1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::FunctionCallee CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
343           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297   case Expr::LambdaExprClass:
1298     return EmitAggExprToLValue(E);
1299 
1300   case Expr::ExprWithCleanupsClass: {
1301     const auto *cleanups = cast<ExprWithCleanups>(E);
1302     enterFullExpression(cleanups);
1303     RunCleanupsScope Scope(*this);
1304     LValue LV = EmitLValue(cleanups->getSubExpr());
1305     if (LV.isSimple()) {
1306       // Defend against branches out of gnu statement expressions surrounded by
1307       // cleanups.
1308       llvm::Value *V = LV.getPointer();
1309       Scope.ForceCleanup({&V});
1310       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1311                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1312     }
1313     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1314     // bitfield lvalue or some other non-simple lvalue?
1315     return LV;
1316   }
1317 
1318   case Expr::CXXDefaultArgExprClass: {
1319     auto *DAE = cast<CXXDefaultArgExpr>(E);
1320     CXXDefaultArgExprScope Scope(*this, DAE);
1321     return EmitLValue(DAE->getExpr());
1322   }
1323   case Expr::CXXDefaultInitExprClass: {
1324     auto *DIE = cast<CXXDefaultInitExpr>(E);
1325     CXXDefaultInitExprScope Scope(*this, DIE);
1326     return EmitLValue(DIE->getExpr());
1327   }
1328   case Expr::CXXTypeidExprClass:
1329     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1330 
1331   case Expr::ObjCMessageExprClass:
1332     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1333   case Expr::ObjCIvarRefExprClass:
1334     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1335   case Expr::StmtExprClass:
1336     return EmitStmtExprLValue(cast<StmtExpr>(E));
1337   case Expr::UnaryOperatorClass:
1338     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1339   case Expr::ArraySubscriptExprClass:
1340     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1341   case Expr::OMPArraySectionExprClass:
1342     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1343   case Expr::ExtVectorElementExprClass:
1344     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1345   case Expr::MemberExprClass:
1346     return EmitMemberExpr(cast<MemberExpr>(E));
1347   case Expr::CompoundLiteralExprClass:
1348     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1349   case Expr::ConditionalOperatorClass:
1350     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1351   case Expr::BinaryConditionalOperatorClass:
1352     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1353   case Expr::ChooseExprClass:
1354     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1355   case Expr::OpaqueValueExprClass:
1356     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1357   case Expr::SubstNonTypeTemplateParmExprClass:
1358     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1359   case Expr::ImplicitCastExprClass:
1360   case Expr::CStyleCastExprClass:
1361   case Expr::CXXFunctionalCastExprClass:
1362   case Expr::CXXStaticCastExprClass:
1363   case Expr::CXXDynamicCastExprClass:
1364   case Expr::CXXReinterpretCastExprClass:
1365   case Expr::CXXConstCastExprClass:
1366   case Expr::ObjCBridgedCastExprClass:
1367     return EmitCastLValue(cast<CastExpr>(E));
1368 
1369   case Expr::MaterializeTemporaryExprClass:
1370     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1371 
1372   case Expr::CoawaitExprClass:
1373     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1374   case Expr::CoyieldExprClass:
1375     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1376   }
1377 }
1378 
1379 /// Given an object of the given canonical type, can we safely copy a
1380 /// value out of it based on its initializer?
1381 static bool isConstantEmittableObjectType(QualType type) {
1382   assert(type.isCanonical());
1383   assert(!type->isReferenceType());
1384 
1385   // Must be const-qualified but non-volatile.
1386   Qualifiers qs = type.getLocalQualifiers();
1387   if (!qs.hasConst() || qs.hasVolatile()) return false;
1388 
1389   // Otherwise, all object types satisfy this except C++ classes with
1390   // mutable subobjects or non-trivial copy/destroy behavior.
1391   if (const auto *RT = dyn_cast<RecordType>(type))
1392     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1393       if (RD->hasMutableFields() || !RD->isTrivial())
1394         return false;
1395 
1396   return true;
1397 }
1398 
1399 /// Can we constant-emit a load of a reference to a variable of the
1400 /// given type?  This is different from predicates like
1401 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1402 /// in situations that don't necessarily satisfy the language's rules
1403 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1404 /// to do this with const float variables even if those variables
1405 /// aren't marked 'constexpr'.
1406 enum ConstantEmissionKind {
1407   CEK_None,
1408   CEK_AsReferenceOnly,
1409   CEK_AsValueOrReference,
1410   CEK_AsValueOnly
1411 };
1412 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1413   type = type.getCanonicalType();
1414   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1415     if (isConstantEmittableObjectType(ref->getPointeeType()))
1416       return CEK_AsValueOrReference;
1417     return CEK_AsReferenceOnly;
1418   }
1419   if (isConstantEmittableObjectType(type))
1420     return CEK_AsValueOnly;
1421   return CEK_None;
1422 }
1423 
1424 /// Try to emit a reference to the given value without producing it as
1425 /// an l-value.  This is actually more than an optimization: we can't
1426 /// produce an l-value for variables that we never actually captured
1427 /// in a block or lambda, which means const int variables or constexpr
1428 /// literals or similar.
1429 CodeGenFunction::ConstantEmission
1430 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1431   ValueDecl *value = refExpr->getDecl();
1432 
1433   // The value needs to be an enum constant or a constant variable.
1434   ConstantEmissionKind CEK;
1435   if (isa<ParmVarDecl>(value)) {
1436     CEK = CEK_None;
1437   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1438     CEK = checkVarTypeForConstantEmission(var->getType());
1439   } else if (isa<EnumConstantDecl>(value)) {
1440     CEK = CEK_AsValueOnly;
1441   } else {
1442     CEK = CEK_None;
1443   }
1444   if (CEK == CEK_None) return ConstantEmission();
1445 
1446   Expr::EvalResult result;
1447   bool resultIsReference;
1448   QualType resultType;
1449 
1450   // It's best to evaluate all the way as an r-value if that's permitted.
1451   if (CEK != CEK_AsReferenceOnly &&
1452       refExpr->EvaluateAsRValue(result, getContext())) {
1453     resultIsReference = false;
1454     resultType = refExpr->getType();
1455 
1456   // Otherwise, try to evaluate as an l-value.
1457   } else if (CEK != CEK_AsValueOnly &&
1458              refExpr->EvaluateAsLValue(result, getContext())) {
1459     resultIsReference = true;
1460     resultType = value->getType();
1461 
1462   // Failure.
1463   } else {
1464     return ConstantEmission();
1465   }
1466 
1467   // In any case, if the initializer has side-effects, abandon ship.
1468   if (result.HasSideEffects)
1469     return ConstantEmission();
1470 
1471   // Emit as a constant.
1472   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1473                                                result.Val, resultType);
1474 
1475   // Make sure we emit a debug reference to the global variable.
1476   // This should probably fire even for
1477   if (isa<VarDecl>(value)) {
1478     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1479       EmitDeclRefExprDbgValue(refExpr, result.Val);
1480   } else {
1481     assert(isa<EnumConstantDecl>(value));
1482     EmitDeclRefExprDbgValue(refExpr, result.Val);
1483   }
1484 
1485   // If we emitted a reference constant, we need to dereference that.
1486   if (resultIsReference)
1487     return ConstantEmission::forReference(C);
1488 
1489   return ConstantEmission::forValue(C);
1490 }
1491 
1492 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1493                                                         const MemberExpr *ME) {
1494   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1495     // Try to emit static variable member expressions as DREs.
1496     return DeclRefExpr::Create(
1497         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1498         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1499         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1500   }
1501   return nullptr;
1502 }
1503 
1504 CodeGenFunction::ConstantEmission
1505 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1506   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1507     return tryEmitAsConstant(DRE);
1508   return ConstantEmission();
1509 }
1510 
1511 llvm::Value *CodeGenFunction::emitScalarConstant(
1512     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1513   assert(Constant && "not a constant");
1514   if (Constant.isReference())
1515     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1516                             E->getExprLoc())
1517         .getScalarVal();
1518   return Constant.getValue();
1519 }
1520 
1521 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1522                                                SourceLocation Loc) {
1523   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1524                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1525                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1526 }
1527 
1528 static bool hasBooleanRepresentation(QualType Ty) {
1529   if (Ty->isBooleanType())
1530     return true;
1531 
1532   if (const EnumType *ET = Ty->getAs<EnumType>())
1533     return ET->getDecl()->getIntegerType()->isBooleanType();
1534 
1535   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1536     return hasBooleanRepresentation(AT->getValueType());
1537 
1538   return false;
1539 }
1540 
1541 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1542                             llvm::APInt &Min, llvm::APInt &End,
1543                             bool StrictEnums, bool IsBool) {
1544   const EnumType *ET = Ty->getAs<EnumType>();
1545   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1546                                 ET && !ET->getDecl()->isFixed();
1547   if (!IsBool && !IsRegularCPlusPlusEnum)
1548     return false;
1549 
1550   if (IsBool) {
1551     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1552     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1553   } else {
1554     const EnumDecl *ED = ET->getDecl();
1555     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1556     unsigned Bitwidth = LTy->getScalarSizeInBits();
1557     unsigned NumNegativeBits = ED->getNumNegativeBits();
1558     unsigned NumPositiveBits = ED->getNumPositiveBits();
1559 
1560     if (NumNegativeBits) {
1561       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1562       assert(NumBits <= Bitwidth);
1563       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1564       Min = -End;
1565     } else {
1566       assert(NumPositiveBits <= Bitwidth);
1567       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1568       Min = llvm::APInt(Bitwidth, 0);
1569     }
1570   }
1571   return true;
1572 }
1573 
1574 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1575   llvm::APInt Min, End;
1576   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1577                        hasBooleanRepresentation(Ty)))
1578     return nullptr;
1579 
1580   llvm::MDBuilder MDHelper(getLLVMContext());
1581   return MDHelper.createRange(Min, End);
1582 }
1583 
1584 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1585                                            SourceLocation Loc) {
1586   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1587   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1588   if (!HasBoolCheck && !HasEnumCheck)
1589     return false;
1590 
1591   bool IsBool = hasBooleanRepresentation(Ty) ||
1592                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1593   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1594   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1595   if (!NeedsBoolCheck && !NeedsEnumCheck)
1596     return false;
1597 
1598   // Single-bit booleans don't need to be checked. Special-case this to avoid
1599   // a bit width mismatch when handling bitfield values. This is handled by
1600   // EmitFromMemory for the non-bitfield case.
1601   if (IsBool &&
1602       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1603     return false;
1604 
1605   llvm::APInt Min, End;
1606   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1607     return true;
1608 
1609   auto &Ctx = getLLVMContext();
1610   SanitizerScope SanScope(this);
1611   llvm::Value *Check;
1612   --End;
1613   if (!Min) {
1614     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1615   } else {
1616     llvm::Value *Upper =
1617         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1618     llvm::Value *Lower =
1619         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1620     Check = Builder.CreateAnd(Upper, Lower);
1621   }
1622   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1623                                   EmitCheckTypeDescriptor(Ty)};
1624   SanitizerMask Kind =
1625       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1626   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1627             StaticArgs, EmitCheckValue(Value));
1628   return true;
1629 }
1630 
1631 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1632                                                QualType Ty,
1633                                                SourceLocation Loc,
1634                                                LValueBaseInfo BaseInfo,
1635                                                TBAAAccessInfo TBAAInfo,
1636                                                bool isNontemporal) {
1637   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1638     // For better performance, handle vector loads differently.
1639     if (Ty->isVectorType()) {
1640       const llvm::Type *EltTy = Addr.getElementType();
1641 
1642       const auto *VTy = cast<llvm::VectorType>(EltTy);
1643 
1644       // Handle vectors of size 3 like size 4 for better performance.
1645       if (VTy->getNumElements() == 3) {
1646 
1647         // Bitcast to vec4 type.
1648         llvm::VectorType *vec4Ty =
1649             llvm::VectorType::get(VTy->getElementType(), 4);
1650         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1651         // Now load value.
1652         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1653 
1654         // Shuffle vector to get vec3.
1655         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1656                                         {0, 1, 2}, "extractVec");
1657         return EmitFromMemory(V, Ty);
1658       }
1659     }
1660   }
1661 
1662   // Atomic operations have to be done on integral types.
1663   LValue AtomicLValue =
1664       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1665   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1666     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1667   }
1668 
1669   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1670   if (isNontemporal) {
1671     llvm::MDNode *Node = llvm::MDNode::get(
1672         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1673     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1674   }
1675 
1676   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1677 
1678   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1679     // In order to prevent the optimizer from throwing away the check, don't
1680     // attach range metadata to the load.
1681   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1682     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1683       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1684 
1685   return EmitFromMemory(Load, Ty);
1686 }
1687 
1688 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1689   // Bool has a different representation in memory than in registers.
1690   if (hasBooleanRepresentation(Ty)) {
1691     // This should really always be an i1, but sometimes it's already
1692     // an i8, and it's awkward to track those cases down.
1693     if (Value->getType()->isIntegerTy(1))
1694       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1695     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1696            "wrong value rep of bool");
1697   }
1698 
1699   return Value;
1700 }
1701 
1702 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1703   // Bool has a different representation in memory than in registers.
1704   if (hasBooleanRepresentation(Ty)) {
1705     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1706            "wrong value rep of bool");
1707     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1708   }
1709 
1710   return Value;
1711 }
1712 
1713 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1714                                         bool Volatile, QualType Ty,
1715                                         LValueBaseInfo BaseInfo,
1716                                         TBAAAccessInfo TBAAInfo,
1717                                         bool isInit, bool isNontemporal) {
1718   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1719     // Handle vectors differently to get better performance.
1720     if (Ty->isVectorType()) {
1721       llvm::Type *SrcTy = Value->getType();
1722       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1723       // Handle vec3 special.
1724       if (VecTy && VecTy->getNumElements() == 3) {
1725         // Our source is a vec3, do a shuffle vector to make it a vec4.
1726         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1727                                   Builder.getInt32(2),
1728                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1729         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1730         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1731                                             MaskV, "extractVec");
1732         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1733       }
1734       if (Addr.getElementType() != SrcTy) {
1735         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1736       }
1737     }
1738   }
1739 
1740   Value = EmitToMemory(Value, Ty);
1741 
1742   LValue AtomicLValue =
1743       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1744   if (Ty->isAtomicType() ||
1745       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1746     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1747     return;
1748   }
1749 
1750   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1751   if (isNontemporal) {
1752     llvm::MDNode *Node =
1753         llvm::MDNode::get(Store->getContext(),
1754                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1755     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1756   }
1757 
1758   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1759 }
1760 
1761 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1762                                         bool isInit) {
1763   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1764                     lvalue.getType(), lvalue.getBaseInfo(),
1765                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1766 }
1767 
1768 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1769 /// method emits the address of the lvalue, then loads the result as an rvalue,
1770 /// returning the rvalue.
1771 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1772   if (LV.isObjCWeak()) {
1773     // load of a __weak object.
1774     Address AddrWeakObj = LV.getAddress();
1775     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1776                                                              AddrWeakObj));
1777   }
1778   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1779     // In MRC mode, we do a load+autorelease.
1780     if (!getLangOpts().ObjCAutoRefCount) {
1781       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1782     }
1783 
1784     // In ARC mode, we load retained and then consume the value.
1785     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1786     Object = EmitObjCConsumeObject(LV.getType(), Object);
1787     return RValue::get(Object);
1788   }
1789 
1790   if (LV.isSimple()) {
1791     assert(!LV.getType()->isFunctionType());
1792 
1793     // Everything needs a load.
1794     return RValue::get(EmitLoadOfScalar(LV, Loc));
1795   }
1796 
1797   if (LV.isVectorElt()) {
1798     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1799                                               LV.isVolatileQualified());
1800     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1801                                                     "vecext"));
1802   }
1803 
1804   // If this is a reference to a subset of the elements of a vector, either
1805   // shuffle the input or extract/insert them as appropriate.
1806   if (LV.isExtVectorElt())
1807     return EmitLoadOfExtVectorElementLValue(LV);
1808 
1809   // Global Register variables always invoke intrinsics
1810   if (LV.isGlobalReg())
1811     return EmitLoadOfGlobalRegLValue(LV);
1812 
1813   assert(LV.isBitField() && "Unknown LValue type!");
1814   return EmitLoadOfBitfieldLValue(LV, Loc);
1815 }
1816 
1817 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1818                                                  SourceLocation Loc) {
1819   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1820 
1821   // Get the output type.
1822   llvm::Type *ResLTy = ConvertType(LV.getType());
1823 
1824   Address Ptr = LV.getBitFieldAddress();
1825   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1826 
1827   if (Info.IsSigned) {
1828     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1829     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1830     if (HighBits)
1831       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1832     if (Info.Offset + HighBits)
1833       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1834   } else {
1835     if (Info.Offset)
1836       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1837     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1838       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1839                                                               Info.Size),
1840                               "bf.clear");
1841   }
1842   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1843   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1844   return RValue::get(Val);
1845 }
1846 
1847 // If this is a reference to a subset of the elements of a vector, create an
1848 // appropriate shufflevector.
1849 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1850   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1851                                         LV.isVolatileQualified());
1852 
1853   const llvm::Constant *Elts = LV.getExtVectorElts();
1854 
1855   // If the result of the expression is a non-vector type, we must be extracting
1856   // a single element.  Just codegen as an extractelement.
1857   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1858   if (!ExprVT) {
1859     unsigned InIdx = getAccessedFieldNo(0, Elts);
1860     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1861     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1862   }
1863 
1864   // Always use shuffle vector to try to retain the original program structure
1865   unsigned NumResultElts = ExprVT->getNumElements();
1866 
1867   SmallVector<llvm::Constant*, 4> Mask;
1868   for (unsigned i = 0; i != NumResultElts; ++i)
1869     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1870 
1871   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1872   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1873                                     MaskV);
1874   return RValue::get(Vec);
1875 }
1876 
1877 /// Generates lvalue for partial ext_vector access.
1878 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1879   Address VectorAddress = LV.getExtVectorAddress();
1880   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1881   QualType EQT = ExprVT->getElementType();
1882   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1883 
1884   Address CastToPointerElement =
1885     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1886                                  "conv.ptr.element");
1887 
1888   const llvm::Constant *Elts = LV.getExtVectorElts();
1889   unsigned ix = getAccessedFieldNo(0, Elts);
1890 
1891   Address VectorBasePtrPlusIx =
1892     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1893                                    "vector.elt");
1894 
1895   return VectorBasePtrPlusIx;
1896 }
1897 
1898 /// Load of global gamed gegisters are always calls to intrinsics.
1899 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1900   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1901          "Bad type for register variable");
1902   llvm::MDNode *RegName = cast<llvm::MDNode>(
1903       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1904 
1905   // We accept integer and pointer types only
1906   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1907   llvm::Type *Ty = OrigTy;
1908   if (OrigTy->isPointerTy())
1909     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1910   llvm::Type *Types[] = { Ty };
1911 
1912   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1913   llvm::Value *Call = Builder.CreateCall(
1914       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1915   if (OrigTy->isPointerTy())
1916     Call = Builder.CreateIntToPtr(Call, OrigTy);
1917   return RValue::get(Call);
1918 }
1919 
1920 
1921 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1922 /// lvalue, where both are guaranteed to the have the same type, and that type
1923 /// is 'Ty'.
1924 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1925                                              bool isInit) {
1926   if (!Dst.isSimple()) {
1927     if (Dst.isVectorElt()) {
1928       // Read/modify/write the vector, inserting the new element.
1929       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1930                                             Dst.isVolatileQualified());
1931       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1932                                         Dst.getVectorIdx(), "vecins");
1933       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1934                           Dst.isVolatileQualified());
1935       return;
1936     }
1937 
1938     // If this is an update of extended vector elements, insert them as
1939     // appropriate.
1940     if (Dst.isExtVectorElt())
1941       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1942 
1943     if (Dst.isGlobalReg())
1944       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1945 
1946     assert(Dst.isBitField() && "Unknown LValue type");
1947     return EmitStoreThroughBitfieldLValue(Src, Dst);
1948   }
1949 
1950   // There's special magic for assigning into an ARC-qualified l-value.
1951   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1952     switch (Lifetime) {
1953     case Qualifiers::OCL_None:
1954       llvm_unreachable("present but none");
1955 
1956     case Qualifiers::OCL_ExplicitNone:
1957       // nothing special
1958       break;
1959 
1960     case Qualifiers::OCL_Strong:
1961       if (isInit) {
1962         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1963         break;
1964       }
1965       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1966       return;
1967 
1968     case Qualifiers::OCL_Weak:
1969       if (isInit)
1970         // Initialize and then skip the primitive store.
1971         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1972       else
1973         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1974       return;
1975 
1976     case Qualifiers::OCL_Autoreleasing:
1977       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1978                                                      Src.getScalarVal()));
1979       // fall into the normal path
1980       break;
1981     }
1982   }
1983 
1984   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1985     // load of a __weak object.
1986     Address LvalueDst = Dst.getAddress();
1987     llvm::Value *src = Src.getScalarVal();
1988      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1989     return;
1990   }
1991 
1992   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1993     // load of a __strong object.
1994     Address LvalueDst = Dst.getAddress();
1995     llvm::Value *src = Src.getScalarVal();
1996     if (Dst.isObjCIvar()) {
1997       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1998       llvm::Type *ResultType = IntPtrTy;
1999       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2000       llvm::Value *RHS = dst.getPointer();
2001       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2002       llvm::Value *LHS =
2003         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2004                                "sub.ptr.lhs.cast");
2005       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2006       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2007                                               BytesBetween);
2008     } else if (Dst.isGlobalObjCRef()) {
2009       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2010                                                 Dst.isThreadLocalRef());
2011     }
2012     else
2013       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2014     return;
2015   }
2016 
2017   assert(Src.isScalar() && "Can't emit an agg store with this method");
2018   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2019 }
2020 
2021 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2022                                                      llvm::Value **Result) {
2023   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2024   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2025   Address Ptr = Dst.getBitFieldAddress();
2026 
2027   // Get the source value, truncated to the width of the bit-field.
2028   llvm::Value *SrcVal = Src.getScalarVal();
2029 
2030   // Cast the source to the storage type and shift it into place.
2031   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2032                                  /*IsSigned=*/false);
2033   llvm::Value *MaskedVal = SrcVal;
2034 
2035   // See if there are other bits in the bitfield's storage we'll need to load
2036   // and mask together with source before storing.
2037   if (Info.StorageSize != Info.Size) {
2038     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2039     llvm::Value *Val =
2040       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2041 
2042     // Mask the source value as needed.
2043     if (!hasBooleanRepresentation(Dst.getType()))
2044       SrcVal = Builder.CreateAnd(SrcVal,
2045                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2046                                                             Info.Size),
2047                                  "bf.value");
2048     MaskedVal = SrcVal;
2049     if (Info.Offset)
2050       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2051 
2052     // Mask out the original value.
2053     Val = Builder.CreateAnd(Val,
2054                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2055                                                      Info.Offset,
2056                                                      Info.Offset + Info.Size),
2057                             "bf.clear");
2058 
2059     // Or together the unchanged values and the source value.
2060     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2061   } else {
2062     assert(Info.Offset == 0);
2063   }
2064 
2065   // Write the new value back out.
2066   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2067 
2068   // Return the new value of the bit-field, if requested.
2069   if (Result) {
2070     llvm::Value *ResultVal = MaskedVal;
2071 
2072     // Sign extend the value if needed.
2073     if (Info.IsSigned) {
2074       assert(Info.Size <= Info.StorageSize);
2075       unsigned HighBits = Info.StorageSize - Info.Size;
2076       if (HighBits) {
2077         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2078         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2079       }
2080     }
2081 
2082     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2083                                       "bf.result.cast");
2084     *Result = EmitFromMemory(ResultVal, Dst.getType());
2085   }
2086 }
2087 
2088 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2089                                                                LValue Dst) {
2090   // This access turns into a read/modify/write of the vector.  Load the input
2091   // value now.
2092   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2093                                         Dst.isVolatileQualified());
2094   const llvm::Constant *Elts = Dst.getExtVectorElts();
2095 
2096   llvm::Value *SrcVal = Src.getScalarVal();
2097 
2098   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2099     unsigned NumSrcElts = VTy->getNumElements();
2100     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2101     if (NumDstElts == NumSrcElts) {
2102       // Use shuffle vector is the src and destination are the same number of
2103       // elements and restore the vector mask since it is on the side it will be
2104       // stored.
2105       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2106       for (unsigned i = 0; i != NumSrcElts; ++i)
2107         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2108 
2109       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2110       Vec = Builder.CreateShuffleVector(SrcVal,
2111                                         llvm::UndefValue::get(Vec->getType()),
2112                                         MaskV);
2113     } else if (NumDstElts > NumSrcElts) {
2114       // Extended the source vector to the same length and then shuffle it
2115       // into the destination.
2116       // FIXME: since we're shuffling with undef, can we just use the indices
2117       //        into that?  This could be simpler.
2118       SmallVector<llvm::Constant*, 4> ExtMask;
2119       for (unsigned i = 0; i != NumSrcElts; ++i)
2120         ExtMask.push_back(Builder.getInt32(i));
2121       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2122       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2123       llvm::Value *ExtSrcVal =
2124         Builder.CreateShuffleVector(SrcVal,
2125                                     llvm::UndefValue::get(SrcVal->getType()),
2126                                     ExtMaskV);
2127       // build identity
2128       SmallVector<llvm::Constant*, 4> Mask;
2129       for (unsigned i = 0; i != NumDstElts; ++i)
2130         Mask.push_back(Builder.getInt32(i));
2131 
2132       // When the vector size is odd and .odd or .hi is used, the last element
2133       // of the Elts constant array will be one past the size of the vector.
2134       // Ignore the last element here, if it is greater than the mask size.
2135       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2136         NumSrcElts--;
2137 
2138       // modify when what gets shuffled in
2139       for (unsigned i = 0; i != NumSrcElts; ++i)
2140         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2141       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2142       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2143     } else {
2144       // We should never shorten the vector
2145       llvm_unreachable("unexpected shorten vector length");
2146     }
2147   } else {
2148     // If the Src is a scalar (not a vector) it must be updating one element.
2149     unsigned InIdx = getAccessedFieldNo(0, Elts);
2150     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2151     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2152   }
2153 
2154   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2155                       Dst.isVolatileQualified());
2156 }
2157 
2158 /// Store of global named registers are always calls to intrinsics.
2159 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2160   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2161          "Bad type for register variable");
2162   llvm::MDNode *RegName = cast<llvm::MDNode>(
2163       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2164   assert(RegName && "Register LValue is not metadata");
2165 
2166   // We accept integer and pointer types only
2167   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2168   llvm::Type *Ty = OrigTy;
2169   if (OrigTy->isPointerTy())
2170     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2171   llvm::Type *Types[] = { Ty };
2172 
2173   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2174   llvm::Value *Value = Src.getScalarVal();
2175   if (OrigTy->isPointerTy())
2176     Value = Builder.CreatePtrToInt(Value, Ty);
2177   Builder.CreateCall(
2178       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2179 }
2180 
2181 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2182 // generating write-barries API. It is currently a global, ivar,
2183 // or neither.
2184 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2185                                  LValue &LV,
2186                                  bool IsMemberAccess=false) {
2187   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2188     return;
2189 
2190   if (isa<ObjCIvarRefExpr>(E)) {
2191     QualType ExpTy = E->getType();
2192     if (IsMemberAccess && ExpTy->isPointerType()) {
2193       // If ivar is a structure pointer, assigning to field of
2194       // this struct follows gcc's behavior and makes it a non-ivar
2195       // writer-barrier conservatively.
2196       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2197       if (ExpTy->isRecordType()) {
2198         LV.setObjCIvar(false);
2199         return;
2200       }
2201     }
2202     LV.setObjCIvar(true);
2203     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2204     LV.setBaseIvarExp(Exp->getBase());
2205     LV.setObjCArray(E->getType()->isArrayType());
2206     return;
2207   }
2208 
2209   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2210     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2211       if (VD->hasGlobalStorage()) {
2212         LV.setGlobalObjCRef(true);
2213         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2214       }
2215     }
2216     LV.setObjCArray(E->getType()->isArrayType());
2217     return;
2218   }
2219 
2220   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2221     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2222     return;
2223   }
2224 
2225   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2226     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2227     if (LV.isObjCIvar()) {
2228       // If cast is to a structure pointer, follow gcc's behavior and make it
2229       // a non-ivar write-barrier.
2230       QualType ExpTy = E->getType();
2231       if (ExpTy->isPointerType())
2232         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2233       if (ExpTy->isRecordType())
2234         LV.setObjCIvar(false);
2235     }
2236     return;
2237   }
2238 
2239   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2240     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2241     return;
2242   }
2243 
2244   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2245     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2246     return;
2247   }
2248 
2249   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2250     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2251     return;
2252   }
2253 
2254   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2255     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2256     return;
2257   }
2258 
2259   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2260     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2261     if (LV.isObjCIvar() && !LV.isObjCArray())
2262       // Using array syntax to assigning to what an ivar points to is not
2263       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2264       LV.setObjCIvar(false);
2265     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2266       // Using array syntax to assigning to what global points to is not
2267       // same as assigning to the global itself. {id *G;} G[i] = 0;
2268       LV.setGlobalObjCRef(false);
2269     return;
2270   }
2271 
2272   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2273     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2274     // We don't know if member is an 'ivar', but this flag is looked at
2275     // only in the context of LV.isObjCIvar().
2276     LV.setObjCArray(E->getType()->isArrayType());
2277     return;
2278   }
2279 }
2280 
2281 static llvm::Value *
2282 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2283                                 llvm::Value *V, llvm::Type *IRType,
2284                                 StringRef Name = StringRef()) {
2285   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2286   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2287 }
2288 
2289 static LValue EmitThreadPrivateVarDeclLValue(
2290     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2291     llvm::Type *RealVarTy, SourceLocation Loc) {
2292   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2293   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2294   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2295 }
2296 
2297 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2298                                                const VarDecl *VD, QualType T) {
2299   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2300       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2301   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2302     return Address::invalid();
2303   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2304   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2305   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2306   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2307 }
2308 
2309 Address
2310 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2311                                      LValueBaseInfo *PointeeBaseInfo,
2312                                      TBAAAccessInfo *PointeeTBAAInfo) {
2313   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2314                                             RefLVal.isVolatile());
2315   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2316 
2317   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2318                                             PointeeBaseInfo, PointeeTBAAInfo,
2319                                             /* forPointeeType= */ true);
2320   return Address(Load, Align);
2321 }
2322 
2323 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2324   LValueBaseInfo PointeeBaseInfo;
2325   TBAAAccessInfo PointeeTBAAInfo;
2326   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2327                                             &PointeeTBAAInfo);
2328   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2329                         PointeeBaseInfo, PointeeTBAAInfo);
2330 }
2331 
2332 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2333                                            const PointerType *PtrTy,
2334                                            LValueBaseInfo *BaseInfo,
2335                                            TBAAAccessInfo *TBAAInfo) {
2336   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2337   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2338                                                BaseInfo, TBAAInfo,
2339                                                /*forPointeeType=*/true));
2340 }
2341 
2342 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2343                                                 const PointerType *PtrTy) {
2344   LValueBaseInfo BaseInfo;
2345   TBAAAccessInfo TBAAInfo;
2346   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2347   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2348 }
2349 
2350 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2351                                       const Expr *E, const VarDecl *VD) {
2352   QualType T = E->getType();
2353 
2354   // If it's thread_local, emit a call to its wrapper function instead.
2355   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2356       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2357     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2358   // Check if the variable is marked as declare target with link clause in
2359   // device codegen.
2360   if (CGF.getLangOpts().OpenMPIsDevice) {
2361     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2362     if (Addr.isValid())
2363       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2364   }
2365 
2366   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2367   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2368   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2369   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2370   Address Addr(V, Alignment);
2371   // Emit reference to the private copy of the variable if it is an OpenMP
2372   // threadprivate variable.
2373   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2374       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2375     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2376                                           E->getExprLoc());
2377   }
2378   LValue LV = VD->getType()->isReferenceType() ?
2379       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2380                                     AlignmentSource::Decl) :
2381       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2382   setObjCGCLValueClass(CGF.getContext(), E, LV);
2383   return LV;
2384 }
2385 
2386 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2387                                                const FunctionDecl *FD) {
2388   if (FD->hasAttr<WeakRefAttr>()) {
2389     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2390     return aliasee.getPointer();
2391   }
2392 
2393   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2394   if (!FD->hasPrototype()) {
2395     if (const FunctionProtoType *Proto =
2396             FD->getType()->getAs<FunctionProtoType>()) {
2397       // Ugly case: for a K&R-style definition, the type of the definition
2398       // isn't the same as the type of a use.  Correct for this with a
2399       // bitcast.
2400       QualType NoProtoType =
2401           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2402       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2403       V = llvm::ConstantExpr::getBitCast(V,
2404                                       CGM.getTypes().ConvertType(NoProtoType));
2405     }
2406   }
2407   return V;
2408 }
2409 
2410 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2411                                      const Expr *E, const FunctionDecl *FD) {
2412   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2413   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2414   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2415                             AlignmentSource::Decl);
2416 }
2417 
2418 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2419                                       llvm::Value *ThisValue) {
2420   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2421   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2422   return CGF.EmitLValueForField(LV, FD);
2423 }
2424 
2425 /// Named Registers are named metadata pointing to the register name
2426 /// which will be read from/written to as an argument to the intrinsic
2427 /// @llvm.read/write_register.
2428 /// So far, only the name is being passed down, but other options such as
2429 /// register type, allocation type or even optimization options could be
2430 /// passed down via the metadata node.
2431 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2432   SmallString<64> Name("llvm.named.register.");
2433   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2434   assert(Asm->getLabel().size() < 64-Name.size() &&
2435       "Register name too big");
2436   Name.append(Asm->getLabel());
2437   llvm::NamedMDNode *M =
2438     CGM.getModule().getOrInsertNamedMetadata(Name);
2439   if (M->getNumOperands() == 0) {
2440     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2441                                               Asm->getLabel());
2442     llvm::Metadata *Ops[] = {Str};
2443     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2444   }
2445 
2446   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2447 
2448   llvm::Value *Ptr =
2449     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2450   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2451 }
2452 
2453 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2454   const NamedDecl *ND = E->getDecl();
2455   QualType T = E->getType();
2456 
2457   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2458     // Global Named registers access via intrinsics only
2459     if (VD->getStorageClass() == SC_Register &&
2460         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2461       return EmitGlobalNamedRegister(VD, CGM);
2462 
2463     // A DeclRefExpr for a reference initialized by a constant expression can
2464     // appear without being odr-used. Directly emit the constant initializer.
2465     VD->getAnyInitializer(VD);
2466     if (E->isNonOdrUse() == NOUR_Constant && VD->getType()->isReferenceType()) {
2467       llvm::Constant *Val =
2468         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2469                                             *VD->evaluateValue(),
2470                                             VD->getType());
2471       assert(Val && "failed to emit reference constant expression");
2472       // FIXME: Eventually we will want to emit vector element references.
2473 
2474       // Should we be using the alignment of the constant pointer we emitted?
2475       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2476                                                     /* BaseInfo= */ nullptr,
2477                                                     /* TBAAInfo= */ nullptr,
2478                                                     /* forPointeeType= */ true);
2479       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2480     }
2481 
2482     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2483 
2484     // Check for captured variables.
2485     if (E->refersToEnclosingVariableOrCapture()) {
2486       VD = VD->getCanonicalDecl();
2487       if (auto *FD = LambdaCaptureFields.lookup(VD))
2488         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2489       else if (CapturedStmtInfo) {
2490         auto I = LocalDeclMap.find(VD);
2491         if (I != LocalDeclMap.end()) {
2492           if (VD->getType()->isReferenceType())
2493             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2494                                              AlignmentSource::Decl);
2495           return MakeAddrLValue(I->second, T);
2496         }
2497         LValue CapLVal =
2498             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2499                                     CapturedStmtInfo->getContextValue());
2500         return MakeAddrLValue(
2501             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2502             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2503             CapLVal.getTBAAInfo());
2504       }
2505 
2506       assert(isa<BlockDecl>(CurCodeDecl));
2507       Address addr = GetAddrOfBlockDecl(VD);
2508       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2509     }
2510   }
2511 
2512   // FIXME: We should be able to assert this for FunctionDecls as well!
2513   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2514   // those with a valid source location.
2515   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2516           !E->getLocation().isValid()) &&
2517          "Should not use decl without marking it used!");
2518 
2519   if (ND->hasAttr<WeakRefAttr>()) {
2520     const auto *VD = cast<ValueDecl>(ND);
2521     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2522     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2523   }
2524 
2525   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2526     // Check if this is a global variable.
2527     if (VD->hasLinkage() || VD->isStaticDataMember())
2528       return EmitGlobalVarDeclLValue(*this, E, VD);
2529 
2530     Address addr = Address::invalid();
2531 
2532     // The variable should generally be present in the local decl map.
2533     auto iter = LocalDeclMap.find(VD);
2534     if (iter != LocalDeclMap.end()) {
2535       addr = iter->second;
2536 
2537     // Otherwise, it might be static local we haven't emitted yet for
2538     // some reason; most likely, because it's in an outer function.
2539     } else if (VD->isStaticLocal()) {
2540       addr = Address(CGM.getOrCreateStaticVarDecl(
2541           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2542                      getContext().getDeclAlign(VD));
2543 
2544     // No other cases for now.
2545     } else {
2546       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2547     }
2548 
2549 
2550     // Check for OpenMP threadprivate variables.
2551     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2552         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2553       return EmitThreadPrivateVarDeclLValue(
2554           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2555           E->getExprLoc());
2556     }
2557 
2558     // Drill into block byref variables.
2559     bool isBlockByref = VD->isEscapingByref();
2560     if (isBlockByref) {
2561       addr = emitBlockByrefAddress(addr, VD);
2562     }
2563 
2564     // Drill into reference types.
2565     LValue LV = VD->getType()->isReferenceType() ?
2566         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2567         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2568 
2569     bool isLocalStorage = VD->hasLocalStorage();
2570 
2571     bool NonGCable = isLocalStorage &&
2572                      !VD->getType()->isReferenceType() &&
2573                      !isBlockByref;
2574     if (NonGCable) {
2575       LV.getQuals().removeObjCGCAttr();
2576       LV.setNonGC(true);
2577     }
2578 
2579     bool isImpreciseLifetime =
2580       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2581     if (isImpreciseLifetime)
2582       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2583     setObjCGCLValueClass(getContext(), E, LV);
2584     return LV;
2585   }
2586 
2587   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2588     return EmitFunctionDeclLValue(*this, E, FD);
2589 
2590   // FIXME: While we're emitting a binding from an enclosing scope, all other
2591   // DeclRefExprs we see should be implicitly treated as if they also refer to
2592   // an enclosing scope.
2593   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2594     return EmitLValue(BD->getBinding());
2595 
2596   llvm_unreachable("Unhandled DeclRefExpr");
2597 }
2598 
2599 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2600   // __extension__ doesn't affect lvalue-ness.
2601   if (E->getOpcode() == UO_Extension)
2602     return EmitLValue(E->getSubExpr());
2603 
2604   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2605   switch (E->getOpcode()) {
2606   default: llvm_unreachable("Unknown unary operator lvalue!");
2607   case UO_Deref: {
2608     QualType T = E->getSubExpr()->getType()->getPointeeType();
2609     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2610 
2611     LValueBaseInfo BaseInfo;
2612     TBAAAccessInfo TBAAInfo;
2613     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2614                                             &TBAAInfo);
2615     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2616     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2617 
2618     // We should not generate __weak write barrier on indirect reference
2619     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2620     // But, we continue to generate __strong write barrier on indirect write
2621     // into a pointer to object.
2622     if (getLangOpts().ObjC &&
2623         getLangOpts().getGC() != LangOptions::NonGC &&
2624         LV.isObjCWeak())
2625       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2626     return LV;
2627   }
2628   case UO_Real:
2629   case UO_Imag: {
2630     LValue LV = EmitLValue(E->getSubExpr());
2631     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2632 
2633     // __real is valid on scalars.  This is a faster way of testing that.
2634     // __imag can only produce an rvalue on scalars.
2635     if (E->getOpcode() == UO_Real &&
2636         !LV.getAddress().getElementType()->isStructTy()) {
2637       assert(E->getSubExpr()->getType()->isArithmeticType());
2638       return LV;
2639     }
2640 
2641     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2642 
2643     Address Component =
2644       (E->getOpcode() == UO_Real
2645          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2646          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2647     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2648                                    CGM.getTBAAInfoForSubobject(LV, T));
2649     ElemLV.getQuals().addQualifiers(LV.getQuals());
2650     return ElemLV;
2651   }
2652   case UO_PreInc:
2653   case UO_PreDec: {
2654     LValue LV = EmitLValue(E->getSubExpr());
2655     bool isInc = E->getOpcode() == UO_PreInc;
2656 
2657     if (E->getType()->isAnyComplexType())
2658       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2659     else
2660       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2661     return LV;
2662   }
2663   }
2664 }
2665 
2666 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2667   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2668                         E->getType(), AlignmentSource::Decl);
2669 }
2670 
2671 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2672   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2673                         E->getType(), AlignmentSource::Decl);
2674 }
2675 
2676 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2677   auto SL = E->getFunctionName();
2678   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2679   StringRef FnName = CurFn->getName();
2680   if (FnName.startswith("\01"))
2681     FnName = FnName.substr(1);
2682   StringRef NameItems[] = {
2683       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2684   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2685   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2686     std::string Name = SL->getString();
2687     if (!Name.empty()) {
2688       unsigned Discriminator =
2689           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2690       if (Discriminator)
2691         Name += "_" + Twine(Discriminator + 1).str();
2692       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2693       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2694     } else {
2695       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2696       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2697     }
2698   }
2699   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2700   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2701 }
2702 
2703 /// Emit a type description suitable for use by a runtime sanitizer library. The
2704 /// format of a type descriptor is
2705 ///
2706 /// \code
2707 ///   { i16 TypeKind, i16 TypeInfo }
2708 /// \endcode
2709 ///
2710 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2711 /// integer, 1 for a floating point value, and -1 for anything else.
2712 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2713   // Only emit each type's descriptor once.
2714   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2715     return C;
2716 
2717   uint16_t TypeKind = -1;
2718   uint16_t TypeInfo = 0;
2719 
2720   if (T->isIntegerType()) {
2721     TypeKind = 0;
2722     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2723                (T->isSignedIntegerType() ? 1 : 0);
2724   } else if (T->isFloatingType()) {
2725     TypeKind = 1;
2726     TypeInfo = getContext().getTypeSize(T);
2727   }
2728 
2729   // Format the type name as if for a diagnostic, including quotes and
2730   // optionally an 'aka'.
2731   SmallString<32> Buffer;
2732   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2733                                     (intptr_t)T.getAsOpaquePtr(),
2734                                     StringRef(), StringRef(), None, Buffer,
2735                                     None);
2736 
2737   llvm::Constant *Components[] = {
2738     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2739     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2740   };
2741   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2742 
2743   auto *GV = new llvm::GlobalVariable(
2744       CGM.getModule(), Descriptor->getType(),
2745       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2746   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2747   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2748 
2749   // Remember the descriptor for this type.
2750   CGM.setTypeDescriptorInMap(T, GV);
2751 
2752   return GV;
2753 }
2754 
2755 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2756   llvm::Type *TargetTy = IntPtrTy;
2757 
2758   if (V->getType() == TargetTy)
2759     return V;
2760 
2761   // Floating-point types which fit into intptr_t are bitcast to integers
2762   // and then passed directly (after zero-extension, if necessary).
2763   if (V->getType()->isFloatingPointTy()) {
2764     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2765     if (Bits <= TargetTy->getIntegerBitWidth())
2766       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2767                                                          Bits));
2768   }
2769 
2770   // Integers which fit in intptr_t are zero-extended and passed directly.
2771   if (V->getType()->isIntegerTy() &&
2772       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2773     return Builder.CreateZExt(V, TargetTy);
2774 
2775   // Pointers are passed directly, everything else is passed by address.
2776   if (!V->getType()->isPointerTy()) {
2777     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2778     Builder.CreateStore(V, Ptr);
2779     V = Ptr.getPointer();
2780   }
2781   return Builder.CreatePtrToInt(V, TargetTy);
2782 }
2783 
2784 /// Emit a representation of a SourceLocation for passing to a handler
2785 /// in a sanitizer runtime library. The format for this data is:
2786 /// \code
2787 ///   struct SourceLocation {
2788 ///     const char *Filename;
2789 ///     int32_t Line, Column;
2790 ///   };
2791 /// \endcode
2792 /// For an invalid SourceLocation, the Filename pointer is null.
2793 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2794   llvm::Constant *Filename;
2795   int Line, Column;
2796 
2797   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2798   if (PLoc.isValid()) {
2799     StringRef FilenameString = PLoc.getFilename();
2800 
2801     int PathComponentsToStrip =
2802         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2803     if (PathComponentsToStrip < 0) {
2804       assert(PathComponentsToStrip != INT_MIN);
2805       int PathComponentsToKeep = -PathComponentsToStrip;
2806       auto I = llvm::sys::path::rbegin(FilenameString);
2807       auto E = llvm::sys::path::rend(FilenameString);
2808       while (I != E && --PathComponentsToKeep)
2809         ++I;
2810 
2811       FilenameString = FilenameString.substr(I - E);
2812     } else if (PathComponentsToStrip > 0) {
2813       auto I = llvm::sys::path::begin(FilenameString);
2814       auto E = llvm::sys::path::end(FilenameString);
2815       while (I != E && PathComponentsToStrip--)
2816         ++I;
2817 
2818       if (I != E)
2819         FilenameString =
2820             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2821       else
2822         FilenameString = llvm::sys::path::filename(FilenameString);
2823     }
2824 
2825     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2826     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2827                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2828     Filename = FilenameGV.getPointer();
2829     Line = PLoc.getLine();
2830     Column = PLoc.getColumn();
2831   } else {
2832     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2833     Line = Column = 0;
2834   }
2835 
2836   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2837                             Builder.getInt32(Column)};
2838 
2839   return llvm::ConstantStruct::getAnon(Data);
2840 }
2841 
2842 namespace {
2843 /// Specify under what conditions this check can be recovered
2844 enum class CheckRecoverableKind {
2845   /// Always terminate program execution if this check fails.
2846   Unrecoverable,
2847   /// Check supports recovering, runtime has both fatal (noreturn) and
2848   /// non-fatal handlers for this check.
2849   Recoverable,
2850   /// Runtime conditionally aborts, always need to support recovery.
2851   AlwaysRecoverable
2852 };
2853 }
2854 
2855 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2856   assert(Kind.countPopulation() == 1);
2857   if (Kind == SanitizerKind::Vptr)
2858     return CheckRecoverableKind::AlwaysRecoverable;
2859   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2860     return CheckRecoverableKind::Unrecoverable;
2861   else
2862     return CheckRecoverableKind::Recoverable;
2863 }
2864 
2865 namespace {
2866 struct SanitizerHandlerInfo {
2867   char const *const Name;
2868   unsigned Version;
2869 };
2870 }
2871 
2872 const SanitizerHandlerInfo SanitizerHandlers[] = {
2873 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2874     LIST_SANITIZER_CHECKS
2875 #undef SANITIZER_CHECK
2876 };
2877 
2878 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2879                                  llvm::FunctionType *FnType,
2880                                  ArrayRef<llvm::Value *> FnArgs,
2881                                  SanitizerHandler CheckHandler,
2882                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2883                                  llvm::BasicBlock *ContBB) {
2884   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2885   Optional<ApplyDebugLocation> DL;
2886   if (!CGF.Builder.getCurrentDebugLocation()) {
2887     // Ensure that the call has at least an artificial debug location.
2888     DL.emplace(CGF, SourceLocation());
2889   }
2890   bool NeedsAbortSuffix =
2891       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2892   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2893   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2894   const StringRef CheckName = CheckInfo.Name;
2895   std::string FnName = "__ubsan_handle_" + CheckName.str();
2896   if (CheckInfo.Version && !MinimalRuntime)
2897     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2898   if (MinimalRuntime)
2899     FnName += "_minimal";
2900   if (NeedsAbortSuffix)
2901     FnName += "_abort";
2902   bool MayReturn =
2903       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2904 
2905   llvm::AttrBuilder B;
2906   if (!MayReturn) {
2907     B.addAttribute(llvm::Attribute::NoReturn)
2908         .addAttribute(llvm::Attribute::NoUnwind);
2909   }
2910   B.addAttribute(llvm::Attribute::UWTable);
2911 
2912   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2913       FnType, FnName,
2914       llvm::AttributeList::get(CGF.getLLVMContext(),
2915                                llvm::AttributeList::FunctionIndex, B),
2916       /*Local=*/true);
2917   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2918   if (!MayReturn) {
2919     HandlerCall->setDoesNotReturn();
2920     CGF.Builder.CreateUnreachable();
2921   } else {
2922     CGF.Builder.CreateBr(ContBB);
2923   }
2924 }
2925 
2926 void CodeGenFunction::EmitCheck(
2927     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2928     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2929     ArrayRef<llvm::Value *> DynamicArgs) {
2930   assert(IsSanitizerScope);
2931   assert(Checked.size() > 0);
2932   assert(CheckHandler >= 0 &&
2933          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2934   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2935 
2936   llvm::Value *FatalCond = nullptr;
2937   llvm::Value *RecoverableCond = nullptr;
2938   llvm::Value *TrapCond = nullptr;
2939   for (int i = 0, n = Checked.size(); i < n; ++i) {
2940     llvm::Value *Check = Checked[i].first;
2941     // -fsanitize-trap= overrides -fsanitize-recover=.
2942     llvm::Value *&Cond =
2943         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2944             ? TrapCond
2945             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2946                   ? RecoverableCond
2947                   : FatalCond;
2948     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2949   }
2950 
2951   if (TrapCond)
2952     EmitTrapCheck(TrapCond);
2953   if (!FatalCond && !RecoverableCond)
2954     return;
2955 
2956   llvm::Value *JointCond;
2957   if (FatalCond && RecoverableCond)
2958     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2959   else
2960     JointCond = FatalCond ? FatalCond : RecoverableCond;
2961   assert(JointCond);
2962 
2963   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2964   assert(SanOpts.has(Checked[0].second));
2965 #ifndef NDEBUG
2966   for (int i = 1, n = Checked.size(); i < n; ++i) {
2967     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2968            "All recoverable kinds in a single check must be same!");
2969     assert(SanOpts.has(Checked[i].second));
2970   }
2971 #endif
2972 
2973   llvm::BasicBlock *Cont = createBasicBlock("cont");
2974   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2975   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2976   // Give hint that we very much don't expect to execute the handler
2977   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2978   llvm::MDBuilder MDHelper(getLLVMContext());
2979   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2980   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2981   EmitBlock(Handlers);
2982 
2983   // Handler functions take an i8* pointing to the (handler-specific) static
2984   // information block, followed by a sequence of intptr_t arguments
2985   // representing operand values.
2986   SmallVector<llvm::Value *, 4> Args;
2987   SmallVector<llvm::Type *, 4> ArgTypes;
2988   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2989     Args.reserve(DynamicArgs.size() + 1);
2990     ArgTypes.reserve(DynamicArgs.size() + 1);
2991 
2992     // Emit handler arguments and create handler function type.
2993     if (!StaticArgs.empty()) {
2994       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2995       auto *InfoPtr =
2996           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2997                                    llvm::GlobalVariable::PrivateLinkage, Info);
2998       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2999       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3000       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3001       ArgTypes.push_back(Int8PtrTy);
3002     }
3003 
3004     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3005       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3006       ArgTypes.push_back(IntPtrTy);
3007     }
3008   }
3009 
3010   llvm::FunctionType *FnType =
3011     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3012 
3013   if (!FatalCond || !RecoverableCond) {
3014     // Simple case: we need to generate a single handler call, either
3015     // fatal, or non-fatal.
3016     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3017                          (FatalCond != nullptr), Cont);
3018   } else {
3019     // Emit two handler calls: first one for set of unrecoverable checks,
3020     // another one for recoverable.
3021     llvm::BasicBlock *NonFatalHandlerBB =
3022         createBasicBlock("non_fatal." + CheckName);
3023     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3024     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3025     EmitBlock(FatalHandlerBB);
3026     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3027                          NonFatalHandlerBB);
3028     EmitBlock(NonFatalHandlerBB);
3029     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3030                          Cont);
3031   }
3032 
3033   EmitBlock(Cont);
3034 }
3035 
3036 void CodeGenFunction::EmitCfiSlowPathCheck(
3037     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3038     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3039   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3040 
3041   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3042   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3043 
3044   llvm::MDBuilder MDHelper(getLLVMContext());
3045   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3046   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3047 
3048   EmitBlock(CheckBB);
3049 
3050   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3051 
3052   llvm::CallInst *CheckCall;
3053   llvm::FunctionCallee SlowPathFn;
3054   if (WithDiag) {
3055     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3056     auto *InfoPtr =
3057         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3058                                  llvm::GlobalVariable::PrivateLinkage, Info);
3059     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3060     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3061 
3062     SlowPathFn = CGM.getModule().getOrInsertFunction(
3063         "__cfi_slowpath_diag",
3064         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3065                                 false));
3066     CheckCall = Builder.CreateCall(
3067         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3068   } else {
3069     SlowPathFn = CGM.getModule().getOrInsertFunction(
3070         "__cfi_slowpath",
3071         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3072     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3073   }
3074 
3075   CGM.setDSOLocal(
3076       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3077   CheckCall->setDoesNotThrow();
3078 
3079   EmitBlock(Cont);
3080 }
3081 
3082 // Emit a stub for __cfi_check function so that the linker knows about this
3083 // symbol in LTO mode.
3084 void CodeGenFunction::EmitCfiCheckStub() {
3085   llvm::Module *M = &CGM.getModule();
3086   auto &Ctx = M->getContext();
3087   llvm::Function *F = llvm::Function::Create(
3088       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3089       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3090   CGM.setDSOLocal(F);
3091   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3092   // FIXME: consider emitting an intrinsic call like
3093   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3094   // which can be lowered in CrossDSOCFI pass to the actual contents of
3095   // __cfi_check. This would allow inlining of __cfi_check calls.
3096   llvm::CallInst::Create(
3097       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3098   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3099 }
3100 
3101 // This function is basically a switch over the CFI failure kind, which is
3102 // extracted from CFICheckFailData (1st function argument). Each case is either
3103 // llvm.trap or a call to one of the two runtime handlers, based on
3104 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3105 // failure kind) traps, but this should really never happen.  CFICheckFailData
3106 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3107 // check kind; in this case __cfi_check_fail traps as well.
3108 void CodeGenFunction::EmitCfiCheckFail() {
3109   SanitizerScope SanScope(this);
3110   FunctionArgList Args;
3111   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3112                             ImplicitParamDecl::Other);
3113   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3114                             ImplicitParamDecl::Other);
3115   Args.push_back(&ArgData);
3116   Args.push_back(&ArgAddr);
3117 
3118   const CGFunctionInfo &FI =
3119     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3120 
3121   llvm::Function *F = llvm::Function::Create(
3122       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3123       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3124   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3125 
3126   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3127                 SourceLocation());
3128 
3129   // This function should not be affected by blacklist. This function does
3130   // not have a source location, but "src:*" would still apply. Revert any
3131   // changes to SanOpts made in StartFunction.
3132   SanOpts = CGM.getLangOpts().Sanitize;
3133 
3134   llvm::Value *Data =
3135       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3136                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3137   llvm::Value *Addr =
3138       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3139                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3140 
3141   // Data == nullptr means the calling module has trap behaviour for this check.
3142   llvm::Value *DataIsNotNullPtr =
3143       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3144   EmitTrapCheck(DataIsNotNullPtr);
3145 
3146   llvm::StructType *SourceLocationTy =
3147       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3148   llvm::StructType *CfiCheckFailDataTy =
3149       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3150 
3151   llvm::Value *V = Builder.CreateConstGEP2_32(
3152       CfiCheckFailDataTy,
3153       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3154       0);
3155   Address CheckKindAddr(V, getIntAlign());
3156   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3157 
3158   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3159       CGM.getLLVMContext(),
3160       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3161   llvm::Value *ValidVtable = Builder.CreateZExt(
3162       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3163                          {Addr, AllVtables}),
3164       IntPtrTy);
3165 
3166   const std::pair<int, SanitizerMask> CheckKinds[] = {
3167       {CFITCK_VCall, SanitizerKind::CFIVCall},
3168       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3169       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3170       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3171       {CFITCK_ICall, SanitizerKind::CFIICall}};
3172 
3173   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3174   for (auto CheckKindMaskPair : CheckKinds) {
3175     int Kind = CheckKindMaskPair.first;
3176     SanitizerMask Mask = CheckKindMaskPair.second;
3177     llvm::Value *Cond =
3178         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3179     if (CGM.getLangOpts().Sanitize.has(Mask))
3180       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3181                 {Data, Addr, ValidVtable});
3182     else
3183       EmitTrapCheck(Cond);
3184   }
3185 
3186   FinishFunction();
3187   // The only reference to this function will be created during LTO link.
3188   // Make sure it survives until then.
3189   CGM.addUsedGlobal(F);
3190 }
3191 
3192 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3193   if (SanOpts.has(SanitizerKind::Unreachable)) {
3194     SanitizerScope SanScope(this);
3195     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3196                              SanitizerKind::Unreachable),
3197               SanitizerHandler::BuiltinUnreachable,
3198               EmitCheckSourceLocation(Loc), None);
3199   }
3200   Builder.CreateUnreachable();
3201 }
3202 
3203 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3204   llvm::BasicBlock *Cont = createBasicBlock("cont");
3205 
3206   // If we're optimizing, collapse all calls to trap down to just one per
3207   // function to save on code size.
3208   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3209     TrapBB = createBasicBlock("trap");
3210     Builder.CreateCondBr(Checked, Cont, TrapBB);
3211     EmitBlock(TrapBB);
3212     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3213     TrapCall->setDoesNotReturn();
3214     TrapCall->setDoesNotThrow();
3215     Builder.CreateUnreachable();
3216   } else {
3217     Builder.CreateCondBr(Checked, Cont, TrapBB);
3218   }
3219 
3220   EmitBlock(Cont);
3221 }
3222 
3223 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3224   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3225 
3226   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3227     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3228                                   CGM.getCodeGenOpts().TrapFuncName);
3229     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3230   }
3231 
3232   return TrapCall;
3233 }
3234 
3235 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3236                                                  LValueBaseInfo *BaseInfo,
3237                                                  TBAAAccessInfo *TBAAInfo) {
3238   assert(E->getType()->isArrayType() &&
3239          "Array to pointer decay must have array source type!");
3240 
3241   // Expressions of array type can't be bitfields or vector elements.
3242   LValue LV = EmitLValue(E);
3243   Address Addr = LV.getAddress();
3244 
3245   // If the array type was an incomplete type, we need to make sure
3246   // the decay ends up being the right type.
3247   llvm::Type *NewTy = ConvertType(E->getType());
3248   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3249 
3250   // Note that VLA pointers are always decayed, so we don't need to do
3251   // anything here.
3252   if (!E->getType()->isVariableArrayType()) {
3253     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3254            "Expected pointer to array");
3255     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3256   }
3257 
3258   // The result of this decay conversion points to an array element within the
3259   // base lvalue. However, since TBAA currently does not support representing
3260   // accesses to elements of member arrays, we conservatively represent accesses
3261   // to the pointee object as if it had no any base lvalue specified.
3262   // TODO: Support TBAA for member arrays.
3263   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3264   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3265   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3266 
3267   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3268 }
3269 
3270 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3271 /// array to pointer, return the array subexpression.
3272 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3273   // If this isn't just an array->pointer decay, bail out.
3274   const auto *CE = dyn_cast<CastExpr>(E);
3275   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3276     return nullptr;
3277 
3278   // If this is a decay from variable width array, bail out.
3279   const Expr *SubExpr = CE->getSubExpr();
3280   if (SubExpr->getType()->isVariableArrayType())
3281     return nullptr;
3282 
3283   return SubExpr;
3284 }
3285 
3286 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3287                                           llvm::Value *ptr,
3288                                           ArrayRef<llvm::Value*> indices,
3289                                           bool inbounds,
3290                                           bool signedIndices,
3291                                           SourceLocation loc,
3292                                     const llvm::Twine &name = "arrayidx") {
3293   if (inbounds) {
3294     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3295                                       CodeGenFunction::NotSubtraction, loc,
3296                                       name);
3297   } else {
3298     return CGF.Builder.CreateGEP(ptr, indices, name);
3299   }
3300 }
3301 
3302 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3303                                       llvm::Value *idx,
3304                                       CharUnits eltSize) {
3305   // If we have a constant index, we can use the exact offset of the
3306   // element we're accessing.
3307   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3308     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3309     return arrayAlign.alignmentAtOffset(offset);
3310 
3311   // Otherwise, use the worst-case alignment for any element.
3312   } else {
3313     return arrayAlign.alignmentOfArrayElement(eltSize);
3314   }
3315 }
3316 
3317 static QualType getFixedSizeElementType(const ASTContext &ctx,
3318                                         const VariableArrayType *vla) {
3319   QualType eltType;
3320   do {
3321     eltType = vla->getElementType();
3322   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3323   return eltType;
3324 }
3325 
3326 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3327                                      ArrayRef<llvm::Value *> indices,
3328                                      QualType eltType, bool inbounds,
3329                                      bool signedIndices, SourceLocation loc,
3330                                      const llvm::Twine &name = "arrayidx") {
3331   // All the indices except that last must be zero.
3332 #ifndef NDEBUG
3333   for (auto idx : indices.drop_back())
3334     assert(isa<llvm::ConstantInt>(idx) &&
3335            cast<llvm::ConstantInt>(idx)->isZero());
3336 #endif
3337 
3338   // Determine the element size of the statically-sized base.  This is
3339   // the thing that the indices are expressed in terms of.
3340   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3341     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3342   }
3343 
3344   // We can use that to compute the best alignment of the element.
3345   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3346   CharUnits eltAlign =
3347     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3348 
3349   llvm::Value *eltPtr = emitArraySubscriptGEP(
3350       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3351   return Address(eltPtr, eltAlign);
3352 }
3353 
3354 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3355                                                bool Accessed) {
3356   // The index must always be an integer, which is not an aggregate.  Emit it
3357   // in lexical order (this complexity is, sadly, required by C++17).
3358   llvm::Value *IdxPre =
3359       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3360   bool SignedIndices = false;
3361   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3362     auto *Idx = IdxPre;
3363     if (E->getLHS() != E->getIdx()) {
3364       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3365       Idx = EmitScalarExpr(E->getIdx());
3366     }
3367 
3368     QualType IdxTy = E->getIdx()->getType();
3369     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3370     SignedIndices |= IdxSigned;
3371 
3372     if (SanOpts.has(SanitizerKind::ArrayBounds))
3373       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3374 
3375     // Extend or truncate the index type to 32 or 64-bits.
3376     if (Promote && Idx->getType() != IntPtrTy)
3377       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3378 
3379     return Idx;
3380   };
3381   IdxPre = nullptr;
3382 
3383   // If the base is a vector type, then we are forming a vector element lvalue
3384   // with this subscript.
3385   if (E->getBase()->getType()->isVectorType() &&
3386       !isa<ExtVectorElementExpr>(E->getBase())) {
3387     // Emit the vector as an lvalue to get its address.
3388     LValue LHS = EmitLValue(E->getBase());
3389     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3390     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3391     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3392                                  LHS.getBaseInfo(), TBAAAccessInfo());
3393   }
3394 
3395   // All the other cases basically behave like simple offsetting.
3396 
3397   // Handle the extvector case we ignored above.
3398   if (isa<ExtVectorElementExpr>(E->getBase())) {
3399     LValue LV = EmitLValue(E->getBase());
3400     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3401     Address Addr = EmitExtVectorElementLValue(LV);
3402 
3403     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3404     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3405                                  SignedIndices, E->getExprLoc());
3406     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3407                           CGM.getTBAAInfoForSubobject(LV, EltType));
3408   }
3409 
3410   LValueBaseInfo EltBaseInfo;
3411   TBAAAccessInfo EltTBAAInfo;
3412   Address Addr = Address::invalid();
3413   if (const VariableArrayType *vla =
3414            getContext().getAsVariableArrayType(E->getType())) {
3415     // The base must be a pointer, which is not an aggregate.  Emit
3416     // it.  It needs to be emitted first in case it's what captures
3417     // the VLA bounds.
3418     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3419     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3420 
3421     // The element count here is the total number of non-VLA elements.
3422     llvm::Value *numElements = getVLASize(vla).NumElts;
3423 
3424     // Effectively, the multiply by the VLA size is part of the GEP.
3425     // GEP indexes are signed, and scaling an index isn't permitted to
3426     // signed-overflow, so we use the same semantics for our explicit
3427     // multiply.  We suppress this if overflow is not undefined behavior.
3428     if (getLangOpts().isSignedOverflowDefined()) {
3429       Idx = Builder.CreateMul(Idx, numElements);
3430     } else {
3431       Idx = Builder.CreateNSWMul(Idx, numElements);
3432     }
3433 
3434     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3435                                  !getLangOpts().isSignedOverflowDefined(),
3436                                  SignedIndices, E->getExprLoc());
3437 
3438   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3439     // Indexing over an interface, as in "NSString *P; P[4];"
3440 
3441     // Emit the base pointer.
3442     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3443     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3444 
3445     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3446     llvm::Value *InterfaceSizeVal =
3447         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3448 
3449     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3450 
3451     // We don't necessarily build correct LLVM struct types for ObjC
3452     // interfaces, so we can't rely on GEP to do this scaling
3453     // correctly, so we need to cast to i8*.  FIXME: is this actually
3454     // true?  A lot of other things in the fragile ABI would break...
3455     llvm::Type *OrigBaseTy = Addr.getType();
3456     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3457 
3458     // Do the GEP.
3459     CharUnits EltAlign =
3460       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3461     llvm::Value *EltPtr =
3462         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3463                               SignedIndices, E->getExprLoc());
3464     Addr = Address(EltPtr, EltAlign);
3465 
3466     // Cast back.
3467     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3468   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3469     // If this is A[i] where A is an array, the frontend will have decayed the
3470     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3471     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3472     // "gep x, i" here.  Emit one "gep A, 0, i".
3473     assert(Array->getType()->isArrayType() &&
3474            "Array to pointer decay must have array source type!");
3475     LValue ArrayLV;
3476     // For simple multidimensional array indexing, set the 'accessed' flag for
3477     // better bounds-checking of the base expression.
3478     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3479       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3480     else
3481       ArrayLV = EmitLValue(Array);
3482     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3483 
3484     // Propagate the alignment from the array itself to the result.
3485     Addr = emitArraySubscriptGEP(
3486         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3487         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3488         E->getExprLoc());
3489     EltBaseInfo = ArrayLV.getBaseInfo();
3490     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3491   } else {
3492     // The base must be a pointer; emit it with an estimate of its alignment.
3493     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3494     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3495     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3496                                  !getLangOpts().isSignedOverflowDefined(),
3497                                  SignedIndices, E->getExprLoc());
3498   }
3499 
3500   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3501 
3502   if (getLangOpts().ObjC &&
3503       getLangOpts().getGC() != LangOptions::NonGC) {
3504     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3505     setObjCGCLValueClass(getContext(), E, LV);
3506   }
3507   return LV;
3508 }
3509 
3510 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3511                                        LValueBaseInfo &BaseInfo,
3512                                        TBAAAccessInfo &TBAAInfo,
3513                                        QualType BaseTy, QualType ElTy,
3514                                        bool IsLowerBound) {
3515   LValue BaseLVal;
3516   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3517     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3518     if (BaseTy->isArrayType()) {
3519       Address Addr = BaseLVal.getAddress();
3520       BaseInfo = BaseLVal.getBaseInfo();
3521 
3522       // If the array type was an incomplete type, we need to make sure
3523       // the decay ends up being the right type.
3524       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3525       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3526 
3527       // Note that VLA pointers are always decayed, so we don't need to do
3528       // anything here.
3529       if (!BaseTy->isVariableArrayType()) {
3530         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3531                "Expected pointer to array");
3532         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3533       }
3534 
3535       return CGF.Builder.CreateElementBitCast(Addr,
3536                                               CGF.ConvertTypeForMem(ElTy));
3537     }
3538     LValueBaseInfo TypeBaseInfo;
3539     TBAAAccessInfo TypeTBAAInfo;
3540     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3541                                                   &TypeTBAAInfo);
3542     BaseInfo.mergeForCast(TypeBaseInfo);
3543     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3544     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3545   }
3546   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3547 }
3548 
3549 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3550                                                 bool IsLowerBound) {
3551   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3552   QualType ResultExprTy;
3553   if (auto *AT = getContext().getAsArrayType(BaseTy))
3554     ResultExprTy = AT->getElementType();
3555   else
3556     ResultExprTy = BaseTy->getPointeeType();
3557   llvm::Value *Idx = nullptr;
3558   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3559     // Requesting lower bound or upper bound, but without provided length and
3560     // without ':' symbol for the default length -> length = 1.
3561     // Idx = LowerBound ?: 0;
3562     if (auto *LowerBound = E->getLowerBound()) {
3563       Idx = Builder.CreateIntCast(
3564           EmitScalarExpr(LowerBound), IntPtrTy,
3565           LowerBound->getType()->hasSignedIntegerRepresentation());
3566     } else
3567       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3568   } else {
3569     // Try to emit length or lower bound as constant. If this is possible, 1
3570     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3571     // IR (LB + Len) - 1.
3572     auto &C = CGM.getContext();
3573     auto *Length = E->getLength();
3574     llvm::APSInt ConstLength;
3575     if (Length) {
3576       // Idx = LowerBound + Length - 1;
3577       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3578         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3579         Length = nullptr;
3580       }
3581       auto *LowerBound = E->getLowerBound();
3582       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3583       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3584         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3585         LowerBound = nullptr;
3586       }
3587       if (!Length)
3588         --ConstLength;
3589       else if (!LowerBound)
3590         --ConstLowerBound;
3591 
3592       if (Length || LowerBound) {
3593         auto *LowerBoundVal =
3594             LowerBound
3595                 ? Builder.CreateIntCast(
3596                       EmitScalarExpr(LowerBound), IntPtrTy,
3597                       LowerBound->getType()->hasSignedIntegerRepresentation())
3598                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3599         auto *LengthVal =
3600             Length
3601                 ? Builder.CreateIntCast(
3602                       EmitScalarExpr(Length), IntPtrTy,
3603                       Length->getType()->hasSignedIntegerRepresentation())
3604                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3605         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3606                                 /*HasNUW=*/false,
3607                                 !getLangOpts().isSignedOverflowDefined());
3608         if (Length && LowerBound) {
3609           Idx = Builder.CreateSub(
3610               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3611               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3612         }
3613       } else
3614         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3615     } else {
3616       // Idx = ArraySize - 1;
3617       QualType ArrayTy = BaseTy->isPointerType()
3618                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3619                              : BaseTy;
3620       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3621         Length = VAT->getSizeExpr();
3622         if (Length->isIntegerConstantExpr(ConstLength, C))
3623           Length = nullptr;
3624       } else {
3625         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3626         ConstLength = CAT->getSize();
3627       }
3628       if (Length) {
3629         auto *LengthVal = Builder.CreateIntCast(
3630             EmitScalarExpr(Length), IntPtrTy,
3631             Length->getType()->hasSignedIntegerRepresentation());
3632         Idx = Builder.CreateSub(
3633             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3634             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3635       } else {
3636         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3637         --ConstLength;
3638         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3639       }
3640     }
3641   }
3642   assert(Idx);
3643 
3644   Address EltPtr = Address::invalid();
3645   LValueBaseInfo BaseInfo;
3646   TBAAAccessInfo TBAAInfo;
3647   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3648     // The base must be a pointer, which is not an aggregate.  Emit
3649     // it.  It needs to be emitted first in case it's what captures
3650     // the VLA bounds.
3651     Address Base =
3652         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3653                                 BaseTy, VLA->getElementType(), IsLowerBound);
3654     // The element count here is the total number of non-VLA elements.
3655     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3656 
3657     // Effectively, the multiply by the VLA size is part of the GEP.
3658     // GEP indexes are signed, and scaling an index isn't permitted to
3659     // signed-overflow, so we use the same semantics for our explicit
3660     // multiply.  We suppress this if overflow is not undefined behavior.
3661     if (getLangOpts().isSignedOverflowDefined())
3662       Idx = Builder.CreateMul(Idx, NumElements);
3663     else
3664       Idx = Builder.CreateNSWMul(Idx, NumElements);
3665     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3666                                    !getLangOpts().isSignedOverflowDefined(),
3667                                    /*SignedIndices=*/false, E->getExprLoc());
3668   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3669     // If this is A[i] where A is an array, the frontend will have decayed the
3670     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3671     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3672     // "gep x, i" here.  Emit one "gep A, 0, i".
3673     assert(Array->getType()->isArrayType() &&
3674            "Array to pointer decay must have array source type!");
3675     LValue ArrayLV;
3676     // For simple multidimensional array indexing, set the 'accessed' flag for
3677     // better bounds-checking of the base expression.
3678     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3679       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3680     else
3681       ArrayLV = EmitLValue(Array);
3682 
3683     // Propagate the alignment from the array itself to the result.
3684     EltPtr = emitArraySubscriptGEP(
3685         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3686         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3687         /*SignedIndices=*/false, E->getExprLoc());
3688     BaseInfo = ArrayLV.getBaseInfo();
3689     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3690   } else {
3691     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3692                                            TBAAInfo, BaseTy, ResultExprTy,
3693                                            IsLowerBound);
3694     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3695                                    !getLangOpts().isSignedOverflowDefined(),
3696                                    /*SignedIndices=*/false, E->getExprLoc());
3697   }
3698 
3699   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3700 }
3701 
3702 LValue CodeGenFunction::
3703 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3704   // Emit the base vector as an l-value.
3705   LValue Base;
3706 
3707   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3708   if (E->isArrow()) {
3709     // If it is a pointer to a vector, emit the address and form an lvalue with
3710     // it.
3711     LValueBaseInfo BaseInfo;
3712     TBAAAccessInfo TBAAInfo;
3713     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3714     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3715     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3716     Base.getQuals().removeObjCGCAttr();
3717   } else if (E->getBase()->isGLValue()) {
3718     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3719     // emit the base as an lvalue.
3720     assert(E->getBase()->getType()->isVectorType());
3721     Base = EmitLValue(E->getBase());
3722   } else {
3723     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3724     assert(E->getBase()->getType()->isVectorType() &&
3725            "Result must be a vector");
3726     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3727 
3728     // Store the vector to memory (because LValue wants an address).
3729     Address VecMem = CreateMemTemp(E->getBase()->getType());
3730     Builder.CreateStore(Vec, VecMem);
3731     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3732                           AlignmentSource::Decl);
3733   }
3734 
3735   QualType type =
3736     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3737 
3738   // Encode the element access list into a vector of unsigned indices.
3739   SmallVector<uint32_t, 4> Indices;
3740   E->getEncodedElementAccess(Indices);
3741 
3742   if (Base.isSimple()) {
3743     llvm::Constant *CV =
3744         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3745     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3746                                     Base.getBaseInfo(), TBAAAccessInfo());
3747   }
3748   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3749 
3750   llvm::Constant *BaseElts = Base.getExtVectorElts();
3751   SmallVector<llvm::Constant *, 4> CElts;
3752 
3753   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3754     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3755   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3756   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3757                                   Base.getBaseInfo(), TBAAAccessInfo());
3758 }
3759 
3760 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3761   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3762     EmitIgnoredExpr(E->getBase());
3763     return EmitDeclRefLValue(DRE);
3764   }
3765 
3766   Expr *BaseExpr = E->getBase();
3767   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3768   LValue BaseLV;
3769   if (E->isArrow()) {
3770     LValueBaseInfo BaseInfo;
3771     TBAAAccessInfo TBAAInfo;
3772     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3773     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3774     SanitizerSet SkippedChecks;
3775     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3776     if (IsBaseCXXThis)
3777       SkippedChecks.set(SanitizerKind::Alignment, true);
3778     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3779       SkippedChecks.set(SanitizerKind::Null, true);
3780     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3781                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3782     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3783   } else
3784     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3785 
3786   NamedDecl *ND = E->getMemberDecl();
3787   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3788     LValue LV = EmitLValueForField(BaseLV, Field);
3789     setObjCGCLValueClass(getContext(), E, LV);
3790     return LV;
3791   }
3792 
3793   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3794     return EmitFunctionDeclLValue(*this, E, FD);
3795 
3796   llvm_unreachable("Unhandled member declaration!");
3797 }
3798 
3799 /// Given that we are currently emitting a lambda, emit an l-value for
3800 /// one of its members.
3801 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3802   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3803   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3804   QualType LambdaTagType =
3805     getContext().getTagDeclType(Field->getParent());
3806   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3807   return EmitLValueForField(LambdaLV, Field);
3808 }
3809 
3810 /// Drill down to the storage of a field without walking into
3811 /// reference types.
3812 ///
3813 /// The resulting address doesn't necessarily have the right type.
3814 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3815                                       const FieldDecl *field) {
3816   const RecordDecl *rec = field->getParent();
3817 
3818   unsigned idx =
3819     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3820 
3821   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3822 }
3823 
3824 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3825   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3826   if (!RD)
3827     return false;
3828 
3829   if (RD->isDynamicClass())
3830     return true;
3831 
3832   for (const auto &Base : RD->bases())
3833     if (hasAnyVptr(Base.getType(), Context))
3834       return true;
3835 
3836   for (const FieldDecl *Field : RD->fields())
3837     if (hasAnyVptr(Field->getType(), Context))
3838       return true;
3839 
3840   return false;
3841 }
3842 
3843 LValue CodeGenFunction::EmitLValueForField(LValue base,
3844                                            const FieldDecl *field) {
3845   LValueBaseInfo BaseInfo = base.getBaseInfo();
3846 
3847   if (field->isBitField()) {
3848     const CGRecordLayout &RL =
3849       CGM.getTypes().getCGRecordLayout(field->getParent());
3850     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3851     Address Addr = base.getAddress();
3852     unsigned Idx = RL.getLLVMFieldNo(field);
3853     if (Idx != 0)
3854       // For structs, we GEP to the field that the record layout suggests.
3855       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3856     // Get the access type.
3857     llvm::Type *FieldIntTy =
3858       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3859     if (Addr.getElementType() != FieldIntTy)
3860       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3861 
3862     QualType fieldType =
3863       field->getType().withCVRQualifiers(base.getVRQualifiers());
3864     // TODO: Support TBAA for bit fields.
3865     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3866     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3867                                 TBAAAccessInfo());
3868   }
3869 
3870   // Fields of may-alias structures are may-alias themselves.
3871   // FIXME: this should get propagated down through anonymous structs
3872   // and unions.
3873   QualType FieldType = field->getType();
3874   const RecordDecl *rec = field->getParent();
3875   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3876   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3877   TBAAAccessInfo FieldTBAAInfo;
3878   if (base.getTBAAInfo().isMayAlias() ||
3879           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3880     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3881   } else if (rec->isUnion()) {
3882     // TODO: Support TBAA for unions.
3883     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3884   } else {
3885     // If no base type been assigned for the base access, then try to generate
3886     // one for this base lvalue.
3887     FieldTBAAInfo = base.getTBAAInfo();
3888     if (!FieldTBAAInfo.BaseType) {
3889         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3890         assert(!FieldTBAAInfo.Offset &&
3891                "Nonzero offset for an access with no base type!");
3892     }
3893 
3894     // Adjust offset to be relative to the base type.
3895     const ASTRecordLayout &Layout =
3896         getContext().getASTRecordLayout(field->getParent());
3897     unsigned CharWidth = getContext().getCharWidth();
3898     if (FieldTBAAInfo.BaseType)
3899       FieldTBAAInfo.Offset +=
3900           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3901 
3902     // Update the final access type and size.
3903     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3904     FieldTBAAInfo.Size =
3905         getContext().getTypeSizeInChars(FieldType).getQuantity();
3906   }
3907 
3908   Address addr = base.getAddress();
3909   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3910     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3911         ClassDef->isDynamicClass()) {
3912       // Getting to any field of dynamic object requires stripping dynamic
3913       // information provided by invariant.group.  This is because accessing
3914       // fields may leak the real address of dynamic object, which could result
3915       // in miscompilation when leaked pointer would be compared.
3916       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3917       addr = Address(stripped, addr.getAlignment());
3918     }
3919   }
3920 
3921   unsigned RecordCVR = base.getVRQualifiers();
3922   if (rec->isUnion()) {
3923     // For unions, there is no pointer adjustment.
3924     assert(!FieldType->isReferenceType() && "union has reference member");
3925     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3926         hasAnyVptr(FieldType, getContext()))
3927       // Because unions can easily skip invariant.barriers, we need to add
3928       // a barrier every time CXXRecord field with vptr is referenced.
3929       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3930                      addr.getAlignment());
3931   } else {
3932     // For structs, we GEP to the field that the record layout suggests.
3933     addr = emitAddrOfFieldStorage(*this, addr, field);
3934 
3935     // If this is a reference field, load the reference right now.
3936     if (FieldType->isReferenceType()) {
3937       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3938                                       FieldTBAAInfo);
3939       if (RecordCVR & Qualifiers::Volatile)
3940         RefLVal.getQuals().addVolatile();
3941       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3942 
3943       // Qualifiers on the struct don't apply to the referencee.
3944       RecordCVR = 0;
3945       FieldType = FieldType->getPointeeType();
3946     }
3947   }
3948 
3949   // Make sure that the address is pointing to the right type.  This is critical
3950   // for both unions and structs.  A union needs a bitcast, a struct element
3951   // will need a bitcast if the LLVM type laid out doesn't match the desired
3952   // type.
3953   addr = Builder.CreateElementBitCast(
3954       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3955 
3956   if (field->hasAttr<AnnotateAttr>())
3957     addr = EmitFieldAnnotations(field, addr);
3958 
3959   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3960   LV.getQuals().addCVRQualifiers(RecordCVR);
3961 
3962   // __weak attribute on a field is ignored.
3963   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3964     LV.getQuals().removeObjCGCAttr();
3965 
3966   return LV;
3967 }
3968 
3969 LValue
3970 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3971                                                   const FieldDecl *Field) {
3972   QualType FieldType = Field->getType();
3973 
3974   if (!FieldType->isReferenceType())
3975     return EmitLValueForField(Base, Field);
3976 
3977   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3978 
3979   // Make sure that the address is pointing to the right type.
3980   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3981   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3982 
3983   // TODO: Generate TBAA information that describes this access as a structure
3984   // member access and not just an access to an object of the field's type. This
3985   // should be similar to what we do in EmitLValueForField().
3986   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3987   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3988   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3989   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3990                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3991 }
3992 
3993 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3994   if (E->isFileScope()) {
3995     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3996     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3997   }
3998   if (E->getType()->isVariablyModifiedType())
3999     // make sure to emit the VLA size.
4000     EmitVariablyModifiedType(E->getType());
4001 
4002   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4003   const Expr *InitExpr = E->getInitializer();
4004   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4005 
4006   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4007                    /*Init*/ true);
4008 
4009   return Result;
4010 }
4011 
4012 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4013   if (!E->isGLValue())
4014     // Initializing an aggregate temporary in C++11: T{...}.
4015     return EmitAggExprToLValue(E);
4016 
4017   // An lvalue initializer list must be initializing a reference.
4018   assert(E->isTransparent() && "non-transparent glvalue init list");
4019   return EmitLValue(E->getInit(0));
4020 }
4021 
4022 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4023 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4024 /// LValue is returned and the current block has been terminated.
4025 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4026                                                     const Expr *Operand) {
4027   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4028     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4029     return None;
4030   }
4031 
4032   return CGF.EmitLValue(Operand);
4033 }
4034 
4035 LValue CodeGenFunction::
4036 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4037   if (!expr->isGLValue()) {
4038     // ?: here should be an aggregate.
4039     assert(hasAggregateEvaluationKind(expr->getType()) &&
4040            "Unexpected conditional operator!");
4041     return EmitAggExprToLValue(expr);
4042   }
4043 
4044   OpaqueValueMapping binding(*this, expr);
4045 
4046   const Expr *condExpr = expr->getCond();
4047   bool CondExprBool;
4048   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4049     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4050     if (!CondExprBool) std::swap(live, dead);
4051 
4052     if (!ContainsLabel(dead)) {
4053       // If the true case is live, we need to track its region.
4054       if (CondExprBool)
4055         incrementProfileCounter(expr);
4056       return EmitLValue(live);
4057     }
4058   }
4059 
4060   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4061   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4062   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4063 
4064   ConditionalEvaluation eval(*this);
4065   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4066 
4067   // Any temporaries created here are conditional.
4068   EmitBlock(lhsBlock);
4069   incrementProfileCounter(expr);
4070   eval.begin(*this);
4071   Optional<LValue> lhs =
4072       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4073   eval.end(*this);
4074 
4075   if (lhs && !lhs->isSimple())
4076     return EmitUnsupportedLValue(expr, "conditional operator");
4077 
4078   lhsBlock = Builder.GetInsertBlock();
4079   if (lhs)
4080     Builder.CreateBr(contBlock);
4081 
4082   // Any temporaries created here are conditional.
4083   EmitBlock(rhsBlock);
4084   eval.begin(*this);
4085   Optional<LValue> rhs =
4086       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4087   eval.end(*this);
4088   if (rhs && !rhs->isSimple())
4089     return EmitUnsupportedLValue(expr, "conditional operator");
4090   rhsBlock = Builder.GetInsertBlock();
4091 
4092   EmitBlock(contBlock);
4093 
4094   if (lhs && rhs) {
4095     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4096                                            2, "cond-lvalue");
4097     phi->addIncoming(lhs->getPointer(), lhsBlock);
4098     phi->addIncoming(rhs->getPointer(), rhsBlock);
4099     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4100     AlignmentSource alignSource =
4101       std::max(lhs->getBaseInfo().getAlignmentSource(),
4102                rhs->getBaseInfo().getAlignmentSource());
4103     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4104         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4105     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4106                           TBAAInfo);
4107   } else {
4108     assert((lhs || rhs) &&
4109            "both operands of glvalue conditional are throw-expressions?");
4110     return lhs ? *lhs : *rhs;
4111   }
4112 }
4113 
4114 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4115 /// type. If the cast is to a reference, we can have the usual lvalue result,
4116 /// otherwise if a cast is needed by the code generator in an lvalue context,
4117 /// then it must mean that we need the address of an aggregate in order to
4118 /// access one of its members.  This can happen for all the reasons that casts
4119 /// are permitted with aggregate result, including noop aggregate casts, and
4120 /// cast from scalar to union.
4121 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4122   switch (E->getCastKind()) {
4123   case CK_ToVoid:
4124   case CK_BitCast:
4125   case CK_ArrayToPointerDecay:
4126   case CK_FunctionToPointerDecay:
4127   case CK_NullToMemberPointer:
4128   case CK_NullToPointer:
4129   case CK_IntegralToPointer:
4130   case CK_PointerToIntegral:
4131   case CK_PointerToBoolean:
4132   case CK_VectorSplat:
4133   case CK_IntegralCast:
4134   case CK_BooleanToSignedIntegral:
4135   case CK_IntegralToBoolean:
4136   case CK_IntegralToFloating:
4137   case CK_FloatingToIntegral:
4138   case CK_FloatingToBoolean:
4139   case CK_FloatingCast:
4140   case CK_FloatingRealToComplex:
4141   case CK_FloatingComplexToReal:
4142   case CK_FloatingComplexToBoolean:
4143   case CK_FloatingComplexCast:
4144   case CK_FloatingComplexToIntegralComplex:
4145   case CK_IntegralRealToComplex:
4146   case CK_IntegralComplexToReal:
4147   case CK_IntegralComplexToBoolean:
4148   case CK_IntegralComplexCast:
4149   case CK_IntegralComplexToFloatingComplex:
4150   case CK_DerivedToBaseMemberPointer:
4151   case CK_BaseToDerivedMemberPointer:
4152   case CK_MemberPointerToBoolean:
4153   case CK_ReinterpretMemberPointer:
4154   case CK_AnyPointerToBlockPointerCast:
4155   case CK_ARCProduceObject:
4156   case CK_ARCConsumeObject:
4157   case CK_ARCReclaimReturnedObject:
4158   case CK_ARCExtendBlockObject:
4159   case CK_CopyAndAutoreleaseBlockObject:
4160   case CK_IntToOCLSampler:
4161   case CK_FixedPointCast:
4162   case CK_FixedPointToBoolean:
4163   case CK_FixedPointToIntegral:
4164   case CK_IntegralToFixedPoint:
4165     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4166 
4167   case CK_Dependent:
4168     llvm_unreachable("dependent cast kind in IR gen!");
4169 
4170   case CK_BuiltinFnToFnPtr:
4171     llvm_unreachable("builtin functions are handled elsewhere");
4172 
4173   // These are never l-values; just use the aggregate emission code.
4174   case CK_NonAtomicToAtomic:
4175   case CK_AtomicToNonAtomic:
4176     return EmitAggExprToLValue(E);
4177 
4178   case CK_Dynamic: {
4179     LValue LV = EmitLValue(E->getSubExpr());
4180     Address V = LV.getAddress();
4181     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4182     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4183   }
4184 
4185   case CK_ConstructorConversion:
4186   case CK_UserDefinedConversion:
4187   case CK_CPointerToObjCPointerCast:
4188   case CK_BlockPointerToObjCPointerCast:
4189   case CK_NoOp:
4190   case CK_LValueToRValue:
4191     return EmitLValue(E->getSubExpr());
4192 
4193   case CK_UncheckedDerivedToBase:
4194   case CK_DerivedToBase: {
4195     const RecordType *DerivedClassTy =
4196       E->getSubExpr()->getType()->getAs<RecordType>();
4197     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4198 
4199     LValue LV = EmitLValue(E->getSubExpr());
4200     Address This = LV.getAddress();
4201 
4202     // Perform the derived-to-base conversion
4203     Address Base = GetAddressOfBaseClass(
4204         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4205         /*NullCheckValue=*/false, E->getExprLoc());
4206 
4207     // TODO: Support accesses to members of base classes in TBAA. For now, we
4208     // conservatively pretend that the complete object is of the base class
4209     // type.
4210     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4211                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4212   }
4213   case CK_ToUnion:
4214     return EmitAggExprToLValue(E);
4215   case CK_BaseToDerived: {
4216     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4217     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4218 
4219     LValue LV = EmitLValue(E->getSubExpr());
4220 
4221     // Perform the base-to-derived conversion
4222     Address Derived =
4223       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4224                                E->path_begin(), E->path_end(),
4225                                /*NullCheckValue=*/false);
4226 
4227     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4228     // performed and the object is not of the derived type.
4229     if (sanitizePerformTypeCheck())
4230       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4231                     Derived.getPointer(), E->getType());
4232 
4233     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4234       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4235                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4236                                 E->getBeginLoc());
4237 
4238     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4239                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4240   }
4241   case CK_LValueBitCast: {
4242     // This must be a reinterpret_cast (or c-style equivalent).
4243     const auto *CE = cast<ExplicitCastExpr>(E);
4244 
4245     CGM.EmitExplicitCastExprType(CE, this);
4246     LValue LV = EmitLValue(E->getSubExpr());
4247     Address V = Builder.CreateBitCast(LV.getAddress(),
4248                                       ConvertType(CE->getTypeAsWritten()));
4249 
4250     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4251       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4252                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4253                                 E->getBeginLoc());
4254 
4255     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4256                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4257   }
4258   case CK_AddressSpaceConversion: {
4259     LValue LV = EmitLValue(E->getSubExpr());
4260     QualType DestTy = getContext().getPointerType(E->getType());
4261     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4262         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4263         E->getType().getAddressSpace(), ConvertType(DestTy));
4264     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4265                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4266   }
4267   case CK_ObjCObjectLValueCast: {
4268     LValue LV = EmitLValue(E->getSubExpr());
4269     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4270                                              ConvertType(E->getType()));
4271     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4272                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4273   }
4274   case CK_ZeroToOCLOpaqueType:
4275     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4276   }
4277 
4278   llvm_unreachable("Unhandled lvalue cast kind?");
4279 }
4280 
4281 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4282   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4283   return getOrCreateOpaqueLValueMapping(e);
4284 }
4285 
4286 LValue
4287 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4288   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4289 
4290   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4291       it = OpaqueLValues.find(e);
4292 
4293   if (it != OpaqueLValues.end())
4294     return it->second;
4295 
4296   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4297   return EmitLValue(e->getSourceExpr());
4298 }
4299 
4300 RValue
4301 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4302   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4303 
4304   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4305       it = OpaqueRValues.find(e);
4306 
4307   if (it != OpaqueRValues.end())
4308     return it->second;
4309 
4310   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4311   return EmitAnyExpr(e->getSourceExpr());
4312 }
4313 
4314 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4315                                            const FieldDecl *FD,
4316                                            SourceLocation Loc) {
4317   QualType FT = FD->getType();
4318   LValue FieldLV = EmitLValueForField(LV, FD);
4319   switch (getEvaluationKind(FT)) {
4320   case TEK_Complex:
4321     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4322   case TEK_Aggregate:
4323     return FieldLV.asAggregateRValue();
4324   case TEK_Scalar:
4325     // This routine is used to load fields one-by-one to perform a copy, so
4326     // don't load reference fields.
4327     if (FD->getType()->isReferenceType())
4328       return RValue::get(FieldLV.getPointer());
4329     return EmitLoadOfLValue(FieldLV, Loc);
4330   }
4331   llvm_unreachable("bad evaluation kind");
4332 }
4333 
4334 //===--------------------------------------------------------------------===//
4335 //                             Expression Emission
4336 //===--------------------------------------------------------------------===//
4337 
4338 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4339                                      ReturnValueSlot ReturnValue) {
4340   // Builtins never have block type.
4341   if (E->getCallee()->getType()->isBlockPointerType())
4342     return EmitBlockCallExpr(E, ReturnValue);
4343 
4344   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4345     return EmitCXXMemberCallExpr(CE, ReturnValue);
4346 
4347   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4348     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4349 
4350   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4351     if (const CXXMethodDecl *MD =
4352           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4353       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4354 
4355   CGCallee callee = EmitCallee(E->getCallee());
4356 
4357   if (callee.isBuiltin()) {
4358     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4359                            E, ReturnValue);
4360   }
4361 
4362   if (callee.isPseudoDestructor()) {
4363     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4364   }
4365 
4366   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4367 }
4368 
4369 /// Emit a CallExpr without considering whether it might be a subclass.
4370 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4371                                            ReturnValueSlot ReturnValue) {
4372   CGCallee Callee = EmitCallee(E->getCallee());
4373   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4374 }
4375 
4376 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4377   if (auto builtinID = FD->getBuiltinID()) {
4378     return CGCallee::forBuiltin(builtinID, FD);
4379   }
4380 
4381   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4382   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4383 }
4384 
4385 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4386   E = E->IgnoreParens();
4387 
4388   // Look through function-to-pointer decay.
4389   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4390     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4391         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4392       return EmitCallee(ICE->getSubExpr());
4393     }
4394 
4395   // Resolve direct calls.
4396   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4397     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4398       return EmitDirectCallee(*this, FD);
4399     }
4400   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4401     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4402       EmitIgnoredExpr(ME->getBase());
4403       return EmitDirectCallee(*this, FD);
4404     }
4405 
4406   // Look through template substitutions.
4407   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4408     return EmitCallee(NTTP->getReplacement());
4409 
4410   // Treat pseudo-destructor calls differently.
4411   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4412     return CGCallee::forPseudoDestructor(PDE);
4413   }
4414 
4415   // Otherwise, we have an indirect reference.
4416   llvm::Value *calleePtr;
4417   QualType functionType;
4418   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4419     calleePtr = EmitScalarExpr(E);
4420     functionType = ptrType->getPointeeType();
4421   } else {
4422     functionType = E->getType();
4423     calleePtr = EmitLValue(E).getPointer();
4424   }
4425   assert(functionType->isFunctionType());
4426 
4427   GlobalDecl GD;
4428   if (const auto *VD =
4429           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4430     GD = GlobalDecl(VD);
4431 
4432   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4433   CGCallee callee(calleeInfo, calleePtr);
4434   return callee;
4435 }
4436 
4437 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4438   // Comma expressions just emit their LHS then their RHS as an l-value.
4439   if (E->getOpcode() == BO_Comma) {
4440     EmitIgnoredExpr(E->getLHS());
4441     EnsureInsertPoint();
4442     return EmitLValue(E->getRHS());
4443   }
4444 
4445   if (E->getOpcode() == BO_PtrMemD ||
4446       E->getOpcode() == BO_PtrMemI)
4447     return EmitPointerToDataMemberBinaryExpr(E);
4448 
4449   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4450 
4451   // Note that in all of these cases, __block variables need the RHS
4452   // evaluated first just in case the variable gets moved by the RHS.
4453 
4454   switch (getEvaluationKind(E->getType())) {
4455   case TEK_Scalar: {
4456     switch (E->getLHS()->getType().getObjCLifetime()) {
4457     case Qualifiers::OCL_Strong:
4458       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4459 
4460     case Qualifiers::OCL_Autoreleasing:
4461       return EmitARCStoreAutoreleasing(E).first;
4462 
4463     // No reason to do any of these differently.
4464     case Qualifiers::OCL_None:
4465     case Qualifiers::OCL_ExplicitNone:
4466     case Qualifiers::OCL_Weak:
4467       break;
4468     }
4469 
4470     RValue RV = EmitAnyExpr(E->getRHS());
4471     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4472     if (RV.isScalar())
4473       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4474     EmitStoreThroughLValue(RV, LV);
4475     return LV;
4476   }
4477 
4478   case TEK_Complex:
4479     return EmitComplexAssignmentLValue(E);
4480 
4481   case TEK_Aggregate:
4482     return EmitAggExprToLValue(E);
4483   }
4484   llvm_unreachable("bad evaluation kind");
4485 }
4486 
4487 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4488   RValue RV = EmitCallExpr(E);
4489 
4490   if (!RV.isScalar())
4491     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4492                           AlignmentSource::Decl);
4493 
4494   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4495          "Can't have a scalar return unless the return type is a "
4496          "reference type!");
4497 
4498   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4499 }
4500 
4501 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4502   // FIXME: This shouldn't require another copy.
4503   return EmitAggExprToLValue(E);
4504 }
4505 
4506 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4507   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4508          && "binding l-value to type which needs a temporary");
4509   AggValueSlot Slot = CreateAggTemp(E->getType());
4510   EmitCXXConstructExpr(E, Slot);
4511   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4512 }
4513 
4514 LValue
4515 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4516   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4517 }
4518 
4519 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4520   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4521                                       ConvertType(E->getType()));
4522 }
4523 
4524 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4525   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4526                         AlignmentSource::Decl);
4527 }
4528 
4529 LValue
4530 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4531   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4532   Slot.setExternallyDestructed();
4533   EmitAggExpr(E->getSubExpr(), Slot);
4534   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4535   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4536 }
4537 
4538 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4539   RValue RV = EmitObjCMessageExpr(E);
4540 
4541   if (!RV.isScalar())
4542     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4543                           AlignmentSource::Decl);
4544 
4545   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4546          "Can't have a scalar return unless the return type is a "
4547          "reference type!");
4548 
4549   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4550 }
4551 
4552 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4553   Address V =
4554     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4555   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4556 }
4557 
4558 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4559                                              const ObjCIvarDecl *Ivar) {
4560   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4561 }
4562 
4563 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4564                                           llvm::Value *BaseValue,
4565                                           const ObjCIvarDecl *Ivar,
4566                                           unsigned CVRQualifiers) {
4567   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4568                                                    Ivar, CVRQualifiers);
4569 }
4570 
4571 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4572   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4573   llvm::Value *BaseValue = nullptr;
4574   const Expr *BaseExpr = E->getBase();
4575   Qualifiers BaseQuals;
4576   QualType ObjectTy;
4577   if (E->isArrow()) {
4578     BaseValue = EmitScalarExpr(BaseExpr);
4579     ObjectTy = BaseExpr->getType()->getPointeeType();
4580     BaseQuals = ObjectTy.getQualifiers();
4581   } else {
4582     LValue BaseLV = EmitLValue(BaseExpr);
4583     BaseValue = BaseLV.getPointer();
4584     ObjectTy = BaseExpr->getType();
4585     BaseQuals = ObjectTy.getQualifiers();
4586   }
4587 
4588   LValue LV =
4589     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4590                       BaseQuals.getCVRQualifiers());
4591   setObjCGCLValueClass(getContext(), E, LV);
4592   return LV;
4593 }
4594 
4595 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4596   // Can only get l-value for message expression returning aggregate type
4597   RValue RV = EmitAnyExprToTemp(E);
4598   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4599                         AlignmentSource::Decl);
4600 }
4601 
4602 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4603                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4604                                  llvm::Value *Chain) {
4605   // Get the actual function type. The callee type will always be a pointer to
4606   // function type or a block pointer type.
4607   assert(CalleeType->isFunctionPointerType() &&
4608          "Call must have function pointer type!");
4609 
4610   const Decl *TargetDecl =
4611       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4612 
4613   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4614     // We can only guarantee that a function is called from the correct
4615     // context/function based on the appropriate target attributes,
4616     // so only check in the case where we have both always_inline and target
4617     // since otherwise we could be making a conditional call after a check for
4618     // the proper cpu features (and it won't cause code generation issues due to
4619     // function based code generation).
4620     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4621         TargetDecl->hasAttr<TargetAttr>())
4622       checkTargetFeatures(E, FD);
4623 
4624   CalleeType = getContext().getCanonicalType(CalleeType);
4625 
4626   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4627 
4628   CGCallee Callee = OrigCallee;
4629 
4630   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4631       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4632     if (llvm::Constant *PrefixSig =
4633             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4634       SanitizerScope SanScope(this);
4635       // Remove any (C++17) exception specifications, to allow calling e.g. a
4636       // noexcept function through a non-noexcept pointer.
4637       auto ProtoTy =
4638         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4639       llvm::Constant *FTRTTIConst =
4640           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4641       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4642       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4643           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4644 
4645       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4646 
4647       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4648           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4649       llvm::Value *CalleeSigPtr =
4650           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4651       llvm::Value *CalleeSig =
4652           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4653       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4654 
4655       llvm::BasicBlock *Cont = createBasicBlock("cont");
4656       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4657       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4658 
4659       EmitBlock(TypeCheck);
4660       llvm::Value *CalleeRTTIPtr =
4661           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4662       llvm::Value *CalleeRTTIEncoded =
4663           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4664       llvm::Value *CalleeRTTI =
4665           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4666       llvm::Value *CalleeRTTIMatch =
4667           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4668       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4669                                       EmitCheckTypeDescriptor(CalleeType)};
4670       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4671                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4672                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4673 
4674       Builder.CreateBr(Cont);
4675       EmitBlock(Cont);
4676     }
4677   }
4678 
4679   const auto *FnType = cast<FunctionType>(PointeeType);
4680 
4681   // If we are checking indirect calls and this call is indirect, check that the
4682   // function pointer is a member of the bit set for the function type.
4683   if (SanOpts.has(SanitizerKind::CFIICall) &&
4684       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4685     SanitizerScope SanScope(this);
4686     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4687 
4688     llvm::Metadata *MD;
4689     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4690       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4691     else
4692       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4693 
4694     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4695 
4696     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4697     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4698     llvm::Value *TypeTest = Builder.CreateCall(
4699         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4700 
4701     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4702     llvm::Constant *StaticData[] = {
4703         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4704         EmitCheckSourceLocation(E->getBeginLoc()),
4705         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4706     };
4707     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4708       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4709                            CastedCallee, StaticData);
4710     } else {
4711       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4712                 SanitizerHandler::CFICheckFail, StaticData,
4713                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4714     }
4715   }
4716 
4717   CallArgList Args;
4718   if (Chain)
4719     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4720              CGM.getContext().VoidPtrTy);
4721 
4722   // C++17 requires that we evaluate arguments to a call using assignment syntax
4723   // right-to-left, and that we evaluate arguments to certain other operators
4724   // left-to-right. Note that we allow this to override the order dictated by
4725   // the calling convention on the MS ABI, which means that parameter
4726   // destruction order is not necessarily reverse construction order.
4727   // FIXME: Revisit this based on C++ committee response to unimplementability.
4728   EvaluationOrder Order = EvaluationOrder::Default;
4729   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4730     if (OCE->isAssignmentOp())
4731       Order = EvaluationOrder::ForceRightToLeft;
4732     else {
4733       switch (OCE->getOperator()) {
4734       case OO_LessLess:
4735       case OO_GreaterGreater:
4736       case OO_AmpAmp:
4737       case OO_PipePipe:
4738       case OO_Comma:
4739       case OO_ArrowStar:
4740         Order = EvaluationOrder::ForceLeftToRight;
4741         break;
4742       default:
4743         break;
4744       }
4745     }
4746   }
4747 
4748   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4749                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4750 
4751   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4752       Args, FnType, /*isChainCall=*/Chain);
4753 
4754   // C99 6.5.2.2p6:
4755   //   If the expression that denotes the called function has a type
4756   //   that does not include a prototype, [the default argument
4757   //   promotions are performed]. If the number of arguments does not
4758   //   equal the number of parameters, the behavior is undefined. If
4759   //   the function is defined with a type that includes a prototype,
4760   //   and either the prototype ends with an ellipsis (, ...) or the
4761   //   types of the arguments after promotion are not compatible with
4762   //   the types of the parameters, the behavior is undefined. If the
4763   //   function is defined with a type that does not include a
4764   //   prototype, and the types of the arguments after promotion are
4765   //   not compatible with those of the parameters after promotion,
4766   //   the behavior is undefined [except in some trivial cases].
4767   // That is, in the general case, we should assume that a call
4768   // through an unprototyped function type works like a *non-variadic*
4769   // call.  The way we make this work is to cast to the exact type
4770   // of the promoted arguments.
4771   //
4772   // Chain calls use this same code path to add the invisible chain parameter
4773   // to the function type.
4774   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4775     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4776     CalleeTy = CalleeTy->getPointerTo();
4777 
4778     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4779     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4780     Callee.setFunctionPointer(CalleePtr);
4781   }
4782 
4783   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4784 }
4785 
4786 LValue CodeGenFunction::
4787 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4788   Address BaseAddr = Address::invalid();
4789   if (E->getOpcode() == BO_PtrMemI) {
4790     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4791   } else {
4792     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4793   }
4794 
4795   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4796 
4797   const MemberPointerType *MPT
4798     = E->getRHS()->getType()->getAs<MemberPointerType>();
4799 
4800   LValueBaseInfo BaseInfo;
4801   TBAAAccessInfo TBAAInfo;
4802   Address MemberAddr =
4803     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4804                                     &TBAAInfo);
4805 
4806   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4807 }
4808 
4809 /// Given the address of a temporary variable, produce an r-value of
4810 /// its type.
4811 RValue CodeGenFunction::convertTempToRValue(Address addr,
4812                                             QualType type,
4813                                             SourceLocation loc) {
4814   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4815   switch (getEvaluationKind(type)) {
4816   case TEK_Complex:
4817     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4818   case TEK_Aggregate:
4819     return lvalue.asAggregateRValue();
4820   case TEK_Scalar:
4821     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4822   }
4823   llvm_unreachable("bad evaluation kind");
4824 }
4825 
4826 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4827   assert(Val->getType()->isFPOrFPVectorTy());
4828   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4829     return;
4830 
4831   llvm::MDBuilder MDHelper(getLLVMContext());
4832   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4833 
4834   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4835 }
4836 
4837 namespace {
4838   struct LValueOrRValue {
4839     LValue LV;
4840     RValue RV;
4841   };
4842 }
4843 
4844 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4845                                            const PseudoObjectExpr *E,
4846                                            bool forLValue,
4847                                            AggValueSlot slot) {
4848   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4849 
4850   // Find the result expression, if any.
4851   const Expr *resultExpr = E->getResultExpr();
4852   LValueOrRValue result;
4853 
4854   for (PseudoObjectExpr::const_semantics_iterator
4855          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4856     const Expr *semantic = *i;
4857 
4858     // If this semantic expression is an opaque value, bind it
4859     // to the result of its source expression.
4860     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4861       // Skip unique OVEs.
4862       if (ov->isUnique()) {
4863         assert(ov != resultExpr &&
4864                "A unique OVE cannot be used as the result expression");
4865         continue;
4866       }
4867 
4868       // If this is the result expression, we may need to evaluate
4869       // directly into the slot.
4870       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4871       OVMA opaqueData;
4872       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4873           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4874         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4875         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4876                                        AlignmentSource::Decl);
4877         opaqueData = OVMA::bind(CGF, ov, LV);
4878         result.RV = slot.asRValue();
4879 
4880       // Otherwise, emit as normal.
4881       } else {
4882         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4883 
4884         // If this is the result, also evaluate the result now.
4885         if (ov == resultExpr) {
4886           if (forLValue)
4887             result.LV = CGF.EmitLValue(ov);
4888           else
4889             result.RV = CGF.EmitAnyExpr(ov, slot);
4890         }
4891       }
4892 
4893       opaques.push_back(opaqueData);
4894 
4895     // Otherwise, if the expression is the result, evaluate it
4896     // and remember the result.
4897     } else if (semantic == resultExpr) {
4898       if (forLValue)
4899         result.LV = CGF.EmitLValue(semantic);
4900       else
4901         result.RV = CGF.EmitAnyExpr(semantic, slot);
4902 
4903     // Otherwise, evaluate the expression in an ignored context.
4904     } else {
4905       CGF.EmitIgnoredExpr(semantic);
4906     }
4907   }
4908 
4909   // Unbind all the opaques now.
4910   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4911     opaques[i].unbind(CGF);
4912 
4913   return result;
4914 }
4915 
4916 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4917                                                AggValueSlot slot) {
4918   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4919 }
4920 
4921 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4922   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4923 }
4924