else 3442 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3443 } else { 3444 // Idx = ArraySize - 1; 3445 QualType ArrayTy = BaseTy->isPointerType() 3446 ? E->getBase()->IgnoreParenImpCasts()->getType() 3447 : BaseTy; 3448 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3449 Length = VAT->getSizeExpr(); 3450 if (Length->isIntegerConstantExpr(ConstLength, C)) 3451 Length = nullptr; 3452 } else { 3453 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3454 ConstLength = CAT->getSize(); 3455 } 3456 if (Length) { 3457 auto *LengthVal = Builder.CreateIntCast( 3458 EmitScalarExpr(Length), IntPtrTy, 3459 Length->getType()->hasSignedIntegerRepresentation()); 3460 Idx = Builder.CreateSub( 3461 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3462 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3463 } else { 3464 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3465 --ConstLength; 3466 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3467 } 3468 } 3469 } 3470 assert(Idx); 3471 3472 Address EltPtr = Address::invalid(); 3473 LValueBaseInfo BaseInfo; 3474 TBAAAccessInfo TBAAInfo; 3475 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3476 // The base must be a pointer, which is not an aggregate. Emit 3477 // it. It needs to be emitted first in case it's what captures 3478 // the VLA bounds. 3479 Address Base = 3480 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3481 BaseTy, VLA->getElementType(), IsLowerBound); 3482 // The element count here is the total number of non-VLA elements. 3483 llvm::Value *NumElements = getVLASize(VLA).first; 3484 3485 // Effectively, the multiply by the VLA size is part of the GEP. 3486 // GEP indexes are signed, and scaling an index isn't permitted to 3487 // signed-overflow, so we use the same semantics for our explicit 3488 // multiply. We suppress this if overflow is not undefined behavior. 3489 if (getLangOpts().isSignedOverflowDefined()) 3490 Idx = Builder.CreateMul(Idx, NumElements); 3491 else 3492 Idx = Builder.CreateNSWMul(Idx, NumElements); 3493 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3494 !getLangOpts().isSignedOverflowDefined(), 3495 /*SignedIndices=*/false, E->getExprLoc()); 3496 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3497 // If this is A[i] where A is an array, the frontend will have decayed the 3498 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3499 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3500 // "gep x, i" here. Emit one "gep A, 0, i". 3501 assert(Array->getType()->isArrayType() && 3502 "Array to pointer decay must have array source type!"); 3503 LValue ArrayLV; 3504 // For simple multidimensional array indexing, set the 'accessed' flag for 3505 // better bounds-checking of the base expression. 3506 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3507 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3508 else 3509 ArrayLV = EmitLValue(Array); 3510 3511 // Propagate the alignment from the array itself to the result. 3512 EltPtr = emitArraySubscriptGEP( 3513 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3514 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3515 /*SignedIndices=*/false, E->getExprLoc()); 3516 BaseInfo = ArrayLV.getBaseInfo(); 3517 TBAAInfo = CGM.getTBAAAccessInfo(ResultExprTy); 3518 } else { 3519 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3520 TBAAInfo, BaseTy, ResultExprTy, 3521 IsLowerBound); 3522 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3523 !getLangOpts().isSignedOverflowDefined(), 3524 /*SignedIndices=*/false, E->getExprLoc()); 3525 } 3526 3527 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3528 } 3529 3530 LValue CodeGenFunction:: 3531 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3532 // Emit the base vector as an l-value. 3533 LValue Base; 3534 3535 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3536 if (E->isArrow()) { 3537 // If it is a pointer to a vector, emit the address and form an lvalue with 3538 // it. 3539 LValueBaseInfo BaseInfo; 3540 TBAAAccessInfo TBAAInfo; 3541 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3542 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3543 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3544 Base.getQuals().removeObjCGCAttr(); 3545 } else if (E->getBase()->isGLValue()) { 3546 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3547 // emit the base as an lvalue. 3548 assert(E->getBase()->getType()->isVectorType()); 3549 Base = EmitLValue(E->getBase()); 3550 } else { 3551 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3552 assert(E->getBase()->getType()->isVectorType() && 3553 "Result must be a vector"); 3554 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3555 3556 // Store the vector to memory (because LValue wants an address). 3557 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3558 Builder.CreateStore(Vec, VecMem); 3559 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3560 AlignmentSource::Decl); 3561 } 3562 3563 QualType type = 3564 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3565 3566 // Encode the element access list into a vector of unsigned indices. 3567 SmallVector<uint32_t, 4> Indices; 3568 E->getEncodedElementAccess(Indices); 3569 3570 if (Base.isSimple()) { 3571 llvm::Constant *CV = 3572 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3573 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3574 Base.getBaseInfo(), TBAAAccessInfo()); 3575 } 3576 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3577 3578 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3579 SmallVector<llvm::Constant *, 4> CElts; 3580 3581 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3582 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3583 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3584 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3585 Base.getBaseInfo(), TBAAAccessInfo()); 3586 } 3587 3588 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3589 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3590 EmitIgnoredExpr(E->getBase()); 3591 return EmitDeclRefLValue(DRE); 3592 } 3593 3594 Expr *BaseExpr = E->getBase(); 3595 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3596 LValue BaseLV; 3597 if (E->isArrow()) { 3598 LValueBaseInfo BaseInfo; 3599 TBAAAccessInfo TBAAInfo; 3600 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3601 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3602 SanitizerSet SkippedChecks; 3603 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3604 if (IsBaseCXXThis) 3605 SkippedChecks.set(SanitizerKind::Alignment, true); 3606 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3607 SkippedChecks.set(SanitizerKind::Null, true); 3608 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3609 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3610 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3611 } else 3612 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3613 3614 NamedDecl *ND = E->getMemberDecl(); 3615 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3616 LValue LV = EmitLValueForField(BaseLV, Field); 3617 setObjCGCLValueClass(getContext(), E, LV); 3618 return LV; 3619 } 3620 3621 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3622 return EmitFunctionDeclLValue(*this, E, FD); 3623 3624 llvm_unreachable("Unhandled member declaration!"); 3625 } 3626 3627 /// Given that we are currently emitting a lambda, emit an l-value for 3628 /// one of its members. 3629 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3630 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3631 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3632 QualType LambdaTagType = 3633 getContext().getTagDeclType(Field->getParent()); 3634 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3635 return EmitLValueForField(LambdaLV, Field); 3636 } 3637 3638 /// Drill down to the storage of a field without walking into 3639 /// reference types. 3640 /// 3641 /// The resulting address doesn't necessarily have the right type. 3642 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3643 const FieldDecl *field) { 3644 const RecordDecl *rec = field->getParent(); 3645 3646 unsigned idx = 3647 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3648 3649 CharUnits offset; 3650 // Adjust the alignment down to the given offset. 3651 // As a special case, if the LLVM field index is 0, we know that this 3652 // is zero. 3653 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3654 .getFieldOffset(field->getFieldIndex()) == 0) && 3655 "LLVM field at index zero had non-zero offset?"); 3656 if (idx != 0) { 3657 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3658 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3659 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3660 } 3661 3662 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3663 } 3664 3665 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3666 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3667 if (!RD) 3668 return false; 3669 3670 if (RD->isDynamicClass()) 3671 return true; 3672 3673 for (const auto &Base : RD->bases()) 3674 if (hasAnyVptr(Base.getType(), Context)) 3675 return true; 3676 3677 for (const FieldDecl *Field : RD->fields()) 3678 if (hasAnyVptr(Field->getType(), Context)) 3679 return true; 3680 3681 return false; 3682 } 3683 3684 LValue CodeGenFunction::EmitLValueForField(LValue base, 3685 const FieldDecl *field) { 3686 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3687 3688 if (field->isBitField()) { 3689 const CGRecordLayout &RL = 3690 CGM.getTypes().getCGRecordLayout(field->getParent()); 3691 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3692 Address Addr = base.getAddress(); 3693 unsigned Idx = RL.getLLVMFieldNo(field); 3694 if (Idx != 0) 3695 // For structs, we GEP to the field that the record layout suggests. 3696 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3697 field->getName()); 3698 // Get the access type. 3699 llvm::Type *FieldIntTy = 3700 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3701 if (Addr.getElementType() != FieldIntTy) 3702 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3703 3704 QualType fieldType = 3705 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3706 // TODO: Support TBAA for bit fields. 3707 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource(), false); 3708 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3709 TBAAAccessInfo()); 3710 } 3711 3712 // Fields of may-alias structures are may-alias themselves. 3713 // FIXME: this should get propagated down through anonymous structs 3714 // and unions. 3715 QualType FieldType = field->getType(); 3716 const RecordDecl *rec = field->getParent(); 3717 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3718 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource), false); 3719 TBAAAccessInfo FieldTBAAInfo; 3720 if (BaseInfo.getMayAlias() || rec->hasAttr<MayAliasAttr>() || 3721 FieldType->isVectorType()) { 3722 FieldBaseInfo.setMayAlias(true); 3723 FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 3724 } else if (rec->isUnion()) { 3725 // TODO: Support TBAA for unions. 3726 FieldBaseInfo.setMayAlias(true); 3727 FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 3728 } else { 3729 // If no base type been assigned for the base access, then try to generate 3730 // one for this base lvalue. 3731 FieldTBAAInfo = base.getTBAAInfo(); 3732 if (!FieldTBAAInfo.BaseType) { 3733 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3734 assert(!FieldTBAAInfo.Offset && 3735 "Nonzero offset for an access with no base type!"); 3736 } 3737 3738 // Adjust offset to be relative to the base type. 3739 const ASTRecordLayout &Layout = 3740 getContext().getASTRecordLayout(field->getParent()); 3741 unsigned CharWidth = getContext().getCharWidth(); 3742 if (FieldTBAAInfo.BaseType) 3743 FieldTBAAInfo.Offset += 3744 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3745 3746 // Update the final access type. 3747 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3748 } 3749 3750 Address addr = base.getAddress(); 3751 unsigned cvr = base.getVRQualifiers(); 3752 if (rec->isUnion()) { 3753 // For unions, there is no pointer adjustment. 3754 assert(!FieldType->isReferenceType() && "union has reference member"); 3755 if (CGM.getCodeGenOpts().StrictVTablePointers && 3756 hasAnyVptr(FieldType, getContext())) 3757 // Because unions can easily skip invariant.barriers, we need to add 3758 // a barrier every time CXXRecord field with vptr is referenced. 3759 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3760 addr.getAlignment()); 3761 } else { 3762 // For structs, we GEP to the field that the record layout suggests. 3763 addr = emitAddrOfFieldStorage(*this, addr, field); 3764 3765 // If this is a reference field, load the reference right now. 3766 if (const ReferenceType *refType = FieldType->getAs<ReferenceType>()) { 3767 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3768 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3769 3770 CGM.DecorateInstructionWithTBAA(load, FieldTBAAInfo); 3771 3772 FieldType = refType->getPointeeType(); 3773 CharUnits Align = getNaturalTypeAlignment(FieldType, &FieldBaseInfo, 3774 &FieldTBAAInfo, 3775 /* forPointeeType= */ true); 3776 addr = Address(load, Align); 3777 3778 // Qualifiers on the struct don't apply to the referencee, and 3779 // we'll pick up CVR from the actual type later, so reset these 3780 // additional qualifiers now. 3781 cvr = 0; 3782 } 3783 } 3784 3785 // Make sure that the address is pointing to the right type. This is critical 3786 // for both unions and structs. A union needs a bitcast, a struct element 3787 // will need a bitcast if the LLVM type laid out doesn't match the desired 3788 // type. 3789 addr = Builder.CreateElementBitCast( 3790 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3791 3792 if (field->hasAttr<AnnotateAttr>()) 3793 addr = EmitFieldAnnotations(field, addr); 3794 3795 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3796 LV.getQuals().addCVRQualifiers(cvr); 3797 3798 // __weak attribute on a field is ignored. 3799 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3800 LV.getQuals().removeObjCGCAttr(); 3801 3802 return LV; 3803 } 3804 3805 LValue 3806 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3807 const FieldDecl *Field) { 3808 QualType FieldType = Field->getType(); 3809 3810 if (!FieldType->isReferenceType()) 3811 return EmitLValueForField(Base, Field); 3812 3813 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3814 3815 // Make sure that the address is pointing to the right type. 3816 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3817 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3818 3819 // TODO: access-path TBAA? 3820 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3821 LValueBaseInfo FieldBaseInfo( 3822 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3823 BaseInfo.getMayAlias()); 3824 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3825 CGM.getTBAAAccessInfo(FieldType)); 3826 } 3827 3828 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3829 if (E->isFileScope()) { 3830 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3831 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3832 } 3833 if (E->getType()->isVariablyModifiedType()) 3834 // make sure to emit the VLA size. 3835 EmitVariablyModifiedType(E->getType()); 3836 3837 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3838 const Expr *InitExpr = E->getInitializer(); 3839 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3840 3841 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3842 /*Init*/ true); 3843 3844 return Result; 3845 } 3846 3847 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3848 if (!E->isGLValue()) 3849 // Initializing an aggregate temporary in C++11: T{...}. 3850 return EmitAggExprToLValue(E); 3851 3852 // An lvalue initializer list must be initializing a reference. 3853 assert(E->isTransparent() && "non-transparent glvalue init list"); 3854 return EmitLValue(E->getInit(0)); 3855 } 3856 3857 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3858 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3859 /// LValue is returned and the current block has been terminated. 3860 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3861 const Expr *Operand) { 3862 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3863 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3864 return None; 3865 } 3866 3867 return CGF.EmitLValue(Operand); 3868 } 3869 3870 LValue CodeGenFunction:: 3871 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3872 if (!expr->isGLValue()) { 3873 // ?: here should be an aggregate. 3874 assert(hasAggregateEvaluationKind(expr->getType()) && 3875 "Unexpected conditional operator!"); 3876 return EmitAggExprToLValue(expr); 3877 } 3878 3879 OpaqueValueMapping binding(*this, expr); 3880 3881 const Expr *condExpr = expr->getCond(); 3882 bool CondExprBool; 3883 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3884 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3885 if (!CondExprBool) std::swap(live, dead); 3886 3887 if (!ContainsLabel(dead)) { 3888 // If the true case is live, we need to track its region. 3889 if (CondExprBool) 3890 incrementProfileCounter(expr); 3891 return EmitLValue(live); 3892 } 3893 } 3894 3895 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3896 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3897 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3898 3899 ConditionalEvaluation eval(*this); 3900 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3901 3902 // Any temporaries created here are conditional. 3903 EmitBlock(lhsBlock); 3904 incrementProfileCounter(expr); 3905 eval.begin(*this); 3906 Optional<LValue> lhs = 3907 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3908 eval.end(*this); 3909 3910 if (lhs && !lhs->isSimple()) 3911 return EmitUnsupportedLValue(expr, "conditional operator"); 3912 3913 lhsBlock = Builder.GetInsertBlock(); 3914 if (lhs) 3915 Builder.CreateBr(contBlock); 3916 3917 // Any temporaries created here are conditional. 3918 EmitBlock(rhsBlock); 3919 eval.begin(*this); 3920 Optional<LValue> rhs = 3921 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3922 eval.end(*this); 3923 if (rhs && !rhs->isSimple()) 3924 return EmitUnsupportedLValue(expr, "conditional operator"); 3925 rhsBlock = Builder.GetInsertBlock(); 3926 3927 EmitBlock(contBlock); 3928 3929 if (lhs && rhs) { 3930 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3931 2, "cond-lvalue"); 3932 phi->addIncoming(lhs->getPointer(), lhsBlock); 3933 phi->addIncoming(rhs->getPointer(), rhsBlock); 3934 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3935 AlignmentSource alignSource = 3936 std::max(lhs->getBaseInfo().getAlignmentSource(), 3937 rhs->getBaseInfo().getAlignmentSource()); 3938 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3939 rhs->getBaseInfo().getMayAlias(); 3940 return MakeAddrLValue(result, expr->getType(), 3941 LValueBaseInfo(alignSource, MayAlias), 3942 CGM.getTBAAAccessInfo(expr->getType())); 3943 } else { 3944 assert((lhs || rhs) && 3945 "both operands of glvalue conditional are throw-expressions?"); 3946 return lhs ? *lhs : *rhs; 3947 } 3948 } 3949 3950 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3951 /// type. If the cast is to a reference, we can have the usual lvalue result, 3952 /// otherwise if a cast is needed by the code generator in an lvalue context, 3953 /// then it must mean that we need the address of an aggregate in order to 3954 /// access one of its members. This can happen for all the reasons that casts 3955 /// are permitted with aggregate result, including noop aggregate casts, and 3956 /// cast from scalar to union. 3957 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3958 switch (E->getCastKind()) { 3959 case CK_ToVoid: 3960 case CK_BitCast: 3961 case CK_ArrayToPointerDecay: 3962 case CK_FunctionToPointerDecay: 3963 case CK_NullToMemberPointer: 3964 case CK_NullToPointer: 3965 case CK_IntegralToPointer: 3966 case CK_PointerToIntegral: 3967 case CK_PointerToBoolean: 3968 case CK_VectorSplat: 3969 case CK_IntegralCast: 3970 case CK_BooleanToSignedIntegral: 3971 case CK_IntegralToBoolean: 3972 case CK_IntegralToFloating: 3973 case CK_FloatingToIntegral: 3974 case CK_FloatingToBoolean: 3975 case CK_FloatingCast: 3976 case CK_FloatingRealToComplex: 3977 case CK_FloatingComplexToReal: 3978 case CK_FloatingComplexToBoolean: 3979 case CK_FloatingComplexCast: 3980 case CK_FloatingComplexToIntegralComplex: 3981 case CK_IntegralRealToComplex: 3982 case CK_IntegralComplexToReal: 3983 case CK_IntegralComplexToBoolean: 3984 case CK_IntegralComplexCast: 3985 case CK_IntegralComplexToFloatingComplex: 3986 case CK_DerivedToBaseMemberPointer: 3987 case CK_BaseToDerivedMemberPointer: 3988 case CK_MemberPointerToBoolean: 3989 case CK_ReinterpretMemberPointer: 3990 case CK_AnyPointerToBlockPointerCast: 3991 case CK_ARCProduceObject: 3992 case CK_ARCConsumeObject: 3993 case CK_ARCReclaimReturnedObject: 3994 case CK_ARCExtendBlockObject: 3995 case CK_CopyAndAutoreleaseBlockObject: 3996 case CK_AddressSpaceConversion: 3997 case CK_IntToOCLSampler: 3998 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3999 4000 case CK_Dependent: 4001 llvm_unreachable("dependent cast kind in IR gen!"); 4002 4003 case CK_BuiltinFnToFnPtr: 4004 llvm_unreachable("builtin functions are handled elsewhere"); 4005 4006 // These are never l-values; just use the aggregate emission code. 4007 case CK_NonAtomicToAtomic: 4008 case CK_AtomicToNonAtomic: 4009 return EmitAggExprToLValue(E); 4010 4011 case CK_Dynamic: { 4012 LValue LV = EmitLValue(E->getSubExpr()); 4013 Address V = LV.getAddress(); 4014 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4015 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4016 } 4017 4018 case CK_ConstructorConversion: 4019 case CK_UserDefinedConversion: 4020 case CK_CPointerToObjCPointerCast: 4021 case CK_BlockPointerToObjCPointerCast: 4022 case CK_NoOp: 4023 case CK_LValueToRValue: 4024 return EmitLValue(E->getSubExpr()); 4025 4026 case CK_UncheckedDerivedToBase: 4027 case CK_DerivedToBase: { 4028 const RecordType *DerivedClassTy = 4029 E->getSubExpr()->getType()->getAs<RecordType>(); 4030 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4031 4032 LValue LV = EmitLValue(E->getSubExpr()); 4033 Address This = LV.getAddress(); 4034 4035 // Perform the derived-to-base conversion 4036 Address Base = GetAddressOfBaseClass( 4037 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4038 /*NullCheckValue=*/false, E->getExprLoc()); 4039 4040 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4041 CGM.getTBAAAccessInfo(E->getType())); 4042 } 4043 case CK_ToUnion: 4044 return EmitAggExprToLValue(E); 4045 case CK_BaseToDerived: { 4046 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4047 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4048 4049 LValue LV = EmitLValue(E->getSubExpr()); 4050 4051 // Perform the base-to-derived conversion 4052 Address Derived = 4053 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4054 E->path_begin(), E->path_end(), 4055 /*NullCheckValue=*/false); 4056 4057 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4058 // performed and the object is not of the derived type. 4059 if (sanitizePerformTypeCheck()) 4060 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4061 Derived.getPointer(), E->getType()); 4062 4063 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4064 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4065 /*MayBeNull=*/false, 4066 CFITCK_DerivedCast, E->getLocStart()); 4067 4068 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4069 CGM.getTBAAAccessInfo(E->getType())); 4070 } 4071 case CK_LValueBitCast: { 4072 // This must be a reinterpret_cast (or c-style equivalent). 4073 const auto *CE = cast<ExplicitCastExpr>(E); 4074 4075 CGM.EmitExplicitCastExprType(CE, this); 4076 LValue LV = EmitLValue(E->getSubExpr()); 4077 Address V = Builder.CreateBitCast(LV.getAddress(), 4078 ConvertType(CE->getTypeAsWritten())); 4079 4080 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4081 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4082 /*MayBeNull=*/false, 4083 CFITCK_UnrelatedCast, E->getLocStart()); 4084 4085 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4086 CGM.getTBAAAccessInfo(E->getType())); 4087 } 4088 case CK_ObjCObjectLValueCast: { 4089 LValue LV = EmitLValue(E->getSubExpr()); 4090 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4091 ConvertType(E->getType())); 4092 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4093 CGM.getTBAAAccessInfo(E->getType())); 4094 } 4095 case CK_ZeroToOCLQueue: 4096 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4097 case CK_ZeroToOCLEvent: 4098 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4099 } 4100 4101 llvm_unreachable("Unhandled lvalue cast kind?"); 4102 } 4103 4104 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4105 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4106 return getOpaqueLValueMapping(e); 4107 } 4108 4109 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4110 const FieldDecl *FD, 4111 SourceLocation Loc) { 4112 QualType FT = FD->getType(); 4113 LValue FieldLV = EmitLValueForField(LV, FD); 4114 switch (getEvaluationKind(FT)) { 4115 case TEK_Complex: 4116 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4117 case TEK_Aggregate: 4118 return FieldLV.asAggregateRValue(); 4119 case TEK_Scalar: 4120 // This routine is used to load fields one-by-one to perform a copy, so 4121 // don't load reference fields. 4122 if (FD->getType()->isReferenceType()) 4123 return RValue::get(FieldLV.getPointer()); 4124 return EmitLoadOfLValue(FieldLV, Loc); 4125 } 4126 llvm_unreachable("bad evaluation kind"); 4127 } 4128 4129 //===--------------------------------------------------------------------===// 4130 // Expression Emission 4131 //===--------------------------------------------------------------------===// 4132 4133 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4134 ReturnValueSlot ReturnValue) { 4135 // Builtins never have block type. 4136 if (E->getCallee()->getType()->isBlockPointerType()) 4137 return EmitBlockCallExpr(E, ReturnValue); 4138 4139 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4140 return EmitCXXMemberCallExpr(CE, ReturnValue); 4141 4142 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4143 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4144 4145 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4146 if (const CXXMethodDecl *MD = 4147 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4148 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4149 4150 CGCallee callee = EmitCallee(E->getCallee()); 4151 4152 if (callee.isBuiltin()) { 4153 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4154 E, ReturnValue); 4155 } 4156 4157 if (callee.isPseudoDestructor()) { 4158 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4159 } 4160 4161 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4162 } 4163 4164 /// Emit a CallExpr without considering whether it might be a subclass. 4165 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4166 ReturnValueSlot ReturnValue) { 4167 CGCallee Callee = EmitCallee(E->getCallee()); 4168 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4169 } 4170 4171 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4172 if (auto builtinID = FD->getBuiltinID()) { 4173 return CGCallee::forBuiltin(builtinID, FD); 4174 } 4175 4176 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4177 return CGCallee::forDirect(calleePtr, FD); 4178 } 4179 4180 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4181 E = E->IgnoreParens(); 4182 4183 // Look through function-to-pointer decay. 4184 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4185 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4186 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4187 return EmitCallee(ICE->getSubExpr()); 4188 } 4189 4190 // Resolve direct calls. 4191 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4192 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4193 return EmitDirectCallee(*this, FD); 4194 } 4195 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4196 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4197 EmitIgnoredExpr(ME->getBase()); 4198 return EmitDirectCallee(*this, FD); 4199 } 4200 4201 // Look through template substitutions. 4202 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4203 return EmitCallee(NTTP->getReplacement()); 4204 4205 // Treat pseudo-destructor calls differently. 4206 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4207 return CGCallee::forPseudoDestructor(PDE); 4208 } 4209 4210 // Otherwise, we have an indirect reference. 4211 llvm::Value *calleePtr; 4212 QualType functionType; 4213 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4214 calleePtr = EmitScalarExpr(E); 4215 functionType = ptrType->getPointeeType(); 4216 } else { 4217 functionType = E->getType(); 4218 calleePtr = EmitLValue(E).getPointer(); 4219 } 4220 assert(functionType->isFunctionType()); 4221 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4222 E->getReferencedDeclOfCallee()); 4223 CGCallee callee(calleeInfo, calleePtr); 4224 return callee; 4225 } 4226 4227 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4228 // Comma expressions just emit their LHS then their RHS as an l-value. 4229 if (E->getOpcode() == BO_Comma) { 4230 EmitIgnoredExpr(E->getLHS()); 4231 EnsureInsertPoint(); 4232 return EmitLValue(E->getRHS()); 4233 } 4234 4235 if (E->getOpcode() == BO_PtrMemD || 4236 E->getOpcode() == BO_PtrMemI) 4237 return EmitPointerToDataMemberBinaryExpr(E); 4238 4239 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4240 4241 // Note that in all of these cases, __block variables need the RHS 4242 // evaluated first just in case the variable gets moved by the RHS. 4243 4244 switch (getEvaluationKind(E->getType())) { 4245 case TEK_Scalar: { 4246 switch (E->getLHS()->getType().getObjCLifetime()) { 4247 case Qualifiers::OCL_Strong: 4248 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4249 4250 case Qualifiers::OCL_Autoreleasing: 4251 return EmitARCStoreAutoreleasing(E).first; 4252 4253 // No reason to do any of these differently. 4254 case Qualifiers::OCL_None: 4255 case Qualifiers::OCL_ExplicitNone: 4256 case Qualifiers::OCL_Weak: 4257 break; 4258 } 4259 4260 RValue RV = EmitAnyExpr(E->getRHS()); 4261 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4262 if (RV.isScalar()) 4263 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4264 EmitStoreThroughLValue(RV, LV); 4265 return LV; 4266 } 4267 4268 case TEK_Complex: 4269 return EmitComplexAssignmentLValue(E); 4270 4271 case TEK_Aggregate: 4272 return EmitAggExprToLValue(E); 4273 } 4274 llvm_unreachable("bad evaluation kind"); 4275 } 4276 4277 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4278 RValue RV = EmitCallExpr(E); 4279 4280 if (!RV.isScalar()) 4281 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4282 AlignmentSource::Decl); 4283 4284 assert(E->getCallReturnType(getContext())->isReferenceType() && 4285 "Can't have a scalar return unless the return type is a " 4286 "reference type!"); 4287 4288 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4289 } 4290 4291 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4292 // FIXME: This shouldn't require another copy. 4293 return EmitAggExprToLValue(E); 4294 } 4295 4296 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4297 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4298 && "binding l-value to type which needs a temporary"); 4299 AggValueSlot Slot = CreateAggTemp(E->getType()); 4300 EmitCXXConstructExpr(E, Slot); 4301 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4302 } 4303 4304 LValue 4305 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4306 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4307 } 4308 4309 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4310 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4311 ConvertType(E->getType())); 4312 } 4313 4314 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4315 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4316 AlignmentSource::Decl); 4317 } 4318 4319 LValue 4320 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4321 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4322 Slot.setExternallyDestructed(); 4323 EmitAggExpr(E->getSubExpr(), Slot); 4324 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4325 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4326 } 4327 4328 LValue 4329 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4330 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4331 EmitLambdaExpr(E, Slot); 4332 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4333 } 4334 4335 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4336 RValue RV = EmitObjCMessageExpr(E); 4337 4338 if (!RV.isScalar()) 4339 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4340 AlignmentSource::Decl); 4341 4342 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4343 "Can't have a scalar return unless the return type is a " 4344 "reference type!"); 4345 4346 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4347 } 4348 4349 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4350 Address V = 4351 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4352 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4353 } 4354 4355 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4356 const ObjCIvarDecl *Ivar) { 4357 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4358 } 4359 4360 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4361 llvm::Value *BaseValue, 4362 const ObjCIvarDecl *Ivar, 4363 unsigned CVRQualifiers) { 4364 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4365 Ivar, CVRQualifiers); 4366 } 4367 4368 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4369 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4370 llvm::Value *BaseValue = nullptr; 4371 const Expr *BaseExpr = E->getBase(); 4372 Qualifiers BaseQuals; 4373 QualType ObjectTy; 4374 if (E->isArrow()) { 4375 BaseValue = EmitScalarExpr(BaseExpr); 4376 ObjectTy = BaseExpr->getType()->getPointeeType(); 4377 BaseQuals = ObjectTy.getQualifiers(); 4378 } else { 4379 LValue BaseLV = EmitLValue(BaseExpr); 4380 BaseValue = BaseLV.getPointer(); 4381 ObjectTy = BaseExpr->getType(); 4382 BaseQuals = ObjectTy.getQualifiers(); 4383 } 4384 4385 LValue LV = 4386 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4387 BaseQuals.getCVRQualifiers()); 4388 setObjCGCLValueClass(getContext(), E, LV); 4389 return LV; 4390 } 4391 4392 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4393 // Can only get l-value for message expression returning aggregate type 4394 RValue RV = EmitAnyExprToTemp(E); 4395 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4396 AlignmentSource::Decl); 4397 } 4398 4399 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4400 const CallExpr *E, ReturnValueSlot ReturnValue, 4401 llvm::Value *Chain) { 4402 // Get the actual function type. The callee type will always be a pointer to 4403 // function type or a block pointer type. 4404 assert(CalleeType->isFunctionPointerType() && 4405 "Call must have function pointer type!"); 4406 4407 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4408 4409 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4410 // We can only guarantee that a function is called from the correct 4411 // context/function based on the appropriate target attributes, 4412 // so only check in the case where we have both always_inline and target 4413 // since otherwise we could be making a conditional call after a check for 4414 // the proper cpu features (and it won't cause code generation issues due to 4415 // function based code generation). 4416 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4417 TargetDecl->hasAttr<TargetAttr>()) 4418 checkTargetFeatures(E, FD); 4419 4420 CalleeType = getContext().getCanonicalType(CalleeType); 4421 4422 const auto *FnType = 4423 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4424 4425 CGCallee Callee = OrigCallee; 4426 4427 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4428 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4429 if (llvm::Constant *PrefixSig = 4430 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4431 SanitizerScope SanScope(this); 4432 llvm::Constant *FTRTTIConst = 4433 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4434 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4435 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4436 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4437 4438 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4439 4440 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4441 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4442 llvm::Value *CalleeSigPtr = 4443 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4444 llvm::Value *CalleeSig = 4445 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4446 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4447 4448 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4449 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4450 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4451 4452 EmitBlock(TypeCheck); 4453 llvm::Value *CalleeRTTIPtr = 4454 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4455 llvm::Value *CalleeRTTIEncoded = 4456 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4457 llvm::Value *CalleeRTTI = 4458 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4459 llvm::Value *CalleeRTTIMatch = 4460 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4461 llvm::Constant *StaticData[] = { 4462 EmitCheckSourceLocation(E->getLocStart()), 4463 EmitCheckTypeDescriptor(CalleeType) 4464 }; 4465 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4466 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4467 4468 Builder.CreateBr(Cont); 4469 EmitBlock(Cont); 4470 } 4471 } 4472 4473 // If we are checking indirect calls and this call is indirect, check that the 4474 // function pointer is a member of the bit set for the function type. 4475 if (SanOpts.has(SanitizerKind::CFIICall) && 4476 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4477 SanitizerScope SanScope(this); 4478 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4479 4480 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4481 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4482 4483 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4484 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4485 llvm::Value *TypeTest = Builder.CreateCall( 4486 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4487 4488 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4489 llvm::Constant *StaticData[] = { 4490 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4491 EmitCheckSourceLocation(E->getLocStart()), 4492 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4493 }; 4494 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4495 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4496 CastedCallee, StaticData); 4497 } else { 4498 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4499 SanitizerHandler::CFICheckFail, StaticData, 4500 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4501 } 4502 } 4503 4504 CallArgList Args; 4505 if (Chain) 4506 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4507 CGM.getContext().VoidPtrTy); 4508 4509 // C++17 requires that we evaluate arguments to a call using assignment syntax 4510 // right-to-left, and that we evaluate arguments to certain other operators 4511 // left-to-right. Note that we allow this to override the order dictated by 4512 // the calling convention on the MS ABI, which means that parameter 4513 // destruction order is not necessarily reverse construction order. 4514 // FIXME: Revisit this based on C++ committee response to unimplementability. 4515 EvaluationOrder Order = EvaluationOrder::Default; 4516 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4517 if (OCE->isAssignmentOp()) 4518 Order = EvaluationOrder::ForceRightToLeft; 4519 else { 4520 switch (OCE->getOperator()) { 4521 case OO_LessLess: 4522 case OO_GreaterGreater: 4523 case OO_AmpAmp: 4524 case OO_PipePipe: 4525 case OO_Comma: 4526 case OO_ArrowStar: 4527 Order = EvaluationOrder::ForceLeftToRight; 4528 break; 4529 default: 4530 break; 4531 } 4532 } 4533 } 4534 4535 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4536 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4537 4538 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4539 Args, FnType, /*isChainCall=*/Chain); 4540 4541 // C99 6.5.2.2p6: 4542 // If the expression that denotes the called function has a type 4543 // that does not include a prototype, [the default argument 4544 // promotions are performed]. If the number of arguments does not 4545 // equal the number of parameters, the behavior is undefined. If 4546 // the function is defined with a type that includes a prototype, 4547 // and either the prototype ends with an ellipsis (, ...) or the 4548 // types of the arguments after promotion are not compatible with 4549 // the types of the parameters, the behavior is undefined. If the 4550 // function is defined with a type that does not include a 4551 // prototype, and the types of the arguments after promotion are 4552 // not compatible with those of the parameters after promotion, 4553 // the behavior is undefined [except in some trivial cases]. 4554 // That is, in the general case, we should assume that a call 4555 // through an unprototyped function type works like a *non-variadic* 4556 // call. The way we make this work is to cast to the exact type 4557 // of the promoted arguments. 4558 // 4559 // Chain calls use this same code path to add the invisible chain parameter 4560 // to the function type. 4561 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4562 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4563 CalleeTy = CalleeTy->getPointerTo(); 4564 4565 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4566 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4567 Callee.setFunctionPointer(CalleePtr); 4568 } 4569 4570 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4571 } 4572 4573 LValue CodeGenFunction:: 4574 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4575 Address BaseAddr = Address::invalid(); 4576 if (E->getOpcode() == BO_PtrMemI) { 4577 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4578 } else { 4579 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4580 } 4581 4582 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4583 4584 const MemberPointerType *MPT 4585 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4586 4587 LValueBaseInfo BaseInfo; 4588 TBAAAccessInfo TBAAInfo; 4589 Address MemberAddr = 4590 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4591 &TBAAInfo); 4592 4593 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4594 } 4595 4596 /// Given the address of a temporary variable, produce an r-value of 4597 /// its type. 4598 RValue CodeGenFunction::convertTempToRValue(Address addr, 4599 QualType type, 4600 SourceLocation loc) { 4601 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4602 switch (getEvaluationKind(type)) { 4603 case TEK_Complex: 4604 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4605 case TEK_Aggregate: 4606 return lvalue.asAggregateRValue(); 4607 case TEK_Scalar: 4608 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4609 } 4610 llvm_unreachable("bad evaluation kind"); 4611 } 4612 4613 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4614 assert(Val->getType()->isFPOrFPVectorTy()); 4615 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4616 return; 4617 4618 llvm::MDBuilder MDHelper(getLLVMContext()); 4619 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4620 4621 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4622 } 4623 4624 namespace { 4625 struct LValueOrRValue { 4626 LValue LV; 4627 RValue RV; 4628 }; 4629 } 4630 4631 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4632 const PseudoObjectExpr *E, 4633 bool forLValue, 4634 AggValueSlot slot) { 4635 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4636 4637 // Find the result expression, if any. 4638 const Expr *resultExpr = E->getResultExpr(); 4639 LValueOrRValue result; 4640 4641 for (PseudoObjectExpr::const_semantics_iterator 4642 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4643 const Expr *semantic = *i; 4644 4645 // If this semantic expression is an opaque value, bind it 4646 // to the result of its source expression. 4647 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4648 4649 // If this is the result expression, we may need to evaluate 4650 // directly into the slot. 4651 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4652 OVMA opaqueData; 4653 if (ov == resultExpr && ov->isRValue() && !forLValue && 4654 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4655 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4656 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4657 AlignmentSource::Decl); 4658 opaqueData = OVMA::bind(CGF, ov, LV); 4659 result.RV = slot.asRValue(); 4660 4661 // Otherwise, emit as normal. 4662 } else { 4663 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4664 4665 // If this is the result, also evaluate the result now. 4666 if (ov == resultExpr) { 4667 if (forLValue) 4668 result.LV = CGF.EmitLValue(ov); 4669 else 4670 result.RV = CGF.EmitAnyExpr(ov, slot); 4671 } 4672 } 4673 4674 opaques.push_back(opaqueData); 4675 4676 // Otherwise, if the expression is the result, evaluate it 4677 // and remember the result. 4678 } else if (semantic == resultExpr) { 4679 if (forLValue) 4680 result.LV = CGF.EmitLValue(semantic); 4681 else 4682 result.RV = CGF.EmitAnyExpr(semantic, slot); 4683 4684 // Otherwise, evaluate the expression in an ignored context. 4685 } else { 4686 CGF.EmitIgnoredExpr(semantic); 4687 } 4688 } 4689 4690 // Unbind all the opaques now. 4691 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4692 opaques[i].unbind(CGF); 4693 4694 return result; 4695 } 4696 4697 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4698 AggValueSlot slot) { 4699 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4700 } 4701 4702 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4703 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4704 } 4705