1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // Just emit it as an l-value and drop the result. 195 EmitLValue(E); 196 } 197 198 /// EmitAnyExpr - Emit code to compute the specified expression which 199 /// can have any type. The result is returned as an RValue struct. 200 /// If this is an aggregate expression, AggSlot indicates where the 201 /// result should be returned. 202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 203 AggValueSlot aggSlot, 204 bool ignoreResult) { 205 switch (getEvaluationKind(E->getType())) { 206 case TEK_Scalar: 207 return RValue::get(EmitScalarExpr(E, ignoreResult)); 208 case TEK_Complex: 209 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 210 case TEK_Aggregate: 211 if (!ignoreResult && aggSlot.isIgnored()) 212 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 213 EmitAggExpr(E, aggSlot); 214 return aggSlot.asRValue(); 215 } 216 llvm_unreachable("bad evaluation kind"); 217 } 218 219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 220 /// always be accessible even if no aggregate location is provided. 221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 222 AggValueSlot AggSlot = AggValueSlot::ignored(); 223 224 if (hasAggregateEvaluationKind(E->getType())) 225 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 226 return EmitAnyExpr(E, AggSlot); 227 } 228 229 /// EmitAnyExprToMem - Evaluate an expression into a given memory 230 /// location. 231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 232 Address Location, 233 Qualifiers Quals, 234 bool IsInit) { 235 // FIXME: This function should take an LValue as an argument. 236 switch (getEvaluationKind(E->getType())) { 237 case TEK_Complex: 238 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 239 /*isInit*/ false); 240 return; 241 242 case TEK_Aggregate: { 243 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 244 AggValueSlot::IsDestructed_t(IsInit), 245 AggValueSlot::DoesNotNeedGCBarriers, 246 AggValueSlot::IsAliased_t(!IsInit), 247 AggValueSlot::MayOverlap)); 248 return; 249 } 250 251 case TEK_Scalar: { 252 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 253 LValue LV = MakeAddrLValue(Location, E->getType()); 254 EmitStoreThroughLValue(RV, LV); 255 return; 256 } 257 } 258 llvm_unreachable("bad evaluation kind"); 259 } 260 261 static void 262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 263 const Expr *E, Address ReferenceTemporary) { 264 // Objective-C++ ARC: 265 // If we are binding a reference to a temporary that has ownership, we 266 // need to perform retain/release operations on the temporary. 267 // 268 // FIXME: This should be looking at E, not M. 269 if (auto Lifetime = M->getType().getObjCLifetime()) { 270 switch (Lifetime) { 271 case Qualifiers::OCL_None: 272 case Qualifiers::OCL_ExplicitNone: 273 // Carry on to normal cleanup handling. 274 break; 275 276 case Qualifiers::OCL_Autoreleasing: 277 // Nothing to do; cleaned up by an autorelease pool. 278 return; 279 280 case Qualifiers::OCL_Strong: 281 case Qualifiers::OCL_Weak: 282 switch (StorageDuration Duration = M->getStorageDuration()) { 283 case SD_Static: 284 // Note: we intentionally do not register a cleanup to release 285 // the object on program termination. 286 return; 287 288 case SD_Thread: 289 // FIXME: We should probably register a cleanup in this case. 290 return; 291 292 case SD_Automatic: 293 case SD_FullExpression: 294 CodeGenFunction::Destroyer *Destroy; 295 CleanupKind CleanupKind; 296 if (Lifetime == Qualifiers::OCL_Strong) { 297 const ValueDecl *VD = M->getExtendingDecl(); 298 bool Precise = 299 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 300 CleanupKind = CGF.getARCCleanupKind(); 301 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 302 : &CodeGenFunction::destroyARCStrongImprecise; 303 } else { 304 // __weak objects always get EH cleanups; otherwise, exceptions 305 // could cause really nasty crashes instead of mere leaks. 306 CleanupKind = NormalAndEHCleanup; 307 Destroy = &CodeGenFunction::destroyARCWeak; 308 } 309 if (Duration == SD_FullExpression) 310 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 311 M->getType(), *Destroy, 312 CleanupKind & EHCleanup); 313 else 314 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 315 M->getType(), 316 *Destroy, CleanupKind & EHCleanup); 317 return; 318 319 case SD_Dynamic: 320 llvm_unreachable("temporary cannot have dynamic storage duration"); 321 } 322 llvm_unreachable("unknown storage duration"); 323 } 324 } 325 326 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 327 if (const RecordType *RT = 328 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 329 // Get the destructor for the reference temporary. 330 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 331 if (!ClassDecl->hasTrivialDestructor()) 332 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 333 } 334 335 if (!ReferenceTemporaryDtor) 336 return; 337 338 // Call the destructor for the temporary. 339 switch (M->getStorageDuration()) { 340 case SD_Static: 341 case SD_Thread: { 342 llvm::FunctionCallee CleanupFn; 343 llvm::Constant *CleanupArg; 344 if (E->getType()->isArrayType()) { 345 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 346 ReferenceTemporary, E->getType(), 347 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 348 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 349 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 350 } else { 351 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 352 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 353 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 354 } 355 CGF.CGM.getCXXABI().registerGlobalDtor( 356 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 357 break; 358 } 359 360 case SD_FullExpression: 361 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Automatic: 367 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 368 ReferenceTemporary, E->getType(), 369 CodeGenFunction::destroyCXXObject, 370 CGF.getLangOpts().Exceptions); 371 break; 372 373 case SD_Dynamic: 374 llvm_unreachable("temporary cannot have dynamic storage duration"); 375 } 376 } 377 378 static Address createReferenceTemporary(CodeGenFunction &CGF, 379 const MaterializeTemporaryExpr *M, 380 const Expr *Inner, 381 Address *Alloca = nullptr) { 382 auto &TCG = CGF.getTargetHooks(); 383 switch (M->getStorageDuration()) { 384 case SD_FullExpression: 385 case SD_Automatic: { 386 // If we have a constant temporary array or record try to promote it into a 387 // constant global under the same rules a normal constant would've been 388 // promoted. This is easier on the optimizer and generally emits fewer 389 // instructions. 390 QualType Ty = Inner->getType(); 391 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 392 (Ty->isArrayType() || Ty->isRecordType()) && 393 CGF.CGM.isTypeConstant(Ty, true)) 394 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 395 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 396 auto *GV = new llvm::GlobalVariable( 397 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 398 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 399 llvm::GlobalValue::NotThreadLocal, 400 CGF.getContext().getTargetAddressSpace(AS)); 401 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 402 GV->setAlignment(alignment.getAsAlign()); 403 llvm::Constant *C = GV; 404 if (AS != LangAS::Default) 405 C = TCG.performAddrSpaceCast( 406 CGF.CGM, GV, AS, LangAS::Default, 407 GV->getValueType()->getPointerTo( 408 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 409 // FIXME: Should we put the new global into a COMDAT? 410 return Address(C, alignment); 411 } 412 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 413 } 414 case SD_Thread: 415 case SD_Static: 416 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 417 418 case SD_Dynamic: 419 llvm_unreachable("temporary can't have dynamic storage duration"); 420 } 421 llvm_unreachable("unknown storage duration"); 422 } 423 424 /// Helper method to check if the underlying ABI is AAPCS 425 static bool isAAPCS(const TargetInfo &TargetInfo) { 426 return TargetInfo.getABI().startswith("aapcs"); 427 } 428 429 LValue CodeGenFunction:: 430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 431 const Expr *E = M->getSubExpr(); 432 433 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 434 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 435 "Reference should never be pseudo-strong!"); 436 437 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 438 // as that will cause the lifetime adjustment to be lost for ARC 439 auto ownership = M->getType().getObjCLifetime(); 440 if (ownership != Qualifiers::OCL_None && 441 ownership != Qualifiers::OCL_ExplicitNone) { 442 Address Object = createReferenceTemporary(*this, M, E); 443 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 444 Object = Address(llvm::ConstantExpr::getBitCast(Var, 445 ConvertTypeForMem(E->getType()) 446 ->getPointerTo(Object.getAddressSpace())), 447 Object.getAlignment()); 448 449 // createReferenceTemporary will promote the temporary to a global with a 450 // constant initializer if it can. It can only do this to a value of 451 // ARC-manageable type if the value is global and therefore "immune" to 452 // ref-counting operations. Therefore we have no need to emit either a 453 // dynamic initialization or a cleanup and we can just return the address 454 // of the temporary. 455 if (Var->hasInitializer()) 456 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 457 458 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 459 } 460 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 461 AlignmentSource::Decl); 462 463 switch (getEvaluationKind(E->getType())) { 464 default: llvm_unreachable("expected scalar or aggregate expression"); 465 case TEK_Scalar: 466 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 467 break; 468 case TEK_Aggregate: { 469 EmitAggExpr(E, AggValueSlot::forAddr(Object, 470 E->getType().getQualifiers(), 471 AggValueSlot::IsDestructed, 472 AggValueSlot::DoesNotNeedGCBarriers, 473 AggValueSlot::IsNotAliased, 474 AggValueSlot::DoesNotOverlap)); 475 break; 476 } 477 } 478 479 pushTemporaryCleanup(*this, M, E, Object); 480 return RefTempDst; 481 } 482 483 SmallVector<const Expr *, 2> CommaLHSs; 484 SmallVector<SubobjectAdjustment, 2> Adjustments; 485 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 486 487 for (const auto &Ignored : CommaLHSs) 488 EmitIgnoredExpr(Ignored); 489 490 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 491 if (opaque->getType()->isRecordType()) { 492 assert(Adjustments.empty()); 493 return EmitOpaqueValueLValue(opaque); 494 } 495 } 496 497 // Create and initialize the reference temporary. 498 Address Alloca = Address::invalid(); 499 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 500 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 501 Object.getPointer()->stripPointerCasts())) { 502 Object = Address(llvm::ConstantExpr::getBitCast( 503 cast<llvm::Constant>(Object.getPointer()), 504 ConvertTypeForMem(E->getType())->getPointerTo()), 505 Object.getAlignment()); 506 // If the temporary is a global and has a constant initializer or is a 507 // constant temporary that we promoted to a global, we may have already 508 // initialized it. 509 if (!Var->hasInitializer()) { 510 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 511 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 512 } 513 } else { 514 switch (M->getStorageDuration()) { 515 case SD_Automatic: 516 if (auto *Size = EmitLifetimeStart( 517 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 518 Alloca.getPointer())) { 519 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 520 Alloca, Size); 521 } 522 break; 523 524 case SD_FullExpression: { 525 if (!ShouldEmitLifetimeMarkers) 526 break; 527 528 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 529 // marker. Instead, start the lifetime of a conditional temporary earlier 530 // so that it's unconditional. Don't do this with sanitizers which need 531 // more precise lifetime marks. 532 ConditionalEvaluation *OldConditional = nullptr; 533 CGBuilderTy::InsertPoint OldIP; 534 if (isInConditionalBranch() && !E->getType().isDestructedType() && 535 !SanOpts.has(SanitizerKind::HWAddress) && 536 !SanOpts.has(SanitizerKind::Memory) && 537 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 538 OldConditional = OutermostConditional; 539 OutermostConditional = nullptr; 540 541 OldIP = Builder.saveIP(); 542 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 543 Builder.restoreIP(CGBuilderTy::InsertPoint( 544 Block, llvm::BasicBlock::iterator(Block->back()))); 545 } 546 547 if (auto *Size = EmitLifetimeStart( 548 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 549 Alloca.getPointer())) { 550 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 551 Size); 552 } 553 554 if (OldConditional) { 555 OutermostConditional = OldConditional; 556 Builder.restoreIP(OldIP); 557 } 558 break; 559 } 560 561 default: 562 break; 563 } 564 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 565 } 566 pushTemporaryCleanup(*this, M, E, Object); 567 568 // Perform derived-to-base casts and/or field accesses, to get from the 569 // temporary object we created (and, potentially, for which we extended 570 // the lifetime) to the subobject we're binding the reference to. 571 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 572 switch (Adjustment.Kind) { 573 case SubobjectAdjustment::DerivedToBaseAdjustment: 574 Object = 575 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 576 Adjustment.DerivedToBase.BasePath->path_begin(), 577 Adjustment.DerivedToBase.BasePath->path_end(), 578 /*NullCheckValue=*/ false, E->getExprLoc()); 579 break; 580 581 case SubobjectAdjustment::FieldAdjustment: { 582 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 583 LV = EmitLValueForField(LV, Adjustment.Field); 584 assert(LV.isSimple() && 585 "materialized temporary field is not a simple lvalue"); 586 Object = LV.getAddress(*this); 587 break; 588 } 589 590 case SubobjectAdjustment::MemberPointerAdjustment: { 591 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 592 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 593 Adjustment.Ptr.MPT); 594 break; 595 } 596 } 597 } 598 599 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 600 } 601 602 RValue 603 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 604 // Emit the expression as an lvalue. 605 LValue LV = EmitLValue(E); 606 assert(LV.isSimple()); 607 llvm::Value *Value = LV.getPointer(*this); 608 609 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 610 // C++11 [dcl.ref]p5 (as amended by core issue 453): 611 // If a glvalue to which a reference is directly bound designates neither 612 // an existing object or function of an appropriate type nor a region of 613 // storage of suitable size and alignment to contain an object of the 614 // reference's type, the behavior is undefined. 615 QualType Ty = E->getType(); 616 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 617 } 618 619 return RValue::get(Value); 620 } 621 622 623 /// getAccessedFieldNo - Given an encoded value and a result number, return the 624 /// input field number being accessed. 625 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 626 const llvm::Constant *Elts) { 627 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 628 ->getZExtValue(); 629 } 630 631 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 632 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 633 llvm::Value *High) { 634 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 635 llvm::Value *K47 = Builder.getInt64(47); 636 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 637 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 638 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 639 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 640 return Builder.CreateMul(B1, KMul); 641 } 642 643 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 644 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 645 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 646 } 647 648 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 649 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 650 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 651 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 652 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 653 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 654 } 655 656 bool CodeGenFunction::sanitizePerformTypeCheck() const { 657 return SanOpts.has(SanitizerKind::Null) || 658 SanOpts.has(SanitizerKind::Alignment) || 659 SanOpts.has(SanitizerKind::ObjectSize) || 660 SanOpts.has(SanitizerKind::Vptr); 661 } 662 663 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 664 llvm::Value *Ptr, QualType Ty, 665 CharUnits Alignment, 666 SanitizerSet SkippedChecks, 667 llvm::Value *ArraySize) { 668 if (!sanitizePerformTypeCheck()) 669 return; 670 671 // Don't check pointers outside the default address space. The null check 672 // isn't correct, the object-size check isn't supported by LLVM, and we can't 673 // communicate the addresses to the runtime handler for the vptr check. 674 if (Ptr->getType()->getPointerAddressSpace()) 675 return; 676 677 // Don't check pointers to volatile data. The behavior here is implementation- 678 // defined. 679 if (Ty.isVolatileQualified()) 680 return; 681 682 SanitizerScope SanScope(this); 683 684 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 685 llvm::BasicBlock *Done = nullptr; 686 687 // Quickly determine whether we have a pointer to an alloca. It's possible 688 // to skip null checks, and some alignment checks, for these pointers. This 689 // can reduce compile-time significantly. 690 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 691 692 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 693 llvm::Value *IsNonNull = nullptr; 694 bool IsGuaranteedNonNull = 695 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 696 bool AllowNullPointers = isNullPointerAllowed(TCK); 697 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 698 !IsGuaranteedNonNull) { 699 // The glvalue must not be an empty glvalue. 700 IsNonNull = Builder.CreateIsNotNull(Ptr); 701 702 // The IR builder can constant-fold the null check if the pointer points to 703 // a constant. 704 IsGuaranteedNonNull = IsNonNull == True; 705 706 // Skip the null check if the pointer is known to be non-null. 707 if (!IsGuaranteedNonNull) { 708 if (AllowNullPointers) { 709 // When performing pointer casts, it's OK if the value is null. 710 // Skip the remaining checks in that case. 711 Done = createBasicBlock("null"); 712 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 713 Builder.CreateCondBr(IsNonNull, Rest, Done); 714 EmitBlock(Rest); 715 } else { 716 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 717 } 718 } 719 } 720 721 if (SanOpts.has(SanitizerKind::ObjectSize) && 722 !SkippedChecks.has(SanitizerKind::ObjectSize) && 723 !Ty->isIncompleteType()) { 724 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 725 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 726 if (ArraySize) 727 Size = Builder.CreateMul(Size, ArraySize); 728 729 // Degenerate case: new X[0] does not need an objectsize check. 730 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 731 if (!ConstantSize || !ConstantSize->isNullValue()) { 732 // The glvalue must refer to a large enough storage region. 733 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 734 // to check this. 735 // FIXME: Get object address space 736 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 737 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 738 llvm::Value *Min = Builder.getFalse(); 739 llvm::Value *NullIsUnknown = Builder.getFalse(); 740 llvm::Value *Dynamic = Builder.getFalse(); 741 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 742 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 743 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 744 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 745 } 746 } 747 748 uint64_t AlignVal = 0; 749 llvm::Value *PtrAsInt = nullptr; 750 751 if (SanOpts.has(SanitizerKind::Alignment) && 752 !SkippedChecks.has(SanitizerKind::Alignment)) { 753 AlignVal = Alignment.getQuantity(); 754 if (!Ty->isIncompleteType() && !AlignVal) 755 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 756 /*ForPointeeType=*/true) 757 .getQuantity(); 758 759 // The glvalue must be suitably aligned. 760 if (AlignVal > 1 && 761 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 762 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 763 llvm::Value *Align = Builder.CreateAnd( 764 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 765 llvm::Value *Aligned = 766 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 767 if (Aligned != True) 768 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 769 } 770 } 771 772 if (Checks.size() > 0) { 773 // Make sure we're not losing information. Alignment needs to be a power of 774 // 2 775 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 776 llvm::Constant *StaticData[] = { 777 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 778 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 779 llvm::ConstantInt::get(Int8Ty, TCK)}; 780 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 781 PtrAsInt ? PtrAsInt : Ptr); 782 } 783 784 // If possible, check that the vptr indicates that there is a subobject of 785 // type Ty at offset zero within this object. 786 // 787 // C++11 [basic.life]p5,6: 788 // [For storage which does not refer to an object within its lifetime] 789 // The program has undefined behavior if: 790 // -- the [pointer or glvalue] is used to access a non-static data member 791 // or call a non-static member function 792 if (SanOpts.has(SanitizerKind::Vptr) && 793 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 794 // Ensure that the pointer is non-null before loading it. If there is no 795 // compile-time guarantee, reuse the run-time null check or emit a new one. 796 if (!IsGuaranteedNonNull) { 797 if (!IsNonNull) 798 IsNonNull = Builder.CreateIsNotNull(Ptr); 799 if (!Done) 800 Done = createBasicBlock("vptr.null"); 801 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 802 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 803 EmitBlock(VptrNotNull); 804 } 805 806 // Compute a hash of the mangled name of the type. 807 // 808 // FIXME: This is not guaranteed to be deterministic! Move to a 809 // fingerprinting mechanism once LLVM provides one. For the time 810 // being the implementation happens to be deterministic. 811 SmallString<64> MangledName; 812 llvm::raw_svector_ostream Out(MangledName); 813 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 814 Out); 815 816 // Contained in NoSanitizeList based on the mangled type. 817 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 818 Out.str())) { 819 llvm::hash_code TypeHash = hash_value(Out.str()); 820 821 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 822 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 823 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 824 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 825 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 826 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 827 828 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 829 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 830 831 // Look the hash up in our cache. 832 const int CacheSize = 128; 833 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 834 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 835 "__ubsan_vptr_type_cache"); 836 llvm::Value *Slot = Builder.CreateAnd(Hash, 837 llvm::ConstantInt::get(IntPtrTy, 838 CacheSize-1)); 839 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 840 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 841 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 842 getPointerAlign()); 843 844 // If the hash isn't in the cache, call a runtime handler to perform the 845 // hard work of checking whether the vptr is for an object of the right 846 // type. This will either fill in the cache and return, or produce a 847 // diagnostic. 848 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 849 llvm::Constant *StaticData[] = { 850 EmitCheckSourceLocation(Loc), 851 EmitCheckTypeDescriptor(Ty), 852 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 853 llvm::ConstantInt::get(Int8Ty, TCK) 854 }; 855 llvm::Value *DynamicData[] = { Ptr, Hash }; 856 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 857 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 858 DynamicData); 859 } 860 } 861 862 if (Done) { 863 Builder.CreateBr(Done); 864 EmitBlock(Done); 865 } 866 } 867 868 /// Determine whether this expression refers to a flexible array member in a 869 /// struct. We disable array bounds checks for such members. 870 static bool isFlexibleArrayMemberExpr(const Expr *E) { 871 // For compatibility with existing code, we treat arrays of length 0 or 872 // 1 as flexible array members. 873 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 874 // the two mechanisms. 875 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 876 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 877 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 878 // was produced by macro expansion. 879 if (CAT->getSize().ugt(1)) 880 return false; 881 } else if (!isa<IncompleteArrayType>(AT)) 882 return false; 883 884 E = E->IgnoreParens(); 885 886 // A flexible array member must be the last member in the class. 887 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 888 // FIXME: If the base type of the member expr is not FD->getParent(), 889 // this should not be treated as a flexible array member access. 890 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 891 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 892 // member, only a T[0] or T[] member gets that treatment. 893 if (FD->getParent()->isUnion()) 894 return true; 895 RecordDecl::field_iterator FI( 896 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 897 return ++FI == FD->getParent()->field_end(); 898 } 899 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 900 return IRE->getDecl()->getNextIvar() == nullptr; 901 } 902 903 return false; 904 } 905 906 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 907 QualType EltTy) { 908 ASTContext &C = getContext(); 909 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 910 if (!EltSize) 911 return nullptr; 912 913 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 914 if (!ArrayDeclRef) 915 return nullptr; 916 917 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 918 if (!ParamDecl) 919 return nullptr; 920 921 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 922 if (!POSAttr) 923 return nullptr; 924 925 // Don't load the size if it's a lower bound. 926 int POSType = POSAttr->getType(); 927 if (POSType != 0 && POSType != 1) 928 return nullptr; 929 930 // Find the implicit size parameter. 931 auto PassedSizeIt = SizeArguments.find(ParamDecl); 932 if (PassedSizeIt == SizeArguments.end()) 933 return nullptr; 934 935 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 936 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 937 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 938 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 939 C.getSizeType(), E->getExprLoc()); 940 llvm::Value *SizeOfElement = 941 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 942 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 943 } 944 945 /// If Base is known to point to the start of an array, return the length of 946 /// that array. Return 0 if the length cannot be determined. 947 static llvm::Value *getArrayIndexingBound( 948 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 949 // For the vector indexing extension, the bound is the number of elements. 950 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 951 IndexedType = Base->getType(); 952 return CGF.Builder.getInt32(VT->getNumElements()); 953 } 954 955 Base = Base->IgnoreParens(); 956 957 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 958 if (CE->getCastKind() == CK_ArrayToPointerDecay && 959 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 960 IndexedType = CE->getSubExpr()->getType(); 961 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 962 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 963 return CGF.Builder.getInt(CAT->getSize()); 964 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 965 return CGF.getVLASize(VAT).NumElts; 966 // Ignore pass_object_size here. It's not applicable on decayed pointers. 967 } 968 } 969 970 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 971 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 972 IndexedType = Base->getType(); 973 return POS; 974 } 975 976 return nullptr; 977 } 978 979 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 980 llvm::Value *Index, QualType IndexType, 981 bool Accessed) { 982 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 983 "should not be called unless adding bounds checks"); 984 SanitizerScope SanScope(this); 985 986 QualType IndexedType; 987 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 988 if (!Bound) 989 return; 990 991 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 992 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 993 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 994 995 llvm::Constant *StaticData[] = { 996 EmitCheckSourceLocation(E->getExprLoc()), 997 EmitCheckTypeDescriptor(IndexedType), 998 EmitCheckTypeDescriptor(IndexType) 999 }; 1000 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1001 : Builder.CreateICmpULE(IndexVal, BoundVal); 1002 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1003 SanitizerHandler::OutOfBounds, StaticData, Index); 1004 } 1005 1006 1007 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1008 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1009 bool isInc, bool isPre) { 1010 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1011 1012 llvm::Value *NextVal; 1013 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1014 uint64_t AmountVal = isInc ? 1 : -1; 1015 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1016 1017 // Add the inc/dec to the real part. 1018 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1019 } else { 1020 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1021 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1022 if (!isInc) 1023 FVal.changeSign(); 1024 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1025 1026 // Add the inc/dec to the real part. 1027 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1028 } 1029 1030 ComplexPairTy IncVal(NextVal, InVal.second); 1031 1032 // Store the updated result through the lvalue. 1033 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1034 if (getLangOpts().OpenMP) 1035 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1036 E->getSubExpr()); 1037 1038 // If this is a postinc, return the value read from memory, otherwise use the 1039 // updated value. 1040 return isPre ? IncVal : InVal; 1041 } 1042 1043 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1044 CodeGenFunction *CGF) { 1045 // Bind VLAs in the cast type. 1046 if (CGF && E->getType()->isVariablyModifiedType()) 1047 CGF->EmitVariablyModifiedType(E->getType()); 1048 1049 if (CGDebugInfo *DI = getModuleDebugInfo()) 1050 DI->EmitExplicitCastType(E->getType()); 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // LValue Expression Emission 1055 //===----------------------------------------------------------------------===// 1056 1057 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1058 /// derive a more accurate bound on the alignment of the pointer. 1059 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1060 LValueBaseInfo *BaseInfo, 1061 TBAAAccessInfo *TBAAInfo) { 1062 // We allow this with ObjC object pointers because of fragile ABIs. 1063 assert(E->getType()->isPointerType() || 1064 E->getType()->isObjCObjectPointerType()); 1065 E = E->IgnoreParens(); 1066 1067 // Casts: 1068 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1069 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1070 CGM.EmitExplicitCastExprType(ECE, this); 1071 1072 switch (CE->getCastKind()) { 1073 // Non-converting casts (but not C's implicit conversion from void*). 1074 case CK_BitCast: 1075 case CK_NoOp: 1076 case CK_AddressSpaceConversion: 1077 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1078 if (PtrTy->getPointeeType()->isVoidType()) 1079 break; 1080 1081 LValueBaseInfo InnerBaseInfo; 1082 TBAAAccessInfo InnerTBAAInfo; 1083 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1084 &InnerBaseInfo, 1085 &InnerTBAAInfo); 1086 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1087 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1088 1089 if (isa<ExplicitCastExpr>(CE)) { 1090 LValueBaseInfo TargetTypeBaseInfo; 1091 TBAAAccessInfo TargetTypeTBAAInfo; 1092 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1093 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1094 if (TBAAInfo) 1095 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1096 TargetTypeTBAAInfo); 1097 // If the source l-value is opaque, honor the alignment of the 1098 // casted-to type. 1099 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1100 if (BaseInfo) 1101 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1102 Addr = Address(Addr.getPointer(), Align); 1103 } 1104 } 1105 1106 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1107 CE->getCastKind() == CK_BitCast) { 1108 if (auto PT = E->getType()->getAs<PointerType>()) 1109 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1110 /*MayBeNull=*/true, 1111 CodeGenFunction::CFITCK_UnrelatedCast, 1112 CE->getBeginLoc()); 1113 } 1114 return CE->getCastKind() != CK_AddressSpaceConversion 1115 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1116 : Builder.CreateAddrSpaceCast(Addr, 1117 ConvertType(E->getType())); 1118 } 1119 break; 1120 1121 // Array-to-pointer decay. 1122 case CK_ArrayToPointerDecay: 1123 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1124 1125 // Derived-to-base conversions. 1126 case CK_UncheckedDerivedToBase: 1127 case CK_DerivedToBase: { 1128 // TODO: Support accesses to members of base classes in TBAA. For now, we 1129 // conservatively pretend that the complete object is of the base class 1130 // type. 1131 if (TBAAInfo) 1132 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1133 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1134 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1135 return GetAddressOfBaseClass(Addr, Derived, 1136 CE->path_begin(), CE->path_end(), 1137 ShouldNullCheckClassCastValue(CE), 1138 CE->getExprLoc()); 1139 } 1140 1141 // TODO: Is there any reason to treat base-to-derived conversions 1142 // specially? 1143 default: 1144 break; 1145 } 1146 } 1147 1148 // Unary &. 1149 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1150 if (UO->getOpcode() == UO_AddrOf) { 1151 LValue LV = EmitLValue(UO->getSubExpr()); 1152 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1153 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1154 return LV.getAddress(*this); 1155 } 1156 } 1157 1158 // TODO: conditional operators, comma. 1159 1160 // Otherwise, use the alignment of the type. 1161 CharUnits Align = 1162 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1163 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1164 return Address(EmitScalarExpr(E), ElemTy, Align); 1165 } 1166 1167 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1168 llvm::Value *V = RV.getScalarVal(); 1169 if (auto MPT = T->getAs<MemberPointerType>()) 1170 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1171 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1172 } 1173 1174 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1175 if (Ty->isVoidType()) 1176 return RValue::get(nullptr); 1177 1178 switch (getEvaluationKind(Ty)) { 1179 case TEK_Complex: { 1180 llvm::Type *EltTy = 1181 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1182 llvm::Value *U = llvm::UndefValue::get(EltTy); 1183 return RValue::getComplex(std::make_pair(U, U)); 1184 } 1185 1186 // If this is a use of an undefined aggregate type, the aggregate must have an 1187 // identifiable address. Just because the contents of the value are undefined 1188 // doesn't mean that the address can't be taken and compared. 1189 case TEK_Aggregate: { 1190 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1191 return RValue::getAggregate(DestPtr); 1192 } 1193 1194 case TEK_Scalar: 1195 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1196 } 1197 llvm_unreachable("bad evaluation kind"); 1198 } 1199 1200 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1201 const char *Name) { 1202 ErrorUnsupported(E, Name); 1203 return GetUndefRValue(E->getType()); 1204 } 1205 1206 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1207 const char *Name) { 1208 ErrorUnsupported(E, Name); 1209 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1210 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1211 E->getType()); 1212 } 1213 1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1215 const Expr *Base = Obj; 1216 while (!isa<CXXThisExpr>(Base)) { 1217 // The result of a dynamic_cast can be null. 1218 if (isa<CXXDynamicCastExpr>(Base)) 1219 return false; 1220 1221 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1222 Base = CE->getSubExpr(); 1223 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1224 Base = PE->getSubExpr(); 1225 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1226 if (UO->getOpcode() == UO_Extension) 1227 Base = UO->getSubExpr(); 1228 else 1229 return false; 1230 } else { 1231 return false; 1232 } 1233 } 1234 return true; 1235 } 1236 1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1238 LValue LV; 1239 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1240 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1241 else 1242 LV = EmitLValue(E); 1243 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1244 SanitizerSet SkippedChecks; 1245 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1246 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1247 if (IsBaseCXXThis) 1248 SkippedChecks.set(SanitizerKind::Alignment, true); 1249 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1250 SkippedChecks.set(SanitizerKind::Null, true); 1251 } 1252 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1253 LV.getAlignment(), SkippedChecks); 1254 } 1255 return LV; 1256 } 1257 1258 /// EmitLValue - Emit code to compute a designator that specifies the location 1259 /// of the expression. 1260 /// 1261 /// This can return one of two things: a simple address or a bitfield reference. 1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1263 /// an LLVM pointer type. 1264 /// 1265 /// If this returns a bitfield reference, nothing about the pointee type of the 1266 /// LLVM value is known: For example, it may not be a pointer to an integer. 1267 /// 1268 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1269 /// this method guarantees that the returned pointer type will point to an LLVM 1270 /// type of the same size of the lvalue's type. If the lvalue has a variable 1271 /// length type, this is not possible. 1272 /// 1273 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1274 ApplyDebugLocation DL(*this, E); 1275 switch (E->getStmtClass()) { 1276 default: return EmitUnsupportedLValue(E, "l-value expression"); 1277 1278 case Expr::ObjCPropertyRefExprClass: 1279 llvm_unreachable("cannot emit a property reference directly"); 1280 1281 case Expr::ObjCSelectorExprClass: 1282 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1283 case Expr::ObjCIsaExprClass: 1284 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1285 case Expr::BinaryOperatorClass: 1286 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1287 case Expr::CompoundAssignOperatorClass: { 1288 QualType Ty = E->getType(); 1289 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1290 Ty = AT->getValueType(); 1291 if (!Ty->isAnyComplexType()) 1292 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1293 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1294 } 1295 case Expr::CallExprClass: 1296 case Expr::CXXMemberCallExprClass: 1297 case Expr::CXXOperatorCallExprClass: 1298 case Expr::UserDefinedLiteralClass: 1299 return EmitCallExprLValue(cast<CallExpr>(E)); 1300 case Expr::CXXRewrittenBinaryOperatorClass: 1301 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1302 case Expr::VAArgExprClass: 1303 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1304 case Expr::DeclRefExprClass: 1305 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1306 case Expr::ConstantExprClass: { 1307 const ConstantExpr *CE = cast<ConstantExpr>(E); 1308 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1309 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1310 ->getCallReturnType(getContext()); 1311 return MakeNaturalAlignAddrLValue(Result, RetType); 1312 } 1313 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1314 } 1315 case Expr::ParenExprClass: 1316 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1317 case Expr::GenericSelectionExprClass: 1318 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1319 case Expr::PredefinedExprClass: 1320 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1321 case Expr::StringLiteralClass: 1322 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1323 case Expr::ObjCEncodeExprClass: 1324 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1325 case Expr::PseudoObjectExprClass: 1326 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1327 case Expr::InitListExprClass: 1328 return EmitInitListLValue(cast<InitListExpr>(E)); 1329 case Expr::CXXTemporaryObjectExprClass: 1330 case Expr::CXXConstructExprClass: 1331 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1332 case Expr::CXXBindTemporaryExprClass: 1333 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1334 case Expr::CXXUuidofExprClass: 1335 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1336 case Expr::LambdaExprClass: 1337 return EmitAggExprToLValue(E); 1338 1339 case Expr::ExprWithCleanupsClass: { 1340 const auto *cleanups = cast<ExprWithCleanups>(E); 1341 RunCleanupsScope Scope(*this); 1342 LValue LV = EmitLValue(cleanups->getSubExpr()); 1343 if (LV.isSimple()) { 1344 // Defend against branches out of gnu statement expressions surrounded by 1345 // cleanups. 1346 llvm::Value *V = LV.getPointer(*this); 1347 Scope.ForceCleanup({&V}); 1348 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1349 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1350 } 1351 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1352 // bitfield lvalue or some other non-simple lvalue? 1353 return LV; 1354 } 1355 1356 case Expr::CXXDefaultArgExprClass: { 1357 auto *DAE = cast<CXXDefaultArgExpr>(E); 1358 CXXDefaultArgExprScope Scope(*this, DAE); 1359 return EmitLValue(DAE->getExpr()); 1360 } 1361 case Expr::CXXDefaultInitExprClass: { 1362 auto *DIE = cast<CXXDefaultInitExpr>(E); 1363 CXXDefaultInitExprScope Scope(*this, DIE); 1364 return EmitLValue(DIE->getExpr()); 1365 } 1366 case Expr::CXXTypeidExprClass: 1367 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1368 1369 case Expr::ObjCMessageExprClass: 1370 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1371 case Expr::ObjCIvarRefExprClass: 1372 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1373 case Expr::StmtExprClass: 1374 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1375 case Expr::UnaryOperatorClass: 1376 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1377 case Expr::ArraySubscriptExprClass: 1378 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1379 case Expr::MatrixSubscriptExprClass: 1380 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1381 case Expr::OMPArraySectionExprClass: 1382 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1383 case Expr::ExtVectorElementExprClass: 1384 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1385 case Expr::MemberExprClass: 1386 return EmitMemberExpr(cast<MemberExpr>(E)); 1387 case Expr::CompoundLiteralExprClass: 1388 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1389 case Expr::ConditionalOperatorClass: 1390 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1391 case Expr::BinaryConditionalOperatorClass: 1392 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1393 case Expr::ChooseExprClass: 1394 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1395 case Expr::OpaqueValueExprClass: 1396 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1397 case Expr::SubstNonTypeTemplateParmExprClass: 1398 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1399 case Expr::ImplicitCastExprClass: 1400 case Expr::CStyleCastExprClass: 1401 case Expr::CXXFunctionalCastExprClass: 1402 case Expr::CXXStaticCastExprClass: 1403 case Expr::CXXDynamicCastExprClass: 1404 case Expr::CXXReinterpretCastExprClass: 1405 case Expr::CXXConstCastExprClass: 1406 case Expr::CXXAddrspaceCastExprClass: 1407 case Expr::ObjCBridgedCastExprClass: 1408 return EmitCastLValue(cast<CastExpr>(E)); 1409 1410 case Expr::MaterializeTemporaryExprClass: 1411 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1412 1413 case Expr::CoawaitExprClass: 1414 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1415 case Expr::CoyieldExprClass: 1416 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1417 } 1418 } 1419 1420 /// Given an object of the given canonical type, can we safely copy a 1421 /// value out of it based on its initializer? 1422 static bool isConstantEmittableObjectType(QualType type) { 1423 assert(type.isCanonical()); 1424 assert(!type->isReferenceType()); 1425 1426 // Must be const-qualified but non-volatile. 1427 Qualifiers qs = type.getLocalQualifiers(); 1428 if (!qs.hasConst() || qs.hasVolatile()) return false; 1429 1430 // Otherwise, all object types satisfy this except C++ classes with 1431 // mutable subobjects or non-trivial copy/destroy behavior. 1432 if (const auto *RT = dyn_cast<RecordType>(type)) 1433 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1434 if (RD->hasMutableFields() || !RD->isTrivial()) 1435 return false; 1436 1437 return true; 1438 } 1439 1440 /// Can we constant-emit a load of a reference to a variable of the 1441 /// given type? This is different from predicates like 1442 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1443 /// in situations that don't necessarily satisfy the language's rules 1444 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1445 /// to do this with const float variables even if those variables 1446 /// aren't marked 'constexpr'. 1447 enum ConstantEmissionKind { 1448 CEK_None, 1449 CEK_AsReferenceOnly, 1450 CEK_AsValueOrReference, 1451 CEK_AsValueOnly 1452 }; 1453 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1454 type = type.getCanonicalType(); 1455 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1456 if (isConstantEmittableObjectType(ref->getPointeeType())) 1457 return CEK_AsValueOrReference; 1458 return CEK_AsReferenceOnly; 1459 } 1460 if (isConstantEmittableObjectType(type)) 1461 return CEK_AsValueOnly; 1462 return CEK_None; 1463 } 1464 1465 /// Try to emit a reference to the given value without producing it as 1466 /// an l-value. This is just an optimization, but it avoids us needing 1467 /// to emit global copies of variables if they're named without triggering 1468 /// a formal use in a context where we can't emit a direct reference to them, 1469 /// for instance if a block or lambda or a member of a local class uses a 1470 /// const int variable or constexpr variable from an enclosing function. 1471 CodeGenFunction::ConstantEmission 1472 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1473 ValueDecl *value = refExpr->getDecl(); 1474 1475 // The value needs to be an enum constant or a constant variable. 1476 ConstantEmissionKind CEK; 1477 if (isa<ParmVarDecl>(value)) { 1478 CEK = CEK_None; 1479 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1480 CEK = checkVarTypeForConstantEmission(var->getType()); 1481 } else if (isa<EnumConstantDecl>(value)) { 1482 CEK = CEK_AsValueOnly; 1483 } else { 1484 CEK = CEK_None; 1485 } 1486 if (CEK == CEK_None) return ConstantEmission(); 1487 1488 Expr::EvalResult result; 1489 bool resultIsReference; 1490 QualType resultType; 1491 1492 // It's best to evaluate all the way as an r-value if that's permitted. 1493 if (CEK != CEK_AsReferenceOnly && 1494 refExpr->EvaluateAsRValue(result, getContext())) { 1495 resultIsReference = false; 1496 resultType = refExpr->getType(); 1497 1498 // Otherwise, try to evaluate as an l-value. 1499 } else if (CEK != CEK_AsValueOnly && 1500 refExpr->EvaluateAsLValue(result, getContext())) { 1501 resultIsReference = true; 1502 resultType = value->getType(); 1503 1504 // Failure. 1505 } else { 1506 return ConstantEmission(); 1507 } 1508 1509 // In any case, if the initializer has side-effects, abandon ship. 1510 if (result.HasSideEffects) 1511 return ConstantEmission(); 1512 1513 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1514 // referencing a global host variable by copy. In this case the lambda should 1515 // make a copy of the value of the global host variable. The DRE of the 1516 // captured reference variable cannot be emitted as load from the host 1517 // global variable as compile time constant, since the host variable is not 1518 // accessible on device. The DRE of the captured reference variable has to be 1519 // loaded from captures. 1520 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1521 refExpr->refersToEnclosingVariableOrCapture()) { 1522 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1523 if (MD && MD->getParent()->isLambda() && 1524 MD->getOverloadedOperator() == OO_Call) { 1525 const APValue::LValueBase &base = result.Val.getLValueBase(); 1526 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1527 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1528 if (!VD->hasAttr<CUDADeviceAttr>()) { 1529 return ConstantEmission(); 1530 } 1531 } 1532 } 1533 } 1534 } 1535 1536 // Emit as a constant. 1537 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1538 result.Val, resultType); 1539 1540 // Make sure we emit a debug reference to the global variable. 1541 // This should probably fire even for 1542 if (isa<VarDecl>(value)) { 1543 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1544 EmitDeclRefExprDbgValue(refExpr, result.Val); 1545 } else { 1546 assert(isa<EnumConstantDecl>(value)); 1547 EmitDeclRefExprDbgValue(refExpr, result.Val); 1548 } 1549 1550 // If we emitted a reference constant, we need to dereference that. 1551 if (resultIsReference) 1552 return ConstantEmission::forReference(C); 1553 1554 return ConstantEmission::forValue(C); 1555 } 1556 1557 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1558 const MemberExpr *ME) { 1559 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1560 // Try to emit static variable member expressions as DREs. 1561 return DeclRefExpr::Create( 1562 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1563 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1564 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1565 } 1566 return nullptr; 1567 } 1568 1569 CodeGenFunction::ConstantEmission 1570 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1571 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1572 return tryEmitAsConstant(DRE); 1573 return ConstantEmission(); 1574 } 1575 1576 llvm::Value *CodeGenFunction::emitScalarConstant( 1577 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1578 assert(Constant && "not a constant"); 1579 if (Constant.isReference()) 1580 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1581 E->getExprLoc()) 1582 .getScalarVal(); 1583 return Constant.getValue(); 1584 } 1585 1586 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1587 SourceLocation Loc) { 1588 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1589 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1590 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1591 } 1592 1593 static bool hasBooleanRepresentation(QualType Ty) { 1594 if (Ty->isBooleanType()) 1595 return true; 1596 1597 if (const EnumType *ET = Ty->getAs<EnumType>()) 1598 return ET->getDecl()->getIntegerType()->isBooleanType(); 1599 1600 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1601 return hasBooleanRepresentation(AT->getValueType()); 1602 1603 return false; 1604 } 1605 1606 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1607 llvm::APInt &Min, llvm::APInt &End, 1608 bool StrictEnums, bool IsBool) { 1609 const EnumType *ET = Ty->getAs<EnumType>(); 1610 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1611 ET && !ET->getDecl()->isFixed(); 1612 if (!IsBool && !IsRegularCPlusPlusEnum) 1613 return false; 1614 1615 if (IsBool) { 1616 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1617 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1618 } else { 1619 const EnumDecl *ED = ET->getDecl(); 1620 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1621 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1622 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1623 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1624 1625 if (NumNegativeBits) { 1626 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1627 assert(NumBits <= Bitwidth); 1628 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1629 Min = -End; 1630 } else { 1631 assert(NumPositiveBits <= Bitwidth); 1632 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1633 Min = llvm::APInt::getZero(Bitwidth); 1634 } 1635 } 1636 return true; 1637 } 1638 1639 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1640 llvm::APInt Min, End; 1641 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1642 hasBooleanRepresentation(Ty))) 1643 return nullptr; 1644 1645 llvm::MDBuilder MDHelper(getLLVMContext()); 1646 return MDHelper.createRange(Min, End); 1647 } 1648 1649 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1650 SourceLocation Loc) { 1651 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1652 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1653 if (!HasBoolCheck && !HasEnumCheck) 1654 return false; 1655 1656 bool IsBool = hasBooleanRepresentation(Ty) || 1657 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1658 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1659 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1660 if (!NeedsBoolCheck && !NeedsEnumCheck) 1661 return false; 1662 1663 // Single-bit booleans don't need to be checked. Special-case this to avoid 1664 // a bit width mismatch when handling bitfield values. This is handled by 1665 // EmitFromMemory for the non-bitfield case. 1666 if (IsBool && 1667 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1668 return false; 1669 1670 llvm::APInt Min, End; 1671 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1672 return true; 1673 1674 auto &Ctx = getLLVMContext(); 1675 SanitizerScope SanScope(this); 1676 llvm::Value *Check; 1677 --End; 1678 if (!Min) { 1679 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1680 } else { 1681 llvm::Value *Upper = 1682 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1683 llvm::Value *Lower = 1684 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1685 Check = Builder.CreateAnd(Upper, Lower); 1686 } 1687 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1688 EmitCheckTypeDescriptor(Ty)}; 1689 SanitizerMask Kind = 1690 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1691 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1692 StaticArgs, EmitCheckValue(Value)); 1693 return true; 1694 } 1695 1696 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1697 QualType Ty, 1698 SourceLocation Loc, 1699 LValueBaseInfo BaseInfo, 1700 TBAAAccessInfo TBAAInfo, 1701 bool isNontemporal) { 1702 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1703 // For better performance, handle vector loads differently. 1704 if (Ty->isVectorType()) { 1705 const llvm::Type *EltTy = Addr.getElementType(); 1706 1707 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1708 1709 // Handle vectors of size 3 like size 4 for better performance. 1710 if (VTy->getNumElements() == 3) { 1711 1712 // Bitcast to vec4 type. 1713 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1714 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1715 // Now load value. 1716 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1717 1718 // Shuffle vector to get vec3. 1719 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, 1720 "extractVec"); 1721 return EmitFromMemory(V, Ty); 1722 } 1723 } 1724 } 1725 1726 // Atomic operations have to be done on integral types. 1727 LValue AtomicLValue = 1728 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1729 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1730 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1731 } 1732 1733 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1734 if (isNontemporal) { 1735 llvm::MDNode *Node = llvm::MDNode::get( 1736 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1737 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1738 } 1739 1740 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1741 1742 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1743 // In order to prevent the optimizer from throwing away the check, don't 1744 // attach range metadata to the load. 1745 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1746 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1747 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1748 1749 return EmitFromMemory(Load, Ty); 1750 } 1751 1752 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1753 // Bool has a different representation in memory than in registers. 1754 if (hasBooleanRepresentation(Ty)) { 1755 // This should really always be an i1, but sometimes it's already 1756 // an i8, and it's awkward to track those cases down. 1757 if (Value->getType()->isIntegerTy(1)) 1758 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1759 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1760 "wrong value rep of bool"); 1761 } 1762 1763 return Value; 1764 } 1765 1766 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1767 // Bool has a different representation in memory than in registers. 1768 if (hasBooleanRepresentation(Ty)) { 1769 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1770 "wrong value rep of bool"); 1771 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1772 } 1773 1774 return Value; 1775 } 1776 1777 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1778 // MatrixType), if it points to a array (the memory type of MatrixType). 1779 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1780 bool IsVector = true) { 1781 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1782 if (ArrayTy && IsVector) { 1783 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1784 ArrayTy->getNumElements()); 1785 1786 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1787 } 1788 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1789 if (VectorTy && !IsVector) { 1790 auto *ArrayTy = llvm::ArrayType::get( 1791 VectorTy->getElementType(), 1792 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1793 1794 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1795 } 1796 1797 return Addr; 1798 } 1799 1800 // Emit a store of a matrix LValue. This may require casting the original 1801 // pointer to memory address (ArrayType) to a pointer to the value type 1802 // (VectorType). 1803 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1804 bool isInit, CodeGenFunction &CGF) { 1805 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1806 value->getType()->isVectorTy()); 1807 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1808 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1809 lvalue.isNontemporal()); 1810 } 1811 1812 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1813 bool Volatile, QualType Ty, 1814 LValueBaseInfo BaseInfo, 1815 TBAAAccessInfo TBAAInfo, 1816 bool isInit, bool isNontemporal) { 1817 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1818 // Handle vectors differently to get better performance. 1819 if (Ty->isVectorType()) { 1820 llvm::Type *SrcTy = Value->getType(); 1821 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1822 // Handle vec3 special. 1823 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1824 // Our source is a vec3, do a shuffle vector to make it a vec4. 1825 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1826 "extractVec"); 1827 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1828 } 1829 if (Addr.getElementType() != SrcTy) { 1830 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1831 } 1832 } 1833 } 1834 1835 Value = EmitToMemory(Value, Ty); 1836 1837 LValue AtomicLValue = 1838 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1839 if (Ty->isAtomicType() || 1840 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1841 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1842 return; 1843 } 1844 1845 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1846 if (isNontemporal) { 1847 llvm::MDNode *Node = 1848 llvm::MDNode::get(Store->getContext(), 1849 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1850 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1851 } 1852 1853 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1854 } 1855 1856 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1857 bool isInit) { 1858 if (lvalue.getType()->isConstantMatrixType()) { 1859 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1860 return; 1861 } 1862 1863 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1864 lvalue.getType(), lvalue.getBaseInfo(), 1865 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1866 } 1867 1868 // Emit a load of a LValue of matrix type. This may require casting the pointer 1869 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1870 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1871 CodeGenFunction &CGF) { 1872 assert(LV.getType()->isConstantMatrixType()); 1873 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1874 LV.setAddress(Addr); 1875 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1876 } 1877 1878 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1879 /// method emits the address of the lvalue, then loads the result as an rvalue, 1880 /// returning the rvalue. 1881 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1882 if (LV.isObjCWeak()) { 1883 // load of a __weak object. 1884 Address AddrWeakObj = LV.getAddress(*this); 1885 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1886 AddrWeakObj)); 1887 } 1888 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1889 // In MRC mode, we do a load+autorelease. 1890 if (!getLangOpts().ObjCAutoRefCount) { 1891 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1892 } 1893 1894 // In ARC mode, we load retained and then consume the value. 1895 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1896 Object = EmitObjCConsumeObject(LV.getType(), Object); 1897 return RValue::get(Object); 1898 } 1899 1900 if (LV.isSimple()) { 1901 assert(!LV.getType()->isFunctionType()); 1902 1903 if (LV.getType()->isConstantMatrixType()) 1904 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1905 1906 // Everything needs a load. 1907 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1908 } 1909 1910 if (LV.isVectorElt()) { 1911 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1912 LV.isVolatileQualified()); 1913 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1914 "vecext")); 1915 } 1916 1917 // If this is a reference to a subset of the elements of a vector, either 1918 // shuffle the input or extract/insert them as appropriate. 1919 if (LV.isExtVectorElt()) { 1920 return EmitLoadOfExtVectorElementLValue(LV); 1921 } 1922 1923 // Global Register variables always invoke intrinsics 1924 if (LV.isGlobalReg()) 1925 return EmitLoadOfGlobalRegLValue(LV); 1926 1927 if (LV.isMatrixElt()) { 1928 llvm::Value *Idx = LV.getMatrixIdx(); 1929 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1930 const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>(); 1931 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1932 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1933 } 1934 llvm::LoadInst *Load = 1935 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1936 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1937 } 1938 1939 assert(LV.isBitField() && "Unknown LValue type!"); 1940 return EmitLoadOfBitfieldLValue(LV, Loc); 1941 } 1942 1943 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1944 SourceLocation Loc) { 1945 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1946 1947 // Get the output type. 1948 llvm::Type *ResLTy = ConvertType(LV.getType()); 1949 1950 Address Ptr = LV.getBitFieldAddress(); 1951 llvm::Value *Val = 1952 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1953 1954 bool UseVolatile = LV.isVolatileQualified() && 1955 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1956 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1957 const unsigned StorageSize = 1958 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1959 if (Info.IsSigned) { 1960 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1961 unsigned HighBits = StorageSize - Offset - Info.Size; 1962 if (HighBits) 1963 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1964 if (Offset + HighBits) 1965 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1966 } else { 1967 if (Offset) 1968 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1969 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1970 Val = Builder.CreateAnd( 1971 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1972 } 1973 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1974 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1975 return RValue::get(Val); 1976 } 1977 1978 // If this is a reference to a subset of the elements of a vector, create an 1979 // appropriate shufflevector. 1980 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1981 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1982 LV.isVolatileQualified()); 1983 1984 const llvm::Constant *Elts = LV.getExtVectorElts(); 1985 1986 // If the result of the expression is a non-vector type, we must be extracting 1987 // a single element. Just codegen as an extractelement. 1988 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1989 if (!ExprVT) { 1990 unsigned InIdx = getAccessedFieldNo(0, Elts); 1991 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1992 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1993 } 1994 1995 // Always use shuffle vector to try to retain the original program structure 1996 unsigned NumResultElts = ExprVT->getNumElements(); 1997 1998 SmallVector<int, 4> Mask; 1999 for (unsigned i = 0; i != NumResultElts; ++i) 2000 Mask.push_back(getAccessedFieldNo(i, Elts)); 2001 2002 Vec = Builder.CreateShuffleVector(Vec, Mask); 2003 return RValue::get(Vec); 2004 } 2005 2006 /// Generates lvalue for partial ext_vector access. 2007 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2008 Address VectorAddress = LV.getExtVectorAddress(); 2009 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2010 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2011 2012 Address CastToPointerElement = 2013 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2014 "conv.ptr.element"); 2015 2016 const llvm::Constant *Elts = LV.getExtVectorElts(); 2017 unsigned ix = getAccessedFieldNo(0, Elts); 2018 2019 Address VectorBasePtrPlusIx = 2020 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2021 "vector.elt"); 2022 2023 return VectorBasePtrPlusIx; 2024 } 2025 2026 /// Load of global gamed gegisters are always calls to intrinsics. 2027 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2028 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2029 "Bad type for register variable"); 2030 llvm::MDNode *RegName = cast<llvm::MDNode>( 2031 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2032 2033 // We accept integer and pointer types only 2034 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2035 llvm::Type *Ty = OrigTy; 2036 if (OrigTy->isPointerTy()) 2037 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2038 llvm::Type *Types[] = { Ty }; 2039 2040 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2041 llvm::Value *Call = Builder.CreateCall( 2042 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2043 if (OrigTy->isPointerTy()) 2044 Call = Builder.CreateIntToPtr(Call, OrigTy); 2045 return RValue::get(Call); 2046 } 2047 2048 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2049 /// lvalue, where both are guaranteed to the have the same type, and that type 2050 /// is 'Ty'. 2051 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2052 bool isInit) { 2053 if (!Dst.isSimple()) { 2054 if (Dst.isVectorElt()) { 2055 // Read/modify/write the vector, inserting the new element. 2056 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2057 Dst.isVolatileQualified()); 2058 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2059 Dst.getVectorIdx(), "vecins"); 2060 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2061 Dst.isVolatileQualified()); 2062 return; 2063 } 2064 2065 // If this is an update of extended vector elements, insert them as 2066 // appropriate. 2067 if (Dst.isExtVectorElt()) 2068 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2069 2070 if (Dst.isGlobalReg()) 2071 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2072 2073 if (Dst.isMatrixElt()) { 2074 llvm::Value *Idx = Dst.getMatrixIdx(); 2075 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2076 const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>(); 2077 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 2078 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2079 } 2080 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2081 llvm::Value *Vec = 2082 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2083 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2084 Dst.isVolatileQualified()); 2085 return; 2086 } 2087 2088 assert(Dst.isBitField() && "Unknown LValue type"); 2089 return EmitStoreThroughBitfieldLValue(Src, Dst); 2090 } 2091 2092 // There's special magic for assigning into an ARC-qualified l-value. 2093 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2094 switch (Lifetime) { 2095 case Qualifiers::OCL_None: 2096 llvm_unreachable("present but none"); 2097 2098 case Qualifiers::OCL_ExplicitNone: 2099 // nothing special 2100 break; 2101 2102 case Qualifiers::OCL_Strong: 2103 if (isInit) { 2104 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2105 break; 2106 } 2107 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2108 return; 2109 2110 case Qualifiers::OCL_Weak: 2111 if (isInit) 2112 // Initialize and then skip the primitive store. 2113 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2114 else 2115 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2116 /*ignore*/ true); 2117 return; 2118 2119 case Qualifiers::OCL_Autoreleasing: 2120 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2121 Src.getScalarVal())); 2122 // fall into the normal path 2123 break; 2124 } 2125 } 2126 2127 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2128 // load of a __weak object. 2129 Address LvalueDst = Dst.getAddress(*this); 2130 llvm::Value *src = Src.getScalarVal(); 2131 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2132 return; 2133 } 2134 2135 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2136 // load of a __strong object. 2137 Address LvalueDst = Dst.getAddress(*this); 2138 llvm::Value *src = Src.getScalarVal(); 2139 if (Dst.isObjCIvar()) { 2140 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2141 llvm::Type *ResultType = IntPtrTy; 2142 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2143 llvm::Value *RHS = dst.getPointer(); 2144 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2145 llvm::Value *LHS = 2146 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2147 "sub.ptr.lhs.cast"); 2148 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2149 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2150 BytesBetween); 2151 } else if (Dst.isGlobalObjCRef()) { 2152 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2153 Dst.isThreadLocalRef()); 2154 } 2155 else 2156 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2157 return; 2158 } 2159 2160 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2161 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2162 } 2163 2164 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2165 llvm::Value **Result) { 2166 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2167 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2168 Address Ptr = Dst.getBitFieldAddress(); 2169 2170 // Get the source value, truncated to the width of the bit-field. 2171 llvm::Value *SrcVal = Src.getScalarVal(); 2172 2173 // Cast the source to the storage type and shift it into place. 2174 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2175 /*isSigned=*/false); 2176 llvm::Value *MaskedVal = SrcVal; 2177 2178 const bool UseVolatile = 2179 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2180 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2181 const unsigned StorageSize = 2182 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2183 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2184 // See if there are other bits in the bitfield's storage we'll need to load 2185 // and mask together with source before storing. 2186 if (StorageSize != Info.Size) { 2187 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2188 llvm::Value *Val = 2189 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2190 2191 // Mask the source value as needed. 2192 if (!hasBooleanRepresentation(Dst.getType())) 2193 SrcVal = Builder.CreateAnd( 2194 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2195 "bf.value"); 2196 MaskedVal = SrcVal; 2197 if (Offset) 2198 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2199 2200 // Mask out the original value. 2201 Val = Builder.CreateAnd( 2202 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2203 "bf.clear"); 2204 2205 // Or together the unchanged values and the source value. 2206 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2207 } else { 2208 assert(Offset == 0); 2209 // According to the AACPS: 2210 // When a volatile bit-field is written, and its container does not overlap 2211 // with any non-bit-field member, its container must be read exactly once 2212 // and written exactly once using the access width appropriate to the type 2213 // of the container. The two accesses are not atomic. 2214 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2215 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2216 Builder.CreateLoad(Ptr, true, "bf.load"); 2217 } 2218 2219 // Write the new value back out. 2220 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2221 2222 // Return the new value of the bit-field, if requested. 2223 if (Result) { 2224 llvm::Value *ResultVal = MaskedVal; 2225 2226 // Sign extend the value if needed. 2227 if (Info.IsSigned) { 2228 assert(Info.Size <= StorageSize); 2229 unsigned HighBits = StorageSize - Info.Size; 2230 if (HighBits) { 2231 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2232 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2233 } 2234 } 2235 2236 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2237 "bf.result.cast"); 2238 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2239 } 2240 } 2241 2242 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2243 LValue Dst) { 2244 // This access turns into a read/modify/write of the vector. Load the input 2245 // value now. 2246 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2247 Dst.isVolatileQualified()); 2248 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2249 2250 llvm::Value *SrcVal = Src.getScalarVal(); 2251 2252 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2253 unsigned NumSrcElts = VTy->getNumElements(); 2254 unsigned NumDstElts = 2255 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2256 if (NumDstElts == NumSrcElts) { 2257 // Use shuffle vector is the src and destination are the same number of 2258 // elements and restore the vector mask since it is on the side it will be 2259 // stored. 2260 SmallVector<int, 4> Mask(NumDstElts); 2261 for (unsigned i = 0; i != NumSrcElts; ++i) 2262 Mask[getAccessedFieldNo(i, Elts)] = i; 2263 2264 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2265 } else if (NumDstElts > NumSrcElts) { 2266 // Extended the source vector to the same length and then shuffle it 2267 // into the destination. 2268 // FIXME: since we're shuffling with undef, can we just use the indices 2269 // into that? This could be simpler. 2270 SmallVector<int, 4> ExtMask; 2271 for (unsigned i = 0; i != NumSrcElts; ++i) 2272 ExtMask.push_back(i); 2273 ExtMask.resize(NumDstElts, -1); 2274 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2275 // build identity 2276 SmallVector<int, 4> Mask; 2277 for (unsigned i = 0; i != NumDstElts; ++i) 2278 Mask.push_back(i); 2279 2280 // When the vector size is odd and .odd or .hi is used, the last element 2281 // of the Elts constant array will be one past the size of the vector. 2282 // Ignore the last element here, if it is greater than the mask size. 2283 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2284 NumSrcElts--; 2285 2286 // modify when what gets shuffled in 2287 for (unsigned i = 0; i != NumSrcElts; ++i) 2288 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2289 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2290 } else { 2291 // We should never shorten the vector 2292 llvm_unreachable("unexpected shorten vector length"); 2293 } 2294 } else { 2295 // If the Src is a scalar (not a vector) it must be updating one element. 2296 unsigned InIdx = getAccessedFieldNo(0, Elts); 2297 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2298 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2299 } 2300 2301 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2302 Dst.isVolatileQualified()); 2303 } 2304 2305 /// Store of global named registers are always calls to intrinsics. 2306 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2307 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2308 "Bad type for register variable"); 2309 llvm::MDNode *RegName = cast<llvm::MDNode>( 2310 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2311 assert(RegName && "Register LValue is not metadata"); 2312 2313 // We accept integer and pointer types only 2314 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2315 llvm::Type *Ty = OrigTy; 2316 if (OrigTy->isPointerTy()) 2317 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2318 llvm::Type *Types[] = { Ty }; 2319 2320 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2321 llvm::Value *Value = Src.getScalarVal(); 2322 if (OrigTy->isPointerTy()) 2323 Value = Builder.CreatePtrToInt(Value, Ty); 2324 Builder.CreateCall( 2325 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2326 } 2327 2328 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2329 // generating write-barries API. It is currently a global, ivar, 2330 // or neither. 2331 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2332 LValue &LV, 2333 bool IsMemberAccess=false) { 2334 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2335 return; 2336 2337 if (isa<ObjCIvarRefExpr>(E)) { 2338 QualType ExpTy = E->getType(); 2339 if (IsMemberAccess && ExpTy->isPointerType()) { 2340 // If ivar is a structure pointer, assigning to field of 2341 // this struct follows gcc's behavior and makes it a non-ivar 2342 // writer-barrier conservatively. 2343 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2344 if (ExpTy->isRecordType()) { 2345 LV.setObjCIvar(false); 2346 return; 2347 } 2348 } 2349 LV.setObjCIvar(true); 2350 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2351 LV.setBaseIvarExp(Exp->getBase()); 2352 LV.setObjCArray(E->getType()->isArrayType()); 2353 return; 2354 } 2355 2356 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2357 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2358 if (VD->hasGlobalStorage()) { 2359 LV.setGlobalObjCRef(true); 2360 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2361 } 2362 } 2363 LV.setObjCArray(E->getType()->isArrayType()); 2364 return; 2365 } 2366 2367 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2368 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2369 return; 2370 } 2371 2372 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2373 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2374 if (LV.isObjCIvar()) { 2375 // If cast is to a structure pointer, follow gcc's behavior and make it 2376 // a non-ivar write-barrier. 2377 QualType ExpTy = E->getType(); 2378 if (ExpTy->isPointerType()) 2379 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2380 if (ExpTy->isRecordType()) 2381 LV.setObjCIvar(false); 2382 } 2383 return; 2384 } 2385 2386 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2387 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2388 return; 2389 } 2390 2391 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2392 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2393 return; 2394 } 2395 2396 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2397 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2398 return; 2399 } 2400 2401 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2402 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2403 return; 2404 } 2405 2406 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2407 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2408 if (LV.isObjCIvar() && !LV.isObjCArray()) 2409 // Using array syntax to assigning to what an ivar points to is not 2410 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2411 LV.setObjCIvar(false); 2412 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2413 // Using array syntax to assigning to what global points to is not 2414 // same as assigning to the global itself. {id *G;} G[i] = 0; 2415 LV.setGlobalObjCRef(false); 2416 return; 2417 } 2418 2419 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2420 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2421 // We don't know if member is an 'ivar', but this flag is looked at 2422 // only in the context of LV.isObjCIvar(). 2423 LV.setObjCArray(E->getType()->isArrayType()); 2424 return; 2425 } 2426 } 2427 2428 static llvm::Value * 2429 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2430 llvm::Value *V, llvm::Type *IRType, 2431 StringRef Name = StringRef()) { 2432 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2433 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2434 } 2435 2436 static LValue EmitThreadPrivateVarDeclLValue( 2437 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2438 llvm::Type *RealVarTy, SourceLocation Loc) { 2439 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2440 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2441 CGF, VD, Addr, Loc); 2442 else 2443 Addr = 2444 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2445 2446 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2447 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2448 } 2449 2450 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2451 const VarDecl *VD, QualType T) { 2452 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2453 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2454 // Return an invalid address if variable is MT_To and unified 2455 // memory is not enabled. For all other cases: MT_Link and 2456 // MT_To with unified memory, return a valid address. 2457 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2458 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2459 return Address::invalid(); 2460 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2461 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2462 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2463 "Expected link clause OR to clause with unified memory enabled."); 2464 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2465 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2466 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2467 } 2468 2469 Address 2470 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2471 LValueBaseInfo *PointeeBaseInfo, 2472 TBAAAccessInfo *PointeeTBAAInfo) { 2473 llvm::LoadInst *Load = 2474 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2475 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2476 2477 CharUnits Align = CGM.getNaturalTypeAlignment( 2478 RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo, 2479 /* forPointeeType= */ true); 2480 return Address(Load, Align); 2481 } 2482 2483 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2484 LValueBaseInfo PointeeBaseInfo; 2485 TBAAAccessInfo PointeeTBAAInfo; 2486 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2487 &PointeeTBAAInfo); 2488 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2489 PointeeBaseInfo, PointeeTBAAInfo); 2490 } 2491 2492 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2493 const PointerType *PtrTy, 2494 LValueBaseInfo *BaseInfo, 2495 TBAAAccessInfo *TBAAInfo) { 2496 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2497 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), 2498 BaseInfo, TBAAInfo, 2499 /*forPointeeType=*/true)); 2500 } 2501 2502 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2503 const PointerType *PtrTy) { 2504 LValueBaseInfo BaseInfo; 2505 TBAAAccessInfo TBAAInfo; 2506 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2507 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2508 } 2509 2510 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2511 const Expr *E, const VarDecl *VD) { 2512 QualType T = E->getType(); 2513 2514 // If it's thread_local, emit a call to its wrapper function instead. 2515 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2516 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2517 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2518 // Check if the variable is marked as declare target with link clause in 2519 // device codegen. 2520 if (CGF.getLangOpts().OpenMPIsDevice) { 2521 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2522 if (Addr.isValid()) 2523 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2524 } 2525 2526 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2527 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2528 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2529 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2530 Address Addr(V, Alignment); 2531 // Emit reference to the private copy of the variable if it is an OpenMP 2532 // threadprivate variable. 2533 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2534 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2535 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2536 E->getExprLoc()); 2537 } 2538 LValue LV = VD->getType()->isReferenceType() ? 2539 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2540 AlignmentSource::Decl) : 2541 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2542 setObjCGCLValueClass(CGF.getContext(), E, LV); 2543 return LV; 2544 } 2545 2546 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2547 GlobalDecl GD) { 2548 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2549 if (FD->hasAttr<WeakRefAttr>()) { 2550 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2551 return aliasee.getPointer(); 2552 } 2553 2554 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2555 if (!FD->hasPrototype()) { 2556 if (const FunctionProtoType *Proto = 2557 FD->getType()->getAs<FunctionProtoType>()) { 2558 // Ugly case: for a K&R-style definition, the type of the definition 2559 // isn't the same as the type of a use. Correct for this with a 2560 // bitcast. 2561 QualType NoProtoType = 2562 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2563 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2564 V = llvm::ConstantExpr::getBitCast(V, 2565 CGM.getTypes().ConvertType(NoProtoType)); 2566 } 2567 } 2568 return V; 2569 } 2570 2571 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2572 GlobalDecl GD) { 2573 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2574 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2575 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2576 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2577 AlignmentSource::Decl); 2578 } 2579 2580 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2581 llvm::Value *ThisValue) { 2582 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2583 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2584 return CGF.EmitLValueForField(LV, FD); 2585 } 2586 2587 /// Named Registers are named metadata pointing to the register name 2588 /// which will be read from/written to as an argument to the intrinsic 2589 /// @llvm.read/write_register. 2590 /// So far, only the name is being passed down, but other options such as 2591 /// register type, allocation type or even optimization options could be 2592 /// passed down via the metadata node. 2593 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2594 SmallString<64> Name("llvm.named.register."); 2595 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2596 assert(Asm->getLabel().size() < 64-Name.size() && 2597 "Register name too big"); 2598 Name.append(Asm->getLabel()); 2599 llvm::NamedMDNode *M = 2600 CGM.getModule().getOrInsertNamedMetadata(Name); 2601 if (M->getNumOperands() == 0) { 2602 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2603 Asm->getLabel()); 2604 llvm::Metadata *Ops[] = {Str}; 2605 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2606 } 2607 2608 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2609 2610 llvm::Value *Ptr = 2611 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2612 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2613 } 2614 2615 /// Determine whether we can emit a reference to \p VD from the current 2616 /// context, despite not necessarily having seen an odr-use of the variable in 2617 /// this context. 2618 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2619 const DeclRefExpr *E, 2620 const VarDecl *VD, 2621 bool IsConstant) { 2622 // For a variable declared in an enclosing scope, do not emit a spurious 2623 // reference even if we have a capture, as that will emit an unwarranted 2624 // reference to our capture state, and will likely generate worse code than 2625 // emitting a local copy. 2626 if (E->refersToEnclosingVariableOrCapture()) 2627 return false; 2628 2629 // For a local declaration declared in this function, we can always reference 2630 // it even if we don't have an odr-use. 2631 if (VD->hasLocalStorage()) { 2632 return VD->getDeclContext() == 2633 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2634 } 2635 2636 // For a global declaration, we can emit a reference to it if we know 2637 // for sure that we are able to emit a definition of it. 2638 VD = VD->getDefinition(CGF.getContext()); 2639 if (!VD) 2640 return false; 2641 2642 // Don't emit a spurious reference if it might be to a variable that only 2643 // exists on a different device / target. 2644 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2645 // cross-target reference. 2646 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2647 CGF.getLangOpts().OpenCL) { 2648 return false; 2649 } 2650 2651 // We can emit a spurious reference only if the linkage implies that we'll 2652 // be emitting a non-interposable symbol that will be retained until link 2653 // time. 2654 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2655 case llvm::GlobalValue::ExternalLinkage: 2656 case llvm::GlobalValue::LinkOnceODRLinkage: 2657 case llvm::GlobalValue::WeakODRLinkage: 2658 case llvm::GlobalValue::InternalLinkage: 2659 case llvm::GlobalValue::PrivateLinkage: 2660 return true; 2661 default: 2662 return false; 2663 } 2664 } 2665 2666 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2667 const NamedDecl *ND = E->getDecl(); 2668 QualType T = E->getType(); 2669 2670 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2671 "should not emit an unevaluated operand"); 2672 2673 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2674 // Global Named registers access via intrinsics only 2675 if (VD->getStorageClass() == SC_Register && 2676 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2677 return EmitGlobalNamedRegister(VD, CGM); 2678 2679 // If this DeclRefExpr does not constitute an odr-use of the variable, 2680 // we're not permitted to emit a reference to it in general, and it might 2681 // not be captured if capture would be necessary for a use. Emit the 2682 // constant value directly instead. 2683 if (E->isNonOdrUse() == NOUR_Constant && 2684 (VD->getType()->isReferenceType() || 2685 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2686 VD->getAnyInitializer(VD); 2687 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2688 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2689 assert(Val && "failed to emit constant expression"); 2690 2691 Address Addr = Address::invalid(); 2692 if (!VD->getType()->isReferenceType()) { 2693 // Spill the constant value to a global. 2694 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2695 getContext().getDeclAlign(VD)); 2696 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2697 auto *PTy = llvm::PointerType::get( 2698 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2699 if (PTy != Addr.getType()) 2700 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2701 } else { 2702 // Should we be using the alignment of the constant pointer we emitted? 2703 CharUnits Alignment = 2704 CGM.getNaturalTypeAlignment(E->getType(), 2705 /* BaseInfo= */ nullptr, 2706 /* TBAAInfo= */ nullptr, 2707 /* forPointeeType= */ true); 2708 Addr = Address(Val, Alignment); 2709 } 2710 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2711 } 2712 2713 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2714 2715 // Check for captured variables. 2716 if (E->refersToEnclosingVariableOrCapture()) { 2717 VD = VD->getCanonicalDecl(); 2718 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2719 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2720 if (CapturedStmtInfo) { 2721 auto I = LocalDeclMap.find(VD); 2722 if (I != LocalDeclMap.end()) { 2723 LValue CapLVal; 2724 if (VD->getType()->isReferenceType()) 2725 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2726 AlignmentSource::Decl); 2727 else 2728 CapLVal = MakeAddrLValue(I->second, T); 2729 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2730 // in simd context. 2731 if (getLangOpts().OpenMP && 2732 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2733 CapLVal.setNontemporal(/*Value=*/true); 2734 return CapLVal; 2735 } 2736 LValue CapLVal = 2737 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2738 CapturedStmtInfo->getContextValue()); 2739 CapLVal = MakeAddrLValue( 2740 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2741 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2742 CapLVal.getTBAAInfo()); 2743 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2744 // in simd context. 2745 if (getLangOpts().OpenMP && 2746 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2747 CapLVal.setNontemporal(/*Value=*/true); 2748 return CapLVal; 2749 } 2750 2751 assert(isa<BlockDecl>(CurCodeDecl)); 2752 Address addr = GetAddrOfBlockDecl(VD); 2753 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2754 } 2755 } 2756 2757 // FIXME: We should be able to assert this for FunctionDecls as well! 2758 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2759 // those with a valid source location. 2760 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2761 !E->getLocation().isValid()) && 2762 "Should not use decl without marking it used!"); 2763 2764 if (ND->hasAttr<WeakRefAttr>()) { 2765 const auto *VD = cast<ValueDecl>(ND); 2766 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2767 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2768 } 2769 2770 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2771 // Check if this is a global variable. 2772 if (VD->hasLinkage() || VD->isStaticDataMember()) 2773 return EmitGlobalVarDeclLValue(*this, E, VD); 2774 2775 Address addr = Address::invalid(); 2776 2777 // The variable should generally be present in the local decl map. 2778 auto iter = LocalDeclMap.find(VD); 2779 if (iter != LocalDeclMap.end()) { 2780 addr = iter->second; 2781 2782 // Otherwise, it might be static local we haven't emitted yet for 2783 // some reason; most likely, because it's in an outer function. 2784 } else if (VD->isStaticLocal()) { 2785 addr = Address(CGM.getOrCreateStaticVarDecl( 2786 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2787 getContext().getDeclAlign(VD)); 2788 2789 // No other cases for now. 2790 } else { 2791 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2792 } 2793 2794 2795 // Check for OpenMP threadprivate variables. 2796 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2797 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2798 return EmitThreadPrivateVarDeclLValue( 2799 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2800 E->getExprLoc()); 2801 } 2802 2803 // Drill into block byref variables. 2804 bool isBlockByref = VD->isEscapingByref(); 2805 if (isBlockByref) { 2806 addr = emitBlockByrefAddress(addr, VD); 2807 } 2808 2809 // Drill into reference types. 2810 LValue LV = VD->getType()->isReferenceType() ? 2811 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2812 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2813 2814 bool isLocalStorage = VD->hasLocalStorage(); 2815 2816 bool NonGCable = isLocalStorage && 2817 !VD->getType()->isReferenceType() && 2818 !isBlockByref; 2819 if (NonGCable) { 2820 LV.getQuals().removeObjCGCAttr(); 2821 LV.setNonGC(true); 2822 } 2823 2824 bool isImpreciseLifetime = 2825 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2826 if (isImpreciseLifetime) 2827 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2828 setObjCGCLValueClass(getContext(), E, LV); 2829 return LV; 2830 } 2831 2832 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2833 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2834 2835 // Emit debuginfo for the function declaration if the target wants to. 2836 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2837 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2838 auto *Fn = 2839 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2840 if (!Fn->getSubprogram()) 2841 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2842 } 2843 } 2844 2845 return LV; 2846 } 2847 2848 // FIXME: While we're emitting a binding from an enclosing scope, all other 2849 // DeclRefExprs we see should be implicitly treated as if they also refer to 2850 // an enclosing scope. 2851 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2852 return EmitLValue(BD->getBinding()); 2853 2854 // We can form DeclRefExprs naming GUID declarations when reconstituting 2855 // non-type template parameters into expressions. 2856 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2857 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2858 AlignmentSource::Decl); 2859 2860 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2861 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2862 AlignmentSource::Decl); 2863 2864 llvm_unreachable("Unhandled DeclRefExpr"); 2865 } 2866 2867 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2868 // __extension__ doesn't affect lvalue-ness. 2869 if (E->getOpcode() == UO_Extension) 2870 return EmitLValue(E->getSubExpr()); 2871 2872 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2873 switch (E->getOpcode()) { 2874 default: llvm_unreachable("Unknown unary operator lvalue!"); 2875 case UO_Deref: { 2876 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2877 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2878 2879 LValueBaseInfo BaseInfo; 2880 TBAAAccessInfo TBAAInfo; 2881 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2882 &TBAAInfo); 2883 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2884 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2885 2886 // We should not generate __weak write barrier on indirect reference 2887 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2888 // But, we continue to generate __strong write barrier on indirect write 2889 // into a pointer to object. 2890 if (getLangOpts().ObjC && 2891 getLangOpts().getGC() != LangOptions::NonGC && 2892 LV.isObjCWeak()) 2893 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2894 return LV; 2895 } 2896 case UO_Real: 2897 case UO_Imag: { 2898 LValue LV = EmitLValue(E->getSubExpr()); 2899 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2900 2901 // __real is valid on scalars. This is a faster way of testing that. 2902 // __imag can only produce an rvalue on scalars. 2903 if (E->getOpcode() == UO_Real && 2904 !LV.getAddress(*this).getElementType()->isStructTy()) { 2905 assert(E->getSubExpr()->getType()->isArithmeticType()); 2906 return LV; 2907 } 2908 2909 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2910 2911 Address Component = 2912 (E->getOpcode() == UO_Real 2913 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2914 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2915 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2916 CGM.getTBAAInfoForSubobject(LV, T)); 2917 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2918 return ElemLV; 2919 } 2920 case UO_PreInc: 2921 case UO_PreDec: { 2922 LValue LV = EmitLValue(E->getSubExpr()); 2923 bool isInc = E->getOpcode() == UO_PreInc; 2924 2925 if (E->getType()->isAnyComplexType()) 2926 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2927 else 2928 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2929 return LV; 2930 } 2931 } 2932 } 2933 2934 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2935 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2936 E->getType(), AlignmentSource::Decl); 2937 } 2938 2939 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2940 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2941 E->getType(), AlignmentSource::Decl); 2942 } 2943 2944 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2945 auto SL = E->getFunctionName(); 2946 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2947 StringRef FnName = CurFn->getName(); 2948 if (FnName.startswith("\01")) 2949 FnName = FnName.substr(1); 2950 StringRef NameItems[] = { 2951 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2952 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2953 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2954 std::string Name = std::string(SL->getString()); 2955 if (!Name.empty()) { 2956 unsigned Discriminator = 2957 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2958 if (Discriminator) 2959 Name += "_" + Twine(Discriminator + 1).str(); 2960 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2961 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2962 } else { 2963 auto C = 2964 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2965 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2966 } 2967 } 2968 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2969 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2970 } 2971 2972 /// Emit a type description suitable for use by a runtime sanitizer library. The 2973 /// format of a type descriptor is 2974 /// 2975 /// \code 2976 /// { i16 TypeKind, i16 TypeInfo } 2977 /// \endcode 2978 /// 2979 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2980 /// integer, 1 for a floating point value, and -1 for anything else. 2981 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2982 // Only emit each type's descriptor once. 2983 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2984 return C; 2985 2986 uint16_t TypeKind = -1; 2987 uint16_t TypeInfo = 0; 2988 2989 if (T->isIntegerType()) { 2990 TypeKind = 0; 2991 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2992 (T->isSignedIntegerType() ? 1 : 0); 2993 } else if (T->isFloatingType()) { 2994 TypeKind = 1; 2995 TypeInfo = getContext().getTypeSize(T); 2996 } 2997 2998 // Format the type name as if for a diagnostic, including quotes and 2999 // optionally an 'aka'. 3000 SmallString<32> Buffer; 3001 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3002 (intptr_t)T.getAsOpaquePtr(), 3003 StringRef(), StringRef(), None, Buffer, 3004 None); 3005 3006 llvm::Constant *Components[] = { 3007 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3008 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3009 }; 3010 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3011 3012 auto *GV = new llvm::GlobalVariable( 3013 CGM.getModule(), Descriptor->getType(), 3014 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3015 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3016 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3017 3018 // Remember the descriptor for this type. 3019 CGM.setTypeDescriptorInMap(T, GV); 3020 3021 return GV; 3022 } 3023 3024 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3025 llvm::Type *TargetTy = IntPtrTy; 3026 3027 if (V->getType() == TargetTy) 3028 return V; 3029 3030 // Floating-point types which fit into intptr_t are bitcast to integers 3031 // and then passed directly (after zero-extension, if necessary). 3032 if (V->getType()->isFloatingPointTy()) { 3033 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3034 if (Bits <= TargetTy->getIntegerBitWidth()) 3035 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3036 Bits)); 3037 } 3038 3039 // Integers which fit in intptr_t are zero-extended and passed directly. 3040 if (V->getType()->isIntegerTy() && 3041 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3042 return Builder.CreateZExt(V, TargetTy); 3043 3044 // Pointers are passed directly, everything else is passed by address. 3045 if (!V->getType()->isPointerTy()) { 3046 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3047 Builder.CreateStore(V, Ptr); 3048 V = Ptr.getPointer(); 3049 } 3050 return Builder.CreatePtrToInt(V, TargetTy); 3051 } 3052 3053 /// Emit a representation of a SourceLocation for passing to a handler 3054 /// in a sanitizer runtime library. The format for this data is: 3055 /// \code 3056 /// struct SourceLocation { 3057 /// const char *Filename; 3058 /// int32_t Line, Column; 3059 /// }; 3060 /// \endcode 3061 /// For an invalid SourceLocation, the Filename pointer is null. 3062 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3063 llvm::Constant *Filename; 3064 int Line, Column; 3065 3066 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3067 if (PLoc.isValid()) { 3068 StringRef FilenameString = PLoc.getFilename(); 3069 3070 int PathComponentsToStrip = 3071 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3072 if (PathComponentsToStrip < 0) { 3073 assert(PathComponentsToStrip != INT_MIN); 3074 int PathComponentsToKeep = -PathComponentsToStrip; 3075 auto I = llvm::sys::path::rbegin(FilenameString); 3076 auto E = llvm::sys::path::rend(FilenameString); 3077 while (I != E && --PathComponentsToKeep) 3078 ++I; 3079 3080 FilenameString = FilenameString.substr(I - E); 3081 } else if (PathComponentsToStrip > 0) { 3082 auto I = llvm::sys::path::begin(FilenameString); 3083 auto E = llvm::sys::path::end(FilenameString); 3084 while (I != E && PathComponentsToStrip--) 3085 ++I; 3086 3087 if (I != E) 3088 FilenameString = 3089 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3090 else 3091 FilenameString = llvm::sys::path::filename(FilenameString); 3092 } 3093 3094 auto FilenameGV = 3095 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3096 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3097 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3098 Filename = FilenameGV.getPointer(); 3099 Line = PLoc.getLine(); 3100 Column = PLoc.getColumn(); 3101 } else { 3102 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3103 Line = Column = 0; 3104 } 3105 3106 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3107 Builder.getInt32(Column)}; 3108 3109 return llvm::ConstantStruct::getAnon(Data); 3110 } 3111 3112 namespace { 3113 /// Specify under what conditions this check can be recovered 3114 enum class CheckRecoverableKind { 3115 /// Always terminate program execution if this check fails. 3116 Unrecoverable, 3117 /// Check supports recovering, runtime has both fatal (noreturn) and 3118 /// non-fatal handlers for this check. 3119 Recoverable, 3120 /// Runtime conditionally aborts, always need to support recovery. 3121 AlwaysRecoverable 3122 }; 3123 } 3124 3125 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3126 assert(Kind.countPopulation() == 1); 3127 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3128 return CheckRecoverableKind::AlwaysRecoverable; 3129 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3130 return CheckRecoverableKind::Unrecoverable; 3131 else 3132 return CheckRecoverableKind::Recoverable; 3133 } 3134 3135 namespace { 3136 struct SanitizerHandlerInfo { 3137 char const *const Name; 3138 unsigned Version; 3139 }; 3140 } 3141 3142 const SanitizerHandlerInfo SanitizerHandlers[] = { 3143 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3144 LIST_SANITIZER_CHECKS 3145 #undef SANITIZER_CHECK 3146 }; 3147 3148 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3149 llvm::FunctionType *FnType, 3150 ArrayRef<llvm::Value *> FnArgs, 3151 SanitizerHandler CheckHandler, 3152 CheckRecoverableKind RecoverKind, bool IsFatal, 3153 llvm::BasicBlock *ContBB) { 3154 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3155 Optional<ApplyDebugLocation> DL; 3156 if (!CGF.Builder.getCurrentDebugLocation()) { 3157 // Ensure that the call has at least an artificial debug location. 3158 DL.emplace(CGF, SourceLocation()); 3159 } 3160 bool NeedsAbortSuffix = 3161 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3162 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3163 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3164 const StringRef CheckName = CheckInfo.Name; 3165 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3166 if (CheckInfo.Version && !MinimalRuntime) 3167 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3168 if (MinimalRuntime) 3169 FnName += "_minimal"; 3170 if (NeedsAbortSuffix) 3171 FnName += "_abort"; 3172 bool MayReturn = 3173 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3174 3175 llvm::AttrBuilder B; 3176 if (!MayReturn) { 3177 B.addAttribute(llvm::Attribute::NoReturn) 3178 .addAttribute(llvm::Attribute::NoUnwind); 3179 } 3180 B.addAttribute(llvm::Attribute::UWTable); 3181 3182 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3183 FnType, FnName, 3184 llvm::AttributeList::get(CGF.getLLVMContext(), 3185 llvm::AttributeList::FunctionIndex, B), 3186 /*Local=*/true); 3187 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3188 if (!MayReturn) { 3189 HandlerCall->setDoesNotReturn(); 3190 CGF.Builder.CreateUnreachable(); 3191 } else { 3192 CGF.Builder.CreateBr(ContBB); 3193 } 3194 } 3195 3196 void CodeGenFunction::EmitCheck( 3197 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3198 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3199 ArrayRef<llvm::Value *> DynamicArgs) { 3200 assert(IsSanitizerScope); 3201 assert(Checked.size() > 0); 3202 assert(CheckHandler >= 0 && 3203 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3204 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3205 3206 llvm::Value *FatalCond = nullptr; 3207 llvm::Value *RecoverableCond = nullptr; 3208 llvm::Value *TrapCond = nullptr; 3209 for (int i = 0, n = Checked.size(); i < n; ++i) { 3210 llvm::Value *Check = Checked[i].first; 3211 // -fsanitize-trap= overrides -fsanitize-recover=. 3212 llvm::Value *&Cond = 3213 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3214 ? TrapCond 3215 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3216 ? RecoverableCond 3217 : FatalCond; 3218 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3219 } 3220 3221 if (TrapCond) 3222 EmitTrapCheck(TrapCond, CheckHandler); 3223 if (!FatalCond && !RecoverableCond) 3224 return; 3225 3226 llvm::Value *JointCond; 3227 if (FatalCond && RecoverableCond) 3228 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3229 else 3230 JointCond = FatalCond ? FatalCond : RecoverableCond; 3231 assert(JointCond); 3232 3233 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3234 assert(SanOpts.has(Checked[0].second)); 3235 #ifndef NDEBUG 3236 for (int i = 1, n = Checked.size(); i < n; ++i) { 3237 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3238 "All recoverable kinds in a single check must be same!"); 3239 assert(SanOpts.has(Checked[i].second)); 3240 } 3241 #endif 3242 3243 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3244 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3245 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3246 // Give hint that we very much don't expect to execute the handler 3247 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3248 llvm::MDBuilder MDHelper(getLLVMContext()); 3249 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3250 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3251 EmitBlock(Handlers); 3252 3253 // Handler functions take an i8* pointing to the (handler-specific) static 3254 // information block, followed by a sequence of intptr_t arguments 3255 // representing operand values. 3256 SmallVector<llvm::Value *, 4> Args; 3257 SmallVector<llvm::Type *, 4> ArgTypes; 3258 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3259 Args.reserve(DynamicArgs.size() + 1); 3260 ArgTypes.reserve(DynamicArgs.size() + 1); 3261 3262 // Emit handler arguments and create handler function type. 3263 if (!StaticArgs.empty()) { 3264 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3265 auto *InfoPtr = 3266 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3267 llvm::GlobalVariable::PrivateLinkage, Info); 3268 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3269 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3270 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3271 ArgTypes.push_back(Int8PtrTy); 3272 } 3273 3274 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3275 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3276 ArgTypes.push_back(IntPtrTy); 3277 } 3278 } 3279 3280 llvm::FunctionType *FnType = 3281 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3282 3283 if (!FatalCond || !RecoverableCond) { 3284 // Simple case: we need to generate a single handler call, either 3285 // fatal, or non-fatal. 3286 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3287 (FatalCond != nullptr), Cont); 3288 } else { 3289 // Emit two handler calls: first one for set of unrecoverable checks, 3290 // another one for recoverable. 3291 llvm::BasicBlock *NonFatalHandlerBB = 3292 createBasicBlock("non_fatal." + CheckName); 3293 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3294 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3295 EmitBlock(FatalHandlerBB); 3296 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3297 NonFatalHandlerBB); 3298 EmitBlock(NonFatalHandlerBB); 3299 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3300 Cont); 3301 } 3302 3303 EmitBlock(Cont); 3304 } 3305 3306 void CodeGenFunction::EmitCfiSlowPathCheck( 3307 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3308 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3309 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3310 3311 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3312 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3313 3314 llvm::MDBuilder MDHelper(getLLVMContext()); 3315 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3316 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3317 3318 EmitBlock(CheckBB); 3319 3320 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3321 3322 llvm::CallInst *CheckCall; 3323 llvm::FunctionCallee SlowPathFn; 3324 if (WithDiag) { 3325 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3326 auto *InfoPtr = 3327 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3328 llvm::GlobalVariable::PrivateLinkage, Info); 3329 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3330 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3331 3332 SlowPathFn = CGM.getModule().getOrInsertFunction( 3333 "__cfi_slowpath_diag", 3334 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3335 false)); 3336 CheckCall = Builder.CreateCall( 3337 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3338 } else { 3339 SlowPathFn = CGM.getModule().getOrInsertFunction( 3340 "__cfi_slowpath", 3341 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3342 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3343 } 3344 3345 CGM.setDSOLocal( 3346 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3347 CheckCall->setDoesNotThrow(); 3348 3349 EmitBlock(Cont); 3350 } 3351 3352 // Emit a stub for __cfi_check function so that the linker knows about this 3353 // symbol in LTO mode. 3354 void CodeGenFunction::EmitCfiCheckStub() { 3355 llvm::Module *M = &CGM.getModule(); 3356 auto &Ctx = M->getContext(); 3357 llvm::Function *F = llvm::Function::Create( 3358 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3359 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3360 CGM.setDSOLocal(F); 3361 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3362 // FIXME: consider emitting an intrinsic call like 3363 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3364 // which can be lowered in CrossDSOCFI pass to the actual contents of 3365 // __cfi_check. This would allow inlining of __cfi_check calls. 3366 llvm::CallInst::Create( 3367 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3368 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3369 } 3370 3371 // This function is basically a switch over the CFI failure kind, which is 3372 // extracted from CFICheckFailData (1st function argument). Each case is either 3373 // llvm.trap or a call to one of the two runtime handlers, based on 3374 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3375 // failure kind) traps, but this should really never happen. CFICheckFailData 3376 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3377 // check kind; in this case __cfi_check_fail traps as well. 3378 void CodeGenFunction::EmitCfiCheckFail() { 3379 SanitizerScope SanScope(this); 3380 FunctionArgList Args; 3381 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3382 ImplicitParamDecl::Other); 3383 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3384 ImplicitParamDecl::Other); 3385 Args.push_back(&ArgData); 3386 Args.push_back(&ArgAddr); 3387 3388 const CGFunctionInfo &FI = 3389 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3390 3391 llvm::Function *F = llvm::Function::Create( 3392 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3393 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3394 3395 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3396 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3397 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3398 3399 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3400 SourceLocation()); 3401 3402 // This function is not affected by NoSanitizeList. This function does 3403 // not have a source location, but "src:*" would still apply. Revert any 3404 // changes to SanOpts made in StartFunction. 3405 SanOpts = CGM.getLangOpts().Sanitize; 3406 3407 llvm::Value *Data = 3408 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3409 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3410 llvm::Value *Addr = 3411 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3412 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3413 3414 // Data == nullptr means the calling module has trap behaviour for this check. 3415 llvm::Value *DataIsNotNullPtr = 3416 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3417 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3418 3419 llvm::StructType *SourceLocationTy = 3420 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3421 llvm::StructType *CfiCheckFailDataTy = 3422 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3423 3424 llvm::Value *V = Builder.CreateConstGEP2_32( 3425 CfiCheckFailDataTy, 3426 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3427 0); 3428 Address CheckKindAddr(V, getIntAlign()); 3429 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3430 3431 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3432 CGM.getLLVMContext(), 3433 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3434 llvm::Value *ValidVtable = Builder.CreateZExt( 3435 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3436 {Addr, AllVtables}), 3437 IntPtrTy); 3438 3439 const std::pair<int, SanitizerMask> CheckKinds[] = { 3440 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3441 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3442 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3443 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3444 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3445 3446 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3447 for (auto CheckKindMaskPair : CheckKinds) { 3448 int Kind = CheckKindMaskPair.first; 3449 SanitizerMask Mask = CheckKindMaskPair.second; 3450 llvm::Value *Cond = 3451 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3452 if (CGM.getLangOpts().Sanitize.has(Mask)) 3453 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3454 {Data, Addr, ValidVtable}); 3455 else 3456 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3457 } 3458 3459 FinishFunction(); 3460 // The only reference to this function will be created during LTO link. 3461 // Make sure it survives until then. 3462 CGM.addUsedGlobal(F); 3463 } 3464 3465 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3466 if (SanOpts.has(SanitizerKind::Unreachable)) { 3467 SanitizerScope SanScope(this); 3468 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3469 SanitizerKind::Unreachable), 3470 SanitizerHandler::BuiltinUnreachable, 3471 EmitCheckSourceLocation(Loc), None); 3472 } 3473 Builder.CreateUnreachable(); 3474 } 3475 3476 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3477 SanitizerHandler CheckHandlerID) { 3478 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3479 3480 // If we're optimizing, collapse all calls to trap down to just one per 3481 // check-type per function to save on code size. 3482 if (TrapBBs.size() <= CheckHandlerID) 3483 TrapBBs.resize(CheckHandlerID + 1); 3484 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3485 3486 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3487 TrapBB = createBasicBlock("trap"); 3488 Builder.CreateCondBr(Checked, Cont, TrapBB); 3489 EmitBlock(TrapBB); 3490 3491 llvm::CallInst *TrapCall = 3492 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3493 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3494 3495 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3496 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3497 CGM.getCodeGenOpts().TrapFuncName); 3498 TrapCall->addFnAttr(A); 3499 } 3500 TrapCall->setDoesNotReturn(); 3501 TrapCall->setDoesNotThrow(); 3502 Builder.CreateUnreachable(); 3503 } else { 3504 auto Call = TrapBB->begin(); 3505 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3506 3507 Call->applyMergedLocation(Call->getDebugLoc(), 3508 Builder.getCurrentDebugLocation()); 3509 Builder.CreateCondBr(Checked, Cont, TrapBB); 3510 } 3511 3512 EmitBlock(Cont); 3513 } 3514 3515 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3516 llvm::CallInst *TrapCall = 3517 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3518 3519 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3520 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3521 CGM.getCodeGenOpts().TrapFuncName); 3522 TrapCall->addFnAttr(A); 3523 } 3524 3525 return TrapCall; 3526 } 3527 3528 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3529 LValueBaseInfo *BaseInfo, 3530 TBAAAccessInfo *TBAAInfo) { 3531 assert(E->getType()->isArrayType() && 3532 "Array to pointer decay must have array source type!"); 3533 3534 // Expressions of array type can't be bitfields or vector elements. 3535 LValue LV = EmitLValue(E); 3536 Address Addr = LV.getAddress(*this); 3537 3538 // If the array type was an incomplete type, we need to make sure 3539 // the decay ends up being the right type. 3540 llvm::Type *NewTy = ConvertType(E->getType()); 3541 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3542 3543 // Note that VLA pointers are always decayed, so we don't need to do 3544 // anything here. 3545 if (!E->getType()->isVariableArrayType()) { 3546 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3547 "Expected pointer to array"); 3548 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3549 } 3550 3551 // The result of this decay conversion points to an array element within the 3552 // base lvalue. However, since TBAA currently does not support representing 3553 // accesses to elements of member arrays, we conservatively represent accesses 3554 // to the pointee object as if it had no any base lvalue specified. 3555 // TODO: Support TBAA for member arrays. 3556 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3557 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3558 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3559 3560 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3561 } 3562 3563 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3564 /// array to pointer, return the array subexpression. 3565 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3566 // If this isn't just an array->pointer decay, bail out. 3567 const auto *CE = dyn_cast<CastExpr>(E); 3568 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3569 return nullptr; 3570 3571 // If this is a decay from variable width array, bail out. 3572 const Expr *SubExpr = CE->getSubExpr(); 3573 if (SubExpr->getType()->isVariableArrayType()) 3574 return nullptr; 3575 3576 return SubExpr; 3577 } 3578 3579 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3580 llvm::Type *elemType, 3581 llvm::Value *ptr, 3582 ArrayRef<llvm::Value*> indices, 3583 bool inbounds, 3584 bool signedIndices, 3585 SourceLocation loc, 3586 const llvm::Twine &name = "arrayidx") { 3587 if (inbounds) { 3588 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3589 CodeGenFunction::NotSubtraction, loc, 3590 name); 3591 } else { 3592 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3593 } 3594 } 3595 3596 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3597 llvm::Value *idx, 3598 CharUnits eltSize) { 3599 // If we have a constant index, we can use the exact offset of the 3600 // element we're accessing. 3601 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3602 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3603 return arrayAlign.alignmentAtOffset(offset); 3604 3605 // Otherwise, use the worst-case alignment for any element. 3606 } else { 3607 return arrayAlign.alignmentOfArrayElement(eltSize); 3608 } 3609 } 3610 3611 static QualType getFixedSizeElementType(const ASTContext &ctx, 3612 const VariableArrayType *vla) { 3613 QualType eltType; 3614 do { 3615 eltType = vla->getElementType(); 3616 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3617 return eltType; 3618 } 3619 3620 /// Given an array base, check whether its member access belongs to a record 3621 /// with preserve_access_index attribute or not. 3622 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3623 if (!ArrayBase || !CGF.getDebugInfo()) 3624 return false; 3625 3626 // Only support base as either a MemberExpr or DeclRefExpr. 3627 // DeclRefExpr to cover cases like: 3628 // struct s { int a; int b[10]; }; 3629 // struct s *p; 3630 // p[1].a 3631 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3632 // p->b[5] is a MemberExpr example. 3633 const Expr *E = ArrayBase->IgnoreImpCasts(); 3634 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3635 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3636 3637 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3638 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3639 if (!VarDef) 3640 return false; 3641 3642 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3643 if (!PtrT) 3644 return false; 3645 3646 const auto *PointeeT = PtrT->getPointeeType() 3647 ->getUnqualifiedDesugaredType(); 3648 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3649 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3650 return false; 3651 } 3652 3653 return false; 3654 } 3655 3656 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3657 ArrayRef<llvm::Value *> indices, 3658 QualType eltType, bool inbounds, 3659 bool signedIndices, SourceLocation loc, 3660 QualType *arrayType = nullptr, 3661 const Expr *Base = nullptr, 3662 const llvm::Twine &name = "arrayidx") { 3663 // All the indices except that last must be zero. 3664 #ifndef NDEBUG 3665 for (auto idx : indices.drop_back()) 3666 assert(isa<llvm::ConstantInt>(idx) && 3667 cast<llvm::ConstantInt>(idx)->isZero()); 3668 #endif 3669 3670 // Determine the element size of the statically-sized base. This is 3671 // the thing that the indices are expressed in terms of. 3672 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3673 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3674 } 3675 3676 // We can use that to compute the best alignment of the element. 3677 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3678 CharUnits eltAlign = 3679 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3680 3681 llvm::Value *eltPtr; 3682 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3683 if (!LastIndex || 3684 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3685 eltPtr = emitArraySubscriptGEP( 3686 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3687 signedIndices, loc, name); 3688 } else { 3689 // Remember the original array subscript for bpf target 3690 unsigned idx = LastIndex->getZExtValue(); 3691 llvm::DIType *DbgInfo = nullptr; 3692 if (arrayType) 3693 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3694 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3695 addr.getPointer(), 3696 indices.size() - 1, 3697 idx, DbgInfo); 3698 } 3699 3700 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3701 } 3702 3703 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3704 bool Accessed) { 3705 // The index must always be an integer, which is not an aggregate. Emit it 3706 // in lexical order (this complexity is, sadly, required by C++17). 3707 llvm::Value *IdxPre = 3708 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3709 bool SignedIndices = false; 3710 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3711 auto *Idx = IdxPre; 3712 if (E->getLHS() != E->getIdx()) { 3713 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3714 Idx = EmitScalarExpr(E->getIdx()); 3715 } 3716 3717 QualType IdxTy = E->getIdx()->getType(); 3718 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3719 SignedIndices |= IdxSigned; 3720 3721 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3722 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3723 3724 // Extend or truncate the index type to 32 or 64-bits. 3725 if (Promote && Idx->getType() != IntPtrTy) 3726 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3727 3728 return Idx; 3729 }; 3730 IdxPre = nullptr; 3731 3732 // If the base is a vector type, then we are forming a vector element lvalue 3733 // with this subscript. 3734 if (E->getBase()->getType()->isVectorType() && 3735 !isa<ExtVectorElementExpr>(E->getBase())) { 3736 // Emit the vector as an lvalue to get its address. 3737 LValue LHS = EmitLValue(E->getBase()); 3738 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3739 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3740 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3741 E->getBase()->getType(), LHS.getBaseInfo(), 3742 TBAAAccessInfo()); 3743 } 3744 3745 // All the other cases basically behave like simple offsetting. 3746 3747 // Handle the extvector case we ignored above. 3748 if (isa<ExtVectorElementExpr>(E->getBase())) { 3749 LValue LV = EmitLValue(E->getBase()); 3750 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3751 Address Addr = EmitExtVectorElementLValue(LV); 3752 3753 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3754 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3755 SignedIndices, E->getExprLoc()); 3756 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3757 CGM.getTBAAInfoForSubobject(LV, EltType)); 3758 } 3759 3760 LValueBaseInfo EltBaseInfo; 3761 TBAAAccessInfo EltTBAAInfo; 3762 Address Addr = Address::invalid(); 3763 if (const VariableArrayType *vla = 3764 getContext().getAsVariableArrayType(E->getType())) { 3765 // The base must be a pointer, which is not an aggregate. Emit 3766 // it. It needs to be emitted first in case it's what captures 3767 // the VLA bounds. 3768 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3769 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3770 3771 // The element count here is the total number of non-VLA elements. 3772 llvm::Value *numElements = getVLASize(vla).NumElts; 3773 3774 // Effectively, the multiply by the VLA size is part of the GEP. 3775 // GEP indexes are signed, and scaling an index isn't permitted to 3776 // signed-overflow, so we use the same semantics for our explicit 3777 // multiply. We suppress this if overflow is not undefined behavior. 3778 if (getLangOpts().isSignedOverflowDefined()) { 3779 Idx = Builder.CreateMul(Idx, numElements); 3780 } else { 3781 Idx = Builder.CreateNSWMul(Idx, numElements); 3782 } 3783 3784 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3785 !getLangOpts().isSignedOverflowDefined(), 3786 SignedIndices, E->getExprLoc()); 3787 3788 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3789 // Indexing over an interface, as in "NSString *P; P[4];" 3790 3791 // Emit the base pointer. 3792 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3793 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3794 3795 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3796 llvm::Value *InterfaceSizeVal = 3797 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3798 3799 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3800 3801 // We don't necessarily build correct LLVM struct types for ObjC 3802 // interfaces, so we can't rely on GEP to do this scaling 3803 // correctly, so we need to cast to i8*. FIXME: is this actually 3804 // true? A lot of other things in the fragile ABI would break... 3805 llvm::Type *OrigBaseTy = Addr.getType(); 3806 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3807 3808 // Do the GEP. 3809 CharUnits EltAlign = 3810 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3811 llvm::Value *EltPtr = 3812 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3813 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3814 Addr = Address(EltPtr, EltAlign); 3815 3816 // Cast back. 3817 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3818 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3819 // If this is A[i] where A is an array, the frontend will have decayed the 3820 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3821 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3822 // "gep x, i" here. Emit one "gep A, 0, i". 3823 assert(Array->getType()->isArrayType() && 3824 "Array to pointer decay must have array source type!"); 3825 LValue ArrayLV; 3826 // For simple multidimensional array indexing, set the 'accessed' flag for 3827 // better bounds-checking of the base expression. 3828 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3829 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3830 else 3831 ArrayLV = EmitLValue(Array); 3832 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3833 3834 // Propagate the alignment from the array itself to the result. 3835 QualType arrayType = Array->getType(); 3836 Addr = emitArraySubscriptGEP( 3837 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3838 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3839 E->getExprLoc(), &arrayType, E->getBase()); 3840 EltBaseInfo = ArrayLV.getBaseInfo(); 3841 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3842 } else { 3843 // The base must be a pointer; emit it with an estimate of its alignment. 3844 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3845 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3846 QualType ptrType = E->getBase()->getType(); 3847 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3848 !getLangOpts().isSignedOverflowDefined(), 3849 SignedIndices, E->getExprLoc(), &ptrType, 3850 E->getBase()); 3851 } 3852 3853 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3854 3855 if (getLangOpts().ObjC && 3856 getLangOpts().getGC() != LangOptions::NonGC) { 3857 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3858 setObjCGCLValueClass(getContext(), E, LV); 3859 } 3860 return LV; 3861 } 3862 3863 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3864 assert( 3865 !E->isIncomplete() && 3866 "incomplete matrix subscript expressions should be rejected during Sema"); 3867 LValue Base = EmitLValue(E->getBase()); 3868 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3869 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3870 llvm::Value *NumRows = Builder.getIntN( 3871 RowIdx->getType()->getScalarSizeInBits(), 3872 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3873 llvm::Value *FinalIdx = 3874 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3875 return LValue::MakeMatrixElt( 3876 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3877 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3878 } 3879 3880 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3881 LValueBaseInfo &BaseInfo, 3882 TBAAAccessInfo &TBAAInfo, 3883 QualType BaseTy, QualType ElTy, 3884 bool IsLowerBound) { 3885 LValue BaseLVal; 3886 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3887 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3888 if (BaseTy->isArrayType()) { 3889 Address Addr = BaseLVal.getAddress(CGF); 3890 BaseInfo = BaseLVal.getBaseInfo(); 3891 3892 // If the array type was an incomplete type, we need to make sure 3893 // the decay ends up being the right type. 3894 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3895 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3896 3897 // Note that VLA pointers are always decayed, so we don't need to do 3898 // anything here. 3899 if (!BaseTy->isVariableArrayType()) { 3900 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3901 "Expected pointer to array"); 3902 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3903 } 3904 3905 return CGF.Builder.CreateElementBitCast(Addr, 3906 CGF.ConvertTypeForMem(ElTy)); 3907 } 3908 LValueBaseInfo TypeBaseInfo; 3909 TBAAAccessInfo TypeTBAAInfo; 3910 CharUnits Align = 3911 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3912 BaseInfo.mergeForCast(TypeBaseInfo); 3913 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3914 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3915 } 3916 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3917 } 3918 3919 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3920 bool IsLowerBound) { 3921 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3922 QualType ResultExprTy; 3923 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3924 ResultExprTy = AT->getElementType(); 3925 else 3926 ResultExprTy = BaseTy->getPointeeType(); 3927 llvm::Value *Idx = nullptr; 3928 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3929 // Requesting lower bound or upper bound, but without provided length and 3930 // without ':' symbol for the default length -> length = 1. 3931 // Idx = LowerBound ?: 0; 3932 if (auto *LowerBound = E->getLowerBound()) { 3933 Idx = Builder.CreateIntCast( 3934 EmitScalarExpr(LowerBound), IntPtrTy, 3935 LowerBound->getType()->hasSignedIntegerRepresentation()); 3936 } else 3937 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3938 } else { 3939 // Try to emit length or lower bound as constant. If this is possible, 1 3940 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3941 // IR (LB + Len) - 1. 3942 auto &C = CGM.getContext(); 3943 auto *Length = E->getLength(); 3944 llvm::APSInt ConstLength; 3945 if (Length) { 3946 // Idx = LowerBound + Length - 1; 3947 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3948 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3949 Length = nullptr; 3950 } 3951 auto *LowerBound = E->getLowerBound(); 3952 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3953 if (LowerBound) { 3954 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3955 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3956 LowerBound = nullptr; 3957 } 3958 } 3959 if (!Length) 3960 --ConstLength; 3961 else if (!LowerBound) 3962 --ConstLowerBound; 3963 3964 if (Length || LowerBound) { 3965 auto *LowerBoundVal = 3966 LowerBound 3967 ? Builder.CreateIntCast( 3968 EmitScalarExpr(LowerBound), IntPtrTy, 3969 LowerBound->getType()->hasSignedIntegerRepresentation()) 3970 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3971 auto *LengthVal = 3972 Length 3973 ? Builder.CreateIntCast( 3974 EmitScalarExpr(Length), IntPtrTy, 3975 Length->getType()->hasSignedIntegerRepresentation()) 3976 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3977 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3978 /*HasNUW=*/false, 3979 !getLangOpts().isSignedOverflowDefined()); 3980 if (Length && LowerBound) { 3981 Idx = Builder.CreateSub( 3982 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3983 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3984 } 3985 } else 3986 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3987 } else { 3988 // Idx = ArraySize - 1; 3989 QualType ArrayTy = BaseTy->isPointerType() 3990 ? E->getBase()->IgnoreParenImpCasts()->getType() 3991 : BaseTy; 3992 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3993 Length = VAT->getSizeExpr(); 3994 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 3995 ConstLength = *L; 3996 Length = nullptr; 3997 } 3998 } else { 3999 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4000 ConstLength = CAT->getSize(); 4001 } 4002 if (Length) { 4003 auto *LengthVal = Builder.CreateIntCast( 4004 EmitScalarExpr(Length), IntPtrTy, 4005 Length->getType()->hasSignedIntegerRepresentation()); 4006 Idx = Builder.CreateSub( 4007 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4008 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4009 } else { 4010 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4011 --ConstLength; 4012 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4013 } 4014 } 4015 } 4016 assert(Idx); 4017 4018 Address EltPtr = Address::invalid(); 4019 LValueBaseInfo BaseInfo; 4020 TBAAAccessInfo TBAAInfo; 4021 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4022 // The base must be a pointer, which is not an aggregate. Emit 4023 // it. It needs to be emitted first in case it's what captures 4024 // the VLA bounds. 4025 Address Base = 4026 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4027 BaseTy, VLA->getElementType(), IsLowerBound); 4028 // The element count here is the total number of non-VLA elements. 4029 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4030 4031 // Effectively, the multiply by the VLA size is part of the GEP. 4032 // GEP indexes are signed, and scaling an index isn't permitted to 4033 // signed-overflow, so we use the same semantics for our explicit 4034 // multiply. We suppress this if overflow is not undefined behavior. 4035 if (getLangOpts().isSignedOverflowDefined()) 4036 Idx = Builder.CreateMul(Idx, NumElements); 4037 else 4038 Idx = Builder.CreateNSWMul(Idx, NumElements); 4039 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4040 !getLangOpts().isSignedOverflowDefined(), 4041 /*signedIndices=*/false, E->getExprLoc()); 4042 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4043 // If this is A[i] where A is an array, the frontend will have decayed the 4044 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4045 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4046 // "gep x, i" here. Emit one "gep A, 0, i". 4047 assert(Array->getType()->isArrayType() && 4048 "Array to pointer decay must have array source type!"); 4049 LValue ArrayLV; 4050 // For simple multidimensional array indexing, set the 'accessed' flag for 4051 // better bounds-checking of the base expression. 4052 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4053 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4054 else 4055 ArrayLV = EmitLValue(Array); 4056 4057 // Propagate the alignment from the array itself to the result. 4058 EltPtr = emitArraySubscriptGEP( 4059 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4060 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4061 /*signedIndices=*/false, E->getExprLoc()); 4062 BaseInfo = ArrayLV.getBaseInfo(); 4063 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4064 } else { 4065 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4066 TBAAInfo, BaseTy, ResultExprTy, 4067 IsLowerBound); 4068 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4069 !getLangOpts().isSignedOverflowDefined(), 4070 /*signedIndices=*/false, E->getExprLoc()); 4071 } 4072 4073 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4074 } 4075 4076 LValue CodeGenFunction:: 4077 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4078 // Emit the base vector as an l-value. 4079 LValue Base; 4080 4081 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4082 if (E->isArrow()) { 4083 // If it is a pointer to a vector, emit the address and form an lvalue with 4084 // it. 4085 LValueBaseInfo BaseInfo; 4086 TBAAAccessInfo TBAAInfo; 4087 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4088 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4089 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4090 Base.getQuals().removeObjCGCAttr(); 4091 } else if (E->getBase()->isGLValue()) { 4092 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4093 // emit the base as an lvalue. 4094 assert(E->getBase()->getType()->isVectorType()); 4095 Base = EmitLValue(E->getBase()); 4096 } else { 4097 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4098 assert(E->getBase()->getType()->isVectorType() && 4099 "Result must be a vector"); 4100 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4101 4102 // Store the vector to memory (because LValue wants an address). 4103 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4104 Builder.CreateStore(Vec, VecMem); 4105 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4106 AlignmentSource::Decl); 4107 } 4108 4109 QualType type = 4110 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4111 4112 // Encode the element access list into a vector of unsigned indices. 4113 SmallVector<uint32_t, 4> Indices; 4114 E->getEncodedElementAccess(Indices); 4115 4116 if (Base.isSimple()) { 4117 llvm::Constant *CV = 4118 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4119 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4120 Base.getBaseInfo(), TBAAAccessInfo()); 4121 } 4122 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4123 4124 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4125 SmallVector<llvm::Constant *, 4> CElts; 4126 4127 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4128 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4129 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4130 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4131 Base.getBaseInfo(), TBAAAccessInfo()); 4132 } 4133 4134 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4135 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4136 EmitIgnoredExpr(E->getBase()); 4137 return EmitDeclRefLValue(DRE); 4138 } 4139 4140 Expr *BaseExpr = E->getBase(); 4141 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4142 LValue BaseLV; 4143 if (E->isArrow()) { 4144 LValueBaseInfo BaseInfo; 4145 TBAAAccessInfo TBAAInfo; 4146 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4147 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4148 SanitizerSet SkippedChecks; 4149 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4150 if (IsBaseCXXThis) 4151 SkippedChecks.set(SanitizerKind::Alignment, true); 4152 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4153 SkippedChecks.set(SanitizerKind::Null, true); 4154 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4155 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4156 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4157 } else 4158 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4159 4160 NamedDecl *ND = E->getMemberDecl(); 4161 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4162 LValue LV = EmitLValueForField(BaseLV, Field); 4163 setObjCGCLValueClass(getContext(), E, LV); 4164 if (getLangOpts().OpenMP) { 4165 // If the member was explicitly marked as nontemporal, mark it as 4166 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4167 // to children as nontemporal too. 4168 if ((IsWrappedCXXThis(BaseExpr) && 4169 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4170 BaseLV.isNontemporal()) 4171 LV.setNontemporal(/*Value=*/true); 4172 } 4173 return LV; 4174 } 4175 4176 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4177 return EmitFunctionDeclLValue(*this, E, FD); 4178 4179 llvm_unreachable("Unhandled member declaration!"); 4180 } 4181 4182 /// Given that we are currently emitting a lambda, emit an l-value for 4183 /// one of its members. 4184 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4185 if (CurCodeDecl) { 4186 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4187 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4188 } 4189 QualType LambdaTagType = 4190 getContext().getTagDeclType(Field->getParent()); 4191 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4192 return EmitLValueForField(LambdaLV, Field); 4193 } 4194 4195 /// Get the field index in the debug info. The debug info structure/union 4196 /// will ignore the unnamed bitfields. 4197 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4198 unsigned FieldIndex) { 4199 unsigned I = 0, Skipped = 0; 4200 4201 for (auto F : Rec->getDefinition()->fields()) { 4202 if (I == FieldIndex) 4203 break; 4204 if (F->isUnnamedBitfield()) 4205 Skipped++; 4206 I++; 4207 } 4208 4209 return FieldIndex - Skipped; 4210 } 4211 4212 /// Get the address of a zero-sized field within a record. The resulting 4213 /// address doesn't necessarily have the right type. 4214 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4215 const FieldDecl *Field) { 4216 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4217 CGF.getContext().getFieldOffset(Field)); 4218 if (Offset.isZero()) 4219 return Base; 4220 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4221 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4222 } 4223 4224 /// Drill down to the storage of a field without walking into 4225 /// reference types. 4226 /// 4227 /// The resulting address doesn't necessarily have the right type. 4228 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4229 const FieldDecl *field) { 4230 if (field->isZeroSize(CGF.getContext())) 4231 return emitAddrOfZeroSizeField(CGF, base, field); 4232 4233 const RecordDecl *rec = field->getParent(); 4234 4235 unsigned idx = 4236 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4237 4238 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4239 } 4240 4241 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4242 Address addr, const FieldDecl *field) { 4243 const RecordDecl *rec = field->getParent(); 4244 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4245 base.getType(), rec->getLocation()); 4246 4247 unsigned idx = 4248 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4249 4250 return CGF.Builder.CreatePreserveStructAccessIndex( 4251 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4252 } 4253 4254 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4255 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4256 if (!RD) 4257 return false; 4258 4259 if (RD->isDynamicClass()) 4260 return true; 4261 4262 for (const auto &Base : RD->bases()) 4263 if (hasAnyVptr(Base.getType(), Context)) 4264 return true; 4265 4266 for (const FieldDecl *Field : RD->fields()) 4267 if (hasAnyVptr(Field->getType(), Context)) 4268 return true; 4269 4270 return false; 4271 } 4272 4273 LValue CodeGenFunction::EmitLValueForField(LValue base, 4274 const FieldDecl *field) { 4275 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4276 4277 if (field->isBitField()) { 4278 const CGRecordLayout &RL = 4279 CGM.getTypes().getCGRecordLayout(field->getParent()); 4280 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4281 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4282 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4283 Info.VolatileStorageSize != 0 && 4284 field->getType() 4285 .withCVRQualifiers(base.getVRQualifiers()) 4286 .isVolatileQualified(); 4287 Address Addr = base.getAddress(*this); 4288 unsigned Idx = RL.getLLVMFieldNo(field); 4289 const RecordDecl *rec = field->getParent(); 4290 if (!UseVolatile) { 4291 if (!IsInPreservedAIRegion && 4292 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4293 if (Idx != 0) 4294 // For structs, we GEP to the field that the record layout suggests. 4295 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4296 } else { 4297 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4298 getContext().getRecordType(rec), rec->getLocation()); 4299 Addr = Builder.CreatePreserveStructAccessIndex( 4300 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4301 DbgInfo); 4302 } 4303 } 4304 const unsigned SS = 4305 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4306 // Get the access type. 4307 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4308 if (Addr.getElementType() != FieldIntTy) 4309 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4310 if (UseVolatile) { 4311 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4312 if (VolatileOffset) 4313 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4314 } 4315 4316 QualType fieldType = 4317 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4318 // TODO: Support TBAA for bit fields. 4319 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4320 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4321 TBAAAccessInfo()); 4322 } 4323 4324 // Fields of may-alias structures are may-alias themselves. 4325 // FIXME: this should get propagated down through anonymous structs 4326 // and unions. 4327 QualType FieldType = field->getType(); 4328 const RecordDecl *rec = field->getParent(); 4329 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4330 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4331 TBAAAccessInfo FieldTBAAInfo; 4332 if (base.getTBAAInfo().isMayAlias() || 4333 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4334 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4335 } else if (rec->isUnion()) { 4336 // TODO: Support TBAA for unions. 4337 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4338 } else { 4339 // If no base type been assigned for the base access, then try to generate 4340 // one for this base lvalue. 4341 FieldTBAAInfo = base.getTBAAInfo(); 4342 if (!FieldTBAAInfo.BaseType) { 4343 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4344 assert(!FieldTBAAInfo.Offset && 4345 "Nonzero offset for an access with no base type!"); 4346 } 4347 4348 // Adjust offset to be relative to the base type. 4349 const ASTRecordLayout &Layout = 4350 getContext().getASTRecordLayout(field->getParent()); 4351 unsigned CharWidth = getContext().getCharWidth(); 4352 if (FieldTBAAInfo.BaseType) 4353 FieldTBAAInfo.Offset += 4354 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4355 4356 // Update the final access type and size. 4357 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4358 FieldTBAAInfo.Size = 4359 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4360 } 4361 4362 Address addr = base.getAddress(*this); 4363 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4364 if (CGM.getCodeGenOpts().StrictVTablePointers && 4365 ClassDef->isDynamicClass()) { 4366 // Getting to any field of dynamic object requires stripping dynamic 4367 // information provided by invariant.group. This is because accessing 4368 // fields may leak the real address of dynamic object, which could result 4369 // in miscompilation when leaked pointer would be compared. 4370 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4371 addr = Address(stripped, addr.getAlignment()); 4372 } 4373 } 4374 4375 unsigned RecordCVR = base.getVRQualifiers(); 4376 if (rec->isUnion()) { 4377 // For unions, there is no pointer adjustment. 4378 if (CGM.getCodeGenOpts().StrictVTablePointers && 4379 hasAnyVptr(FieldType, getContext())) 4380 // Because unions can easily skip invariant.barriers, we need to add 4381 // a barrier every time CXXRecord field with vptr is referenced. 4382 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4383 addr.getAlignment()); 4384 4385 if (IsInPreservedAIRegion || 4386 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4387 // Remember the original union field index 4388 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4389 rec->getLocation()); 4390 addr = Address( 4391 Builder.CreatePreserveUnionAccessIndex( 4392 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4393 addr.getAlignment()); 4394 } 4395 4396 if (FieldType->isReferenceType()) 4397 addr = Builder.CreateElementBitCast( 4398 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4399 } else { 4400 if (!IsInPreservedAIRegion && 4401 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4402 // For structs, we GEP to the field that the record layout suggests. 4403 addr = emitAddrOfFieldStorage(*this, addr, field); 4404 else 4405 // Remember the original struct field index 4406 addr = emitPreserveStructAccess(*this, base, addr, field); 4407 } 4408 4409 // If this is a reference field, load the reference right now. 4410 if (FieldType->isReferenceType()) { 4411 LValue RefLVal = 4412 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4413 if (RecordCVR & Qualifiers::Volatile) 4414 RefLVal.getQuals().addVolatile(); 4415 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4416 4417 // Qualifiers on the struct don't apply to the referencee. 4418 RecordCVR = 0; 4419 FieldType = FieldType->getPointeeType(); 4420 } 4421 4422 // Make sure that the address is pointing to the right type. This is critical 4423 // for both unions and structs. A union needs a bitcast, a struct element 4424 // will need a bitcast if the LLVM type laid out doesn't match the desired 4425 // type. 4426 addr = Builder.CreateElementBitCast( 4427 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4428 4429 if (field->hasAttr<AnnotateAttr>()) 4430 addr = EmitFieldAnnotations(field, addr); 4431 4432 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4433 LV.getQuals().addCVRQualifiers(RecordCVR); 4434 4435 // __weak attribute on a field is ignored. 4436 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4437 LV.getQuals().removeObjCGCAttr(); 4438 4439 return LV; 4440 } 4441 4442 LValue 4443 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4444 const FieldDecl *Field) { 4445 QualType FieldType = Field->getType(); 4446 4447 if (!FieldType->isReferenceType()) 4448 return EmitLValueForField(Base, Field); 4449 4450 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4451 4452 // Make sure that the address is pointing to the right type. 4453 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4454 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4455 4456 // TODO: Generate TBAA information that describes this access as a structure 4457 // member access and not just an access to an object of the field's type. This 4458 // should be similar to what we do in EmitLValueForField(). 4459 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4460 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4461 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4462 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4463 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4464 } 4465 4466 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4467 if (E->isFileScope()) { 4468 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4469 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4470 } 4471 if (E->getType()->isVariablyModifiedType()) 4472 // make sure to emit the VLA size. 4473 EmitVariablyModifiedType(E->getType()); 4474 4475 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4476 const Expr *InitExpr = E->getInitializer(); 4477 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4478 4479 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4480 /*Init*/ true); 4481 4482 // Block-scope compound literals are destroyed at the end of the enclosing 4483 // scope in C. 4484 if (!getLangOpts().CPlusPlus) 4485 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4486 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4487 E->getType(), getDestroyer(DtorKind), 4488 DtorKind & EHCleanup); 4489 4490 return Result; 4491 } 4492 4493 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4494 if (!E->isGLValue()) 4495 // Initializing an aggregate temporary in C++11: T{...}. 4496 return EmitAggExprToLValue(E); 4497 4498 // An lvalue initializer list must be initializing a reference. 4499 assert(E->isTransparent() && "non-transparent glvalue init list"); 4500 return EmitLValue(E->getInit(0)); 4501 } 4502 4503 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4504 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4505 /// LValue is returned and the current block has been terminated. 4506 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4507 const Expr *Operand) { 4508 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4509 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4510 return None; 4511 } 4512 4513 return CGF.EmitLValue(Operand); 4514 } 4515 4516 LValue CodeGenFunction:: 4517 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4518 if (!expr->isGLValue()) { 4519 // ?: here should be an aggregate. 4520 assert(hasAggregateEvaluationKind(expr->getType()) && 4521 "Unexpected conditional operator!"); 4522 return EmitAggExprToLValue(expr); 4523 } 4524 4525 OpaqueValueMapping binding(*this, expr); 4526 4527 const Expr *condExpr = expr->getCond(); 4528 bool CondExprBool; 4529 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4530 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4531 if (!CondExprBool) std::swap(live, dead); 4532 4533 if (!ContainsLabel(dead)) { 4534 // If the true case is live, we need to track its region. 4535 if (CondExprBool) 4536 incrementProfileCounter(expr); 4537 // If a throw expression we emit it and return an undefined lvalue 4538 // because it can't be used. 4539 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4540 EmitCXXThrowExpr(ThrowExpr); 4541 llvm::Type *Ty = 4542 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4543 return MakeAddrLValue( 4544 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4545 dead->getType()); 4546 } 4547 return EmitLValue(live); 4548 } 4549 } 4550 4551 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4552 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4553 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4554 4555 ConditionalEvaluation eval(*this); 4556 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4557 4558 // Any temporaries created here are conditional. 4559 EmitBlock(lhsBlock); 4560 incrementProfileCounter(expr); 4561 eval.begin(*this); 4562 Optional<LValue> lhs = 4563 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4564 eval.end(*this); 4565 4566 if (lhs && !lhs->isSimple()) 4567 return EmitUnsupportedLValue(expr, "conditional operator"); 4568 4569 lhsBlock = Builder.GetInsertBlock(); 4570 if (lhs) 4571 Builder.CreateBr(contBlock); 4572 4573 // Any temporaries created here are conditional. 4574 EmitBlock(rhsBlock); 4575 eval.begin(*this); 4576 Optional<LValue> rhs = 4577 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4578 eval.end(*this); 4579 if (rhs && !rhs->isSimple()) 4580 return EmitUnsupportedLValue(expr, "conditional operator"); 4581 rhsBlock = Builder.GetInsertBlock(); 4582 4583 EmitBlock(contBlock); 4584 4585 if (lhs && rhs) { 4586 llvm::PHINode *phi = 4587 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4588 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4589 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4590 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4591 AlignmentSource alignSource = 4592 std::max(lhs->getBaseInfo().getAlignmentSource(), 4593 rhs->getBaseInfo().getAlignmentSource()); 4594 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4595 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4596 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4597 TBAAInfo); 4598 } else { 4599 assert((lhs || rhs) && 4600 "both operands of glvalue conditional are throw-expressions?"); 4601 return lhs ? *lhs : *rhs; 4602 } 4603 } 4604 4605 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4606 /// type. If the cast is to a reference, we can have the usual lvalue result, 4607 /// otherwise if a cast is needed by the code generator in an lvalue context, 4608 /// then it must mean that we need the address of an aggregate in order to 4609 /// access one of its members. This can happen for all the reasons that casts 4610 /// are permitted with aggregate result, including noop aggregate casts, and 4611 /// cast from scalar to union. 4612 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4613 switch (E->getCastKind()) { 4614 case CK_ToVoid: 4615 case CK_BitCast: 4616 case CK_LValueToRValueBitCast: 4617 case CK_ArrayToPointerDecay: 4618 case CK_FunctionToPointerDecay: 4619 case CK_NullToMemberPointer: 4620 case CK_NullToPointer: 4621 case CK_IntegralToPointer: 4622 case CK_PointerToIntegral: 4623 case CK_PointerToBoolean: 4624 case CK_VectorSplat: 4625 case CK_IntegralCast: 4626 case CK_BooleanToSignedIntegral: 4627 case CK_IntegralToBoolean: 4628 case CK_IntegralToFloating: 4629 case CK_FloatingToIntegral: 4630 case CK_FloatingToBoolean: 4631 case CK_FloatingCast: 4632 case CK_FloatingRealToComplex: 4633 case CK_FloatingComplexToReal: 4634 case CK_FloatingComplexToBoolean: 4635 case CK_FloatingComplexCast: 4636 case CK_FloatingComplexToIntegralComplex: 4637 case CK_IntegralRealToComplex: 4638 case CK_IntegralComplexToReal: 4639 case CK_IntegralComplexToBoolean: 4640 case CK_IntegralComplexCast: 4641 case CK_IntegralComplexToFloatingComplex: 4642 case CK_DerivedToBaseMemberPointer: 4643 case CK_BaseToDerivedMemberPointer: 4644 case CK_MemberPointerToBoolean: 4645 case CK_ReinterpretMemberPointer: 4646 case CK_AnyPointerToBlockPointerCast: 4647 case CK_ARCProduceObject: 4648 case CK_ARCConsumeObject: 4649 case CK_ARCReclaimReturnedObject: 4650 case CK_ARCExtendBlockObject: 4651 case CK_CopyAndAutoreleaseBlockObject: 4652 case CK_IntToOCLSampler: 4653 case CK_FloatingToFixedPoint: 4654 case CK_FixedPointToFloating: 4655 case CK_FixedPointCast: 4656 case CK_FixedPointToBoolean: 4657 case CK_FixedPointToIntegral: 4658 case CK_IntegralToFixedPoint: 4659 case CK_MatrixCast: 4660 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4661 4662 case CK_Dependent: 4663 llvm_unreachable("dependent cast kind in IR gen!"); 4664 4665 case CK_BuiltinFnToFnPtr: 4666 llvm_unreachable("builtin functions are handled elsewhere"); 4667 4668 // These are never l-values; just use the aggregate emission code. 4669 case CK_NonAtomicToAtomic: 4670 case CK_AtomicToNonAtomic: 4671 return EmitAggExprToLValue(E); 4672 4673 case CK_Dynamic: { 4674 LValue LV = EmitLValue(E->getSubExpr()); 4675 Address V = LV.getAddress(*this); 4676 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4677 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4678 } 4679 4680 case CK_ConstructorConversion: 4681 case CK_UserDefinedConversion: 4682 case CK_CPointerToObjCPointerCast: 4683 case CK_BlockPointerToObjCPointerCast: 4684 case CK_LValueToRValue: 4685 return EmitLValue(E->getSubExpr()); 4686 4687 case CK_NoOp: { 4688 // CK_NoOp can model a qualification conversion, which can remove an array 4689 // bound and change the IR type. 4690 // FIXME: Once pointee types are removed from IR, remove this. 4691 LValue LV = EmitLValue(E->getSubExpr()); 4692 if (LV.isSimple()) { 4693 Address V = LV.getAddress(*this); 4694 if (V.isValid()) { 4695 llvm::Type *T = 4696 ConvertTypeForMem(E->getType()) 4697 ->getPointerTo( 4698 cast<llvm::PointerType>(V.getType())->getAddressSpace()); 4699 if (V.getType() != T) 4700 LV.setAddress(Builder.CreateBitCast(V, T)); 4701 } 4702 } 4703 return LV; 4704 } 4705 4706 case CK_UncheckedDerivedToBase: 4707 case CK_DerivedToBase: { 4708 const auto *DerivedClassTy = 4709 E->getSubExpr()->getType()->castAs<RecordType>(); 4710 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4711 4712 LValue LV = EmitLValue(E->getSubExpr()); 4713 Address This = LV.getAddress(*this); 4714 4715 // Perform the derived-to-base conversion 4716 Address Base = GetAddressOfBaseClass( 4717 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4718 /*NullCheckValue=*/false, E->getExprLoc()); 4719 4720 // TODO: Support accesses to members of base classes in TBAA. For now, we 4721 // conservatively pretend that the complete object is of the base class 4722 // type. 4723 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4724 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4725 } 4726 case CK_ToUnion: 4727 return EmitAggExprToLValue(E); 4728 case CK_BaseToDerived: { 4729 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4730 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4731 4732 LValue LV = EmitLValue(E->getSubExpr()); 4733 4734 // Perform the base-to-derived conversion 4735 Address Derived = GetAddressOfDerivedClass( 4736 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4737 /*NullCheckValue=*/false); 4738 4739 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4740 // performed and the object is not of the derived type. 4741 if (sanitizePerformTypeCheck()) 4742 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4743 Derived.getPointer(), E->getType()); 4744 4745 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4746 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4747 /*MayBeNull=*/false, CFITCK_DerivedCast, 4748 E->getBeginLoc()); 4749 4750 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4751 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4752 } 4753 case CK_LValueBitCast: { 4754 // This must be a reinterpret_cast (or c-style equivalent). 4755 const auto *CE = cast<ExplicitCastExpr>(E); 4756 4757 CGM.EmitExplicitCastExprType(CE, this); 4758 LValue LV = EmitLValue(E->getSubExpr()); 4759 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4760 ConvertType(CE->getTypeAsWritten())); 4761 4762 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4763 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4764 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4765 E->getBeginLoc()); 4766 4767 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4768 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4769 } 4770 case CK_AddressSpaceConversion: { 4771 LValue LV = EmitLValue(E->getSubExpr()); 4772 QualType DestTy = getContext().getPointerType(E->getType()); 4773 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4774 *this, LV.getPointer(*this), 4775 E->getSubExpr()->getType().getAddressSpace(), 4776 E->getType().getAddressSpace(), ConvertType(DestTy)); 4777 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4778 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4779 } 4780 case CK_ObjCObjectLValueCast: { 4781 LValue LV = EmitLValue(E->getSubExpr()); 4782 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4783 ConvertType(E->getType())); 4784 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4785 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4786 } 4787 case CK_ZeroToOCLOpaqueType: 4788 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4789 } 4790 4791 llvm_unreachable("Unhandled lvalue cast kind?"); 4792 } 4793 4794 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4795 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4796 return getOrCreateOpaqueLValueMapping(e); 4797 } 4798 4799 LValue 4800 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4801 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4802 4803 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4804 it = OpaqueLValues.find(e); 4805 4806 if (it != OpaqueLValues.end()) 4807 return it->second; 4808 4809 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4810 return EmitLValue(e->getSourceExpr()); 4811 } 4812 4813 RValue 4814 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4815 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4816 4817 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4818 it = OpaqueRValues.find(e); 4819 4820 if (it != OpaqueRValues.end()) 4821 return it->second; 4822 4823 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4824 return EmitAnyExpr(e->getSourceExpr()); 4825 } 4826 4827 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4828 const FieldDecl *FD, 4829 SourceLocation Loc) { 4830 QualType FT = FD->getType(); 4831 LValue FieldLV = EmitLValueForField(LV, FD); 4832 switch (getEvaluationKind(FT)) { 4833 case TEK_Complex: 4834 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4835 case TEK_Aggregate: 4836 return FieldLV.asAggregateRValue(*this); 4837 case TEK_Scalar: 4838 // This routine is used to load fields one-by-one to perform a copy, so 4839 // don't load reference fields. 4840 if (FD->getType()->isReferenceType()) 4841 return RValue::get(FieldLV.getPointer(*this)); 4842 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4843 // primitive load. 4844 if (FieldLV.isBitField()) 4845 return EmitLoadOfLValue(FieldLV, Loc); 4846 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4847 } 4848 llvm_unreachable("bad evaluation kind"); 4849 } 4850 4851 //===--------------------------------------------------------------------===// 4852 // Expression Emission 4853 //===--------------------------------------------------------------------===// 4854 4855 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4856 ReturnValueSlot ReturnValue) { 4857 // Builtins never have block type. 4858 if (E->getCallee()->getType()->isBlockPointerType()) 4859 return EmitBlockCallExpr(E, ReturnValue); 4860 4861 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4862 return EmitCXXMemberCallExpr(CE, ReturnValue); 4863 4864 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4865 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4866 4867 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4868 if (const CXXMethodDecl *MD = 4869 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4870 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4871 4872 CGCallee callee = EmitCallee(E->getCallee()); 4873 4874 if (callee.isBuiltin()) { 4875 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4876 E, ReturnValue); 4877 } 4878 4879 if (callee.isPseudoDestructor()) { 4880 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4881 } 4882 4883 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4884 } 4885 4886 /// Emit a CallExpr without considering whether it might be a subclass. 4887 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4888 ReturnValueSlot ReturnValue) { 4889 CGCallee Callee = EmitCallee(E->getCallee()); 4890 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4891 } 4892 4893 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4894 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4895 4896 if (auto builtinID = FD->getBuiltinID()) { 4897 std::string FDInlineName = (FD->getName() + ".inline").str(); 4898 // When directing calling an inline builtin, call it through it's mangled 4899 // name to make it clear it's not the actual builtin. 4900 if (FD->isInlineBuiltinDeclaration() && 4901 CGF.CurFn->getName() != FDInlineName) { 4902 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4903 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 4904 llvm::Module *M = Fn->getParent(); 4905 llvm::Function *Clone = M->getFunction(FDInlineName); 4906 if (!Clone) { 4907 Clone = llvm::Function::Create(Fn->getFunctionType(), 4908 llvm::GlobalValue::InternalLinkage, 4909 Fn->getAddressSpace(), FDInlineName, M); 4910 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 4911 } 4912 return CGCallee::forDirect(Clone, GD); 4913 } 4914 4915 // Replaceable builtins provide their own implementation of a builtin. If we 4916 // are in an inline builtin implementation, avoid trivial infinite 4917 // recursion. 4918 else 4919 return CGCallee::forBuiltin(builtinID, FD); 4920 } 4921 4922 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4923 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 4924 FD->hasAttr<CUDAGlobalAttr>()) 4925 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 4926 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 4927 4928 return CGCallee::forDirect(CalleePtr, GD); 4929 } 4930 4931 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4932 E = E->IgnoreParens(); 4933 4934 // Look through function-to-pointer decay. 4935 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4936 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4937 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4938 return EmitCallee(ICE->getSubExpr()); 4939 } 4940 4941 // Resolve direct calls. 4942 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4943 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4944 return EmitDirectCallee(*this, FD); 4945 } 4946 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4947 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4948 EmitIgnoredExpr(ME->getBase()); 4949 return EmitDirectCallee(*this, FD); 4950 } 4951 4952 // Look through template substitutions. 4953 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4954 return EmitCallee(NTTP->getReplacement()); 4955 4956 // Treat pseudo-destructor calls differently. 4957 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4958 return CGCallee::forPseudoDestructor(PDE); 4959 } 4960 4961 // Otherwise, we have an indirect reference. 4962 llvm::Value *calleePtr; 4963 QualType functionType; 4964 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4965 calleePtr = EmitScalarExpr(E); 4966 functionType = ptrType->getPointeeType(); 4967 } else { 4968 functionType = E->getType(); 4969 calleePtr = EmitLValue(E).getPointer(*this); 4970 } 4971 assert(functionType->isFunctionType()); 4972 4973 GlobalDecl GD; 4974 if (const auto *VD = 4975 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4976 GD = GlobalDecl(VD); 4977 4978 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4979 CGCallee callee(calleeInfo, calleePtr); 4980 return callee; 4981 } 4982 4983 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4984 // Comma expressions just emit their LHS then their RHS as an l-value. 4985 if (E->getOpcode() == BO_Comma) { 4986 EmitIgnoredExpr(E->getLHS()); 4987 EnsureInsertPoint(); 4988 return EmitLValue(E->getRHS()); 4989 } 4990 4991 if (E->getOpcode() == BO_PtrMemD || 4992 E->getOpcode() == BO_PtrMemI) 4993 return EmitPointerToDataMemberBinaryExpr(E); 4994 4995 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4996 4997 // Note that in all of these cases, __block variables need the RHS 4998 // evaluated first just in case the variable gets moved by the RHS. 4999 5000 switch (getEvaluationKind(E->getType())) { 5001 case TEK_Scalar: { 5002 switch (E->getLHS()->getType().getObjCLifetime()) { 5003 case Qualifiers::OCL_Strong: 5004 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5005 5006 case Qualifiers::OCL_Autoreleasing: 5007 return EmitARCStoreAutoreleasing(E).first; 5008 5009 // No reason to do any of these differently. 5010 case Qualifiers::OCL_None: 5011 case Qualifiers::OCL_ExplicitNone: 5012 case Qualifiers::OCL_Weak: 5013 break; 5014 } 5015 5016 RValue RV = EmitAnyExpr(E->getRHS()); 5017 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5018 if (RV.isScalar()) 5019 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5020 EmitStoreThroughLValue(RV, LV); 5021 if (getLangOpts().OpenMP) 5022 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5023 E->getLHS()); 5024 return LV; 5025 } 5026 5027 case TEK_Complex: 5028 return EmitComplexAssignmentLValue(E); 5029 5030 case TEK_Aggregate: 5031 return EmitAggExprToLValue(E); 5032 } 5033 llvm_unreachable("bad evaluation kind"); 5034 } 5035 5036 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5037 RValue RV = EmitCallExpr(E); 5038 5039 if (!RV.isScalar()) 5040 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5041 AlignmentSource::Decl); 5042 5043 assert(E->getCallReturnType(getContext())->isReferenceType() && 5044 "Can't have a scalar return unless the return type is a " 5045 "reference type!"); 5046 5047 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5048 } 5049 5050 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5051 // FIXME: This shouldn't require another copy. 5052 return EmitAggExprToLValue(E); 5053 } 5054 5055 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5056 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5057 && "binding l-value to type which needs a temporary"); 5058 AggValueSlot Slot = CreateAggTemp(E->getType()); 5059 EmitCXXConstructExpr(E, Slot); 5060 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5061 } 5062 5063 LValue 5064 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5065 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5066 } 5067 5068 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5069 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5070 ConvertType(E->getType())); 5071 } 5072 5073 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5074 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5075 AlignmentSource::Decl); 5076 } 5077 5078 LValue 5079 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5080 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5081 Slot.setExternallyDestructed(); 5082 EmitAggExpr(E->getSubExpr(), Slot); 5083 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5084 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5085 } 5086 5087 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5088 RValue RV = EmitObjCMessageExpr(E); 5089 5090 if (!RV.isScalar()) 5091 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5092 AlignmentSource::Decl); 5093 5094 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5095 "Can't have a scalar return unless the return type is a " 5096 "reference type!"); 5097 5098 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5099 } 5100 5101 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5102 Address V = 5103 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5104 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5105 } 5106 5107 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5108 const ObjCIvarDecl *Ivar) { 5109 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5110 } 5111 5112 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5113 llvm::Value *BaseValue, 5114 const ObjCIvarDecl *Ivar, 5115 unsigned CVRQualifiers) { 5116 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5117 Ivar, CVRQualifiers); 5118 } 5119 5120 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5121 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5122 llvm::Value *BaseValue = nullptr; 5123 const Expr *BaseExpr = E->getBase(); 5124 Qualifiers BaseQuals; 5125 QualType ObjectTy; 5126 if (E->isArrow()) { 5127 BaseValue = EmitScalarExpr(BaseExpr); 5128 ObjectTy = BaseExpr->getType()->getPointeeType(); 5129 BaseQuals = ObjectTy.getQualifiers(); 5130 } else { 5131 LValue BaseLV = EmitLValue(BaseExpr); 5132 BaseValue = BaseLV.getPointer(*this); 5133 ObjectTy = BaseExpr->getType(); 5134 BaseQuals = ObjectTy.getQualifiers(); 5135 } 5136 5137 LValue LV = 5138 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5139 BaseQuals.getCVRQualifiers()); 5140 setObjCGCLValueClass(getContext(), E, LV); 5141 return LV; 5142 } 5143 5144 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5145 // Can only get l-value for message expression returning aggregate type 5146 RValue RV = EmitAnyExprToTemp(E); 5147 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5148 AlignmentSource::Decl); 5149 } 5150 5151 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5152 const CallExpr *E, ReturnValueSlot ReturnValue, 5153 llvm::Value *Chain) { 5154 // Get the actual function type. The callee type will always be a pointer to 5155 // function type or a block pointer type. 5156 assert(CalleeType->isFunctionPointerType() && 5157 "Call must have function pointer type!"); 5158 5159 const Decl *TargetDecl = 5160 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5161 5162 CalleeType = getContext().getCanonicalType(CalleeType); 5163 5164 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5165 5166 CGCallee Callee = OrigCallee; 5167 5168 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5169 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5170 if (llvm::Constant *PrefixSig = 5171 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5172 SanitizerScope SanScope(this); 5173 // Remove any (C++17) exception specifications, to allow calling e.g. a 5174 // noexcept function through a non-noexcept pointer. 5175 auto ProtoTy = 5176 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5177 llvm::Constant *FTRTTIConst = 5178 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5179 llvm::Type *PrefixSigType = PrefixSig->getType(); 5180 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5181 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5182 5183 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5184 5185 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5186 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5187 llvm::Value *CalleeSigPtr = 5188 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5189 llvm::Value *CalleeSig = 5190 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5191 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5192 5193 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5194 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5195 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5196 5197 EmitBlock(TypeCheck); 5198 llvm::Value *CalleeRTTIPtr = 5199 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5200 llvm::Value *CalleeRTTIEncoded = 5201 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5202 llvm::Value *CalleeRTTI = 5203 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5204 llvm::Value *CalleeRTTIMatch = 5205 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5206 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5207 EmitCheckTypeDescriptor(CalleeType)}; 5208 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5209 SanitizerHandler::FunctionTypeMismatch, StaticData, 5210 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5211 5212 Builder.CreateBr(Cont); 5213 EmitBlock(Cont); 5214 } 5215 } 5216 5217 const auto *FnType = cast<FunctionType>(PointeeType); 5218 5219 // If we are checking indirect calls and this call is indirect, check that the 5220 // function pointer is a member of the bit set for the function type. 5221 if (SanOpts.has(SanitizerKind::CFIICall) && 5222 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5223 SanitizerScope SanScope(this); 5224 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5225 5226 llvm::Metadata *MD; 5227 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5228 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5229 else 5230 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5231 5232 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5233 5234 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5235 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5236 llvm::Value *TypeTest = Builder.CreateCall( 5237 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5238 5239 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5240 llvm::Constant *StaticData[] = { 5241 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5242 EmitCheckSourceLocation(E->getBeginLoc()), 5243 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5244 }; 5245 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5246 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5247 CastedCallee, StaticData); 5248 } else { 5249 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5250 SanitizerHandler::CFICheckFail, StaticData, 5251 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5252 } 5253 } 5254 5255 CallArgList Args; 5256 if (Chain) 5257 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5258 CGM.getContext().VoidPtrTy); 5259 5260 // C++17 requires that we evaluate arguments to a call using assignment syntax 5261 // right-to-left, and that we evaluate arguments to certain other operators 5262 // left-to-right. Note that we allow this to override the order dictated by 5263 // the calling convention on the MS ABI, which means that parameter 5264 // destruction order is not necessarily reverse construction order. 5265 // FIXME: Revisit this based on C++ committee response to unimplementability. 5266 EvaluationOrder Order = EvaluationOrder::Default; 5267 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5268 if (OCE->isAssignmentOp()) 5269 Order = EvaluationOrder::ForceRightToLeft; 5270 else { 5271 switch (OCE->getOperator()) { 5272 case OO_LessLess: 5273 case OO_GreaterGreater: 5274 case OO_AmpAmp: 5275 case OO_PipePipe: 5276 case OO_Comma: 5277 case OO_ArrowStar: 5278 Order = EvaluationOrder::ForceLeftToRight; 5279 break; 5280 default: 5281 break; 5282 } 5283 } 5284 } 5285 5286 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5287 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5288 5289 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5290 Args, FnType, /*ChainCall=*/Chain); 5291 5292 // C99 6.5.2.2p6: 5293 // If the expression that denotes the called function has a type 5294 // that does not include a prototype, [the default argument 5295 // promotions are performed]. If the number of arguments does not 5296 // equal the number of parameters, the behavior is undefined. If 5297 // the function is defined with a type that includes a prototype, 5298 // and either the prototype ends with an ellipsis (, ...) or the 5299 // types of the arguments after promotion are not compatible with 5300 // the types of the parameters, the behavior is undefined. If the 5301 // function is defined with a type that does not include a 5302 // prototype, and the types of the arguments after promotion are 5303 // not compatible with those of the parameters after promotion, 5304 // the behavior is undefined [except in some trivial cases]. 5305 // That is, in the general case, we should assume that a call 5306 // through an unprototyped function type works like a *non-variadic* 5307 // call. The way we make this work is to cast to the exact type 5308 // of the promoted arguments. 5309 // 5310 // Chain calls use this same code path to add the invisible chain parameter 5311 // to the function type. 5312 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5313 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5314 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5315 CalleeTy = CalleeTy->getPointerTo(AS); 5316 5317 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5318 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5319 Callee.setFunctionPointer(CalleePtr); 5320 } 5321 5322 // HIP function pointer contains kernel handle when it is used in triple 5323 // chevron. The kernel stub needs to be loaded from kernel handle and used 5324 // as callee. 5325 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5326 isa<CUDAKernelCallExpr>(E) && 5327 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5328 llvm::Value *Handle = Callee.getFunctionPointer(); 5329 auto *Cast = 5330 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5331 auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign())); 5332 Callee.setFunctionPointer(Stub); 5333 } 5334 llvm::CallBase *CallOrInvoke = nullptr; 5335 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5336 E == MustTailCall, E->getExprLoc()); 5337 5338 // Generate function declaration DISuprogram in order to be used 5339 // in debug info about call sites. 5340 if (CGDebugInfo *DI = getDebugInfo()) { 5341 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5342 FunctionArgList Args; 5343 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5344 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5345 DI->getFunctionType(CalleeDecl, ResTy, Args), 5346 CalleeDecl); 5347 } 5348 } 5349 5350 return Call; 5351 } 5352 5353 LValue CodeGenFunction:: 5354 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5355 Address BaseAddr = Address::invalid(); 5356 if (E->getOpcode() == BO_PtrMemI) { 5357 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5358 } else { 5359 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5360 } 5361 5362 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5363 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5364 5365 LValueBaseInfo BaseInfo; 5366 TBAAAccessInfo TBAAInfo; 5367 Address MemberAddr = 5368 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5369 &TBAAInfo); 5370 5371 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5372 } 5373 5374 /// Given the address of a temporary variable, produce an r-value of 5375 /// its type. 5376 RValue CodeGenFunction::convertTempToRValue(Address addr, 5377 QualType type, 5378 SourceLocation loc) { 5379 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5380 switch (getEvaluationKind(type)) { 5381 case TEK_Complex: 5382 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5383 case TEK_Aggregate: 5384 return lvalue.asAggregateRValue(*this); 5385 case TEK_Scalar: 5386 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5387 } 5388 llvm_unreachable("bad evaluation kind"); 5389 } 5390 5391 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5392 assert(Val->getType()->isFPOrFPVectorTy()); 5393 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5394 return; 5395 5396 llvm::MDBuilder MDHelper(getLLVMContext()); 5397 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5398 5399 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5400 } 5401 5402 namespace { 5403 struct LValueOrRValue { 5404 LValue LV; 5405 RValue RV; 5406 }; 5407 } 5408 5409 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5410 const PseudoObjectExpr *E, 5411 bool forLValue, 5412 AggValueSlot slot) { 5413 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5414 5415 // Find the result expression, if any. 5416 const Expr *resultExpr = E->getResultExpr(); 5417 LValueOrRValue result; 5418 5419 for (PseudoObjectExpr::const_semantics_iterator 5420 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5421 const Expr *semantic = *i; 5422 5423 // If this semantic expression is an opaque value, bind it 5424 // to the result of its source expression. 5425 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5426 // Skip unique OVEs. 5427 if (ov->isUnique()) { 5428 assert(ov != resultExpr && 5429 "A unique OVE cannot be used as the result expression"); 5430 continue; 5431 } 5432 5433 // If this is the result expression, we may need to evaluate 5434 // directly into the slot. 5435 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5436 OVMA opaqueData; 5437 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5438 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5439 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5440 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5441 AlignmentSource::Decl); 5442 opaqueData = OVMA::bind(CGF, ov, LV); 5443 result.RV = slot.asRValue(); 5444 5445 // Otherwise, emit as normal. 5446 } else { 5447 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5448 5449 // If this is the result, also evaluate the result now. 5450 if (ov == resultExpr) { 5451 if (forLValue) 5452 result.LV = CGF.EmitLValue(ov); 5453 else 5454 result.RV = CGF.EmitAnyExpr(ov, slot); 5455 } 5456 } 5457 5458 opaques.push_back(opaqueData); 5459 5460 // Otherwise, if the expression is the result, evaluate it 5461 // and remember the result. 5462 } else if (semantic == resultExpr) { 5463 if (forLValue) 5464 result.LV = CGF.EmitLValue(semantic); 5465 else 5466 result.RV = CGF.EmitAnyExpr(semantic, slot); 5467 5468 // Otherwise, evaluate the expression in an ignored context. 5469 } else { 5470 CGF.EmitIgnoredExpr(semantic); 5471 } 5472 } 5473 5474 // Unbind all the opaques now. 5475 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5476 opaques[i].unbind(CGF); 5477 5478 return result; 5479 } 5480 5481 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5482 AggValueSlot slot) { 5483 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5484 } 5485 5486 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5487 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5488 } 5489