1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/Hashing.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/Support/ConvertUTF.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===--------------------------------------------------------------------===// 37 // Miscellaneous Helper Methods 38 //===--------------------------------------------------------------------===// 39 40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 41 unsigned addressSpace = 42 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 43 44 llvm::PointerType *destType = Int8PtrTy; 45 if (addressSpace) 46 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 47 48 if (value->getType() == destType) return value; 49 return Builder.CreateBitCast(value, destType); 50 } 51 52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 53 /// block. 54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 55 const Twine &Name) { 56 if (!Builder.isNamePreserving()) 57 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 58 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 59 } 60 61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 62 llvm::Value *Init) { 63 auto *Store = new llvm::StoreInst(Init, Var); 64 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 65 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 66 } 67 68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 69 const Twine &Name) { 70 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 71 // FIXME: Should we prefer the preferred type alignment here? 72 CharUnits Align = getContext().getTypeAlignInChars(Ty); 73 Alloc->setAlignment(Align.getQuantity()); 74 return Alloc; 75 } 76 77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 78 const Twine &Name) { 79 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 80 // FIXME: Should we prefer the preferred type alignment here? 81 CharUnits Align = getContext().getTypeAlignInChars(Ty); 82 Alloc->setAlignment(Align.getQuantity()); 83 return Alloc; 84 } 85 86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 87 /// expression and compare the result against zero, returning an Int1Ty value. 88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 89 PGO.setCurrentStmt(E); 90 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 91 llvm::Value *MemPtr = EmitScalarExpr(E); 92 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 93 } 94 95 QualType BoolTy = getContext().BoolTy; 96 if (!E->getType()->isAnyComplexType()) 97 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 98 99 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 100 } 101 102 /// EmitIgnoredExpr - Emit code to compute the specified expression, 103 /// ignoring the result. 104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 105 if (E->isRValue()) 106 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 107 108 // Just emit it as an l-value and drop the result. 109 EmitLValue(E); 110 } 111 112 /// EmitAnyExpr - Emit code to compute the specified expression which 113 /// can have any type. The result is returned as an RValue struct. 114 /// If this is an aggregate expression, AggSlot indicates where the 115 /// result should be returned. 116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 117 AggValueSlot aggSlot, 118 bool ignoreResult) { 119 switch (getEvaluationKind(E->getType())) { 120 case TEK_Scalar: 121 return RValue::get(EmitScalarExpr(E, ignoreResult)); 122 case TEK_Complex: 123 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 124 case TEK_Aggregate: 125 if (!ignoreResult && aggSlot.isIgnored()) 126 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 127 EmitAggExpr(E, aggSlot); 128 return aggSlot.asRValue(); 129 } 130 llvm_unreachable("bad evaluation kind"); 131 } 132 133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 134 /// always be accessible even if no aggregate location is provided. 135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 136 AggValueSlot AggSlot = AggValueSlot::ignored(); 137 138 if (hasAggregateEvaluationKind(E->getType())) 139 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 140 return EmitAnyExpr(E, AggSlot); 141 } 142 143 /// EmitAnyExprToMem - Evaluate an expression into a given memory 144 /// location. 145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 146 llvm::Value *Location, 147 Qualifiers Quals, 148 bool IsInit) { 149 // FIXME: This function should take an LValue as an argument. 150 switch (getEvaluationKind(E->getType())) { 151 case TEK_Complex: 152 EmitComplexExprIntoLValue(E, 153 MakeNaturalAlignAddrLValue(Location, E->getType()), 154 /*isInit*/ false); 155 return; 156 157 case TEK_Aggregate: { 158 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 159 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 160 AggValueSlot::IsDestructed_t(IsInit), 161 AggValueSlot::DoesNotNeedGCBarriers, 162 AggValueSlot::IsAliased_t(!IsInit))); 163 return; 164 } 165 166 case TEK_Scalar: { 167 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 168 LValue LV = MakeAddrLValue(Location, E->getType()); 169 EmitStoreThroughLValue(RV, LV); 170 return; 171 } 172 } 173 llvm_unreachable("bad evaluation kind"); 174 } 175 176 static void 177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 178 const Expr *E, llvm::Value *ReferenceTemporary) { 179 // Objective-C++ ARC: 180 // If we are binding a reference to a temporary that has ownership, we 181 // need to perform retain/release operations on the temporary. 182 // 183 // FIXME: This should be looking at E, not M. 184 if (CGF.getLangOpts().ObjCAutoRefCount && 185 M->getType()->isObjCLifetimeType()) { 186 QualType ObjCARCReferenceLifetimeType = M->getType(); 187 switch (Qualifiers::ObjCLifetime Lifetime = 188 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 189 case Qualifiers::OCL_None: 190 case Qualifiers::OCL_ExplicitNone: 191 // Carry on to normal cleanup handling. 192 break; 193 194 case Qualifiers::OCL_Autoreleasing: 195 // Nothing to do; cleaned up by an autorelease pool. 196 return; 197 198 case Qualifiers::OCL_Strong: 199 case Qualifiers::OCL_Weak: 200 switch (StorageDuration Duration = M->getStorageDuration()) { 201 case SD_Static: 202 // Note: we intentionally do not register a cleanup to release 203 // the object on program termination. 204 return; 205 206 case SD_Thread: 207 // FIXME: We should probably register a cleanup in this case. 208 return; 209 210 case SD_Automatic: 211 case SD_FullExpression: 212 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 213 CodeGenFunction::Destroyer *Destroy; 214 CleanupKind CleanupKind; 215 if (Lifetime == Qualifiers::OCL_Strong) { 216 const ValueDecl *VD = M->getExtendingDecl(); 217 bool Precise = 218 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 219 CleanupKind = CGF.getARCCleanupKind(); 220 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 221 : &CodeGenFunction::destroyARCStrongImprecise; 222 } else { 223 // __weak objects always get EH cleanups; otherwise, exceptions 224 // could cause really nasty crashes instead of mere leaks. 225 CleanupKind = NormalAndEHCleanup; 226 Destroy = &CodeGenFunction::destroyARCWeak; 227 } 228 if (Duration == SD_FullExpression) 229 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 230 ObjCARCReferenceLifetimeType, *Destroy, 231 CleanupKind & EHCleanup); 232 else 233 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 234 ObjCARCReferenceLifetimeType, 235 *Destroy, CleanupKind & EHCleanup); 236 return; 237 238 case SD_Dynamic: 239 llvm_unreachable("temporary cannot have dynamic storage duration"); 240 } 241 llvm_unreachable("unknown storage duration"); 242 } 243 } 244 245 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 246 if (const RecordType *RT = 247 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 248 // Get the destructor for the reference temporary. 249 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 250 if (!ClassDecl->hasTrivialDestructor()) 251 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 252 } 253 254 if (!ReferenceTemporaryDtor) 255 return; 256 257 // Call the destructor for the temporary. 258 switch (M->getStorageDuration()) { 259 case SD_Static: 260 case SD_Thread: { 261 llvm::Constant *CleanupFn; 262 llvm::Constant *CleanupArg; 263 if (E->getType()->isArrayType()) { 264 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 265 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 266 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 267 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 268 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 269 } else { 270 CleanupFn = 271 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 272 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 273 } 274 CGF.CGM.getCXXABI().registerGlobalDtor( 275 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 276 break; 277 } 278 279 case SD_FullExpression: 280 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 281 CodeGenFunction::destroyCXXObject, 282 CGF.getLangOpts().Exceptions); 283 break; 284 285 case SD_Automatic: 286 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, 289 CGF.getLangOpts().Exceptions); 290 break; 291 292 case SD_Dynamic: 293 llvm_unreachable("temporary cannot have dynamic storage duration"); 294 } 295 } 296 297 static llvm::Value * 298 createReferenceTemporary(CodeGenFunction &CGF, 299 const MaterializeTemporaryExpr *M, const Expr *Inner) { 300 switch (M->getStorageDuration()) { 301 case SD_FullExpression: 302 case SD_Automatic: 303 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 304 305 case SD_Thread: 306 case SD_Static: 307 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 308 309 case SD_Dynamic: 310 llvm_unreachable("temporary can't have dynamic storage duration"); 311 } 312 llvm_unreachable("unknown storage duration"); 313 } 314 315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 316 const MaterializeTemporaryExpr *M) { 317 const Expr *E = M->GetTemporaryExpr(); 318 319 if (getLangOpts().ObjCAutoRefCount && 320 M->getType()->isObjCLifetimeType() && 321 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 322 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 323 // FIXME: Fold this into the general case below. 324 llvm::Value *Object = createReferenceTemporary(*this, M, E); 325 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 326 327 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 328 // We should not have emitted the initializer for this temporary as a 329 // constant. 330 assert(!Var->hasInitializer()); 331 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 332 } 333 334 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 335 336 pushTemporaryCleanup(*this, M, E, Object); 337 return RefTempDst; 338 } 339 340 SmallVector<const Expr *, 2> CommaLHSs; 341 SmallVector<SubobjectAdjustment, 2> Adjustments; 342 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 343 344 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 345 EmitIgnoredExpr(CommaLHSs[I]); 346 347 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 348 if (opaque->getType()->isRecordType()) { 349 assert(Adjustments.empty()); 350 return EmitOpaqueValueLValue(opaque); 351 } 352 } 353 354 // Create and initialize the reference temporary. 355 llvm::Value *Object = createReferenceTemporary(*this, M, E); 356 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 357 // If the temporary is a global and has a constant initializer, we may 358 // have already initialized it. 359 if (!Var->hasInitializer()) { 360 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 362 } 363 } else { 364 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 365 } 366 pushTemporaryCleanup(*this, M, E, Object); 367 368 // Perform derived-to-base casts and/or field accesses, to get from the 369 // temporary object we created (and, potentially, for which we extended 370 // the lifetime) to the subobject we're binding the reference to. 371 for (unsigned I = Adjustments.size(); I != 0; --I) { 372 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 373 switch (Adjustment.Kind) { 374 case SubobjectAdjustment::DerivedToBaseAdjustment: 375 Object = 376 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 377 Adjustment.DerivedToBase.BasePath->path_begin(), 378 Adjustment.DerivedToBase.BasePath->path_end(), 379 /*NullCheckValue=*/ false); 380 break; 381 382 case SubobjectAdjustment::FieldAdjustment: { 383 LValue LV = MakeAddrLValue(Object, E->getType()); 384 LV = EmitLValueForField(LV, Adjustment.Field); 385 assert(LV.isSimple() && 386 "materialized temporary field is not a simple lvalue"); 387 Object = LV.getAddress(); 388 break; 389 } 390 391 case SubobjectAdjustment::MemberPointerAdjustment: { 392 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 393 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 394 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 395 break; 396 } 397 } 398 } 399 400 return MakeAddrLValue(Object, M->getType()); 401 } 402 403 RValue 404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 405 // Emit the expression as an lvalue. 406 LValue LV = EmitLValue(E); 407 assert(LV.isSimple()); 408 llvm::Value *Value = LV.getAddress(); 409 410 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 411 // C++11 [dcl.ref]p5 (as amended by core issue 453): 412 // If a glvalue to which a reference is directly bound designates neither 413 // an existing object or function of an appropriate type nor a region of 414 // storage of suitable size and alignment to contain an object of the 415 // reference's type, the behavior is undefined. 416 QualType Ty = E->getType(); 417 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 418 } 419 420 return RValue::get(Value); 421 } 422 423 424 /// getAccessedFieldNo - Given an encoded value and a result number, return the 425 /// input field number being accessed. 426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 427 const llvm::Constant *Elts) { 428 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 429 ->getZExtValue(); 430 } 431 432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 434 llvm::Value *High) { 435 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 436 llvm::Value *K47 = Builder.getInt64(47); 437 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 438 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 439 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 440 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 441 return Builder.CreateMul(B1, KMul); 442 } 443 444 bool CodeGenFunction::sanitizePerformTypeCheck() const { 445 return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize | 446 SanOpts->Vptr; 447 } 448 449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 450 llvm::Value *Address, 451 QualType Ty, CharUnits Alignment) { 452 if (!sanitizePerformTypeCheck()) 453 return; 454 455 // Don't check pointers outside the default address space. The null check 456 // isn't correct, the object-size check isn't supported by LLVM, and we can't 457 // communicate the addresses to the runtime handler for the vptr check. 458 if (Address->getType()->getPointerAddressSpace()) 459 return; 460 461 SanitizerScope SanScope(this); 462 463 llvm::Value *Cond = nullptr; 464 llvm::BasicBlock *Done = nullptr; 465 466 if (SanOpts->Null) { 467 // The glvalue must not be an empty glvalue. 468 Cond = Builder.CreateICmpNE( 469 Address, llvm::Constant::getNullValue(Address->getType())); 470 471 if (TCK == TCK_DowncastPointer) { 472 // When performing a pointer downcast, it's OK if the value is null. 473 // Skip the remaining checks in that case. 474 Done = createBasicBlock("null"); 475 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 476 Builder.CreateCondBr(Cond, Rest, Done); 477 EmitBlock(Rest); 478 Cond = nullptr; 479 } 480 } 481 482 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 483 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 484 485 // The glvalue must refer to a large enough storage region. 486 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 487 // to check this. 488 // FIXME: Get object address space 489 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 490 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 491 llvm::Value *Min = Builder.getFalse(); 492 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 493 llvm::Value *LargeEnough = 494 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 495 llvm::ConstantInt::get(IntPtrTy, Size)); 496 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 497 } 498 499 uint64_t AlignVal = 0; 500 501 if (SanOpts->Alignment) { 502 AlignVal = Alignment.getQuantity(); 503 if (!Ty->isIncompleteType() && !AlignVal) 504 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 505 506 // The glvalue must be suitably aligned. 507 if (AlignVal) { 508 llvm::Value *Align = 509 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 510 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 511 llvm::Value *Aligned = 512 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 513 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 514 } 515 } 516 517 if (Cond) { 518 llvm::Constant *StaticData[] = { 519 EmitCheckSourceLocation(Loc), 520 EmitCheckTypeDescriptor(Ty), 521 llvm::ConstantInt::get(SizeTy, AlignVal), 522 llvm::ConstantInt::get(Int8Ty, TCK) 523 }; 524 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 525 } 526 527 // If possible, check that the vptr indicates that there is a subobject of 528 // type Ty at offset zero within this object. 529 // 530 // C++11 [basic.life]p5,6: 531 // [For storage which does not refer to an object within its lifetime] 532 // The program has undefined behavior if: 533 // -- the [pointer or glvalue] is used to access a non-static data member 534 // or call a non-static member function 535 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 536 if (SanOpts->Vptr && 537 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 538 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 539 RD && RD->hasDefinition() && RD->isDynamicClass()) { 540 // Compute a hash of the mangled name of the type. 541 // 542 // FIXME: This is not guaranteed to be deterministic! Move to a 543 // fingerprinting mechanism once LLVM provides one. For the time 544 // being the implementation happens to be deterministic. 545 SmallString<64> MangledName; 546 llvm::raw_svector_ostream Out(MangledName); 547 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 548 Out); 549 550 // Blacklist based on the mangled type. 551 if (!CGM.getSanitizerBlacklist().isBlacklistedType(Out.str())) { 552 llvm::hash_code TypeHash = hash_value(Out.str()); 553 554 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 555 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 556 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 557 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 558 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 559 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 560 561 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 562 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 563 564 // Look the hash up in our cache. 565 const int CacheSize = 128; 566 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 567 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 568 "__ubsan_vptr_type_cache"); 569 llvm::Value *Slot = Builder.CreateAnd(Hash, 570 llvm::ConstantInt::get(IntPtrTy, 571 CacheSize-1)); 572 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 573 llvm::Value *CacheVal = 574 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 575 576 // If the hash isn't in the cache, call a runtime handler to perform the 577 // hard work of checking whether the vptr is for an object of the right 578 // type. This will either fill in the cache and return, or produce a 579 // diagnostic. 580 llvm::Constant *StaticData[] = { 581 EmitCheckSourceLocation(Loc), 582 EmitCheckTypeDescriptor(Ty), 583 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 584 llvm::ConstantInt::get(Int8Ty, TCK) 585 }; 586 llvm::Value *DynamicData[] = { Address, Hash }; 587 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 588 "dynamic_type_cache_miss", StaticData, DynamicData, 589 CRK_AlwaysRecoverable); 590 } 591 } 592 593 if (Done) { 594 Builder.CreateBr(Done); 595 EmitBlock(Done); 596 } 597 } 598 599 /// Determine whether this expression refers to a flexible array member in a 600 /// struct. We disable array bounds checks for such members. 601 static bool isFlexibleArrayMemberExpr(const Expr *E) { 602 // For compatibility with existing code, we treat arrays of length 0 or 603 // 1 as flexible array members. 604 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 605 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 606 if (CAT->getSize().ugt(1)) 607 return false; 608 } else if (!isa<IncompleteArrayType>(AT)) 609 return false; 610 611 E = E->IgnoreParens(); 612 613 // A flexible array member must be the last member in the class. 614 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 615 // FIXME: If the base type of the member expr is not FD->getParent(), 616 // this should not be treated as a flexible array member access. 617 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 618 RecordDecl::field_iterator FI( 619 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 620 return ++FI == FD->getParent()->field_end(); 621 } 622 } 623 624 return false; 625 } 626 627 /// If Base is known to point to the start of an array, return the length of 628 /// that array. Return 0 if the length cannot be determined. 629 static llvm::Value *getArrayIndexingBound( 630 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 631 // For the vector indexing extension, the bound is the number of elements. 632 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 633 IndexedType = Base->getType(); 634 return CGF.Builder.getInt32(VT->getNumElements()); 635 } 636 637 Base = Base->IgnoreParens(); 638 639 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 640 if (CE->getCastKind() == CK_ArrayToPointerDecay && 641 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 642 IndexedType = CE->getSubExpr()->getType(); 643 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 644 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 645 return CGF.Builder.getInt(CAT->getSize()); 646 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 647 return CGF.getVLASize(VAT).first; 648 } 649 } 650 651 return nullptr; 652 } 653 654 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 655 llvm::Value *Index, QualType IndexType, 656 bool Accessed) { 657 assert(SanOpts->ArrayBounds && 658 "should not be called unless adding bounds checks"); 659 SanitizerScope SanScope(this); 660 661 QualType IndexedType; 662 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 663 if (!Bound) 664 return; 665 666 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 667 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 668 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 669 670 llvm::Constant *StaticData[] = { 671 EmitCheckSourceLocation(E->getExprLoc()), 672 EmitCheckTypeDescriptor(IndexedType), 673 EmitCheckTypeDescriptor(IndexType) 674 }; 675 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 676 : Builder.CreateICmpULE(IndexVal, BoundVal); 677 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 678 } 679 680 681 CodeGenFunction::ComplexPairTy CodeGenFunction:: 682 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 683 bool isInc, bool isPre) { 684 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 685 686 llvm::Value *NextVal; 687 if (isa<llvm::IntegerType>(InVal.first->getType())) { 688 uint64_t AmountVal = isInc ? 1 : -1; 689 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 690 691 // Add the inc/dec to the real part. 692 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 693 } else { 694 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 695 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 696 if (!isInc) 697 FVal.changeSign(); 698 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 699 700 // Add the inc/dec to the real part. 701 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 702 } 703 704 ComplexPairTy IncVal(NextVal, InVal.second); 705 706 // Store the updated result through the lvalue. 707 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 708 709 // If this is a postinc, return the value read from memory, otherwise use the 710 // updated value. 711 return isPre ? IncVal : InVal; 712 } 713 714 715 //===----------------------------------------------------------------------===// 716 // LValue Expression Emission 717 //===----------------------------------------------------------------------===// 718 719 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 720 if (Ty->isVoidType()) 721 return RValue::get(nullptr); 722 723 switch (getEvaluationKind(Ty)) { 724 case TEK_Complex: { 725 llvm::Type *EltTy = 726 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 727 llvm::Value *U = llvm::UndefValue::get(EltTy); 728 return RValue::getComplex(std::make_pair(U, U)); 729 } 730 731 // If this is a use of an undefined aggregate type, the aggregate must have an 732 // identifiable address. Just because the contents of the value are undefined 733 // doesn't mean that the address can't be taken and compared. 734 case TEK_Aggregate: { 735 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 736 return RValue::getAggregate(DestPtr); 737 } 738 739 case TEK_Scalar: 740 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 741 } 742 llvm_unreachable("bad evaluation kind"); 743 } 744 745 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 746 const char *Name) { 747 ErrorUnsupported(E, Name); 748 return GetUndefRValue(E->getType()); 749 } 750 751 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 752 const char *Name) { 753 ErrorUnsupported(E, Name); 754 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 755 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 756 } 757 758 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 759 LValue LV; 760 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E)) 761 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 762 else 763 LV = EmitLValue(E); 764 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 765 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 766 E->getType(), LV.getAlignment()); 767 return LV; 768 } 769 770 /// EmitLValue - Emit code to compute a designator that specifies the location 771 /// of the expression. 772 /// 773 /// This can return one of two things: a simple address or a bitfield reference. 774 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 775 /// an LLVM pointer type. 776 /// 777 /// If this returns a bitfield reference, nothing about the pointee type of the 778 /// LLVM value is known: For example, it may not be a pointer to an integer. 779 /// 780 /// If this returns a normal address, and if the lvalue's C type is fixed size, 781 /// this method guarantees that the returned pointer type will point to an LLVM 782 /// type of the same size of the lvalue's type. If the lvalue has a variable 783 /// length type, this is not possible. 784 /// 785 LValue CodeGenFunction::EmitLValue(const Expr *E) { 786 switch (E->getStmtClass()) { 787 default: return EmitUnsupportedLValue(E, "l-value expression"); 788 789 case Expr::ObjCPropertyRefExprClass: 790 llvm_unreachable("cannot emit a property reference directly"); 791 792 case Expr::ObjCSelectorExprClass: 793 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 794 case Expr::ObjCIsaExprClass: 795 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 796 case Expr::BinaryOperatorClass: 797 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 798 case Expr::CompoundAssignOperatorClass: 799 if (!E->getType()->isAnyComplexType()) 800 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 801 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 802 case Expr::CallExprClass: 803 case Expr::CXXMemberCallExprClass: 804 case Expr::CXXOperatorCallExprClass: 805 case Expr::UserDefinedLiteralClass: 806 return EmitCallExprLValue(cast<CallExpr>(E)); 807 case Expr::VAArgExprClass: 808 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 809 case Expr::DeclRefExprClass: 810 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 811 case Expr::ParenExprClass: 812 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 813 case Expr::GenericSelectionExprClass: 814 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 815 case Expr::PredefinedExprClass: 816 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 817 case Expr::StringLiteralClass: 818 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 819 case Expr::ObjCEncodeExprClass: 820 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 821 case Expr::PseudoObjectExprClass: 822 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 823 case Expr::InitListExprClass: 824 return EmitInitListLValue(cast<InitListExpr>(E)); 825 case Expr::CXXTemporaryObjectExprClass: 826 case Expr::CXXConstructExprClass: 827 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 828 case Expr::CXXBindTemporaryExprClass: 829 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 830 case Expr::CXXUuidofExprClass: 831 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 832 case Expr::LambdaExprClass: 833 return EmitLambdaLValue(cast<LambdaExpr>(E)); 834 835 case Expr::ExprWithCleanupsClass: { 836 const auto *cleanups = cast<ExprWithCleanups>(E); 837 enterFullExpression(cleanups); 838 RunCleanupsScope Scope(*this); 839 return EmitLValue(cleanups->getSubExpr()); 840 } 841 842 case Expr::CXXDefaultArgExprClass: 843 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 844 case Expr::CXXDefaultInitExprClass: { 845 CXXDefaultInitExprScope Scope(*this); 846 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 847 } 848 case Expr::CXXTypeidExprClass: 849 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 850 851 case Expr::ObjCMessageExprClass: 852 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 853 case Expr::ObjCIvarRefExprClass: 854 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 855 case Expr::StmtExprClass: 856 return EmitStmtExprLValue(cast<StmtExpr>(E)); 857 case Expr::UnaryOperatorClass: 858 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 859 case Expr::ArraySubscriptExprClass: 860 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 861 case Expr::ExtVectorElementExprClass: 862 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 863 case Expr::MemberExprClass: 864 return EmitMemberExpr(cast<MemberExpr>(E)); 865 case Expr::CompoundLiteralExprClass: 866 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 867 case Expr::ConditionalOperatorClass: 868 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 869 case Expr::BinaryConditionalOperatorClass: 870 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 871 case Expr::ChooseExprClass: 872 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 873 case Expr::OpaqueValueExprClass: 874 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 875 case Expr::SubstNonTypeTemplateParmExprClass: 876 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 877 case Expr::ImplicitCastExprClass: 878 case Expr::CStyleCastExprClass: 879 case Expr::CXXFunctionalCastExprClass: 880 case Expr::CXXStaticCastExprClass: 881 case Expr::CXXDynamicCastExprClass: 882 case Expr::CXXReinterpretCastExprClass: 883 case Expr::CXXConstCastExprClass: 884 case Expr::ObjCBridgedCastExprClass: 885 return EmitCastLValue(cast<CastExpr>(E)); 886 887 case Expr::MaterializeTemporaryExprClass: 888 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 889 } 890 } 891 892 /// Given an object of the given canonical type, can we safely copy a 893 /// value out of it based on its initializer? 894 static bool isConstantEmittableObjectType(QualType type) { 895 assert(type.isCanonical()); 896 assert(!type->isReferenceType()); 897 898 // Must be const-qualified but non-volatile. 899 Qualifiers qs = type.getLocalQualifiers(); 900 if (!qs.hasConst() || qs.hasVolatile()) return false; 901 902 // Otherwise, all object types satisfy this except C++ classes with 903 // mutable subobjects or non-trivial copy/destroy behavior. 904 if (const auto *RT = dyn_cast<RecordType>(type)) 905 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 906 if (RD->hasMutableFields() || !RD->isTrivial()) 907 return false; 908 909 return true; 910 } 911 912 /// Can we constant-emit a load of a reference to a variable of the 913 /// given type? This is different from predicates like 914 /// Decl::isUsableInConstantExpressions because we do want it to apply 915 /// in situations that don't necessarily satisfy the language's rules 916 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 917 /// to do this with const float variables even if those variables 918 /// aren't marked 'constexpr'. 919 enum ConstantEmissionKind { 920 CEK_None, 921 CEK_AsReferenceOnly, 922 CEK_AsValueOrReference, 923 CEK_AsValueOnly 924 }; 925 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 926 type = type.getCanonicalType(); 927 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 928 if (isConstantEmittableObjectType(ref->getPointeeType())) 929 return CEK_AsValueOrReference; 930 return CEK_AsReferenceOnly; 931 } 932 if (isConstantEmittableObjectType(type)) 933 return CEK_AsValueOnly; 934 return CEK_None; 935 } 936 937 /// Try to emit a reference to the given value without producing it as 938 /// an l-value. This is actually more than an optimization: we can't 939 /// produce an l-value for variables that we never actually captured 940 /// in a block or lambda, which means const int variables or constexpr 941 /// literals or similar. 942 CodeGenFunction::ConstantEmission 943 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 944 ValueDecl *value = refExpr->getDecl(); 945 946 // The value needs to be an enum constant or a constant variable. 947 ConstantEmissionKind CEK; 948 if (isa<ParmVarDecl>(value)) { 949 CEK = CEK_None; 950 } else if (auto *var = dyn_cast<VarDecl>(value)) { 951 CEK = checkVarTypeForConstantEmission(var->getType()); 952 } else if (isa<EnumConstantDecl>(value)) { 953 CEK = CEK_AsValueOnly; 954 } else { 955 CEK = CEK_None; 956 } 957 if (CEK == CEK_None) return ConstantEmission(); 958 959 Expr::EvalResult result; 960 bool resultIsReference; 961 QualType resultType; 962 963 // It's best to evaluate all the way as an r-value if that's permitted. 964 if (CEK != CEK_AsReferenceOnly && 965 refExpr->EvaluateAsRValue(result, getContext())) { 966 resultIsReference = false; 967 resultType = refExpr->getType(); 968 969 // Otherwise, try to evaluate as an l-value. 970 } else if (CEK != CEK_AsValueOnly && 971 refExpr->EvaluateAsLValue(result, getContext())) { 972 resultIsReference = true; 973 resultType = value->getType(); 974 975 // Failure. 976 } else { 977 return ConstantEmission(); 978 } 979 980 // In any case, if the initializer has side-effects, abandon ship. 981 if (result.HasSideEffects) 982 return ConstantEmission(); 983 984 // Emit as a constant. 985 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 986 987 // Make sure we emit a debug reference to the global variable. 988 // This should probably fire even for 989 if (isa<VarDecl>(value)) { 990 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 991 EmitDeclRefExprDbgValue(refExpr, C); 992 } else { 993 assert(isa<EnumConstantDecl>(value)); 994 EmitDeclRefExprDbgValue(refExpr, C); 995 } 996 997 // If we emitted a reference constant, we need to dereference that. 998 if (resultIsReference) 999 return ConstantEmission::forReference(C); 1000 1001 return ConstantEmission::forValue(C); 1002 } 1003 1004 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1005 SourceLocation Loc) { 1006 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1007 lvalue.getAlignment().getQuantity(), 1008 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1009 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1010 } 1011 1012 static bool hasBooleanRepresentation(QualType Ty) { 1013 if (Ty->isBooleanType()) 1014 return true; 1015 1016 if (const EnumType *ET = Ty->getAs<EnumType>()) 1017 return ET->getDecl()->getIntegerType()->isBooleanType(); 1018 1019 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1020 return hasBooleanRepresentation(AT->getValueType()); 1021 1022 return false; 1023 } 1024 1025 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1026 llvm::APInt &Min, llvm::APInt &End, 1027 bool StrictEnums) { 1028 const EnumType *ET = Ty->getAs<EnumType>(); 1029 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1030 ET && !ET->getDecl()->isFixed(); 1031 bool IsBool = hasBooleanRepresentation(Ty); 1032 if (!IsBool && !IsRegularCPlusPlusEnum) 1033 return false; 1034 1035 if (IsBool) { 1036 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1037 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1038 } else { 1039 const EnumDecl *ED = ET->getDecl(); 1040 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1041 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1042 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1043 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1044 1045 if (NumNegativeBits) { 1046 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1047 assert(NumBits <= Bitwidth); 1048 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1049 Min = -End; 1050 } else { 1051 assert(NumPositiveBits <= Bitwidth); 1052 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1053 Min = llvm::APInt(Bitwidth, 0); 1054 } 1055 } 1056 return true; 1057 } 1058 1059 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1060 llvm::APInt Min, End; 1061 if (!getRangeForType(*this, Ty, Min, End, 1062 CGM.getCodeGenOpts().StrictEnums)) 1063 return nullptr; 1064 1065 llvm::MDBuilder MDHelper(getLLVMContext()); 1066 return MDHelper.createRange(Min, End); 1067 } 1068 1069 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1070 unsigned Alignment, QualType Ty, 1071 SourceLocation Loc, 1072 llvm::MDNode *TBAAInfo, 1073 QualType TBAABaseType, 1074 uint64_t TBAAOffset) { 1075 // For better performance, handle vector loads differently. 1076 if (Ty->isVectorType()) { 1077 llvm::Value *V; 1078 const llvm::Type *EltTy = 1079 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1080 1081 const auto *VTy = cast<llvm::VectorType>(EltTy); 1082 1083 // Handle vectors of size 3, like size 4 for better performance. 1084 if (VTy->getNumElements() == 3) { 1085 1086 // Bitcast to vec4 type. 1087 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1088 4); 1089 llvm::PointerType *ptVec4Ty = 1090 llvm::PointerType::get(vec4Ty, 1091 (cast<llvm::PointerType>( 1092 Addr->getType()))->getAddressSpace()); 1093 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1094 "castToVec4"); 1095 // Now load value. 1096 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1097 1098 // Shuffle vector to get vec3. 1099 llvm::Constant *Mask[] = { 1100 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1101 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1102 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1103 }; 1104 1105 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1106 V = Builder.CreateShuffleVector(LoadVal, 1107 llvm::UndefValue::get(vec4Ty), 1108 MaskV, "extractVec"); 1109 return EmitFromMemory(V, Ty); 1110 } 1111 } 1112 1113 // Atomic operations have to be done on integral types. 1114 if (Ty->isAtomicType()) { 1115 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1116 CharUnits::fromQuantity(Alignment), 1117 getContext(), TBAAInfo); 1118 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1119 } 1120 1121 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1122 if (Volatile) 1123 Load->setVolatile(true); 1124 if (Alignment) 1125 Load->setAlignment(Alignment); 1126 if (TBAAInfo) { 1127 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1128 TBAAOffset); 1129 if (TBAAPath) 1130 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1131 } 1132 1133 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1134 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1135 SanitizerScope SanScope(this); 1136 llvm::APInt Min, End; 1137 if (getRangeForType(*this, Ty, Min, End, true)) { 1138 --End; 1139 llvm::Value *Check; 1140 if (!Min) 1141 Check = Builder.CreateICmpULE( 1142 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1143 else { 1144 llvm::Value *Upper = Builder.CreateICmpSLE( 1145 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1146 llvm::Value *Lower = Builder.CreateICmpSGE( 1147 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1148 Check = Builder.CreateAnd(Upper, Lower); 1149 } 1150 llvm::Constant *StaticArgs[] = { 1151 EmitCheckSourceLocation(Loc), 1152 EmitCheckTypeDescriptor(Ty) 1153 }; 1154 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), 1155 CRK_Recoverable); 1156 } 1157 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1158 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1159 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1160 1161 return EmitFromMemory(Load, Ty); 1162 } 1163 1164 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1165 // Bool has a different representation in memory than in registers. 1166 if (hasBooleanRepresentation(Ty)) { 1167 // This should really always be an i1, but sometimes it's already 1168 // an i8, and it's awkward to track those cases down. 1169 if (Value->getType()->isIntegerTy(1)) 1170 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1171 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1172 "wrong value rep of bool"); 1173 } 1174 1175 return Value; 1176 } 1177 1178 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1179 // Bool has a different representation in memory than in registers. 1180 if (hasBooleanRepresentation(Ty)) { 1181 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1182 "wrong value rep of bool"); 1183 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1184 } 1185 1186 return Value; 1187 } 1188 1189 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1190 bool Volatile, unsigned Alignment, 1191 QualType Ty, llvm::MDNode *TBAAInfo, 1192 bool isInit, QualType TBAABaseType, 1193 uint64_t TBAAOffset) { 1194 1195 // Handle vectors differently to get better performance. 1196 if (Ty->isVectorType()) { 1197 llvm::Type *SrcTy = Value->getType(); 1198 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1199 // Handle vec3 special. 1200 if (VecTy->getNumElements() == 3) { 1201 llvm::LLVMContext &VMContext = getLLVMContext(); 1202 1203 // Our source is a vec3, do a shuffle vector to make it a vec4. 1204 SmallVector<llvm::Constant*, 4> Mask; 1205 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1206 0)); 1207 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1208 1)); 1209 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1210 2)); 1211 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1212 1213 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1214 Value = Builder.CreateShuffleVector(Value, 1215 llvm::UndefValue::get(VecTy), 1216 MaskV, "extractVec"); 1217 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1218 } 1219 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1220 if (DstPtr->getElementType() != SrcTy) { 1221 llvm::Type *MemTy = 1222 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1223 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1224 } 1225 } 1226 1227 Value = EmitToMemory(Value, Ty); 1228 1229 if (Ty->isAtomicType()) { 1230 EmitAtomicStore(RValue::get(Value), 1231 LValue::MakeAddr(Addr, Ty, 1232 CharUnits::fromQuantity(Alignment), 1233 getContext(), TBAAInfo), 1234 isInit); 1235 return; 1236 } 1237 1238 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1239 if (Alignment) 1240 Store->setAlignment(Alignment); 1241 if (TBAAInfo) { 1242 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1243 TBAAOffset); 1244 if (TBAAPath) 1245 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1246 } 1247 } 1248 1249 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1250 bool isInit) { 1251 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1252 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1253 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1254 lvalue.getTBAAOffset()); 1255 } 1256 1257 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1258 /// method emits the address of the lvalue, then loads the result as an rvalue, 1259 /// returning the rvalue. 1260 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1261 if (LV.isObjCWeak()) { 1262 // load of a __weak object. 1263 llvm::Value *AddrWeakObj = LV.getAddress(); 1264 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1265 AddrWeakObj)); 1266 } 1267 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1268 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1269 Object = EmitObjCConsumeObject(LV.getType(), Object); 1270 return RValue::get(Object); 1271 } 1272 1273 if (LV.isSimple()) { 1274 assert(!LV.getType()->isFunctionType()); 1275 1276 // Everything needs a load. 1277 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1278 } 1279 1280 if (LV.isVectorElt()) { 1281 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1282 LV.isVolatileQualified()); 1283 Load->setAlignment(LV.getAlignment().getQuantity()); 1284 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1285 "vecext")); 1286 } 1287 1288 // If this is a reference to a subset of the elements of a vector, either 1289 // shuffle the input or extract/insert them as appropriate. 1290 if (LV.isExtVectorElt()) 1291 return EmitLoadOfExtVectorElementLValue(LV); 1292 1293 // Global Register variables always invoke intrinsics 1294 if (LV.isGlobalReg()) 1295 return EmitLoadOfGlobalRegLValue(LV); 1296 1297 assert(LV.isBitField() && "Unknown LValue type!"); 1298 return EmitLoadOfBitfieldLValue(LV); 1299 } 1300 1301 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1302 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1303 1304 // Get the output type. 1305 llvm::Type *ResLTy = ConvertType(LV.getType()); 1306 1307 llvm::Value *Ptr = LV.getBitFieldAddr(); 1308 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1309 "bf.load"); 1310 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1311 1312 if (Info.IsSigned) { 1313 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1314 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1315 if (HighBits) 1316 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1317 if (Info.Offset + HighBits) 1318 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1319 } else { 1320 if (Info.Offset) 1321 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1322 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1323 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1324 Info.Size), 1325 "bf.clear"); 1326 } 1327 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1328 1329 return RValue::get(Val); 1330 } 1331 1332 // If this is a reference to a subset of the elements of a vector, create an 1333 // appropriate shufflevector. 1334 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1335 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1336 LV.isVolatileQualified()); 1337 Load->setAlignment(LV.getAlignment().getQuantity()); 1338 llvm::Value *Vec = Load; 1339 1340 const llvm::Constant *Elts = LV.getExtVectorElts(); 1341 1342 // If the result of the expression is a non-vector type, we must be extracting 1343 // a single element. Just codegen as an extractelement. 1344 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1345 if (!ExprVT) { 1346 unsigned InIdx = getAccessedFieldNo(0, Elts); 1347 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1348 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1349 } 1350 1351 // Always use shuffle vector to try to retain the original program structure 1352 unsigned NumResultElts = ExprVT->getNumElements(); 1353 1354 SmallVector<llvm::Constant*, 4> Mask; 1355 for (unsigned i = 0; i != NumResultElts; ++i) 1356 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1357 1358 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1359 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1360 MaskV); 1361 return RValue::get(Vec); 1362 } 1363 1364 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1365 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1366 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1367 "Bad type for register variable"); 1368 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg()); 1369 assert(RegName && "Register LValue is not metadata"); 1370 1371 // We accept integer and pointer types only 1372 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1373 llvm::Type *Ty = OrigTy; 1374 if (OrigTy->isPointerTy()) 1375 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1376 llvm::Type *Types[] = { Ty }; 1377 1378 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1379 llvm::Value *Call = Builder.CreateCall(F, RegName); 1380 if (OrigTy->isPointerTy()) 1381 Call = Builder.CreateIntToPtr(Call, OrigTy); 1382 return RValue::get(Call); 1383 } 1384 1385 1386 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1387 /// lvalue, where both are guaranteed to the have the same type, and that type 1388 /// is 'Ty'. 1389 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1390 bool isInit) { 1391 if (!Dst.isSimple()) { 1392 if (Dst.isVectorElt()) { 1393 // Read/modify/write the vector, inserting the new element. 1394 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1395 Dst.isVolatileQualified()); 1396 Load->setAlignment(Dst.getAlignment().getQuantity()); 1397 llvm::Value *Vec = Load; 1398 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1399 Dst.getVectorIdx(), "vecins"); 1400 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1401 Dst.isVolatileQualified()); 1402 Store->setAlignment(Dst.getAlignment().getQuantity()); 1403 return; 1404 } 1405 1406 // If this is an update of extended vector elements, insert them as 1407 // appropriate. 1408 if (Dst.isExtVectorElt()) 1409 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1410 1411 if (Dst.isGlobalReg()) 1412 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1413 1414 assert(Dst.isBitField() && "Unknown LValue type"); 1415 return EmitStoreThroughBitfieldLValue(Src, Dst); 1416 } 1417 1418 // There's special magic for assigning into an ARC-qualified l-value. 1419 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1420 switch (Lifetime) { 1421 case Qualifiers::OCL_None: 1422 llvm_unreachable("present but none"); 1423 1424 case Qualifiers::OCL_ExplicitNone: 1425 // nothing special 1426 break; 1427 1428 case Qualifiers::OCL_Strong: 1429 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1430 return; 1431 1432 case Qualifiers::OCL_Weak: 1433 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1434 return; 1435 1436 case Qualifiers::OCL_Autoreleasing: 1437 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1438 Src.getScalarVal())); 1439 // fall into the normal path 1440 break; 1441 } 1442 } 1443 1444 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1445 // load of a __weak object. 1446 llvm::Value *LvalueDst = Dst.getAddress(); 1447 llvm::Value *src = Src.getScalarVal(); 1448 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1449 return; 1450 } 1451 1452 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1453 // load of a __strong object. 1454 llvm::Value *LvalueDst = Dst.getAddress(); 1455 llvm::Value *src = Src.getScalarVal(); 1456 if (Dst.isObjCIvar()) { 1457 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1458 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1459 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1460 llvm::Value *dst = RHS; 1461 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1462 llvm::Value *LHS = 1463 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1464 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1465 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1466 BytesBetween); 1467 } else if (Dst.isGlobalObjCRef()) { 1468 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1469 Dst.isThreadLocalRef()); 1470 } 1471 else 1472 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1473 return; 1474 } 1475 1476 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1477 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1478 } 1479 1480 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1481 llvm::Value **Result) { 1482 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1483 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1484 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1485 1486 // Get the source value, truncated to the width of the bit-field. 1487 llvm::Value *SrcVal = Src.getScalarVal(); 1488 1489 // Cast the source to the storage type and shift it into place. 1490 SrcVal = Builder.CreateIntCast(SrcVal, 1491 Ptr->getType()->getPointerElementType(), 1492 /*IsSigned=*/false); 1493 llvm::Value *MaskedVal = SrcVal; 1494 1495 // See if there are other bits in the bitfield's storage we'll need to load 1496 // and mask together with source before storing. 1497 if (Info.StorageSize != Info.Size) { 1498 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1499 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1500 "bf.load"); 1501 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1502 1503 // Mask the source value as needed. 1504 if (!hasBooleanRepresentation(Dst.getType())) 1505 SrcVal = Builder.CreateAnd(SrcVal, 1506 llvm::APInt::getLowBitsSet(Info.StorageSize, 1507 Info.Size), 1508 "bf.value"); 1509 MaskedVal = SrcVal; 1510 if (Info.Offset) 1511 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1512 1513 // Mask out the original value. 1514 Val = Builder.CreateAnd(Val, 1515 ~llvm::APInt::getBitsSet(Info.StorageSize, 1516 Info.Offset, 1517 Info.Offset + Info.Size), 1518 "bf.clear"); 1519 1520 // Or together the unchanged values and the source value. 1521 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1522 } else { 1523 assert(Info.Offset == 0); 1524 } 1525 1526 // Write the new value back out. 1527 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1528 Dst.isVolatileQualified()); 1529 Store->setAlignment(Info.StorageAlignment); 1530 1531 // Return the new value of the bit-field, if requested. 1532 if (Result) { 1533 llvm::Value *ResultVal = MaskedVal; 1534 1535 // Sign extend the value if needed. 1536 if (Info.IsSigned) { 1537 assert(Info.Size <= Info.StorageSize); 1538 unsigned HighBits = Info.StorageSize - Info.Size; 1539 if (HighBits) { 1540 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1541 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1542 } 1543 } 1544 1545 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1546 "bf.result.cast"); 1547 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1548 } 1549 } 1550 1551 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1552 LValue Dst) { 1553 // This access turns into a read/modify/write of the vector. Load the input 1554 // value now. 1555 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1556 Dst.isVolatileQualified()); 1557 Load->setAlignment(Dst.getAlignment().getQuantity()); 1558 llvm::Value *Vec = Load; 1559 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1560 1561 llvm::Value *SrcVal = Src.getScalarVal(); 1562 1563 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1564 unsigned NumSrcElts = VTy->getNumElements(); 1565 unsigned NumDstElts = 1566 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1567 if (NumDstElts == NumSrcElts) { 1568 // Use shuffle vector is the src and destination are the same number of 1569 // elements and restore the vector mask since it is on the side it will be 1570 // stored. 1571 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1572 for (unsigned i = 0; i != NumSrcElts; ++i) 1573 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1574 1575 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1576 Vec = Builder.CreateShuffleVector(SrcVal, 1577 llvm::UndefValue::get(Vec->getType()), 1578 MaskV); 1579 } else if (NumDstElts > NumSrcElts) { 1580 // Extended the source vector to the same length and then shuffle it 1581 // into the destination. 1582 // FIXME: since we're shuffling with undef, can we just use the indices 1583 // into that? This could be simpler. 1584 SmallVector<llvm::Constant*, 4> ExtMask; 1585 for (unsigned i = 0; i != NumSrcElts; ++i) 1586 ExtMask.push_back(Builder.getInt32(i)); 1587 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1588 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1589 llvm::Value *ExtSrcVal = 1590 Builder.CreateShuffleVector(SrcVal, 1591 llvm::UndefValue::get(SrcVal->getType()), 1592 ExtMaskV); 1593 // build identity 1594 SmallVector<llvm::Constant*, 4> Mask; 1595 for (unsigned i = 0; i != NumDstElts; ++i) 1596 Mask.push_back(Builder.getInt32(i)); 1597 1598 // When the vector size is odd and .odd or .hi is used, the last element 1599 // of the Elts constant array will be one past the size of the vector. 1600 // Ignore the last element here, if it is greater than the mask size. 1601 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1602 NumSrcElts--; 1603 1604 // modify when what gets shuffled in 1605 for (unsigned i = 0; i != NumSrcElts; ++i) 1606 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1607 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1608 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1609 } else { 1610 // We should never shorten the vector 1611 llvm_unreachable("unexpected shorten vector length"); 1612 } 1613 } else { 1614 // If the Src is a scalar (not a vector) it must be updating one element. 1615 unsigned InIdx = getAccessedFieldNo(0, Elts); 1616 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1617 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1618 } 1619 1620 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1621 Dst.isVolatileQualified()); 1622 Store->setAlignment(Dst.getAlignment().getQuantity()); 1623 } 1624 1625 /// @brief Store of global named registers are always calls to intrinsics. 1626 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1627 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1628 "Bad type for register variable"); 1629 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg()); 1630 assert(RegName && "Register LValue is not metadata"); 1631 1632 // We accept integer and pointer types only 1633 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1634 llvm::Type *Ty = OrigTy; 1635 if (OrigTy->isPointerTy()) 1636 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1637 llvm::Type *Types[] = { Ty }; 1638 1639 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1640 llvm::Value *Value = Src.getScalarVal(); 1641 if (OrigTy->isPointerTy()) 1642 Value = Builder.CreatePtrToInt(Value, Ty); 1643 Builder.CreateCall2(F, RegName, Value); 1644 } 1645 1646 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1647 // generating write-barries API. It is currently a global, ivar, 1648 // or neither. 1649 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1650 LValue &LV, 1651 bool IsMemberAccess=false) { 1652 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1653 return; 1654 1655 if (isa<ObjCIvarRefExpr>(E)) { 1656 QualType ExpTy = E->getType(); 1657 if (IsMemberAccess && ExpTy->isPointerType()) { 1658 // If ivar is a structure pointer, assigning to field of 1659 // this struct follows gcc's behavior and makes it a non-ivar 1660 // writer-barrier conservatively. 1661 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1662 if (ExpTy->isRecordType()) { 1663 LV.setObjCIvar(false); 1664 return; 1665 } 1666 } 1667 LV.setObjCIvar(true); 1668 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1669 LV.setBaseIvarExp(Exp->getBase()); 1670 LV.setObjCArray(E->getType()->isArrayType()); 1671 return; 1672 } 1673 1674 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1675 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1676 if (VD->hasGlobalStorage()) { 1677 LV.setGlobalObjCRef(true); 1678 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1679 } 1680 } 1681 LV.setObjCArray(E->getType()->isArrayType()); 1682 return; 1683 } 1684 1685 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1686 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1687 return; 1688 } 1689 1690 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1691 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1692 if (LV.isObjCIvar()) { 1693 // If cast is to a structure pointer, follow gcc's behavior and make it 1694 // a non-ivar write-barrier. 1695 QualType ExpTy = E->getType(); 1696 if (ExpTy->isPointerType()) 1697 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1698 if (ExpTy->isRecordType()) 1699 LV.setObjCIvar(false); 1700 } 1701 return; 1702 } 1703 1704 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1705 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1706 return; 1707 } 1708 1709 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1710 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1711 return; 1712 } 1713 1714 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1715 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1716 return; 1717 } 1718 1719 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1720 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1721 return; 1722 } 1723 1724 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1725 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1726 if (LV.isObjCIvar() && !LV.isObjCArray()) 1727 // Using array syntax to assigning to what an ivar points to is not 1728 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1729 LV.setObjCIvar(false); 1730 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1731 // Using array syntax to assigning to what global points to is not 1732 // same as assigning to the global itself. {id *G;} G[i] = 0; 1733 LV.setGlobalObjCRef(false); 1734 return; 1735 } 1736 1737 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1738 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1739 // We don't know if member is an 'ivar', but this flag is looked at 1740 // only in the context of LV.isObjCIvar(). 1741 LV.setObjCArray(E->getType()->isArrayType()); 1742 return; 1743 } 1744 } 1745 1746 static llvm::Value * 1747 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1748 llvm::Value *V, llvm::Type *IRType, 1749 StringRef Name = StringRef()) { 1750 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1751 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1752 } 1753 1754 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1755 const Expr *E, const VarDecl *VD) { 1756 QualType T = E->getType(); 1757 1758 // If it's thread_local, emit a call to its wrapper function instead. 1759 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1760 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1761 1762 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1763 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1764 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1765 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1766 LValue LV; 1767 if (VD->getType()->isReferenceType()) { 1768 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1769 LI->setAlignment(Alignment.getQuantity()); 1770 V = LI; 1771 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1772 } else { 1773 LV = CGF.MakeAddrLValue(V, T, Alignment); 1774 } 1775 setObjCGCLValueClass(CGF.getContext(), E, LV); 1776 return LV; 1777 } 1778 1779 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1780 const Expr *E, const FunctionDecl *FD) { 1781 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1782 if (!FD->hasPrototype()) { 1783 if (const FunctionProtoType *Proto = 1784 FD->getType()->getAs<FunctionProtoType>()) { 1785 // Ugly case: for a K&R-style definition, the type of the definition 1786 // isn't the same as the type of a use. Correct for this with a 1787 // bitcast. 1788 QualType NoProtoType = 1789 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1790 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1791 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1792 } 1793 } 1794 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1795 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1796 } 1797 1798 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1799 llvm::Value *ThisValue) { 1800 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1801 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1802 return CGF.EmitLValueForField(LV, FD); 1803 } 1804 1805 /// Named Registers are named metadata pointing to the register name 1806 /// which will be read from/written to as an argument to the intrinsic 1807 /// @llvm.read/write_register. 1808 /// So far, only the name is being passed down, but other options such as 1809 /// register type, allocation type or even optimization options could be 1810 /// passed down via the metadata node. 1811 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1812 CodeGenModule &CGM, 1813 CharUnits Alignment) { 1814 SmallString<64> Name("llvm.named.register."); 1815 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1816 assert(Asm->getLabel().size() < 64-Name.size() && 1817 "Register name too big"); 1818 Name.append(Asm->getLabel()); 1819 llvm::NamedMDNode *M = 1820 CGM.getModule().getOrInsertNamedMetadata(Name); 1821 if (M->getNumOperands() == 0) { 1822 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1823 Asm->getLabel()); 1824 llvm::Value *Ops[] = { Str }; 1825 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1826 } 1827 return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment); 1828 } 1829 1830 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1831 const NamedDecl *ND = E->getDecl(); 1832 CharUnits Alignment = getContext().getDeclAlign(ND); 1833 QualType T = E->getType(); 1834 1835 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1836 // Global Named registers access via intrinsics only 1837 if (VD->getStorageClass() == SC_Register && 1838 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1839 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1840 1841 // A DeclRefExpr for a reference initialized by a constant expression can 1842 // appear without being odr-used. Directly emit the constant initializer. 1843 const Expr *Init = VD->getAnyInitializer(VD); 1844 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1845 VD->isUsableInConstantExpressions(getContext()) && 1846 VD->checkInitIsICE()) { 1847 llvm::Constant *Val = 1848 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1849 assert(Val && "failed to emit reference constant expression"); 1850 // FIXME: Eventually we will want to emit vector element references. 1851 return MakeAddrLValue(Val, T, Alignment); 1852 } 1853 } 1854 1855 // FIXME: We should be able to assert this for FunctionDecls as well! 1856 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1857 // those with a valid source location. 1858 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1859 !E->getLocation().isValid()) && 1860 "Should not use decl without marking it used!"); 1861 1862 if (ND->hasAttr<WeakRefAttr>()) { 1863 const auto *VD = cast<ValueDecl>(ND); 1864 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1865 return MakeAddrLValue(Aliasee, T, Alignment); 1866 } 1867 1868 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1869 // Check if this is a global variable. 1870 if (VD->hasLinkage() || VD->isStaticDataMember()) 1871 return EmitGlobalVarDeclLValue(*this, E, VD); 1872 1873 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1874 1875 llvm::Value *V = LocalDeclMap.lookup(VD); 1876 if (!V && VD->isStaticLocal()) 1877 V = CGM.getStaticLocalDeclAddress(VD); 1878 1879 // Use special handling for lambdas. 1880 if (!V) { 1881 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1882 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1883 } else if (CapturedStmtInfo) { 1884 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1885 return EmitCapturedFieldLValue(*this, FD, 1886 CapturedStmtInfo->getContextValue()); 1887 } 1888 1889 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1890 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1891 T, Alignment); 1892 } 1893 1894 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1895 1896 if (isBlockVariable) 1897 V = BuildBlockByrefAddress(V, VD); 1898 1899 LValue LV; 1900 if (VD->getType()->isReferenceType()) { 1901 llvm::LoadInst *LI = Builder.CreateLoad(V); 1902 LI->setAlignment(Alignment.getQuantity()); 1903 V = LI; 1904 LV = MakeNaturalAlignAddrLValue(V, T); 1905 } else { 1906 LV = MakeAddrLValue(V, T, Alignment); 1907 } 1908 1909 bool isLocalStorage = VD->hasLocalStorage(); 1910 1911 bool NonGCable = isLocalStorage && 1912 !VD->getType()->isReferenceType() && 1913 !isBlockVariable; 1914 if (NonGCable) { 1915 LV.getQuals().removeObjCGCAttr(); 1916 LV.setNonGC(true); 1917 } 1918 1919 bool isImpreciseLifetime = 1920 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1921 if (isImpreciseLifetime) 1922 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1923 setObjCGCLValueClass(getContext(), E, LV); 1924 return LV; 1925 } 1926 1927 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1928 return EmitFunctionDeclLValue(*this, E, FD); 1929 1930 llvm_unreachable("Unhandled DeclRefExpr"); 1931 } 1932 1933 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1934 // __extension__ doesn't affect lvalue-ness. 1935 if (E->getOpcode() == UO_Extension) 1936 return EmitLValue(E->getSubExpr()); 1937 1938 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1939 switch (E->getOpcode()) { 1940 default: llvm_unreachable("Unknown unary operator lvalue!"); 1941 case UO_Deref: { 1942 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1943 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1944 1945 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1946 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1947 1948 // We should not generate __weak write barrier on indirect reference 1949 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1950 // But, we continue to generate __strong write barrier on indirect write 1951 // into a pointer to object. 1952 if (getLangOpts().ObjC1 && 1953 getLangOpts().getGC() != LangOptions::NonGC && 1954 LV.isObjCWeak()) 1955 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1956 return LV; 1957 } 1958 case UO_Real: 1959 case UO_Imag: { 1960 LValue LV = EmitLValue(E->getSubExpr()); 1961 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1962 llvm::Value *Addr = LV.getAddress(); 1963 1964 // __real is valid on scalars. This is a faster way of testing that. 1965 // __imag can only produce an rvalue on scalars. 1966 if (E->getOpcode() == UO_Real && 1967 !cast<llvm::PointerType>(Addr->getType()) 1968 ->getElementType()->isStructTy()) { 1969 assert(E->getSubExpr()->getType()->isArithmeticType()); 1970 return LV; 1971 } 1972 1973 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1974 1975 unsigned Idx = E->getOpcode() == UO_Imag; 1976 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1977 Idx, "idx"), 1978 ExprTy); 1979 } 1980 case UO_PreInc: 1981 case UO_PreDec: { 1982 LValue LV = EmitLValue(E->getSubExpr()); 1983 bool isInc = E->getOpcode() == UO_PreInc; 1984 1985 if (E->getType()->isAnyComplexType()) 1986 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1987 else 1988 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1989 return LV; 1990 } 1991 } 1992 } 1993 1994 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1995 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1996 E->getType()); 1997 } 1998 1999 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2000 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2001 E->getType()); 2002 } 2003 2004 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 2005 SmallString<32>& Target) { 2006 Target.resize(CharByteWidth * (Source.size() + 1)); 2007 char *ResultPtr = &Target[0]; 2008 const UTF8 *ErrorPtr; 2009 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 2010 (void)success; 2011 assert(success); 2012 Target.resize(ResultPtr - &Target[0]); 2013 } 2014 2015 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2016 switch (E->getIdentType()) { 2017 default: 2018 return EmitUnsupportedLValue(E, "predefined expression"); 2019 2020 case PredefinedExpr::Func: 2021 case PredefinedExpr::Function: 2022 case PredefinedExpr::LFunction: 2023 case PredefinedExpr::FuncDName: 2024 case PredefinedExpr::FuncSig: 2025 case PredefinedExpr::PrettyFunction: { 2026 PredefinedExpr::IdentType IdentType = E->getIdentType(); 2027 std::string GVName; 2028 2029 // FIXME: We should use the string literal mangling for the Microsoft C++ 2030 // ABI so that strings get merged. 2031 switch (IdentType) { 2032 default: llvm_unreachable("Invalid type"); 2033 case PredefinedExpr::Func: GVName = "__func__."; break; 2034 case PredefinedExpr::Function: GVName = "__FUNCTION__."; break; 2035 case PredefinedExpr::FuncDName: GVName = "__FUNCDNAME__."; break; 2036 case PredefinedExpr::FuncSig: GVName = "__FUNCSIG__."; break; 2037 case PredefinedExpr::LFunction: GVName = "L__FUNCTION__."; break; 2038 case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break; 2039 } 2040 2041 StringRef FnName = CurFn->getName(); 2042 if (FnName.startswith("\01")) 2043 FnName = FnName.substr(1); 2044 GVName += FnName; 2045 2046 // If this is outside of a function use the top level decl. 2047 const Decl *CurDecl = CurCodeDecl; 2048 if (!CurDecl || isa<VarDecl>(CurDecl)) 2049 CurDecl = getContext().getTranslationUnitDecl(); 2050 2051 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 2052 std::string FunctionName; 2053 if (isa<BlockDecl>(CurDecl)) { 2054 // Blocks use the mangled function name. 2055 // FIXME: ComputeName should handle blocks. 2056 FunctionName = FnName.str(); 2057 } else if (isa<CapturedDecl>(CurDecl)) { 2058 // For a captured statement, the function name is its enclosing 2059 // function name not the one compiler generated. 2060 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 2061 } else { 2062 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 2063 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 == 2064 FunctionName.size() && 2065 "Computed __func__ length differs from type!"); 2066 } 2067 2068 llvm::Constant *C; 2069 if (ElemType->isWideCharType()) { 2070 SmallString<32> RawChars; 2071 ConvertUTF8ToWideString( 2072 getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName, 2073 RawChars); 2074 StringLiteral *SL = StringLiteral::Create( 2075 getContext(), RawChars, StringLiteral::Wide, 2076 /*Pascal = */ false, E->getType(), E->getLocation()); 2077 C = CGM.GetAddrOfConstantStringFromLiteral(SL); 2078 } else { 2079 C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1); 2080 } 2081 return MakeAddrLValue(C, E->getType()); 2082 } 2083 } 2084 } 2085 2086 /// Emit a type description suitable for use by a runtime sanitizer library. The 2087 /// format of a type descriptor is 2088 /// 2089 /// \code 2090 /// { i16 TypeKind, i16 TypeInfo } 2091 /// \endcode 2092 /// 2093 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2094 /// integer, 1 for a floating point value, and -1 for anything else. 2095 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2096 // Only emit each type's descriptor once. 2097 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2098 return C; 2099 2100 uint16_t TypeKind = -1; 2101 uint16_t TypeInfo = 0; 2102 2103 if (T->isIntegerType()) { 2104 TypeKind = 0; 2105 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2106 (T->isSignedIntegerType() ? 1 : 0); 2107 } else if (T->isFloatingType()) { 2108 TypeKind = 1; 2109 TypeInfo = getContext().getTypeSize(T); 2110 } 2111 2112 // Format the type name as if for a diagnostic, including quotes and 2113 // optionally an 'aka'. 2114 SmallString<32> Buffer; 2115 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2116 (intptr_t)T.getAsOpaquePtr(), 2117 StringRef(), StringRef(), None, Buffer, 2118 ArrayRef<intptr_t>()); 2119 2120 llvm::Constant *Components[] = { 2121 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2122 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2123 }; 2124 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2125 2126 auto *GV = new llvm::GlobalVariable( 2127 CGM.getModule(), Descriptor->getType(), 2128 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2129 GV->setUnnamedAddr(true); 2130 2131 // Remember the descriptor for this type. 2132 CGM.setTypeDescriptorInMap(T, GV); 2133 2134 return GV; 2135 } 2136 2137 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2138 llvm::Type *TargetTy = IntPtrTy; 2139 2140 // Floating-point types which fit into intptr_t are bitcast to integers 2141 // and then passed directly (after zero-extension, if necessary). 2142 if (V->getType()->isFloatingPointTy()) { 2143 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2144 if (Bits <= TargetTy->getIntegerBitWidth()) 2145 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2146 Bits)); 2147 } 2148 2149 // Integers which fit in intptr_t are zero-extended and passed directly. 2150 if (V->getType()->isIntegerTy() && 2151 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2152 return Builder.CreateZExt(V, TargetTy); 2153 2154 // Pointers are passed directly, everything else is passed by address. 2155 if (!V->getType()->isPointerTy()) { 2156 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2157 Builder.CreateStore(V, Ptr); 2158 V = Ptr; 2159 } 2160 return Builder.CreatePtrToInt(V, TargetTy); 2161 } 2162 2163 /// \brief Emit a representation of a SourceLocation for passing to a handler 2164 /// in a sanitizer runtime library. The format for this data is: 2165 /// \code 2166 /// struct SourceLocation { 2167 /// const char *Filename; 2168 /// int32_t Line, Column; 2169 /// }; 2170 /// \endcode 2171 /// For an invalid SourceLocation, the Filename pointer is null. 2172 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2173 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2174 2175 llvm::Constant *Data[] = { 2176 PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src") 2177 : llvm::Constant::getNullValue(Int8PtrTy), 2178 Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0), 2179 Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0) 2180 }; 2181 2182 return llvm::ConstantStruct::getAnon(Data); 2183 } 2184 2185 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2186 ArrayRef<llvm::Constant *> StaticArgs, 2187 ArrayRef<llvm::Value *> DynamicArgs, 2188 CheckRecoverableKind RecoverKind) { 2189 assert(SanOpts != &SanitizerOptions::Disabled); 2190 assert(IsSanitizerScope); 2191 2192 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2193 assert (RecoverKind != CRK_AlwaysRecoverable && 2194 "Runtime call required for AlwaysRecoverable kind!"); 2195 return EmitTrapCheck(Checked); 2196 } 2197 2198 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2199 2200 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2201 2202 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2203 2204 // Give hint that we very much don't expect to execute the handler 2205 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2206 llvm::MDBuilder MDHelper(getLLVMContext()); 2207 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2208 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2209 2210 EmitBlock(Handler); 2211 2212 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2213 auto *InfoPtr = 2214 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2215 llvm::GlobalVariable::PrivateLinkage, Info); 2216 InfoPtr->setUnnamedAddr(true); 2217 2218 SmallVector<llvm::Value *, 4> Args; 2219 SmallVector<llvm::Type *, 4> ArgTypes; 2220 Args.reserve(DynamicArgs.size() + 1); 2221 ArgTypes.reserve(DynamicArgs.size() + 1); 2222 2223 // Handler functions take an i8* pointing to the (handler-specific) static 2224 // information block, followed by a sequence of intptr_t arguments 2225 // representing operand values. 2226 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2227 ArgTypes.push_back(Int8PtrTy); 2228 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2229 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2230 ArgTypes.push_back(IntPtrTy); 2231 } 2232 2233 bool Recover = RecoverKind == CRK_AlwaysRecoverable || 2234 (RecoverKind == CRK_Recoverable && 2235 CGM.getCodeGenOpts().SanitizeRecover); 2236 2237 llvm::FunctionType *FnType = 2238 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2239 llvm::AttrBuilder B; 2240 if (!Recover) { 2241 B.addAttribute(llvm::Attribute::NoReturn) 2242 .addAttribute(llvm::Attribute::NoUnwind); 2243 } 2244 B.addAttribute(llvm::Attribute::UWTable); 2245 2246 // Checks that have two variants use a suffix to differentiate them 2247 bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable && 2248 !CGM.getCodeGenOpts().SanitizeRecover; 2249 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2250 (NeedsAbortSuffix? "_abort" : "")).str(); 2251 llvm::Value *Fn = CGM.CreateRuntimeFunction( 2252 FnType, FunctionName, 2253 llvm::AttributeSet::get(getLLVMContext(), 2254 llvm::AttributeSet::FunctionIndex, B)); 2255 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2256 if (Recover) { 2257 Builder.CreateBr(Cont); 2258 } else { 2259 HandlerCall->setDoesNotReturn(); 2260 Builder.CreateUnreachable(); 2261 } 2262 2263 EmitBlock(Cont); 2264 } 2265 2266 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2267 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2268 2269 // If we're optimizing, collapse all calls to trap down to just one per 2270 // function to save on code size. 2271 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2272 TrapBB = createBasicBlock("trap"); 2273 Builder.CreateCondBr(Checked, Cont, TrapBB); 2274 EmitBlock(TrapBB); 2275 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2276 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2277 TrapCall->setDoesNotReturn(); 2278 TrapCall->setDoesNotThrow(); 2279 Builder.CreateUnreachable(); 2280 } else { 2281 Builder.CreateCondBr(Checked, Cont, TrapBB); 2282 } 2283 2284 EmitBlock(Cont); 2285 } 2286 2287 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2288 /// array to pointer, return the array subexpression. 2289 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2290 // If this isn't just an array->pointer decay, bail out. 2291 const auto *CE = dyn_cast<CastExpr>(E); 2292 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2293 return nullptr; 2294 2295 // If this is a decay from variable width array, bail out. 2296 const Expr *SubExpr = CE->getSubExpr(); 2297 if (SubExpr->getType()->isVariableArrayType()) 2298 return nullptr; 2299 2300 return SubExpr; 2301 } 2302 2303 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2304 bool Accessed) { 2305 // The index must always be an integer, which is not an aggregate. Emit it. 2306 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2307 QualType IdxTy = E->getIdx()->getType(); 2308 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2309 2310 if (SanOpts->ArrayBounds) 2311 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2312 2313 // If the base is a vector type, then we are forming a vector element lvalue 2314 // with this subscript. 2315 if (E->getBase()->getType()->isVectorType()) { 2316 // Emit the vector as an lvalue to get its address. 2317 LValue LHS = EmitLValue(E->getBase()); 2318 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2319 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2320 E->getBase()->getType(), LHS.getAlignment()); 2321 } 2322 2323 // Extend or truncate the index type to 32 or 64-bits. 2324 if (Idx->getType() != IntPtrTy) 2325 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2326 2327 // We know that the pointer points to a type of the correct size, unless the 2328 // size is a VLA or Objective-C interface. 2329 llvm::Value *Address = nullptr; 2330 CharUnits ArrayAlignment; 2331 if (const VariableArrayType *vla = 2332 getContext().getAsVariableArrayType(E->getType())) { 2333 // The base must be a pointer, which is not an aggregate. Emit 2334 // it. It needs to be emitted first in case it's what captures 2335 // the VLA bounds. 2336 Address = EmitScalarExpr(E->getBase()); 2337 2338 // The element count here is the total number of non-VLA elements. 2339 llvm::Value *numElements = getVLASize(vla).first; 2340 2341 // Effectively, the multiply by the VLA size is part of the GEP. 2342 // GEP indexes are signed, and scaling an index isn't permitted to 2343 // signed-overflow, so we use the same semantics for our explicit 2344 // multiply. We suppress this if overflow is not undefined behavior. 2345 if (getLangOpts().isSignedOverflowDefined()) { 2346 Idx = Builder.CreateMul(Idx, numElements); 2347 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2348 } else { 2349 Idx = Builder.CreateNSWMul(Idx, numElements); 2350 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2351 } 2352 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2353 // Indexing over an interface, as in "NSString *P; P[4];" 2354 llvm::Value *InterfaceSize = 2355 llvm::ConstantInt::get(Idx->getType(), 2356 getContext().getTypeSizeInChars(OIT).getQuantity()); 2357 2358 Idx = Builder.CreateMul(Idx, InterfaceSize); 2359 2360 // The base must be a pointer, which is not an aggregate. Emit it. 2361 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2362 Address = EmitCastToVoidPtr(Base); 2363 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2364 Address = Builder.CreateBitCast(Address, Base->getType()); 2365 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2366 // If this is A[i] where A is an array, the frontend will have decayed the 2367 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2368 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2369 // "gep x, i" here. Emit one "gep A, 0, i". 2370 assert(Array->getType()->isArrayType() && 2371 "Array to pointer decay must have array source type!"); 2372 LValue ArrayLV; 2373 // For simple multidimensional array indexing, set the 'accessed' flag for 2374 // better bounds-checking of the base expression. 2375 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2376 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2377 else 2378 ArrayLV = EmitLValue(Array); 2379 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2380 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2381 llvm::Value *Args[] = { Zero, Idx }; 2382 2383 // Propagate the alignment from the array itself to the result. 2384 ArrayAlignment = ArrayLV.getAlignment(); 2385 2386 if (getLangOpts().isSignedOverflowDefined()) 2387 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2388 else 2389 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2390 } else { 2391 // The base must be a pointer, which is not an aggregate. Emit it. 2392 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2393 if (getLangOpts().isSignedOverflowDefined()) 2394 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2395 else 2396 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2397 } 2398 2399 QualType T = E->getBase()->getType()->getPointeeType(); 2400 assert(!T.isNull() && 2401 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2402 2403 2404 // Limit the alignment to that of the result type. 2405 LValue LV; 2406 if (!ArrayAlignment.isZero()) { 2407 CharUnits Align = getContext().getTypeAlignInChars(T); 2408 ArrayAlignment = std::min(Align, ArrayAlignment); 2409 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2410 } else { 2411 LV = MakeNaturalAlignAddrLValue(Address, T); 2412 } 2413 2414 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2415 2416 if (getLangOpts().ObjC1 && 2417 getLangOpts().getGC() != LangOptions::NonGC) { 2418 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2419 setObjCGCLValueClass(getContext(), E, LV); 2420 } 2421 return LV; 2422 } 2423 2424 static 2425 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2426 SmallVectorImpl<unsigned> &Elts) { 2427 SmallVector<llvm::Constant*, 4> CElts; 2428 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2429 CElts.push_back(Builder.getInt32(Elts[i])); 2430 2431 return llvm::ConstantVector::get(CElts); 2432 } 2433 2434 LValue CodeGenFunction:: 2435 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2436 // Emit the base vector as an l-value. 2437 LValue Base; 2438 2439 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2440 if (E->isArrow()) { 2441 // If it is a pointer to a vector, emit the address and form an lvalue with 2442 // it. 2443 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2444 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2445 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2446 Base.getQuals().removeObjCGCAttr(); 2447 } else if (E->getBase()->isGLValue()) { 2448 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2449 // emit the base as an lvalue. 2450 assert(E->getBase()->getType()->isVectorType()); 2451 Base = EmitLValue(E->getBase()); 2452 } else { 2453 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2454 assert(E->getBase()->getType()->isVectorType() && 2455 "Result must be a vector"); 2456 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2457 2458 // Store the vector to memory (because LValue wants an address). 2459 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2460 Builder.CreateStore(Vec, VecMem); 2461 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2462 } 2463 2464 QualType type = 2465 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2466 2467 // Encode the element access list into a vector of unsigned indices. 2468 SmallVector<unsigned, 4> Indices; 2469 E->getEncodedElementAccess(Indices); 2470 2471 if (Base.isSimple()) { 2472 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2473 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2474 Base.getAlignment()); 2475 } 2476 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2477 2478 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2479 SmallVector<llvm::Constant *, 4> CElts; 2480 2481 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2482 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2483 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2484 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2485 Base.getAlignment()); 2486 } 2487 2488 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2489 Expr *BaseExpr = E->getBase(); 2490 2491 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2492 LValue BaseLV; 2493 if (E->isArrow()) { 2494 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2495 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2496 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2497 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2498 } else 2499 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2500 2501 NamedDecl *ND = E->getMemberDecl(); 2502 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2503 LValue LV = EmitLValueForField(BaseLV, Field); 2504 setObjCGCLValueClass(getContext(), E, LV); 2505 return LV; 2506 } 2507 2508 if (auto *VD = dyn_cast<VarDecl>(ND)) 2509 return EmitGlobalVarDeclLValue(*this, E, VD); 2510 2511 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2512 return EmitFunctionDeclLValue(*this, E, FD); 2513 2514 llvm_unreachable("Unhandled member declaration!"); 2515 } 2516 2517 /// Given that we are currently emitting a lambda, emit an l-value for 2518 /// one of its members. 2519 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2520 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2521 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2522 QualType LambdaTagType = 2523 getContext().getTagDeclType(Field->getParent()); 2524 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2525 return EmitLValueForField(LambdaLV, Field); 2526 } 2527 2528 LValue CodeGenFunction::EmitLValueForField(LValue base, 2529 const FieldDecl *field) { 2530 if (field->isBitField()) { 2531 const CGRecordLayout &RL = 2532 CGM.getTypes().getCGRecordLayout(field->getParent()); 2533 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2534 llvm::Value *Addr = base.getAddress(); 2535 unsigned Idx = RL.getLLVMFieldNo(field); 2536 if (Idx != 0) 2537 // For structs, we GEP to the field that the record layout suggests. 2538 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2539 // Get the access type. 2540 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2541 getLLVMContext(), Info.StorageSize, 2542 CGM.getContext().getTargetAddressSpace(base.getType())); 2543 if (Addr->getType() != PtrTy) 2544 Addr = Builder.CreateBitCast(Addr, PtrTy); 2545 2546 QualType fieldType = 2547 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2548 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2549 } 2550 2551 const RecordDecl *rec = field->getParent(); 2552 QualType type = field->getType(); 2553 CharUnits alignment = getContext().getDeclAlign(field); 2554 2555 // FIXME: It should be impossible to have an LValue without alignment for a 2556 // complete type. 2557 if (!base.getAlignment().isZero()) 2558 alignment = std::min(alignment, base.getAlignment()); 2559 2560 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2561 2562 llvm::Value *addr = base.getAddress(); 2563 unsigned cvr = base.getVRQualifiers(); 2564 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2565 if (rec->isUnion()) { 2566 // For unions, there is no pointer adjustment. 2567 assert(!type->isReferenceType() && "union has reference member"); 2568 // TODO: handle path-aware TBAA for union. 2569 TBAAPath = false; 2570 } else { 2571 // For structs, we GEP to the field that the record layout suggests. 2572 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2573 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2574 2575 // If this is a reference field, load the reference right now. 2576 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2577 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2578 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2579 load->setAlignment(alignment.getQuantity()); 2580 2581 // Loading the reference will disable path-aware TBAA. 2582 TBAAPath = false; 2583 if (CGM.shouldUseTBAA()) { 2584 llvm::MDNode *tbaa; 2585 if (mayAlias) 2586 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2587 else 2588 tbaa = CGM.getTBAAInfo(type); 2589 if (tbaa) 2590 CGM.DecorateInstruction(load, tbaa); 2591 } 2592 2593 addr = load; 2594 mayAlias = false; 2595 type = refType->getPointeeType(); 2596 if (type->isIncompleteType()) 2597 alignment = CharUnits(); 2598 else 2599 alignment = getContext().getTypeAlignInChars(type); 2600 cvr = 0; // qualifiers don't recursively apply to referencee 2601 } 2602 } 2603 2604 // Make sure that the address is pointing to the right type. This is critical 2605 // for both unions and structs. A union needs a bitcast, a struct element 2606 // will need a bitcast if the LLVM type laid out doesn't match the desired 2607 // type. 2608 addr = EmitBitCastOfLValueToProperType(*this, addr, 2609 CGM.getTypes().ConvertTypeForMem(type), 2610 field->getName()); 2611 2612 if (field->hasAttr<AnnotateAttr>()) 2613 addr = EmitFieldAnnotations(field, addr); 2614 2615 LValue LV = MakeAddrLValue(addr, type, alignment); 2616 LV.getQuals().addCVRQualifiers(cvr); 2617 if (TBAAPath) { 2618 const ASTRecordLayout &Layout = 2619 getContext().getASTRecordLayout(field->getParent()); 2620 // Set the base type to be the base type of the base LValue and 2621 // update offset to be relative to the base type. 2622 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2623 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2624 Layout.getFieldOffset(field->getFieldIndex()) / 2625 getContext().getCharWidth()); 2626 } 2627 2628 // __weak attribute on a field is ignored. 2629 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2630 LV.getQuals().removeObjCGCAttr(); 2631 2632 // Fields of may_alias structs act like 'char' for TBAA purposes. 2633 // FIXME: this should get propagated down through anonymous structs 2634 // and unions. 2635 if (mayAlias && LV.getTBAAInfo()) 2636 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2637 2638 return LV; 2639 } 2640 2641 LValue 2642 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2643 const FieldDecl *Field) { 2644 QualType FieldType = Field->getType(); 2645 2646 if (!FieldType->isReferenceType()) 2647 return EmitLValueForField(Base, Field); 2648 2649 const CGRecordLayout &RL = 2650 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2651 unsigned idx = RL.getLLVMFieldNo(Field); 2652 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2653 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2654 2655 // Make sure that the address is pointing to the right type. This is critical 2656 // for both unions and structs. A union needs a bitcast, a struct element 2657 // will need a bitcast if the LLVM type laid out doesn't match the desired 2658 // type. 2659 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2660 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2661 2662 CharUnits Alignment = getContext().getDeclAlign(Field); 2663 2664 // FIXME: It should be impossible to have an LValue without alignment for a 2665 // complete type. 2666 if (!Base.getAlignment().isZero()) 2667 Alignment = std::min(Alignment, Base.getAlignment()); 2668 2669 return MakeAddrLValue(V, FieldType, Alignment); 2670 } 2671 2672 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2673 if (E->isFileScope()) { 2674 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2675 return MakeAddrLValue(GlobalPtr, E->getType()); 2676 } 2677 if (E->getType()->isVariablyModifiedType()) 2678 // make sure to emit the VLA size. 2679 EmitVariablyModifiedType(E->getType()); 2680 2681 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2682 const Expr *InitExpr = E->getInitializer(); 2683 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2684 2685 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2686 /*Init*/ true); 2687 2688 return Result; 2689 } 2690 2691 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2692 if (!E->isGLValue()) 2693 // Initializing an aggregate temporary in C++11: T{...}. 2694 return EmitAggExprToLValue(E); 2695 2696 // An lvalue initializer list must be initializing a reference. 2697 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2698 return EmitLValue(E->getInit(0)); 2699 } 2700 2701 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2702 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2703 /// LValue is returned and the current block has been terminated. 2704 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2705 const Expr *Operand) { 2706 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2707 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2708 return None; 2709 } 2710 2711 return CGF.EmitLValue(Operand); 2712 } 2713 2714 LValue CodeGenFunction:: 2715 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2716 if (!expr->isGLValue()) { 2717 // ?: here should be an aggregate. 2718 assert(hasAggregateEvaluationKind(expr->getType()) && 2719 "Unexpected conditional operator!"); 2720 return EmitAggExprToLValue(expr); 2721 } 2722 2723 OpaqueValueMapping binding(*this, expr); 2724 RegionCounter Cnt = getPGORegionCounter(expr); 2725 2726 const Expr *condExpr = expr->getCond(); 2727 bool CondExprBool; 2728 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2729 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2730 if (!CondExprBool) std::swap(live, dead); 2731 2732 if (!ContainsLabel(dead)) { 2733 // If the true case is live, we need to track its region. 2734 if (CondExprBool) 2735 Cnt.beginRegion(Builder); 2736 return EmitLValue(live); 2737 } 2738 } 2739 2740 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2741 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2742 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2743 2744 ConditionalEvaluation eval(*this); 2745 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2746 2747 // Any temporaries created here are conditional. 2748 EmitBlock(lhsBlock); 2749 Cnt.beginRegion(Builder); 2750 eval.begin(*this); 2751 Optional<LValue> lhs = 2752 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2753 eval.end(*this); 2754 2755 if (lhs && !lhs->isSimple()) 2756 return EmitUnsupportedLValue(expr, "conditional operator"); 2757 2758 lhsBlock = Builder.GetInsertBlock(); 2759 if (lhs) 2760 Builder.CreateBr(contBlock); 2761 2762 // Any temporaries created here are conditional. 2763 EmitBlock(rhsBlock); 2764 eval.begin(*this); 2765 Optional<LValue> rhs = 2766 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2767 eval.end(*this); 2768 if (rhs && !rhs->isSimple()) 2769 return EmitUnsupportedLValue(expr, "conditional operator"); 2770 rhsBlock = Builder.GetInsertBlock(); 2771 2772 EmitBlock(contBlock); 2773 2774 if (lhs && rhs) { 2775 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2776 2, "cond-lvalue"); 2777 phi->addIncoming(lhs->getAddress(), lhsBlock); 2778 phi->addIncoming(rhs->getAddress(), rhsBlock); 2779 return MakeAddrLValue(phi, expr->getType()); 2780 } else { 2781 assert((lhs || rhs) && 2782 "both operands of glvalue conditional are throw-expressions?"); 2783 return lhs ? *lhs : *rhs; 2784 } 2785 } 2786 2787 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2788 /// type. If the cast is to a reference, we can have the usual lvalue result, 2789 /// otherwise if a cast is needed by the code generator in an lvalue context, 2790 /// then it must mean that we need the address of an aggregate in order to 2791 /// access one of its members. This can happen for all the reasons that casts 2792 /// are permitted with aggregate result, including noop aggregate casts, and 2793 /// cast from scalar to union. 2794 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2795 switch (E->getCastKind()) { 2796 case CK_ToVoid: 2797 case CK_BitCast: 2798 case CK_ArrayToPointerDecay: 2799 case CK_FunctionToPointerDecay: 2800 case CK_NullToMemberPointer: 2801 case CK_NullToPointer: 2802 case CK_IntegralToPointer: 2803 case CK_PointerToIntegral: 2804 case CK_PointerToBoolean: 2805 case CK_VectorSplat: 2806 case CK_IntegralCast: 2807 case CK_IntegralToBoolean: 2808 case CK_IntegralToFloating: 2809 case CK_FloatingToIntegral: 2810 case CK_FloatingToBoolean: 2811 case CK_FloatingCast: 2812 case CK_FloatingRealToComplex: 2813 case CK_FloatingComplexToReal: 2814 case CK_FloatingComplexToBoolean: 2815 case CK_FloatingComplexCast: 2816 case CK_FloatingComplexToIntegralComplex: 2817 case CK_IntegralRealToComplex: 2818 case CK_IntegralComplexToReal: 2819 case CK_IntegralComplexToBoolean: 2820 case CK_IntegralComplexCast: 2821 case CK_IntegralComplexToFloatingComplex: 2822 case CK_DerivedToBaseMemberPointer: 2823 case CK_BaseToDerivedMemberPointer: 2824 case CK_MemberPointerToBoolean: 2825 case CK_ReinterpretMemberPointer: 2826 case CK_AnyPointerToBlockPointerCast: 2827 case CK_ARCProduceObject: 2828 case CK_ARCConsumeObject: 2829 case CK_ARCReclaimReturnedObject: 2830 case CK_ARCExtendBlockObject: 2831 case CK_CopyAndAutoreleaseBlockObject: 2832 case CK_AddressSpaceConversion: 2833 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2834 2835 case CK_Dependent: 2836 llvm_unreachable("dependent cast kind in IR gen!"); 2837 2838 case CK_BuiltinFnToFnPtr: 2839 llvm_unreachable("builtin functions are handled elsewhere"); 2840 2841 // These are never l-values; just use the aggregate emission code. 2842 case CK_NonAtomicToAtomic: 2843 case CK_AtomicToNonAtomic: 2844 return EmitAggExprToLValue(E); 2845 2846 case CK_Dynamic: { 2847 LValue LV = EmitLValue(E->getSubExpr()); 2848 llvm::Value *V = LV.getAddress(); 2849 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2850 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2851 } 2852 2853 case CK_ConstructorConversion: 2854 case CK_UserDefinedConversion: 2855 case CK_CPointerToObjCPointerCast: 2856 case CK_BlockPointerToObjCPointerCast: 2857 case CK_NoOp: 2858 case CK_LValueToRValue: 2859 return EmitLValue(E->getSubExpr()); 2860 2861 case CK_UncheckedDerivedToBase: 2862 case CK_DerivedToBase: { 2863 const RecordType *DerivedClassTy = 2864 E->getSubExpr()->getType()->getAs<RecordType>(); 2865 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2866 2867 LValue LV = EmitLValue(E->getSubExpr()); 2868 llvm::Value *This = LV.getAddress(); 2869 2870 // Perform the derived-to-base conversion 2871 llvm::Value *Base = 2872 GetAddressOfBaseClass(This, DerivedClassDecl, 2873 E->path_begin(), E->path_end(), 2874 /*NullCheckValue=*/false); 2875 2876 return MakeAddrLValue(Base, E->getType()); 2877 } 2878 case CK_ToUnion: 2879 return EmitAggExprToLValue(E); 2880 case CK_BaseToDerived: { 2881 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2882 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2883 2884 LValue LV = EmitLValue(E->getSubExpr()); 2885 2886 // Perform the base-to-derived conversion 2887 llvm::Value *Derived = 2888 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2889 E->path_begin(), E->path_end(), 2890 /*NullCheckValue=*/false); 2891 2892 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2893 // performed and the object is not of the derived type. 2894 if (sanitizePerformTypeCheck()) 2895 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2896 Derived, E->getType()); 2897 2898 return MakeAddrLValue(Derived, E->getType()); 2899 } 2900 case CK_LValueBitCast: { 2901 // This must be a reinterpret_cast (or c-style equivalent). 2902 const auto *CE = cast<ExplicitCastExpr>(E); 2903 2904 LValue LV = EmitLValue(E->getSubExpr()); 2905 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2906 ConvertType(CE->getTypeAsWritten())); 2907 return MakeAddrLValue(V, E->getType()); 2908 } 2909 case CK_ObjCObjectLValueCast: { 2910 LValue LV = EmitLValue(E->getSubExpr()); 2911 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2912 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2913 ConvertType(ToType)); 2914 return MakeAddrLValue(V, E->getType()); 2915 } 2916 case CK_ZeroToOCLEvent: 2917 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2918 } 2919 2920 llvm_unreachable("Unhandled lvalue cast kind?"); 2921 } 2922 2923 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2924 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2925 return getOpaqueLValueMapping(e); 2926 } 2927 2928 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2929 const FieldDecl *FD, 2930 SourceLocation Loc) { 2931 QualType FT = FD->getType(); 2932 LValue FieldLV = EmitLValueForField(LV, FD); 2933 switch (getEvaluationKind(FT)) { 2934 case TEK_Complex: 2935 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 2936 case TEK_Aggregate: 2937 return FieldLV.asAggregateRValue(); 2938 case TEK_Scalar: 2939 return EmitLoadOfLValue(FieldLV, Loc); 2940 } 2941 llvm_unreachable("bad evaluation kind"); 2942 } 2943 2944 //===--------------------------------------------------------------------===// 2945 // Expression Emission 2946 //===--------------------------------------------------------------------===// 2947 2948 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2949 ReturnValueSlot ReturnValue) { 2950 if (CGDebugInfo *DI = getDebugInfo()) { 2951 SourceLocation Loc = E->getLocStart(); 2952 // Force column info to be generated so we can differentiate 2953 // multiple call sites on the same line in the debug info. 2954 // FIXME: This is insufficient. Two calls coming from the same macro 2955 // expansion will still get the same line/column and break debug info. It's 2956 // possible that LLVM can be fixed to not rely on this uniqueness, at which 2957 // point this workaround can be removed. 2958 const FunctionDecl* Callee = E->getDirectCallee(); 2959 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2960 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2961 } 2962 2963 // Builtins never have block type. 2964 if (E->getCallee()->getType()->isBlockPointerType()) 2965 return EmitBlockCallExpr(E, ReturnValue); 2966 2967 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 2968 return EmitCXXMemberCallExpr(CE, ReturnValue); 2969 2970 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2971 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2972 2973 const Decl *TargetDecl = E->getCalleeDecl(); 2974 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2975 if (unsigned builtinID = FD->getBuiltinID()) 2976 return EmitBuiltinExpr(FD, builtinID, E); 2977 } 2978 2979 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2980 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2981 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2982 2983 if (const auto *PseudoDtor = 2984 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2985 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2986 if (getLangOpts().ObjCAutoRefCount && 2987 DestroyedType->isObjCLifetimeType() && 2988 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2989 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2990 // Automatic Reference Counting: 2991 // If the pseudo-expression names a retainable object with weak or 2992 // strong lifetime, the object shall be released. 2993 Expr *BaseExpr = PseudoDtor->getBase(); 2994 llvm::Value *BaseValue = nullptr; 2995 Qualifiers BaseQuals; 2996 2997 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2998 if (PseudoDtor->isArrow()) { 2999 BaseValue = EmitScalarExpr(BaseExpr); 3000 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3001 BaseQuals = PTy->getPointeeType().getQualifiers(); 3002 } else { 3003 LValue BaseLV = EmitLValue(BaseExpr); 3004 BaseValue = BaseLV.getAddress(); 3005 QualType BaseTy = BaseExpr->getType(); 3006 BaseQuals = BaseTy.getQualifiers(); 3007 } 3008 3009 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3010 case Qualifiers::OCL_None: 3011 case Qualifiers::OCL_ExplicitNone: 3012 case Qualifiers::OCL_Autoreleasing: 3013 break; 3014 3015 case Qualifiers::OCL_Strong: 3016 EmitARCRelease(Builder.CreateLoad(BaseValue, 3017 PseudoDtor->getDestroyedType().isVolatileQualified()), 3018 ARCPreciseLifetime); 3019 break; 3020 3021 case Qualifiers::OCL_Weak: 3022 EmitARCDestroyWeak(BaseValue); 3023 break; 3024 } 3025 } else { 3026 // C++ [expr.pseudo]p1: 3027 // The result shall only be used as the operand for the function call 3028 // operator (), and the result of such a call has type void. The only 3029 // effect is the evaluation of the postfix-expression before the dot or 3030 // arrow. 3031 EmitScalarExpr(E->getCallee()); 3032 } 3033 3034 return RValue::get(nullptr); 3035 } 3036 3037 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3038 return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(), 3039 ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); 3040 } 3041 3042 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3043 // Comma expressions just emit their LHS then their RHS as an l-value. 3044 if (E->getOpcode() == BO_Comma) { 3045 EmitIgnoredExpr(E->getLHS()); 3046 EnsureInsertPoint(); 3047 return EmitLValue(E->getRHS()); 3048 } 3049 3050 if (E->getOpcode() == BO_PtrMemD || 3051 E->getOpcode() == BO_PtrMemI) 3052 return EmitPointerToDataMemberBinaryExpr(E); 3053 3054 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3055 3056 // Note that in all of these cases, __block variables need the RHS 3057 // evaluated first just in case the variable gets moved by the RHS. 3058 3059 switch (getEvaluationKind(E->getType())) { 3060 case TEK_Scalar: { 3061 switch (E->getLHS()->getType().getObjCLifetime()) { 3062 case Qualifiers::OCL_Strong: 3063 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3064 3065 case Qualifiers::OCL_Autoreleasing: 3066 return EmitARCStoreAutoreleasing(E).first; 3067 3068 // No reason to do any of these differently. 3069 case Qualifiers::OCL_None: 3070 case Qualifiers::OCL_ExplicitNone: 3071 case Qualifiers::OCL_Weak: 3072 break; 3073 } 3074 3075 RValue RV = EmitAnyExpr(E->getRHS()); 3076 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3077 EmitStoreThroughLValue(RV, LV); 3078 return LV; 3079 } 3080 3081 case TEK_Complex: 3082 return EmitComplexAssignmentLValue(E); 3083 3084 case TEK_Aggregate: 3085 return EmitAggExprToLValue(E); 3086 } 3087 llvm_unreachable("bad evaluation kind"); 3088 } 3089 3090 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3091 RValue RV = EmitCallExpr(E); 3092 3093 if (!RV.isScalar()) 3094 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3095 3096 assert(E->getCallReturnType()->isReferenceType() && 3097 "Can't have a scalar return unless the return type is a " 3098 "reference type!"); 3099 3100 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3101 } 3102 3103 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3104 // FIXME: This shouldn't require another copy. 3105 return EmitAggExprToLValue(E); 3106 } 3107 3108 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3109 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3110 && "binding l-value to type which needs a temporary"); 3111 AggValueSlot Slot = CreateAggTemp(E->getType()); 3112 EmitCXXConstructExpr(E, Slot); 3113 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3114 } 3115 3116 LValue 3117 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3118 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3119 } 3120 3121 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3122 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3123 ConvertType(E->getType())->getPointerTo()); 3124 } 3125 3126 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3127 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3128 } 3129 3130 LValue 3131 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3132 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3133 Slot.setExternallyDestructed(); 3134 EmitAggExpr(E->getSubExpr(), Slot); 3135 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3136 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3137 } 3138 3139 LValue 3140 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3141 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3142 EmitLambdaExpr(E, Slot); 3143 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3144 } 3145 3146 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3147 RValue RV = EmitObjCMessageExpr(E); 3148 3149 if (!RV.isScalar()) 3150 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3151 3152 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3153 "Can't have a scalar return unless the return type is a " 3154 "reference type!"); 3155 3156 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3157 } 3158 3159 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3160 llvm::Value *V = 3161 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3162 return MakeAddrLValue(V, E->getType()); 3163 } 3164 3165 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3166 const ObjCIvarDecl *Ivar) { 3167 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3168 } 3169 3170 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3171 llvm::Value *BaseValue, 3172 const ObjCIvarDecl *Ivar, 3173 unsigned CVRQualifiers) { 3174 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3175 Ivar, CVRQualifiers); 3176 } 3177 3178 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3179 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3180 llvm::Value *BaseValue = nullptr; 3181 const Expr *BaseExpr = E->getBase(); 3182 Qualifiers BaseQuals; 3183 QualType ObjectTy; 3184 if (E->isArrow()) { 3185 BaseValue = EmitScalarExpr(BaseExpr); 3186 ObjectTy = BaseExpr->getType()->getPointeeType(); 3187 BaseQuals = ObjectTy.getQualifiers(); 3188 } else { 3189 LValue BaseLV = EmitLValue(BaseExpr); 3190 // FIXME: this isn't right for bitfields. 3191 BaseValue = BaseLV.getAddress(); 3192 ObjectTy = BaseExpr->getType(); 3193 BaseQuals = ObjectTy.getQualifiers(); 3194 } 3195 3196 LValue LV = 3197 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3198 BaseQuals.getCVRQualifiers()); 3199 setObjCGCLValueClass(getContext(), E, LV); 3200 return LV; 3201 } 3202 3203 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3204 // Can only get l-value for message expression returning aggregate type 3205 RValue RV = EmitAnyExprToTemp(E); 3206 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3207 } 3208 3209 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3210 SourceLocation CallLoc, 3211 ReturnValueSlot ReturnValue, 3212 CallExpr::const_arg_iterator ArgBeg, 3213 CallExpr::const_arg_iterator ArgEnd, 3214 const Decl *TargetDecl) { 3215 // Get the actual function type. The callee type will always be a pointer to 3216 // function type or a block pointer type. 3217 assert(CalleeType->isFunctionPointerType() && 3218 "Call must have function pointer type!"); 3219 3220 CalleeType = getContext().getCanonicalType(CalleeType); 3221 3222 const auto *FnType = 3223 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3224 3225 // Force column info to differentiate multiple inlined call sites on 3226 // the same line, analoguous to EmitCallExpr. 3227 // FIXME: This is insufficient. Two calls coming from the same macro expansion 3228 // will still get the same line/column and break debug info. It's possible 3229 // that LLVM can be fixed to not rely on this uniqueness, at which point this 3230 // workaround can be removed. 3231 bool ForceColumnInfo = false; 3232 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3233 ForceColumnInfo = FD->isInlineSpecified(); 3234 3235 if (getLangOpts().CPlusPlus && SanOpts->Function && 3236 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3237 if (llvm::Constant *PrefixSig = 3238 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3239 SanitizerScope SanScope(this); 3240 llvm::Constant *FTRTTIConst = 3241 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3242 llvm::Type *PrefixStructTyElems[] = { 3243 PrefixSig->getType(), 3244 FTRTTIConst->getType() 3245 }; 3246 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3247 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3248 3249 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3250 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3251 llvm::Value *CalleeSigPtr = 3252 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3253 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3254 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3255 3256 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3257 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3258 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3259 3260 EmitBlock(TypeCheck); 3261 llvm::Value *CalleeRTTIPtr = 3262 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3263 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3264 llvm::Value *CalleeRTTIMatch = 3265 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3266 llvm::Constant *StaticData[] = { 3267 EmitCheckSourceLocation(CallLoc), 3268 EmitCheckTypeDescriptor(CalleeType) 3269 }; 3270 EmitCheck(CalleeRTTIMatch, 3271 "function_type_mismatch", 3272 StaticData, 3273 Callee, 3274 CRK_Recoverable); 3275 3276 Builder.CreateBr(Cont); 3277 EmitBlock(Cont); 3278 } 3279 } 3280 3281 CallArgList Args; 3282 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3283 ForceColumnInfo); 3284 3285 const CGFunctionInfo &FnInfo = 3286 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3287 3288 // C99 6.5.2.2p6: 3289 // If the expression that denotes the called function has a type 3290 // that does not include a prototype, [the default argument 3291 // promotions are performed]. If the number of arguments does not 3292 // equal the number of parameters, the behavior is undefined. If 3293 // the function is defined with a type that includes a prototype, 3294 // and either the prototype ends with an ellipsis (, ...) or the 3295 // types of the arguments after promotion are not compatible with 3296 // the types of the parameters, the behavior is undefined. If the 3297 // function is defined with a type that does not include a 3298 // prototype, and the types of the arguments after promotion are 3299 // not compatible with those of the parameters after promotion, 3300 // the behavior is undefined [except in some trivial cases]. 3301 // That is, in the general case, we should assume that a call 3302 // through an unprototyped function type works like a *non-variadic* 3303 // call. The way we make this work is to cast to the exact type 3304 // of the promoted arguments. 3305 if (isa<FunctionNoProtoType>(FnType)) { 3306 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3307 CalleeTy = CalleeTy->getPointerTo(); 3308 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3309 } 3310 3311 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3312 } 3313 3314 LValue CodeGenFunction:: 3315 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3316 llvm::Value *BaseV; 3317 if (E->getOpcode() == BO_PtrMemI) 3318 BaseV = EmitScalarExpr(E->getLHS()); 3319 else 3320 BaseV = EmitLValue(E->getLHS()).getAddress(); 3321 3322 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3323 3324 const MemberPointerType *MPT 3325 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3326 3327 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3328 *this, E, BaseV, OffsetV, MPT); 3329 3330 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3331 } 3332 3333 /// Given the address of a temporary variable, produce an r-value of 3334 /// its type. 3335 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3336 QualType type, 3337 SourceLocation loc) { 3338 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3339 switch (getEvaluationKind(type)) { 3340 case TEK_Complex: 3341 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3342 case TEK_Aggregate: 3343 return lvalue.asAggregateRValue(); 3344 case TEK_Scalar: 3345 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3346 } 3347 llvm_unreachable("bad evaluation kind"); 3348 } 3349 3350 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3351 assert(Val->getType()->isFPOrFPVectorTy()); 3352 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3353 return; 3354 3355 llvm::MDBuilder MDHelper(getLLVMContext()); 3356 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3357 3358 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3359 } 3360 3361 namespace { 3362 struct LValueOrRValue { 3363 LValue LV; 3364 RValue RV; 3365 }; 3366 } 3367 3368 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3369 const PseudoObjectExpr *E, 3370 bool forLValue, 3371 AggValueSlot slot) { 3372 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3373 3374 // Find the result expression, if any. 3375 const Expr *resultExpr = E->getResultExpr(); 3376 LValueOrRValue result; 3377 3378 for (PseudoObjectExpr::const_semantics_iterator 3379 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3380 const Expr *semantic = *i; 3381 3382 // If this semantic expression is an opaque value, bind it 3383 // to the result of its source expression. 3384 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3385 3386 // If this is the result expression, we may need to evaluate 3387 // directly into the slot. 3388 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3389 OVMA opaqueData; 3390 if (ov == resultExpr && ov->isRValue() && !forLValue && 3391 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3392 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3393 3394 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3395 opaqueData = OVMA::bind(CGF, ov, LV); 3396 result.RV = slot.asRValue(); 3397 3398 // Otherwise, emit as normal. 3399 } else { 3400 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3401 3402 // If this is the result, also evaluate the result now. 3403 if (ov == resultExpr) { 3404 if (forLValue) 3405 result.LV = CGF.EmitLValue(ov); 3406 else 3407 result.RV = CGF.EmitAnyExpr(ov, slot); 3408 } 3409 } 3410 3411 opaques.push_back(opaqueData); 3412 3413 // Otherwise, if the expression is the result, evaluate it 3414 // and remember the result. 3415 } else if (semantic == resultExpr) { 3416 if (forLValue) 3417 result.LV = CGF.EmitLValue(semantic); 3418 else 3419 result.RV = CGF.EmitAnyExpr(semantic, slot); 3420 3421 // Otherwise, evaluate the expression in an ignored context. 3422 } else { 3423 CGF.EmitIgnoredExpr(semantic); 3424 } 3425 } 3426 3427 // Unbind all the opaques now. 3428 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3429 opaques[i].unbind(CGF); 3430 3431 return result; 3432 } 3433 3434 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3435 AggValueSlot slot) { 3436 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3437 } 3438 3439 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3440 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3441 } 3442