1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   assert(isa<llvm::AllocaInst>(Var.getPointer()));
129   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
130   Store->setAlignment(Var.getAlignment().getAsAlign());
131   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
132   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
133 }
134 
135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
136   CharUnits Align = getContext().getTypeAlignInChars(Ty);
137   return CreateTempAlloca(ConvertType(Ty), Align, Name);
138 }
139 
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
141                                        Address *Alloca) {
142   // FIXME: Should we prefer the preferred type alignment here?
143   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
144 }
145 
146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
147                                        const Twine &Name, Address *Alloca) {
148   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
149                           /*ArraySize=*/nullptr, Alloca);
150 }
151 
152 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
153                                                   const Twine &Name) {
154   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
155 }
156 
157 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
158                                                   const Twine &Name) {
159   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
160                                   Name);
161 }
162 
163 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
164 /// expression and compare the result against zero, returning an Int1Ty value.
165 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
166   PGO.setCurrentStmt(E);
167   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
168     llvm::Value *MemPtr = EmitScalarExpr(E);
169     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
170   }
171 
172   QualType BoolTy = getContext().BoolTy;
173   SourceLocation Loc = E->getExprLoc();
174   if (!E->getType()->isAnyComplexType())
175     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
176 
177   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
178                                        Loc);
179 }
180 
181 /// EmitIgnoredExpr - Emit code to compute the specified expression,
182 /// ignoring the result.
183 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
184   if (E->isRValue())
185     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
186 
187   // Just emit it as an l-value and drop the result.
188   EmitLValue(E);
189 }
190 
191 /// EmitAnyExpr - Emit code to compute the specified expression which
192 /// can have any type.  The result is returned as an RValue struct.
193 /// If this is an aggregate expression, AggSlot indicates where the
194 /// result should be returned.
195 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
196                                     AggValueSlot aggSlot,
197                                     bool ignoreResult) {
198   switch (getEvaluationKind(E->getType())) {
199   case TEK_Scalar:
200     return RValue::get(EmitScalarExpr(E, ignoreResult));
201   case TEK_Complex:
202     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
203   case TEK_Aggregate:
204     if (!ignoreResult && aggSlot.isIgnored())
205       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
206     EmitAggExpr(E, aggSlot);
207     return aggSlot.asRValue();
208   }
209   llvm_unreachable("bad evaluation kind");
210 }
211 
212 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
213 /// always be accessible even if no aggregate location is provided.
214 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
215   AggValueSlot AggSlot = AggValueSlot::ignored();
216 
217   if (hasAggregateEvaluationKind(E->getType()))
218     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
219   return EmitAnyExpr(E, AggSlot);
220 }
221 
222 /// EmitAnyExprToMem - Evaluate an expression into a given memory
223 /// location.
224 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
225                                        Address Location,
226                                        Qualifiers Quals,
227                                        bool IsInit) {
228   // FIXME: This function should take an LValue as an argument.
229   switch (getEvaluationKind(E->getType())) {
230   case TEK_Complex:
231     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
232                               /*isInit*/ false);
233     return;
234 
235   case TEK_Aggregate: {
236     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
237                                          AggValueSlot::IsDestructed_t(IsInit),
238                                          AggValueSlot::DoesNotNeedGCBarriers,
239                                          AggValueSlot::IsAliased_t(!IsInit),
240                                          AggValueSlot::MayOverlap));
241     return;
242   }
243 
244   case TEK_Scalar: {
245     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
246     LValue LV = MakeAddrLValue(Location, E->getType());
247     EmitStoreThroughLValue(RV, LV);
248     return;
249   }
250   }
251   llvm_unreachable("bad evaluation kind");
252 }
253 
254 static void
255 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
256                      const Expr *E, Address ReferenceTemporary) {
257   // Objective-C++ ARC:
258   //   If we are binding a reference to a temporary that has ownership, we
259   //   need to perform retain/release operations on the temporary.
260   //
261   // FIXME: This should be looking at E, not M.
262   if (auto Lifetime = M->getType().getObjCLifetime()) {
263     switch (Lifetime) {
264     case Qualifiers::OCL_None:
265     case Qualifiers::OCL_ExplicitNone:
266       // Carry on to normal cleanup handling.
267       break;
268 
269     case Qualifiers::OCL_Autoreleasing:
270       // Nothing to do; cleaned up by an autorelease pool.
271       return;
272 
273     case Qualifiers::OCL_Strong:
274     case Qualifiers::OCL_Weak:
275       switch (StorageDuration Duration = M->getStorageDuration()) {
276       case SD_Static:
277         // Note: we intentionally do not register a cleanup to release
278         // the object on program termination.
279         return;
280 
281       case SD_Thread:
282         // FIXME: We should probably register a cleanup in this case.
283         return;
284 
285       case SD_Automatic:
286       case SD_FullExpression:
287         CodeGenFunction::Destroyer *Destroy;
288         CleanupKind CleanupKind;
289         if (Lifetime == Qualifiers::OCL_Strong) {
290           const ValueDecl *VD = M->getExtendingDecl();
291           bool Precise =
292               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
293           CleanupKind = CGF.getARCCleanupKind();
294           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
295                             : &CodeGenFunction::destroyARCStrongImprecise;
296         } else {
297           // __weak objects always get EH cleanups; otherwise, exceptions
298           // could cause really nasty crashes instead of mere leaks.
299           CleanupKind = NormalAndEHCleanup;
300           Destroy = &CodeGenFunction::destroyARCWeak;
301         }
302         if (Duration == SD_FullExpression)
303           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
304                           M->getType(), *Destroy,
305                           CleanupKind & EHCleanup);
306         else
307           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
308                                           M->getType(),
309                                           *Destroy, CleanupKind & EHCleanup);
310         return;
311 
312       case SD_Dynamic:
313         llvm_unreachable("temporary cannot have dynamic storage duration");
314       }
315       llvm_unreachable("unknown storage duration");
316     }
317   }
318 
319   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
320   if (const RecordType *RT =
321           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
322     // Get the destructor for the reference temporary.
323     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
324     if (!ClassDecl->hasTrivialDestructor())
325       ReferenceTemporaryDtor = ClassDecl->getDestructor();
326   }
327 
328   if (!ReferenceTemporaryDtor)
329     return;
330 
331   // Call the destructor for the temporary.
332   switch (M->getStorageDuration()) {
333   case SD_Static:
334   case SD_Thread: {
335     llvm::FunctionCallee CleanupFn;
336     llvm::Constant *CleanupArg;
337     if (E->getType()->isArrayType()) {
338       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
339           ReferenceTemporary, E->getType(),
340           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
341           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
342       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
343     } else {
344       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
345           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
346       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
347     }
348     CGF.CGM.getCXXABI().registerGlobalDtor(
349         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
350     break;
351   }
352 
353   case SD_FullExpression:
354     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
355                     CodeGenFunction::destroyCXXObject,
356                     CGF.getLangOpts().Exceptions);
357     break;
358 
359   case SD_Automatic:
360     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
361                                     ReferenceTemporary, E->getType(),
362                                     CodeGenFunction::destroyCXXObject,
363                                     CGF.getLangOpts().Exceptions);
364     break;
365 
366   case SD_Dynamic:
367     llvm_unreachable("temporary cannot have dynamic storage duration");
368   }
369 }
370 
371 static Address createReferenceTemporary(CodeGenFunction &CGF,
372                                         const MaterializeTemporaryExpr *M,
373                                         const Expr *Inner,
374                                         Address *Alloca = nullptr) {
375   auto &TCG = CGF.getTargetHooks();
376   switch (M->getStorageDuration()) {
377   case SD_FullExpression:
378   case SD_Automatic: {
379     // If we have a constant temporary array or record try to promote it into a
380     // constant global under the same rules a normal constant would've been
381     // promoted. This is easier on the optimizer and generally emits fewer
382     // instructions.
383     QualType Ty = Inner->getType();
384     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
385         (Ty->isArrayType() || Ty->isRecordType()) &&
386         CGF.CGM.isTypeConstant(Ty, true))
387       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
388         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
389           auto AS = AddrSpace.getValue();
390           auto *GV = new llvm::GlobalVariable(
391               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
392               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
393               llvm::GlobalValue::NotThreadLocal,
394               CGF.getContext().getTargetAddressSpace(AS));
395           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
396           GV->setAlignment(alignment.getAsAlign());
397           llvm::Constant *C = GV;
398           if (AS != LangAS::Default)
399             C = TCG.performAddrSpaceCast(
400                 CGF.CGM, GV, AS, LangAS::Default,
401                 GV->getValueType()->getPointerTo(
402                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
403           // FIXME: Should we put the new global into a COMDAT?
404           return Address(C, alignment);
405         }
406       }
407     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
408   }
409   case SD_Thread:
410   case SD_Static:
411     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
412 
413   case SD_Dynamic:
414     llvm_unreachable("temporary can't have dynamic storage duration");
415   }
416   llvm_unreachable("unknown storage duration");
417 }
418 
419 /// Helper method to check if the underlying ABI is AAPCS
420 static bool isAAPCS(const TargetInfo &TargetInfo) {
421   return TargetInfo.getABI().startswith("aapcs");
422 }
423 
424 LValue CodeGenFunction::
425 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
426   const Expr *E = M->getSubExpr();
427 
428   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
429           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
430          "Reference should never be pseudo-strong!");
431 
432   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
433   // as that will cause the lifetime adjustment to be lost for ARC
434   auto ownership = M->getType().getObjCLifetime();
435   if (ownership != Qualifiers::OCL_None &&
436       ownership != Qualifiers::OCL_ExplicitNone) {
437     Address Object = createReferenceTemporary(*this, M, E);
438     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
439       Object = Address(llvm::ConstantExpr::getBitCast(Var,
440                            ConvertTypeForMem(E->getType())
441                              ->getPointerTo(Object.getAddressSpace())),
442                        Object.getAlignment());
443 
444       // createReferenceTemporary will promote the temporary to a global with a
445       // constant initializer if it can.  It can only do this to a value of
446       // ARC-manageable type if the value is global and therefore "immune" to
447       // ref-counting operations.  Therefore we have no need to emit either a
448       // dynamic initialization or a cleanup and we can just return the address
449       // of the temporary.
450       if (Var->hasInitializer())
451         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
452 
453       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
454     }
455     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
456                                        AlignmentSource::Decl);
457 
458     switch (getEvaluationKind(E->getType())) {
459     default: llvm_unreachable("expected scalar or aggregate expression");
460     case TEK_Scalar:
461       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
462       break;
463     case TEK_Aggregate: {
464       EmitAggExpr(E, AggValueSlot::forAddr(Object,
465                                            E->getType().getQualifiers(),
466                                            AggValueSlot::IsDestructed,
467                                            AggValueSlot::DoesNotNeedGCBarriers,
468                                            AggValueSlot::IsNotAliased,
469                                            AggValueSlot::DoesNotOverlap));
470       break;
471     }
472     }
473 
474     pushTemporaryCleanup(*this, M, E, Object);
475     return RefTempDst;
476   }
477 
478   SmallVector<const Expr *, 2> CommaLHSs;
479   SmallVector<SubobjectAdjustment, 2> Adjustments;
480   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
481 
482   for (const auto &Ignored : CommaLHSs)
483     EmitIgnoredExpr(Ignored);
484 
485   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
486     if (opaque->getType()->isRecordType()) {
487       assert(Adjustments.empty());
488       return EmitOpaqueValueLValue(opaque);
489     }
490   }
491 
492   // Create and initialize the reference temporary.
493   Address Alloca = Address::invalid();
494   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
495   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
496           Object.getPointer()->stripPointerCasts())) {
497     Object = Address(llvm::ConstantExpr::getBitCast(
498                          cast<llvm::Constant>(Object.getPointer()),
499                          ConvertTypeForMem(E->getType())->getPointerTo()),
500                      Object.getAlignment());
501     // If the temporary is a global and has a constant initializer or is a
502     // constant temporary that we promoted to a global, we may have already
503     // initialized it.
504     if (!Var->hasInitializer()) {
505       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
506       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
507     }
508   } else {
509     switch (M->getStorageDuration()) {
510     case SD_Automatic:
511       if (auto *Size = EmitLifetimeStart(
512               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
513               Alloca.getPointer())) {
514         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
515                                                   Alloca, Size);
516       }
517       break;
518 
519     case SD_FullExpression: {
520       if (!ShouldEmitLifetimeMarkers)
521         break;
522 
523       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
524       // marker. Instead, start the lifetime of a conditional temporary earlier
525       // so that it's unconditional. Don't do this with sanitizers which need
526       // more precise lifetime marks.
527       ConditionalEvaluation *OldConditional = nullptr;
528       CGBuilderTy::InsertPoint OldIP;
529       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
530           !SanOpts.has(SanitizerKind::HWAddress) &&
531           !SanOpts.has(SanitizerKind::Memory) &&
532           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
533         OldConditional = OutermostConditional;
534         OutermostConditional = nullptr;
535 
536         OldIP = Builder.saveIP();
537         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
538         Builder.restoreIP(CGBuilderTy::InsertPoint(
539             Block, llvm::BasicBlock::iterator(Block->back())));
540       }
541 
542       if (auto *Size = EmitLifetimeStart(
543               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
544               Alloca.getPointer())) {
545         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
546                                              Size);
547       }
548 
549       if (OldConditional) {
550         OutermostConditional = OldConditional;
551         Builder.restoreIP(OldIP);
552       }
553       break;
554     }
555 
556     default:
557       break;
558     }
559     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
560   }
561   pushTemporaryCleanup(*this, M, E, Object);
562 
563   // Perform derived-to-base casts and/or field accesses, to get from the
564   // temporary object we created (and, potentially, for which we extended
565   // the lifetime) to the subobject we're binding the reference to.
566   for (unsigned I = Adjustments.size(); I != 0; --I) {
567     SubobjectAdjustment &Adjustment = Adjustments[I-1];
568     switch (Adjustment.Kind) {
569     case SubobjectAdjustment::DerivedToBaseAdjustment:
570       Object =
571           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
572                                 Adjustment.DerivedToBase.BasePath->path_begin(),
573                                 Adjustment.DerivedToBase.BasePath->path_end(),
574                                 /*NullCheckValue=*/ false, E->getExprLoc());
575       break;
576 
577     case SubobjectAdjustment::FieldAdjustment: {
578       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
579       LV = EmitLValueForField(LV, Adjustment.Field);
580       assert(LV.isSimple() &&
581              "materialized temporary field is not a simple lvalue");
582       Object = LV.getAddress(*this);
583       break;
584     }
585 
586     case SubobjectAdjustment::MemberPointerAdjustment: {
587       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
588       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
589                                                Adjustment.Ptr.MPT);
590       break;
591     }
592     }
593   }
594 
595   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
596 }
597 
598 RValue
599 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
600   // Emit the expression as an lvalue.
601   LValue LV = EmitLValue(E);
602   assert(LV.isSimple());
603   llvm::Value *Value = LV.getPointer(*this);
604 
605   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
606     // C++11 [dcl.ref]p5 (as amended by core issue 453):
607     //   If a glvalue to which a reference is directly bound designates neither
608     //   an existing object or function of an appropriate type nor a region of
609     //   storage of suitable size and alignment to contain an object of the
610     //   reference's type, the behavior is undefined.
611     QualType Ty = E->getType();
612     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
613   }
614 
615   return RValue::get(Value);
616 }
617 
618 
619 /// getAccessedFieldNo - Given an encoded value and a result number, return the
620 /// input field number being accessed.
621 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
622                                              const llvm::Constant *Elts) {
623   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
624       ->getZExtValue();
625 }
626 
627 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
628 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
629                                     llvm::Value *High) {
630   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
631   llvm::Value *K47 = Builder.getInt64(47);
632   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
633   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
634   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
635   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
636   return Builder.CreateMul(B1, KMul);
637 }
638 
639 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
640   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
641          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
642 }
643 
644 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
645   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
646   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
647          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
648           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
649           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
650 }
651 
652 bool CodeGenFunction::sanitizePerformTypeCheck() const {
653   return SanOpts.has(SanitizerKind::Null) |
654          SanOpts.has(SanitizerKind::Alignment) |
655          SanOpts.has(SanitizerKind::ObjectSize) |
656          SanOpts.has(SanitizerKind::Vptr);
657 }
658 
659 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
660                                     llvm::Value *Ptr, QualType Ty,
661                                     CharUnits Alignment,
662                                     SanitizerSet SkippedChecks,
663                                     llvm::Value *ArraySize) {
664   if (!sanitizePerformTypeCheck())
665     return;
666 
667   // Don't check pointers outside the default address space. The null check
668   // isn't correct, the object-size check isn't supported by LLVM, and we can't
669   // communicate the addresses to the runtime handler for the vptr check.
670   if (Ptr->getType()->getPointerAddressSpace())
671     return;
672 
673   // Don't check pointers to volatile data. The behavior here is implementation-
674   // defined.
675   if (Ty.isVolatileQualified())
676     return;
677 
678   SanitizerScope SanScope(this);
679 
680   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
681   llvm::BasicBlock *Done = nullptr;
682 
683   // Quickly determine whether we have a pointer to an alloca. It's possible
684   // to skip null checks, and some alignment checks, for these pointers. This
685   // can reduce compile-time significantly.
686   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
687 
688   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
689   llvm::Value *IsNonNull = nullptr;
690   bool IsGuaranteedNonNull =
691       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
692   bool AllowNullPointers = isNullPointerAllowed(TCK);
693   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
694       !IsGuaranteedNonNull) {
695     // The glvalue must not be an empty glvalue.
696     IsNonNull = Builder.CreateIsNotNull(Ptr);
697 
698     // The IR builder can constant-fold the null check if the pointer points to
699     // a constant.
700     IsGuaranteedNonNull = IsNonNull == True;
701 
702     // Skip the null check if the pointer is known to be non-null.
703     if (!IsGuaranteedNonNull) {
704       if (AllowNullPointers) {
705         // When performing pointer casts, it's OK if the value is null.
706         // Skip the remaining checks in that case.
707         Done = createBasicBlock("null");
708         llvm::BasicBlock *Rest = createBasicBlock("not.null");
709         Builder.CreateCondBr(IsNonNull, Rest, Done);
710         EmitBlock(Rest);
711       } else {
712         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
713       }
714     }
715   }
716 
717   if (SanOpts.has(SanitizerKind::ObjectSize) &&
718       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
719       !Ty->isIncompleteType()) {
720     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
721     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
722     if (ArraySize)
723       Size = Builder.CreateMul(Size, ArraySize);
724 
725     // Degenerate case: new X[0] does not need an objectsize check.
726     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
727     if (!ConstantSize || !ConstantSize->isNullValue()) {
728       // The glvalue must refer to a large enough storage region.
729       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
730       //        to check this.
731       // FIXME: Get object address space
732       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
733       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
734       llvm::Value *Min = Builder.getFalse();
735       llvm::Value *NullIsUnknown = Builder.getFalse();
736       llvm::Value *Dynamic = Builder.getFalse();
737       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
738       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
739           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
740       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
741     }
742   }
743 
744   uint64_t AlignVal = 0;
745   llvm::Value *PtrAsInt = nullptr;
746 
747   if (SanOpts.has(SanitizerKind::Alignment) &&
748       !SkippedChecks.has(SanitizerKind::Alignment)) {
749     AlignVal = Alignment.getQuantity();
750     if (!Ty->isIncompleteType() && !AlignVal)
751       AlignVal =
752           getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true)
753               .getQuantity();
754 
755     // The glvalue must be suitably aligned.
756     if (AlignVal > 1 &&
757         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
758       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
759       llvm::Value *Align = Builder.CreateAnd(
760           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
761       llvm::Value *Aligned =
762           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
763       if (Aligned != True)
764         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
765     }
766   }
767 
768   if (Checks.size() > 0) {
769     // Make sure we're not losing information. Alignment needs to be a power of
770     // 2
771     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
772     llvm::Constant *StaticData[] = {
773         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
774         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
775         llvm::ConstantInt::get(Int8Ty, TCK)};
776     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
777               PtrAsInt ? PtrAsInt : Ptr);
778   }
779 
780   // If possible, check that the vptr indicates that there is a subobject of
781   // type Ty at offset zero within this object.
782   //
783   // C++11 [basic.life]p5,6:
784   //   [For storage which does not refer to an object within its lifetime]
785   //   The program has undefined behavior if:
786   //    -- the [pointer or glvalue] is used to access a non-static data member
787   //       or call a non-static member function
788   if (SanOpts.has(SanitizerKind::Vptr) &&
789       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
790     // Ensure that the pointer is non-null before loading it. If there is no
791     // compile-time guarantee, reuse the run-time null check or emit a new one.
792     if (!IsGuaranteedNonNull) {
793       if (!IsNonNull)
794         IsNonNull = Builder.CreateIsNotNull(Ptr);
795       if (!Done)
796         Done = createBasicBlock("vptr.null");
797       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
798       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
799       EmitBlock(VptrNotNull);
800     }
801 
802     // Compute a hash of the mangled name of the type.
803     //
804     // FIXME: This is not guaranteed to be deterministic! Move to a
805     //        fingerprinting mechanism once LLVM provides one. For the time
806     //        being the implementation happens to be deterministic.
807     SmallString<64> MangledName;
808     llvm::raw_svector_ostream Out(MangledName);
809     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
810                                                      Out);
811 
812     // Blacklist based on the mangled type.
813     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
814             SanitizerKind::Vptr, Out.str())) {
815       llvm::hash_code TypeHash = hash_value(Out.str());
816 
817       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
818       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
819       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
820       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
821       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
822       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
823 
824       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
825       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
826 
827       // Look the hash up in our cache.
828       const int CacheSize = 128;
829       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
830       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
831                                                      "__ubsan_vptr_type_cache");
832       llvm::Value *Slot = Builder.CreateAnd(Hash,
833                                             llvm::ConstantInt::get(IntPtrTy,
834                                                                    CacheSize-1));
835       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
836       llvm::Value *CacheVal =
837         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
838                                   getPointerAlign());
839 
840       // If the hash isn't in the cache, call a runtime handler to perform the
841       // hard work of checking whether the vptr is for an object of the right
842       // type. This will either fill in the cache and return, or produce a
843       // diagnostic.
844       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
845       llvm::Constant *StaticData[] = {
846         EmitCheckSourceLocation(Loc),
847         EmitCheckTypeDescriptor(Ty),
848         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
849         llvm::ConstantInt::get(Int8Ty, TCK)
850       };
851       llvm::Value *DynamicData[] = { Ptr, Hash };
852       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
853                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
854                 DynamicData);
855     }
856   }
857 
858   if (Done) {
859     Builder.CreateBr(Done);
860     EmitBlock(Done);
861   }
862 }
863 
864 /// Determine whether this expression refers to a flexible array member in a
865 /// struct. We disable array bounds checks for such members.
866 static bool isFlexibleArrayMemberExpr(const Expr *E) {
867   // For compatibility with existing code, we treat arrays of length 0 or
868   // 1 as flexible array members.
869   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
870   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
871     if (CAT->getSize().ugt(1))
872       return false;
873   } else if (!isa<IncompleteArrayType>(AT))
874     return false;
875 
876   E = E->IgnoreParens();
877 
878   // A flexible array member must be the last member in the class.
879   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
880     // FIXME: If the base type of the member expr is not FD->getParent(),
881     // this should not be treated as a flexible array member access.
882     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
883       RecordDecl::field_iterator FI(
884           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
885       return ++FI == FD->getParent()->field_end();
886     }
887   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
888     return IRE->getDecl()->getNextIvar() == nullptr;
889   }
890 
891   return false;
892 }
893 
894 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
895                                                    QualType EltTy) {
896   ASTContext &C = getContext();
897   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
898   if (!EltSize)
899     return nullptr;
900 
901   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
902   if (!ArrayDeclRef)
903     return nullptr;
904 
905   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
906   if (!ParamDecl)
907     return nullptr;
908 
909   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
910   if (!POSAttr)
911     return nullptr;
912 
913   // Don't load the size if it's a lower bound.
914   int POSType = POSAttr->getType();
915   if (POSType != 0 && POSType != 1)
916     return nullptr;
917 
918   // Find the implicit size parameter.
919   auto PassedSizeIt = SizeArguments.find(ParamDecl);
920   if (PassedSizeIt == SizeArguments.end())
921     return nullptr;
922 
923   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
924   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
925   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
926   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
927                                               C.getSizeType(), E->getExprLoc());
928   llvm::Value *SizeOfElement =
929       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
930   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
931 }
932 
933 /// If Base is known to point to the start of an array, return the length of
934 /// that array. Return 0 if the length cannot be determined.
935 static llvm::Value *getArrayIndexingBound(
936     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
937   // For the vector indexing extension, the bound is the number of elements.
938   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
939     IndexedType = Base->getType();
940     return CGF.Builder.getInt32(VT->getNumElements());
941   }
942 
943   Base = Base->IgnoreParens();
944 
945   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
946     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
947         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
948       IndexedType = CE->getSubExpr()->getType();
949       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
950       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
951         return CGF.Builder.getInt(CAT->getSize());
952       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
953         return CGF.getVLASize(VAT).NumElts;
954       // Ignore pass_object_size here. It's not applicable on decayed pointers.
955     }
956   }
957 
958   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
959   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
960     IndexedType = Base->getType();
961     return POS;
962   }
963 
964   return nullptr;
965 }
966 
967 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
968                                       llvm::Value *Index, QualType IndexType,
969                                       bool Accessed) {
970   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
971          "should not be called unless adding bounds checks");
972   SanitizerScope SanScope(this);
973 
974   QualType IndexedType;
975   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
976   if (!Bound)
977     return;
978 
979   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
980   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
981   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
982 
983   llvm::Constant *StaticData[] = {
984     EmitCheckSourceLocation(E->getExprLoc()),
985     EmitCheckTypeDescriptor(IndexedType),
986     EmitCheckTypeDescriptor(IndexType)
987   };
988   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
989                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
990   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
991             SanitizerHandler::OutOfBounds, StaticData, Index);
992 }
993 
994 
995 CodeGenFunction::ComplexPairTy CodeGenFunction::
996 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
997                          bool isInc, bool isPre) {
998   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
999 
1000   llvm::Value *NextVal;
1001   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1002     uint64_t AmountVal = isInc ? 1 : -1;
1003     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1004 
1005     // Add the inc/dec to the real part.
1006     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1007   } else {
1008     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1009     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1010     if (!isInc)
1011       FVal.changeSign();
1012     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1013 
1014     // Add the inc/dec to the real part.
1015     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1016   }
1017 
1018   ComplexPairTy IncVal(NextVal, InVal.second);
1019 
1020   // Store the updated result through the lvalue.
1021   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1022   if (getLangOpts().OpenMP)
1023     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1024                                                               E->getSubExpr());
1025 
1026   // If this is a postinc, return the value read from memory, otherwise use the
1027   // updated value.
1028   return isPre ? IncVal : InVal;
1029 }
1030 
1031 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1032                                              CodeGenFunction *CGF) {
1033   // Bind VLAs in the cast type.
1034   if (CGF && E->getType()->isVariablyModifiedType())
1035     CGF->EmitVariablyModifiedType(E->getType());
1036 
1037   if (CGDebugInfo *DI = getModuleDebugInfo())
1038     DI->EmitExplicitCastType(E->getType());
1039 }
1040 
1041 //===----------------------------------------------------------------------===//
1042 //                         LValue Expression Emission
1043 //===----------------------------------------------------------------------===//
1044 
1045 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1046 /// derive a more accurate bound on the alignment of the pointer.
1047 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1048                                                   LValueBaseInfo *BaseInfo,
1049                                                   TBAAAccessInfo *TBAAInfo) {
1050   // We allow this with ObjC object pointers because of fragile ABIs.
1051   assert(E->getType()->isPointerType() ||
1052          E->getType()->isObjCObjectPointerType());
1053   E = E->IgnoreParens();
1054 
1055   // Casts:
1056   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1057     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1058       CGM.EmitExplicitCastExprType(ECE, this);
1059 
1060     switch (CE->getCastKind()) {
1061     // Non-converting casts (but not C's implicit conversion from void*).
1062     case CK_BitCast:
1063     case CK_NoOp:
1064     case CK_AddressSpaceConversion:
1065       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1066         if (PtrTy->getPointeeType()->isVoidType())
1067           break;
1068 
1069         LValueBaseInfo InnerBaseInfo;
1070         TBAAAccessInfo InnerTBAAInfo;
1071         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1072                                                 &InnerBaseInfo,
1073                                                 &InnerTBAAInfo);
1074         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1075         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1076 
1077         if (isa<ExplicitCastExpr>(CE)) {
1078           LValueBaseInfo TargetTypeBaseInfo;
1079           TBAAAccessInfo TargetTypeTBAAInfo;
1080           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1081                                                            &TargetTypeBaseInfo,
1082                                                            &TargetTypeTBAAInfo);
1083           if (TBAAInfo)
1084             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1085                                                  TargetTypeTBAAInfo);
1086           // If the source l-value is opaque, honor the alignment of the
1087           // casted-to type.
1088           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1089             if (BaseInfo)
1090               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1091             Addr = Address(Addr.getPointer(), Align);
1092           }
1093         }
1094 
1095         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1096             CE->getCastKind() == CK_BitCast) {
1097           if (auto PT = E->getType()->getAs<PointerType>())
1098             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1099                                       /*MayBeNull=*/true,
1100                                       CodeGenFunction::CFITCK_UnrelatedCast,
1101                                       CE->getBeginLoc());
1102         }
1103         return CE->getCastKind() != CK_AddressSpaceConversion
1104                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1105                    : Builder.CreateAddrSpaceCast(Addr,
1106                                                  ConvertType(E->getType()));
1107       }
1108       break;
1109 
1110     // Array-to-pointer decay.
1111     case CK_ArrayToPointerDecay:
1112       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1113 
1114     // Derived-to-base conversions.
1115     case CK_UncheckedDerivedToBase:
1116     case CK_DerivedToBase: {
1117       // TODO: Support accesses to members of base classes in TBAA. For now, we
1118       // conservatively pretend that the complete object is of the base class
1119       // type.
1120       if (TBAAInfo)
1121         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1122       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1123       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1124       return GetAddressOfBaseClass(Addr, Derived,
1125                                    CE->path_begin(), CE->path_end(),
1126                                    ShouldNullCheckClassCastValue(CE),
1127                                    CE->getExprLoc());
1128     }
1129 
1130     // TODO: Is there any reason to treat base-to-derived conversions
1131     // specially?
1132     default:
1133       break;
1134     }
1135   }
1136 
1137   // Unary &.
1138   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1139     if (UO->getOpcode() == UO_AddrOf) {
1140       LValue LV = EmitLValue(UO->getSubExpr());
1141       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1142       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1143       return LV.getAddress(*this);
1144     }
1145   }
1146 
1147   // TODO: conditional operators, comma.
1148 
1149   // Otherwise, use the alignment of the type.
1150   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1151                                                    TBAAInfo);
1152   return Address(EmitScalarExpr(E), Align);
1153 }
1154 
1155 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1156   if (Ty->isVoidType())
1157     return RValue::get(nullptr);
1158 
1159   switch (getEvaluationKind(Ty)) {
1160   case TEK_Complex: {
1161     llvm::Type *EltTy =
1162       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1163     llvm::Value *U = llvm::UndefValue::get(EltTy);
1164     return RValue::getComplex(std::make_pair(U, U));
1165   }
1166 
1167   // If this is a use of an undefined aggregate type, the aggregate must have an
1168   // identifiable address.  Just because the contents of the value are undefined
1169   // doesn't mean that the address can't be taken and compared.
1170   case TEK_Aggregate: {
1171     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1172     return RValue::getAggregate(DestPtr);
1173   }
1174 
1175   case TEK_Scalar:
1176     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1177   }
1178   llvm_unreachable("bad evaluation kind");
1179 }
1180 
1181 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1182                                               const char *Name) {
1183   ErrorUnsupported(E, Name);
1184   return GetUndefRValue(E->getType());
1185 }
1186 
1187 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1188                                               const char *Name) {
1189   ErrorUnsupported(E, Name);
1190   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1191   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1192                         E->getType());
1193 }
1194 
1195 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1196   const Expr *Base = Obj;
1197   while (!isa<CXXThisExpr>(Base)) {
1198     // The result of a dynamic_cast can be null.
1199     if (isa<CXXDynamicCastExpr>(Base))
1200       return false;
1201 
1202     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1203       Base = CE->getSubExpr();
1204     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1205       Base = PE->getSubExpr();
1206     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1207       if (UO->getOpcode() == UO_Extension)
1208         Base = UO->getSubExpr();
1209       else
1210         return false;
1211     } else {
1212       return false;
1213     }
1214   }
1215   return true;
1216 }
1217 
1218 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1219   LValue LV;
1220   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1221     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1222   else
1223     LV = EmitLValue(E);
1224   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1225     SanitizerSet SkippedChecks;
1226     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1227       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1228       if (IsBaseCXXThis)
1229         SkippedChecks.set(SanitizerKind::Alignment, true);
1230       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1231         SkippedChecks.set(SanitizerKind::Null, true);
1232     }
1233     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1234                   LV.getAlignment(), SkippedChecks);
1235   }
1236   return LV;
1237 }
1238 
1239 /// EmitLValue - Emit code to compute a designator that specifies the location
1240 /// of the expression.
1241 ///
1242 /// This can return one of two things: a simple address or a bitfield reference.
1243 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1244 /// an LLVM pointer type.
1245 ///
1246 /// If this returns a bitfield reference, nothing about the pointee type of the
1247 /// LLVM value is known: For example, it may not be a pointer to an integer.
1248 ///
1249 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1250 /// this method guarantees that the returned pointer type will point to an LLVM
1251 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1252 /// length type, this is not possible.
1253 ///
1254 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1255   ApplyDebugLocation DL(*this, E);
1256   switch (E->getStmtClass()) {
1257   default: return EmitUnsupportedLValue(E, "l-value expression");
1258 
1259   case Expr::ObjCPropertyRefExprClass:
1260     llvm_unreachable("cannot emit a property reference directly");
1261 
1262   case Expr::ObjCSelectorExprClass:
1263     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1264   case Expr::ObjCIsaExprClass:
1265     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1266   case Expr::BinaryOperatorClass:
1267     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1268   case Expr::CompoundAssignOperatorClass: {
1269     QualType Ty = E->getType();
1270     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1271       Ty = AT->getValueType();
1272     if (!Ty->isAnyComplexType())
1273       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1274     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1275   }
1276   case Expr::CallExprClass:
1277   case Expr::CXXMemberCallExprClass:
1278   case Expr::CXXOperatorCallExprClass:
1279   case Expr::UserDefinedLiteralClass:
1280     return EmitCallExprLValue(cast<CallExpr>(E));
1281   case Expr::CXXRewrittenBinaryOperatorClass:
1282     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1283   case Expr::VAArgExprClass:
1284     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1285   case Expr::DeclRefExprClass:
1286     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1287   case Expr::ConstantExprClass:
1288     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1289   case Expr::ParenExprClass:
1290     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1291   case Expr::GenericSelectionExprClass:
1292     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1293   case Expr::PredefinedExprClass:
1294     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1295   case Expr::StringLiteralClass:
1296     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1297   case Expr::ObjCEncodeExprClass:
1298     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1299   case Expr::PseudoObjectExprClass:
1300     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1301   case Expr::InitListExprClass:
1302     return EmitInitListLValue(cast<InitListExpr>(E));
1303   case Expr::CXXTemporaryObjectExprClass:
1304   case Expr::CXXConstructExprClass:
1305     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1306   case Expr::CXXBindTemporaryExprClass:
1307     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1308   case Expr::CXXUuidofExprClass:
1309     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1310   case Expr::LambdaExprClass:
1311     return EmitAggExprToLValue(E);
1312 
1313   case Expr::ExprWithCleanupsClass: {
1314     const auto *cleanups = cast<ExprWithCleanups>(E);
1315     enterFullExpression(cleanups);
1316     RunCleanupsScope Scope(*this);
1317     LValue LV = EmitLValue(cleanups->getSubExpr());
1318     if (LV.isSimple()) {
1319       // Defend against branches out of gnu statement expressions surrounded by
1320       // cleanups.
1321       llvm::Value *V = LV.getPointer(*this);
1322       Scope.ForceCleanup({&V});
1323       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1324                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1325     }
1326     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1327     // bitfield lvalue or some other non-simple lvalue?
1328     return LV;
1329   }
1330 
1331   case Expr::CXXDefaultArgExprClass: {
1332     auto *DAE = cast<CXXDefaultArgExpr>(E);
1333     CXXDefaultArgExprScope Scope(*this, DAE);
1334     return EmitLValue(DAE->getExpr());
1335   }
1336   case Expr::CXXDefaultInitExprClass: {
1337     auto *DIE = cast<CXXDefaultInitExpr>(E);
1338     CXXDefaultInitExprScope Scope(*this, DIE);
1339     return EmitLValue(DIE->getExpr());
1340   }
1341   case Expr::CXXTypeidExprClass:
1342     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1343 
1344   case Expr::ObjCMessageExprClass:
1345     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1346   case Expr::ObjCIvarRefExprClass:
1347     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1348   case Expr::StmtExprClass:
1349     return EmitStmtExprLValue(cast<StmtExpr>(E));
1350   case Expr::UnaryOperatorClass:
1351     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1352   case Expr::ArraySubscriptExprClass:
1353     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1354   case Expr::OMPArraySectionExprClass:
1355     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1356   case Expr::ExtVectorElementExprClass:
1357     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1358   case Expr::MemberExprClass:
1359     return EmitMemberExpr(cast<MemberExpr>(E));
1360   case Expr::CompoundLiteralExprClass:
1361     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1362   case Expr::ConditionalOperatorClass:
1363     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1364   case Expr::BinaryConditionalOperatorClass:
1365     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1366   case Expr::ChooseExprClass:
1367     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1368   case Expr::OpaqueValueExprClass:
1369     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1370   case Expr::SubstNonTypeTemplateParmExprClass:
1371     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1372   case Expr::ImplicitCastExprClass:
1373   case Expr::CStyleCastExprClass:
1374   case Expr::CXXFunctionalCastExprClass:
1375   case Expr::CXXStaticCastExprClass:
1376   case Expr::CXXDynamicCastExprClass:
1377   case Expr::CXXReinterpretCastExprClass:
1378   case Expr::CXXConstCastExprClass:
1379   case Expr::ObjCBridgedCastExprClass:
1380     return EmitCastLValue(cast<CastExpr>(E));
1381 
1382   case Expr::MaterializeTemporaryExprClass:
1383     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1384 
1385   case Expr::CoawaitExprClass:
1386     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1387   case Expr::CoyieldExprClass:
1388     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1389   }
1390 }
1391 
1392 /// Given an object of the given canonical type, can we safely copy a
1393 /// value out of it based on its initializer?
1394 static bool isConstantEmittableObjectType(QualType type) {
1395   assert(type.isCanonical());
1396   assert(!type->isReferenceType());
1397 
1398   // Must be const-qualified but non-volatile.
1399   Qualifiers qs = type.getLocalQualifiers();
1400   if (!qs.hasConst() || qs.hasVolatile()) return false;
1401 
1402   // Otherwise, all object types satisfy this except C++ classes with
1403   // mutable subobjects or non-trivial copy/destroy behavior.
1404   if (const auto *RT = dyn_cast<RecordType>(type))
1405     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1406       if (RD->hasMutableFields() || !RD->isTrivial())
1407         return false;
1408 
1409   return true;
1410 }
1411 
1412 /// Can we constant-emit a load of a reference to a variable of the
1413 /// given type?  This is different from predicates like
1414 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1415 /// in situations that don't necessarily satisfy the language's rules
1416 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1417 /// to do this with const float variables even if those variables
1418 /// aren't marked 'constexpr'.
1419 enum ConstantEmissionKind {
1420   CEK_None,
1421   CEK_AsReferenceOnly,
1422   CEK_AsValueOrReference,
1423   CEK_AsValueOnly
1424 };
1425 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1426   type = type.getCanonicalType();
1427   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1428     if (isConstantEmittableObjectType(ref->getPointeeType()))
1429       return CEK_AsValueOrReference;
1430     return CEK_AsReferenceOnly;
1431   }
1432   if (isConstantEmittableObjectType(type))
1433     return CEK_AsValueOnly;
1434   return CEK_None;
1435 }
1436 
1437 /// Try to emit a reference to the given value without producing it as
1438 /// an l-value.  This is just an optimization, but it avoids us needing
1439 /// to emit global copies of variables if they're named without triggering
1440 /// a formal use in a context where we can't emit a direct reference to them,
1441 /// for instance if a block or lambda or a member of a local class uses a
1442 /// const int variable or constexpr variable from an enclosing function.
1443 CodeGenFunction::ConstantEmission
1444 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1445   ValueDecl *value = refExpr->getDecl();
1446 
1447   // The value needs to be an enum constant or a constant variable.
1448   ConstantEmissionKind CEK;
1449   if (isa<ParmVarDecl>(value)) {
1450     CEK = CEK_None;
1451   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1452     CEK = checkVarTypeForConstantEmission(var->getType());
1453   } else if (isa<EnumConstantDecl>(value)) {
1454     CEK = CEK_AsValueOnly;
1455   } else {
1456     CEK = CEK_None;
1457   }
1458   if (CEK == CEK_None) return ConstantEmission();
1459 
1460   Expr::EvalResult result;
1461   bool resultIsReference;
1462   QualType resultType;
1463 
1464   // It's best to evaluate all the way as an r-value if that's permitted.
1465   if (CEK != CEK_AsReferenceOnly &&
1466       refExpr->EvaluateAsRValue(result, getContext())) {
1467     resultIsReference = false;
1468     resultType = refExpr->getType();
1469 
1470   // Otherwise, try to evaluate as an l-value.
1471   } else if (CEK != CEK_AsValueOnly &&
1472              refExpr->EvaluateAsLValue(result, getContext())) {
1473     resultIsReference = true;
1474     resultType = value->getType();
1475 
1476   // Failure.
1477   } else {
1478     return ConstantEmission();
1479   }
1480 
1481   // In any case, if the initializer has side-effects, abandon ship.
1482   if (result.HasSideEffects)
1483     return ConstantEmission();
1484 
1485   // Emit as a constant.
1486   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1487                                                result.Val, resultType);
1488 
1489   // Make sure we emit a debug reference to the global variable.
1490   // This should probably fire even for
1491   if (isa<VarDecl>(value)) {
1492     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1493       EmitDeclRefExprDbgValue(refExpr, result.Val);
1494   } else {
1495     assert(isa<EnumConstantDecl>(value));
1496     EmitDeclRefExprDbgValue(refExpr, result.Val);
1497   }
1498 
1499   // If we emitted a reference constant, we need to dereference that.
1500   if (resultIsReference)
1501     return ConstantEmission::forReference(C);
1502 
1503   return ConstantEmission::forValue(C);
1504 }
1505 
1506 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1507                                                         const MemberExpr *ME) {
1508   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1509     // Try to emit static variable member expressions as DREs.
1510     return DeclRefExpr::Create(
1511         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1512         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1513         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1514   }
1515   return nullptr;
1516 }
1517 
1518 CodeGenFunction::ConstantEmission
1519 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1520   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1521     return tryEmitAsConstant(DRE);
1522   return ConstantEmission();
1523 }
1524 
1525 llvm::Value *CodeGenFunction::emitScalarConstant(
1526     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1527   assert(Constant && "not a constant");
1528   if (Constant.isReference())
1529     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1530                             E->getExprLoc())
1531         .getScalarVal();
1532   return Constant.getValue();
1533 }
1534 
1535 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1536                                                SourceLocation Loc) {
1537   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1538                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1539                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1540 }
1541 
1542 static bool hasBooleanRepresentation(QualType Ty) {
1543   if (Ty->isBooleanType())
1544     return true;
1545 
1546   if (const EnumType *ET = Ty->getAs<EnumType>())
1547     return ET->getDecl()->getIntegerType()->isBooleanType();
1548 
1549   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1550     return hasBooleanRepresentation(AT->getValueType());
1551 
1552   return false;
1553 }
1554 
1555 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1556                             llvm::APInt &Min, llvm::APInt &End,
1557                             bool StrictEnums, bool IsBool) {
1558   const EnumType *ET = Ty->getAs<EnumType>();
1559   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1560                                 ET && !ET->getDecl()->isFixed();
1561   if (!IsBool && !IsRegularCPlusPlusEnum)
1562     return false;
1563 
1564   if (IsBool) {
1565     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1566     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1567   } else {
1568     const EnumDecl *ED = ET->getDecl();
1569     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1570     unsigned Bitwidth = LTy->getScalarSizeInBits();
1571     unsigned NumNegativeBits = ED->getNumNegativeBits();
1572     unsigned NumPositiveBits = ED->getNumPositiveBits();
1573 
1574     if (NumNegativeBits) {
1575       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1576       assert(NumBits <= Bitwidth);
1577       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1578       Min = -End;
1579     } else {
1580       assert(NumPositiveBits <= Bitwidth);
1581       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1582       Min = llvm::APInt(Bitwidth, 0);
1583     }
1584   }
1585   return true;
1586 }
1587 
1588 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1589   llvm::APInt Min, End;
1590   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1591                        hasBooleanRepresentation(Ty)))
1592     return nullptr;
1593 
1594   llvm::MDBuilder MDHelper(getLLVMContext());
1595   return MDHelper.createRange(Min, End);
1596 }
1597 
1598 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1599                                            SourceLocation Loc) {
1600   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1601   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1602   if (!HasBoolCheck && !HasEnumCheck)
1603     return false;
1604 
1605   bool IsBool = hasBooleanRepresentation(Ty) ||
1606                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1607   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1608   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1609   if (!NeedsBoolCheck && !NeedsEnumCheck)
1610     return false;
1611 
1612   // Single-bit booleans don't need to be checked. Special-case this to avoid
1613   // a bit width mismatch when handling bitfield values. This is handled by
1614   // EmitFromMemory for the non-bitfield case.
1615   if (IsBool &&
1616       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1617     return false;
1618 
1619   llvm::APInt Min, End;
1620   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1621     return true;
1622 
1623   auto &Ctx = getLLVMContext();
1624   SanitizerScope SanScope(this);
1625   llvm::Value *Check;
1626   --End;
1627   if (!Min) {
1628     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1629   } else {
1630     llvm::Value *Upper =
1631         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1632     llvm::Value *Lower =
1633         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1634     Check = Builder.CreateAnd(Upper, Lower);
1635   }
1636   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1637                                   EmitCheckTypeDescriptor(Ty)};
1638   SanitizerMask Kind =
1639       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1640   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1641             StaticArgs, EmitCheckValue(Value));
1642   return true;
1643 }
1644 
1645 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1646                                                QualType Ty,
1647                                                SourceLocation Loc,
1648                                                LValueBaseInfo BaseInfo,
1649                                                TBAAAccessInfo TBAAInfo,
1650                                                bool isNontemporal) {
1651   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1652     // For better performance, handle vector loads differently.
1653     if (Ty->isVectorType()) {
1654       const llvm::Type *EltTy = Addr.getElementType();
1655 
1656       const auto *VTy = cast<llvm::VectorType>(EltTy);
1657 
1658       // Handle vectors of size 3 like size 4 for better performance.
1659       if (VTy->getNumElements() == 3) {
1660 
1661         // Bitcast to vec4 type.
1662         llvm::VectorType *vec4Ty =
1663             llvm::VectorType::get(VTy->getElementType(), 4);
1664         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1665         // Now load value.
1666         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1667 
1668         // Shuffle vector to get vec3.
1669         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1670                                         {0, 1, 2}, "extractVec");
1671         return EmitFromMemory(V, Ty);
1672       }
1673     }
1674   }
1675 
1676   // Atomic operations have to be done on integral types.
1677   LValue AtomicLValue =
1678       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1679   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1680     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1681   }
1682 
1683   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1684   if (isNontemporal) {
1685     llvm::MDNode *Node = llvm::MDNode::get(
1686         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1687     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1688   }
1689 
1690   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1691 
1692   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1693     // In order to prevent the optimizer from throwing away the check, don't
1694     // attach range metadata to the load.
1695   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1696     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1697       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1698 
1699   return EmitFromMemory(Load, Ty);
1700 }
1701 
1702 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1703   // Bool has a different representation in memory than in registers.
1704   if (hasBooleanRepresentation(Ty)) {
1705     // This should really always be an i1, but sometimes it's already
1706     // an i8, and it's awkward to track those cases down.
1707     if (Value->getType()->isIntegerTy(1))
1708       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1709     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1710            "wrong value rep of bool");
1711   }
1712 
1713   return Value;
1714 }
1715 
1716 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1717   // Bool has a different representation in memory than in registers.
1718   if (hasBooleanRepresentation(Ty)) {
1719     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1720            "wrong value rep of bool");
1721     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1722   }
1723 
1724   return Value;
1725 }
1726 
1727 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1728                                         bool Volatile, QualType Ty,
1729                                         LValueBaseInfo BaseInfo,
1730                                         TBAAAccessInfo TBAAInfo,
1731                                         bool isInit, bool isNontemporal) {
1732   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1733     // Handle vectors differently to get better performance.
1734     if (Ty->isVectorType()) {
1735       llvm::Type *SrcTy = Value->getType();
1736       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1737       // Handle vec3 special.
1738       if (VecTy && VecTy->getNumElements() == 3) {
1739         // Our source is a vec3, do a shuffle vector to make it a vec4.
1740         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1741                                   Builder.getInt32(2),
1742                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1743         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1744         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1745                                             MaskV, "extractVec");
1746         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1747       }
1748       if (Addr.getElementType() != SrcTy) {
1749         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1750       }
1751     }
1752   }
1753 
1754   Value = EmitToMemory(Value, Ty);
1755 
1756   LValue AtomicLValue =
1757       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1758   if (Ty->isAtomicType() ||
1759       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1760     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1761     return;
1762   }
1763 
1764   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1765   if (isNontemporal) {
1766     llvm::MDNode *Node =
1767         llvm::MDNode::get(Store->getContext(),
1768                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1769     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1770   }
1771 
1772   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1773 }
1774 
1775 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1776                                         bool isInit) {
1777   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1778                     lvalue.getType(), lvalue.getBaseInfo(),
1779                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1780 }
1781 
1782 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1783 /// method emits the address of the lvalue, then loads the result as an rvalue,
1784 /// returning the rvalue.
1785 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1786   if (LV.isObjCWeak()) {
1787     // load of a __weak object.
1788     Address AddrWeakObj = LV.getAddress(*this);
1789     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1790                                                              AddrWeakObj));
1791   }
1792   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1793     // In MRC mode, we do a load+autorelease.
1794     if (!getLangOpts().ObjCAutoRefCount) {
1795       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1796     }
1797 
1798     // In ARC mode, we load retained and then consume the value.
1799     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1800     Object = EmitObjCConsumeObject(LV.getType(), Object);
1801     return RValue::get(Object);
1802   }
1803 
1804   if (LV.isSimple()) {
1805     assert(!LV.getType()->isFunctionType());
1806 
1807     // Everything needs a load.
1808     return RValue::get(EmitLoadOfScalar(LV, Loc));
1809   }
1810 
1811   if (LV.isVectorElt()) {
1812     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1813                                               LV.isVolatileQualified());
1814     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1815                                                     "vecext"));
1816   }
1817 
1818   // If this is a reference to a subset of the elements of a vector, either
1819   // shuffle the input or extract/insert them as appropriate.
1820   if (LV.isExtVectorElt())
1821     return EmitLoadOfExtVectorElementLValue(LV);
1822 
1823   // Global Register variables always invoke intrinsics
1824   if (LV.isGlobalReg())
1825     return EmitLoadOfGlobalRegLValue(LV);
1826 
1827   assert(LV.isBitField() && "Unknown LValue type!");
1828   return EmitLoadOfBitfieldLValue(LV, Loc);
1829 }
1830 
1831 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1832                                                  SourceLocation Loc) {
1833   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1834 
1835   // Get the output type.
1836   llvm::Type *ResLTy = ConvertType(LV.getType());
1837 
1838   Address Ptr = LV.getBitFieldAddress();
1839   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1840 
1841   if (Info.IsSigned) {
1842     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1843     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1844     if (HighBits)
1845       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1846     if (Info.Offset + HighBits)
1847       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1848   } else {
1849     if (Info.Offset)
1850       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1851     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1852       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1853                                                               Info.Size),
1854                               "bf.clear");
1855   }
1856   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1857   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1858   return RValue::get(Val);
1859 }
1860 
1861 // If this is a reference to a subset of the elements of a vector, create an
1862 // appropriate shufflevector.
1863 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1864   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1865                                         LV.isVolatileQualified());
1866 
1867   const llvm::Constant *Elts = LV.getExtVectorElts();
1868 
1869   // If the result of the expression is a non-vector type, we must be extracting
1870   // a single element.  Just codegen as an extractelement.
1871   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1872   if (!ExprVT) {
1873     unsigned InIdx = getAccessedFieldNo(0, Elts);
1874     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1875     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1876   }
1877 
1878   // Always use shuffle vector to try to retain the original program structure
1879   unsigned NumResultElts = ExprVT->getNumElements();
1880 
1881   SmallVector<llvm::Constant*, 4> Mask;
1882   for (unsigned i = 0; i != NumResultElts; ++i)
1883     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1884 
1885   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1886   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1887                                     MaskV);
1888   return RValue::get(Vec);
1889 }
1890 
1891 /// Generates lvalue for partial ext_vector access.
1892 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1893   Address VectorAddress = LV.getExtVectorAddress();
1894   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1895   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1896 
1897   Address CastToPointerElement =
1898     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1899                                  "conv.ptr.element");
1900 
1901   const llvm::Constant *Elts = LV.getExtVectorElts();
1902   unsigned ix = getAccessedFieldNo(0, Elts);
1903 
1904   Address VectorBasePtrPlusIx =
1905     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1906                                    "vector.elt");
1907 
1908   return VectorBasePtrPlusIx;
1909 }
1910 
1911 /// Load of global gamed gegisters are always calls to intrinsics.
1912 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1913   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1914          "Bad type for register variable");
1915   llvm::MDNode *RegName = cast<llvm::MDNode>(
1916       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1917 
1918   // We accept integer and pointer types only
1919   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1920   llvm::Type *Ty = OrigTy;
1921   if (OrigTy->isPointerTy())
1922     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1923   llvm::Type *Types[] = { Ty };
1924 
1925   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1926   llvm::Value *Call = Builder.CreateCall(
1927       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1928   if (OrigTy->isPointerTy())
1929     Call = Builder.CreateIntToPtr(Call, OrigTy);
1930   return RValue::get(Call);
1931 }
1932 
1933 
1934 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1935 /// lvalue, where both are guaranteed to the have the same type, and that type
1936 /// is 'Ty'.
1937 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1938                                              bool isInit) {
1939   if (!Dst.isSimple()) {
1940     if (Dst.isVectorElt()) {
1941       // Read/modify/write the vector, inserting the new element.
1942       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1943                                             Dst.isVolatileQualified());
1944       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1945                                         Dst.getVectorIdx(), "vecins");
1946       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1947                           Dst.isVolatileQualified());
1948       return;
1949     }
1950 
1951     // If this is an update of extended vector elements, insert them as
1952     // appropriate.
1953     if (Dst.isExtVectorElt())
1954       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1955 
1956     if (Dst.isGlobalReg())
1957       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1958 
1959     assert(Dst.isBitField() && "Unknown LValue type");
1960     return EmitStoreThroughBitfieldLValue(Src, Dst);
1961   }
1962 
1963   // There's special magic for assigning into an ARC-qualified l-value.
1964   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1965     switch (Lifetime) {
1966     case Qualifiers::OCL_None:
1967       llvm_unreachable("present but none");
1968 
1969     case Qualifiers::OCL_ExplicitNone:
1970       // nothing special
1971       break;
1972 
1973     case Qualifiers::OCL_Strong:
1974       if (isInit) {
1975         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1976         break;
1977       }
1978       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1979       return;
1980 
1981     case Qualifiers::OCL_Weak:
1982       if (isInit)
1983         // Initialize and then skip the primitive store.
1984         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
1985       else
1986         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
1987                          /*ignore*/ true);
1988       return;
1989 
1990     case Qualifiers::OCL_Autoreleasing:
1991       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1992                                                      Src.getScalarVal()));
1993       // fall into the normal path
1994       break;
1995     }
1996   }
1997 
1998   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1999     // load of a __weak object.
2000     Address LvalueDst = Dst.getAddress(*this);
2001     llvm::Value *src = Src.getScalarVal();
2002      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2003     return;
2004   }
2005 
2006   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2007     // load of a __strong object.
2008     Address LvalueDst = Dst.getAddress(*this);
2009     llvm::Value *src = Src.getScalarVal();
2010     if (Dst.isObjCIvar()) {
2011       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2012       llvm::Type *ResultType = IntPtrTy;
2013       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2014       llvm::Value *RHS = dst.getPointer();
2015       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2016       llvm::Value *LHS =
2017         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2018                                "sub.ptr.lhs.cast");
2019       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2020       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2021                                               BytesBetween);
2022     } else if (Dst.isGlobalObjCRef()) {
2023       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2024                                                 Dst.isThreadLocalRef());
2025     }
2026     else
2027       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2028     return;
2029   }
2030 
2031   assert(Src.isScalar() && "Can't emit an agg store with this method");
2032   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2033 }
2034 
2035 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2036                                                      llvm::Value **Result) {
2037   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2038   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2039   Address Ptr = Dst.getBitFieldAddress();
2040 
2041   // Get the source value, truncated to the width of the bit-field.
2042   llvm::Value *SrcVal = Src.getScalarVal();
2043 
2044   // Cast the source to the storage type and shift it into place.
2045   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2046                                  /*isSigned=*/false);
2047   llvm::Value *MaskedVal = SrcVal;
2048 
2049   // See if there are other bits in the bitfield's storage we'll need to load
2050   // and mask together with source before storing.
2051   if (Info.StorageSize != Info.Size) {
2052     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2053     llvm::Value *Val =
2054       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2055 
2056     // Mask the source value as needed.
2057     if (!hasBooleanRepresentation(Dst.getType()))
2058       SrcVal = Builder.CreateAnd(SrcVal,
2059                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2060                                                             Info.Size),
2061                                  "bf.value");
2062     MaskedVal = SrcVal;
2063     if (Info.Offset)
2064       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2065 
2066     // Mask out the original value.
2067     Val = Builder.CreateAnd(Val,
2068                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2069                                                      Info.Offset,
2070                                                      Info.Offset + Info.Size),
2071                             "bf.clear");
2072 
2073     // Or together the unchanged values and the source value.
2074     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2075   } else {
2076     assert(Info.Offset == 0);
2077     // According to the AACPS:
2078     // When a volatile bit-field is written, and its container does not overlap
2079     // with any non-bit-field member, its container must be read exactly once and
2080     // written exactly once using the access width appropriate to the type of the
2081     // container. The two accesses are not atomic.
2082     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2083         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2084       Builder.CreateLoad(Ptr, true, "bf.load");
2085   }
2086 
2087   // Write the new value back out.
2088   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2089 
2090   // Return the new value of the bit-field, if requested.
2091   if (Result) {
2092     llvm::Value *ResultVal = MaskedVal;
2093 
2094     // Sign extend the value if needed.
2095     if (Info.IsSigned) {
2096       assert(Info.Size <= Info.StorageSize);
2097       unsigned HighBits = Info.StorageSize - Info.Size;
2098       if (HighBits) {
2099         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2100         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2101       }
2102     }
2103 
2104     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2105                                       "bf.result.cast");
2106     *Result = EmitFromMemory(ResultVal, Dst.getType());
2107   }
2108 }
2109 
2110 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2111                                                                LValue Dst) {
2112   // This access turns into a read/modify/write of the vector.  Load the input
2113   // value now.
2114   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2115                                         Dst.isVolatileQualified());
2116   const llvm::Constant *Elts = Dst.getExtVectorElts();
2117 
2118   llvm::Value *SrcVal = Src.getScalarVal();
2119 
2120   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2121     unsigned NumSrcElts = VTy->getNumElements();
2122     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2123     if (NumDstElts == NumSrcElts) {
2124       // Use shuffle vector is the src and destination are the same number of
2125       // elements and restore the vector mask since it is on the side it will be
2126       // stored.
2127       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2128       for (unsigned i = 0; i != NumSrcElts; ++i)
2129         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2130 
2131       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2132       Vec = Builder.CreateShuffleVector(SrcVal,
2133                                         llvm::UndefValue::get(Vec->getType()),
2134                                         MaskV);
2135     } else if (NumDstElts > NumSrcElts) {
2136       // Extended the source vector to the same length and then shuffle it
2137       // into the destination.
2138       // FIXME: since we're shuffling with undef, can we just use the indices
2139       //        into that?  This could be simpler.
2140       SmallVector<llvm::Constant*, 4> ExtMask;
2141       for (unsigned i = 0; i != NumSrcElts; ++i)
2142         ExtMask.push_back(Builder.getInt32(i));
2143       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2144       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2145       llvm::Value *ExtSrcVal =
2146         Builder.CreateShuffleVector(SrcVal,
2147                                     llvm::UndefValue::get(SrcVal->getType()),
2148                                     ExtMaskV);
2149       // build identity
2150       SmallVector<llvm::Constant*, 4> Mask;
2151       for (unsigned i = 0; i != NumDstElts; ++i)
2152         Mask.push_back(Builder.getInt32(i));
2153 
2154       // When the vector size is odd and .odd or .hi is used, the last element
2155       // of the Elts constant array will be one past the size of the vector.
2156       // Ignore the last element here, if it is greater than the mask size.
2157       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2158         NumSrcElts--;
2159 
2160       // modify when what gets shuffled in
2161       for (unsigned i = 0; i != NumSrcElts; ++i)
2162         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2163       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2164       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2165     } else {
2166       // We should never shorten the vector
2167       llvm_unreachable("unexpected shorten vector length");
2168     }
2169   } else {
2170     // If the Src is a scalar (not a vector) it must be updating one element.
2171     unsigned InIdx = getAccessedFieldNo(0, Elts);
2172     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2173     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2174   }
2175 
2176   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2177                       Dst.isVolatileQualified());
2178 }
2179 
2180 /// Store of global named registers are always calls to intrinsics.
2181 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2182   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2183          "Bad type for register variable");
2184   llvm::MDNode *RegName = cast<llvm::MDNode>(
2185       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2186   assert(RegName && "Register LValue is not metadata");
2187 
2188   // We accept integer and pointer types only
2189   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2190   llvm::Type *Ty = OrigTy;
2191   if (OrigTy->isPointerTy())
2192     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2193   llvm::Type *Types[] = { Ty };
2194 
2195   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2196   llvm::Value *Value = Src.getScalarVal();
2197   if (OrigTy->isPointerTy())
2198     Value = Builder.CreatePtrToInt(Value, Ty);
2199   Builder.CreateCall(
2200       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2201 }
2202 
2203 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2204 // generating write-barries API. It is currently a global, ivar,
2205 // or neither.
2206 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2207                                  LValue &LV,
2208                                  bool IsMemberAccess=false) {
2209   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2210     return;
2211 
2212   if (isa<ObjCIvarRefExpr>(E)) {
2213     QualType ExpTy = E->getType();
2214     if (IsMemberAccess && ExpTy->isPointerType()) {
2215       // If ivar is a structure pointer, assigning to field of
2216       // this struct follows gcc's behavior and makes it a non-ivar
2217       // writer-barrier conservatively.
2218       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2219       if (ExpTy->isRecordType()) {
2220         LV.setObjCIvar(false);
2221         return;
2222       }
2223     }
2224     LV.setObjCIvar(true);
2225     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2226     LV.setBaseIvarExp(Exp->getBase());
2227     LV.setObjCArray(E->getType()->isArrayType());
2228     return;
2229   }
2230 
2231   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2232     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2233       if (VD->hasGlobalStorage()) {
2234         LV.setGlobalObjCRef(true);
2235         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2236       }
2237     }
2238     LV.setObjCArray(E->getType()->isArrayType());
2239     return;
2240   }
2241 
2242   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2243     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2244     return;
2245   }
2246 
2247   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2248     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2249     if (LV.isObjCIvar()) {
2250       // If cast is to a structure pointer, follow gcc's behavior and make it
2251       // a non-ivar write-barrier.
2252       QualType ExpTy = E->getType();
2253       if (ExpTy->isPointerType())
2254         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2255       if (ExpTy->isRecordType())
2256         LV.setObjCIvar(false);
2257     }
2258     return;
2259   }
2260 
2261   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2262     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2263     return;
2264   }
2265 
2266   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2267     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2268     return;
2269   }
2270 
2271   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2272     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2273     return;
2274   }
2275 
2276   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2277     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2278     return;
2279   }
2280 
2281   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2282     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2283     if (LV.isObjCIvar() && !LV.isObjCArray())
2284       // Using array syntax to assigning to what an ivar points to is not
2285       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2286       LV.setObjCIvar(false);
2287     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2288       // Using array syntax to assigning to what global points to is not
2289       // same as assigning to the global itself. {id *G;} G[i] = 0;
2290       LV.setGlobalObjCRef(false);
2291     return;
2292   }
2293 
2294   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2295     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2296     // We don't know if member is an 'ivar', but this flag is looked at
2297     // only in the context of LV.isObjCIvar().
2298     LV.setObjCArray(E->getType()->isArrayType());
2299     return;
2300   }
2301 }
2302 
2303 static llvm::Value *
2304 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2305                                 llvm::Value *V, llvm::Type *IRType,
2306                                 StringRef Name = StringRef()) {
2307   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2308   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2309 }
2310 
2311 static LValue EmitThreadPrivateVarDeclLValue(
2312     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2313     llvm::Type *RealVarTy, SourceLocation Loc) {
2314   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2315   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2316   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2317 }
2318 
2319 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2320                                            const VarDecl *VD, QualType T) {
2321   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2322       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2323   // Return an invalid address if variable is MT_To and unified
2324   // memory is not enabled. For all other cases: MT_Link and
2325   // MT_To with unified memory, return a valid address.
2326   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2327                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2328     return Address::invalid();
2329   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2330           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2331            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2332          "Expected link clause OR to clause with unified memory enabled.");
2333   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2334   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2335   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2336 }
2337 
2338 Address
2339 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2340                                      LValueBaseInfo *PointeeBaseInfo,
2341                                      TBAAAccessInfo *PointeeTBAAInfo) {
2342   llvm::LoadInst *Load =
2343       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2344   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2345 
2346   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2347                                             PointeeBaseInfo, PointeeTBAAInfo,
2348                                             /* forPointeeType= */ true);
2349   return Address(Load, Align);
2350 }
2351 
2352 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2353   LValueBaseInfo PointeeBaseInfo;
2354   TBAAAccessInfo PointeeTBAAInfo;
2355   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2356                                             &PointeeTBAAInfo);
2357   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2358                         PointeeBaseInfo, PointeeTBAAInfo);
2359 }
2360 
2361 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2362                                            const PointerType *PtrTy,
2363                                            LValueBaseInfo *BaseInfo,
2364                                            TBAAAccessInfo *TBAAInfo) {
2365   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2366   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2367                                                BaseInfo, TBAAInfo,
2368                                                /*forPointeeType=*/true));
2369 }
2370 
2371 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2372                                                 const PointerType *PtrTy) {
2373   LValueBaseInfo BaseInfo;
2374   TBAAAccessInfo TBAAInfo;
2375   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2376   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2377 }
2378 
2379 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2380                                       const Expr *E, const VarDecl *VD) {
2381   QualType T = E->getType();
2382 
2383   // If it's thread_local, emit a call to its wrapper function instead.
2384   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2385       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2386     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2387   // Check if the variable is marked as declare target with link clause in
2388   // device codegen.
2389   if (CGF.getLangOpts().OpenMPIsDevice) {
2390     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2391     if (Addr.isValid())
2392       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2393   }
2394 
2395   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2396   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2397   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2398   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2399   Address Addr(V, Alignment);
2400   // Emit reference to the private copy of the variable if it is an OpenMP
2401   // threadprivate variable.
2402   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2403       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2404     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2405                                           E->getExprLoc());
2406   }
2407   LValue LV = VD->getType()->isReferenceType() ?
2408       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2409                                     AlignmentSource::Decl) :
2410       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2411   setObjCGCLValueClass(CGF.getContext(), E, LV);
2412   return LV;
2413 }
2414 
2415 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2416                                                GlobalDecl GD) {
2417   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2418   if (FD->hasAttr<WeakRefAttr>()) {
2419     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2420     return aliasee.getPointer();
2421   }
2422 
2423   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2424   if (!FD->hasPrototype()) {
2425     if (const FunctionProtoType *Proto =
2426             FD->getType()->getAs<FunctionProtoType>()) {
2427       // Ugly case: for a K&R-style definition, the type of the definition
2428       // isn't the same as the type of a use.  Correct for this with a
2429       // bitcast.
2430       QualType NoProtoType =
2431           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2432       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2433       V = llvm::ConstantExpr::getBitCast(V,
2434                                       CGM.getTypes().ConvertType(NoProtoType));
2435     }
2436   }
2437   return V;
2438 }
2439 
2440 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2441                                      GlobalDecl GD) {
2442   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2443   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2444   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2445   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2446                             AlignmentSource::Decl);
2447 }
2448 
2449 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2450                                       llvm::Value *ThisValue) {
2451   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2452   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2453   return CGF.EmitLValueForField(LV, FD);
2454 }
2455 
2456 /// Named Registers are named metadata pointing to the register name
2457 /// which will be read from/written to as an argument to the intrinsic
2458 /// @llvm.read/write_register.
2459 /// So far, only the name is being passed down, but other options such as
2460 /// register type, allocation type or even optimization options could be
2461 /// passed down via the metadata node.
2462 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2463   SmallString<64> Name("llvm.named.register.");
2464   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2465   assert(Asm->getLabel().size() < 64-Name.size() &&
2466       "Register name too big");
2467   Name.append(Asm->getLabel());
2468   llvm::NamedMDNode *M =
2469     CGM.getModule().getOrInsertNamedMetadata(Name);
2470   if (M->getNumOperands() == 0) {
2471     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2472                                               Asm->getLabel());
2473     llvm::Metadata *Ops[] = {Str};
2474     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2475   }
2476 
2477   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2478 
2479   llvm::Value *Ptr =
2480     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2481   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2482 }
2483 
2484 /// Determine whether we can emit a reference to \p VD from the current
2485 /// context, despite not necessarily having seen an odr-use of the variable in
2486 /// this context.
2487 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2488                                                const DeclRefExpr *E,
2489                                                const VarDecl *VD,
2490                                                bool IsConstant) {
2491   // For a variable declared in an enclosing scope, do not emit a spurious
2492   // reference even if we have a capture, as that will emit an unwarranted
2493   // reference to our capture state, and will likely generate worse code than
2494   // emitting a local copy.
2495   if (E->refersToEnclosingVariableOrCapture())
2496     return false;
2497 
2498   // For a local declaration declared in this function, we can always reference
2499   // it even if we don't have an odr-use.
2500   if (VD->hasLocalStorage()) {
2501     return VD->getDeclContext() ==
2502            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2503   }
2504 
2505   // For a global declaration, we can emit a reference to it if we know
2506   // for sure that we are able to emit a definition of it.
2507   VD = VD->getDefinition(CGF.getContext());
2508   if (!VD)
2509     return false;
2510 
2511   // Don't emit a spurious reference if it might be to a variable that only
2512   // exists on a different device / target.
2513   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2514   // cross-target reference.
2515   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2516       CGF.getLangOpts().OpenCL) {
2517     return false;
2518   }
2519 
2520   // We can emit a spurious reference only if the linkage implies that we'll
2521   // be emitting a non-interposable symbol that will be retained until link
2522   // time.
2523   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2524   case llvm::GlobalValue::ExternalLinkage:
2525   case llvm::GlobalValue::LinkOnceODRLinkage:
2526   case llvm::GlobalValue::WeakODRLinkage:
2527   case llvm::GlobalValue::InternalLinkage:
2528   case llvm::GlobalValue::PrivateLinkage:
2529     return true;
2530   default:
2531     return false;
2532   }
2533 }
2534 
2535 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2536   const NamedDecl *ND = E->getDecl();
2537   QualType T = E->getType();
2538 
2539   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2540          "should not emit an unevaluated operand");
2541 
2542   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2543     // Global Named registers access via intrinsics only
2544     if (VD->getStorageClass() == SC_Register &&
2545         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2546       return EmitGlobalNamedRegister(VD, CGM);
2547 
2548     // If this DeclRefExpr does not constitute an odr-use of the variable,
2549     // we're not permitted to emit a reference to it in general, and it might
2550     // not be captured if capture would be necessary for a use. Emit the
2551     // constant value directly instead.
2552     if (E->isNonOdrUse() == NOUR_Constant &&
2553         (VD->getType()->isReferenceType() ||
2554          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2555       VD->getAnyInitializer(VD);
2556       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2557           E->getLocation(), *VD->evaluateValue(), VD->getType());
2558       assert(Val && "failed to emit constant expression");
2559 
2560       Address Addr = Address::invalid();
2561       if (!VD->getType()->isReferenceType()) {
2562         // Spill the constant value to a global.
2563         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2564                                            getContext().getDeclAlign(VD));
2565         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2566         auto *PTy = llvm::PointerType::get(
2567             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2568         if (PTy != Addr.getType())
2569           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2570       } else {
2571         // Should we be using the alignment of the constant pointer we emitted?
2572         CharUnits Alignment =
2573             getNaturalTypeAlignment(E->getType(),
2574                                     /* BaseInfo= */ nullptr,
2575                                     /* TBAAInfo= */ nullptr,
2576                                     /* forPointeeType= */ true);
2577         Addr = Address(Val, Alignment);
2578       }
2579       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2580     }
2581 
2582     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2583 
2584     // Check for captured variables.
2585     if (E->refersToEnclosingVariableOrCapture()) {
2586       VD = VD->getCanonicalDecl();
2587       if (auto *FD = LambdaCaptureFields.lookup(VD))
2588         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2589       if (CapturedStmtInfo) {
2590         auto I = LocalDeclMap.find(VD);
2591         if (I != LocalDeclMap.end()) {
2592           LValue CapLVal;
2593           if (VD->getType()->isReferenceType())
2594             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2595                                                 AlignmentSource::Decl);
2596           else
2597             CapLVal = MakeAddrLValue(I->second, T);
2598           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2599           // in simd context.
2600           if (getLangOpts().OpenMP &&
2601               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2602             CapLVal.setNontemporal(/*Value=*/true);
2603           return CapLVal;
2604         }
2605         LValue CapLVal =
2606             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2607                                     CapturedStmtInfo->getContextValue());
2608         CapLVal = MakeAddrLValue(
2609             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2610             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2611             CapLVal.getTBAAInfo());
2612         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2613         // in simd context.
2614         if (getLangOpts().OpenMP &&
2615             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2616           CapLVal.setNontemporal(/*Value=*/true);
2617         return CapLVal;
2618       }
2619 
2620       assert(isa<BlockDecl>(CurCodeDecl));
2621       Address addr = GetAddrOfBlockDecl(VD);
2622       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2623     }
2624   }
2625 
2626   // FIXME: We should be able to assert this for FunctionDecls as well!
2627   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2628   // those with a valid source location.
2629   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2630           !E->getLocation().isValid()) &&
2631          "Should not use decl without marking it used!");
2632 
2633   if (ND->hasAttr<WeakRefAttr>()) {
2634     const auto *VD = cast<ValueDecl>(ND);
2635     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2636     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2637   }
2638 
2639   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2640     // Check if this is a global variable.
2641     if (VD->hasLinkage() || VD->isStaticDataMember())
2642       return EmitGlobalVarDeclLValue(*this, E, VD);
2643 
2644     Address addr = Address::invalid();
2645 
2646     // The variable should generally be present in the local decl map.
2647     auto iter = LocalDeclMap.find(VD);
2648     if (iter != LocalDeclMap.end()) {
2649       addr = iter->second;
2650 
2651     // Otherwise, it might be static local we haven't emitted yet for
2652     // some reason; most likely, because it's in an outer function.
2653     } else if (VD->isStaticLocal()) {
2654       addr = Address(CGM.getOrCreateStaticVarDecl(
2655           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2656                      getContext().getDeclAlign(VD));
2657 
2658     // No other cases for now.
2659     } else {
2660       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2661     }
2662 
2663 
2664     // Check for OpenMP threadprivate variables.
2665     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2666         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2667       return EmitThreadPrivateVarDeclLValue(
2668           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2669           E->getExprLoc());
2670     }
2671 
2672     // Drill into block byref variables.
2673     bool isBlockByref = VD->isEscapingByref();
2674     if (isBlockByref) {
2675       addr = emitBlockByrefAddress(addr, VD);
2676     }
2677 
2678     // Drill into reference types.
2679     LValue LV = VD->getType()->isReferenceType() ?
2680         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2681         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2682 
2683     bool isLocalStorage = VD->hasLocalStorage();
2684 
2685     bool NonGCable = isLocalStorage &&
2686                      !VD->getType()->isReferenceType() &&
2687                      !isBlockByref;
2688     if (NonGCable) {
2689       LV.getQuals().removeObjCGCAttr();
2690       LV.setNonGC(true);
2691     }
2692 
2693     bool isImpreciseLifetime =
2694       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2695     if (isImpreciseLifetime)
2696       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2697     setObjCGCLValueClass(getContext(), E, LV);
2698     return LV;
2699   }
2700 
2701   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2702     return EmitFunctionDeclLValue(*this, E, FD);
2703 
2704   // FIXME: While we're emitting a binding from an enclosing scope, all other
2705   // DeclRefExprs we see should be implicitly treated as if they also refer to
2706   // an enclosing scope.
2707   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2708     return EmitLValue(BD->getBinding());
2709 
2710   llvm_unreachable("Unhandled DeclRefExpr");
2711 }
2712 
2713 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2714   // __extension__ doesn't affect lvalue-ness.
2715   if (E->getOpcode() == UO_Extension)
2716     return EmitLValue(E->getSubExpr());
2717 
2718   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2719   switch (E->getOpcode()) {
2720   default: llvm_unreachable("Unknown unary operator lvalue!");
2721   case UO_Deref: {
2722     QualType T = E->getSubExpr()->getType()->getPointeeType();
2723     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2724 
2725     LValueBaseInfo BaseInfo;
2726     TBAAAccessInfo TBAAInfo;
2727     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2728                                             &TBAAInfo);
2729     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2730     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2731 
2732     // We should not generate __weak write barrier on indirect reference
2733     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2734     // But, we continue to generate __strong write barrier on indirect write
2735     // into a pointer to object.
2736     if (getLangOpts().ObjC &&
2737         getLangOpts().getGC() != LangOptions::NonGC &&
2738         LV.isObjCWeak())
2739       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2740     return LV;
2741   }
2742   case UO_Real:
2743   case UO_Imag: {
2744     LValue LV = EmitLValue(E->getSubExpr());
2745     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2746 
2747     // __real is valid on scalars.  This is a faster way of testing that.
2748     // __imag can only produce an rvalue on scalars.
2749     if (E->getOpcode() == UO_Real &&
2750         !LV.getAddress(*this).getElementType()->isStructTy()) {
2751       assert(E->getSubExpr()->getType()->isArithmeticType());
2752       return LV;
2753     }
2754 
2755     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2756 
2757     Address Component =
2758         (E->getOpcode() == UO_Real
2759              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2760              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2761     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2762                                    CGM.getTBAAInfoForSubobject(LV, T));
2763     ElemLV.getQuals().addQualifiers(LV.getQuals());
2764     return ElemLV;
2765   }
2766   case UO_PreInc:
2767   case UO_PreDec: {
2768     LValue LV = EmitLValue(E->getSubExpr());
2769     bool isInc = E->getOpcode() == UO_PreInc;
2770 
2771     if (E->getType()->isAnyComplexType())
2772       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2773     else
2774       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2775     return LV;
2776   }
2777   }
2778 }
2779 
2780 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2781   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2782                         E->getType(), AlignmentSource::Decl);
2783 }
2784 
2785 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2786   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2787                         E->getType(), AlignmentSource::Decl);
2788 }
2789 
2790 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2791   auto SL = E->getFunctionName();
2792   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2793   StringRef FnName = CurFn->getName();
2794   if (FnName.startswith("\01"))
2795     FnName = FnName.substr(1);
2796   StringRef NameItems[] = {
2797       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2798   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2799   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2800     std::string Name = std::string(SL->getString());
2801     if (!Name.empty()) {
2802       unsigned Discriminator =
2803           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2804       if (Discriminator)
2805         Name += "_" + Twine(Discriminator + 1).str();
2806       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2807       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2808     } else {
2809       auto C =
2810           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2811       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2812     }
2813   }
2814   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2815   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2816 }
2817 
2818 /// Emit a type description suitable for use by a runtime sanitizer library. The
2819 /// format of a type descriptor is
2820 ///
2821 /// \code
2822 ///   { i16 TypeKind, i16 TypeInfo }
2823 /// \endcode
2824 ///
2825 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2826 /// integer, 1 for a floating point value, and -1 for anything else.
2827 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2828   // Only emit each type's descriptor once.
2829   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2830     return C;
2831 
2832   uint16_t TypeKind = -1;
2833   uint16_t TypeInfo = 0;
2834 
2835   if (T->isIntegerType()) {
2836     TypeKind = 0;
2837     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2838                (T->isSignedIntegerType() ? 1 : 0);
2839   } else if (T->isFloatingType()) {
2840     TypeKind = 1;
2841     TypeInfo = getContext().getTypeSize(T);
2842   }
2843 
2844   // Format the type name as if for a diagnostic, including quotes and
2845   // optionally an 'aka'.
2846   SmallString<32> Buffer;
2847   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2848                                     (intptr_t)T.getAsOpaquePtr(),
2849                                     StringRef(), StringRef(), None, Buffer,
2850                                     None);
2851 
2852   llvm::Constant *Components[] = {
2853     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2854     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2855   };
2856   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2857 
2858   auto *GV = new llvm::GlobalVariable(
2859       CGM.getModule(), Descriptor->getType(),
2860       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2861   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2862   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2863 
2864   // Remember the descriptor for this type.
2865   CGM.setTypeDescriptorInMap(T, GV);
2866 
2867   return GV;
2868 }
2869 
2870 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2871   llvm::Type *TargetTy = IntPtrTy;
2872 
2873   if (V->getType() == TargetTy)
2874     return V;
2875 
2876   // Floating-point types which fit into intptr_t are bitcast to integers
2877   // and then passed directly (after zero-extension, if necessary).
2878   if (V->getType()->isFloatingPointTy()) {
2879     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2880     if (Bits <= TargetTy->getIntegerBitWidth())
2881       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2882                                                          Bits));
2883   }
2884 
2885   // Integers which fit in intptr_t are zero-extended and passed directly.
2886   if (V->getType()->isIntegerTy() &&
2887       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2888     return Builder.CreateZExt(V, TargetTy);
2889 
2890   // Pointers are passed directly, everything else is passed by address.
2891   if (!V->getType()->isPointerTy()) {
2892     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2893     Builder.CreateStore(V, Ptr);
2894     V = Ptr.getPointer();
2895   }
2896   return Builder.CreatePtrToInt(V, TargetTy);
2897 }
2898 
2899 /// Emit a representation of a SourceLocation for passing to a handler
2900 /// in a sanitizer runtime library. The format for this data is:
2901 /// \code
2902 ///   struct SourceLocation {
2903 ///     const char *Filename;
2904 ///     int32_t Line, Column;
2905 ///   };
2906 /// \endcode
2907 /// For an invalid SourceLocation, the Filename pointer is null.
2908 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2909   llvm::Constant *Filename;
2910   int Line, Column;
2911 
2912   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2913   if (PLoc.isValid()) {
2914     StringRef FilenameString = PLoc.getFilename();
2915 
2916     int PathComponentsToStrip =
2917         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2918     if (PathComponentsToStrip < 0) {
2919       assert(PathComponentsToStrip != INT_MIN);
2920       int PathComponentsToKeep = -PathComponentsToStrip;
2921       auto I = llvm::sys::path::rbegin(FilenameString);
2922       auto E = llvm::sys::path::rend(FilenameString);
2923       while (I != E && --PathComponentsToKeep)
2924         ++I;
2925 
2926       FilenameString = FilenameString.substr(I - E);
2927     } else if (PathComponentsToStrip > 0) {
2928       auto I = llvm::sys::path::begin(FilenameString);
2929       auto E = llvm::sys::path::end(FilenameString);
2930       while (I != E && PathComponentsToStrip--)
2931         ++I;
2932 
2933       if (I != E)
2934         FilenameString =
2935             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2936       else
2937         FilenameString = llvm::sys::path::filename(FilenameString);
2938     }
2939 
2940     auto FilenameGV =
2941         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
2942     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2943                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2944     Filename = FilenameGV.getPointer();
2945     Line = PLoc.getLine();
2946     Column = PLoc.getColumn();
2947   } else {
2948     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2949     Line = Column = 0;
2950   }
2951 
2952   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2953                             Builder.getInt32(Column)};
2954 
2955   return llvm::ConstantStruct::getAnon(Data);
2956 }
2957 
2958 namespace {
2959 /// Specify under what conditions this check can be recovered
2960 enum class CheckRecoverableKind {
2961   /// Always terminate program execution if this check fails.
2962   Unrecoverable,
2963   /// Check supports recovering, runtime has both fatal (noreturn) and
2964   /// non-fatal handlers for this check.
2965   Recoverable,
2966   /// Runtime conditionally aborts, always need to support recovery.
2967   AlwaysRecoverable
2968 };
2969 }
2970 
2971 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2972   assert(Kind.countPopulation() == 1);
2973   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2974     return CheckRecoverableKind::AlwaysRecoverable;
2975   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2976     return CheckRecoverableKind::Unrecoverable;
2977   else
2978     return CheckRecoverableKind::Recoverable;
2979 }
2980 
2981 namespace {
2982 struct SanitizerHandlerInfo {
2983   char const *const Name;
2984   unsigned Version;
2985 };
2986 }
2987 
2988 const SanitizerHandlerInfo SanitizerHandlers[] = {
2989 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2990     LIST_SANITIZER_CHECKS
2991 #undef SANITIZER_CHECK
2992 };
2993 
2994 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2995                                  llvm::FunctionType *FnType,
2996                                  ArrayRef<llvm::Value *> FnArgs,
2997                                  SanitizerHandler CheckHandler,
2998                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2999                                  llvm::BasicBlock *ContBB) {
3000   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3001   Optional<ApplyDebugLocation> DL;
3002   if (!CGF.Builder.getCurrentDebugLocation()) {
3003     // Ensure that the call has at least an artificial debug location.
3004     DL.emplace(CGF, SourceLocation());
3005   }
3006   bool NeedsAbortSuffix =
3007       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3008   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3009   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3010   const StringRef CheckName = CheckInfo.Name;
3011   std::string FnName = "__ubsan_handle_" + CheckName.str();
3012   if (CheckInfo.Version && !MinimalRuntime)
3013     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3014   if (MinimalRuntime)
3015     FnName += "_minimal";
3016   if (NeedsAbortSuffix)
3017     FnName += "_abort";
3018   bool MayReturn =
3019       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3020 
3021   llvm::AttrBuilder B;
3022   if (!MayReturn) {
3023     B.addAttribute(llvm::Attribute::NoReturn)
3024         .addAttribute(llvm::Attribute::NoUnwind);
3025   }
3026   B.addAttribute(llvm::Attribute::UWTable);
3027 
3028   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3029       FnType, FnName,
3030       llvm::AttributeList::get(CGF.getLLVMContext(),
3031                                llvm::AttributeList::FunctionIndex, B),
3032       /*Local=*/true);
3033   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3034   if (!MayReturn) {
3035     HandlerCall->setDoesNotReturn();
3036     CGF.Builder.CreateUnreachable();
3037   } else {
3038     CGF.Builder.CreateBr(ContBB);
3039   }
3040 }
3041 
3042 void CodeGenFunction::EmitCheck(
3043     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3044     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3045     ArrayRef<llvm::Value *> DynamicArgs) {
3046   assert(IsSanitizerScope);
3047   assert(Checked.size() > 0);
3048   assert(CheckHandler >= 0 &&
3049          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3050   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3051 
3052   llvm::Value *FatalCond = nullptr;
3053   llvm::Value *RecoverableCond = nullptr;
3054   llvm::Value *TrapCond = nullptr;
3055   for (int i = 0, n = Checked.size(); i < n; ++i) {
3056     llvm::Value *Check = Checked[i].first;
3057     // -fsanitize-trap= overrides -fsanitize-recover=.
3058     llvm::Value *&Cond =
3059         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3060             ? TrapCond
3061             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3062                   ? RecoverableCond
3063                   : FatalCond;
3064     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3065   }
3066 
3067   if (TrapCond)
3068     EmitTrapCheck(TrapCond);
3069   if (!FatalCond && !RecoverableCond)
3070     return;
3071 
3072   llvm::Value *JointCond;
3073   if (FatalCond && RecoverableCond)
3074     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3075   else
3076     JointCond = FatalCond ? FatalCond : RecoverableCond;
3077   assert(JointCond);
3078 
3079   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3080   assert(SanOpts.has(Checked[0].second));
3081 #ifndef NDEBUG
3082   for (int i = 1, n = Checked.size(); i < n; ++i) {
3083     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3084            "All recoverable kinds in a single check must be same!");
3085     assert(SanOpts.has(Checked[i].second));
3086   }
3087 #endif
3088 
3089   llvm::BasicBlock *Cont = createBasicBlock("cont");
3090   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3091   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3092   // Give hint that we very much don't expect to execute the handler
3093   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3094   llvm::MDBuilder MDHelper(getLLVMContext());
3095   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3096   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3097   EmitBlock(Handlers);
3098 
3099   // Handler functions take an i8* pointing to the (handler-specific) static
3100   // information block, followed by a sequence of intptr_t arguments
3101   // representing operand values.
3102   SmallVector<llvm::Value *, 4> Args;
3103   SmallVector<llvm::Type *, 4> ArgTypes;
3104   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3105     Args.reserve(DynamicArgs.size() + 1);
3106     ArgTypes.reserve(DynamicArgs.size() + 1);
3107 
3108     // Emit handler arguments and create handler function type.
3109     if (!StaticArgs.empty()) {
3110       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3111       auto *InfoPtr =
3112           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3113                                    llvm::GlobalVariable::PrivateLinkage, Info);
3114       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3115       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3116       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3117       ArgTypes.push_back(Int8PtrTy);
3118     }
3119 
3120     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3121       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3122       ArgTypes.push_back(IntPtrTy);
3123     }
3124   }
3125 
3126   llvm::FunctionType *FnType =
3127     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3128 
3129   if (!FatalCond || !RecoverableCond) {
3130     // Simple case: we need to generate a single handler call, either
3131     // fatal, or non-fatal.
3132     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3133                          (FatalCond != nullptr), Cont);
3134   } else {
3135     // Emit two handler calls: first one for set of unrecoverable checks,
3136     // another one for recoverable.
3137     llvm::BasicBlock *NonFatalHandlerBB =
3138         createBasicBlock("non_fatal." + CheckName);
3139     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3140     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3141     EmitBlock(FatalHandlerBB);
3142     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3143                          NonFatalHandlerBB);
3144     EmitBlock(NonFatalHandlerBB);
3145     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3146                          Cont);
3147   }
3148 
3149   EmitBlock(Cont);
3150 }
3151 
3152 void CodeGenFunction::EmitCfiSlowPathCheck(
3153     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3154     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3155   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3156 
3157   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3158   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3159 
3160   llvm::MDBuilder MDHelper(getLLVMContext());
3161   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3162   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3163 
3164   EmitBlock(CheckBB);
3165 
3166   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3167 
3168   llvm::CallInst *CheckCall;
3169   llvm::FunctionCallee SlowPathFn;
3170   if (WithDiag) {
3171     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3172     auto *InfoPtr =
3173         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3174                                  llvm::GlobalVariable::PrivateLinkage, Info);
3175     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3176     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3177 
3178     SlowPathFn = CGM.getModule().getOrInsertFunction(
3179         "__cfi_slowpath_diag",
3180         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3181                                 false));
3182     CheckCall = Builder.CreateCall(
3183         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3184   } else {
3185     SlowPathFn = CGM.getModule().getOrInsertFunction(
3186         "__cfi_slowpath",
3187         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3188     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3189   }
3190 
3191   CGM.setDSOLocal(
3192       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3193   CheckCall->setDoesNotThrow();
3194 
3195   EmitBlock(Cont);
3196 }
3197 
3198 // Emit a stub for __cfi_check function so that the linker knows about this
3199 // symbol in LTO mode.
3200 void CodeGenFunction::EmitCfiCheckStub() {
3201   llvm::Module *M = &CGM.getModule();
3202   auto &Ctx = M->getContext();
3203   llvm::Function *F = llvm::Function::Create(
3204       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3205       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3206   CGM.setDSOLocal(F);
3207   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3208   // FIXME: consider emitting an intrinsic call like
3209   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3210   // which can be lowered in CrossDSOCFI pass to the actual contents of
3211   // __cfi_check. This would allow inlining of __cfi_check calls.
3212   llvm::CallInst::Create(
3213       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3214   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3215 }
3216 
3217 // This function is basically a switch over the CFI failure kind, which is
3218 // extracted from CFICheckFailData (1st function argument). Each case is either
3219 // llvm.trap or a call to one of the two runtime handlers, based on
3220 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3221 // failure kind) traps, but this should really never happen.  CFICheckFailData
3222 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3223 // check kind; in this case __cfi_check_fail traps as well.
3224 void CodeGenFunction::EmitCfiCheckFail() {
3225   SanitizerScope SanScope(this);
3226   FunctionArgList Args;
3227   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3228                             ImplicitParamDecl::Other);
3229   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3230                             ImplicitParamDecl::Other);
3231   Args.push_back(&ArgData);
3232   Args.push_back(&ArgAddr);
3233 
3234   const CGFunctionInfo &FI =
3235     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3236 
3237   llvm::Function *F = llvm::Function::Create(
3238       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3239       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3240 
3241   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3242   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3243   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3244 
3245   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3246                 SourceLocation());
3247 
3248   // This function should not be affected by blacklist. This function does
3249   // not have a source location, but "src:*" would still apply. Revert any
3250   // changes to SanOpts made in StartFunction.
3251   SanOpts = CGM.getLangOpts().Sanitize;
3252 
3253   llvm::Value *Data =
3254       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3255                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3256   llvm::Value *Addr =
3257       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3258                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3259 
3260   // Data == nullptr means the calling module has trap behaviour for this check.
3261   llvm::Value *DataIsNotNullPtr =
3262       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3263   EmitTrapCheck(DataIsNotNullPtr);
3264 
3265   llvm::StructType *SourceLocationTy =
3266       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3267   llvm::StructType *CfiCheckFailDataTy =
3268       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3269 
3270   llvm::Value *V = Builder.CreateConstGEP2_32(
3271       CfiCheckFailDataTy,
3272       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3273       0);
3274   Address CheckKindAddr(V, getIntAlign());
3275   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3276 
3277   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3278       CGM.getLLVMContext(),
3279       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3280   llvm::Value *ValidVtable = Builder.CreateZExt(
3281       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3282                          {Addr, AllVtables}),
3283       IntPtrTy);
3284 
3285   const std::pair<int, SanitizerMask> CheckKinds[] = {
3286       {CFITCK_VCall, SanitizerKind::CFIVCall},
3287       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3288       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3289       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3290       {CFITCK_ICall, SanitizerKind::CFIICall}};
3291 
3292   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3293   for (auto CheckKindMaskPair : CheckKinds) {
3294     int Kind = CheckKindMaskPair.first;
3295     SanitizerMask Mask = CheckKindMaskPair.second;
3296     llvm::Value *Cond =
3297         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3298     if (CGM.getLangOpts().Sanitize.has(Mask))
3299       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3300                 {Data, Addr, ValidVtable});
3301     else
3302       EmitTrapCheck(Cond);
3303   }
3304 
3305   FinishFunction();
3306   // The only reference to this function will be created during LTO link.
3307   // Make sure it survives until then.
3308   CGM.addUsedGlobal(F);
3309 }
3310 
3311 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3312   if (SanOpts.has(SanitizerKind::Unreachable)) {
3313     SanitizerScope SanScope(this);
3314     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3315                              SanitizerKind::Unreachable),
3316               SanitizerHandler::BuiltinUnreachable,
3317               EmitCheckSourceLocation(Loc), None);
3318   }
3319   Builder.CreateUnreachable();
3320 }
3321 
3322 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3323   llvm::BasicBlock *Cont = createBasicBlock("cont");
3324 
3325   // If we're optimizing, collapse all calls to trap down to just one per
3326   // function to save on code size.
3327   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3328     TrapBB = createBasicBlock("trap");
3329     Builder.CreateCondBr(Checked, Cont, TrapBB);
3330     EmitBlock(TrapBB);
3331     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3332     TrapCall->setDoesNotReturn();
3333     TrapCall->setDoesNotThrow();
3334     Builder.CreateUnreachable();
3335   } else {
3336     Builder.CreateCondBr(Checked, Cont, TrapBB);
3337   }
3338 
3339   EmitBlock(Cont);
3340 }
3341 
3342 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3343   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3344 
3345   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3346     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3347                                   CGM.getCodeGenOpts().TrapFuncName);
3348     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3349   }
3350 
3351   return TrapCall;
3352 }
3353 
3354 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3355                                                  LValueBaseInfo *BaseInfo,
3356                                                  TBAAAccessInfo *TBAAInfo) {
3357   assert(E->getType()->isArrayType() &&
3358          "Array to pointer decay must have array source type!");
3359 
3360   // Expressions of array type can't be bitfields or vector elements.
3361   LValue LV = EmitLValue(E);
3362   Address Addr = LV.getAddress(*this);
3363 
3364   // If the array type was an incomplete type, we need to make sure
3365   // the decay ends up being the right type.
3366   llvm::Type *NewTy = ConvertType(E->getType());
3367   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3368 
3369   // Note that VLA pointers are always decayed, so we don't need to do
3370   // anything here.
3371   if (!E->getType()->isVariableArrayType()) {
3372     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3373            "Expected pointer to array");
3374     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3375   }
3376 
3377   // The result of this decay conversion points to an array element within the
3378   // base lvalue. However, since TBAA currently does not support representing
3379   // accesses to elements of member arrays, we conservatively represent accesses
3380   // to the pointee object as if it had no any base lvalue specified.
3381   // TODO: Support TBAA for member arrays.
3382   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3383   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3384   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3385 
3386   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3387 }
3388 
3389 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3390 /// array to pointer, return the array subexpression.
3391 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3392   // If this isn't just an array->pointer decay, bail out.
3393   const auto *CE = dyn_cast<CastExpr>(E);
3394   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3395     return nullptr;
3396 
3397   // If this is a decay from variable width array, bail out.
3398   const Expr *SubExpr = CE->getSubExpr();
3399   if (SubExpr->getType()->isVariableArrayType())
3400     return nullptr;
3401 
3402   return SubExpr;
3403 }
3404 
3405 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3406                                           llvm::Value *ptr,
3407                                           ArrayRef<llvm::Value*> indices,
3408                                           bool inbounds,
3409                                           bool signedIndices,
3410                                           SourceLocation loc,
3411                                     const llvm::Twine &name = "arrayidx") {
3412   if (inbounds) {
3413     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3414                                       CodeGenFunction::NotSubtraction, loc,
3415                                       name);
3416   } else {
3417     return CGF.Builder.CreateGEP(ptr, indices, name);
3418   }
3419 }
3420 
3421 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3422                                       llvm::Value *idx,
3423                                       CharUnits eltSize) {
3424   // If we have a constant index, we can use the exact offset of the
3425   // element we're accessing.
3426   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3427     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3428     return arrayAlign.alignmentAtOffset(offset);
3429 
3430   // Otherwise, use the worst-case alignment for any element.
3431   } else {
3432     return arrayAlign.alignmentOfArrayElement(eltSize);
3433   }
3434 }
3435 
3436 static QualType getFixedSizeElementType(const ASTContext &ctx,
3437                                         const VariableArrayType *vla) {
3438   QualType eltType;
3439   do {
3440     eltType = vla->getElementType();
3441   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3442   return eltType;
3443 }
3444 
3445 /// Given an array base, check whether its member access belongs to a record
3446 /// with preserve_access_index attribute or not.
3447 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3448   if (!ArrayBase || !CGF.getDebugInfo())
3449     return false;
3450 
3451   // Only support base as either a MemberExpr or DeclRefExpr.
3452   // DeclRefExpr to cover cases like:
3453   //    struct s { int a; int b[10]; };
3454   //    struct s *p;
3455   //    p[1].a
3456   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3457   // p->b[5] is a MemberExpr example.
3458   const Expr *E = ArrayBase->IgnoreImpCasts();
3459   if (const auto *ME = dyn_cast<MemberExpr>(E))
3460     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3461 
3462   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3463     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3464     if (!VarDef)
3465       return false;
3466 
3467     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3468     if (!PtrT)
3469       return false;
3470 
3471     const auto *PointeeT = PtrT->getPointeeType()
3472                              ->getUnqualifiedDesugaredType();
3473     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3474       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3475     return false;
3476   }
3477 
3478   return false;
3479 }
3480 
3481 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3482                                      ArrayRef<llvm::Value *> indices,
3483                                      QualType eltType, bool inbounds,
3484                                      bool signedIndices, SourceLocation loc,
3485                                      QualType *arrayType = nullptr,
3486                                      const Expr *Base = nullptr,
3487                                      const llvm::Twine &name = "arrayidx") {
3488   // All the indices except that last must be zero.
3489 #ifndef NDEBUG
3490   for (auto idx : indices.drop_back())
3491     assert(isa<llvm::ConstantInt>(idx) &&
3492            cast<llvm::ConstantInt>(idx)->isZero());
3493 #endif
3494 
3495   // Determine the element size of the statically-sized base.  This is
3496   // the thing that the indices are expressed in terms of.
3497   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3498     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3499   }
3500 
3501   // We can use that to compute the best alignment of the element.
3502   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3503   CharUnits eltAlign =
3504     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3505 
3506   llvm::Value *eltPtr;
3507   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3508   if (!LastIndex ||
3509       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3510     eltPtr = emitArraySubscriptGEP(
3511         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3512         loc, name);
3513   } else {
3514     // Remember the original array subscript for bpf target
3515     unsigned idx = LastIndex->getZExtValue();
3516     llvm::DIType *DbgInfo = nullptr;
3517     if (arrayType)
3518       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3519     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3520                                                         addr.getPointer(),
3521                                                         indices.size() - 1,
3522                                                         idx, DbgInfo);
3523   }
3524 
3525   return Address(eltPtr, eltAlign);
3526 }
3527 
3528 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3529                                                bool Accessed) {
3530   // The index must always be an integer, which is not an aggregate.  Emit it
3531   // in lexical order (this complexity is, sadly, required by C++17).
3532   llvm::Value *IdxPre =
3533       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3534   bool SignedIndices = false;
3535   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3536     auto *Idx = IdxPre;
3537     if (E->getLHS() != E->getIdx()) {
3538       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3539       Idx = EmitScalarExpr(E->getIdx());
3540     }
3541 
3542     QualType IdxTy = E->getIdx()->getType();
3543     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3544     SignedIndices |= IdxSigned;
3545 
3546     if (SanOpts.has(SanitizerKind::ArrayBounds))
3547       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3548 
3549     // Extend or truncate the index type to 32 or 64-bits.
3550     if (Promote && Idx->getType() != IntPtrTy)
3551       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3552 
3553     return Idx;
3554   };
3555   IdxPre = nullptr;
3556 
3557   // If the base is a vector type, then we are forming a vector element lvalue
3558   // with this subscript.
3559   if (E->getBase()->getType()->isVectorType() &&
3560       !isa<ExtVectorElementExpr>(E->getBase())) {
3561     // Emit the vector as an lvalue to get its address.
3562     LValue LHS = EmitLValue(E->getBase());
3563     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3564     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3565     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3566                                  E->getBase()->getType(), LHS.getBaseInfo(),
3567                                  TBAAAccessInfo());
3568   }
3569 
3570   // All the other cases basically behave like simple offsetting.
3571 
3572   // Handle the extvector case we ignored above.
3573   if (isa<ExtVectorElementExpr>(E->getBase())) {
3574     LValue LV = EmitLValue(E->getBase());
3575     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3576     Address Addr = EmitExtVectorElementLValue(LV);
3577 
3578     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3579     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3580                                  SignedIndices, E->getExprLoc());
3581     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3582                           CGM.getTBAAInfoForSubobject(LV, EltType));
3583   }
3584 
3585   LValueBaseInfo EltBaseInfo;
3586   TBAAAccessInfo EltTBAAInfo;
3587   Address Addr = Address::invalid();
3588   if (const VariableArrayType *vla =
3589            getContext().getAsVariableArrayType(E->getType())) {
3590     // The base must be a pointer, which is not an aggregate.  Emit
3591     // it.  It needs to be emitted first in case it's what captures
3592     // the VLA bounds.
3593     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3594     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3595 
3596     // The element count here is the total number of non-VLA elements.
3597     llvm::Value *numElements = getVLASize(vla).NumElts;
3598 
3599     // Effectively, the multiply by the VLA size is part of the GEP.
3600     // GEP indexes are signed, and scaling an index isn't permitted to
3601     // signed-overflow, so we use the same semantics for our explicit
3602     // multiply.  We suppress this if overflow is not undefined behavior.
3603     if (getLangOpts().isSignedOverflowDefined()) {
3604       Idx = Builder.CreateMul(Idx, numElements);
3605     } else {
3606       Idx = Builder.CreateNSWMul(Idx, numElements);
3607     }
3608 
3609     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3610                                  !getLangOpts().isSignedOverflowDefined(),
3611                                  SignedIndices, E->getExprLoc());
3612 
3613   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3614     // Indexing over an interface, as in "NSString *P; P[4];"
3615 
3616     // Emit the base pointer.
3617     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3618     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3619 
3620     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3621     llvm::Value *InterfaceSizeVal =
3622         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3623 
3624     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3625 
3626     // We don't necessarily build correct LLVM struct types for ObjC
3627     // interfaces, so we can't rely on GEP to do this scaling
3628     // correctly, so we need to cast to i8*.  FIXME: is this actually
3629     // true?  A lot of other things in the fragile ABI would break...
3630     llvm::Type *OrigBaseTy = Addr.getType();
3631     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3632 
3633     // Do the GEP.
3634     CharUnits EltAlign =
3635       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3636     llvm::Value *EltPtr =
3637         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3638                               SignedIndices, E->getExprLoc());
3639     Addr = Address(EltPtr, EltAlign);
3640 
3641     // Cast back.
3642     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3643   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3644     // If this is A[i] where A is an array, the frontend will have decayed the
3645     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3646     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3647     // "gep x, i" here.  Emit one "gep A, 0, i".
3648     assert(Array->getType()->isArrayType() &&
3649            "Array to pointer decay must have array source type!");
3650     LValue ArrayLV;
3651     // For simple multidimensional array indexing, set the 'accessed' flag for
3652     // better bounds-checking of the base expression.
3653     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3654       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3655     else
3656       ArrayLV = EmitLValue(Array);
3657     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3658 
3659     // Propagate the alignment from the array itself to the result.
3660     QualType arrayType = Array->getType();
3661     Addr = emitArraySubscriptGEP(
3662         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3663         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3664         E->getExprLoc(), &arrayType, E->getBase());
3665     EltBaseInfo = ArrayLV.getBaseInfo();
3666     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3667   } else {
3668     // The base must be a pointer; emit it with an estimate of its alignment.
3669     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3670     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3671     QualType ptrType = E->getBase()->getType();
3672     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3673                                  !getLangOpts().isSignedOverflowDefined(),
3674                                  SignedIndices, E->getExprLoc(), &ptrType,
3675                                  E->getBase());
3676   }
3677 
3678   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3679 
3680   if (getLangOpts().ObjC &&
3681       getLangOpts().getGC() != LangOptions::NonGC) {
3682     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3683     setObjCGCLValueClass(getContext(), E, LV);
3684   }
3685   return LV;
3686 }
3687 
3688 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3689                                        LValueBaseInfo &BaseInfo,
3690                                        TBAAAccessInfo &TBAAInfo,
3691                                        QualType BaseTy, QualType ElTy,
3692                                        bool IsLowerBound) {
3693   LValue BaseLVal;
3694   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3695     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3696     if (BaseTy->isArrayType()) {
3697       Address Addr = BaseLVal.getAddress(CGF);
3698       BaseInfo = BaseLVal.getBaseInfo();
3699 
3700       // If the array type was an incomplete type, we need to make sure
3701       // the decay ends up being the right type.
3702       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3703       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3704 
3705       // Note that VLA pointers are always decayed, so we don't need to do
3706       // anything here.
3707       if (!BaseTy->isVariableArrayType()) {
3708         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3709                "Expected pointer to array");
3710         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3711       }
3712 
3713       return CGF.Builder.CreateElementBitCast(Addr,
3714                                               CGF.ConvertTypeForMem(ElTy));
3715     }
3716     LValueBaseInfo TypeBaseInfo;
3717     TBAAAccessInfo TypeTBAAInfo;
3718     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3719                                                   &TypeTBAAInfo);
3720     BaseInfo.mergeForCast(TypeBaseInfo);
3721     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3722     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3723   }
3724   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3725 }
3726 
3727 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3728                                                 bool IsLowerBound) {
3729   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3730   QualType ResultExprTy;
3731   if (auto *AT = getContext().getAsArrayType(BaseTy))
3732     ResultExprTy = AT->getElementType();
3733   else
3734     ResultExprTy = BaseTy->getPointeeType();
3735   llvm::Value *Idx = nullptr;
3736   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3737     // Requesting lower bound or upper bound, but without provided length and
3738     // without ':' symbol for the default length -> length = 1.
3739     // Idx = LowerBound ?: 0;
3740     if (auto *LowerBound = E->getLowerBound()) {
3741       Idx = Builder.CreateIntCast(
3742           EmitScalarExpr(LowerBound), IntPtrTy,
3743           LowerBound->getType()->hasSignedIntegerRepresentation());
3744     } else
3745       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3746   } else {
3747     // Try to emit length or lower bound as constant. If this is possible, 1
3748     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3749     // IR (LB + Len) - 1.
3750     auto &C = CGM.getContext();
3751     auto *Length = E->getLength();
3752     llvm::APSInt ConstLength;
3753     if (Length) {
3754       // Idx = LowerBound + Length - 1;
3755       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3756         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3757         Length = nullptr;
3758       }
3759       auto *LowerBound = E->getLowerBound();
3760       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3761       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3762         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3763         LowerBound = nullptr;
3764       }
3765       if (!Length)
3766         --ConstLength;
3767       else if (!LowerBound)
3768         --ConstLowerBound;
3769 
3770       if (Length || LowerBound) {
3771         auto *LowerBoundVal =
3772             LowerBound
3773                 ? Builder.CreateIntCast(
3774                       EmitScalarExpr(LowerBound), IntPtrTy,
3775                       LowerBound->getType()->hasSignedIntegerRepresentation())
3776                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3777         auto *LengthVal =
3778             Length
3779                 ? Builder.CreateIntCast(
3780                       EmitScalarExpr(Length), IntPtrTy,
3781                       Length->getType()->hasSignedIntegerRepresentation())
3782                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3783         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3784                                 /*HasNUW=*/false,
3785                                 !getLangOpts().isSignedOverflowDefined());
3786         if (Length && LowerBound) {
3787           Idx = Builder.CreateSub(
3788               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3789               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3790         }
3791       } else
3792         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3793     } else {
3794       // Idx = ArraySize - 1;
3795       QualType ArrayTy = BaseTy->isPointerType()
3796                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3797                              : BaseTy;
3798       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3799         Length = VAT->getSizeExpr();
3800         if (Length->isIntegerConstantExpr(ConstLength, C))
3801           Length = nullptr;
3802       } else {
3803         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3804         ConstLength = CAT->getSize();
3805       }
3806       if (Length) {
3807         auto *LengthVal = Builder.CreateIntCast(
3808             EmitScalarExpr(Length), IntPtrTy,
3809             Length->getType()->hasSignedIntegerRepresentation());
3810         Idx = Builder.CreateSub(
3811             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3812             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3813       } else {
3814         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3815         --ConstLength;
3816         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3817       }
3818     }
3819   }
3820   assert(Idx);
3821 
3822   Address EltPtr = Address::invalid();
3823   LValueBaseInfo BaseInfo;
3824   TBAAAccessInfo TBAAInfo;
3825   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3826     // The base must be a pointer, which is not an aggregate.  Emit
3827     // it.  It needs to be emitted first in case it's what captures
3828     // the VLA bounds.
3829     Address Base =
3830         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3831                                 BaseTy, VLA->getElementType(), IsLowerBound);
3832     // The element count here is the total number of non-VLA elements.
3833     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3834 
3835     // Effectively, the multiply by the VLA size is part of the GEP.
3836     // GEP indexes are signed, and scaling an index isn't permitted to
3837     // signed-overflow, so we use the same semantics for our explicit
3838     // multiply.  We suppress this if overflow is not undefined behavior.
3839     if (getLangOpts().isSignedOverflowDefined())
3840       Idx = Builder.CreateMul(Idx, NumElements);
3841     else
3842       Idx = Builder.CreateNSWMul(Idx, NumElements);
3843     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3844                                    !getLangOpts().isSignedOverflowDefined(),
3845                                    /*signedIndices=*/false, E->getExprLoc());
3846   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3847     // If this is A[i] where A is an array, the frontend will have decayed the
3848     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3849     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3850     // "gep x, i" here.  Emit one "gep A, 0, i".
3851     assert(Array->getType()->isArrayType() &&
3852            "Array to pointer decay must have array source type!");
3853     LValue ArrayLV;
3854     // For simple multidimensional array indexing, set the 'accessed' flag for
3855     // better bounds-checking of the base expression.
3856     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3857       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3858     else
3859       ArrayLV = EmitLValue(Array);
3860 
3861     // Propagate the alignment from the array itself to the result.
3862     EltPtr = emitArraySubscriptGEP(
3863         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3864         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3865         /*signedIndices=*/false, E->getExprLoc());
3866     BaseInfo = ArrayLV.getBaseInfo();
3867     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3868   } else {
3869     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3870                                            TBAAInfo, BaseTy, ResultExprTy,
3871                                            IsLowerBound);
3872     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3873                                    !getLangOpts().isSignedOverflowDefined(),
3874                                    /*signedIndices=*/false, E->getExprLoc());
3875   }
3876 
3877   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3878 }
3879 
3880 LValue CodeGenFunction::
3881 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3882   // Emit the base vector as an l-value.
3883   LValue Base;
3884 
3885   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3886   if (E->isArrow()) {
3887     // If it is a pointer to a vector, emit the address and form an lvalue with
3888     // it.
3889     LValueBaseInfo BaseInfo;
3890     TBAAAccessInfo TBAAInfo;
3891     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3892     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3893     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3894     Base.getQuals().removeObjCGCAttr();
3895   } else if (E->getBase()->isGLValue()) {
3896     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3897     // emit the base as an lvalue.
3898     assert(E->getBase()->getType()->isVectorType());
3899     Base = EmitLValue(E->getBase());
3900   } else {
3901     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3902     assert(E->getBase()->getType()->isVectorType() &&
3903            "Result must be a vector");
3904     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3905 
3906     // Store the vector to memory (because LValue wants an address).
3907     Address VecMem = CreateMemTemp(E->getBase()->getType());
3908     Builder.CreateStore(Vec, VecMem);
3909     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3910                           AlignmentSource::Decl);
3911   }
3912 
3913   QualType type =
3914     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3915 
3916   // Encode the element access list into a vector of unsigned indices.
3917   SmallVector<uint32_t, 4> Indices;
3918   E->getEncodedElementAccess(Indices);
3919 
3920   if (Base.isSimple()) {
3921     llvm::Constant *CV =
3922         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3923     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3924                                     Base.getBaseInfo(), TBAAAccessInfo());
3925   }
3926   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3927 
3928   llvm::Constant *BaseElts = Base.getExtVectorElts();
3929   SmallVector<llvm::Constant *, 4> CElts;
3930 
3931   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3932     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3933   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3934   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3935                                   Base.getBaseInfo(), TBAAAccessInfo());
3936 }
3937 
3938 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3939   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3940     EmitIgnoredExpr(E->getBase());
3941     return EmitDeclRefLValue(DRE);
3942   }
3943 
3944   Expr *BaseExpr = E->getBase();
3945   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3946   LValue BaseLV;
3947   if (E->isArrow()) {
3948     LValueBaseInfo BaseInfo;
3949     TBAAAccessInfo TBAAInfo;
3950     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3951     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3952     SanitizerSet SkippedChecks;
3953     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3954     if (IsBaseCXXThis)
3955       SkippedChecks.set(SanitizerKind::Alignment, true);
3956     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3957       SkippedChecks.set(SanitizerKind::Null, true);
3958     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3959                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3960     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3961   } else
3962     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3963 
3964   NamedDecl *ND = E->getMemberDecl();
3965   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3966     LValue LV = EmitLValueForField(BaseLV, Field);
3967     setObjCGCLValueClass(getContext(), E, LV);
3968     if (getLangOpts().OpenMP) {
3969       // If the member was explicitly marked as nontemporal, mark it as
3970       // nontemporal. If the base lvalue is marked as nontemporal, mark access
3971       // to children as nontemporal too.
3972       if ((IsWrappedCXXThis(BaseExpr) &&
3973            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
3974           BaseLV.isNontemporal())
3975         LV.setNontemporal(/*Value=*/true);
3976     }
3977     return LV;
3978   }
3979 
3980   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3981     return EmitFunctionDeclLValue(*this, E, FD);
3982 
3983   llvm_unreachable("Unhandled member declaration!");
3984 }
3985 
3986 /// Given that we are currently emitting a lambda, emit an l-value for
3987 /// one of its members.
3988 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3989   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3990   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3991   QualType LambdaTagType =
3992     getContext().getTagDeclType(Field->getParent());
3993   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3994   return EmitLValueForField(LambdaLV, Field);
3995 }
3996 
3997 /// Get the field index in the debug info. The debug info structure/union
3998 /// will ignore the unnamed bitfields.
3999 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4000                                              unsigned FieldIndex) {
4001   unsigned I = 0, Skipped = 0;
4002 
4003   for (auto F : Rec->getDefinition()->fields()) {
4004     if (I == FieldIndex)
4005       break;
4006     if (F->isUnnamedBitfield())
4007       Skipped++;
4008     I++;
4009   }
4010 
4011   return FieldIndex - Skipped;
4012 }
4013 
4014 /// Get the address of a zero-sized field within a record. The resulting
4015 /// address doesn't necessarily have the right type.
4016 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4017                                        const FieldDecl *Field) {
4018   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4019       CGF.getContext().getFieldOffset(Field));
4020   if (Offset.isZero())
4021     return Base;
4022   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4023   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4024 }
4025 
4026 /// Drill down to the storage of a field without walking into
4027 /// reference types.
4028 ///
4029 /// The resulting address doesn't necessarily have the right type.
4030 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4031                                       const FieldDecl *field) {
4032   if (field->isZeroSize(CGF.getContext()))
4033     return emitAddrOfZeroSizeField(CGF, base, field);
4034 
4035   const RecordDecl *rec = field->getParent();
4036 
4037   unsigned idx =
4038     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4039 
4040   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4041 }
4042 
4043 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4044                                         Address addr, const FieldDecl *field) {
4045   const RecordDecl *rec = field->getParent();
4046   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4047       base.getType(), rec->getLocation());
4048 
4049   unsigned idx =
4050       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4051 
4052   return CGF.Builder.CreatePreserveStructAccessIndex(
4053       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4054 }
4055 
4056 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4057   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4058   if (!RD)
4059     return false;
4060 
4061   if (RD->isDynamicClass())
4062     return true;
4063 
4064   for (const auto &Base : RD->bases())
4065     if (hasAnyVptr(Base.getType(), Context))
4066       return true;
4067 
4068   for (const FieldDecl *Field : RD->fields())
4069     if (hasAnyVptr(Field->getType(), Context))
4070       return true;
4071 
4072   return false;
4073 }
4074 
4075 LValue CodeGenFunction::EmitLValueForField(LValue base,
4076                                            const FieldDecl *field) {
4077   LValueBaseInfo BaseInfo = base.getBaseInfo();
4078 
4079   if (field->isBitField()) {
4080     const CGRecordLayout &RL =
4081       CGM.getTypes().getCGRecordLayout(field->getParent());
4082     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4083     Address Addr = base.getAddress(*this);
4084     unsigned Idx = RL.getLLVMFieldNo(field);
4085     const RecordDecl *rec = field->getParent();
4086     if (!IsInPreservedAIRegion &&
4087         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4088       if (Idx != 0)
4089         // For structs, we GEP to the field that the record layout suggests.
4090         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4091     } else {
4092       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4093           getContext().getRecordType(rec), rec->getLocation());
4094       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4095           getDebugInfoFIndex(rec, field->getFieldIndex()),
4096           DbgInfo);
4097     }
4098 
4099     // Get the access type.
4100     llvm::Type *FieldIntTy =
4101       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4102     if (Addr.getElementType() != FieldIntTy)
4103       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4104 
4105     QualType fieldType =
4106       field->getType().withCVRQualifiers(base.getVRQualifiers());
4107     // TODO: Support TBAA for bit fields.
4108     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4109     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4110                                 TBAAAccessInfo());
4111   }
4112 
4113   // Fields of may-alias structures are may-alias themselves.
4114   // FIXME: this should get propagated down through anonymous structs
4115   // and unions.
4116   QualType FieldType = field->getType();
4117   const RecordDecl *rec = field->getParent();
4118   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4119   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4120   TBAAAccessInfo FieldTBAAInfo;
4121   if (base.getTBAAInfo().isMayAlias() ||
4122           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4123     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4124   } else if (rec->isUnion()) {
4125     // TODO: Support TBAA for unions.
4126     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4127   } else {
4128     // If no base type been assigned for the base access, then try to generate
4129     // one for this base lvalue.
4130     FieldTBAAInfo = base.getTBAAInfo();
4131     if (!FieldTBAAInfo.BaseType) {
4132         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4133         assert(!FieldTBAAInfo.Offset &&
4134                "Nonzero offset for an access with no base type!");
4135     }
4136 
4137     // Adjust offset to be relative to the base type.
4138     const ASTRecordLayout &Layout =
4139         getContext().getASTRecordLayout(field->getParent());
4140     unsigned CharWidth = getContext().getCharWidth();
4141     if (FieldTBAAInfo.BaseType)
4142       FieldTBAAInfo.Offset +=
4143           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4144 
4145     // Update the final access type and size.
4146     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4147     FieldTBAAInfo.Size =
4148         getContext().getTypeSizeInChars(FieldType).getQuantity();
4149   }
4150 
4151   Address addr = base.getAddress(*this);
4152   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4153     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4154         ClassDef->isDynamicClass()) {
4155       // Getting to any field of dynamic object requires stripping dynamic
4156       // information provided by invariant.group.  This is because accessing
4157       // fields may leak the real address of dynamic object, which could result
4158       // in miscompilation when leaked pointer would be compared.
4159       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4160       addr = Address(stripped, addr.getAlignment());
4161     }
4162   }
4163 
4164   unsigned RecordCVR = base.getVRQualifiers();
4165   if (rec->isUnion()) {
4166     // For unions, there is no pointer adjustment.
4167     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4168         hasAnyVptr(FieldType, getContext()))
4169       // Because unions can easily skip invariant.barriers, we need to add
4170       // a barrier every time CXXRecord field with vptr is referenced.
4171       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4172                      addr.getAlignment());
4173 
4174     if (IsInPreservedAIRegion ||
4175         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4176       // Remember the original union field index
4177       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4178           rec->getLocation());
4179       addr = Address(
4180           Builder.CreatePreserveUnionAccessIndex(
4181               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4182           addr.getAlignment());
4183     }
4184 
4185     if (FieldType->isReferenceType())
4186       addr = Builder.CreateElementBitCast(
4187           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4188   } else {
4189     if (!IsInPreservedAIRegion &&
4190         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4191       // For structs, we GEP to the field that the record layout suggests.
4192       addr = emitAddrOfFieldStorage(*this, addr, field);
4193     else
4194       // Remember the original struct field index
4195       addr = emitPreserveStructAccess(*this, base, addr, field);
4196   }
4197 
4198   // If this is a reference field, load the reference right now.
4199   if (FieldType->isReferenceType()) {
4200     LValue RefLVal =
4201         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4202     if (RecordCVR & Qualifiers::Volatile)
4203       RefLVal.getQuals().addVolatile();
4204     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4205 
4206     // Qualifiers on the struct don't apply to the referencee.
4207     RecordCVR = 0;
4208     FieldType = FieldType->getPointeeType();
4209   }
4210 
4211   // Make sure that the address is pointing to the right type.  This is critical
4212   // for both unions and structs.  A union needs a bitcast, a struct element
4213   // will need a bitcast if the LLVM type laid out doesn't match the desired
4214   // type.
4215   addr = Builder.CreateElementBitCast(
4216       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4217 
4218   if (field->hasAttr<AnnotateAttr>())
4219     addr = EmitFieldAnnotations(field, addr);
4220 
4221   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4222   LV.getQuals().addCVRQualifiers(RecordCVR);
4223 
4224   // __weak attribute on a field is ignored.
4225   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4226     LV.getQuals().removeObjCGCAttr();
4227 
4228   return LV;
4229 }
4230 
4231 LValue
4232 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4233                                                   const FieldDecl *Field) {
4234   QualType FieldType = Field->getType();
4235 
4236   if (!FieldType->isReferenceType())
4237     return EmitLValueForField(Base, Field);
4238 
4239   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4240 
4241   // Make sure that the address is pointing to the right type.
4242   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4243   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4244 
4245   // TODO: Generate TBAA information that describes this access as a structure
4246   // member access and not just an access to an object of the field's type. This
4247   // should be similar to what we do in EmitLValueForField().
4248   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4249   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4250   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4251   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4252                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4253 }
4254 
4255 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4256   if (E->isFileScope()) {
4257     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4258     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4259   }
4260   if (E->getType()->isVariablyModifiedType())
4261     // make sure to emit the VLA size.
4262     EmitVariablyModifiedType(E->getType());
4263 
4264   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4265   const Expr *InitExpr = E->getInitializer();
4266   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4267 
4268   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4269                    /*Init*/ true);
4270 
4271   // Block-scope compound literals are destroyed at the end of the enclosing
4272   // scope in C.
4273   if (!getLangOpts().CPlusPlus)
4274     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4275       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4276                                   E->getType(), getDestroyer(DtorKind),
4277                                   DtorKind & EHCleanup);
4278 
4279   return Result;
4280 }
4281 
4282 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4283   if (!E->isGLValue())
4284     // Initializing an aggregate temporary in C++11: T{...}.
4285     return EmitAggExprToLValue(E);
4286 
4287   // An lvalue initializer list must be initializing a reference.
4288   assert(E->isTransparent() && "non-transparent glvalue init list");
4289   return EmitLValue(E->getInit(0));
4290 }
4291 
4292 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4293 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4294 /// LValue is returned and the current block has been terminated.
4295 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4296                                                     const Expr *Operand) {
4297   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4298     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4299     return None;
4300   }
4301 
4302   return CGF.EmitLValue(Operand);
4303 }
4304 
4305 LValue CodeGenFunction::
4306 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4307   if (!expr->isGLValue()) {
4308     // ?: here should be an aggregate.
4309     assert(hasAggregateEvaluationKind(expr->getType()) &&
4310            "Unexpected conditional operator!");
4311     return EmitAggExprToLValue(expr);
4312   }
4313 
4314   OpaqueValueMapping binding(*this, expr);
4315 
4316   const Expr *condExpr = expr->getCond();
4317   bool CondExprBool;
4318   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4319     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4320     if (!CondExprBool) std::swap(live, dead);
4321 
4322     if (!ContainsLabel(dead)) {
4323       // If the true case is live, we need to track its region.
4324       if (CondExprBool)
4325         incrementProfileCounter(expr);
4326       return EmitLValue(live);
4327     }
4328   }
4329 
4330   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4331   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4332   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4333 
4334   ConditionalEvaluation eval(*this);
4335   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4336 
4337   // Any temporaries created here are conditional.
4338   EmitBlock(lhsBlock);
4339   incrementProfileCounter(expr);
4340   eval.begin(*this);
4341   Optional<LValue> lhs =
4342       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4343   eval.end(*this);
4344 
4345   if (lhs && !lhs->isSimple())
4346     return EmitUnsupportedLValue(expr, "conditional operator");
4347 
4348   lhsBlock = Builder.GetInsertBlock();
4349   if (lhs)
4350     Builder.CreateBr(contBlock);
4351 
4352   // Any temporaries created here are conditional.
4353   EmitBlock(rhsBlock);
4354   eval.begin(*this);
4355   Optional<LValue> rhs =
4356       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4357   eval.end(*this);
4358   if (rhs && !rhs->isSimple())
4359     return EmitUnsupportedLValue(expr, "conditional operator");
4360   rhsBlock = Builder.GetInsertBlock();
4361 
4362   EmitBlock(contBlock);
4363 
4364   if (lhs && rhs) {
4365     llvm::PHINode *phi =
4366         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4367     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4368     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4369     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4370     AlignmentSource alignSource =
4371       std::max(lhs->getBaseInfo().getAlignmentSource(),
4372                rhs->getBaseInfo().getAlignmentSource());
4373     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4374         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4375     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4376                           TBAAInfo);
4377   } else {
4378     assert((lhs || rhs) &&
4379            "both operands of glvalue conditional are throw-expressions?");
4380     return lhs ? *lhs : *rhs;
4381   }
4382 }
4383 
4384 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4385 /// type. If the cast is to a reference, we can have the usual lvalue result,
4386 /// otherwise if a cast is needed by the code generator in an lvalue context,
4387 /// then it must mean that we need the address of an aggregate in order to
4388 /// access one of its members.  This can happen for all the reasons that casts
4389 /// are permitted with aggregate result, including noop aggregate casts, and
4390 /// cast from scalar to union.
4391 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4392   switch (E->getCastKind()) {
4393   case CK_ToVoid:
4394   case CK_BitCast:
4395   case CK_LValueToRValueBitCast:
4396   case CK_ArrayToPointerDecay:
4397   case CK_FunctionToPointerDecay:
4398   case CK_NullToMemberPointer:
4399   case CK_NullToPointer:
4400   case CK_IntegralToPointer:
4401   case CK_PointerToIntegral:
4402   case CK_PointerToBoolean:
4403   case CK_VectorSplat:
4404   case CK_IntegralCast:
4405   case CK_BooleanToSignedIntegral:
4406   case CK_IntegralToBoolean:
4407   case CK_IntegralToFloating:
4408   case CK_FloatingToIntegral:
4409   case CK_FloatingToBoolean:
4410   case CK_FloatingCast:
4411   case CK_FloatingRealToComplex:
4412   case CK_FloatingComplexToReal:
4413   case CK_FloatingComplexToBoolean:
4414   case CK_FloatingComplexCast:
4415   case CK_FloatingComplexToIntegralComplex:
4416   case CK_IntegralRealToComplex:
4417   case CK_IntegralComplexToReal:
4418   case CK_IntegralComplexToBoolean:
4419   case CK_IntegralComplexCast:
4420   case CK_IntegralComplexToFloatingComplex:
4421   case CK_DerivedToBaseMemberPointer:
4422   case CK_BaseToDerivedMemberPointer:
4423   case CK_MemberPointerToBoolean:
4424   case CK_ReinterpretMemberPointer:
4425   case CK_AnyPointerToBlockPointerCast:
4426   case CK_ARCProduceObject:
4427   case CK_ARCConsumeObject:
4428   case CK_ARCReclaimReturnedObject:
4429   case CK_ARCExtendBlockObject:
4430   case CK_CopyAndAutoreleaseBlockObject:
4431   case CK_IntToOCLSampler:
4432   case CK_FixedPointCast:
4433   case CK_FixedPointToBoolean:
4434   case CK_FixedPointToIntegral:
4435   case CK_IntegralToFixedPoint:
4436     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4437 
4438   case CK_Dependent:
4439     llvm_unreachable("dependent cast kind in IR gen!");
4440 
4441   case CK_BuiltinFnToFnPtr:
4442     llvm_unreachable("builtin functions are handled elsewhere");
4443 
4444   // These are never l-values; just use the aggregate emission code.
4445   case CK_NonAtomicToAtomic:
4446   case CK_AtomicToNonAtomic:
4447     return EmitAggExprToLValue(E);
4448 
4449   case CK_Dynamic: {
4450     LValue LV = EmitLValue(E->getSubExpr());
4451     Address V = LV.getAddress(*this);
4452     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4453     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4454   }
4455 
4456   case CK_ConstructorConversion:
4457   case CK_UserDefinedConversion:
4458   case CK_CPointerToObjCPointerCast:
4459   case CK_BlockPointerToObjCPointerCast:
4460   case CK_NoOp:
4461   case CK_LValueToRValue:
4462     return EmitLValue(E->getSubExpr());
4463 
4464   case CK_UncheckedDerivedToBase:
4465   case CK_DerivedToBase: {
4466     const auto *DerivedClassTy =
4467         E->getSubExpr()->getType()->castAs<RecordType>();
4468     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4469 
4470     LValue LV = EmitLValue(E->getSubExpr());
4471     Address This = LV.getAddress(*this);
4472 
4473     // Perform the derived-to-base conversion
4474     Address Base = GetAddressOfBaseClass(
4475         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4476         /*NullCheckValue=*/false, E->getExprLoc());
4477 
4478     // TODO: Support accesses to members of base classes in TBAA. For now, we
4479     // conservatively pretend that the complete object is of the base class
4480     // type.
4481     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4482                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4483   }
4484   case CK_ToUnion:
4485     return EmitAggExprToLValue(E);
4486   case CK_BaseToDerived: {
4487     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4488     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4489 
4490     LValue LV = EmitLValue(E->getSubExpr());
4491 
4492     // Perform the base-to-derived conversion
4493     Address Derived = GetAddressOfDerivedClass(
4494         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4495         /*NullCheckValue=*/false);
4496 
4497     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4498     // performed and the object is not of the derived type.
4499     if (sanitizePerformTypeCheck())
4500       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4501                     Derived.getPointer(), E->getType());
4502 
4503     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4504       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4505                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4506                                 E->getBeginLoc());
4507 
4508     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4509                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4510   }
4511   case CK_LValueBitCast: {
4512     // This must be a reinterpret_cast (or c-style equivalent).
4513     const auto *CE = cast<ExplicitCastExpr>(E);
4514 
4515     CGM.EmitExplicitCastExprType(CE, this);
4516     LValue LV = EmitLValue(E->getSubExpr());
4517     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4518                                       ConvertType(CE->getTypeAsWritten()));
4519 
4520     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4521       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4522                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4523                                 E->getBeginLoc());
4524 
4525     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4526                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4527   }
4528   case CK_AddressSpaceConversion: {
4529     LValue LV = EmitLValue(E->getSubExpr());
4530     QualType DestTy = getContext().getPointerType(E->getType());
4531     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4532         *this, LV.getPointer(*this),
4533         E->getSubExpr()->getType().getAddressSpace(),
4534         E->getType().getAddressSpace(), ConvertType(DestTy));
4535     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4536                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4537   }
4538   case CK_ObjCObjectLValueCast: {
4539     LValue LV = EmitLValue(E->getSubExpr());
4540     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4541                                              ConvertType(E->getType()));
4542     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4543                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4544   }
4545   case CK_ZeroToOCLOpaqueType:
4546     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4547   }
4548 
4549   llvm_unreachable("Unhandled lvalue cast kind?");
4550 }
4551 
4552 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4553   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4554   return getOrCreateOpaqueLValueMapping(e);
4555 }
4556 
4557 LValue
4558 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4559   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4560 
4561   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4562       it = OpaqueLValues.find(e);
4563 
4564   if (it != OpaqueLValues.end())
4565     return it->second;
4566 
4567   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4568   return EmitLValue(e->getSourceExpr());
4569 }
4570 
4571 RValue
4572 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4573   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4574 
4575   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4576       it = OpaqueRValues.find(e);
4577 
4578   if (it != OpaqueRValues.end())
4579     return it->second;
4580 
4581   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4582   return EmitAnyExpr(e->getSourceExpr());
4583 }
4584 
4585 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4586                                            const FieldDecl *FD,
4587                                            SourceLocation Loc) {
4588   QualType FT = FD->getType();
4589   LValue FieldLV = EmitLValueForField(LV, FD);
4590   switch (getEvaluationKind(FT)) {
4591   case TEK_Complex:
4592     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4593   case TEK_Aggregate:
4594     return FieldLV.asAggregateRValue(*this);
4595   case TEK_Scalar:
4596     // This routine is used to load fields one-by-one to perform a copy, so
4597     // don't load reference fields.
4598     if (FD->getType()->isReferenceType())
4599       return RValue::get(FieldLV.getPointer(*this));
4600     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4601     // primitive load.
4602     if (FieldLV.isBitField())
4603       return EmitLoadOfLValue(FieldLV, Loc);
4604     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4605   }
4606   llvm_unreachable("bad evaluation kind");
4607 }
4608 
4609 //===--------------------------------------------------------------------===//
4610 //                             Expression Emission
4611 //===--------------------------------------------------------------------===//
4612 
4613 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4614                                      ReturnValueSlot ReturnValue) {
4615   // Builtins never have block type.
4616   if (E->getCallee()->getType()->isBlockPointerType())
4617     return EmitBlockCallExpr(E, ReturnValue);
4618 
4619   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4620     return EmitCXXMemberCallExpr(CE, ReturnValue);
4621 
4622   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4623     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4624 
4625   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4626     if (const CXXMethodDecl *MD =
4627           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4628       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4629 
4630   CGCallee callee = EmitCallee(E->getCallee());
4631 
4632   if (callee.isBuiltin()) {
4633     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4634                            E, ReturnValue);
4635   }
4636 
4637   if (callee.isPseudoDestructor()) {
4638     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4639   }
4640 
4641   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4642 }
4643 
4644 /// Emit a CallExpr without considering whether it might be a subclass.
4645 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4646                                            ReturnValueSlot ReturnValue) {
4647   CGCallee Callee = EmitCallee(E->getCallee());
4648   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4649 }
4650 
4651 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4652   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4653 
4654   if (auto builtinID = FD->getBuiltinID()) {
4655     // Replaceable builtin provide their own implementation of a builtin. Unless
4656     // we are in the builtin implementation itself, don't call the actual
4657     // builtin. If we are in the builtin implementation, avoid trivial infinite
4658     // recursion.
4659     if (!FD->isInlineBuiltinDeclaration() ||
4660         CGF.CurFn->getName() == FD->getName())
4661       return CGCallee::forBuiltin(builtinID, FD);
4662   }
4663 
4664   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4665   return CGCallee::forDirect(calleePtr, GD);
4666 }
4667 
4668 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4669   E = E->IgnoreParens();
4670 
4671   // Look through function-to-pointer decay.
4672   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4673     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4674         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4675       return EmitCallee(ICE->getSubExpr());
4676     }
4677 
4678   // Resolve direct calls.
4679   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4680     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4681       return EmitDirectCallee(*this, CGM.getGlobalDecl(FD));
4682     }
4683   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4684     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4685       EmitIgnoredExpr(ME->getBase());
4686       return EmitDirectCallee(*this, CGM.getGlobalDecl(FD));
4687     }
4688 
4689   // Look through template substitutions.
4690   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4691     return EmitCallee(NTTP->getReplacement());
4692 
4693   // Treat pseudo-destructor calls differently.
4694   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4695     return CGCallee::forPseudoDestructor(PDE);
4696   }
4697 
4698   // Otherwise, we have an indirect reference.
4699   llvm::Value *calleePtr;
4700   QualType functionType;
4701   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4702     calleePtr = EmitScalarExpr(E);
4703     functionType = ptrType->getPointeeType();
4704   } else {
4705     functionType = E->getType();
4706     calleePtr = EmitLValue(E).getPointer(*this);
4707   }
4708   assert(functionType->isFunctionType());
4709 
4710   GlobalDecl GD;
4711   if (const auto *VD =
4712           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4713     GD = GlobalDecl(VD);
4714 
4715   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4716   CGCallee callee(calleeInfo, calleePtr);
4717   return callee;
4718 }
4719 
4720 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4721   // Comma expressions just emit their LHS then their RHS as an l-value.
4722   if (E->getOpcode() == BO_Comma) {
4723     EmitIgnoredExpr(E->getLHS());
4724     EnsureInsertPoint();
4725     return EmitLValue(E->getRHS());
4726   }
4727 
4728   if (E->getOpcode() == BO_PtrMemD ||
4729       E->getOpcode() == BO_PtrMemI)
4730     return EmitPointerToDataMemberBinaryExpr(E);
4731 
4732   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4733 
4734   // Note that in all of these cases, __block variables need the RHS
4735   // evaluated first just in case the variable gets moved by the RHS.
4736 
4737   switch (getEvaluationKind(E->getType())) {
4738   case TEK_Scalar: {
4739     switch (E->getLHS()->getType().getObjCLifetime()) {
4740     case Qualifiers::OCL_Strong:
4741       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4742 
4743     case Qualifiers::OCL_Autoreleasing:
4744       return EmitARCStoreAutoreleasing(E).first;
4745 
4746     // No reason to do any of these differently.
4747     case Qualifiers::OCL_None:
4748     case Qualifiers::OCL_ExplicitNone:
4749     case Qualifiers::OCL_Weak:
4750       break;
4751     }
4752 
4753     RValue RV = EmitAnyExpr(E->getRHS());
4754     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4755     if (RV.isScalar())
4756       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4757     EmitStoreThroughLValue(RV, LV);
4758     if (getLangOpts().OpenMP)
4759       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4760                                                                 E->getLHS());
4761     return LV;
4762   }
4763 
4764   case TEK_Complex:
4765     return EmitComplexAssignmentLValue(E);
4766 
4767   case TEK_Aggregate:
4768     return EmitAggExprToLValue(E);
4769   }
4770   llvm_unreachable("bad evaluation kind");
4771 }
4772 
4773 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4774   RValue RV = EmitCallExpr(E);
4775 
4776   if (!RV.isScalar())
4777     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4778                           AlignmentSource::Decl);
4779 
4780   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4781          "Can't have a scalar return unless the return type is a "
4782          "reference type!");
4783 
4784   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4785 }
4786 
4787 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4788   // FIXME: This shouldn't require another copy.
4789   return EmitAggExprToLValue(E);
4790 }
4791 
4792 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4793   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4794          && "binding l-value to type which needs a temporary");
4795   AggValueSlot Slot = CreateAggTemp(E->getType());
4796   EmitCXXConstructExpr(E, Slot);
4797   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4798 }
4799 
4800 LValue
4801 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4802   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4803 }
4804 
4805 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4806   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4807                                       ConvertType(E->getType()));
4808 }
4809 
4810 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4811   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4812                         AlignmentSource::Decl);
4813 }
4814 
4815 LValue
4816 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4817   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4818   Slot.setExternallyDestructed();
4819   EmitAggExpr(E->getSubExpr(), Slot);
4820   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4821   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4822 }
4823 
4824 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4825   RValue RV = EmitObjCMessageExpr(E);
4826 
4827   if (!RV.isScalar())
4828     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4829                           AlignmentSource::Decl);
4830 
4831   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4832          "Can't have a scalar return unless the return type is a "
4833          "reference type!");
4834 
4835   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4836 }
4837 
4838 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4839   Address V =
4840     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4841   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4842 }
4843 
4844 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4845                                              const ObjCIvarDecl *Ivar) {
4846   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4847 }
4848 
4849 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4850                                           llvm::Value *BaseValue,
4851                                           const ObjCIvarDecl *Ivar,
4852                                           unsigned CVRQualifiers) {
4853   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4854                                                    Ivar, CVRQualifiers);
4855 }
4856 
4857 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4858   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4859   llvm::Value *BaseValue = nullptr;
4860   const Expr *BaseExpr = E->getBase();
4861   Qualifiers BaseQuals;
4862   QualType ObjectTy;
4863   if (E->isArrow()) {
4864     BaseValue = EmitScalarExpr(BaseExpr);
4865     ObjectTy = BaseExpr->getType()->getPointeeType();
4866     BaseQuals = ObjectTy.getQualifiers();
4867   } else {
4868     LValue BaseLV = EmitLValue(BaseExpr);
4869     BaseValue = BaseLV.getPointer(*this);
4870     ObjectTy = BaseExpr->getType();
4871     BaseQuals = ObjectTy.getQualifiers();
4872   }
4873 
4874   LValue LV =
4875     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4876                       BaseQuals.getCVRQualifiers());
4877   setObjCGCLValueClass(getContext(), E, LV);
4878   return LV;
4879 }
4880 
4881 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4882   // Can only get l-value for message expression returning aggregate type
4883   RValue RV = EmitAnyExprToTemp(E);
4884   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4885                         AlignmentSource::Decl);
4886 }
4887 
4888 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4889                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4890                                  llvm::Value *Chain) {
4891   // Get the actual function type. The callee type will always be a pointer to
4892   // function type or a block pointer type.
4893   assert(CalleeType->isFunctionPointerType() &&
4894          "Call must have function pointer type!");
4895 
4896   const Decl *TargetDecl =
4897       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4898 
4899   CalleeType = getContext().getCanonicalType(CalleeType);
4900 
4901   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4902 
4903   CGCallee Callee = OrigCallee;
4904 
4905   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4906       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4907     if (llvm::Constant *PrefixSig =
4908             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4909       SanitizerScope SanScope(this);
4910       // Remove any (C++17) exception specifications, to allow calling e.g. a
4911       // noexcept function through a non-noexcept pointer.
4912       auto ProtoTy =
4913         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4914       llvm::Constant *FTRTTIConst =
4915           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4916       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4917       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4918           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4919 
4920       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4921 
4922       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4923           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4924       llvm::Value *CalleeSigPtr =
4925           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4926       llvm::Value *CalleeSig =
4927           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4928       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4929 
4930       llvm::BasicBlock *Cont = createBasicBlock("cont");
4931       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4932       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4933 
4934       EmitBlock(TypeCheck);
4935       llvm::Value *CalleeRTTIPtr =
4936           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4937       llvm::Value *CalleeRTTIEncoded =
4938           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4939       llvm::Value *CalleeRTTI =
4940           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4941       llvm::Value *CalleeRTTIMatch =
4942           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4943       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4944                                       EmitCheckTypeDescriptor(CalleeType)};
4945       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4946                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4947                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4948 
4949       Builder.CreateBr(Cont);
4950       EmitBlock(Cont);
4951     }
4952   }
4953 
4954   const auto *FnType = cast<FunctionType>(PointeeType);
4955 
4956   // If we are checking indirect calls and this call is indirect, check that the
4957   // function pointer is a member of the bit set for the function type.
4958   if (SanOpts.has(SanitizerKind::CFIICall) &&
4959       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4960     SanitizerScope SanScope(this);
4961     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4962 
4963     llvm::Metadata *MD;
4964     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4965       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4966     else
4967       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4968 
4969     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4970 
4971     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4972     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4973     llvm::Value *TypeTest = Builder.CreateCall(
4974         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4975 
4976     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4977     llvm::Constant *StaticData[] = {
4978         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4979         EmitCheckSourceLocation(E->getBeginLoc()),
4980         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4981     };
4982     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4983       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4984                            CastedCallee, StaticData);
4985     } else {
4986       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4987                 SanitizerHandler::CFICheckFail, StaticData,
4988                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4989     }
4990   }
4991 
4992   CallArgList Args;
4993   if (Chain)
4994     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4995              CGM.getContext().VoidPtrTy);
4996 
4997   // C++17 requires that we evaluate arguments to a call using assignment syntax
4998   // right-to-left, and that we evaluate arguments to certain other operators
4999   // left-to-right. Note that we allow this to override the order dictated by
5000   // the calling convention on the MS ABI, which means that parameter
5001   // destruction order is not necessarily reverse construction order.
5002   // FIXME: Revisit this based on C++ committee response to unimplementability.
5003   EvaluationOrder Order = EvaluationOrder::Default;
5004   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5005     if (OCE->isAssignmentOp())
5006       Order = EvaluationOrder::ForceRightToLeft;
5007     else {
5008       switch (OCE->getOperator()) {
5009       case OO_LessLess:
5010       case OO_GreaterGreater:
5011       case OO_AmpAmp:
5012       case OO_PipePipe:
5013       case OO_Comma:
5014       case OO_ArrowStar:
5015         Order = EvaluationOrder::ForceLeftToRight;
5016         break;
5017       default:
5018         break;
5019       }
5020     }
5021   }
5022 
5023   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5024                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5025 
5026   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5027       Args, FnType, /*ChainCall=*/Chain);
5028 
5029   // C99 6.5.2.2p6:
5030   //   If the expression that denotes the called function has a type
5031   //   that does not include a prototype, [the default argument
5032   //   promotions are performed]. If the number of arguments does not
5033   //   equal the number of parameters, the behavior is undefined. If
5034   //   the function is defined with a type that includes a prototype,
5035   //   and either the prototype ends with an ellipsis (, ...) or the
5036   //   types of the arguments after promotion are not compatible with
5037   //   the types of the parameters, the behavior is undefined. If the
5038   //   function is defined with a type that does not include a
5039   //   prototype, and the types of the arguments after promotion are
5040   //   not compatible with those of the parameters after promotion,
5041   //   the behavior is undefined [except in some trivial cases].
5042   // That is, in the general case, we should assume that a call
5043   // through an unprototyped function type works like a *non-variadic*
5044   // call.  The way we make this work is to cast to the exact type
5045   // of the promoted arguments.
5046   //
5047   // Chain calls use this same code path to add the invisible chain parameter
5048   // to the function type.
5049   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5050     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5051     CalleeTy = CalleeTy->getPointerTo();
5052 
5053     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5054     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5055     Callee.setFunctionPointer(CalleePtr);
5056   }
5057 
5058   llvm::CallBase *CallOrInvoke = nullptr;
5059   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5060                          E->getExprLoc());
5061 
5062   // Generate function declaration DISuprogram in order to be used
5063   // in debug info about call sites.
5064   if (CGDebugInfo *DI = getDebugInfo()) {
5065     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5066       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5067                                   CalleeDecl);
5068   }
5069 
5070   return Call;
5071 }
5072 
5073 LValue CodeGenFunction::
5074 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5075   Address BaseAddr = Address::invalid();
5076   if (E->getOpcode() == BO_PtrMemI) {
5077     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5078   } else {
5079     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5080   }
5081 
5082   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5083   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5084 
5085   LValueBaseInfo BaseInfo;
5086   TBAAAccessInfo TBAAInfo;
5087   Address MemberAddr =
5088     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5089                                     &TBAAInfo);
5090 
5091   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5092 }
5093 
5094 /// Given the address of a temporary variable, produce an r-value of
5095 /// its type.
5096 RValue CodeGenFunction::convertTempToRValue(Address addr,
5097                                             QualType type,
5098                                             SourceLocation loc) {
5099   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5100   switch (getEvaluationKind(type)) {
5101   case TEK_Complex:
5102     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5103   case TEK_Aggregate:
5104     return lvalue.asAggregateRValue(*this);
5105   case TEK_Scalar:
5106     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5107   }
5108   llvm_unreachable("bad evaluation kind");
5109 }
5110 
5111 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5112   assert(Val->getType()->isFPOrFPVectorTy());
5113   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5114     return;
5115 
5116   llvm::MDBuilder MDHelper(getLLVMContext());
5117   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5118 
5119   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5120 }
5121 
5122 namespace {
5123   struct LValueOrRValue {
5124     LValue LV;
5125     RValue RV;
5126   };
5127 }
5128 
5129 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5130                                            const PseudoObjectExpr *E,
5131                                            bool forLValue,
5132                                            AggValueSlot slot) {
5133   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5134 
5135   // Find the result expression, if any.
5136   const Expr *resultExpr = E->getResultExpr();
5137   LValueOrRValue result;
5138 
5139   for (PseudoObjectExpr::const_semantics_iterator
5140          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5141     const Expr *semantic = *i;
5142 
5143     // If this semantic expression is an opaque value, bind it
5144     // to the result of its source expression.
5145     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5146       // Skip unique OVEs.
5147       if (ov->isUnique()) {
5148         assert(ov != resultExpr &&
5149                "A unique OVE cannot be used as the result expression");
5150         continue;
5151       }
5152 
5153       // If this is the result expression, we may need to evaluate
5154       // directly into the slot.
5155       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5156       OVMA opaqueData;
5157       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5158           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5159         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5160         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5161                                        AlignmentSource::Decl);
5162         opaqueData = OVMA::bind(CGF, ov, LV);
5163         result.RV = slot.asRValue();
5164 
5165       // Otherwise, emit as normal.
5166       } else {
5167         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5168 
5169         // If this is the result, also evaluate the result now.
5170         if (ov == resultExpr) {
5171           if (forLValue)
5172             result.LV = CGF.EmitLValue(ov);
5173           else
5174             result.RV = CGF.EmitAnyExpr(ov, slot);
5175         }
5176       }
5177 
5178       opaques.push_back(opaqueData);
5179 
5180     // Otherwise, if the expression is the result, evaluate it
5181     // and remember the result.
5182     } else if (semantic == resultExpr) {
5183       if (forLValue)
5184         result.LV = CGF.EmitLValue(semantic);
5185       else
5186         result.RV = CGF.EmitAnyExpr(semantic, slot);
5187 
5188     // Otherwise, evaluate the expression in an ignored context.
5189     } else {
5190       CGF.EmitIgnoredExpr(semantic);
5191     }
5192   }
5193 
5194   // Unbind all the opaques now.
5195   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5196     opaques[i].unbind(CGF);
5197 
5198   return result;
5199 }
5200 
5201 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5202                                                AggValueSlot slot) {
5203   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5204 }
5205 
5206 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5207   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5208 }
5209