1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 64 CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 return Address(Alloca, Align); 70 } 71 72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 73 /// block. The alloca is casted to default address space if necessary. 74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 75 const Twine &Name, 76 llvm::Value *ArraySize, 77 Address *AllocaAddr) { 78 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 79 if (AllocaAddr) 80 *AllocaAddr = Alloca; 81 llvm::Value *V = Alloca.getPointer(); 82 // Alloca always returns a pointer in alloca address space, which may 83 // be different from the type defined by the language. For example, 84 // in C++ the auto variables are in the default address space. Therefore 85 // cast alloca to the default address space when necessary. 86 if (getASTAllocaAddressSpace() != LangAS::Default) { 87 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 88 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 89 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 90 // otherwise alloca is inserted at the current insertion point of the 91 // builder. 92 if (!ArraySize) 93 Builder.SetInsertPoint(AllocaInsertPt); 94 V = getTargetHooks().performAddrSpaceCast( 95 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 96 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 97 } 98 99 return Address(V, Align); 100 } 101 102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 104 /// insertion point of the builder. 105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 106 const Twine &Name, 107 llvm::Value *ArraySize) { 108 if (ArraySize) 109 return Builder.CreateAlloca(Ty, ArraySize, Name); 110 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 111 ArraySize, Name, AllocaInsertPt); 112 } 113 114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 115 /// default alignment of the corresponding LLVM type, which is *not* 116 /// guaranteed to be related in any way to the expected alignment of 117 /// an AST type that might have been lowered to Ty. 118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 119 const Twine &Name) { 120 CharUnits Align = 121 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 122 return CreateTempAlloca(Ty, Align, Name); 123 } 124 125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 126 assert(isa<llvm::AllocaInst>(Var.getPointer())); 127 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 128 Store->setAlignment(Var.getAlignment().getQuantity()); 129 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 130 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 131 } 132 133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 134 CharUnits Align = getContext().getTypeAlignInChars(Ty); 135 return CreateTempAlloca(ConvertType(Ty), Align, Name); 136 } 137 138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 139 Address *Alloca) { 140 // FIXME: Should we prefer the preferred type alignment here? 141 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 142 } 143 144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 145 const Twine &Name, Address *Alloca) { 146 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 147 /*ArraySize=*/nullptr, Alloca); 148 } 149 150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 151 const Twine &Name) { 152 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 153 } 154 155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 156 const Twine &Name) { 157 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 158 Name); 159 } 160 161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 162 /// expression and compare the result against zero, returning an Int1Ty value. 163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 164 PGO.setCurrentStmt(E); 165 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 166 llvm::Value *MemPtr = EmitScalarExpr(E); 167 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 168 } 169 170 QualType BoolTy = getContext().BoolTy; 171 SourceLocation Loc = E->getExprLoc(); 172 if (!E->getType()->isAnyComplexType()) 173 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 174 175 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 176 Loc); 177 } 178 179 /// EmitIgnoredExpr - Emit code to compute the specified expression, 180 /// ignoring the result. 181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 182 if (E->isRValue()) 183 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 184 185 // Just emit it as an l-value and drop the result. 186 EmitLValue(E); 187 } 188 189 /// EmitAnyExpr - Emit code to compute the specified expression which 190 /// can have any type. The result is returned as an RValue struct. 191 /// If this is an aggregate expression, AggSlot indicates where the 192 /// result should be returned. 193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 194 AggValueSlot aggSlot, 195 bool ignoreResult) { 196 switch (getEvaluationKind(E->getType())) { 197 case TEK_Scalar: 198 return RValue::get(EmitScalarExpr(E, ignoreResult)); 199 case TEK_Complex: 200 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 201 case TEK_Aggregate: 202 if (!ignoreResult && aggSlot.isIgnored()) 203 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 204 EmitAggExpr(E, aggSlot); 205 return aggSlot.asRValue(); 206 } 207 llvm_unreachable("bad evaluation kind"); 208 } 209 210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 211 /// always be accessible even if no aggregate location is provided. 212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 213 AggValueSlot AggSlot = AggValueSlot::ignored(); 214 215 if (hasAggregateEvaluationKind(E->getType())) 216 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 217 return EmitAnyExpr(E, AggSlot); 218 } 219 220 /// EmitAnyExprToMem - Evaluate an expression into a given memory 221 /// location. 222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 223 Address Location, 224 Qualifiers Quals, 225 bool IsInit) { 226 // FIXME: This function should take an LValue as an argument. 227 switch (getEvaluationKind(E->getType())) { 228 case TEK_Complex: 229 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 230 /*isInit*/ false); 231 return; 232 233 case TEK_Aggregate: { 234 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 235 AggValueSlot::IsDestructed_t(IsInit), 236 AggValueSlot::DoesNotNeedGCBarriers, 237 AggValueSlot::IsAliased_t(!IsInit), 238 AggValueSlot::MayOverlap)); 239 return; 240 } 241 242 case TEK_Scalar: { 243 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 244 LValue LV = MakeAddrLValue(Location, E->getType()); 245 EmitStoreThroughLValue(RV, LV); 246 return; 247 } 248 } 249 llvm_unreachable("bad evaluation kind"); 250 } 251 252 static void 253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 254 const Expr *E, Address ReferenceTemporary) { 255 // Objective-C++ ARC: 256 // If we are binding a reference to a temporary that has ownership, we 257 // need to perform retain/release operations on the temporary. 258 // 259 // FIXME: This should be looking at E, not M. 260 if (auto Lifetime = M->getType().getObjCLifetime()) { 261 switch (Lifetime) { 262 case Qualifiers::OCL_None: 263 case Qualifiers::OCL_ExplicitNone: 264 // Carry on to normal cleanup handling. 265 break; 266 267 case Qualifiers::OCL_Autoreleasing: 268 // Nothing to do; cleaned up by an autorelease pool. 269 return; 270 271 case Qualifiers::OCL_Strong: 272 case Qualifiers::OCL_Weak: 273 switch (StorageDuration Duration = M->getStorageDuration()) { 274 case SD_Static: 275 // Note: we intentionally do not register a cleanup to release 276 // the object on program termination. 277 return; 278 279 case SD_Thread: 280 // FIXME: We should probably register a cleanup in this case. 281 return; 282 283 case SD_Automatic: 284 case SD_FullExpression: 285 CodeGenFunction::Destroyer *Destroy; 286 CleanupKind CleanupKind; 287 if (Lifetime == Qualifiers::OCL_Strong) { 288 const ValueDecl *VD = M->getExtendingDecl(); 289 bool Precise = 290 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 291 CleanupKind = CGF.getARCCleanupKind(); 292 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 293 : &CodeGenFunction::destroyARCStrongImprecise; 294 } else { 295 // __weak objects always get EH cleanups; otherwise, exceptions 296 // could cause really nasty crashes instead of mere leaks. 297 CleanupKind = NormalAndEHCleanup; 298 Destroy = &CodeGenFunction::destroyARCWeak; 299 } 300 if (Duration == SD_FullExpression) 301 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 302 M->getType(), *Destroy, 303 CleanupKind & EHCleanup); 304 else 305 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 306 M->getType(), 307 *Destroy, CleanupKind & EHCleanup); 308 return; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 } 316 317 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 318 if (const RecordType *RT = 319 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 320 // Get the destructor for the reference temporary. 321 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 322 if (!ClassDecl->hasTrivialDestructor()) 323 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 324 } 325 326 if (!ReferenceTemporaryDtor) 327 return; 328 329 // Call the destructor for the temporary. 330 switch (M->getStorageDuration()) { 331 case SD_Static: 332 case SD_Thread: { 333 llvm::FunctionCallee CleanupFn; 334 llvm::Constant *CleanupArg; 335 if (E->getType()->isArrayType()) { 336 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 337 ReferenceTemporary, E->getType(), 338 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 339 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 340 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 341 } else { 342 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 343 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 344 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 345 } 346 CGF.CGM.getCXXABI().registerGlobalDtor( 347 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 348 break; 349 } 350 351 case SD_FullExpression: 352 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 353 CodeGenFunction::destroyCXXObject, 354 CGF.getLangOpts().Exceptions); 355 break; 356 357 case SD_Automatic: 358 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 359 ReferenceTemporary, E->getType(), 360 CodeGenFunction::destroyCXXObject, 361 CGF.getLangOpts().Exceptions); 362 break; 363 364 case SD_Dynamic: 365 llvm_unreachable("temporary cannot have dynamic storage duration"); 366 } 367 } 368 369 static Address createReferenceTemporary(CodeGenFunction &CGF, 370 const MaterializeTemporaryExpr *M, 371 const Expr *Inner, 372 Address *Alloca = nullptr) { 373 auto &TCG = CGF.getTargetHooks(); 374 switch (M->getStorageDuration()) { 375 case SD_FullExpression: 376 case SD_Automatic: { 377 // If we have a constant temporary array or record try to promote it into a 378 // constant global under the same rules a normal constant would've been 379 // promoted. This is easier on the optimizer and generally emits fewer 380 // instructions. 381 QualType Ty = Inner->getType(); 382 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 383 (Ty->isArrayType() || Ty->isRecordType()) && 384 CGF.CGM.isTypeConstant(Ty, true)) 385 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 386 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 387 auto AS = AddrSpace.getValue(); 388 auto *GV = new llvm::GlobalVariable( 389 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 390 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 391 llvm::GlobalValue::NotThreadLocal, 392 CGF.getContext().getTargetAddressSpace(AS)); 393 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 394 GV->setAlignment(alignment.getQuantity()); 395 llvm::Constant *C = GV; 396 if (AS != LangAS::Default) 397 C = TCG.performAddrSpaceCast( 398 CGF.CGM, GV, AS, LangAS::Default, 399 GV->getValueType()->getPointerTo( 400 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 401 // FIXME: Should we put the new global into a COMDAT? 402 return Address(C, alignment); 403 } 404 } 405 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 406 } 407 case SD_Thread: 408 case SD_Static: 409 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 410 411 case SD_Dynamic: 412 llvm_unreachable("temporary can't have dynamic storage duration"); 413 } 414 llvm_unreachable("unknown storage duration"); 415 } 416 417 LValue CodeGenFunction:: 418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 419 const Expr *E = M->GetTemporaryExpr(); 420 421 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 422 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 423 "Reference should never be pseudo-strong!"); 424 425 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 426 // as that will cause the lifetime adjustment to be lost for ARC 427 auto ownership = M->getType().getObjCLifetime(); 428 if (ownership != Qualifiers::OCL_None && 429 ownership != Qualifiers::OCL_ExplicitNone) { 430 Address Object = createReferenceTemporary(*this, M, E); 431 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 432 Object = Address(llvm::ConstantExpr::getBitCast(Var, 433 ConvertTypeForMem(E->getType()) 434 ->getPointerTo(Object.getAddressSpace())), 435 Object.getAlignment()); 436 437 // createReferenceTemporary will promote the temporary to a global with a 438 // constant initializer if it can. It can only do this to a value of 439 // ARC-manageable type if the value is global and therefore "immune" to 440 // ref-counting operations. Therefore we have no need to emit either a 441 // dynamic initialization or a cleanup and we can just return the address 442 // of the temporary. 443 if (Var->hasInitializer()) 444 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 445 446 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 447 } 448 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 449 AlignmentSource::Decl); 450 451 switch (getEvaluationKind(E->getType())) { 452 default: llvm_unreachable("expected scalar or aggregate expression"); 453 case TEK_Scalar: 454 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 455 break; 456 case TEK_Aggregate: { 457 EmitAggExpr(E, AggValueSlot::forAddr(Object, 458 E->getType().getQualifiers(), 459 AggValueSlot::IsDestructed, 460 AggValueSlot::DoesNotNeedGCBarriers, 461 AggValueSlot::IsNotAliased, 462 AggValueSlot::DoesNotOverlap)); 463 break; 464 } 465 } 466 467 pushTemporaryCleanup(*this, M, E, Object); 468 return RefTempDst; 469 } 470 471 SmallVector<const Expr *, 2> CommaLHSs; 472 SmallVector<SubobjectAdjustment, 2> Adjustments; 473 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 474 475 for (const auto &Ignored : CommaLHSs) 476 EmitIgnoredExpr(Ignored); 477 478 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 479 if (opaque->getType()->isRecordType()) { 480 assert(Adjustments.empty()); 481 return EmitOpaqueValueLValue(opaque); 482 } 483 } 484 485 // Create and initialize the reference temporary. 486 Address Alloca = Address::invalid(); 487 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 488 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 489 Object.getPointer()->stripPointerCasts())) { 490 Object = Address(llvm::ConstantExpr::getBitCast( 491 cast<llvm::Constant>(Object.getPointer()), 492 ConvertTypeForMem(E->getType())->getPointerTo()), 493 Object.getAlignment()); 494 // If the temporary is a global and has a constant initializer or is a 495 // constant temporary that we promoted to a global, we may have already 496 // initialized it. 497 if (!Var->hasInitializer()) { 498 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 499 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 500 } 501 } else { 502 switch (M->getStorageDuration()) { 503 case SD_Automatic: 504 if (auto *Size = EmitLifetimeStart( 505 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 506 Alloca.getPointer())) { 507 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 508 Alloca, Size); 509 } 510 break; 511 512 case SD_FullExpression: { 513 if (!ShouldEmitLifetimeMarkers) 514 break; 515 516 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 517 // marker. Instead, start the lifetime of a conditional temporary earlier 518 // so that it's unconditional. Don't do this in ASan's use-after-scope 519 // mode so that it gets the more precise lifetime marks. If the type has 520 // a non-trivial destructor, we'll have a cleanup block for it anyway, 521 // so this typically doesn't help; skip it in that case. 522 ConditionalEvaluation *OldConditional = nullptr; 523 CGBuilderTy::InsertPoint OldIP; 524 if (isInConditionalBranch() && !E->getType().isDestructedType() && 525 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 526 OldConditional = OutermostConditional; 527 OutermostConditional = nullptr; 528 529 OldIP = Builder.saveIP(); 530 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 531 Builder.restoreIP(CGBuilderTy::InsertPoint( 532 Block, llvm::BasicBlock::iterator(Block->back()))); 533 } 534 535 if (auto *Size = EmitLifetimeStart( 536 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 537 Alloca.getPointer())) { 538 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 539 Size); 540 } 541 542 if (OldConditional) { 543 OutermostConditional = OldConditional; 544 Builder.restoreIP(OldIP); 545 } 546 break; 547 } 548 549 default: 550 break; 551 } 552 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 553 } 554 pushTemporaryCleanup(*this, M, E, Object); 555 556 // Perform derived-to-base casts and/or field accesses, to get from the 557 // temporary object we created (and, potentially, for which we extended 558 // the lifetime) to the subobject we're binding the reference to. 559 for (unsigned I = Adjustments.size(); I != 0; --I) { 560 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 561 switch (Adjustment.Kind) { 562 case SubobjectAdjustment::DerivedToBaseAdjustment: 563 Object = 564 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 565 Adjustment.DerivedToBase.BasePath->path_begin(), 566 Adjustment.DerivedToBase.BasePath->path_end(), 567 /*NullCheckValue=*/ false, E->getExprLoc()); 568 break; 569 570 case SubobjectAdjustment::FieldAdjustment: { 571 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 572 LV = EmitLValueForField(LV, Adjustment.Field); 573 assert(LV.isSimple() && 574 "materialized temporary field is not a simple lvalue"); 575 Object = LV.getAddress(); 576 break; 577 } 578 579 case SubobjectAdjustment::MemberPointerAdjustment: { 580 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 581 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 582 Adjustment.Ptr.MPT); 583 break; 584 } 585 } 586 } 587 588 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 589 } 590 591 RValue 592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 593 // Emit the expression as an lvalue. 594 LValue LV = EmitLValue(E); 595 assert(LV.isSimple()); 596 llvm::Value *Value = LV.getPointer(); 597 598 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 599 // C++11 [dcl.ref]p5 (as amended by core issue 453): 600 // If a glvalue to which a reference is directly bound designates neither 601 // an existing object or function of an appropriate type nor a region of 602 // storage of suitable size and alignment to contain an object of the 603 // reference's type, the behavior is undefined. 604 QualType Ty = E->getType(); 605 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 606 } 607 608 return RValue::get(Value); 609 } 610 611 612 /// getAccessedFieldNo - Given an encoded value and a result number, return the 613 /// input field number being accessed. 614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 615 const llvm::Constant *Elts) { 616 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 617 ->getZExtValue(); 618 } 619 620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 622 llvm::Value *High) { 623 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 624 llvm::Value *K47 = Builder.getInt64(47); 625 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 626 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 627 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 628 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 629 return Builder.CreateMul(B1, KMul); 630 } 631 632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 633 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 634 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 635 } 636 637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 638 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 639 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 640 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 641 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 642 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 643 } 644 645 bool CodeGenFunction::sanitizePerformTypeCheck() const { 646 return SanOpts.has(SanitizerKind::Null) | 647 SanOpts.has(SanitizerKind::Alignment) | 648 SanOpts.has(SanitizerKind::ObjectSize) | 649 SanOpts.has(SanitizerKind::Vptr); 650 } 651 652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 653 llvm::Value *Ptr, QualType Ty, 654 CharUnits Alignment, 655 SanitizerSet SkippedChecks, 656 llvm::Value *ArraySize) { 657 if (!sanitizePerformTypeCheck()) 658 return; 659 660 // Don't check pointers outside the default address space. The null check 661 // isn't correct, the object-size check isn't supported by LLVM, and we can't 662 // communicate the addresses to the runtime handler for the vptr check. 663 if (Ptr->getType()->getPointerAddressSpace()) 664 return; 665 666 // Don't check pointers to volatile data. The behavior here is implementation- 667 // defined. 668 if (Ty.isVolatileQualified()) 669 return; 670 671 SanitizerScope SanScope(this); 672 673 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 674 llvm::BasicBlock *Done = nullptr; 675 676 // Quickly determine whether we have a pointer to an alloca. It's possible 677 // to skip null checks, and some alignment checks, for these pointers. This 678 // can reduce compile-time significantly. 679 auto PtrToAlloca = 680 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 716 if (ArraySize) 717 Size = Builder.CreateMul(Size, ArraySize); 718 719 // Degenerate case: new X[0] does not need an objectsize check. 720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 721 if (!ConstantSize || !ConstantSize->isNullValue()) { 722 // The glvalue must refer to a large enough storage region. 723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 724 // to check this. 725 // FIXME: Get object address space 726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 728 llvm::Value *Min = Builder.getFalse(); 729 llvm::Value *NullIsUnknown = Builder.getFalse(); 730 llvm::Value *Dynamic = Builder.getFalse(); 731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 732 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 735 } 736 } 737 738 uint64_t AlignVal = 0; 739 llvm::Value *PtrAsInt = nullptr; 740 741 if (SanOpts.has(SanitizerKind::Alignment) && 742 !SkippedChecks.has(SanitizerKind::Alignment)) { 743 AlignVal = Alignment.getQuantity(); 744 if (!Ty->isIncompleteType() && !AlignVal) 745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 746 747 // The glvalue must be suitably aligned. 748 if (AlignVal > 1 && 749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 751 llvm::Value *Align = Builder.CreateAnd( 752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 753 llvm::Value *Aligned = 754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 755 if (Aligned != True) 756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 757 } 758 } 759 760 if (Checks.size() > 0) { 761 // Make sure we're not losing information. Alignment needs to be a power of 762 // 2 763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 767 llvm::ConstantInt::get(Int8Ty, TCK)}; 768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 769 PtrAsInt ? PtrAsInt : Ptr); 770 } 771 772 // If possible, check that the vptr indicates that there is a subobject of 773 // type Ty at offset zero within this object. 774 // 775 // C++11 [basic.life]p5,6: 776 // [For storage which does not refer to an object within its lifetime] 777 // The program has undefined behavior if: 778 // -- the [pointer or glvalue] is used to access a non-static data member 779 // or call a non-static member function 780 if (SanOpts.has(SanitizerKind::Vptr) && 781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 782 // Ensure that the pointer is non-null before loading it. If there is no 783 // compile-time guarantee, reuse the run-time null check or emit a new one. 784 if (!IsGuaranteedNonNull) { 785 if (!IsNonNull) 786 IsNonNull = Builder.CreateIsNotNull(Ptr); 787 if (!Done) 788 Done = createBasicBlock("vptr.null"); 789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 791 EmitBlock(VptrNotNull); 792 } 793 794 // Compute a hash of the mangled name of the type. 795 // 796 // FIXME: This is not guaranteed to be deterministic! Move to a 797 // fingerprinting mechanism once LLVM provides one. For the time 798 // being the implementation happens to be deterministic. 799 SmallString<64> MangledName; 800 llvm::raw_svector_ostream Out(MangledName); 801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 802 Out); 803 804 // Blacklist based on the mangled type. 805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 806 SanitizerKind::Vptr, Out.str())) { 807 llvm::hash_code TypeHash = hash_value(Out.str()); 808 809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 815 816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 817 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 818 819 // Look the hash up in our cache. 820 const int CacheSize = 128; 821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 823 "__ubsan_vptr_type_cache"); 824 llvm::Value *Slot = Builder.CreateAnd(Hash, 825 llvm::ConstantInt::get(IntPtrTy, 826 CacheSize-1)); 827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 828 llvm::Value *CacheVal = 829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 830 getPointerAlign()); 831 832 // If the hash isn't in the cache, call a runtime handler to perform the 833 // hard work of checking whether the vptr is for an object of the right 834 // type. This will either fill in the cache and return, or produce a 835 // diagnostic. 836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 837 llvm::Constant *StaticData[] = { 838 EmitCheckSourceLocation(Loc), 839 EmitCheckTypeDescriptor(Ty), 840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 841 llvm::ConstantInt::get(Int8Ty, TCK) 842 }; 843 llvm::Value *DynamicData[] = { Ptr, Hash }; 844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 845 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 846 DynamicData); 847 } 848 } 849 850 if (Done) { 851 Builder.CreateBr(Done); 852 EmitBlock(Done); 853 } 854 } 855 856 /// Determine whether this expression refers to a flexible array member in a 857 /// struct. We disable array bounds checks for such members. 858 static bool isFlexibleArrayMemberExpr(const Expr *E) { 859 // For compatibility with existing code, we treat arrays of length 0 or 860 // 1 as flexible array members. 861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 863 if (CAT->getSize().ugt(1)) 864 return false; 865 } else if (!isa<IncompleteArrayType>(AT)) 866 return false; 867 868 E = E->IgnoreParens(); 869 870 // A flexible array member must be the last member in the class. 871 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 872 // FIXME: If the base type of the member expr is not FD->getParent(), 873 // this should not be treated as a flexible array member access. 874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 875 RecordDecl::field_iterator FI( 876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 877 return ++FI == FD->getParent()->field_end(); 878 } 879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 880 return IRE->getDecl()->getNextIvar() == nullptr; 881 } 882 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 887 QualType EltTy) { 888 ASTContext &C = getContext(); 889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 890 if (!EltSize) 891 return nullptr; 892 893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 894 if (!ArrayDeclRef) 895 return nullptr; 896 897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 898 if (!ParamDecl) 899 return nullptr; 900 901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 902 if (!POSAttr) 903 return nullptr; 904 905 // Don't load the size if it's a lower bound. 906 int POSType = POSAttr->getType(); 907 if (POSType != 0 && POSType != 1) 908 return nullptr; 909 910 // Find the implicit size parameter. 911 auto PassedSizeIt = SizeArguments.find(ParamDecl); 912 if (PassedSizeIt == SizeArguments.end()) 913 return nullptr; 914 915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 919 C.getSizeType(), E->getExprLoc()); 920 llvm::Value *SizeOfElement = 921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 923 } 924 925 /// If Base is known to point to the start of an array, return the length of 926 /// that array. Return 0 if the length cannot be determined. 927 static llvm::Value *getArrayIndexingBound( 928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 929 // For the vector indexing extension, the bound is the number of elements. 930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 931 IndexedType = Base->getType(); 932 return CGF.Builder.getInt32(VT->getNumElements()); 933 } 934 935 Base = Base->IgnoreParens(); 936 937 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 938 if (CE->getCastKind() == CK_ArrayToPointerDecay && 939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 940 IndexedType = CE->getSubExpr()->getType(); 941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 943 return CGF.Builder.getInt(CAT->getSize()); 944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 945 return CGF.getVLASize(VAT).NumElts; 946 // Ignore pass_object_size here. It's not applicable on decayed pointers. 947 } 948 } 949 950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 952 IndexedType = Base->getType(); 953 return POS; 954 } 955 956 return nullptr; 957 } 958 959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 960 llvm::Value *Index, QualType IndexType, 961 bool Accessed) { 962 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 963 "should not be called unless adding bounds checks"); 964 SanitizerScope SanScope(this); 965 966 QualType IndexedType; 967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 968 if (!Bound) 969 return; 970 971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 974 975 llvm::Constant *StaticData[] = { 976 EmitCheckSourceLocation(E->getExprLoc()), 977 EmitCheckTypeDescriptor(IndexedType), 978 EmitCheckTypeDescriptor(IndexType) 979 }; 980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 981 : Builder.CreateICmpULE(IndexVal, BoundVal); 982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 983 SanitizerHandler::OutOfBounds, StaticData, Index); 984 } 985 986 987 CodeGenFunction::ComplexPairTy CodeGenFunction:: 988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 989 bool isInc, bool isPre) { 990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 991 992 llvm::Value *NextVal; 993 if (isa<llvm::IntegerType>(InVal.first->getType())) { 994 uint64_t AmountVal = isInc ? 1 : -1; 995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 996 997 // Add the inc/dec to the real part. 998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 999 } else { 1000 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1002 if (!isInc) 1003 FVal.changeSign(); 1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1005 1006 // Add the inc/dec to the real part. 1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1008 } 1009 1010 ComplexPairTy IncVal(NextVal, InVal.second); 1011 1012 // Store the updated result through the lvalue. 1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1014 1015 // If this is a postinc, return the value read from memory, otherwise use the 1016 // updated value. 1017 return isPre ? IncVal : InVal; 1018 } 1019 1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1021 CodeGenFunction *CGF) { 1022 // Bind VLAs in the cast type. 1023 if (CGF && E->getType()->isVariablyModifiedType()) 1024 CGF->EmitVariablyModifiedType(E->getType()); 1025 1026 if (CGDebugInfo *DI = getModuleDebugInfo()) 1027 DI->EmitExplicitCastType(E->getType()); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // LValue Expression Emission 1032 //===----------------------------------------------------------------------===// 1033 1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1035 /// derive a more accurate bound on the alignment of the pointer. 1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1037 LValueBaseInfo *BaseInfo, 1038 TBAAAccessInfo *TBAAInfo) { 1039 // We allow this with ObjC object pointers because of fragile ABIs. 1040 assert(E->getType()->isPointerType() || 1041 E->getType()->isObjCObjectPointerType()); 1042 E = E->IgnoreParens(); 1043 1044 // Casts: 1045 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1046 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1047 CGM.EmitExplicitCastExprType(ECE, this); 1048 1049 switch (CE->getCastKind()) { 1050 // Non-converting casts (but not C's implicit conversion from void*). 1051 case CK_BitCast: 1052 case CK_NoOp: 1053 case CK_AddressSpaceConversion: 1054 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1055 if (PtrTy->getPointeeType()->isVoidType()) 1056 break; 1057 1058 LValueBaseInfo InnerBaseInfo; 1059 TBAAAccessInfo InnerTBAAInfo; 1060 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1061 &InnerBaseInfo, 1062 &InnerTBAAInfo); 1063 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1064 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1065 1066 if (isa<ExplicitCastExpr>(CE)) { 1067 LValueBaseInfo TargetTypeBaseInfo; 1068 TBAAAccessInfo TargetTypeTBAAInfo; 1069 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1070 &TargetTypeBaseInfo, 1071 &TargetTypeTBAAInfo); 1072 if (TBAAInfo) 1073 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1074 TargetTypeTBAAInfo); 1075 // If the source l-value is opaque, honor the alignment of the 1076 // casted-to type. 1077 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1078 if (BaseInfo) 1079 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1080 Addr = Address(Addr.getPointer(), Align); 1081 } 1082 } 1083 1084 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1085 CE->getCastKind() == CK_BitCast) { 1086 if (auto PT = E->getType()->getAs<PointerType>()) 1087 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1088 /*MayBeNull=*/true, 1089 CodeGenFunction::CFITCK_UnrelatedCast, 1090 CE->getBeginLoc()); 1091 } 1092 return CE->getCastKind() != CK_AddressSpaceConversion 1093 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1094 : Builder.CreateAddrSpaceCast(Addr, 1095 ConvertType(E->getType())); 1096 } 1097 break; 1098 1099 // Array-to-pointer decay. 1100 case CK_ArrayToPointerDecay: 1101 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1102 1103 // Derived-to-base conversions. 1104 case CK_UncheckedDerivedToBase: 1105 case CK_DerivedToBase: { 1106 // TODO: Support accesses to members of base classes in TBAA. For now, we 1107 // conservatively pretend that the complete object is of the base class 1108 // type. 1109 if (TBAAInfo) 1110 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1111 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1112 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1113 return GetAddressOfBaseClass(Addr, Derived, 1114 CE->path_begin(), CE->path_end(), 1115 ShouldNullCheckClassCastValue(CE), 1116 CE->getExprLoc()); 1117 } 1118 1119 // TODO: Is there any reason to treat base-to-derived conversions 1120 // specially? 1121 default: 1122 break; 1123 } 1124 } 1125 1126 // Unary &. 1127 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1128 if (UO->getOpcode() == UO_AddrOf) { 1129 LValue LV = EmitLValue(UO->getSubExpr()); 1130 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1131 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1132 return LV.getAddress(); 1133 } 1134 } 1135 1136 // TODO: conditional operators, comma. 1137 1138 // Otherwise, use the alignment of the type. 1139 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1140 TBAAInfo); 1141 return Address(EmitScalarExpr(E), Align); 1142 } 1143 1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1145 if (Ty->isVoidType()) 1146 return RValue::get(nullptr); 1147 1148 switch (getEvaluationKind(Ty)) { 1149 case TEK_Complex: { 1150 llvm::Type *EltTy = 1151 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1152 llvm::Value *U = llvm::UndefValue::get(EltTy); 1153 return RValue::getComplex(std::make_pair(U, U)); 1154 } 1155 1156 // If this is a use of an undefined aggregate type, the aggregate must have an 1157 // identifiable address. Just because the contents of the value are undefined 1158 // doesn't mean that the address can't be taken and compared. 1159 case TEK_Aggregate: { 1160 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1161 return RValue::getAggregate(DestPtr); 1162 } 1163 1164 case TEK_Scalar: 1165 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1166 } 1167 llvm_unreachable("bad evaluation kind"); 1168 } 1169 1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1171 const char *Name) { 1172 ErrorUnsupported(E, Name); 1173 return GetUndefRValue(E->getType()); 1174 } 1175 1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1177 const char *Name) { 1178 ErrorUnsupported(E, Name); 1179 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1180 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1181 E->getType()); 1182 } 1183 1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1185 const Expr *Base = Obj; 1186 while (!isa<CXXThisExpr>(Base)) { 1187 // The result of a dynamic_cast can be null. 1188 if (isa<CXXDynamicCastExpr>(Base)) 1189 return false; 1190 1191 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1192 Base = CE->getSubExpr(); 1193 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1194 Base = PE->getSubExpr(); 1195 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1196 if (UO->getOpcode() == UO_Extension) 1197 Base = UO->getSubExpr(); 1198 else 1199 return false; 1200 } else { 1201 return false; 1202 } 1203 } 1204 return true; 1205 } 1206 1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1208 LValue LV; 1209 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1210 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1211 else 1212 LV = EmitLValue(E); 1213 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1214 SanitizerSet SkippedChecks; 1215 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1216 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1217 if (IsBaseCXXThis) 1218 SkippedChecks.set(SanitizerKind::Alignment, true); 1219 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1220 SkippedChecks.set(SanitizerKind::Null, true); 1221 } 1222 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1223 E->getType(), LV.getAlignment(), SkippedChecks); 1224 } 1225 return LV; 1226 } 1227 1228 /// EmitLValue - Emit code to compute a designator that specifies the location 1229 /// of the expression. 1230 /// 1231 /// This can return one of two things: a simple address or a bitfield reference. 1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1233 /// an LLVM pointer type. 1234 /// 1235 /// If this returns a bitfield reference, nothing about the pointee type of the 1236 /// LLVM value is known: For example, it may not be a pointer to an integer. 1237 /// 1238 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1239 /// this method guarantees that the returned pointer type will point to an LLVM 1240 /// type of the same size of the lvalue's type. If the lvalue has a variable 1241 /// length type, this is not possible. 1242 /// 1243 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1244 ApplyDebugLocation DL(*this, E); 1245 switch (E->getStmtClass()) { 1246 default: return EmitUnsupportedLValue(E, "l-value expression"); 1247 1248 case Expr::ObjCPropertyRefExprClass: 1249 llvm_unreachable("cannot emit a property reference directly"); 1250 1251 case Expr::ObjCSelectorExprClass: 1252 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1253 case Expr::ObjCIsaExprClass: 1254 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1255 case Expr::BinaryOperatorClass: 1256 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1257 case Expr::CompoundAssignOperatorClass: { 1258 QualType Ty = E->getType(); 1259 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1260 Ty = AT->getValueType(); 1261 if (!Ty->isAnyComplexType()) 1262 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1263 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1264 } 1265 case Expr::CallExprClass: 1266 case Expr::CXXMemberCallExprClass: 1267 case Expr::CXXOperatorCallExprClass: 1268 case Expr::UserDefinedLiteralClass: 1269 return EmitCallExprLValue(cast<CallExpr>(E)); 1270 case Expr::VAArgExprClass: 1271 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1272 case Expr::DeclRefExprClass: 1273 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1274 case Expr::ConstantExprClass: 1275 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1276 case Expr::ParenExprClass: 1277 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1278 case Expr::GenericSelectionExprClass: 1279 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1280 case Expr::PredefinedExprClass: 1281 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1282 case Expr::StringLiteralClass: 1283 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1284 case Expr::ObjCEncodeExprClass: 1285 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1286 case Expr::PseudoObjectExprClass: 1287 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1288 case Expr::InitListExprClass: 1289 return EmitInitListLValue(cast<InitListExpr>(E)); 1290 case Expr::CXXTemporaryObjectExprClass: 1291 case Expr::CXXConstructExprClass: 1292 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1293 case Expr::CXXBindTemporaryExprClass: 1294 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1295 case Expr::CXXUuidofExprClass: 1296 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1297 case Expr::LambdaExprClass: 1298 return EmitAggExprToLValue(E); 1299 1300 case Expr::ExprWithCleanupsClass: { 1301 const auto *cleanups = cast<ExprWithCleanups>(E); 1302 enterFullExpression(cleanups); 1303 RunCleanupsScope Scope(*this); 1304 LValue LV = EmitLValue(cleanups->getSubExpr()); 1305 if (LV.isSimple()) { 1306 // Defend against branches out of gnu statement expressions surrounded by 1307 // cleanups. 1308 llvm::Value *V = LV.getPointer(); 1309 Scope.ForceCleanup({&V}); 1310 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1311 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1312 } 1313 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1314 // bitfield lvalue or some other non-simple lvalue? 1315 return LV; 1316 } 1317 1318 case Expr::CXXDefaultArgExprClass: { 1319 auto *DAE = cast<CXXDefaultArgExpr>(E); 1320 CXXDefaultArgExprScope Scope(*this, DAE); 1321 return EmitLValue(DAE->getExpr()); 1322 } 1323 case Expr::CXXDefaultInitExprClass: { 1324 auto *DIE = cast<CXXDefaultInitExpr>(E); 1325 CXXDefaultInitExprScope Scope(*this, DIE); 1326 return EmitLValue(DIE->getExpr()); 1327 } 1328 case Expr::CXXTypeidExprClass: 1329 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1330 1331 case Expr::ObjCMessageExprClass: 1332 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1333 case Expr::ObjCIvarRefExprClass: 1334 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1335 case Expr::StmtExprClass: 1336 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1337 case Expr::UnaryOperatorClass: 1338 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1339 case Expr::ArraySubscriptExprClass: 1340 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1341 case Expr::OMPArraySectionExprClass: 1342 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1343 case Expr::ExtVectorElementExprClass: 1344 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1345 case Expr::MemberExprClass: 1346 return EmitMemberExpr(cast<MemberExpr>(E)); 1347 case Expr::CompoundLiteralExprClass: 1348 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1349 case Expr::ConditionalOperatorClass: 1350 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1351 case Expr::BinaryConditionalOperatorClass: 1352 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1353 case Expr::ChooseExprClass: 1354 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1355 case Expr::OpaqueValueExprClass: 1356 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1357 case Expr::SubstNonTypeTemplateParmExprClass: 1358 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1359 case Expr::ImplicitCastExprClass: 1360 case Expr::CStyleCastExprClass: 1361 case Expr::CXXFunctionalCastExprClass: 1362 case Expr::CXXStaticCastExprClass: 1363 case Expr::CXXDynamicCastExprClass: 1364 case Expr::CXXReinterpretCastExprClass: 1365 case Expr::CXXConstCastExprClass: 1366 case Expr::ObjCBridgedCastExprClass: 1367 return EmitCastLValue(cast<CastExpr>(E)); 1368 1369 case Expr::MaterializeTemporaryExprClass: 1370 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1371 1372 case Expr::CoawaitExprClass: 1373 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1374 case Expr::CoyieldExprClass: 1375 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1376 } 1377 } 1378 1379 /// Given an object of the given canonical type, can we safely copy a 1380 /// value out of it based on its initializer? 1381 static bool isConstantEmittableObjectType(QualType type) { 1382 assert(type.isCanonical()); 1383 assert(!type->isReferenceType()); 1384 1385 // Must be const-qualified but non-volatile. 1386 Qualifiers qs = type.getLocalQualifiers(); 1387 if (!qs.hasConst() || qs.hasVolatile()) return false; 1388 1389 // Otherwise, all object types satisfy this except C++ classes with 1390 // mutable subobjects or non-trivial copy/destroy behavior. 1391 if (const auto *RT = dyn_cast<RecordType>(type)) 1392 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1393 if (RD->hasMutableFields() || !RD->isTrivial()) 1394 return false; 1395 1396 return true; 1397 } 1398 1399 /// Can we constant-emit a load of a reference to a variable of the 1400 /// given type? This is different from predicates like 1401 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1402 /// in situations that don't necessarily satisfy the language's rules 1403 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1404 /// to do this with const float variables even if those variables 1405 /// aren't marked 'constexpr'. 1406 enum ConstantEmissionKind { 1407 CEK_None, 1408 CEK_AsReferenceOnly, 1409 CEK_AsValueOrReference, 1410 CEK_AsValueOnly 1411 }; 1412 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1413 type = type.getCanonicalType(); 1414 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1415 if (isConstantEmittableObjectType(ref->getPointeeType())) 1416 return CEK_AsValueOrReference; 1417 return CEK_AsReferenceOnly; 1418 } 1419 if (isConstantEmittableObjectType(type)) 1420 return CEK_AsValueOnly; 1421 return CEK_None; 1422 } 1423 1424 /// Try to emit a reference to the given value without producing it as 1425 /// an l-value. This is actually more than an optimization: we can't 1426 /// produce an l-value for variables that we never actually captured 1427 /// in a block or lambda, which means const int variables or constexpr 1428 /// literals or similar. 1429 CodeGenFunction::ConstantEmission 1430 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1431 ValueDecl *value = refExpr->getDecl(); 1432 1433 // The value needs to be an enum constant or a constant variable. 1434 ConstantEmissionKind CEK; 1435 if (isa<ParmVarDecl>(value)) { 1436 CEK = CEK_None; 1437 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1438 CEK = checkVarTypeForConstantEmission(var->getType()); 1439 } else if (isa<EnumConstantDecl>(value)) { 1440 CEK = CEK_AsValueOnly; 1441 } else { 1442 CEK = CEK_None; 1443 } 1444 if (CEK == CEK_None) return ConstantEmission(); 1445 1446 Expr::EvalResult result; 1447 bool resultIsReference; 1448 QualType resultType; 1449 1450 // It's best to evaluate all the way as an r-value if that's permitted. 1451 if (CEK != CEK_AsReferenceOnly && 1452 refExpr->EvaluateAsRValue(result, getContext())) { 1453 resultIsReference = false; 1454 resultType = refExpr->getType(); 1455 1456 // Otherwise, try to evaluate as an l-value. 1457 } else if (CEK != CEK_AsValueOnly && 1458 refExpr->EvaluateAsLValue(result, getContext())) { 1459 resultIsReference = true; 1460 resultType = value->getType(); 1461 1462 // Failure. 1463 } else { 1464 return ConstantEmission(); 1465 } 1466 1467 // In any case, if the initializer has side-effects, abandon ship. 1468 if (result.HasSideEffects) 1469 return ConstantEmission(); 1470 1471 // Emit as a constant. 1472 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1473 result.Val, resultType); 1474 1475 // Make sure we emit a debug reference to the global variable. 1476 // This should probably fire even for 1477 if (isa<VarDecl>(value)) { 1478 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1479 EmitDeclRefExprDbgValue(refExpr, result.Val); 1480 } else { 1481 assert(isa<EnumConstantDecl>(value)); 1482 EmitDeclRefExprDbgValue(refExpr, result.Val); 1483 } 1484 1485 // If we emitted a reference constant, we need to dereference that. 1486 if (resultIsReference) 1487 return ConstantEmission::forReference(C); 1488 1489 return ConstantEmission::forValue(C); 1490 } 1491 1492 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1493 const MemberExpr *ME) { 1494 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1495 // Try to emit static variable member expressions as DREs. 1496 return DeclRefExpr::Create( 1497 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1498 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1499 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1500 } 1501 return nullptr; 1502 } 1503 1504 CodeGenFunction::ConstantEmission 1505 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1506 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1507 return tryEmitAsConstant(DRE); 1508 return ConstantEmission(); 1509 } 1510 1511 llvm::Value *CodeGenFunction::emitScalarConstant( 1512 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1513 assert(Constant && "not a constant"); 1514 if (Constant.isReference()) 1515 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1516 E->getExprLoc()) 1517 .getScalarVal(); 1518 return Constant.getValue(); 1519 } 1520 1521 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1522 SourceLocation Loc) { 1523 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1524 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1525 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1526 } 1527 1528 static bool hasBooleanRepresentation(QualType Ty) { 1529 if (Ty->isBooleanType()) 1530 return true; 1531 1532 if (const EnumType *ET = Ty->getAs<EnumType>()) 1533 return ET->getDecl()->getIntegerType()->isBooleanType(); 1534 1535 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1536 return hasBooleanRepresentation(AT->getValueType()); 1537 1538 return false; 1539 } 1540 1541 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1542 llvm::APInt &Min, llvm::APInt &End, 1543 bool StrictEnums, bool IsBool) { 1544 const EnumType *ET = Ty->getAs<EnumType>(); 1545 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1546 ET && !ET->getDecl()->isFixed(); 1547 if (!IsBool && !IsRegularCPlusPlusEnum) 1548 return false; 1549 1550 if (IsBool) { 1551 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1552 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1553 } else { 1554 const EnumDecl *ED = ET->getDecl(); 1555 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1556 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1557 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1558 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1559 1560 if (NumNegativeBits) { 1561 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1562 assert(NumBits <= Bitwidth); 1563 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1564 Min = -End; 1565 } else { 1566 assert(NumPositiveBits <= Bitwidth); 1567 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1568 Min = llvm::APInt(Bitwidth, 0); 1569 } 1570 } 1571 return true; 1572 } 1573 1574 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1575 llvm::APInt Min, End; 1576 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1577 hasBooleanRepresentation(Ty))) 1578 return nullptr; 1579 1580 llvm::MDBuilder MDHelper(getLLVMContext()); 1581 return MDHelper.createRange(Min, End); 1582 } 1583 1584 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1585 SourceLocation Loc) { 1586 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1587 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1588 if (!HasBoolCheck && !HasEnumCheck) 1589 return false; 1590 1591 bool IsBool = hasBooleanRepresentation(Ty) || 1592 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1593 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1594 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1595 if (!NeedsBoolCheck && !NeedsEnumCheck) 1596 return false; 1597 1598 // Single-bit booleans don't need to be checked. Special-case this to avoid 1599 // a bit width mismatch when handling bitfield values. This is handled by 1600 // EmitFromMemory for the non-bitfield case. 1601 if (IsBool && 1602 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1603 return false; 1604 1605 llvm::APInt Min, End; 1606 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1607 return true; 1608 1609 auto &Ctx = getLLVMContext(); 1610 SanitizerScope SanScope(this); 1611 llvm::Value *Check; 1612 --End; 1613 if (!Min) { 1614 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1615 } else { 1616 llvm::Value *Upper = 1617 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1618 llvm::Value *Lower = 1619 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1620 Check = Builder.CreateAnd(Upper, Lower); 1621 } 1622 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1623 EmitCheckTypeDescriptor(Ty)}; 1624 SanitizerMask Kind = 1625 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1626 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1627 StaticArgs, EmitCheckValue(Value)); 1628 return true; 1629 } 1630 1631 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1632 QualType Ty, 1633 SourceLocation Loc, 1634 LValueBaseInfo BaseInfo, 1635 TBAAAccessInfo TBAAInfo, 1636 bool isNontemporal) { 1637 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1638 // For better performance, handle vector loads differently. 1639 if (Ty->isVectorType()) { 1640 const llvm::Type *EltTy = Addr.getElementType(); 1641 1642 const auto *VTy = cast<llvm::VectorType>(EltTy); 1643 1644 // Handle vectors of size 3 like size 4 for better performance. 1645 if (VTy->getNumElements() == 3) { 1646 1647 // Bitcast to vec4 type. 1648 llvm::VectorType *vec4Ty = 1649 llvm::VectorType::get(VTy->getElementType(), 4); 1650 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1651 // Now load value. 1652 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1653 1654 // Shuffle vector to get vec3. 1655 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1656 {0, 1, 2}, "extractVec"); 1657 return EmitFromMemory(V, Ty); 1658 } 1659 } 1660 } 1661 1662 // Atomic operations have to be done on integral types. 1663 LValue AtomicLValue = 1664 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1665 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1666 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1667 } 1668 1669 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1670 if (isNontemporal) { 1671 llvm::MDNode *Node = llvm::MDNode::get( 1672 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1673 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1674 } 1675 1676 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1677 1678 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1679 // In order to prevent the optimizer from throwing away the check, don't 1680 // attach range metadata to the load. 1681 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1682 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1683 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1684 1685 return EmitFromMemory(Load, Ty); 1686 } 1687 1688 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1689 // Bool has a different representation in memory than in registers. 1690 if (hasBooleanRepresentation(Ty)) { 1691 // This should really always be an i1, but sometimes it's already 1692 // an i8, and it's awkward to track those cases down. 1693 if (Value->getType()->isIntegerTy(1)) 1694 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1695 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1696 "wrong value rep of bool"); 1697 } 1698 1699 return Value; 1700 } 1701 1702 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1703 // Bool has a different representation in memory than in registers. 1704 if (hasBooleanRepresentation(Ty)) { 1705 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1706 "wrong value rep of bool"); 1707 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1708 } 1709 1710 return Value; 1711 } 1712 1713 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1714 bool Volatile, QualType Ty, 1715 LValueBaseInfo BaseInfo, 1716 TBAAAccessInfo TBAAInfo, 1717 bool isInit, bool isNontemporal) { 1718 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1719 // Handle vectors differently to get better performance. 1720 if (Ty->isVectorType()) { 1721 llvm::Type *SrcTy = Value->getType(); 1722 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1723 // Handle vec3 special. 1724 if (VecTy && VecTy->getNumElements() == 3) { 1725 // Our source is a vec3, do a shuffle vector to make it a vec4. 1726 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1727 Builder.getInt32(2), 1728 llvm::UndefValue::get(Builder.getInt32Ty())}; 1729 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1730 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1731 MaskV, "extractVec"); 1732 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1733 } 1734 if (Addr.getElementType() != SrcTy) { 1735 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1736 } 1737 } 1738 } 1739 1740 Value = EmitToMemory(Value, Ty); 1741 1742 LValue AtomicLValue = 1743 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1744 if (Ty->isAtomicType() || 1745 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1746 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1747 return; 1748 } 1749 1750 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1751 if (isNontemporal) { 1752 llvm::MDNode *Node = 1753 llvm::MDNode::get(Store->getContext(), 1754 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1755 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1756 } 1757 1758 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1759 } 1760 1761 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1762 bool isInit) { 1763 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1764 lvalue.getType(), lvalue.getBaseInfo(), 1765 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1766 } 1767 1768 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1769 /// method emits the address of the lvalue, then loads the result as an rvalue, 1770 /// returning the rvalue. 1771 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1772 if (LV.isObjCWeak()) { 1773 // load of a __weak object. 1774 Address AddrWeakObj = LV.getAddress(); 1775 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1776 AddrWeakObj)); 1777 } 1778 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1779 // In MRC mode, we do a load+autorelease. 1780 if (!getLangOpts().ObjCAutoRefCount) { 1781 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1782 } 1783 1784 // In ARC mode, we load retained and then consume the value. 1785 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1786 Object = EmitObjCConsumeObject(LV.getType(), Object); 1787 return RValue::get(Object); 1788 } 1789 1790 if (LV.isSimple()) { 1791 assert(!LV.getType()->isFunctionType()); 1792 1793 // Everything needs a load. 1794 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1795 } 1796 1797 if (LV.isVectorElt()) { 1798 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1799 LV.isVolatileQualified()); 1800 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1801 "vecext")); 1802 } 1803 1804 // If this is a reference to a subset of the elements of a vector, either 1805 // shuffle the input or extract/insert them as appropriate. 1806 if (LV.isExtVectorElt()) 1807 return EmitLoadOfExtVectorElementLValue(LV); 1808 1809 // Global Register variables always invoke intrinsics 1810 if (LV.isGlobalReg()) 1811 return EmitLoadOfGlobalRegLValue(LV); 1812 1813 assert(LV.isBitField() && "Unknown LValue type!"); 1814 return EmitLoadOfBitfieldLValue(LV, Loc); 1815 } 1816 1817 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1818 SourceLocation Loc) { 1819 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1820 1821 // Get the output type. 1822 llvm::Type *ResLTy = ConvertType(LV.getType()); 1823 1824 Address Ptr = LV.getBitFieldAddress(); 1825 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1826 1827 if (Info.IsSigned) { 1828 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1829 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1830 if (HighBits) 1831 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1832 if (Info.Offset + HighBits) 1833 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1834 } else { 1835 if (Info.Offset) 1836 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1837 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1838 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1839 Info.Size), 1840 "bf.clear"); 1841 } 1842 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1843 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1844 return RValue::get(Val); 1845 } 1846 1847 // If this is a reference to a subset of the elements of a vector, create an 1848 // appropriate shufflevector. 1849 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1850 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1851 LV.isVolatileQualified()); 1852 1853 const llvm::Constant *Elts = LV.getExtVectorElts(); 1854 1855 // If the result of the expression is a non-vector type, we must be extracting 1856 // a single element. Just codegen as an extractelement. 1857 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1858 if (!ExprVT) { 1859 unsigned InIdx = getAccessedFieldNo(0, Elts); 1860 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1861 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1862 } 1863 1864 // Always use shuffle vector to try to retain the original program structure 1865 unsigned NumResultElts = ExprVT->getNumElements(); 1866 1867 SmallVector<llvm::Constant*, 4> Mask; 1868 for (unsigned i = 0; i != NumResultElts; ++i) 1869 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1870 1871 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1872 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1873 MaskV); 1874 return RValue::get(Vec); 1875 } 1876 1877 /// Generates lvalue for partial ext_vector access. 1878 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1879 Address VectorAddress = LV.getExtVectorAddress(); 1880 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1881 QualType EQT = ExprVT->getElementType(); 1882 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1883 1884 Address CastToPointerElement = 1885 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1886 "conv.ptr.element"); 1887 1888 const llvm::Constant *Elts = LV.getExtVectorElts(); 1889 unsigned ix = getAccessedFieldNo(0, Elts); 1890 1891 Address VectorBasePtrPlusIx = 1892 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1893 "vector.elt"); 1894 1895 return VectorBasePtrPlusIx; 1896 } 1897 1898 /// Load of global gamed gegisters are always calls to intrinsics. 1899 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1900 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1901 "Bad type for register variable"); 1902 llvm::MDNode *RegName = cast<llvm::MDNode>( 1903 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1904 1905 // We accept integer and pointer types only 1906 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1907 llvm::Type *Ty = OrigTy; 1908 if (OrigTy->isPointerTy()) 1909 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1910 llvm::Type *Types[] = { Ty }; 1911 1912 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1913 llvm::Value *Call = Builder.CreateCall( 1914 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1915 if (OrigTy->isPointerTy()) 1916 Call = Builder.CreateIntToPtr(Call, OrigTy); 1917 return RValue::get(Call); 1918 } 1919 1920 1921 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1922 /// lvalue, where both are guaranteed to the have the same type, and that type 1923 /// is 'Ty'. 1924 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1925 bool isInit) { 1926 if (!Dst.isSimple()) { 1927 if (Dst.isVectorElt()) { 1928 // Read/modify/write the vector, inserting the new element. 1929 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1930 Dst.isVolatileQualified()); 1931 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1932 Dst.getVectorIdx(), "vecins"); 1933 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1934 Dst.isVolatileQualified()); 1935 return; 1936 } 1937 1938 // If this is an update of extended vector elements, insert them as 1939 // appropriate. 1940 if (Dst.isExtVectorElt()) 1941 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1942 1943 if (Dst.isGlobalReg()) 1944 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1945 1946 assert(Dst.isBitField() && "Unknown LValue type"); 1947 return EmitStoreThroughBitfieldLValue(Src, Dst); 1948 } 1949 1950 // There's special magic for assigning into an ARC-qualified l-value. 1951 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1952 switch (Lifetime) { 1953 case Qualifiers::OCL_None: 1954 llvm_unreachable("present but none"); 1955 1956 case Qualifiers::OCL_ExplicitNone: 1957 // nothing special 1958 break; 1959 1960 case Qualifiers::OCL_Strong: 1961 if (isInit) { 1962 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1963 break; 1964 } 1965 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1966 return; 1967 1968 case Qualifiers::OCL_Weak: 1969 if (isInit) 1970 // Initialize and then skip the primitive store. 1971 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1972 else 1973 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1974 return; 1975 1976 case Qualifiers::OCL_Autoreleasing: 1977 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1978 Src.getScalarVal())); 1979 // fall into the normal path 1980 break; 1981 } 1982 } 1983 1984 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1985 // load of a __weak object. 1986 Address LvalueDst = Dst.getAddress(); 1987 llvm::Value *src = Src.getScalarVal(); 1988 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1989 return; 1990 } 1991 1992 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1993 // load of a __strong object. 1994 Address LvalueDst = Dst.getAddress(); 1995 llvm::Value *src = Src.getScalarVal(); 1996 if (Dst.isObjCIvar()) { 1997 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1998 llvm::Type *ResultType = IntPtrTy; 1999 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2000 llvm::Value *RHS = dst.getPointer(); 2001 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2002 llvm::Value *LHS = 2003 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2004 "sub.ptr.lhs.cast"); 2005 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2006 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2007 BytesBetween); 2008 } else if (Dst.isGlobalObjCRef()) { 2009 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2010 Dst.isThreadLocalRef()); 2011 } 2012 else 2013 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2014 return; 2015 } 2016 2017 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2018 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2019 } 2020 2021 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2022 llvm::Value **Result) { 2023 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2024 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2025 Address Ptr = Dst.getBitFieldAddress(); 2026 2027 // Get the source value, truncated to the width of the bit-field. 2028 llvm::Value *SrcVal = Src.getScalarVal(); 2029 2030 // Cast the source to the storage type and shift it into place. 2031 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2032 /*IsSigned=*/false); 2033 llvm::Value *MaskedVal = SrcVal; 2034 2035 // See if there are other bits in the bitfield's storage we'll need to load 2036 // and mask together with source before storing. 2037 if (Info.StorageSize != Info.Size) { 2038 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2039 llvm::Value *Val = 2040 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2041 2042 // Mask the source value as needed. 2043 if (!hasBooleanRepresentation(Dst.getType())) 2044 SrcVal = Builder.CreateAnd(SrcVal, 2045 llvm::APInt::getLowBitsSet(Info.StorageSize, 2046 Info.Size), 2047 "bf.value"); 2048 MaskedVal = SrcVal; 2049 if (Info.Offset) 2050 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2051 2052 // Mask out the original value. 2053 Val = Builder.CreateAnd(Val, 2054 ~llvm::APInt::getBitsSet(Info.StorageSize, 2055 Info.Offset, 2056 Info.Offset + Info.Size), 2057 "bf.clear"); 2058 2059 // Or together the unchanged values and the source value. 2060 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2061 } else { 2062 assert(Info.Offset == 0); 2063 } 2064 2065 // Write the new value back out. 2066 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2067 2068 // Return the new value of the bit-field, if requested. 2069 if (Result) { 2070 llvm::Value *ResultVal = MaskedVal; 2071 2072 // Sign extend the value if needed. 2073 if (Info.IsSigned) { 2074 assert(Info.Size <= Info.StorageSize); 2075 unsigned HighBits = Info.StorageSize - Info.Size; 2076 if (HighBits) { 2077 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2078 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2079 } 2080 } 2081 2082 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2083 "bf.result.cast"); 2084 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2085 } 2086 } 2087 2088 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2089 LValue Dst) { 2090 // This access turns into a read/modify/write of the vector. Load the input 2091 // value now. 2092 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2093 Dst.isVolatileQualified()); 2094 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2095 2096 llvm::Value *SrcVal = Src.getScalarVal(); 2097 2098 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2099 unsigned NumSrcElts = VTy->getNumElements(); 2100 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2101 if (NumDstElts == NumSrcElts) { 2102 // Use shuffle vector is the src and destination are the same number of 2103 // elements and restore the vector mask since it is on the side it will be 2104 // stored. 2105 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2106 for (unsigned i = 0; i != NumSrcElts; ++i) 2107 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2108 2109 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2110 Vec = Builder.CreateShuffleVector(SrcVal, 2111 llvm::UndefValue::get(Vec->getType()), 2112 MaskV); 2113 } else if (NumDstElts > NumSrcElts) { 2114 // Extended the source vector to the same length and then shuffle it 2115 // into the destination. 2116 // FIXME: since we're shuffling with undef, can we just use the indices 2117 // into that? This could be simpler. 2118 SmallVector<llvm::Constant*, 4> ExtMask; 2119 for (unsigned i = 0; i != NumSrcElts; ++i) 2120 ExtMask.push_back(Builder.getInt32(i)); 2121 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2122 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2123 llvm::Value *ExtSrcVal = 2124 Builder.CreateShuffleVector(SrcVal, 2125 llvm::UndefValue::get(SrcVal->getType()), 2126 ExtMaskV); 2127 // build identity 2128 SmallVector<llvm::Constant*, 4> Mask; 2129 for (unsigned i = 0; i != NumDstElts; ++i) 2130 Mask.push_back(Builder.getInt32(i)); 2131 2132 // When the vector size is odd and .odd or .hi is used, the last element 2133 // of the Elts constant array will be one past the size of the vector. 2134 // Ignore the last element here, if it is greater than the mask size. 2135 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2136 NumSrcElts--; 2137 2138 // modify when what gets shuffled in 2139 for (unsigned i = 0; i != NumSrcElts; ++i) 2140 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2141 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2142 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2143 } else { 2144 // We should never shorten the vector 2145 llvm_unreachable("unexpected shorten vector length"); 2146 } 2147 } else { 2148 // If the Src is a scalar (not a vector) it must be updating one element. 2149 unsigned InIdx = getAccessedFieldNo(0, Elts); 2150 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2151 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2152 } 2153 2154 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2155 Dst.isVolatileQualified()); 2156 } 2157 2158 /// Store of global named registers are always calls to intrinsics. 2159 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2160 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2161 "Bad type for register variable"); 2162 llvm::MDNode *RegName = cast<llvm::MDNode>( 2163 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2164 assert(RegName && "Register LValue is not metadata"); 2165 2166 // We accept integer and pointer types only 2167 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2168 llvm::Type *Ty = OrigTy; 2169 if (OrigTy->isPointerTy()) 2170 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2171 llvm::Type *Types[] = { Ty }; 2172 2173 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2174 llvm::Value *Value = Src.getScalarVal(); 2175 if (OrigTy->isPointerTy()) 2176 Value = Builder.CreatePtrToInt(Value, Ty); 2177 Builder.CreateCall( 2178 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2179 } 2180 2181 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2182 // generating write-barries API. It is currently a global, ivar, 2183 // or neither. 2184 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2185 LValue &LV, 2186 bool IsMemberAccess=false) { 2187 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2188 return; 2189 2190 if (isa<ObjCIvarRefExpr>(E)) { 2191 QualType ExpTy = E->getType(); 2192 if (IsMemberAccess && ExpTy->isPointerType()) { 2193 // If ivar is a structure pointer, assigning to field of 2194 // this struct follows gcc's behavior and makes it a non-ivar 2195 // writer-barrier conservatively. 2196 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2197 if (ExpTy->isRecordType()) { 2198 LV.setObjCIvar(false); 2199 return; 2200 } 2201 } 2202 LV.setObjCIvar(true); 2203 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2204 LV.setBaseIvarExp(Exp->getBase()); 2205 LV.setObjCArray(E->getType()->isArrayType()); 2206 return; 2207 } 2208 2209 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2210 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2211 if (VD->hasGlobalStorage()) { 2212 LV.setGlobalObjCRef(true); 2213 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2214 } 2215 } 2216 LV.setObjCArray(E->getType()->isArrayType()); 2217 return; 2218 } 2219 2220 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2221 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2222 return; 2223 } 2224 2225 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2226 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2227 if (LV.isObjCIvar()) { 2228 // If cast is to a structure pointer, follow gcc's behavior and make it 2229 // a non-ivar write-barrier. 2230 QualType ExpTy = E->getType(); 2231 if (ExpTy->isPointerType()) 2232 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2233 if (ExpTy->isRecordType()) 2234 LV.setObjCIvar(false); 2235 } 2236 return; 2237 } 2238 2239 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2240 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2241 return; 2242 } 2243 2244 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2245 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2246 return; 2247 } 2248 2249 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2250 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2251 return; 2252 } 2253 2254 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2255 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2256 return; 2257 } 2258 2259 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2260 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2261 if (LV.isObjCIvar() && !LV.isObjCArray()) 2262 // Using array syntax to assigning to what an ivar points to is not 2263 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2264 LV.setObjCIvar(false); 2265 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2266 // Using array syntax to assigning to what global points to is not 2267 // same as assigning to the global itself. {id *G;} G[i] = 0; 2268 LV.setGlobalObjCRef(false); 2269 return; 2270 } 2271 2272 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2273 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2274 // We don't know if member is an 'ivar', but this flag is looked at 2275 // only in the context of LV.isObjCIvar(). 2276 LV.setObjCArray(E->getType()->isArrayType()); 2277 return; 2278 } 2279 } 2280 2281 static llvm::Value * 2282 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2283 llvm::Value *V, llvm::Type *IRType, 2284 StringRef Name = StringRef()) { 2285 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2286 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2287 } 2288 2289 static LValue EmitThreadPrivateVarDeclLValue( 2290 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2291 llvm::Type *RealVarTy, SourceLocation Loc) { 2292 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2293 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2294 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2295 } 2296 2297 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2298 const VarDecl *VD, QualType T) { 2299 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2300 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2301 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2302 return Address::invalid(); 2303 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2304 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2305 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2306 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2307 } 2308 2309 Address 2310 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2311 LValueBaseInfo *PointeeBaseInfo, 2312 TBAAAccessInfo *PointeeTBAAInfo) { 2313 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2314 RefLVal.isVolatile()); 2315 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2316 2317 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2318 PointeeBaseInfo, PointeeTBAAInfo, 2319 /* forPointeeType= */ true); 2320 return Address(Load, Align); 2321 } 2322 2323 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2324 LValueBaseInfo PointeeBaseInfo; 2325 TBAAAccessInfo PointeeTBAAInfo; 2326 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2327 &PointeeTBAAInfo); 2328 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2329 PointeeBaseInfo, PointeeTBAAInfo); 2330 } 2331 2332 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2333 const PointerType *PtrTy, 2334 LValueBaseInfo *BaseInfo, 2335 TBAAAccessInfo *TBAAInfo) { 2336 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2337 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2338 BaseInfo, TBAAInfo, 2339 /*forPointeeType=*/true)); 2340 } 2341 2342 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2343 const PointerType *PtrTy) { 2344 LValueBaseInfo BaseInfo; 2345 TBAAAccessInfo TBAAInfo; 2346 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2347 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2348 } 2349 2350 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2351 const Expr *E, const VarDecl *VD) { 2352 QualType T = E->getType(); 2353 2354 // If it's thread_local, emit a call to its wrapper function instead. 2355 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2356 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2357 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2358 // Check if the variable is marked as declare target with link clause in 2359 // device codegen. 2360 if (CGF.getLangOpts().OpenMPIsDevice) { 2361 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2362 if (Addr.isValid()) 2363 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2364 } 2365 2366 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2367 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2368 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2369 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2370 Address Addr(V, Alignment); 2371 // Emit reference to the private copy of the variable if it is an OpenMP 2372 // threadprivate variable. 2373 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2374 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2375 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2376 E->getExprLoc()); 2377 } 2378 LValue LV = VD->getType()->isReferenceType() ? 2379 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2380 AlignmentSource::Decl) : 2381 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2382 setObjCGCLValueClass(CGF.getContext(), E, LV); 2383 return LV; 2384 } 2385 2386 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2387 const FunctionDecl *FD) { 2388 if (FD->hasAttr<WeakRefAttr>()) { 2389 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2390 return aliasee.getPointer(); 2391 } 2392 2393 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2394 if (!FD->hasPrototype()) { 2395 if (const FunctionProtoType *Proto = 2396 FD->getType()->getAs<FunctionProtoType>()) { 2397 // Ugly case: for a K&R-style definition, the type of the definition 2398 // isn't the same as the type of a use. Correct for this with a 2399 // bitcast. 2400 QualType NoProtoType = 2401 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2402 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2403 V = llvm::ConstantExpr::getBitCast(V, 2404 CGM.getTypes().ConvertType(NoProtoType)); 2405 } 2406 } 2407 return V; 2408 } 2409 2410 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2411 const Expr *E, const FunctionDecl *FD) { 2412 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2413 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2414 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2415 AlignmentSource::Decl); 2416 } 2417 2418 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2419 llvm::Value *ThisValue) { 2420 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2421 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2422 return CGF.EmitLValueForField(LV, FD); 2423 } 2424 2425 /// Named Registers are named metadata pointing to the register name 2426 /// which will be read from/written to as an argument to the intrinsic 2427 /// @llvm.read/write_register. 2428 /// So far, only the name is being passed down, but other options such as 2429 /// register type, allocation type or even optimization options could be 2430 /// passed down via the metadata node. 2431 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2432 SmallString<64> Name("llvm.named.register."); 2433 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2434 assert(Asm->getLabel().size() < 64-Name.size() && 2435 "Register name too big"); 2436 Name.append(Asm->getLabel()); 2437 llvm::NamedMDNode *M = 2438 CGM.getModule().getOrInsertNamedMetadata(Name); 2439 if (M->getNumOperands() == 0) { 2440 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2441 Asm->getLabel()); 2442 llvm::Metadata *Ops[] = {Str}; 2443 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2444 } 2445 2446 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2447 2448 llvm::Value *Ptr = 2449 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2450 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2451 } 2452 2453 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2454 const NamedDecl *ND = E->getDecl(); 2455 QualType T = E->getType(); 2456 2457 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2458 // Global Named registers access via intrinsics only 2459 if (VD->getStorageClass() == SC_Register && 2460 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2461 return EmitGlobalNamedRegister(VD, CGM); 2462 2463 // A DeclRefExpr for a reference initialized by a constant expression can 2464 // appear without being odr-used. Directly emit the constant initializer. 2465 VD->getAnyInitializer(VD); 2466 if (E->isNonOdrUse() == NOUR_Constant && VD->getType()->isReferenceType()) { 2467 llvm::Constant *Val = 2468 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2469 *VD->evaluateValue(), 2470 VD->getType()); 2471 assert(Val && "failed to emit reference constant expression"); 2472 // FIXME: Eventually we will want to emit vector element references. 2473 2474 // Should we be using the alignment of the constant pointer we emitted? 2475 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2476 /* BaseInfo= */ nullptr, 2477 /* TBAAInfo= */ nullptr, 2478 /* forPointeeType= */ true); 2479 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2480 } 2481 2482 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2483 2484 // Check for captured variables. 2485 if (E->refersToEnclosingVariableOrCapture()) { 2486 VD = VD->getCanonicalDecl(); 2487 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2488 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2489 else if (CapturedStmtInfo) { 2490 auto I = LocalDeclMap.find(VD); 2491 if (I != LocalDeclMap.end()) { 2492 if (VD->getType()->isReferenceType()) 2493 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2494 AlignmentSource::Decl); 2495 return MakeAddrLValue(I->second, T); 2496 } 2497 LValue CapLVal = 2498 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2499 CapturedStmtInfo->getContextValue()); 2500 return MakeAddrLValue( 2501 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2502 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2503 CapLVal.getTBAAInfo()); 2504 } 2505 2506 assert(isa<BlockDecl>(CurCodeDecl)); 2507 Address addr = GetAddrOfBlockDecl(VD); 2508 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2509 } 2510 } 2511 2512 // FIXME: We should be able to assert this for FunctionDecls as well! 2513 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2514 // those with a valid source location. 2515 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2516 !E->getLocation().isValid()) && 2517 "Should not use decl without marking it used!"); 2518 2519 if (ND->hasAttr<WeakRefAttr>()) { 2520 const auto *VD = cast<ValueDecl>(ND); 2521 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2522 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2523 } 2524 2525 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2526 // Check if this is a global variable. 2527 if (VD->hasLinkage() || VD->isStaticDataMember()) 2528 return EmitGlobalVarDeclLValue(*this, E, VD); 2529 2530 Address addr = Address::invalid(); 2531 2532 // The variable should generally be present in the local decl map. 2533 auto iter = LocalDeclMap.find(VD); 2534 if (iter != LocalDeclMap.end()) { 2535 addr = iter->second; 2536 2537 // Otherwise, it might be static local we haven't emitted yet for 2538 // some reason; most likely, because it's in an outer function. 2539 } else if (VD->isStaticLocal()) { 2540 addr = Address(CGM.getOrCreateStaticVarDecl( 2541 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2542 getContext().getDeclAlign(VD)); 2543 2544 // No other cases for now. 2545 } else { 2546 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2547 } 2548 2549 2550 // Check for OpenMP threadprivate variables. 2551 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2552 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2553 return EmitThreadPrivateVarDeclLValue( 2554 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2555 E->getExprLoc()); 2556 } 2557 2558 // Drill into block byref variables. 2559 bool isBlockByref = VD->isEscapingByref(); 2560 if (isBlockByref) { 2561 addr = emitBlockByrefAddress(addr, VD); 2562 } 2563 2564 // Drill into reference types. 2565 LValue LV = VD->getType()->isReferenceType() ? 2566 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2567 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2568 2569 bool isLocalStorage = VD->hasLocalStorage(); 2570 2571 bool NonGCable = isLocalStorage && 2572 !VD->getType()->isReferenceType() && 2573 !isBlockByref; 2574 if (NonGCable) { 2575 LV.getQuals().removeObjCGCAttr(); 2576 LV.setNonGC(true); 2577 } 2578 2579 bool isImpreciseLifetime = 2580 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2581 if (isImpreciseLifetime) 2582 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2583 setObjCGCLValueClass(getContext(), E, LV); 2584 return LV; 2585 } 2586 2587 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2588 return EmitFunctionDeclLValue(*this, E, FD); 2589 2590 // FIXME: While we're emitting a binding from an enclosing scope, all other 2591 // DeclRefExprs we see should be implicitly treated as if they also refer to 2592 // an enclosing scope. 2593 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2594 return EmitLValue(BD->getBinding()); 2595 2596 llvm_unreachable("Unhandled DeclRefExpr"); 2597 } 2598 2599 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2600 // __extension__ doesn't affect lvalue-ness. 2601 if (E->getOpcode() == UO_Extension) 2602 return EmitLValue(E->getSubExpr()); 2603 2604 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2605 switch (E->getOpcode()) { 2606 default: llvm_unreachable("Unknown unary operator lvalue!"); 2607 case UO_Deref: { 2608 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2609 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2610 2611 LValueBaseInfo BaseInfo; 2612 TBAAAccessInfo TBAAInfo; 2613 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2614 &TBAAInfo); 2615 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2616 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2617 2618 // We should not generate __weak write barrier on indirect reference 2619 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2620 // But, we continue to generate __strong write barrier on indirect write 2621 // into a pointer to object. 2622 if (getLangOpts().ObjC && 2623 getLangOpts().getGC() != LangOptions::NonGC && 2624 LV.isObjCWeak()) 2625 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2626 return LV; 2627 } 2628 case UO_Real: 2629 case UO_Imag: { 2630 LValue LV = EmitLValue(E->getSubExpr()); 2631 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2632 2633 // __real is valid on scalars. This is a faster way of testing that. 2634 // __imag can only produce an rvalue on scalars. 2635 if (E->getOpcode() == UO_Real && 2636 !LV.getAddress().getElementType()->isStructTy()) { 2637 assert(E->getSubExpr()->getType()->isArithmeticType()); 2638 return LV; 2639 } 2640 2641 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2642 2643 Address Component = 2644 (E->getOpcode() == UO_Real 2645 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2646 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2647 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2648 CGM.getTBAAInfoForSubobject(LV, T)); 2649 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2650 return ElemLV; 2651 } 2652 case UO_PreInc: 2653 case UO_PreDec: { 2654 LValue LV = EmitLValue(E->getSubExpr()); 2655 bool isInc = E->getOpcode() == UO_PreInc; 2656 2657 if (E->getType()->isAnyComplexType()) 2658 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2659 else 2660 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2661 return LV; 2662 } 2663 } 2664 } 2665 2666 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2667 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2668 E->getType(), AlignmentSource::Decl); 2669 } 2670 2671 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2672 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2673 E->getType(), AlignmentSource::Decl); 2674 } 2675 2676 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2677 auto SL = E->getFunctionName(); 2678 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2679 StringRef FnName = CurFn->getName(); 2680 if (FnName.startswith("\01")) 2681 FnName = FnName.substr(1); 2682 StringRef NameItems[] = { 2683 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2684 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2685 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2686 std::string Name = SL->getString(); 2687 if (!Name.empty()) { 2688 unsigned Discriminator = 2689 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2690 if (Discriminator) 2691 Name += "_" + Twine(Discriminator + 1).str(); 2692 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2693 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2694 } else { 2695 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2696 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2697 } 2698 } 2699 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2700 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2701 } 2702 2703 /// Emit a type description suitable for use by a runtime sanitizer library. The 2704 /// format of a type descriptor is 2705 /// 2706 /// \code 2707 /// { i16 TypeKind, i16 TypeInfo } 2708 /// \endcode 2709 /// 2710 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2711 /// integer, 1 for a floating point value, and -1 for anything else. 2712 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2713 // Only emit each type's descriptor once. 2714 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2715 return C; 2716 2717 uint16_t TypeKind = -1; 2718 uint16_t TypeInfo = 0; 2719 2720 if (T->isIntegerType()) { 2721 TypeKind = 0; 2722 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2723 (T->isSignedIntegerType() ? 1 : 0); 2724 } else if (T->isFloatingType()) { 2725 TypeKind = 1; 2726 TypeInfo = getContext().getTypeSize(T); 2727 } 2728 2729 // Format the type name as if for a diagnostic, including quotes and 2730 // optionally an 'aka'. 2731 SmallString<32> Buffer; 2732 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2733 (intptr_t)T.getAsOpaquePtr(), 2734 StringRef(), StringRef(), None, Buffer, 2735 None); 2736 2737 llvm::Constant *Components[] = { 2738 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2739 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2740 }; 2741 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2742 2743 auto *GV = new llvm::GlobalVariable( 2744 CGM.getModule(), Descriptor->getType(), 2745 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2746 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2747 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2748 2749 // Remember the descriptor for this type. 2750 CGM.setTypeDescriptorInMap(T, GV); 2751 2752 return GV; 2753 } 2754 2755 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2756 llvm::Type *TargetTy = IntPtrTy; 2757 2758 if (V->getType() == TargetTy) 2759 return V; 2760 2761 // Floating-point types which fit into intptr_t are bitcast to integers 2762 // and then passed directly (after zero-extension, if necessary). 2763 if (V->getType()->isFloatingPointTy()) { 2764 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2765 if (Bits <= TargetTy->getIntegerBitWidth()) 2766 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2767 Bits)); 2768 } 2769 2770 // Integers which fit in intptr_t are zero-extended and passed directly. 2771 if (V->getType()->isIntegerTy() && 2772 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2773 return Builder.CreateZExt(V, TargetTy); 2774 2775 // Pointers are passed directly, everything else is passed by address. 2776 if (!V->getType()->isPointerTy()) { 2777 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2778 Builder.CreateStore(V, Ptr); 2779 V = Ptr.getPointer(); 2780 } 2781 return Builder.CreatePtrToInt(V, TargetTy); 2782 } 2783 2784 /// Emit a representation of a SourceLocation for passing to a handler 2785 /// in a sanitizer runtime library. The format for this data is: 2786 /// \code 2787 /// struct SourceLocation { 2788 /// const char *Filename; 2789 /// int32_t Line, Column; 2790 /// }; 2791 /// \endcode 2792 /// For an invalid SourceLocation, the Filename pointer is null. 2793 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2794 llvm::Constant *Filename; 2795 int Line, Column; 2796 2797 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2798 if (PLoc.isValid()) { 2799 StringRef FilenameString = PLoc.getFilename(); 2800 2801 int PathComponentsToStrip = 2802 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2803 if (PathComponentsToStrip < 0) { 2804 assert(PathComponentsToStrip != INT_MIN); 2805 int PathComponentsToKeep = -PathComponentsToStrip; 2806 auto I = llvm::sys::path::rbegin(FilenameString); 2807 auto E = llvm::sys::path::rend(FilenameString); 2808 while (I != E && --PathComponentsToKeep) 2809 ++I; 2810 2811 FilenameString = FilenameString.substr(I - E); 2812 } else if (PathComponentsToStrip > 0) { 2813 auto I = llvm::sys::path::begin(FilenameString); 2814 auto E = llvm::sys::path::end(FilenameString); 2815 while (I != E && PathComponentsToStrip--) 2816 ++I; 2817 2818 if (I != E) 2819 FilenameString = 2820 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2821 else 2822 FilenameString = llvm::sys::path::filename(FilenameString); 2823 } 2824 2825 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2826 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2827 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2828 Filename = FilenameGV.getPointer(); 2829 Line = PLoc.getLine(); 2830 Column = PLoc.getColumn(); 2831 } else { 2832 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2833 Line = Column = 0; 2834 } 2835 2836 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2837 Builder.getInt32(Column)}; 2838 2839 return llvm::ConstantStruct::getAnon(Data); 2840 } 2841 2842 namespace { 2843 /// Specify under what conditions this check can be recovered 2844 enum class CheckRecoverableKind { 2845 /// Always terminate program execution if this check fails. 2846 Unrecoverable, 2847 /// Check supports recovering, runtime has both fatal (noreturn) and 2848 /// non-fatal handlers for this check. 2849 Recoverable, 2850 /// Runtime conditionally aborts, always need to support recovery. 2851 AlwaysRecoverable 2852 }; 2853 } 2854 2855 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2856 assert(Kind.countPopulation() == 1); 2857 if (Kind == SanitizerKind::Vptr) 2858 return CheckRecoverableKind::AlwaysRecoverable; 2859 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2860 return CheckRecoverableKind::Unrecoverable; 2861 else 2862 return CheckRecoverableKind::Recoverable; 2863 } 2864 2865 namespace { 2866 struct SanitizerHandlerInfo { 2867 char const *const Name; 2868 unsigned Version; 2869 }; 2870 } 2871 2872 const SanitizerHandlerInfo SanitizerHandlers[] = { 2873 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2874 LIST_SANITIZER_CHECKS 2875 #undef SANITIZER_CHECK 2876 }; 2877 2878 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2879 llvm::FunctionType *FnType, 2880 ArrayRef<llvm::Value *> FnArgs, 2881 SanitizerHandler CheckHandler, 2882 CheckRecoverableKind RecoverKind, bool IsFatal, 2883 llvm::BasicBlock *ContBB) { 2884 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2885 Optional<ApplyDebugLocation> DL; 2886 if (!CGF.Builder.getCurrentDebugLocation()) { 2887 // Ensure that the call has at least an artificial debug location. 2888 DL.emplace(CGF, SourceLocation()); 2889 } 2890 bool NeedsAbortSuffix = 2891 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2892 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2893 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2894 const StringRef CheckName = CheckInfo.Name; 2895 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2896 if (CheckInfo.Version && !MinimalRuntime) 2897 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2898 if (MinimalRuntime) 2899 FnName += "_minimal"; 2900 if (NeedsAbortSuffix) 2901 FnName += "_abort"; 2902 bool MayReturn = 2903 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2904 2905 llvm::AttrBuilder B; 2906 if (!MayReturn) { 2907 B.addAttribute(llvm::Attribute::NoReturn) 2908 .addAttribute(llvm::Attribute::NoUnwind); 2909 } 2910 B.addAttribute(llvm::Attribute::UWTable); 2911 2912 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 2913 FnType, FnName, 2914 llvm::AttributeList::get(CGF.getLLVMContext(), 2915 llvm::AttributeList::FunctionIndex, B), 2916 /*Local=*/true); 2917 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2918 if (!MayReturn) { 2919 HandlerCall->setDoesNotReturn(); 2920 CGF.Builder.CreateUnreachable(); 2921 } else { 2922 CGF.Builder.CreateBr(ContBB); 2923 } 2924 } 2925 2926 void CodeGenFunction::EmitCheck( 2927 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2928 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2929 ArrayRef<llvm::Value *> DynamicArgs) { 2930 assert(IsSanitizerScope); 2931 assert(Checked.size() > 0); 2932 assert(CheckHandler >= 0 && 2933 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2934 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2935 2936 llvm::Value *FatalCond = nullptr; 2937 llvm::Value *RecoverableCond = nullptr; 2938 llvm::Value *TrapCond = nullptr; 2939 for (int i = 0, n = Checked.size(); i < n; ++i) { 2940 llvm::Value *Check = Checked[i].first; 2941 // -fsanitize-trap= overrides -fsanitize-recover=. 2942 llvm::Value *&Cond = 2943 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2944 ? TrapCond 2945 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2946 ? RecoverableCond 2947 : FatalCond; 2948 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2949 } 2950 2951 if (TrapCond) 2952 EmitTrapCheck(TrapCond); 2953 if (!FatalCond && !RecoverableCond) 2954 return; 2955 2956 llvm::Value *JointCond; 2957 if (FatalCond && RecoverableCond) 2958 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2959 else 2960 JointCond = FatalCond ? FatalCond : RecoverableCond; 2961 assert(JointCond); 2962 2963 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2964 assert(SanOpts.has(Checked[0].second)); 2965 #ifndef NDEBUG 2966 for (int i = 1, n = Checked.size(); i < n; ++i) { 2967 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2968 "All recoverable kinds in a single check must be same!"); 2969 assert(SanOpts.has(Checked[i].second)); 2970 } 2971 #endif 2972 2973 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2974 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2975 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2976 // Give hint that we very much don't expect to execute the handler 2977 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2978 llvm::MDBuilder MDHelper(getLLVMContext()); 2979 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2980 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2981 EmitBlock(Handlers); 2982 2983 // Handler functions take an i8* pointing to the (handler-specific) static 2984 // information block, followed by a sequence of intptr_t arguments 2985 // representing operand values. 2986 SmallVector<llvm::Value *, 4> Args; 2987 SmallVector<llvm::Type *, 4> ArgTypes; 2988 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2989 Args.reserve(DynamicArgs.size() + 1); 2990 ArgTypes.reserve(DynamicArgs.size() + 1); 2991 2992 // Emit handler arguments and create handler function type. 2993 if (!StaticArgs.empty()) { 2994 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2995 auto *InfoPtr = 2996 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2997 llvm::GlobalVariable::PrivateLinkage, Info); 2998 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2999 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3000 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3001 ArgTypes.push_back(Int8PtrTy); 3002 } 3003 3004 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3005 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3006 ArgTypes.push_back(IntPtrTy); 3007 } 3008 } 3009 3010 llvm::FunctionType *FnType = 3011 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3012 3013 if (!FatalCond || !RecoverableCond) { 3014 // Simple case: we need to generate a single handler call, either 3015 // fatal, or non-fatal. 3016 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3017 (FatalCond != nullptr), Cont); 3018 } else { 3019 // Emit two handler calls: first one for set of unrecoverable checks, 3020 // another one for recoverable. 3021 llvm::BasicBlock *NonFatalHandlerBB = 3022 createBasicBlock("non_fatal." + CheckName); 3023 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3024 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3025 EmitBlock(FatalHandlerBB); 3026 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3027 NonFatalHandlerBB); 3028 EmitBlock(NonFatalHandlerBB); 3029 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3030 Cont); 3031 } 3032 3033 EmitBlock(Cont); 3034 } 3035 3036 void CodeGenFunction::EmitCfiSlowPathCheck( 3037 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3038 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3039 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3040 3041 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3042 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3043 3044 llvm::MDBuilder MDHelper(getLLVMContext()); 3045 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3046 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3047 3048 EmitBlock(CheckBB); 3049 3050 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3051 3052 llvm::CallInst *CheckCall; 3053 llvm::FunctionCallee SlowPathFn; 3054 if (WithDiag) { 3055 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3056 auto *InfoPtr = 3057 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3058 llvm::GlobalVariable::PrivateLinkage, Info); 3059 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3060 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3061 3062 SlowPathFn = CGM.getModule().getOrInsertFunction( 3063 "__cfi_slowpath_diag", 3064 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3065 false)); 3066 CheckCall = Builder.CreateCall( 3067 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3068 } else { 3069 SlowPathFn = CGM.getModule().getOrInsertFunction( 3070 "__cfi_slowpath", 3071 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3072 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3073 } 3074 3075 CGM.setDSOLocal( 3076 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3077 CheckCall->setDoesNotThrow(); 3078 3079 EmitBlock(Cont); 3080 } 3081 3082 // Emit a stub for __cfi_check function so that the linker knows about this 3083 // symbol in LTO mode. 3084 void CodeGenFunction::EmitCfiCheckStub() { 3085 llvm::Module *M = &CGM.getModule(); 3086 auto &Ctx = M->getContext(); 3087 llvm::Function *F = llvm::Function::Create( 3088 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3089 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3090 CGM.setDSOLocal(F); 3091 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3092 // FIXME: consider emitting an intrinsic call like 3093 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3094 // which can be lowered in CrossDSOCFI pass to the actual contents of 3095 // __cfi_check. This would allow inlining of __cfi_check calls. 3096 llvm::CallInst::Create( 3097 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3098 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3099 } 3100 3101 // This function is basically a switch over the CFI failure kind, which is 3102 // extracted from CFICheckFailData (1st function argument). Each case is either 3103 // llvm.trap or a call to one of the two runtime handlers, based on 3104 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3105 // failure kind) traps, but this should really never happen. CFICheckFailData 3106 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3107 // check kind; in this case __cfi_check_fail traps as well. 3108 void CodeGenFunction::EmitCfiCheckFail() { 3109 SanitizerScope SanScope(this); 3110 FunctionArgList Args; 3111 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3112 ImplicitParamDecl::Other); 3113 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3114 ImplicitParamDecl::Other); 3115 Args.push_back(&ArgData); 3116 Args.push_back(&ArgAddr); 3117 3118 const CGFunctionInfo &FI = 3119 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3120 3121 llvm::Function *F = llvm::Function::Create( 3122 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3123 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3124 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3125 3126 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3127 SourceLocation()); 3128 3129 // This function should not be affected by blacklist. This function does 3130 // not have a source location, but "src:*" would still apply. Revert any 3131 // changes to SanOpts made in StartFunction. 3132 SanOpts = CGM.getLangOpts().Sanitize; 3133 3134 llvm::Value *Data = 3135 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3136 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3137 llvm::Value *Addr = 3138 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3139 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3140 3141 // Data == nullptr means the calling module has trap behaviour for this check. 3142 llvm::Value *DataIsNotNullPtr = 3143 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3144 EmitTrapCheck(DataIsNotNullPtr); 3145 3146 llvm::StructType *SourceLocationTy = 3147 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3148 llvm::StructType *CfiCheckFailDataTy = 3149 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3150 3151 llvm::Value *V = Builder.CreateConstGEP2_32( 3152 CfiCheckFailDataTy, 3153 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3154 0); 3155 Address CheckKindAddr(V, getIntAlign()); 3156 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3157 3158 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3159 CGM.getLLVMContext(), 3160 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3161 llvm::Value *ValidVtable = Builder.CreateZExt( 3162 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3163 {Addr, AllVtables}), 3164 IntPtrTy); 3165 3166 const std::pair<int, SanitizerMask> CheckKinds[] = { 3167 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3168 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3169 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3170 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3171 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3172 3173 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3174 for (auto CheckKindMaskPair : CheckKinds) { 3175 int Kind = CheckKindMaskPair.first; 3176 SanitizerMask Mask = CheckKindMaskPair.second; 3177 llvm::Value *Cond = 3178 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3179 if (CGM.getLangOpts().Sanitize.has(Mask)) 3180 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3181 {Data, Addr, ValidVtable}); 3182 else 3183 EmitTrapCheck(Cond); 3184 } 3185 3186 FinishFunction(); 3187 // The only reference to this function will be created during LTO link. 3188 // Make sure it survives until then. 3189 CGM.addUsedGlobal(F); 3190 } 3191 3192 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3193 if (SanOpts.has(SanitizerKind::Unreachable)) { 3194 SanitizerScope SanScope(this); 3195 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3196 SanitizerKind::Unreachable), 3197 SanitizerHandler::BuiltinUnreachable, 3198 EmitCheckSourceLocation(Loc), None); 3199 } 3200 Builder.CreateUnreachable(); 3201 } 3202 3203 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3204 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3205 3206 // If we're optimizing, collapse all calls to trap down to just one per 3207 // function to save on code size. 3208 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3209 TrapBB = createBasicBlock("trap"); 3210 Builder.CreateCondBr(Checked, Cont, TrapBB); 3211 EmitBlock(TrapBB); 3212 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3213 TrapCall->setDoesNotReturn(); 3214 TrapCall->setDoesNotThrow(); 3215 Builder.CreateUnreachable(); 3216 } else { 3217 Builder.CreateCondBr(Checked, Cont, TrapBB); 3218 } 3219 3220 EmitBlock(Cont); 3221 } 3222 3223 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3224 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3225 3226 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3227 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3228 CGM.getCodeGenOpts().TrapFuncName); 3229 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3230 } 3231 3232 return TrapCall; 3233 } 3234 3235 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3236 LValueBaseInfo *BaseInfo, 3237 TBAAAccessInfo *TBAAInfo) { 3238 assert(E->getType()->isArrayType() && 3239 "Array to pointer decay must have array source type!"); 3240 3241 // Expressions of array type can't be bitfields or vector elements. 3242 LValue LV = EmitLValue(E); 3243 Address Addr = LV.getAddress(); 3244 3245 // If the array type was an incomplete type, we need to make sure 3246 // the decay ends up being the right type. 3247 llvm::Type *NewTy = ConvertType(E->getType()); 3248 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3249 3250 // Note that VLA pointers are always decayed, so we don't need to do 3251 // anything here. 3252 if (!E->getType()->isVariableArrayType()) { 3253 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3254 "Expected pointer to array"); 3255 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3256 } 3257 3258 // The result of this decay conversion points to an array element within the 3259 // base lvalue. However, since TBAA currently does not support representing 3260 // accesses to elements of member arrays, we conservatively represent accesses 3261 // to the pointee object as if it had no any base lvalue specified. 3262 // TODO: Support TBAA for member arrays. 3263 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3264 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3265 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3266 3267 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3268 } 3269 3270 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3271 /// array to pointer, return the array subexpression. 3272 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3273 // If this isn't just an array->pointer decay, bail out. 3274 const auto *CE = dyn_cast<CastExpr>(E); 3275 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3276 return nullptr; 3277 3278 // If this is a decay from variable width array, bail out. 3279 const Expr *SubExpr = CE->getSubExpr(); 3280 if (SubExpr->getType()->isVariableArrayType()) 3281 return nullptr; 3282 3283 return SubExpr; 3284 } 3285 3286 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3287 llvm::Value *ptr, 3288 ArrayRef<llvm::Value*> indices, 3289 bool inbounds, 3290 bool signedIndices, 3291 SourceLocation loc, 3292 const llvm::Twine &name = "arrayidx") { 3293 if (inbounds) { 3294 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3295 CodeGenFunction::NotSubtraction, loc, 3296 name); 3297 } else { 3298 return CGF.Builder.CreateGEP(ptr, indices, name); 3299 } 3300 } 3301 3302 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3303 llvm::Value *idx, 3304 CharUnits eltSize) { 3305 // If we have a constant index, we can use the exact offset of the 3306 // element we're accessing. 3307 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3308 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3309 return arrayAlign.alignmentAtOffset(offset); 3310 3311 // Otherwise, use the worst-case alignment for any element. 3312 } else { 3313 return arrayAlign.alignmentOfArrayElement(eltSize); 3314 } 3315 } 3316 3317 static QualType getFixedSizeElementType(const ASTContext &ctx, 3318 const VariableArrayType *vla) { 3319 QualType eltType; 3320 do { 3321 eltType = vla->getElementType(); 3322 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3323 return eltType; 3324 } 3325 3326 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3327 ArrayRef<llvm::Value *> indices, 3328 QualType eltType, bool inbounds, 3329 bool signedIndices, SourceLocation loc, 3330 const llvm::Twine &name = "arrayidx") { 3331 // All the indices except that last must be zero. 3332 #ifndef NDEBUG 3333 for (auto idx : indices.drop_back()) 3334 assert(isa<llvm::ConstantInt>(idx) && 3335 cast<llvm::ConstantInt>(idx)->isZero()); 3336 #endif 3337 3338 // Determine the element size of the statically-sized base. This is 3339 // the thing that the indices are expressed in terms of. 3340 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3341 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3342 } 3343 3344 // We can use that to compute the best alignment of the element. 3345 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3346 CharUnits eltAlign = 3347 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3348 3349 llvm::Value *eltPtr = emitArraySubscriptGEP( 3350 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3351 return Address(eltPtr, eltAlign); 3352 } 3353 3354 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3355 bool Accessed) { 3356 // The index must always be an integer, which is not an aggregate. Emit it 3357 // in lexical order (this complexity is, sadly, required by C++17). 3358 llvm::Value *IdxPre = 3359 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3360 bool SignedIndices = false; 3361 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3362 auto *Idx = IdxPre; 3363 if (E->getLHS() != E->getIdx()) { 3364 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3365 Idx = EmitScalarExpr(E->getIdx()); 3366 } 3367 3368 QualType IdxTy = E->getIdx()->getType(); 3369 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3370 SignedIndices |= IdxSigned; 3371 3372 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3373 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3374 3375 // Extend or truncate the index type to 32 or 64-bits. 3376 if (Promote && Idx->getType() != IntPtrTy) 3377 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3378 3379 return Idx; 3380 }; 3381 IdxPre = nullptr; 3382 3383 // If the base is a vector type, then we are forming a vector element lvalue 3384 // with this subscript. 3385 if (E->getBase()->getType()->isVectorType() && 3386 !isa<ExtVectorElementExpr>(E->getBase())) { 3387 // Emit the vector as an lvalue to get its address. 3388 LValue LHS = EmitLValue(E->getBase()); 3389 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3390 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3391 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3392 LHS.getBaseInfo(), TBAAAccessInfo()); 3393 } 3394 3395 // All the other cases basically behave like simple offsetting. 3396 3397 // Handle the extvector case we ignored above. 3398 if (isa<ExtVectorElementExpr>(E->getBase())) { 3399 LValue LV = EmitLValue(E->getBase()); 3400 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3401 Address Addr = EmitExtVectorElementLValue(LV); 3402 3403 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3404 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3405 SignedIndices, E->getExprLoc()); 3406 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3407 CGM.getTBAAInfoForSubobject(LV, EltType)); 3408 } 3409 3410 LValueBaseInfo EltBaseInfo; 3411 TBAAAccessInfo EltTBAAInfo; 3412 Address Addr = Address::invalid(); 3413 if (const VariableArrayType *vla = 3414 getContext().getAsVariableArrayType(E->getType())) { 3415 // The base must be a pointer, which is not an aggregate. Emit 3416 // it. It needs to be emitted first in case it's what captures 3417 // the VLA bounds. 3418 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3419 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3420 3421 // The element count here is the total number of non-VLA elements. 3422 llvm::Value *numElements = getVLASize(vla).NumElts; 3423 3424 // Effectively, the multiply by the VLA size is part of the GEP. 3425 // GEP indexes are signed, and scaling an index isn't permitted to 3426 // signed-overflow, so we use the same semantics for our explicit 3427 // multiply. We suppress this if overflow is not undefined behavior. 3428 if (getLangOpts().isSignedOverflowDefined()) { 3429 Idx = Builder.CreateMul(Idx, numElements); 3430 } else { 3431 Idx = Builder.CreateNSWMul(Idx, numElements); 3432 } 3433 3434 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3435 !getLangOpts().isSignedOverflowDefined(), 3436 SignedIndices, E->getExprLoc()); 3437 3438 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3439 // Indexing over an interface, as in "NSString *P; P[4];" 3440 3441 // Emit the base pointer. 3442 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3443 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3444 3445 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3446 llvm::Value *InterfaceSizeVal = 3447 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3448 3449 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3450 3451 // We don't necessarily build correct LLVM struct types for ObjC 3452 // interfaces, so we can't rely on GEP to do this scaling 3453 // correctly, so we need to cast to i8*. FIXME: is this actually 3454 // true? A lot of other things in the fragile ABI would break... 3455 llvm::Type *OrigBaseTy = Addr.getType(); 3456 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3457 3458 // Do the GEP. 3459 CharUnits EltAlign = 3460 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3461 llvm::Value *EltPtr = 3462 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3463 SignedIndices, E->getExprLoc()); 3464 Addr = Address(EltPtr, EltAlign); 3465 3466 // Cast back. 3467 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3468 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3469 // If this is A[i] where A is an array, the frontend will have decayed the 3470 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3471 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3472 // "gep x, i" here. Emit one "gep A, 0, i". 3473 assert(Array->getType()->isArrayType() && 3474 "Array to pointer decay must have array source type!"); 3475 LValue ArrayLV; 3476 // For simple multidimensional array indexing, set the 'accessed' flag for 3477 // better bounds-checking of the base expression. 3478 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3479 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3480 else 3481 ArrayLV = EmitLValue(Array); 3482 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3483 3484 // Propagate the alignment from the array itself to the result. 3485 Addr = emitArraySubscriptGEP( 3486 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3487 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3488 E->getExprLoc()); 3489 EltBaseInfo = ArrayLV.getBaseInfo(); 3490 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3491 } else { 3492 // The base must be a pointer; emit it with an estimate of its alignment. 3493 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3494 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3495 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3496 !getLangOpts().isSignedOverflowDefined(), 3497 SignedIndices, E->getExprLoc()); 3498 } 3499 3500 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3501 3502 if (getLangOpts().ObjC && 3503 getLangOpts().getGC() != LangOptions::NonGC) { 3504 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3505 setObjCGCLValueClass(getContext(), E, LV); 3506 } 3507 return LV; 3508 } 3509 3510 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3511 LValueBaseInfo &BaseInfo, 3512 TBAAAccessInfo &TBAAInfo, 3513 QualType BaseTy, QualType ElTy, 3514 bool IsLowerBound) { 3515 LValue BaseLVal; 3516 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3517 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3518 if (BaseTy->isArrayType()) { 3519 Address Addr = BaseLVal.getAddress(); 3520 BaseInfo = BaseLVal.getBaseInfo(); 3521 3522 // If the array type was an incomplete type, we need to make sure 3523 // the decay ends up being the right type. 3524 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3525 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3526 3527 // Note that VLA pointers are always decayed, so we don't need to do 3528 // anything here. 3529 if (!BaseTy->isVariableArrayType()) { 3530 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3531 "Expected pointer to array"); 3532 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3533 } 3534 3535 return CGF.Builder.CreateElementBitCast(Addr, 3536 CGF.ConvertTypeForMem(ElTy)); 3537 } 3538 LValueBaseInfo TypeBaseInfo; 3539 TBAAAccessInfo TypeTBAAInfo; 3540 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3541 &TypeTBAAInfo); 3542 BaseInfo.mergeForCast(TypeBaseInfo); 3543 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3544 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3545 } 3546 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3547 } 3548 3549 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3550 bool IsLowerBound) { 3551 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3552 QualType ResultExprTy; 3553 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3554 ResultExprTy = AT->getElementType(); 3555 else 3556 ResultExprTy = BaseTy->getPointeeType(); 3557 llvm::Value *Idx = nullptr; 3558 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3559 // Requesting lower bound or upper bound, but without provided length and 3560 // without ':' symbol for the default length -> length = 1. 3561 // Idx = LowerBound ?: 0; 3562 if (auto *LowerBound = E->getLowerBound()) { 3563 Idx = Builder.CreateIntCast( 3564 EmitScalarExpr(LowerBound), IntPtrTy, 3565 LowerBound->getType()->hasSignedIntegerRepresentation()); 3566 } else 3567 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3568 } else { 3569 // Try to emit length or lower bound as constant. If this is possible, 1 3570 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3571 // IR (LB + Len) - 1. 3572 auto &C = CGM.getContext(); 3573 auto *Length = E->getLength(); 3574 llvm::APSInt ConstLength; 3575 if (Length) { 3576 // Idx = LowerBound + Length - 1; 3577 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3578 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3579 Length = nullptr; 3580 } 3581 auto *LowerBound = E->getLowerBound(); 3582 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3583 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3584 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3585 LowerBound = nullptr; 3586 } 3587 if (!Length) 3588 --ConstLength; 3589 else if (!LowerBound) 3590 --ConstLowerBound; 3591 3592 if (Length || LowerBound) { 3593 auto *LowerBoundVal = 3594 LowerBound 3595 ? Builder.CreateIntCast( 3596 EmitScalarExpr(LowerBound), IntPtrTy, 3597 LowerBound->getType()->hasSignedIntegerRepresentation()) 3598 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3599 auto *LengthVal = 3600 Length 3601 ? Builder.CreateIntCast( 3602 EmitScalarExpr(Length), IntPtrTy, 3603 Length->getType()->hasSignedIntegerRepresentation()) 3604 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3605 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3606 /*HasNUW=*/false, 3607 !getLangOpts().isSignedOverflowDefined()); 3608 if (Length && LowerBound) { 3609 Idx = Builder.CreateSub( 3610 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3611 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3612 } 3613 } else 3614 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3615 } else { 3616 // Idx = ArraySize - 1; 3617 QualType ArrayTy = BaseTy->isPointerType() 3618 ? E->getBase()->IgnoreParenImpCasts()->getType() 3619 : BaseTy; 3620 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3621 Length = VAT->getSizeExpr(); 3622 if (Length->isIntegerConstantExpr(ConstLength, C)) 3623 Length = nullptr; 3624 } else { 3625 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3626 ConstLength = CAT->getSize(); 3627 } 3628 if (Length) { 3629 auto *LengthVal = Builder.CreateIntCast( 3630 EmitScalarExpr(Length), IntPtrTy, 3631 Length->getType()->hasSignedIntegerRepresentation()); 3632 Idx = Builder.CreateSub( 3633 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3634 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3635 } else { 3636 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3637 --ConstLength; 3638 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3639 } 3640 } 3641 } 3642 assert(Idx); 3643 3644 Address EltPtr = Address::invalid(); 3645 LValueBaseInfo BaseInfo; 3646 TBAAAccessInfo TBAAInfo; 3647 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3648 // The base must be a pointer, which is not an aggregate. Emit 3649 // it. It needs to be emitted first in case it's what captures 3650 // the VLA bounds. 3651 Address Base = 3652 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3653 BaseTy, VLA->getElementType(), IsLowerBound); 3654 // The element count here is the total number of non-VLA elements. 3655 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3656 3657 // Effectively, the multiply by the VLA size is part of the GEP. 3658 // GEP indexes are signed, and scaling an index isn't permitted to 3659 // signed-overflow, so we use the same semantics for our explicit 3660 // multiply. We suppress this if overflow is not undefined behavior. 3661 if (getLangOpts().isSignedOverflowDefined()) 3662 Idx = Builder.CreateMul(Idx, NumElements); 3663 else 3664 Idx = Builder.CreateNSWMul(Idx, NumElements); 3665 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3666 !getLangOpts().isSignedOverflowDefined(), 3667 /*SignedIndices=*/false, E->getExprLoc()); 3668 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3669 // If this is A[i] where A is an array, the frontend will have decayed the 3670 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3671 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3672 // "gep x, i" here. Emit one "gep A, 0, i". 3673 assert(Array->getType()->isArrayType() && 3674 "Array to pointer decay must have array source type!"); 3675 LValue ArrayLV; 3676 // For simple multidimensional array indexing, set the 'accessed' flag for 3677 // better bounds-checking of the base expression. 3678 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3679 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3680 else 3681 ArrayLV = EmitLValue(Array); 3682 3683 // Propagate the alignment from the array itself to the result. 3684 EltPtr = emitArraySubscriptGEP( 3685 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3686 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3687 /*SignedIndices=*/false, E->getExprLoc()); 3688 BaseInfo = ArrayLV.getBaseInfo(); 3689 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3690 } else { 3691 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3692 TBAAInfo, BaseTy, ResultExprTy, 3693 IsLowerBound); 3694 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3695 !getLangOpts().isSignedOverflowDefined(), 3696 /*SignedIndices=*/false, E->getExprLoc()); 3697 } 3698 3699 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3700 } 3701 3702 LValue CodeGenFunction:: 3703 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3704 // Emit the base vector as an l-value. 3705 LValue Base; 3706 3707 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3708 if (E->isArrow()) { 3709 // If it is a pointer to a vector, emit the address and form an lvalue with 3710 // it. 3711 LValueBaseInfo BaseInfo; 3712 TBAAAccessInfo TBAAInfo; 3713 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3714 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3715 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3716 Base.getQuals().removeObjCGCAttr(); 3717 } else if (E->getBase()->isGLValue()) { 3718 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3719 // emit the base as an lvalue. 3720 assert(E->getBase()->getType()->isVectorType()); 3721 Base = EmitLValue(E->getBase()); 3722 } else { 3723 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3724 assert(E->getBase()->getType()->isVectorType() && 3725 "Result must be a vector"); 3726 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3727 3728 // Store the vector to memory (because LValue wants an address). 3729 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3730 Builder.CreateStore(Vec, VecMem); 3731 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3732 AlignmentSource::Decl); 3733 } 3734 3735 QualType type = 3736 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3737 3738 // Encode the element access list into a vector of unsigned indices. 3739 SmallVector<uint32_t, 4> Indices; 3740 E->getEncodedElementAccess(Indices); 3741 3742 if (Base.isSimple()) { 3743 llvm::Constant *CV = 3744 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3745 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3746 Base.getBaseInfo(), TBAAAccessInfo()); 3747 } 3748 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3749 3750 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3751 SmallVector<llvm::Constant *, 4> CElts; 3752 3753 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3754 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3755 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3756 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3757 Base.getBaseInfo(), TBAAAccessInfo()); 3758 } 3759 3760 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3761 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3762 EmitIgnoredExpr(E->getBase()); 3763 return EmitDeclRefLValue(DRE); 3764 } 3765 3766 Expr *BaseExpr = E->getBase(); 3767 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3768 LValue BaseLV; 3769 if (E->isArrow()) { 3770 LValueBaseInfo BaseInfo; 3771 TBAAAccessInfo TBAAInfo; 3772 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3773 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3774 SanitizerSet SkippedChecks; 3775 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3776 if (IsBaseCXXThis) 3777 SkippedChecks.set(SanitizerKind::Alignment, true); 3778 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3779 SkippedChecks.set(SanitizerKind::Null, true); 3780 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3781 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3782 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3783 } else 3784 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3785 3786 NamedDecl *ND = E->getMemberDecl(); 3787 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3788 LValue LV = EmitLValueForField(BaseLV, Field); 3789 setObjCGCLValueClass(getContext(), E, LV); 3790 return LV; 3791 } 3792 3793 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3794 return EmitFunctionDeclLValue(*this, E, FD); 3795 3796 llvm_unreachable("Unhandled member declaration!"); 3797 } 3798 3799 /// Given that we are currently emitting a lambda, emit an l-value for 3800 /// one of its members. 3801 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3802 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3803 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3804 QualType LambdaTagType = 3805 getContext().getTagDeclType(Field->getParent()); 3806 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3807 return EmitLValueForField(LambdaLV, Field); 3808 } 3809 3810 /// Drill down to the storage of a field without walking into 3811 /// reference types. 3812 /// 3813 /// The resulting address doesn't necessarily have the right type. 3814 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3815 const FieldDecl *field) { 3816 const RecordDecl *rec = field->getParent(); 3817 3818 unsigned idx = 3819 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3820 3821 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 3822 } 3823 3824 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3825 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3826 if (!RD) 3827 return false; 3828 3829 if (RD->isDynamicClass()) 3830 return true; 3831 3832 for (const auto &Base : RD->bases()) 3833 if (hasAnyVptr(Base.getType(), Context)) 3834 return true; 3835 3836 for (const FieldDecl *Field : RD->fields()) 3837 if (hasAnyVptr(Field->getType(), Context)) 3838 return true; 3839 3840 return false; 3841 } 3842 3843 LValue CodeGenFunction::EmitLValueForField(LValue base, 3844 const FieldDecl *field) { 3845 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3846 3847 if (field->isBitField()) { 3848 const CGRecordLayout &RL = 3849 CGM.getTypes().getCGRecordLayout(field->getParent()); 3850 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3851 Address Addr = base.getAddress(); 3852 unsigned Idx = RL.getLLVMFieldNo(field); 3853 if (Idx != 0) 3854 // For structs, we GEP to the field that the record layout suggests. 3855 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 3856 // Get the access type. 3857 llvm::Type *FieldIntTy = 3858 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3859 if (Addr.getElementType() != FieldIntTy) 3860 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3861 3862 QualType fieldType = 3863 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3864 // TODO: Support TBAA for bit fields. 3865 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3866 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3867 TBAAAccessInfo()); 3868 } 3869 3870 // Fields of may-alias structures are may-alias themselves. 3871 // FIXME: this should get propagated down through anonymous structs 3872 // and unions. 3873 QualType FieldType = field->getType(); 3874 const RecordDecl *rec = field->getParent(); 3875 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3876 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3877 TBAAAccessInfo FieldTBAAInfo; 3878 if (base.getTBAAInfo().isMayAlias() || 3879 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3880 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3881 } else if (rec->isUnion()) { 3882 // TODO: Support TBAA for unions. 3883 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3884 } else { 3885 // If no base type been assigned for the base access, then try to generate 3886 // one for this base lvalue. 3887 FieldTBAAInfo = base.getTBAAInfo(); 3888 if (!FieldTBAAInfo.BaseType) { 3889 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3890 assert(!FieldTBAAInfo.Offset && 3891 "Nonzero offset for an access with no base type!"); 3892 } 3893 3894 // Adjust offset to be relative to the base type. 3895 const ASTRecordLayout &Layout = 3896 getContext().getASTRecordLayout(field->getParent()); 3897 unsigned CharWidth = getContext().getCharWidth(); 3898 if (FieldTBAAInfo.BaseType) 3899 FieldTBAAInfo.Offset += 3900 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3901 3902 // Update the final access type and size. 3903 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3904 FieldTBAAInfo.Size = 3905 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3906 } 3907 3908 Address addr = base.getAddress(); 3909 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3910 if (CGM.getCodeGenOpts().StrictVTablePointers && 3911 ClassDef->isDynamicClass()) { 3912 // Getting to any field of dynamic object requires stripping dynamic 3913 // information provided by invariant.group. This is because accessing 3914 // fields may leak the real address of dynamic object, which could result 3915 // in miscompilation when leaked pointer would be compared. 3916 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3917 addr = Address(stripped, addr.getAlignment()); 3918 } 3919 } 3920 3921 unsigned RecordCVR = base.getVRQualifiers(); 3922 if (rec->isUnion()) { 3923 // For unions, there is no pointer adjustment. 3924 assert(!FieldType->isReferenceType() && "union has reference member"); 3925 if (CGM.getCodeGenOpts().StrictVTablePointers && 3926 hasAnyVptr(FieldType, getContext())) 3927 // Because unions can easily skip invariant.barriers, we need to add 3928 // a barrier every time CXXRecord field with vptr is referenced. 3929 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3930 addr.getAlignment()); 3931 } else { 3932 // For structs, we GEP to the field that the record layout suggests. 3933 addr = emitAddrOfFieldStorage(*this, addr, field); 3934 3935 // If this is a reference field, load the reference right now. 3936 if (FieldType->isReferenceType()) { 3937 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3938 FieldTBAAInfo); 3939 if (RecordCVR & Qualifiers::Volatile) 3940 RefLVal.getQuals().addVolatile(); 3941 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3942 3943 // Qualifiers on the struct don't apply to the referencee. 3944 RecordCVR = 0; 3945 FieldType = FieldType->getPointeeType(); 3946 } 3947 } 3948 3949 // Make sure that the address is pointing to the right type. This is critical 3950 // for both unions and structs. A union needs a bitcast, a struct element 3951 // will need a bitcast if the LLVM type laid out doesn't match the desired 3952 // type. 3953 addr = Builder.CreateElementBitCast( 3954 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3955 3956 if (field->hasAttr<AnnotateAttr>()) 3957 addr = EmitFieldAnnotations(field, addr); 3958 3959 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3960 LV.getQuals().addCVRQualifiers(RecordCVR); 3961 3962 // __weak attribute on a field is ignored. 3963 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3964 LV.getQuals().removeObjCGCAttr(); 3965 3966 return LV; 3967 } 3968 3969 LValue 3970 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3971 const FieldDecl *Field) { 3972 QualType FieldType = Field->getType(); 3973 3974 if (!FieldType->isReferenceType()) 3975 return EmitLValueForField(Base, Field); 3976 3977 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3978 3979 // Make sure that the address is pointing to the right type. 3980 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3981 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3982 3983 // TODO: Generate TBAA information that describes this access as a structure 3984 // member access and not just an access to an object of the field's type. This 3985 // should be similar to what we do in EmitLValueForField(). 3986 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3987 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3988 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3989 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3990 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3991 } 3992 3993 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3994 if (E->isFileScope()) { 3995 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3996 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3997 } 3998 if (E->getType()->isVariablyModifiedType()) 3999 // make sure to emit the VLA size. 4000 EmitVariablyModifiedType(E->getType()); 4001 4002 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4003 const Expr *InitExpr = E->getInitializer(); 4004 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4005 4006 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4007 /*Init*/ true); 4008 4009 return Result; 4010 } 4011 4012 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4013 if (!E->isGLValue()) 4014 // Initializing an aggregate temporary in C++11: T{...}. 4015 return EmitAggExprToLValue(E); 4016 4017 // An lvalue initializer list must be initializing a reference. 4018 assert(E->isTransparent() && "non-transparent glvalue init list"); 4019 return EmitLValue(E->getInit(0)); 4020 } 4021 4022 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4023 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4024 /// LValue is returned and the current block has been terminated. 4025 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4026 const Expr *Operand) { 4027 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4028 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4029 return None; 4030 } 4031 4032 return CGF.EmitLValue(Operand); 4033 } 4034 4035 LValue CodeGenFunction:: 4036 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4037 if (!expr->isGLValue()) { 4038 // ?: here should be an aggregate. 4039 assert(hasAggregateEvaluationKind(expr->getType()) && 4040 "Unexpected conditional operator!"); 4041 return EmitAggExprToLValue(expr); 4042 } 4043 4044 OpaqueValueMapping binding(*this, expr); 4045 4046 const Expr *condExpr = expr->getCond(); 4047 bool CondExprBool; 4048 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4049 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4050 if (!CondExprBool) std::swap(live, dead); 4051 4052 if (!ContainsLabel(dead)) { 4053 // If the true case is live, we need to track its region. 4054 if (CondExprBool) 4055 incrementProfileCounter(expr); 4056 return EmitLValue(live); 4057 } 4058 } 4059 4060 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4061 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4062 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4063 4064 ConditionalEvaluation eval(*this); 4065 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4066 4067 // Any temporaries created here are conditional. 4068 EmitBlock(lhsBlock); 4069 incrementProfileCounter(expr); 4070 eval.begin(*this); 4071 Optional<LValue> lhs = 4072 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4073 eval.end(*this); 4074 4075 if (lhs && !lhs->isSimple()) 4076 return EmitUnsupportedLValue(expr, "conditional operator"); 4077 4078 lhsBlock = Builder.GetInsertBlock(); 4079 if (lhs) 4080 Builder.CreateBr(contBlock); 4081 4082 // Any temporaries created here are conditional. 4083 EmitBlock(rhsBlock); 4084 eval.begin(*this); 4085 Optional<LValue> rhs = 4086 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4087 eval.end(*this); 4088 if (rhs && !rhs->isSimple()) 4089 return EmitUnsupportedLValue(expr, "conditional operator"); 4090 rhsBlock = Builder.GetInsertBlock(); 4091 4092 EmitBlock(contBlock); 4093 4094 if (lhs && rhs) { 4095 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4096 2, "cond-lvalue"); 4097 phi->addIncoming(lhs->getPointer(), lhsBlock); 4098 phi->addIncoming(rhs->getPointer(), rhsBlock); 4099 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4100 AlignmentSource alignSource = 4101 std::max(lhs->getBaseInfo().getAlignmentSource(), 4102 rhs->getBaseInfo().getAlignmentSource()); 4103 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4104 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4105 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4106 TBAAInfo); 4107 } else { 4108 assert((lhs || rhs) && 4109 "both operands of glvalue conditional are throw-expressions?"); 4110 return lhs ? *lhs : *rhs; 4111 } 4112 } 4113 4114 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4115 /// type. If the cast is to a reference, we can have the usual lvalue result, 4116 /// otherwise if a cast is needed by the code generator in an lvalue context, 4117 /// then it must mean that we need the address of an aggregate in order to 4118 /// access one of its members. This can happen for all the reasons that casts 4119 /// are permitted with aggregate result, including noop aggregate casts, and 4120 /// cast from scalar to union. 4121 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4122 switch (E->getCastKind()) { 4123 case CK_ToVoid: 4124 case CK_BitCast: 4125 case CK_ArrayToPointerDecay: 4126 case CK_FunctionToPointerDecay: 4127 case CK_NullToMemberPointer: 4128 case CK_NullToPointer: 4129 case CK_IntegralToPointer: 4130 case CK_PointerToIntegral: 4131 case CK_PointerToBoolean: 4132 case CK_VectorSplat: 4133 case CK_IntegralCast: 4134 case CK_BooleanToSignedIntegral: 4135 case CK_IntegralToBoolean: 4136 case CK_IntegralToFloating: 4137 case CK_FloatingToIntegral: 4138 case CK_FloatingToBoolean: 4139 case CK_FloatingCast: 4140 case CK_FloatingRealToComplex: 4141 case CK_FloatingComplexToReal: 4142 case CK_FloatingComplexToBoolean: 4143 case CK_FloatingComplexCast: 4144 case CK_FloatingComplexToIntegralComplex: 4145 case CK_IntegralRealToComplex: 4146 case CK_IntegralComplexToReal: 4147 case CK_IntegralComplexToBoolean: 4148 case CK_IntegralComplexCast: 4149 case CK_IntegralComplexToFloatingComplex: 4150 case CK_DerivedToBaseMemberPointer: 4151 case CK_BaseToDerivedMemberPointer: 4152 case CK_MemberPointerToBoolean: 4153 case CK_ReinterpretMemberPointer: 4154 case CK_AnyPointerToBlockPointerCast: 4155 case CK_ARCProduceObject: 4156 case CK_ARCConsumeObject: 4157 case CK_ARCReclaimReturnedObject: 4158 case CK_ARCExtendBlockObject: 4159 case CK_CopyAndAutoreleaseBlockObject: 4160 case CK_IntToOCLSampler: 4161 case CK_FixedPointCast: 4162 case CK_FixedPointToBoolean: 4163 case CK_FixedPointToIntegral: 4164 case CK_IntegralToFixedPoint: 4165 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4166 4167 case CK_Dependent: 4168 llvm_unreachable("dependent cast kind in IR gen!"); 4169 4170 case CK_BuiltinFnToFnPtr: 4171 llvm_unreachable("builtin functions are handled elsewhere"); 4172 4173 // These are never l-values; just use the aggregate emission code. 4174 case CK_NonAtomicToAtomic: 4175 case CK_AtomicToNonAtomic: 4176 return EmitAggExprToLValue(E); 4177 4178 case CK_Dynamic: { 4179 LValue LV = EmitLValue(E->getSubExpr()); 4180 Address V = LV.getAddress(); 4181 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4182 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4183 } 4184 4185 case CK_ConstructorConversion: 4186 case CK_UserDefinedConversion: 4187 case CK_CPointerToObjCPointerCast: 4188 case CK_BlockPointerToObjCPointerCast: 4189 case CK_NoOp: 4190 case CK_LValueToRValue: 4191 return EmitLValue(E->getSubExpr()); 4192 4193 case CK_UncheckedDerivedToBase: 4194 case CK_DerivedToBase: { 4195 const RecordType *DerivedClassTy = 4196 E->getSubExpr()->getType()->getAs<RecordType>(); 4197 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4198 4199 LValue LV = EmitLValue(E->getSubExpr()); 4200 Address This = LV.getAddress(); 4201 4202 // Perform the derived-to-base conversion 4203 Address Base = GetAddressOfBaseClass( 4204 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4205 /*NullCheckValue=*/false, E->getExprLoc()); 4206 4207 // TODO: Support accesses to members of base classes in TBAA. For now, we 4208 // conservatively pretend that the complete object is of the base class 4209 // type. 4210 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4211 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4212 } 4213 case CK_ToUnion: 4214 return EmitAggExprToLValue(E); 4215 case CK_BaseToDerived: { 4216 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4217 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4218 4219 LValue LV = EmitLValue(E->getSubExpr()); 4220 4221 // Perform the base-to-derived conversion 4222 Address Derived = 4223 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4224 E->path_begin(), E->path_end(), 4225 /*NullCheckValue=*/false); 4226 4227 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4228 // performed and the object is not of the derived type. 4229 if (sanitizePerformTypeCheck()) 4230 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4231 Derived.getPointer(), E->getType()); 4232 4233 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4234 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4235 /*MayBeNull=*/false, CFITCK_DerivedCast, 4236 E->getBeginLoc()); 4237 4238 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4239 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4240 } 4241 case CK_LValueBitCast: { 4242 // This must be a reinterpret_cast (or c-style equivalent). 4243 const auto *CE = cast<ExplicitCastExpr>(E); 4244 4245 CGM.EmitExplicitCastExprType(CE, this); 4246 LValue LV = EmitLValue(E->getSubExpr()); 4247 Address V = Builder.CreateBitCast(LV.getAddress(), 4248 ConvertType(CE->getTypeAsWritten())); 4249 4250 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4251 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4252 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4253 E->getBeginLoc()); 4254 4255 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4256 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4257 } 4258 case CK_AddressSpaceConversion: { 4259 LValue LV = EmitLValue(E->getSubExpr()); 4260 QualType DestTy = getContext().getPointerType(E->getType()); 4261 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4262 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4263 E->getType().getAddressSpace(), ConvertType(DestTy)); 4264 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4265 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4266 } 4267 case CK_ObjCObjectLValueCast: { 4268 LValue LV = EmitLValue(E->getSubExpr()); 4269 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4270 ConvertType(E->getType())); 4271 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4272 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4273 } 4274 case CK_ZeroToOCLOpaqueType: 4275 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4276 } 4277 4278 llvm_unreachable("Unhandled lvalue cast kind?"); 4279 } 4280 4281 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4282 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4283 return getOrCreateOpaqueLValueMapping(e); 4284 } 4285 4286 LValue 4287 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4288 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4289 4290 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4291 it = OpaqueLValues.find(e); 4292 4293 if (it != OpaqueLValues.end()) 4294 return it->second; 4295 4296 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4297 return EmitLValue(e->getSourceExpr()); 4298 } 4299 4300 RValue 4301 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4302 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4303 4304 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4305 it = OpaqueRValues.find(e); 4306 4307 if (it != OpaqueRValues.end()) 4308 return it->second; 4309 4310 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4311 return EmitAnyExpr(e->getSourceExpr()); 4312 } 4313 4314 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4315 const FieldDecl *FD, 4316 SourceLocation Loc) { 4317 QualType FT = FD->getType(); 4318 LValue FieldLV = EmitLValueForField(LV, FD); 4319 switch (getEvaluationKind(FT)) { 4320 case TEK_Complex: 4321 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4322 case TEK_Aggregate: 4323 return FieldLV.asAggregateRValue(); 4324 case TEK_Scalar: 4325 // This routine is used to load fields one-by-one to perform a copy, so 4326 // don't load reference fields. 4327 if (FD->getType()->isReferenceType()) 4328 return RValue::get(FieldLV.getPointer()); 4329 return EmitLoadOfLValue(FieldLV, Loc); 4330 } 4331 llvm_unreachable("bad evaluation kind"); 4332 } 4333 4334 //===--------------------------------------------------------------------===// 4335 // Expression Emission 4336 //===--------------------------------------------------------------------===// 4337 4338 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4339 ReturnValueSlot ReturnValue) { 4340 // Builtins never have block type. 4341 if (E->getCallee()->getType()->isBlockPointerType()) 4342 return EmitBlockCallExpr(E, ReturnValue); 4343 4344 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4345 return EmitCXXMemberCallExpr(CE, ReturnValue); 4346 4347 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4348 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4349 4350 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4351 if (const CXXMethodDecl *MD = 4352 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4353 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4354 4355 CGCallee callee = EmitCallee(E->getCallee()); 4356 4357 if (callee.isBuiltin()) { 4358 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4359 E, ReturnValue); 4360 } 4361 4362 if (callee.isPseudoDestructor()) { 4363 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4364 } 4365 4366 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4367 } 4368 4369 /// Emit a CallExpr without considering whether it might be a subclass. 4370 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4371 ReturnValueSlot ReturnValue) { 4372 CGCallee Callee = EmitCallee(E->getCallee()); 4373 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4374 } 4375 4376 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4377 if (auto builtinID = FD->getBuiltinID()) { 4378 return CGCallee::forBuiltin(builtinID, FD); 4379 } 4380 4381 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4382 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4383 } 4384 4385 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4386 E = E->IgnoreParens(); 4387 4388 // Look through function-to-pointer decay. 4389 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4390 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4391 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4392 return EmitCallee(ICE->getSubExpr()); 4393 } 4394 4395 // Resolve direct calls. 4396 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4397 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4398 return EmitDirectCallee(*this, FD); 4399 } 4400 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4401 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4402 EmitIgnoredExpr(ME->getBase()); 4403 return EmitDirectCallee(*this, FD); 4404 } 4405 4406 // Look through template substitutions. 4407 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4408 return EmitCallee(NTTP->getReplacement()); 4409 4410 // Treat pseudo-destructor calls differently. 4411 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4412 return CGCallee::forPseudoDestructor(PDE); 4413 } 4414 4415 // Otherwise, we have an indirect reference. 4416 llvm::Value *calleePtr; 4417 QualType functionType; 4418 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4419 calleePtr = EmitScalarExpr(E); 4420 functionType = ptrType->getPointeeType(); 4421 } else { 4422 functionType = E->getType(); 4423 calleePtr = EmitLValue(E).getPointer(); 4424 } 4425 assert(functionType->isFunctionType()); 4426 4427 GlobalDecl GD; 4428 if (const auto *VD = 4429 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4430 GD = GlobalDecl(VD); 4431 4432 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4433 CGCallee callee(calleeInfo, calleePtr); 4434 return callee; 4435 } 4436 4437 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4438 // Comma expressions just emit their LHS then their RHS as an l-value. 4439 if (E->getOpcode() == BO_Comma) { 4440 EmitIgnoredExpr(E->getLHS()); 4441 EnsureInsertPoint(); 4442 return EmitLValue(E->getRHS()); 4443 } 4444 4445 if (E->getOpcode() == BO_PtrMemD || 4446 E->getOpcode() == BO_PtrMemI) 4447 return EmitPointerToDataMemberBinaryExpr(E); 4448 4449 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4450 4451 // Note that in all of these cases, __block variables need the RHS 4452 // evaluated first just in case the variable gets moved by the RHS. 4453 4454 switch (getEvaluationKind(E->getType())) { 4455 case TEK_Scalar: { 4456 switch (E->getLHS()->getType().getObjCLifetime()) { 4457 case Qualifiers::OCL_Strong: 4458 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4459 4460 case Qualifiers::OCL_Autoreleasing: 4461 return EmitARCStoreAutoreleasing(E).first; 4462 4463 // No reason to do any of these differently. 4464 case Qualifiers::OCL_None: 4465 case Qualifiers::OCL_ExplicitNone: 4466 case Qualifiers::OCL_Weak: 4467 break; 4468 } 4469 4470 RValue RV = EmitAnyExpr(E->getRHS()); 4471 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4472 if (RV.isScalar()) 4473 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4474 EmitStoreThroughLValue(RV, LV); 4475 return LV; 4476 } 4477 4478 case TEK_Complex: 4479 return EmitComplexAssignmentLValue(E); 4480 4481 case TEK_Aggregate: 4482 return EmitAggExprToLValue(E); 4483 } 4484 llvm_unreachable("bad evaluation kind"); 4485 } 4486 4487 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4488 RValue RV = EmitCallExpr(E); 4489 4490 if (!RV.isScalar()) 4491 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4492 AlignmentSource::Decl); 4493 4494 assert(E->getCallReturnType(getContext())->isReferenceType() && 4495 "Can't have a scalar return unless the return type is a " 4496 "reference type!"); 4497 4498 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4499 } 4500 4501 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4502 // FIXME: This shouldn't require another copy. 4503 return EmitAggExprToLValue(E); 4504 } 4505 4506 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4507 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4508 && "binding l-value to type which needs a temporary"); 4509 AggValueSlot Slot = CreateAggTemp(E->getType()); 4510 EmitCXXConstructExpr(E, Slot); 4511 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4512 } 4513 4514 LValue 4515 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4516 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4517 } 4518 4519 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4520 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4521 ConvertType(E->getType())); 4522 } 4523 4524 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4525 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4526 AlignmentSource::Decl); 4527 } 4528 4529 LValue 4530 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4531 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4532 Slot.setExternallyDestructed(); 4533 EmitAggExpr(E->getSubExpr(), Slot); 4534 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4535 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4536 } 4537 4538 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4539 RValue RV = EmitObjCMessageExpr(E); 4540 4541 if (!RV.isScalar()) 4542 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4543 AlignmentSource::Decl); 4544 4545 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4546 "Can't have a scalar return unless the return type is a " 4547 "reference type!"); 4548 4549 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4550 } 4551 4552 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4553 Address V = 4554 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4555 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4556 } 4557 4558 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4559 const ObjCIvarDecl *Ivar) { 4560 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4561 } 4562 4563 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4564 llvm::Value *BaseValue, 4565 const ObjCIvarDecl *Ivar, 4566 unsigned CVRQualifiers) { 4567 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4568 Ivar, CVRQualifiers); 4569 } 4570 4571 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4572 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4573 llvm::Value *BaseValue = nullptr; 4574 const Expr *BaseExpr = E->getBase(); 4575 Qualifiers BaseQuals; 4576 QualType ObjectTy; 4577 if (E->isArrow()) { 4578 BaseValue = EmitScalarExpr(BaseExpr); 4579 ObjectTy = BaseExpr->getType()->getPointeeType(); 4580 BaseQuals = ObjectTy.getQualifiers(); 4581 } else { 4582 LValue BaseLV = EmitLValue(BaseExpr); 4583 BaseValue = BaseLV.getPointer(); 4584 ObjectTy = BaseExpr->getType(); 4585 BaseQuals = ObjectTy.getQualifiers(); 4586 } 4587 4588 LValue LV = 4589 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4590 BaseQuals.getCVRQualifiers()); 4591 setObjCGCLValueClass(getContext(), E, LV); 4592 return LV; 4593 } 4594 4595 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4596 // Can only get l-value for message expression returning aggregate type 4597 RValue RV = EmitAnyExprToTemp(E); 4598 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4599 AlignmentSource::Decl); 4600 } 4601 4602 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4603 const CallExpr *E, ReturnValueSlot ReturnValue, 4604 llvm::Value *Chain) { 4605 // Get the actual function type. The callee type will always be a pointer to 4606 // function type or a block pointer type. 4607 assert(CalleeType->isFunctionPointerType() && 4608 "Call must have function pointer type!"); 4609 4610 const Decl *TargetDecl = 4611 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4612 4613 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4614 // We can only guarantee that a function is called from the correct 4615 // context/function based on the appropriate target attributes, 4616 // so only check in the case where we have both always_inline and target 4617 // since otherwise we could be making a conditional call after a check for 4618 // the proper cpu features (and it won't cause code generation issues due to 4619 // function based code generation). 4620 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4621 TargetDecl->hasAttr<TargetAttr>()) 4622 checkTargetFeatures(E, FD); 4623 4624 CalleeType = getContext().getCanonicalType(CalleeType); 4625 4626 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4627 4628 CGCallee Callee = OrigCallee; 4629 4630 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4631 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4632 if (llvm::Constant *PrefixSig = 4633 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4634 SanitizerScope SanScope(this); 4635 // Remove any (C++17) exception specifications, to allow calling e.g. a 4636 // noexcept function through a non-noexcept pointer. 4637 auto ProtoTy = 4638 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4639 llvm::Constant *FTRTTIConst = 4640 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4641 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4642 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4643 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4644 4645 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4646 4647 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4648 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4649 llvm::Value *CalleeSigPtr = 4650 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4651 llvm::Value *CalleeSig = 4652 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4653 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4654 4655 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4656 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4657 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4658 4659 EmitBlock(TypeCheck); 4660 llvm::Value *CalleeRTTIPtr = 4661 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4662 llvm::Value *CalleeRTTIEncoded = 4663 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4664 llvm::Value *CalleeRTTI = 4665 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4666 llvm::Value *CalleeRTTIMatch = 4667 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4668 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4669 EmitCheckTypeDescriptor(CalleeType)}; 4670 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4671 SanitizerHandler::FunctionTypeMismatch, StaticData, 4672 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4673 4674 Builder.CreateBr(Cont); 4675 EmitBlock(Cont); 4676 } 4677 } 4678 4679 const auto *FnType = cast<FunctionType>(PointeeType); 4680 4681 // If we are checking indirect calls and this call is indirect, check that the 4682 // function pointer is a member of the bit set for the function type. 4683 if (SanOpts.has(SanitizerKind::CFIICall) && 4684 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4685 SanitizerScope SanScope(this); 4686 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4687 4688 llvm::Metadata *MD; 4689 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4690 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4691 else 4692 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4693 4694 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4695 4696 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4697 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4698 llvm::Value *TypeTest = Builder.CreateCall( 4699 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4700 4701 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4702 llvm::Constant *StaticData[] = { 4703 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4704 EmitCheckSourceLocation(E->getBeginLoc()), 4705 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4706 }; 4707 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4708 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4709 CastedCallee, StaticData); 4710 } else { 4711 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4712 SanitizerHandler::CFICheckFail, StaticData, 4713 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4714 } 4715 } 4716 4717 CallArgList Args; 4718 if (Chain) 4719 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4720 CGM.getContext().VoidPtrTy); 4721 4722 // C++17 requires that we evaluate arguments to a call using assignment syntax 4723 // right-to-left, and that we evaluate arguments to certain other operators 4724 // left-to-right. Note that we allow this to override the order dictated by 4725 // the calling convention on the MS ABI, which means that parameter 4726 // destruction order is not necessarily reverse construction order. 4727 // FIXME: Revisit this based on C++ committee response to unimplementability. 4728 EvaluationOrder Order = EvaluationOrder::Default; 4729 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4730 if (OCE->isAssignmentOp()) 4731 Order = EvaluationOrder::ForceRightToLeft; 4732 else { 4733 switch (OCE->getOperator()) { 4734 case OO_LessLess: 4735 case OO_GreaterGreater: 4736 case OO_AmpAmp: 4737 case OO_PipePipe: 4738 case OO_Comma: 4739 case OO_ArrowStar: 4740 Order = EvaluationOrder::ForceLeftToRight; 4741 break; 4742 default: 4743 break; 4744 } 4745 } 4746 } 4747 4748 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4749 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4750 4751 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4752 Args, FnType, /*isChainCall=*/Chain); 4753 4754 // C99 6.5.2.2p6: 4755 // If the expression that denotes the called function has a type 4756 // that does not include a prototype, [the default argument 4757 // promotions are performed]. If the number of arguments does not 4758 // equal the number of parameters, the behavior is undefined. If 4759 // the function is defined with a type that includes a prototype, 4760 // and either the prototype ends with an ellipsis (, ...) or the 4761 // types of the arguments after promotion are not compatible with 4762 // the types of the parameters, the behavior is undefined. If the 4763 // function is defined with a type that does not include a 4764 // prototype, and the types of the arguments after promotion are 4765 // not compatible with those of the parameters after promotion, 4766 // the behavior is undefined [except in some trivial cases]. 4767 // That is, in the general case, we should assume that a call 4768 // through an unprototyped function type works like a *non-variadic* 4769 // call. The way we make this work is to cast to the exact type 4770 // of the promoted arguments. 4771 // 4772 // Chain calls use this same code path to add the invisible chain parameter 4773 // to the function type. 4774 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4775 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4776 CalleeTy = CalleeTy->getPointerTo(); 4777 4778 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4779 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4780 Callee.setFunctionPointer(CalleePtr); 4781 } 4782 4783 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4784 } 4785 4786 LValue CodeGenFunction:: 4787 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4788 Address BaseAddr = Address::invalid(); 4789 if (E->getOpcode() == BO_PtrMemI) { 4790 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4791 } else { 4792 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4793 } 4794 4795 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4796 4797 const MemberPointerType *MPT 4798 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4799 4800 LValueBaseInfo BaseInfo; 4801 TBAAAccessInfo TBAAInfo; 4802 Address MemberAddr = 4803 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4804 &TBAAInfo); 4805 4806 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4807 } 4808 4809 /// Given the address of a temporary variable, produce an r-value of 4810 /// its type. 4811 RValue CodeGenFunction::convertTempToRValue(Address addr, 4812 QualType type, 4813 SourceLocation loc) { 4814 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4815 switch (getEvaluationKind(type)) { 4816 case TEK_Complex: 4817 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4818 case TEK_Aggregate: 4819 return lvalue.asAggregateRValue(); 4820 case TEK_Scalar: 4821 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4822 } 4823 llvm_unreachable("bad evaluation kind"); 4824 } 4825 4826 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4827 assert(Val->getType()->isFPOrFPVectorTy()); 4828 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4829 return; 4830 4831 llvm::MDBuilder MDHelper(getLLVMContext()); 4832 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4833 4834 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4835 } 4836 4837 namespace { 4838 struct LValueOrRValue { 4839 LValue LV; 4840 RValue RV; 4841 }; 4842 } 4843 4844 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4845 const PseudoObjectExpr *E, 4846 bool forLValue, 4847 AggValueSlot slot) { 4848 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4849 4850 // Find the result expression, if any. 4851 const Expr *resultExpr = E->getResultExpr(); 4852 LValueOrRValue result; 4853 4854 for (PseudoObjectExpr::const_semantics_iterator 4855 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4856 const Expr *semantic = *i; 4857 4858 // If this semantic expression is an opaque value, bind it 4859 // to the result of its source expression. 4860 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4861 // Skip unique OVEs. 4862 if (ov->isUnique()) { 4863 assert(ov != resultExpr && 4864 "A unique OVE cannot be used as the result expression"); 4865 continue; 4866 } 4867 4868 // If this is the result expression, we may need to evaluate 4869 // directly into the slot. 4870 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4871 OVMA opaqueData; 4872 if (ov == resultExpr && ov->isRValue() && !forLValue && 4873 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4874 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4875 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4876 AlignmentSource::Decl); 4877 opaqueData = OVMA::bind(CGF, ov, LV); 4878 result.RV = slot.asRValue(); 4879 4880 // Otherwise, emit as normal. 4881 } else { 4882 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4883 4884 // If this is the result, also evaluate the result now. 4885 if (ov == resultExpr) { 4886 if (forLValue) 4887 result.LV = CGF.EmitLValue(ov); 4888 else 4889 result.RV = CGF.EmitAnyExpr(ov, slot); 4890 } 4891 } 4892 4893 opaques.push_back(opaqueData); 4894 4895 // Otherwise, if the expression is the result, evaluate it 4896 // and remember the result. 4897 } else if (semantic == resultExpr) { 4898 if (forLValue) 4899 result.LV = CGF.EmitLValue(semantic); 4900 else 4901 result.RV = CGF.EmitAnyExpr(semantic, slot); 4902 4903 // Otherwise, evaluate the expression in an ignored context. 4904 } else { 4905 CGF.EmitIgnoredExpr(semantic); 4906 } 4907 } 4908 4909 // Unbind all the opaques now. 4910 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4911 opaques[i].unbind(CGF); 4912 4913 return result; 4914 } 4915 4916 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4917 AggValueSlot slot) { 4918 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4919 } 4920 4921 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4922 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4923 } 4924