1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/ConvertUTF.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===--------------------------------------------------------------------===// 39 // Miscellaneous Helper Methods 40 //===--------------------------------------------------------------------===// 41 42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 43 unsigned addressSpace = 44 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 45 46 llvm::PointerType *destType = Int8PtrTy; 47 if (addressSpace) 48 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 49 50 if (value->getType() == destType) return value; 51 return Builder.CreateBitCast(value, destType); 52 } 53 54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 55 /// block. 56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 57 const Twine &Name) { 58 if (!Builder.isNamePreserving()) 59 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 60 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 61 } 62 63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 64 llvm::Value *Init) { 65 auto *Store = new llvm::StoreInst(Init, Var); 66 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 67 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 68 } 69 70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 71 const Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77 } 78 79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 80 const Twine &Name) { 81 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 82 // FIXME: Should we prefer the preferred type alignment here? 83 CharUnits Align = getContext().getTypeAlignInChars(Ty); 84 Alloc->setAlignment(Align.getQuantity()); 85 return Alloc; 86 } 87 88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 89 /// expression and compare the result against zero, returning an Int1Ty value. 90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 91 PGO.setCurrentStmt(E); 92 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 93 llvm::Value *MemPtr = EmitScalarExpr(E); 94 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 95 } 96 97 QualType BoolTy = getContext().BoolTy; 98 if (!E->getType()->isAnyComplexType()) 99 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 100 101 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 102 } 103 104 /// EmitIgnoredExpr - Emit code to compute the specified expression, 105 /// ignoring the result. 106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 107 if (E->isRValue()) 108 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 109 110 // Just emit it as an l-value and drop the result. 111 EmitLValue(E); 112 } 113 114 /// EmitAnyExpr - Emit code to compute the specified expression which 115 /// can have any type. The result is returned as an RValue struct. 116 /// If this is an aggregate expression, AggSlot indicates where the 117 /// result should be returned. 118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 119 AggValueSlot aggSlot, 120 bool ignoreResult) { 121 switch (getEvaluationKind(E->getType())) { 122 case TEK_Scalar: 123 return RValue::get(EmitScalarExpr(E, ignoreResult)); 124 case TEK_Complex: 125 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 126 case TEK_Aggregate: 127 if (!ignoreResult && aggSlot.isIgnored()) 128 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 129 EmitAggExpr(E, aggSlot); 130 return aggSlot.asRValue(); 131 } 132 llvm_unreachable("bad evaluation kind"); 133 } 134 135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 136 /// always be accessible even if no aggregate location is provided. 137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 138 AggValueSlot AggSlot = AggValueSlot::ignored(); 139 140 if (hasAggregateEvaluationKind(E->getType())) 141 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 142 return EmitAnyExpr(E, AggSlot); 143 } 144 145 /// EmitAnyExprToMem - Evaluate an expression into a given memory 146 /// location. 147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 148 llvm::Value *Location, 149 Qualifiers Quals, 150 bool IsInit) { 151 // FIXME: This function should take an LValue as an argument. 152 switch (getEvaluationKind(E->getType())) { 153 case TEK_Complex: 154 EmitComplexExprIntoLValue(E, 155 MakeNaturalAlignAddrLValue(Location, E->getType()), 156 /*isInit*/ false); 157 return; 158 159 case TEK_Aggregate: { 160 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 161 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 162 AggValueSlot::IsDestructed_t(IsInit), 163 AggValueSlot::DoesNotNeedGCBarriers, 164 AggValueSlot::IsAliased_t(!IsInit))); 165 return; 166 } 167 168 case TEK_Scalar: { 169 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 170 LValue LV = MakeAddrLValue(Location, E->getType()); 171 EmitStoreThroughLValue(RV, LV); 172 return; 173 } 174 } 175 llvm_unreachable("bad evaluation kind"); 176 } 177 178 static void 179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 180 const Expr *E, llvm::Value *ReferenceTemporary) { 181 // Objective-C++ ARC: 182 // If we are binding a reference to a temporary that has ownership, we 183 // need to perform retain/release operations on the temporary. 184 // 185 // FIXME: This should be looking at E, not M. 186 if (CGF.getLangOpts().ObjCAutoRefCount && 187 M->getType()->isObjCLifetimeType()) { 188 QualType ObjCARCReferenceLifetimeType = M->getType(); 189 switch (Qualifiers::ObjCLifetime Lifetime = 190 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 191 case Qualifiers::OCL_None: 192 case Qualifiers::OCL_ExplicitNone: 193 // Carry on to normal cleanup handling. 194 break; 195 196 case Qualifiers::OCL_Autoreleasing: 197 // Nothing to do; cleaned up by an autorelease pool. 198 return; 199 200 case Qualifiers::OCL_Strong: 201 case Qualifiers::OCL_Weak: 202 switch (StorageDuration Duration = M->getStorageDuration()) { 203 case SD_Static: 204 // Note: we intentionally do not register a cleanup to release 205 // the object on program termination. 206 return; 207 208 case SD_Thread: 209 // FIXME: We should probably register a cleanup in this case. 210 return; 211 212 case SD_Automatic: 213 case SD_FullExpression: 214 CodeGenFunction::Destroyer *Destroy; 215 CleanupKind CleanupKind; 216 if (Lifetime == Qualifiers::OCL_Strong) { 217 const ValueDecl *VD = M->getExtendingDecl(); 218 bool Precise = 219 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 220 CleanupKind = CGF.getARCCleanupKind(); 221 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 222 : &CodeGenFunction::destroyARCStrongImprecise; 223 } else { 224 // __weak objects always get EH cleanups; otherwise, exceptions 225 // could cause really nasty crashes instead of mere leaks. 226 CleanupKind = NormalAndEHCleanup; 227 Destroy = &CodeGenFunction::destroyARCWeak; 228 } 229 if (Duration == SD_FullExpression) 230 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 231 ObjCARCReferenceLifetimeType, *Destroy, 232 CleanupKind & EHCleanup); 233 else 234 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 235 ObjCARCReferenceLifetimeType, 236 *Destroy, CleanupKind & EHCleanup); 237 return; 238 239 case SD_Dynamic: 240 llvm_unreachable("temporary cannot have dynamic storage duration"); 241 } 242 llvm_unreachable("unknown storage duration"); 243 } 244 } 245 246 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 247 if (const RecordType *RT = 248 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 249 // Get the destructor for the reference temporary. 250 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 251 if (!ClassDecl->hasTrivialDestructor()) 252 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 253 } 254 255 if (!ReferenceTemporaryDtor) 256 return; 257 258 // Call the destructor for the temporary. 259 switch (M->getStorageDuration()) { 260 case SD_Static: 261 case SD_Thread: { 262 llvm::Constant *CleanupFn; 263 llvm::Constant *CleanupArg; 264 if (E->getType()->isArrayType()) { 265 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 266 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 267 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 268 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 269 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 270 } else { 271 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 272 StructorType::Complete); 273 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 274 } 275 CGF.CGM.getCXXABI().registerGlobalDtor( 276 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 277 break; 278 } 279 280 case SD_FullExpression: 281 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 282 CodeGenFunction::destroyCXXObject, 283 CGF.getLangOpts().Exceptions); 284 break; 285 286 case SD_Automatic: 287 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 288 ReferenceTemporary, E->getType(), 289 CodeGenFunction::destroyCXXObject, 290 CGF.getLangOpts().Exceptions); 291 break; 292 293 case SD_Dynamic: 294 llvm_unreachable("temporary cannot have dynamic storage duration"); 295 } 296 } 297 298 static llvm::Value * 299 createReferenceTemporary(CodeGenFunction &CGF, 300 const MaterializeTemporaryExpr *M, const Expr *Inner) { 301 switch (M->getStorageDuration()) { 302 case SD_FullExpression: 303 case SD_Automatic: 304 // If we have a constant temporary array or record try to promote it into a 305 // constant global under the same rules a normal constant would've been 306 // promoted. This is easier on the optimizer and generally emits fewer 307 // instructions. 308 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 309 (M->getType()->isArrayType() || M->getType()->isRecordType()) && 310 CGF.CGM.isTypeConstant(M->getType(), true)) 311 if (llvm::Constant *Init = 312 CGF.CGM.EmitConstantExpr(Inner, M->getType(), &CGF)) { 313 auto *GV = new llvm::GlobalVariable( 314 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 315 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 316 GV->setAlignment( 317 CGF.getContext().getTypeAlignInChars(M->getType()).getQuantity()); 318 // FIXME: Should we put the new global into a COMDAT? 319 return GV; 320 } 321 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 322 323 case SD_Thread: 324 case SD_Static: 325 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 326 327 case SD_Dynamic: 328 llvm_unreachable("temporary can't have dynamic storage duration"); 329 } 330 llvm_unreachable("unknown storage duration"); 331 } 332 333 LValue CodeGenFunction:: 334 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 335 const Expr *E = M->GetTemporaryExpr(); 336 337 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 338 // as that will cause the lifetime adjustment to be lost for ARC 339 if (getLangOpts().ObjCAutoRefCount && 340 M->getType()->isObjCLifetimeType() && 341 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 342 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 343 llvm::Value *Object = createReferenceTemporary(*this, M, E); 344 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 345 Object = llvm::ConstantExpr::getBitCast( 346 Var, ConvertTypeForMem(E->getType())->getPointerTo()); 347 // We should not have emitted the initializer for this temporary as a 348 // constant. 349 assert(!Var->hasInitializer()); 350 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 351 } 352 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 353 354 switch (getEvaluationKind(E->getType())) { 355 default: llvm_unreachable("expected scalar or aggregate expression"); 356 case TEK_Scalar: 357 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 358 break; 359 case TEK_Aggregate: { 360 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 361 EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment, 362 E->getType().getQualifiers(), 363 AggValueSlot::IsDestructed, 364 AggValueSlot::DoesNotNeedGCBarriers, 365 AggValueSlot::IsNotAliased)); 366 break; 367 } 368 } 369 370 pushTemporaryCleanup(*this, M, E, Object); 371 return RefTempDst; 372 } 373 374 SmallVector<const Expr *, 2> CommaLHSs; 375 SmallVector<SubobjectAdjustment, 2> Adjustments; 376 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 377 378 for (const auto &Ignored : CommaLHSs) 379 EmitIgnoredExpr(Ignored); 380 381 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 382 if (opaque->getType()->isRecordType()) { 383 assert(Adjustments.empty()); 384 return EmitOpaqueValueLValue(opaque); 385 } 386 } 387 388 // Create and initialize the reference temporary. 389 llvm::Value *Object = createReferenceTemporary(*this, M, E); 390 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 391 Object = llvm::ConstantExpr::getBitCast( 392 Var, ConvertTypeForMem(E->getType())->getPointerTo()); 393 // If the temporary is a global and has a constant initializer or is a 394 // constant temporary that we promoted to a global, we may have already 395 // initialized it. 396 if (!Var->hasInitializer()) { 397 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 398 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 399 } 400 } else { 401 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 402 } 403 pushTemporaryCleanup(*this, M, E, Object); 404 405 // Perform derived-to-base casts and/or field accesses, to get from the 406 // temporary object we created (and, potentially, for which we extended 407 // the lifetime) to the subobject we're binding the reference to. 408 for (unsigned I = Adjustments.size(); I != 0; --I) { 409 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 410 switch (Adjustment.Kind) { 411 case SubobjectAdjustment::DerivedToBaseAdjustment: 412 Object = 413 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 414 Adjustment.DerivedToBase.BasePath->path_begin(), 415 Adjustment.DerivedToBase.BasePath->path_end(), 416 /*NullCheckValue=*/ false, E->getExprLoc()); 417 break; 418 419 case SubobjectAdjustment::FieldAdjustment: { 420 LValue LV = MakeAddrLValue(Object, E->getType()); 421 LV = EmitLValueForField(LV, Adjustment.Field); 422 assert(LV.isSimple() && 423 "materialized temporary field is not a simple lvalue"); 424 Object = LV.getAddress(); 425 break; 426 } 427 428 case SubobjectAdjustment::MemberPointerAdjustment: { 429 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 430 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 431 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 432 break; 433 } 434 } 435 } 436 437 return MakeAddrLValue(Object, M->getType()); 438 } 439 440 RValue 441 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 442 // Emit the expression as an lvalue. 443 LValue LV = EmitLValue(E); 444 assert(LV.isSimple()); 445 llvm::Value *Value = LV.getAddress(); 446 447 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 448 // C++11 [dcl.ref]p5 (as amended by core issue 453): 449 // If a glvalue to which a reference is directly bound designates neither 450 // an existing object or function of an appropriate type nor a region of 451 // storage of suitable size and alignment to contain an object of the 452 // reference's type, the behavior is undefined. 453 QualType Ty = E->getType(); 454 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 455 } 456 457 return RValue::get(Value); 458 } 459 460 461 /// getAccessedFieldNo - Given an encoded value and a result number, return the 462 /// input field number being accessed. 463 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 464 const llvm::Constant *Elts) { 465 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 466 ->getZExtValue(); 467 } 468 469 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 470 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 471 llvm::Value *High) { 472 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 473 llvm::Value *K47 = Builder.getInt64(47); 474 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 475 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 476 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 477 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 478 return Builder.CreateMul(B1, KMul); 479 } 480 481 bool CodeGenFunction::sanitizePerformTypeCheck() const { 482 return SanOpts.has(SanitizerKind::Null) | 483 SanOpts.has(SanitizerKind::Alignment) | 484 SanOpts.has(SanitizerKind::ObjectSize) | 485 SanOpts.has(SanitizerKind::Vptr); 486 } 487 488 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 489 llvm::Value *Address, QualType Ty, 490 CharUnits Alignment, bool SkipNullCheck) { 491 if (!sanitizePerformTypeCheck()) 492 return; 493 494 // Don't check pointers outside the default address space. The null check 495 // isn't correct, the object-size check isn't supported by LLVM, and we can't 496 // communicate the addresses to the runtime handler for the vptr check. 497 if (Address->getType()->getPointerAddressSpace()) 498 return; 499 500 SanitizerScope SanScope(this); 501 502 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks; 503 llvm::BasicBlock *Done = nullptr; 504 505 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 506 TCK == TCK_UpcastToVirtualBase; 507 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 508 !SkipNullCheck) { 509 // The glvalue must not be an empty glvalue. 510 llvm::Value *IsNonNull = Builder.CreateICmpNE( 511 Address, llvm::Constant::getNullValue(Address->getType())); 512 513 if (AllowNullPointers) { 514 // When performing pointer casts, it's OK if the value is null. 515 // Skip the remaining checks in that case. 516 Done = createBasicBlock("null"); 517 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 518 Builder.CreateCondBr(IsNonNull, Rest, Done); 519 EmitBlock(Rest); 520 } else { 521 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 522 } 523 } 524 525 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 526 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 527 528 // The glvalue must refer to a large enough storage region. 529 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 530 // to check this. 531 // FIXME: Get object address space 532 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 533 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 534 llvm::Value *Min = Builder.getFalse(); 535 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 536 llvm::Value *LargeEnough = 537 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 538 llvm::ConstantInt::get(IntPtrTy, Size)); 539 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 540 } 541 542 uint64_t AlignVal = 0; 543 544 if (SanOpts.has(SanitizerKind::Alignment)) { 545 AlignVal = Alignment.getQuantity(); 546 if (!Ty->isIncompleteType() && !AlignVal) 547 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 548 549 // The glvalue must be suitably aligned. 550 if (AlignVal) { 551 llvm::Value *Align = 552 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 553 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 554 llvm::Value *Aligned = 555 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 556 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 557 } 558 } 559 560 if (Checks.size() > 0) { 561 llvm::Constant *StaticData[] = { 562 EmitCheckSourceLocation(Loc), 563 EmitCheckTypeDescriptor(Ty), 564 llvm::ConstantInt::get(SizeTy, AlignVal), 565 llvm::ConstantInt::get(Int8Ty, TCK) 566 }; 567 EmitCheck(Checks, "type_mismatch", StaticData, Address); 568 } 569 570 // If possible, check that the vptr indicates that there is a subobject of 571 // type Ty at offset zero within this object. 572 // 573 // C++11 [basic.life]p5,6: 574 // [For storage which does not refer to an object within its lifetime] 575 // The program has undefined behavior if: 576 // -- the [pointer or glvalue] is used to access a non-static data member 577 // or call a non-static member function 578 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 579 if (SanOpts.has(SanitizerKind::Vptr) && 580 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 581 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 582 TCK == TCK_UpcastToVirtualBase) && 583 RD && RD->hasDefinition() && RD->isDynamicClass()) { 584 // Compute a hash of the mangled name of the type. 585 // 586 // FIXME: This is not guaranteed to be deterministic! Move to a 587 // fingerprinting mechanism once LLVM provides one. For the time 588 // being the implementation happens to be deterministic. 589 SmallString<64> MangledName; 590 llvm::raw_svector_ostream Out(MangledName); 591 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 592 Out); 593 594 // Blacklist based on the mangled type. 595 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 596 Out.str())) { 597 llvm::hash_code TypeHash = hash_value(Out.str()); 598 599 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 600 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 601 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 602 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 603 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 604 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 605 606 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 607 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 608 609 // Look the hash up in our cache. 610 const int CacheSize = 128; 611 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 612 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 613 "__ubsan_vptr_type_cache"); 614 llvm::Value *Slot = Builder.CreateAnd(Hash, 615 llvm::ConstantInt::get(IntPtrTy, 616 CacheSize-1)); 617 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 618 llvm::Value *CacheVal = 619 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 620 621 // If the hash isn't in the cache, call a runtime handler to perform the 622 // hard work of checking whether the vptr is for an object of the right 623 // type. This will either fill in the cache and return, or produce a 624 // diagnostic. 625 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 626 llvm::Constant *StaticData[] = { 627 EmitCheckSourceLocation(Loc), 628 EmitCheckTypeDescriptor(Ty), 629 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 630 llvm::ConstantInt::get(Int8Ty, TCK) 631 }; 632 llvm::Value *DynamicData[] = { Address, Hash }; 633 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 634 "dynamic_type_cache_miss", StaticData, DynamicData); 635 } 636 } 637 638 if (Done) { 639 Builder.CreateBr(Done); 640 EmitBlock(Done); 641 } 642 } 643 644 /// Determine whether this expression refers to a flexible array member in a 645 /// struct. We disable array bounds checks for such members. 646 static bool isFlexibleArrayMemberExpr(const Expr *E) { 647 // For compatibility with existing code, we treat arrays of length 0 or 648 // 1 as flexible array members. 649 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 650 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 651 if (CAT->getSize().ugt(1)) 652 return false; 653 } else if (!isa<IncompleteArrayType>(AT)) 654 return false; 655 656 E = E->IgnoreParens(); 657 658 // A flexible array member must be the last member in the class. 659 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 660 // FIXME: If the base type of the member expr is not FD->getParent(), 661 // this should not be treated as a flexible array member access. 662 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 663 RecordDecl::field_iterator FI( 664 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 665 return ++FI == FD->getParent()->field_end(); 666 } 667 } 668 669 return false; 670 } 671 672 /// If Base is known to point to the start of an array, return the length of 673 /// that array. Return 0 if the length cannot be determined. 674 static llvm::Value *getArrayIndexingBound( 675 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 676 // For the vector indexing extension, the bound is the number of elements. 677 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 678 IndexedType = Base->getType(); 679 return CGF.Builder.getInt32(VT->getNumElements()); 680 } 681 682 Base = Base->IgnoreParens(); 683 684 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 685 if (CE->getCastKind() == CK_ArrayToPointerDecay && 686 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 687 IndexedType = CE->getSubExpr()->getType(); 688 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 689 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 690 return CGF.Builder.getInt(CAT->getSize()); 691 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 692 return CGF.getVLASize(VAT).first; 693 } 694 } 695 696 return nullptr; 697 } 698 699 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 700 llvm::Value *Index, QualType IndexType, 701 bool Accessed) { 702 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 703 "should not be called unless adding bounds checks"); 704 SanitizerScope SanScope(this); 705 706 QualType IndexedType; 707 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 708 if (!Bound) 709 return; 710 711 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 712 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 713 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 714 715 llvm::Constant *StaticData[] = { 716 EmitCheckSourceLocation(E->getExprLoc()), 717 EmitCheckTypeDescriptor(IndexedType), 718 EmitCheckTypeDescriptor(IndexType) 719 }; 720 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 721 : Builder.CreateICmpULE(IndexVal, BoundVal); 722 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 723 StaticData, Index); 724 } 725 726 727 CodeGenFunction::ComplexPairTy CodeGenFunction:: 728 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 729 bool isInc, bool isPre) { 730 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 731 732 llvm::Value *NextVal; 733 if (isa<llvm::IntegerType>(InVal.first->getType())) { 734 uint64_t AmountVal = isInc ? 1 : -1; 735 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 736 737 // Add the inc/dec to the real part. 738 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 739 } else { 740 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 741 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 742 if (!isInc) 743 FVal.changeSign(); 744 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 745 746 // Add the inc/dec to the real part. 747 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 748 } 749 750 ComplexPairTy IncVal(NextVal, InVal.second); 751 752 // Store the updated result through the lvalue. 753 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 754 755 // If this is a postinc, return the value read from memory, otherwise use the 756 // updated value. 757 return isPre ? IncVal : InVal; 758 } 759 760 //===----------------------------------------------------------------------===// 761 // LValue Expression Emission 762 //===----------------------------------------------------------------------===// 763 764 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 765 if (Ty->isVoidType()) 766 return RValue::get(nullptr); 767 768 switch (getEvaluationKind(Ty)) { 769 case TEK_Complex: { 770 llvm::Type *EltTy = 771 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 772 llvm::Value *U = llvm::UndefValue::get(EltTy); 773 return RValue::getComplex(std::make_pair(U, U)); 774 } 775 776 // If this is a use of an undefined aggregate type, the aggregate must have an 777 // identifiable address. Just because the contents of the value are undefined 778 // doesn't mean that the address can't be taken and compared. 779 case TEK_Aggregate: { 780 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 781 return RValue::getAggregate(DestPtr); 782 } 783 784 case TEK_Scalar: 785 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 786 } 787 llvm_unreachable("bad evaluation kind"); 788 } 789 790 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 791 const char *Name) { 792 ErrorUnsupported(E, Name); 793 return GetUndefRValue(E->getType()); 794 } 795 796 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 797 const char *Name) { 798 ErrorUnsupported(E, Name); 799 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 800 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 801 } 802 803 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 804 LValue LV; 805 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 806 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 807 else 808 LV = EmitLValue(E); 809 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 810 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 811 E->getType(), LV.getAlignment()); 812 return LV; 813 } 814 815 /// EmitLValue - Emit code to compute a designator that specifies the location 816 /// of the expression. 817 /// 818 /// This can return one of two things: a simple address or a bitfield reference. 819 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 820 /// an LLVM pointer type. 821 /// 822 /// If this returns a bitfield reference, nothing about the pointee type of the 823 /// LLVM value is known: For example, it may not be a pointer to an integer. 824 /// 825 /// If this returns a normal address, and if the lvalue's C type is fixed size, 826 /// this method guarantees that the returned pointer type will point to an LLVM 827 /// type of the same size of the lvalue's type. If the lvalue has a variable 828 /// length type, this is not possible. 829 /// 830 LValue CodeGenFunction::EmitLValue(const Expr *E) { 831 ApplyDebugLocation DL(*this, E); 832 switch (E->getStmtClass()) { 833 default: return EmitUnsupportedLValue(E, "l-value expression"); 834 835 case Expr::ObjCPropertyRefExprClass: 836 llvm_unreachable("cannot emit a property reference directly"); 837 838 case Expr::ObjCSelectorExprClass: 839 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 840 case Expr::ObjCIsaExprClass: 841 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 842 case Expr::BinaryOperatorClass: 843 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 844 case Expr::CompoundAssignOperatorClass: { 845 QualType Ty = E->getType(); 846 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 847 Ty = AT->getValueType(); 848 if (!Ty->isAnyComplexType()) 849 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 850 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 851 } 852 case Expr::CallExprClass: 853 case Expr::CXXMemberCallExprClass: 854 case Expr::CXXOperatorCallExprClass: 855 case Expr::UserDefinedLiteralClass: 856 return EmitCallExprLValue(cast<CallExpr>(E)); 857 case Expr::VAArgExprClass: 858 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 859 case Expr::DeclRefExprClass: 860 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 861 case Expr::ParenExprClass: 862 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 863 case Expr::GenericSelectionExprClass: 864 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 865 case Expr::PredefinedExprClass: 866 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 867 case Expr::StringLiteralClass: 868 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 869 case Expr::ObjCEncodeExprClass: 870 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 871 case Expr::PseudoObjectExprClass: 872 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 873 case Expr::InitListExprClass: 874 return EmitInitListLValue(cast<InitListExpr>(E)); 875 case Expr::CXXTemporaryObjectExprClass: 876 case Expr::CXXConstructExprClass: 877 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 878 case Expr::CXXBindTemporaryExprClass: 879 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 880 case Expr::CXXUuidofExprClass: 881 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 882 case Expr::LambdaExprClass: 883 return EmitLambdaLValue(cast<LambdaExpr>(E)); 884 885 case Expr::ExprWithCleanupsClass: { 886 const auto *cleanups = cast<ExprWithCleanups>(E); 887 enterFullExpression(cleanups); 888 RunCleanupsScope Scope(*this); 889 return EmitLValue(cleanups->getSubExpr()); 890 } 891 892 case Expr::CXXDefaultArgExprClass: 893 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 894 case Expr::CXXDefaultInitExprClass: { 895 CXXDefaultInitExprScope Scope(*this); 896 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 897 } 898 case Expr::CXXTypeidExprClass: 899 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 900 901 case Expr::ObjCMessageExprClass: 902 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 903 case Expr::ObjCIvarRefExprClass: 904 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 905 case Expr::StmtExprClass: 906 return EmitStmtExprLValue(cast<StmtExpr>(E)); 907 case Expr::UnaryOperatorClass: 908 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 909 case Expr::ArraySubscriptExprClass: 910 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 911 case Expr::ExtVectorElementExprClass: 912 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 913 case Expr::MemberExprClass: 914 return EmitMemberExpr(cast<MemberExpr>(E)); 915 case Expr::CompoundLiteralExprClass: 916 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 917 case Expr::ConditionalOperatorClass: 918 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 919 case Expr::BinaryConditionalOperatorClass: 920 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 921 case Expr::ChooseExprClass: 922 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 923 case Expr::OpaqueValueExprClass: 924 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 925 case Expr::SubstNonTypeTemplateParmExprClass: 926 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 927 case Expr::ImplicitCastExprClass: 928 case Expr::CStyleCastExprClass: 929 case Expr::CXXFunctionalCastExprClass: 930 case Expr::CXXStaticCastExprClass: 931 case Expr::CXXDynamicCastExprClass: 932 case Expr::CXXReinterpretCastExprClass: 933 case Expr::CXXConstCastExprClass: 934 case Expr::ObjCBridgedCastExprClass: 935 return EmitCastLValue(cast<CastExpr>(E)); 936 937 case Expr::MaterializeTemporaryExprClass: 938 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 939 } 940 } 941 942 /// Given an object of the given canonical type, can we safely copy a 943 /// value out of it based on its initializer? 944 static bool isConstantEmittableObjectType(QualType type) { 945 assert(type.isCanonical()); 946 assert(!type->isReferenceType()); 947 948 // Must be const-qualified but non-volatile. 949 Qualifiers qs = type.getLocalQualifiers(); 950 if (!qs.hasConst() || qs.hasVolatile()) return false; 951 952 // Otherwise, all object types satisfy this except C++ classes with 953 // mutable subobjects or non-trivial copy/destroy behavior. 954 if (const auto *RT = dyn_cast<RecordType>(type)) 955 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 956 if (RD->hasMutableFields() || !RD->isTrivial()) 957 return false; 958 959 return true; 960 } 961 962 /// Can we constant-emit a load of a reference to a variable of the 963 /// given type? This is different from predicates like 964 /// Decl::isUsableInConstantExpressions because we do want it to apply 965 /// in situations that don't necessarily satisfy the language's rules 966 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 967 /// to do this with const float variables even if those variables 968 /// aren't marked 'constexpr'. 969 enum ConstantEmissionKind { 970 CEK_None, 971 CEK_AsReferenceOnly, 972 CEK_AsValueOrReference, 973 CEK_AsValueOnly 974 }; 975 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 976 type = type.getCanonicalType(); 977 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 978 if (isConstantEmittableObjectType(ref->getPointeeType())) 979 return CEK_AsValueOrReference; 980 return CEK_AsReferenceOnly; 981 } 982 if (isConstantEmittableObjectType(type)) 983 return CEK_AsValueOnly; 984 return CEK_None; 985 } 986 987 /// Try to emit a reference to the given value without producing it as 988 /// an l-value. This is actually more than an optimization: we can't 989 /// produce an l-value for variables that we never actually captured 990 /// in a block or lambda, which means const int variables or constexpr 991 /// literals or similar. 992 CodeGenFunction::ConstantEmission 993 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 994 ValueDecl *value = refExpr->getDecl(); 995 996 // The value needs to be an enum constant or a constant variable. 997 ConstantEmissionKind CEK; 998 if (isa<ParmVarDecl>(value)) { 999 CEK = CEK_None; 1000 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1001 CEK = checkVarTypeForConstantEmission(var->getType()); 1002 } else if (isa<EnumConstantDecl>(value)) { 1003 CEK = CEK_AsValueOnly; 1004 } else { 1005 CEK = CEK_None; 1006 } 1007 if (CEK == CEK_None) return ConstantEmission(); 1008 1009 Expr::EvalResult result; 1010 bool resultIsReference; 1011 QualType resultType; 1012 1013 // It's best to evaluate all the way as an r-value if that's permitted. 1014 if (CEK != CEK_AsReferenceOnly && 1015 refExpr->EvaluateAsRValue(result, getContext())) { 1016 resultIsReference = false; 1017 resultType = refExpr->getType(); 1018 1019 // Otherwise, try to evaluate as an l-value. 1020 } else if (CEK != CEK_AsValueOnly && 1021 refExpr->EvaluateAsLValue(result, getContext())) { 1022 resultIsReference = true; 1023 resultType = value->getType(); 1024 1025 // Failure. 1026 } else { 1027 return ConstantEmission(); 1028 } 1029 1030 // In any case, if the initializer has side-effects, abandon ship. 1031 if (result.HasSideEffects) 1032 return ConstantEmission(); 1033 1034 // Emit as a constant. 1035 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1036 1037 // Make sure we emit a debug reference to the global variable. 1038 // This should probably fire even for 1039 if (isa<VarDecl>(value)) { 1040 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1041 EmitDeclRefExprDbgValue(refExpr, C); 1042 } else { 1043 assert(isa<EnumConstantDecl>(value)); 1044 EmitDeclRefExprDbgValue(refExpr, C); 1045 } 1046 1047 // If we emitted a reference constant, we need to dereference that. 1048 if (resultIsReference) 1049 return ConstantEmission::forReference(C); 1050 1051 return ConstantEmission::forValue(C); 1052 } 1053 1054 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1055 SourceLocation Loc) { 1056 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1057 lvalue.getAlignment().getQuantity(), 1058 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1059 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1060 } 1061 1062 static bool hasBooleanRepresentation(QualType Ty) { 1063 if (Ty->isBooleanType()) 1064 return true; 1065 1066 if (const EnumType *ET = Ty->getAs<EnumType>()) 1067 return ET->getDecl()->getIntegerType()->isBooleanType(); 1068 1069 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1070 return hasBooleanRepresentation(AT->getValueType()); 1071 1072 return false; 1073 } 1074 1075 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1076 llvm::APInt &Min, llvm::APInt &End, 1077 bool StrictEnums) { 1078 const EnumType *ET = Ty->getAs<EnumType>(); 1079 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1080 ET && !ET->getDecl()->isFixed(); 1081 bool IsBool = hasBooleanRepresentation(Ty); 1082 if (!IsBool && !IsRegularCPlusPlusEnum) 1083 return false; 1084 1085 if (IsBool) { 1086 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1087 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1088 } else { 1089 const EnumDecl *ED = ET->getDecl(); 1090 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1091 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1092 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1093 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1094 1095 if (NumNegativeBits) { 1096 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1097 assert(NumBits <= Bitwidth); 1098 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1099 Min = -End; 1100 } else { 1101 assert(NumPositiveBits <= Bitwidth); 1102 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1103 Min = llvm::APInt(Bitwidth, 0); 1104 } 1105 } 1106 return true; 1107 } 1108 1109 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1110 llvm::APInt Min, End; 1111 if (!getRangeForType(*this, Ty, Min, End, 1112 CGM.getCodeGenOpts().StrictEnums)) 1113 return nullptr; 1114 1115 llvm::MDBuilder MDHelper(getLLVMContext()); 1116 return MDHelper.createRange(Min, End); 1117 } 1118 1119 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1120 unsigned Alignment, QualType Ty, 1121 SourceLocation Loc, 1122 llvm::MDNode *TBAAInfo, 1123 QualType TBAABaseType, 1124 uint64_t TBAAOffset) { 1125 // For better performance, handle vector loads differently. 1126 if (Ty->isVectorType()) { 1127 llvm::Value *V; 1128 const llvm::Type *EltTy = 1129 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1130 1131 const auto *VTy = cast<llvm::VectorType>(EltTy); 1132 1133 // Handle vectors of size 3, like size 4 for better performance. 1134 if (VTy->getNumElements() == 3) { 1135 1136 // Bitcast to vec4 type. 1137 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1138 4); 1139 llvm::PointerType *ptVec4Ty = 1140 llvm::PointerType::get(vec4Ty, 1141 (cast<llvm::PointerType>( 1142 Addr->getType()))->getAddressSpace()); 1143 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1144 "castToVec4"); 1145 // Now load value. 1146 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1147 1148 // Shuffle vector to get vec3. 1149 llvm::Constant *Mask[] = { 1150 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1151 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1152 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1153 }; 1154 1155 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1156 V = Builder.CreateShuffleVector(LoadVal, 1157 llvm::UndefValue::get(vec4Ty), 1158 MaskV, "extractVec"); 1159 return EmitFromMemory(V, Ty); 1160 } 1161 } 1162 1163 // Atomic operations have to be done on integral types. 1164 if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) { 1165 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1166 CharUnits::fromQuantity(Alignment), 1167 getContext(), TBAAInfo); 1168 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1169 } 1170 1171 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1172 if (Volatile) 1173 Load->setVolatile(true); 1174 if (Alignment) 1175 Load->setAlignment(Alignment); 1176 if (TBAAInfo) { 1177 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1178 TBAAOffset); 1179 if (TBAAPath) 1180 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1181 } 1182 1183 bool NeedsBoolCheck = 1184 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1185 bool NeedsEnumCheck = 1186 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1187 if (NeedsBoolCheck || NeedsEnumCheck) { 1188 SanitizerScope SanScope(this); 1189 llvm::APInt Min, End; 1190 if (getRangeForType(*this, Ty, Min, End, true)) { 1191 --End; 1192 llvm::Value *Check; 1193 if (!Min) 1194 Check = Builder.CreateICmpULE( 1195 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1196 else { 1197 llvm::Value *Upper = Builder.CreateICmpSLE( 1198 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1199 llvm::Value *Lower = Builder.CreateICmpSGE( 1200 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1201 Check = Builder.CreateAnd(Upper, Lower); 1202 } 1203 llvm::Constant *StaticArgs[] = { 1204 EmitCheckSourceLocation(Loc), 1205 EmitCheckTypeDescriptor(Ty) 1206 }; 1207 SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1208 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1209 EmitCheckValue(Load)); 1210 } 1211 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1212 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1213 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1214 1215 return EmitFromMemory(Load, Ty); 1216 } 1217 1218 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1219 // Bool has a different representation in memory than in registers. 1220 if (hasBooleanRepresentation(Ty)) { 1221 // This should really always be an i1, but sometimes it's already 1222 // an i8, and it's awkward to track those cases down. 1223 if (Value->getType()->isIntegerTy(1)) 1224 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1225 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1226 "wrong value rep of bool"); 1227 } 1228 1229 return Value; 1230 } 1231 1232 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1233 // Bool has a different representation in memory than in registers. 1234 if (hasBooleanRepresentation(Ty)) { 1235 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1236 "wrong value rep of bool"); 1237 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1238 } 1239 1240 return Value; 1241 } 1242 1243 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1244 bool Volatile, unsigned Alignment, 1245 QualType Ty, llvm::MDNode *TBAAInfo, 1246 bool isInit, QualType TBAABaseType, 1247 uint64_t TBAAOffset) { 1248 1249 // Handle vectors differently to get better performance. 1250 if (Ty->isVectorType()) { 1251 llvm::Type *SrcTy = Value->getType(); 1252 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1253 // Handle vec3 special. 1254 if (VecTy->getNumElements() == 3) { 1255 llvm::LLVMContext &VMContext = getLLVMContext(); 1256 1257 // Our source is a vec3, do a shuffle vector to make it a vec4. 1258 SmallVector<llvm::Constant*, 4> Mask; 1259 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1260 0)); 1261 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1262 1)); 1263 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1264 2)); 1265 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1266 1267 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1268 Value = Builder.CreateShuffleVector(Value, 1269 llvm::UndefValue::get(VecTy), 1270 MaskV, "extractVec"); 1271 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1272 } 1273 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1274 if (DstPtr->getElementType() != SrcTy) { 1275 llvm::Type *MemTy = 1276 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1277 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1278 } 1279 } 1280 1281 Value = EmitToMemory(Value, Ty); 1282 1283 if (Ty->isAtomicType() || 1284 (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) { 1285 EmitAtomicStore(RValue::get(Value), 1286 LValue::MakeAddr(Addr, Ty, 1287 CharUnits::fromQuantity(Alignment), 1288 getContext(), TBAAInfo), 1289 isInit); 1290 return; 1291 } 1292 1293 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1294 if (Alignment) 1295 Store->setAlignment(Alignment); 1296 if (TBAAInfo) { 1297 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1298 TBAAOffset); 1299 if (TBAAPath) 1300 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1301 } 1302 } 1303 1304 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1305 bool isInit) { 1306 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1307 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1308 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1309 lvalue.getTBAAOffset()); 1310 } 1311 1312 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1313 /// method emits the address of the lvalue, then loads the result as an rvalue, 1314 /// returning the rvalue. 1315 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1316 if (LV.isObjCWeak()) { 1317 // load of a __weak object. 1318 llvm::Value *AddrWeakObj = LV.getAddress(); 1319 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1320 AddrWeakObj)); 1321 } 1322 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1323 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1324 Object = EmitObjCConsumeObject(LV.getType(), Object); 1325 return RValue::get(Object); 1326 } 1327 1328 if (LV.isSimple()) { 1329 assert(!LV.getType()->isFunctionType()); 1330 1331 // Everything needs a load. 1332 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1333 } 1334 1335 if (LV.isVectorElt()) { 1336 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1337 LV.isVolatileQualified()); 1338 Load->setAlignment(LV.getAlignment().getQuantity()); 1339 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1340 "vecext")); 1341 } 1342 1343 // If this is a reference to a subset of the elements of a vector, either 1344 // shuffle the input or extract/insert them as appropriate. 1345 if (LV.isExtVectorElt()) 1346 return EmitLoadOfExtVectorElementLValue(LV); 1347 1348 // Global Register variables always invoke intrinsics 1349 if (LV.isGlobalReg()) 1350 return EmitLoadOfGlobalRegLValue(LV); 1351 1352 assert(LV.isBitField() && "Unknown LValue type!"); 1353 return EmitLoadOfBitfieldLValue(LV); 1354 } 1355 1356 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1357 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1358 1359 // Get the output type. 1360 llvm::Type *ResLTy = ConvertType(LV.getType()); 1361 1362 llvm::Value *Ptr = LV.getBitFieldAddr(); 1363 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1364 "bf.load"); 1365 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1366 1367 if (Info.IsSigned) { 1368 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1369 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1370 if (HighBits) 1371 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1372 if (Info.Offset + HighBits) 1373 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1374 } else { 1375 if (Info.Offset) 1376 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1377 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1378 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1379 Info.Size), 1380 "bf.clear"); 1381 } 1382 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1383 1384 return RValue::get(Val); 1385 } 1386 1387 // If this is a reference to a subset of the elements of a vector, create an 1388 // appropriate shufflevector. 1389 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1390 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1391 LV.isVolatileQualified()); 1392 Load->setAlignment(LV.getAlignment().getQuantity()); 1393 llvm::Value *Vec = Load; 1394 1395 const llvm::Constant *Elts = LV.getExtVectorElts(); 1396 1397 // If the result of the expression is a non-vector type, we must be extracting 1398 // a single element. Just codegen as an extractelement. 1399 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1400 if (!ExprVT) { 1401 unsigned InIdx = getAccessedFieldNo(0, Elts); 1402 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1403 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1404 } 1405 1406 // Always use shuffle vector to try to retain the original program structure 1407 unsigned NumResultElts = ExprVT->getNumElements(); 1408 1409 SmallVector<llvm::Constant*, 4> Mask; 1410 for (unsigned i = 0; i != NumResultElts; ++i) 1411 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1412 1413 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1414 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1415 MaskV); 1416 return RValue::get(Vec); 1417 } 1418 1419 /// @brief Generates lvalue for partial ext_vector access. 1420 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1421 llvm::Value *VectorAddress = LV.getExtVectorAddr(); 1422 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1423 QualType EQT = ExprVT->getElementType(); 1424 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1425 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo(); 1426 1427 llvm::Value *CastToPointerElement = 1428 Builder.CreateBitCast(VectorAddress, 1429 VectorElementPtrToTy, "conv.ptr.element"); 1430 1431 const llvm::Constant *Elts = LV.getExtVectorElts(); 1432 unsigned ix = getAccessedFieldNo(0, Elts); 1433 1434 llvm::Value *VectorBasePtrPlusIx = 1435 Builder.CreateInBoundsGEP(CastToPointerElement, 1436 llvm::ConstantInt::get(SizeTy, ix), "add.ptr"); 1437 1438 return VectorBasePtrPlusIx; 1439 } 1440 1441 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1442 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1443 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1444 "Bad type for register variable"); 1445 llvm::MDNode *RegName = cast<llvm::MDNode>( 1446 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1447 1448 // We accept integer and pointer types only 1449 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1450 llvm::Type *Ty = OrigTy; 1451 if (OrigTy->isPointerTy()) 1452 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1453 llvm::Type *Types[] = { Ty }; 1454 1455 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1456 llvm::Value *Call = Builder.CreateCall( 1457 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1458 if (OrigTy->isPointerTy()) 1459 Call = Builder.CreateIntToPtr(Call, OrigTy); 1460 return RValue::get(Call); 1461 } 1462 1463 1464 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1465 /// lvalue, where both are guaranteed to the have the same type, and that type 1466 /// is 'Ty'. 1467 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1468 bool isInit) { 1469 if (!Dst.isSimple()) { 1470 if (Dst.isVectorElt()) { 1471 // Read/modify/write the vector, inserting the new element. 1472 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1473 Dst.isVolatileQualified()); 1474 Load->setAlignment(Dst.getAlignment().getQuantity()); 1475 llvm::Value *Vec = Load; 1476 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1477 Dst.getVectorIdx(), "vecins"); 1478 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1479 Dst.isVolatileQualified()); 1480 Store->setAlignment(Dst.getAlignment().getQuantity()); 1481 return; 1482 } 1483 1484 // If this is an update of extended vector elements, insert them as 1485 // appropriate. 1486 if (Dst.isExtVectorElt()) 1487 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1488 1489 if (Dst.isGlobalReg()) 1490 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1491 1492 assert(Dst.isBitField() && "Unknown LValue type"); 1493 return EmitStoreThroughBitfieldLValue(Src, Dst); 1494 } 1495 1496 // There's special magic for assigning into an ARC-qualified l-value. 1497 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1498 switch (Lifetime) { 1499 case Qualifiers::OCL_None: 1500 llvm_unreachable("present but none"); 1501 1502 case Qualifiers::OCL_ExplicitNone: 1503 // nothing special 1504 break; 1505 1506 case Qualifiers::OCL_Strong: 1507 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1508 return; 1509 1510 case Qualifiers::OCL_Weak: 1511 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1512 return; 1513 1514 case Qualifiers::OCL_Autoreleasing: 1515 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1516 Src.getScalarVal())); 1517 // fall into the normal path 1518 break; 1519 } 1520 } 1521 1522 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1523 // load of a __weak object. 1524 llvm::Value *LvalueDst = Dst.getAddress(); 1525 llvm::Value *src = Src.getScalarVal(); 1526 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1527 return; 1528 } 1529 1530 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1531 // load of a __strong object. 1532 llvm::Value *LvalueDst = Dst.getAddress(); 1533 llvm::Value *src = Src.getScalarVal(); 1534 if (Dst.isObjCIvar()) { 1535 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1536 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1537 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1538 llvm::Value *dst = RHS; 1539 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1540 llvm::Value *LHS = 1541 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1542 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1543 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1544 BytesBetween); 1545 } else if (Dst.isGlobalObjCRef()) { 1546 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1547 Dst.isThreadLocalRef()); 1548 } 1549 else 1550 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1551 return; 1552 } 1553 1554 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1555 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1556 } 1557 1558 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1559 llvm::Value **Result) { 1560 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1561 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1562 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1563 1564 // Get the source value, truncated to the width of the bit-field. 1565 llvm::Value *SrcVal = Src.getScalarVal(); 1566 1567 // Cast the source to the storage type and shift it into place. 1568 SrcVal = Builder.CreateIntCast(SrcVal, 1569 Ptr->getType()->getPointerElementType(), 1570 /*IsSigned=*/false); 1571 llvm::Value *MaskedVal = SrcVal; 1572 1573 // See if there are other bits in the bitfield's storage we'll need to load 1574 // and mask together with source before storing. 1575 if (Info.StorageSize != Info.Size) { 1576 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1577 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1578 "bf.load"); 1579 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1580 1581 // Mask the source value as needed. 1582 if (!hasBooleanRepresentation(Dst.getType())) 1583 SrcVal = Builder.CreateAnd(SrcVal, 1584 llvm::APInt::getLowBitsSet(Info.StorageSize, 1585 Info.Size), 1586 "bf.value"); 1587 MaskedVal = SrcVal; 1588 if (Info.Offset) 1589 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1590 1591 // Mask out the original value. 1592 Val = Builder.CreateAnd(Val, 1593 ~llvm::APInt::getBitsSet(Info.StorageSize, 1594 Info.Offset, 1595 Info.Offset + Info.Size), 1596 "bf.clear"); 1597 1598 // Or together the unchanged values and the source value. 1599 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1600 } else { 1601 assert(Info.Offset == 0); 1602 } 1603 1604 // Write the new value back out. 1605 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1606 Dst.isVolatileQualified()); 1607 Store->setAlignment(Info.StorageAlignment); 1608 1609 // Return the new value of the bit-field, if requested. 1610 if (Result) { 1611 llvm::Value *ResultVal = MaskedVal; 1612 1613 // Sign extend the value if needed. 1614 if (Info.IsSigned) { 1615 assert(Info.Size <= Info.StorageSize); 1616 unsigned HighBits = Info.StorageSize - Info.Size; 1617 if (HighBits) { 1618 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1619 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1620 } 1621 } 1622 1623 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1624 "bf.result.cast"); 1625 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1626 } 1627 } 1628 1629 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1630 LValue Dst) { 1631 // This access turns into a read/modify/write of the vector. Load the input 1632 // value now. 1633 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1634 Dst.isVolatileQualified()); 1635 Load->setAlignment(Dst.getAlignment().getQuantity()); 1636 llvm::Value *Vec = Load; 1637 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1638 1639 llvm::Value *SrcVal = Src.getScalarVal(); 1640 1641 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1642 unsigned NumSrcElts = VTy->getNumElements(); 1643 unsigned NumDstElts = 1644 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1645 if (NumDstElts == NumSrcElts) { 1646 // Use shuffle vector is the src and destination are the same number of 1647 // elements and restore the vector mask since it is on the side it will be 1648 // stored. 1649 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1650 for (unsigned i = 0; i != NumSrcElts; ++i) 1651 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1652 1653 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1654 Vec = Builder.CreateShuffleVector(SrcVal, 1655 llvm::UndefValue::get(Vec->getType()), 1656 MaskV); 1657 } else if (NumDstElts > NumSrcElts) { 1658 // Extended the source vector to the same length and then shuffle it 1659 // into the destination. 1660 // FIXME: since we're shuffling with undef, can we just use the indices 1661 // into that? This could be simpler. 1662 SmallVector<llvm::Constant*, 4> ExtMask; 1663 for (unsigned i = 0; i != NumSrcElts; ++i) 1664 ExtMask.push_back(Builder.getInt32(i)); 1665 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1666 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1667 llvm::Value *ExtSrcVal = 1668 Builder.CreateShuffleVector(SrcVal, 1669 llvm::UndefValue::get(SrcVal->getType()), 1670 ExtMaskV); 1671 // build identity 1672 SmallVector<llvm::Constant*, 4> Mask; 1673 for (unsigned i = 0; i != NumDstElts; ++i) 1674 Mask.push_back(Builder.getInt32(i)); 1675 1676 // When the vector size is odd and .odd or .hi is used, the last element 1677 // of the Elts constant array will be one past the size of the vector. 1678 // Ignore the last element here, if it is greater than the mask size. 1679 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1680 NumSrcElts--; 1681 1682 // modify when what gets shuffled in 1683 for (unsigned i = 0; i != NumSrcElts; ++i) 1684 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1685 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1686 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1687 } else { 1688 // We should never shorten the vector 1689 llvm_unreachable("unexpected shorten vector length"); 1690 } 1691 } else { 1692 // If the Src is a scalar (not a vector) it must be updating one element. 1693 unsigned InIdx = getAccessedFieldNo(0, Elts); 1694 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1695 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1696 } 1697 1698 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1699 Dst.isVolatileQualified()); 1700 Store->setAlignment(Dst.getAlignment().getQuantity()); 1701 } 1702 1703 /// @brief Store of global named registers are always calls to intrinsics. 1704 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1705 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1706 "Bad type for register variable"); 1707 llvm::MDNode *RegName = cast<llvm::MDNode>( 1708 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1709 assert(RegName && "Register LValue is not metadata"); 1710 1711 // We accept integer and pointer types only 1712 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1713 llvm::Type *Ty = OrigTy; 1714 if (OrigTy->isPointerTy()) 1715 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1716 llvm::Type *Types[] = { Ty }; 1717 1718 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1719 llvm::Value *Value = Src.getScalarVal(); 1720 if (OrigTy->isPointerTy()) 1721 Value = Builder.CreatePtrToInt(Value, Ty); 1722 Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName), 1723 Value); 1724 } 1725 1726 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1727 // generating write-barries API. It is currently a global, ivar, 1728 // or neither. 1729 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1730 LValue &LV, 1731 bool IsMemberAccess=false) { 1732 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1733 return; 1734 1735 if (isa<ObjCIvarRefExpr>(E)) { 1736 QualType ExpTy = E->getType(); 1737 if (IsMemberAccess && ExpTy->isPointerType()) { 1738 // If ivar is a structure pointer, assigning to field of 1739 // this struct follows gcc's behavior and makes it a non-ivar 1740 // writer-barrier conservatively. 1741 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1742 if (ExpTy->isRecordType()) { 1743 LV.setObjCIvar(false); 1744 return; 1745 } 1746 } 1747 LV.setObjCIvar(true); 1748 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1749 LV.setBaseIvarExp(Exp->getBase()); 1750 LV.setObjCArray(E->getType()->isArrayType()); 1751 return; 1752 } 1753 1754 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1755 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1756 if (VD->hasGlobalStorage()) { 1757 LV.setGlobalObjCRef(true); 1758 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1759 } 1760 } 1761 LV.setObjCArray(E->getType()->isArrayType()); 1762 return; 1763 } 1764 1765 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1766 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1767 return; 1768 } 1769 1770 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1771 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1772 if (LV.isObjCIvar()) { 1773 // If cast is to a structure pointer, follow gcc's behavior and make it 1774 // a non-ivar write-barrier. 1775 QualType ExpTy = E->getType(); 1776 if (ExpTy->isPointerType()) 1777 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1778 if (ExpTy->isRecordType()) 1779 LV.setObjCIvar(false); 1780 } 1781 return; 1782 } 1783 1784 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1785 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1786 return; 1787 } 1788 1789 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1790 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1791 return; 1792 } 1793 1794 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1795 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1796 return; 1797 } 1798 1799 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1800 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1801 return; 1802 } 1803 1804 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1805 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1806 if (LV.isObjCIvar() && !LV.isObjCArray()) 1807 // Using array syntax to assigning to what an ivar points to is not 1808 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1809 LV.setObjCIvar(false); 1810 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1811 // Using array syntax to assigning to what global points to is not 1812 // same as assigning to the global itself. {id *G;} G[i] = 0; 1813 LV.setGlobalObjCRef(false); 1814 return; 1815 } 1816 1817 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1818 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1819 // We don't know if member is an 'ivar', but this flag is looked at 1820 // only in the context of LV.isObjCIvar(). 1821 LV.setObjCArray(E->getType()->isArrayType()); 1822 return; 1823 } 1824 } 1825 1826 static llvm::Value * 1827 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1828 llvm::Value *V, llvm::Type *IRType, 1829 StringRef Name = StringRef()) { 1830 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1831 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1832 } 1833 1834 static LValue EmitThreadPrivateVarDeclLValue( 1835 CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V, 1836 llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) { 1837 V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc); 1838 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1839 return CGF.MakeAddrLValue(V, T, Alignment); 1840 } 1841 1842 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1843 const Expr *E, const VarDecl *VD) { 1844 QualType T = E->getType(); 1845 1846 // If it's thread_local, emit a call to its wrapper function instead. 1847 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1848 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1849 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1850 1851 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1852 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1853 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1854 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1855 LValue LV; 1856 // Emit reference to the private copy of the variable if it is an OpenMP 1857 // threadprivate variable. 1858 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1859 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment, 1860 E->getExprLoc()); 1861 if (VD->getType()->isReferenceType()) { 1862 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1863 LI->setAlignment(Alignment.getQuantity()); 1864 V = LI; 1865 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1866 } else { 1867 LV = CGF.MakeAddrLValue(V, T, Alignment); 1868 } 1869 setObjCGCLValueClass(CGF.getContext(), E, LV); 1870 return LV; 1871 } 1872 1873 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1874 const Expr *E, const FunctionDecl *FD) { 1875 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1876 if (!FD->hasPrototype()) { 1877 if (const FunctionProtoType *Proto = 1878 FD->getType()->getAs<FunctionProtoType>()) { 1879 // Ugly case: for a K&R-style definition, the type of the definition 1880 // isn't the same as the type of a use. Correct for this with a 1881 // bitcast. 1882 QualType NoProtoType = 1883 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1884 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1885 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1886 } 1887 } 1888 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1889 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1890 } 1891 1892 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1893 llvm::Value *ThisValue) { 1894 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1895 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1896 return CGF.EmitLValueForField(LV, FD); 1897 } 1898 1899 /// Named Registers are named metadata pointing to the register name 1900 /// which will be read from/written to as an argument to the intrinsic 1901 /// @llvm.read/write_register. 1902 /// So far, only the name is being passed down, but other options such as 1903 /// register type, allocation type or even optimization options could be 1904 /// passed down via the metadata node. 1905 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1906 CodeGenModule &CGM, 1907 CharUnits Alignment) { 1908 SmallString<64> Name("llvm.named.register."); 1909 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1910 assert(Asm->getLabel().size() < 64-Name.size() && 1911 "Register name too big"); 1912 Name.append(Asm->getLabel()); 1913 llvm::NamedMDNode *M = 1914 CGM.getModule().getOrInsertNamedMetadata(Name); 1915 if (M->getNumOperands() == 0) { 1916 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1917 Asm->getLabel()); 1918 llvm::Metadata *Ops[] = {Str}; 1919 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1920 } 1921 return LValue::MakeGlobalReg( 1922 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)), 1923 VD->getType(), Alignment); 1924 } 1925 1926 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1927 const NamedDecl *ND = E->getDecl(); 1928 CharUnits Alignment = getContext().getDeclAlign(ND); 1929 QualType T = E->getType(); 1930 1931 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1932 // Global Named registers access via intrinsics only 1933 if (VD->getStorageClass() == SC_Register && 1934 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1935 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1936 1937 // A DeclRefExpr for a reference initialized by a constant expression can 1938 // appear without being odr-used. Directly emit the constant initializer. 1939 const Expr *Init = VD->getAnyInitializer(VD); 1940 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1941 VD->isUsableInConstantExpressions(getContext()) && 1942 VD->checkInitIsICE()) { 1943 llvm::Constant *Val = 1944 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1945 assert(Val && "failed to emit reference constant expression"); 1946 // FIXME: Eventually we will want to emit vector element references. 1947 return MakeAddrLValue(Val, T, Alignment); 1948 } 1949 1950 // Check for captured variables. 1951 if (E->refersToEnclosingVariableOrCapture()) { 1952 if (auto *FD = LambdaCaptureFields.lookup(VD)) 1953 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1954 else if (CapturedStmtInfo) { 1955 if (auto *V = LocalDeclMap.lookup(VD)) 1956 return MakeAddrLValue(V, T, Alignment); 1957 else 1958 return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 1959 CapturedStmtInfo->getContextValue()); 1960 } 1961 assert(isa<BlockDecl>(CurCodeDecl)); 1962 return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()), 1963 T, Alignment); 1964 } 1965 } 1966 1967 // FIXME: We should be able to assert this for FunctionDecls as well! 1968 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1969 // those with a valid source location. 1970 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1971 !E->getLocation().isValid()) && 1972 "Should not use decl without marking it used!"); 1973 1974 if (ND->hasAttr<WeakRefAttr>()) { 1975 const auto *VD = cast<ValueDecl>(ND); 1976 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1977 return MakeAddrLValue(Aliasee, T, Alignment); 1978 } 1979 1980 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1981 // Check if this is a global variable. 1982 if (VD->hasLinkage() || VD->isStaticDataMember()) 1983 return EmitGlobalVarDeclLValue(*this, E, VD); 1984 1985 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1986 1987 llvm::Value *V = LocalDeclMap.lookup(VD); 1988 if (!V && VD->isStaticLocal()) 1989 V = CGM.getOrCreateStaticVarDecl( 1990 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1991 1992 // Check if variable is threadprivate. 1993 if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1994 return EmitThreadPrivateVarDeclLValue( 1995 *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()), 1996 Alignment, E->getExprLoc()); 1997 1998 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1999 2000 if (isBlockVariable) 2001 V = BuildBlockByrefAddress(V, VD); 2002 2003 LValue LV; 2004 if (VD->getType()->isReferenceType()) { 2005 llvm::LoadInst *LI = Builder.CreateLoad(V); 2006 LI->setAlignment(Alignment.getQuantity()); 2007 V = LI; 2008 LV = MakeNaturalAlignAddrLValue(V, T); 2009 } else { 2010 LV = MakeAddrLValue(V, T, Alignment); 2011 } 2012 2013 bool isLocalStorage = VD->hasLocalStorage(); 2014 2015 bool NonGCable = isLocalStorage && 2016 !VD->getType()->isReferenceType() && 2017 !isBlockVariable; 2018 if (NonGCable) { 2019 LV.getQuals().removeObjCGCAttr(); 2020 LV.setNonGC(true); 2021 } 2022 2023 bool isImpreciseLifetime = 2024 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2025 if (isImpreciseLifetime) 2026 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2027 setObjCGCLValueClass(getContext(), E, LV); 2028 return LV; 2029 } 2030 2031 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2032 return EmitFunctionDeclLValue(*this, E, FD); 2033 2034 llvm_unreachable("Unhandled DeclRefExpr"); 2035 } 2036 2037 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2038 // __extension__ doesn't affect lvalue-ness. 2039 if (E->getOpcode() == UO_Extension) 2040 return EmitLValue(E->getSubExpr()); 2041 2042 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2043 switch (E->getOpcode()) { 2044 default: llvm_unreachable("Unknown unary operator lvalue!"); 2045 case UO_Deref: { 2046 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2047 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2048 2049 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 2050 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2051 2052 // We should not generate __weak write barrier on indirect reference 2053 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2054 // But, we continue to generate __strong write barrier on indirect write 2055 // into a pointer to object. 2056 if (getLangOpts().ObjC1 && 2057 getLangOpts().getGC() != LangOptions::NonGC && 2058 LV.isObjCWeak()) 2059 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2060 return LV; 2061 } 2062 case UO_Real: 2063 case UO_Imag: { 2064 LValue LV = EmitLValue(E->getSubExpr()); 2065 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2066 llvm::Value *Addr = LV.getAddress(); 2067 2068 // __real is valid on scalars. This is a faster way of testing that. 2069 // __imag can only produce an rvalue on scalars. 2070 if (E->getOpcode() == UO_Real && 2071 !cast<llvm::PointerType>(Addr->getType()) 2072 ->getElementType()->isStructTy()) { 2073 assert(E->getSubExpr()->getType()->isArithmeticType()); 2074 return LV; 2075 } 2076 2077 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2078 2079 unsigned Idx = E->getOpcode() == UO_Imag; 2080 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 2081 Idx, "idx"), 2082 ExprTy); 2083 } 2084 case UO_PreInc: 2085 case UO_PreDec: { 2086 LValue LV = EmitLValue(E->getSubExpr()); 2087 bool isInc = E->getOpcode() == UO_PreInc; 2088 2089 if (E->getType()->isAnyComplexType()) 2090 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2091 else 2092 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2093 return LV; 2094 } 2095 } 2096 } 2097 2098 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2099 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2100 E->getType()); 2101 } 2102 2103 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2104 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2105 E->getType()); 2106 } 2107 2108 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2109 auto SL = E->getFunctionName(); 2110 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2111 StringRef FnName = CurFn->getName(); 2112 if (FnName.startswith("\01")) 2113 FnName = FnName.substr(1); 2114 StringRef NameItems[] = { 2115 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2116 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2117 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2118 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1); 2119 return MakeAddrLValue(C, E->getType()); 2120 } 2121 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2122 return MakeAddrLValue(C, E->getType()); 2123 } 2124 2125 /// Emit a type description suitable for use by a runtime sanitizer library. The 2126 /// format of a type descriptor is 2127 /// 2128 /// \code 2129 /// { i16 TypeKind, i16 TypeInfo } 2130 /// \endcode 2131 /// 2132 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2133 /// integer, 1 for a floating point value, and -1 for anything else. 2134 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2135 // Only emit each type's descriptor once. 2136 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2137 return C; 2138 2139 uint16_t TypeKind = -1; 2140 uint16_t TypeInfo = 0; 2141 2142 if (T->isIntegerType()) { 2143 TypeKind = 0; 2144 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2145 (T->isSignedIntegerType() ? 1 : 0); 2146 } else if (T->isFloatingType()) { 2147 TypeKind = 1; 2148 TypeInfo = getContext().getTypeSize(T); 2149 } 2150 2151 // Format the type name as if for a diagnostic, including quotes and 2152 // optionally an 'aka'. 2153 SmallString<32> Buffer; 2154 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2155 (intptr_t)T.getAsOpaquePtr(), 2156 StringRef(), StringRef(), None, Buffer, 2157 None); 2158 2159 llvm::Constant *Components[] = { 2160 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2161 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2162 }; 2163 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2164 2165 auto *GV = new llvm::GlobalVariable( 2166 CGM.getModule(), Descriptor->getType(), 2167 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2168 GV->setUnnamedAddr(true); 2169 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2170 2171 // Remember the descriptor for this type. 2172 CGM.setTypeDescriptorInMap(T, GV); 2173 2174 return GV; 2175 } 2176 2177 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2178 llvm::Type *TargetTy = IntPtrTy; 2179 2180 // Floating-point types which fit into intptr_t are bitcast to integers 2181 // and then passed directly (after zero-extension, if necessary). 2182 if (V->getType()->isFloatingPointTy()) { 2183 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2184 if (Bits <= TargetTy->getIntegerBitWidth()) 2185 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2186 Bits)); 2187 } 2188 2189 // Integers which fit in intptr_t are zero-extended and passed directly. 2190 if (V->getType()->isIntegerTy() && 2191 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2192 return Builder.CreateZExt(V, TargetTy); 2193 2194 // Pointers are passed directly, everything else is passed by address. 2195 if (!V->getType()->isPointerTy()) { 2196 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2197 Builder.CreateStore(V, Ptr); 2198 V = Ptr; 2199 } 2200 return Builder.CreatePtrToInt(V, TargetTy); 2201 } 2202 2203 /// \brief Emit a representation of a SourceLocation for passing to a handler 2204 /// in a sanitizer runtime library. The format for this data is: 2205 /// \code 2206 /// struct SourceLocation { 2207 /// const char *Filename; 2208 /// int32_t Line, Column; 2209 /// }; 2210 /// \endcode 2211 /// For an invalid SourceLocation, the Filename pointer is null. 2212 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2213 llvm::Constant *Filename; 2214 int Line, Column; 2215 2216 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2217 if (PLoc.isValid()) { 2218 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2219 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV); 2220 Filename = FilenameGV; 2221 Line = PLoc.getLine(); 2222 Column = PLoc.getColumn(); 2223 } else { 2224 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2225 Line = Column = 0; 2226 } 2227 2228 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2229 Builder.getInt32(Column)}; 2230 2231 return llvm::ConstantStruct::getAnon(Data); 2232 } 2233 2234 namespace { 2235 /// \brief Specify under what conditions this check can be recovered 2236 enum class CheckRecoverableKind { 2237 /// Always terminate program execution if this check fails. 2238 Unrecoverable, 2239 /// Check supports recovering, runtime has both fatal (noreturn) and 2240 /// non-fatal handlers for this check. 2241 Recoverable, 2242 /// Runtime conditionally aborts, always need to support recovery. 2243 AlwaysRecoverable 2244 }; 2245 } 2246 2247 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) { 2248 switch (Kind) { 2249 case SanitizerKind::Vptr: 2250 return CheckRecoverableKind::AlwaysRecoverable; 2251 case SanitizerKind::Return: 2252 case SanitizerKind::Unreachable: 2253 return CheckRecoverableKind::Unrecoverable; 2254 default: 2255 return CheckRecoverableKind::Recoverable; 2256 } 2257 } 2258 2259 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2260 llvm::FunctionType *FnType, 2261 ArrayRef<llvm::Value *> FnArgs, 2262 StringRef CheckName, 2263 CheckRecoverableKind RecoverKind, bool IsFatal, 2264 llvm::BasicBlock *ContBB) { 2265 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2266 bool NeedsAbortSuffix = 2267 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2268 std::string FnName = ("__ubsan_handle_" + CheckName + 2269 (NeedsAbortSuffix ? "_abort" : "")).str(); 2270 bool MayReturn = 2271 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2272 2273 llvm::AttrBuilder B; 2274 if (!MayReturn) { 2275 B.addAttribute(llvm::Attribute::NoReturn) 2276 .addAttribute(llvm::Attribute::NoUnwind); 2277 } 2278 B.addAttribute(llvm::Attribute::UWTable); 2279 2280 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2281 FnType, FnName, 2282 llvm::AttributeSet::get(CGF.getLLVMContext(), 2283 llvm::AttributeSet::FunctionIndex, B)); 2284 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2285 if (!MayReturn) { 2286 HandlerCall->setDoesNotReturn(); 2287 CGF.Builder.CreateUnreachable(); 2288 } else { 2289 CGF.Builder.CreateBr(ContBB); 2290 } 2291 } 2292 2293 void CodeGenFunction::EmitCheck( 2294 ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked, 2295 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2296 ArrayRef<llvm::Value *> DynamicArgs) { 2297 assert(IsSanitizerScope); 2298 assert(Checked.size() > 0); 2299 2300 llvm::Value *FatalCond = nullptr; 2301 llvm::Value *RecoverableCond = nullptr; 2302 for (int i = 0, n = Checked.size(); i < n; ++i) { 2303 llvm::Value *Check = Checked[i].first; 2304 llvm::Value *&Cond = 2305 CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2306 ? RecoverableCond 2307 : FatalCond; 2308 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2309 } 2310 2311 llvm::Value *JointCond; 2312 if (FatalCond && RecoverableCond) 2313 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2314 else 2315 JointCond = FatalCond ? FatalCond : RecoverableCond; 2316 assert(JointCond); 2317 2318 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2319 assert(SanOpts.has(Checked[0].second)); 2320 #ifndef NDEBUG 2321 for (int i = 1, n = Checked.size(); i < n; ++i) { 2322 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2323 "All recoverable kinds in a single check must be same!"); 2324 assert(SanOpts.has(Checked[i].second)); 2325 } 2326 #endif 2327 2328 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2329 assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable && 2330 "Runtime call required for AlwaysRecoverable kind!"); 2331 // Assume that -fsanitize-undefined-trap-on-error overrides 2332 // -fsanitize-recover= options, as we can only print meaningful error 2333 // message and recover if we have a runtime support. 2334 return EmitTrapCheck(JointCond); 2335 } 2336 2337 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2338 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2339 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2340 // Give hint that we very much don't expect to execute the handler 2341 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2342 llvm::MDBuilder MDHelper(getLLVMContext()); 2343 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2344 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2345 EmitBlock(Handlers); 2346 2347 // Emit handler arguments and create handler function type. 2348 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2349 auto *InfoPtr = 2350 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2351 llvm::GlobalVariable::PrivateLinkage, Info); 2352 InfoPtr->setUnnamedAddr(true); 2353 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2354 2355 SmallVector<llvm::Value *, 4> Args; 2356 SmallVector<llvm::Type *, 4> ArgTypes; 2357 Args.reserve(DynamicArgs.size() + 1); 2358 ArgTypes.reserve(DynamicArgs.size() + 1); 2359 2360 // Handler functions take an i8* pointing to the (handler-specific) static 2361 // information block, followed by a sequence of intptr_t arguments 2362 // representing operand values. 2363 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2364 ArgTypes.push_back(Int8PtrTy); 2365 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2366 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2367 ArgTypes.push_back(IntPtrTy); 2368 } 2369 2370 llvm::FunctionType *FnType = 2371 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2372 2373 if (!FatalCond || !RecoverableCond) { 2374 // Simple case: we need to generate a single handler call, either 2375 // fatal, or non-fatal. 2376 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2377 (FatalCond != nullptr), Cont); 2378 } else { 2379 // Emit two handler calls: first one for set of unrecoverable checks, 2380 // another one for recoverable. 2381 llvm::BasicBlock *NonFatalHandlerBB = 2382 createBasicBlock("non_fatal." + CheckName); 2383 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2384 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2385 EmitBlock(FatalHandlerBB); 2386 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2387 NonFatalHandlerBB); 2388 EmitBlock(NonFatalHandlerBB); 2389 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2390 Cont); 2391 } 2392 2393 EmitBlock(Cont); 2394 } 2395 2396 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2397 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2398 2399 // If we're optimizing, collapse all calls to trap down to just one per 2400 // function to save on code size. 2401 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2402 TrapBB = createBasicBlock("trap"); 2403 Builder.CreateCondBr(Checked, Cont, TrapBB); 2404 EmitBlock(TrapBB); 2405 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2406 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2407 TrapCall->setDoesNotReturn(); 2408 TrapCall->setDoesNotThrow(); 2409 Builder.CreateUnreachable(); 2410 } else { 2411 Builder.CreateCondBr(Checked, Cont, TrapBB); 2412 } 2413 2414 EmitBlock(Cont); 2415 } 2416 2417 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2418 /// array to pointer, return the array subexpression. 2419 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2420 // If this isn't just an array->pointer decay, bail out. 2421 const auto *CE = dyn_cast<CastExpr>(E); 2422 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2423 return nullptr; 2424 2425 // If this is a decay from variable width array, bail out. 2426 const Expr *SubExpr = CE->getSubExpr(); 2427 if (SubExpr->getType()->isVariableArrayType()) 2428 return nullptr; 2429 2430 return SubExpr; 2431 } 2432 2433 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2434 bool Accessed) { 2435 // The index must always be an integer, which is not an aggregate. Emit it. 2436 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2437 QualType IdxTy = E->getIdx()->getType(); 2438 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2439 2440 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2441 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2442 2443 // If the base is a vector type, then we are forming a vector element lvalue 2444 // with this subscript. 2445 if (E->getBase()->getType()->isVectorType() && 2446 !isa<ExtVectorElementExpr>(E->getBase())) { 2447 // Emit the vector as an lvalue to get its address. 2448 LValue LHS = EmitLValue(E->getBase()); 2449 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2450 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2451 E->getBase()->getType(), LHS.getAlignment()); 2452 } 2453 2454 // Extend or truncate the index type to 32 or 64-bits. 2455 if (Idx->getType() != IntPtrTy) 2456 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2457 2458 // We know that the pointer points to a type of the correct size, unless the 2459 // size is a VLA or Objective-C interface. 2460 llvm::Value *Address = nullptr; 2461 CharUnits ArrayAlignment; 2462 if (isa<ExtVectorElementExpr>(E->getBase())) { 2463 LValue LV = EmitLValue(E->getBase()); 2464 Address = EmitExtVectorElementLValue(LV); 2465 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2466 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2467 QualType EQT = ExprVT->getElementType(); 2468 return MakeAddrLValue(Address, EQT, 2469 getContext().getTypeAlignInChars(EQT)); 2470 } 2471 else if (const VariableArrayType *vla = 2472 getContext().getAsVariableArrayType(E->getType())) { 2473 // The base must be a pointer, which is not an aggregate. Emit 2474 // it. It needs to be emitted first in case it's what captures 2475 // the VLA bounds. 2476 Address = EmitScalarExpr(E->getBase()); 2477 2478 // The element count here is the total number of non-VLA elements. 2479 llvm::Value *numElements = getVLASize(vla).first; 2480 2481 // Effectively, the multiply by the VLA size is part of the GEP. 2482 // GEP indexes are signed, and scaling an index isn't permitted to 2483 // signed-overflow, so we use the same semantics for our explicit 2484 // multiply. We suppress this if overflow is not undefined behavior. 2485 if (getLangOpts().isSignedOverflowDefined()) { 2486 Idx = Builder.CreateMul(Idx, numElements); 2487 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2488 } else { 2489 Idx = Builder.CreateNSWMul(Idx, numElements); 2490 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2491 } 2492 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2493 // Indexing over an interface, as in "NSString *P; P[4];" 2494 llvm::Value *InterfaceSize = 2495 llvm::ConstantInt::get(Idx->getType(), 2496 getContext().getTypeSizeInChars(OIT).getQuantity()); 2497 2498 Idx = Builder.CreateMul(Idx, InterfaceSize); 2499 2500 // The base must be a pointer, which is not an aggregate. Emit it. 2501 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2502 Address = EmitCastToVoidPtr(Base); 2503 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2504 Address = Builder.CreateBitCast(Address, Base->getType()); 2505 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2506 // If this is A[i] where A is an array, the frontend will have decayed the 2507 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2508 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2509 // "gep x, i" here. Emit one "gep A, 0, i". 2510 assert(Array->getType()->isArrayType() && 2511 "Array to pointer decay must have array source type!"); 2512 LValue ArrayLV; 2513 // For simple multidimensional array indexing, set the 'accessed' flag for 2514 // better bounds-checking of the base expression. 2515 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2516 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2517 else 2518 ArrayLV = EmitLValue(Array); 2519 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2520 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2521 llvm::Value *Args[] = { Zero, Idx }; 2522 2523 // Propagate the alignment from the array itself to the result. 2524 ArrayAlignment = ArrayLV.getAlignment(); 2525 2526 if (getLangOpts().isSignedOverflowDefined()) 2527 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2528 else 2529 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2530 } else { 2531 // The base must be a pointer, which is not an aggregate. Emit it. 2532 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2533 if (getLangOpts().isSignedOverflowDefined()) 2534 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2535 else 2536 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2537 } 2538 2539 QualType T = E->getBase()->getType()->getPointeeType(); 2540 assert(!T.isNull() && 2541 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2542 2543 2544 // Limit the alignment to that of the result type. 2545 LValue LV; 2546 if (!ArrayAlignment.isZero()) { 2547 CharUnits Align = getContext().getTypeAlignInChars(T); 2548 ArrayAlignment = std::min(Align, ArrayAlignment); 2549 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2550 } else { 2551 LV = MakeNaturalAlignAddrLValue(Address, T); 2552 } 2553 2554 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2555 2556 if (getLangOpts().ObjC1 && 2557 getLangOpts().getGC() != LangOptions::NonGC) { 2558 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2559 setObjCGCLValueClass(getContext(), E, LV); 2560 } 2561 return LV; 2562 } 2563 2564 static 2565 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2566 SmallVectorImpl<unsigned> &Elts) { 2567 SmallVector<llvm::Constant*, 4> CElts; 2568 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2569 CElts.push_back(Builder.getInt32(Elts[i])); 2570 2571 return llvm::ConstantVector::get(CElts); 2572 } 2573 2574 LValue CodeGenFunction:: 2575 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2576 // Emit the base vector as an l-value. 2577 LValue Base; 2578 2579 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2580 if (E->isArrow()) { 2581 // If it is a pointer to a vector, emit the address and form an lvalue with 2582 // it. 2583 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2584 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2585 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2586 Base.getQuals().removeObjCGCAttr(); 2587 } else if (E->getBase()->isGLValue()) { 2588 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2589 // emit the base as an lvalue. 2590 assert(E->getBase()->getType()->isVectorType()); 2591 Base = EmitLValue(E->getBase()); 2592 } else { 2593 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2594 assert(E->getBase()->getType()->isVectorType() && 2595 "Result must be a vector"); 2596 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2597 2598 // Store the vector to memory (because LValue wants an address). 2599 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2600 Builder.CreateStore(Vec, VecMem); 2601 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2602 } 2603 2604 QualType type = 2605 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2606 2607 // Encode the element access list into a vector of unsigned indices. 2608 SmallVector<unsigned, 4> Indices; 2609 E->getEncodedElementAccess(Indices); 2610 2611 if (Base.isSimple()) { 2612 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2613 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2614 Base.getAlignment()); 2615 } 2616 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2617 2618 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2619 SmallVector<llvm::Constant *, 4> CElts; 2620 2621 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2622 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2623 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2624 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2625 Base.getAlignment()); 2626 } 2627 2628 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2629 Expr *BaseExpr = E->getBase(); 2630 2631 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2632 LValue BaseLV; 2633 if (E->isArrow()) { 2634 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2635 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2636 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2637 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2638 } else 2639 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2640 2641 NamedDecl *ND = E->getMemberDecl(); 2642 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2643 LValue LV = EmitLValueForField(BaseLV, Field); 2644 setObjCGCLValueClass(getContext(), E, LV); 2645 return LV; 2646 } 2647 2648 if (auto *VD = dyn_cast<VarDecl>(ND)) 2649 return EmitGlobalVarDeclLValue(*this, E, VD); 2650 2651 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2652 return EmitFunctionDeclLValue(*this, E, FD); 2653 2654 llvm_unreachable("Unhandled member declaration!"); 2655 } 2656 2657 /// Given that we are currently emitting a lambda, emit an l-value for 2658 /// one of its members. 2659 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2660 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2661 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2662 QualType LambdaTagType = 2663 getContext().getTagDeclType(Field->getParent()); 2664 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2665 return EmitLValueForField(LambdaLV, Field); 2666 } 2667 2668 LValue CodeGenFunction::EmitLValueForField(LValue base, 2669 const FieldDecl *field) { 2670 if (field->isBitField()) { 2671 const CGRecordLayout &RL = 2672 CGM.getTypes().getCGRecordLayout(field->getParent()); 2673 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2674 llvm::Value *Addr = base.getAddress(); 2675 unsigned Idx = RL.getLLVMFieldNo(field); 2676 if (Idx != 0) 2677 // For structs, we GEP to the field that the record layout suggests. 2678 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2679 // Get the access type. 2680 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2681 getLLVMContext(), Info.StorageSize, 2682 CGM.getContext().getTargetAddressSpace(base.getType())); 2683 if (Addr->getType() != PtrTy) 2684 Addr = Builder.CreateBitCast(Addr, PtrTy); 2685 2686 QualType fieldType = 2687 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2688 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2689 } 2690 2691 const RecordDecl *rec = field->getParent(); 2692 QualType type = field->getType(); 2693 CharUnits alignment = getContext().getDeclAlign(field); 2694 2695 // FIXME: It should be impossible to have an LValue without alignment for a 2696 // complete type. 2697 if (!base.getAlignment().isZero()) 2698 alignment = std::min(alignment, base.getAlignment()); 2699 2700 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2701 2702 llvm::Value *addr = base.getAddress(); 2703 unsigned cvr = base.getVRQualifiers(); 2704 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2705 if (rec->isUnion()) { 2706 // For unions, there is no pointer adjustment. 2707 assert(!type->isReferenceType() && "union has reference member"); 2708 // TODO: handle path-aware TBAA for union. 2709 TBAAPath = false; 2710 } else { 2711 // For structs, we GEP to the field that the record layout suggests. 2712 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2713 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2714 2715 // If this is a reference field, load the reference right now. 2716 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2717 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2718 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2719 load->setAlignment(alignment.getQuantity()); 2720 2721 // Loading the reference will disable path-aware TBAA. 2722 TBAAPath = false; 2723 if (CGM.shouldUseTBAA()) { 2724 llvm::MDNode *tbaa; 2725 if (mayAlias) 2726 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2727 else 2728 tbaa = CGM.getTBAAInfo(type); 2729 if (tbaa) 2730 CGM.DecorateInstruction(load, tbaa); 2731 } 2732 2733 addr = load; 2734 mayAlias = false; 2735 type = refType->getPointeeType(); 2736 if (type->isIncompleteType()) 2737 alignment = CharUnits(); 2738 else 2739 alignment = getContext().getTypeAlignInChars(type); 2740 cvr = 0; // qualifiers don't recursively apply to referencee 2741 } 2742 } 2743 2744 // Make sure that the address is pointing to the right type. This is critical 2745 // for both unions and structs. A union needs a bitcast, a struct element 2746 // will need a bitcast if the LLVM type laid out doesn't match the desired 2747 // type. 2748 addr = EmitBitCastOfLValueToProperType(*this, addr, 2749 CGM.getTypes().ConvertTypeForMem(type), 2750 field->getName()); 2751 2752 if (field->hasAttr<AnnotateAttr>()) 2753 addr = EmitFieldAnnotations(field, addr); 2754 2755 LValue LV = MakeAddrLValue(addr, type, alignment); 2756 LV.getQuals().addCVRQualifiers(cvr); 2757 if (TBAAPath) { 2758 const ASTRecordLayout &Layout = 2759 getContext().getASTRecordLayout(field->getParent()); 2760 // Set the base type to be the base type of the base LValue and 2761 // update offset to be relative to the base type. 2762 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2763 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2764 Layout.getFieldOffset(field->getFieldIndex()) / 2765 getContext().getCharWidth()); 2766 } 2767 2768 // __weak attribute on a field is ignored. 2769 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2770 LV.getQuals().removeObjCGCAttr(); 2771 2772 // Fields of may_alias structs act like 'char' for TBAA purposes. 2773 // FIXME: this should get propagated down through anonymous structs 2774 // and unions. 2775 if (mayAlias && LV.getTBAAInfo()) 2776 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2777 2778 return LV; 2779 } 2780 2781 LValue 2782 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2783 const FieldDecl *Field) { 2784 QualType FieldType = Field->getType(); 2785 2786 if (!FieldType->isReferenceType()) 2787 return EmitLValueForField(Base, Field); 2788 2789 const CGRecordLayout &RL = 2790 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2791 unsigned idx = RL.getLLVMFieldNo(Field); 2792 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2793 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2794 2795 // Make sure that the address is pointing to the right type. This is critical 2796 // for both unions and structs. A union needs a bitcast, a struct element 2797 // will need a bitcast if the LLVM type laid out doesn't match the desired 2798 // type. 2799 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2800 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2801 2802 CharUnits Alignment = getContext().getDeclAlign(Field); 2803 2804 // FIXME: It should be impossible to have an LValue without alignment for a 2805 // complete type. 2806 if (!Base.getAlignment().isZero()) 2807 Alignment = std::min(Alignment, Base.getAlignment()); 2808 2809 return MakeAddrLValue(V, FieldType, Alignment); 2810 } 2811 2812 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2813 if (E->isFileScope()) { 2814 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2815 return MakeAddrLValue(GlobalPtr, E->getType()); 2816 } 2817 if (E->getType()->isVariablyModifiedType()) 2818 // make sure to emit the VLA size. 2819 EmitVariablyModifiedType(E->getType()); 2820 2821 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2822 const Expr *InitExpr = E->getInitializer(); 2823 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2824 2825 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2826 /*Init*/ true); 2827 2828 return Result; 2829 } 2830 2831 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2832 if (!E->isGLValue()) 2833 // Initializing an aggregate temporary in C++11: T{...}. 2834 return EmitAggExprToLValue(E); 2835 2836 // An lvalue initializer list must be initializing a reference. 2837 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2838 return EmitLValue(E->getInit(0)); 2839 } 2840 2841 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2842 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2843 /// LValue is returned and the current block has been terminated. 2844 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2845 const Expr *Operand) { 2846 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2847 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2848 return None; 2849 } 2850 2851 return CGF.EmitLValue(Operand); 2852 } 2853 2854 LValue CodeGenFunction:: 2855 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2856 if (!expr->isGLValue()) { 2857 // ?: here should be an aggregate. 2858 assert(hasAggregateEvaluationKind(expr->getType()) && 2859 "Unexpected conditional operator!"); 2860 return EmitAggExprToLValue(expr); 2861 } 2862 2863 OpaqueValueMapping binding(*this, expr); 2864 RegionCounter Cnt = getPGORegionCounter(expr); 2865 2866 const Expr *condExpr = expr->getCond(); 2867 bool CondExprBool; 2868 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2869 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2870 if (!CondExprBool) std::swap(live, dead); 2871 2872 if (!ContainsLabel(dead)) { 2873 // If the true case is live, we need to track its region. 2874 if (CondExprBool) 2875 Cnt.beginRegion(Builder); 2876 return EmitLValue(live); 2877 } 2878 } 2879 2880 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2881 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2882 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2883 2884 ConditionalEvaluation eval(*this); 2885 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2886 2887 // Any temporaries created here are conditional. 2888 EmitBlock(lhsBlock); 2889 Cnt.beginRegion(Builder); 2890 eval.begin(*this); 2891 Optional<LValue> lhs = 2892 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2893 eval.end(*this); 2894 2895 if (lhs && !lhs->isSimple()) 2896 return EmitUnsupportedLValue(expr, "conditional operator"); 2897 2898 lhsBlock = Builder.GetInsertBlock(); 2899 if (lhs) 2900 Builder.CreateBr(contBlock); 2901 2902 // Any temporaries created here are conditional. 2903 EmitBlock(rhsBlock); 2904 eval.begin(*this); 2905 Optional<LValue> rhs = 2906 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2907 eval.end(*this); 2908 if (rhs && !rhs->isSimple()) 2909 return EmitUnsupportedLValue(expr, "conditional operator"); 2910 rhsBlock = Builder.GetInsertBlock(); 2911 2912 EmitBlock(contBlock); 2913 2914 if (lhs && rhs) { 2915 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2916 2, "cond-lvalue"); 2917 phi->addIncoming(lhs->getAddress(), lhsBlock); 2918 phi->addIncoming(rhs->getAddress(), rhsBlock); 2919 return MakeAddrLValue(phi, expr->getType()); 2920 } else { 2921 assert((lhs || rhs) && 2922 "both operands of glvalue conditional are throw-expressions?"); 2923 return lhs ? *lhs : *rhs; 2924 } 2925 } 2926 2927 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2928 /// type. If the cast is to a reference, we can have the usual lvalue result, 2929 /// otherwise if a cast is needed by the code generator in an lvalue context, 2930 /// then it must mean that we need the address of an aggregate in order to 2931 /// access one of its members. This can happen for all the reasons that casts 2932 /// are permitted with aggregate result, including noop aggregate casts, and 2933 /// cast from scalar to union. 2934 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2935 switch (E->getCastKind()) { 2936 case CK_ToVoid: 2937 case CK_BitCast: 2938 case CK_ArrayToPointerDecay: 2939 case CK_FunctionToPointerDecay: 2940 case CK_NullToMemberPointer: 2941 case CK_NullToPointer: 2942 case CK_IntegralToPointer: 2943 case CK_PointerToIntegral: 2944 case CK_PointerToBoolean: 2945 case CK_VectorSplat: 2946 case CK_IntegralCast: 2947 case CK_IntegralToBoolean: 2948 case CK_IntegralToFloating: 2949 case CK_FloatingToIntegral: 2950 case CK_FloatingToBoolean: 2951 case CK_FloatingCast: 2952 case CK_FloatingRealToComplex: 2953 case CK_FloatingComplexToReal: 2954 case CK_FloatingComplexToBoolean: 2955 case CK_FloatingComplexCast: 2956 case CK_FloatingComplexToIntegralComplex: 2957 case CK_IntegralRealToComplex: 2958 case CK_IntegralComplexToReal: 2959 case CK_IntegralComplexToBoolean: 2960 case CK_IntegralComplexCast: 2961 case CK_IntegralComplexToFloatingComplex: 2962 case CK_DerivedToBaseMemberPointer: 2963 case CK_BaseToDerivedMemberPointer: 2964 case CK_MemberPointerToBoolean: 2965 case CK_ReinterpretMemberPointer: 2966 case CK_AnyPointerToBlockPointerCast: 2967 case CK_ARCProduceObject: 2968 case CK_ARCConsumeObject: 2969 case CK_ARCReclaimReturnedObject: 2970 case CK_ARCExtendBlockObject: 2971 case CK_CopyAndAutoreleaseBlockObject: 2972 case CK_AddressSpaceConversion: 2973 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2974 2975 case CK_Dependent: 2976 llvm_unreachable("dependent cast kind in IR gen!"); 2977 2978 case CK_BuiltinFnToFnPtr: 2979 llvm_unreachable("builtin functions are handled elsewhere"); 2980 2981 // These are never l-values; just use the aggregate emission code. 2982 case CK_NonAtomicToAtomic: 2983 case CK_AtomicToNonAtomic: 2984 return EmitAggExprToLValue(E); 2985 2986 case CK_Dynamic: { 2987 LValue LV = EmitLValue(E->getSubExpr()); 2988 llvm::Value *V = LV.getAddress(); 2989 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2990 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2991 } 2992 2993 case CK_ConstructorConversion: 2994 case CK_UserDefinedConversion: 2995 case CK_CPointerToObjCPointerCast: 2996 case CK_BlockPointerToObjCPointerCast: 2997 case CK_NoOp: 2998 case CK_LValueToRValue: 2999 return EmitLValue(E->getSubExpr()); 3000 3001 case CK_UncheckedDerivedToBase: 3002 case CK_DerivedToBase: { 3003 const RecordType *DerivedClassTy = 3004 E->getSubExpr()->getType()->getAs<RecordType>(); 3005 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3006 3007 LValue LV = EmitLValue(E->getSubExpr()); 3008 llvm::Value *This = LV.getAddress(); 3009 3010 // Perform the derived-to-base conversion 3011 llvm::Value *Base = GetAddressOfBaseClass( 3012 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3013 /*NullCheckValue=*/false, E->getExprLoc()); 3014 3015 return MakeAddrLValue(Base, E->getType()); 3016 } 3017 case CK_ToUnion: 3018 return EmitAggExprToLValue(E); 3019 case CK_BaseToDerived: { 3020 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3021 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3022 3023 LValue LV = EmitLValue(E->getSubExpr()); 3024 3025 // Perform the base-to-derived conversion 3026 llvm::Value *Derived = 3027 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3028 E->path_begin(), E->path_end(), 3029 /*NullCheckValue=*/false); 3030 3031 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3032 // performed and the object is not of the derived type. 3033 if (sanitizePerformTypeCheck()) 3034 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3035 Derived, E->getType()); 3036 3037 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3038 EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false); 3039 3040 return MakeAddrLValue(Derived, E->getType()); 3041 } 3042 case CK_LValueBitCast: { 3043 // This must be a reinterpret_cast (or c-style equivalent). 3044 const auto *CE = cast<ExplicitCastExpr>(E); 3045 3046 LValue LV = EmitLValue(E->getSubExpr()); 3047 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3048 ConvertType(CE->getTypeAsWritten())); 3049 3050 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3051 EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false); 3052 3053 return MakeAddrLValue(V, E->getType()); 3054 } 3055 case CK_ObjCObjectLValueCast: { 3056 LValue LV = EmitLValue(E->getSubExpr()); 3057 QualType ToType = getContext().getLValueReferenceType(E->getType()); 3058 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3059 ConvertType(ToType)); 3060 return MakeAddrLValue(V, E->getType()); 3061 } 3062 case CK_ZeroToOCLEvent: 3063 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3064 } 3065 3066 llvm_unreachable("Unhandled lvalue cast kind?"); 3067 } 3068 3069 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3070 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3071 return getOpaqueLValueMapping(e); 3072 } 3073 3074 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3075 const FieldDecl *FD, 3076 SourceLocation Loc) { 3077 QualType FT = FD->getType(); 3078 LValue FieldLV = EmitLValueForField(LV, FD); 3079 switch (getEvaluationKind(FT)) { 3080 case TEK_Complex: 3081 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3082 case TEK_Aggregate: 3083 return FieldLV.asAggregateRValue(); 3084 case TEK_Scalar: 3085 return EmitLoadOfLValue(FieldLV, Loc); 3086 } 3087 llvm_unreachable("bad evaluation kind"); 3088 } 3089 3090 //===--------------------------------------------------------------------===// 3091 // Expression Emission 3092 //===--------------------------------------------------------------------===// 3093 3094 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3095 ReturnValueSlot ReturnValue) { 3096 // Builtins never have block type. 3097 if (E->getCallee()->getType()->isBlockPointerType()) 3098 return EmitBlockCallExpr(E, ReturnValue); 3099 3100 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3101 return EmitCXXMemberCallExpr(CE, ReturnValue); 3102 3103 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3104 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3105 3106 const Decl *TargetDecl = E->getCalleeDecl(); 3107 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3108 if (unsigned builtinID = FD->getBuiltinID()) 3109 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3110 } 3111 3112 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3113 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3114 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3115 3116 if (const auto *PseudoDtor = 3117 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3118 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3119 if (getLangOpts().ObjCAutoRefCount && 3120 DestroyedType->isObjCLifetimeType() && 3121 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 3122 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 3123 // Automatic Reference Counting: 3124 // If the pseudo-expression names a retainable object with weak or 3125 // strong lifetime, the object shall be released. 3126 Expr *BaseExpr = PseudoDtor->getBase(); 3127 llvm::Value *BaseValue = nullptr; 3128 Qualifiers BaseQuals; 3129 3130 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3131 if (PseudoDtor->isArrow()) { 3132 BaseValue = EmitScalarExpr(BaseExpr); 3133 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3134 BaseQuals = PTy->getPointeeType().getQualifiers(); 3135 } else { 3136 LValue BaseLV = EmitLValue(BaseExpr); 3137 BaseValue = BaseLV.getAddress(); 3138 QualType BaseTy = BaseExpr->getType(); 3139 BaseQuals = BaseTy.getQualifiers(); 3140 } 3141 3142 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3143 case Qualifiers::OCL_None: 3144 case Qualifiers::OCL_ExplicitNone: 3145 case Qualifiers::OCL_Autoreleasing: 3146 break; 3147 3148 case Qualifiers::OCL_Strong: 3149 EmitARCRelease(Builder.CreateLoad(BaseValue, 3150 PseudoDtor->getDestroyedType().isVolatileQualified()), 3151 ARCPreciseLifetime); 3152 break; 3153 3154 case Qualifiers::OCL_Weak: 3155 EmitARCDestroyWeak(BaseValue); 3156 break; 3157 } 3158 } else { 3159 // C++ [expr.pseudo]p1: 3160 // The result shall only be used as the operand for the function call 3161 // operator (), and the result of such a call has type void. The only 3162 // effect is the evaluation of the postfix-expression before the dot or 3163 // arrow. 3164 EmitScalarExpr(E->getCallee()); 3165 } 3166 3167 return RValue::get(nullptr); 3168 } 3169 3170 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3171 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3172 TargetDecl); 3173 } 3174 3175 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3176 // Comma expressions just emit their LHS then their RHS as an l-value. 3177 if (E->getOpcode() == BO_Comma) { 3178 EmitIgnoredExpr(E->getLHS()); 3179 EnsureInsertPoint(); 3180 return EmitLValue(E->getRHS()); 3181 } 3182 3183 if (E->getOpcode() == BO_PtrMemD || 3184 E->getOpcode() == BO_PtrMemI) 3185 return EmitPointerToDataMemberBinaryExpr(E); 3186 3187 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3188 3189 // Note that in all of these cases, __block variables need the RHS 3190 // evaluated first just in case the variable gets moved by the RHS. 3191 3192 switch (getEvaluationKind(E->getType())) { 3193 case TEK_Scalar: { 3194 switch (E->getLHS()->getType().getObjCLifetime()) { 3195 case Qualifiers::OCL_Strong: 3196 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3197 3198 case Qualifiers::OCL_Autoreleasing: 3199 return EmitARCStoreAutoreleasing(E).first; 3200 3201 // No reason to do any of these differently. 3202 case Qualifiers::OCL_None: 3203 case Qualifiers::OCL_ExplicitNone: 3204 case Qualifiers::OCL_Weak: 3205 break; 3206 } 3207 3208 RValue RV = EmitAnyExpr(E->getRHS()); 3209 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3210 EmitStoreThroughLValue(RV, LV); 3211 return LV; 3212 } 3213 3214 case TEK_Complex: 3215 return EmitComplexAssignmentLValue(E); 3216 3217 case TEK_Aggregate: 3218 return EmitAggExprToLValue(E); 3219 } 3220 llvm_unreachable("bad evaluation kind"); 3221 } 3222 3223 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3224 RValue RV = EmitCallExpr(E); 3225 3226 if (!RV.isScalar()) 3227 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3228 3229 assert(E->getCallReturnType(getContext())->isReferenceType() && 3230 "Can't have a scalar return unless the return type is a " 3231 "reference type!"); 3232 3233 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3234 } 3235 3236 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3237 // FIXME: This shouldn't require another copy. 3238 return EmitAggExprToLValue(E); 3239 } 3240 3241 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3242 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3243 && "binding l-value to type which needs a temporary"); 3244 AggValueSlot Slot = CreateAggTemp(E->getType()); 3245 EmitCXXConstructExpr(E, Slot); 3246 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3247 } 3248 3249 LValue 3250 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3251 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3252 } 3253 3254 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3255 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3256 ConvertType(E->getType())->getPointerTo()); 3257 } 3258 3259 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3260 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3261 } 3262 3263 LValue 3264 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3265 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3266 Slot.setExternallyDestructed(); 3267 EmitAggExpr(E->getSubExpr(), Slot); 3268 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3269 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3270 } 3271 3272 LValue 3273 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3274 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3275 EmitLambdaExpr(E, Slot); 3276 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3277 } 3278 3279 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3280 RValue RV = EmitObjCMessageExpr(E); 3281 3282 if (!RV.isScalar()) 3283 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3284 3285 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3286 "Can't have a scalar return unless the return type is a " 3287 "reference type!"); 3288 3289 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3290 } 3291 3292 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3293 llvm::Value *V = 3294 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3295 return MakeAddrLValue(V, E->getType()); 3296 } 3297 3298 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3299 const ObjCIvarDecl *Ivar) { 3300 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3301 } 3302 3303 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3304 llvm::Value *BaseValue, 3305 const ObjCIvarDecl *Ivar, 3306 unsigned CVRQualifiers) { 3307 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3308 Ivar, CVRQualifiers); 3309 } 3310 3311 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3312 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3313 llvm::Value *BaseValue = nullptr; 3314 const Expr *BaseExpr = E->getBase(); 3315 Qualifiers BaseQuals; 3316 QualType ObjectTy; 3317 if (E->isArrow()) { 3318 BaseValue = EmitScalarExpr(BaseExpr); 3319 ObjectTy = BaseExpr->getType()->getPointeeType(); 3320 BaseQuals = ObjectTy.getQualifiers(); 3321 } else { 3322 LValue BaseLV = EmitLValue(BaseExpr); 3323 // FIXME: this isn't right for bitfields. 3324 BaseValue = BaseLV.getAddress(); 3325 ObjectTy = BaseExpr->getType(); 3326 BaseQuals = ObjectTy.getQualifiers(); 3327 } 3328 3329 LValue LV = 3330 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3331 BaseQuals.getCVRQualifiers()); 3332 setObjCGCLValueClass(getContext(), E, LV); 3333 return LV; 3334 } 3335 3336 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3337 // Can only get l-value for message expression returning aggregate type 3338 RValue RV = EmitAnyExprToTemp(E); 3339 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3340 } 3341 3342 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3343 const CallExpr *E, ReturnValueSlot ReturnValue, 3344 const Decl *TargetDecl, llvm::Value *Chain) { 3345 // Get the actual function type. The callee type will always be a pointer to 3346 // function type or a block pointer type. 3347 assert(CalleeType->isFunctionPointerType() && 3348 "Call must have function pointer type!"); 3349 3350 CalleeType = getContext().getCanonicalType(CalleeType); 3351 3352 const auto *FnType = 3353 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3354 3355 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 3356 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3357 if (llvm::Constant *PrefixSig = 3358 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3359 SanitizerScope SanScope(this); 3360 llvm::Constant *FTRTTIConst = 3361 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3362 llvm::Type *PrefixStructTyElems[] = { 3363 PrefixSig->getType(), 3364 FTRTTIConst->getType() 3365 }; 3366 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3367 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3368 3369 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3370 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3371 llvm::Value *CalleeSigPtr = 3372 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3373 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3374 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3375 3376 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3377 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3378 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3379 3380 EmitBlock(TypeCheck); 3381 llvm::Value *CalleeRTTIPtr = 3382 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3383 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3384 llvm::Value *CalleeRTTIMatch = 3385 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3386 llvm::Constant *StaticData[] = { 3387 EmitCheckSourceLocation(E->getLocStart()), 3388 EmitCheckTypeDescriptor(CalleeType) 3389 }; 3390 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 3391 "function_type_mismatch", StaticData, Callee); 3392 3393 Builder.CreateBr(Cont); 3394 EmitBlock(Cont); 3395 } 3396 } 3397 3398 CallArgList Args; 3399 if (Chain) 3400 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 3401 CGM.getContext().VoidPtrTy); 3402 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(), 3403 E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0); 3404 3405 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 3406 Args, FnType, /*isChainCall=*/Chain); 3407 3408 // C99 6.5.2.2p6: 3409 // If the expression that denotes the called function has a type 3410 // that does not include a prototype, [the default argument 3411 // promotions are performed]. If the number of arguments does not 3412 // equal the number of parameters, the behavior is undefined. If 3413 // the function is defined with a type that includes a prototype, 3414 // and either the prototype ends with an ellipsis (, ...) or the 3415 // types of the arguments after promotion are not compatible with 3416 // the types of the parameters, the behavior is undefined. If the 3417 // function is defined with a type that does not include a 3418 // prototype, and the types of the arguments after promotion are 3419 // not compatible with those of the parameters after promotion, 3420 // the behavior is undefined [except in some trivial cases]. 3421 // That is, in the general case, we should assume that a call 3422 // through an unprototyped function type works like a *non-variadic* 3423 // call. The way we make this work is to cast to the exact type 3424 // of the promoted arguments. 3425 // 3426 // Chain calls use this same code path to add the invisible chain parameter 3427 // to the function type. 3428 if (isa<FunctionNoProtoType>(FnType) || Chain) { 3429 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3430 CalleeTy = CalleeTy->getPointerTo(); 3431 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3432 } 3433 3434 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3435 } 3436 3437 LValue CodeGenFunction:: 3438 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3439 llvm::Value *BaseV; 3440 if (E->getOpcode() == BO_PtrMemI) 3441 BaseV = EmitScalarExpr(E->getLHS()); 3442 else 3443 BaseV = EmitLValue(E->getLHS()).getAddress(); 3444 3445 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3446 3447 const MemberPointerType *MPT 3448 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3449 3450 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3451 *this, E, BaseV, OffsetV, MPT); 3452 3453 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3454 } 3455 3456 /// Given the address of a temporary variable, produce an r-value of 3457 /// its type. 3458 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3459 QualType type, 3460 SourceLocation loc) { 3461 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3462 switch (getEvaluationKind(type)) { 3463 case TEK_Complex: 3464 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3465 case TEK_Aggregate: 3466 return lvalue.asAggregateRValue(); 3467 case TEK_Scalar: 3468 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3469 } 3470 llvm_unreachable("bad evaluation kind"); 3471 } 3472 3473 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3474 assert(Val->getType()->isFPOrFPVectorTy()); 3475 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3476 return; 3477 3478 llvm::MDBuilder MDHelper(getLLVMContext()); 3479 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3480 3481 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3482 } 3483 3484 namespace { 3485 struct LValueOrRValue { 3486 LValue LV; 3487 RValue RV; 3488 }; 3489 } 3490 3491 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3492 const PseudoObjectExpr *E, 3493 bool forLValue, 3494 AggValueSlot slot) { 3495 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3496 3497 // Find the result expression, if any. 3498 const Expr *resultExpr = E->getResultExpr(); 3499 LValueOrRValue result; 3500 3501 for (PseudoObjectExpr::const_semantics_iterator 3502 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3503 const Expr *semantic = *i; 3504 3505 // If this semantic expression is an opaque value, bind it 3506 // to the result of its source expression. 3507 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3508 3509 // If this is the result expression, we may need to evaluate 3510 // directly into the slot. 3511 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3512 OVMA opaqueData; 3513 if (ov == resultExpr && ov->isRValue() && !forLValue && 3514 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3515 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3516 3517 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3518 opaqueData = OVMA::bind(CGF, ov, LV); 3519 result.RV = slot.asRValue(); 3520 3521 // Otherwise, emit as normal. 3522 } else { 3523 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3524 3525 // If this is the result, also evaluate the result now. 3526 if (ov == resultExpr) { 3527 if (forLValue) 3528 result.LV = CGF.EmitLValue(ov); 3529 else 3530 result.RV = CGF.EmitAnyExpr(ov, slot); 3531 } 3532 } 3533 3534 opaques.push_back(opaqueData); 3535 3536 // Otherwise, if the expression is the result, evaluate it 3537 // and remember the result. 3538 } else if (semantic == resultExpr) { 3539 if (forLValue) 3540 result.LV = CGF.EmitLValue(semantic); 3541 else 3542 result.RV = CGF.EmitAnyExpr(semantic, slot); 3543 3544 // Otherwise, evaluate the expression in an ignored context. 3545 } else { 3546 CGF.EmitIgnoredExpr(semantic); 3547 } 3548 } 3549 3550 // Unbind all the opaques now. 3551 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3552 opaques[i].unbind(CGF); 3553 3554 return result; 3555 } 3556 3557 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3558 AggValueSlot slot) { 3559 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3560 } 3561 3562 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3563 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3564 } 3565