1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getAsAlign()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getAsAlign()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::FunctionCallee CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 344 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getAsAlign()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 /// Helper method to check if the underlying ABI is AAPCS 419 static bool isAAPCS(const TargetInfo &TargetInfo) { 420 return TargetInfo.getABI().startswith("aapcs"); 421 } 422 423 LValue CodeGenFunction:: 424 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 425 const Expr *E = M->getSubExpr(); 426 427 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 428 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 429 "Reference should never be pseudo-strong!"); 430 431 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 432 // as that will cause the lifetime adjustment to be lost for ARC 433 auto ownership = M->getType().getObjCLifetime(); 434 if (ownership != Qualifiers::OCL_None && 435 ownership != Qualifiers::OCL_ExplicitNone) { 436 Address Object = createReferenceTemporary(*this, M, E); 437 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 438 Object = Address(llvm::ConstantExpr::getBitCast(Var, 439 ConvertTypeForMem(E->getType()) 440 ->getPointerTo(Object.getAddressSpace())), 441 Object.getAlignment()); 442 443 // createReferenceTemporary will promote the temporary to a global with a 444 // constant initializer if it can. It can only do this to a value of 445 // ARC-manageable type if the value is global and therefore "immune" to 446 // ref-counting operations. Therefore we have no need to emit either a 447 // dynamic initialization or a cleanup and we can just return the address 448 // of the temporary. 449 if (Var->hasInitializer()) 450 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 451 452 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 453 } 454 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 455 AlignmentSource::Decl); 456 457 switch (getEvaluationKind(E->getType())) { 458 default: llvm_unreachable("expected scalar or aggregate expression"); 459 case TEK_Scalar: 460 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 461 break; 462 case TEK_Aggregate: { 463 EmitAggExpr(E, AggValueSlot::forAddr(Object, 464 E->getType().getQualifiers(), 465 AggValueSlot::IsDestructed, 466 AggValueSlot::DoesNotNeedGCBarriers, 467 AggValueSlot::IsNotAliased, 468 AggValueSlot::DoesNotOverlap)); 469 break; 470 } 471 } 472 473 pushTemporaryCleanup(*this, M, E, Object); 474 return RefTempDst; 475 } 476 477 SmallVector<const Expr *, 2> CommaLHSs; 478 SmallVector<SubobjectAdjustment, 2> Adjustments; 479 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 480 481 for (const auto &Ignored : CommaLHSs) 482 EmitIgnoredExpr(Ignored); 483 484 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 485 if (opaque->getType()->isRecordType()) { 486 assert(Adjustments.empty()); 487 return EmitOpaqueValueLValue(opaque); 488 } 489 } 490 491 // Create and initialize the reference temporary. 492 Address Alloca = Address::invalid(); 493 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 494 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 495 Object.getPointer()->stripPointerCasts())) { 496 Object = Address(llvm::ConstantExpr::getBitCast( 497 cast<llvm::Constant>(Object.getPointer()), 498 ConvertTypeForMem(E->getType())->getPointerTo()), 499 Object.getAlignment()); 500 // If the temporary is a global and has a constant initializer or is a 501 // constant temporary that we promoted to a global, we may have already 502 // initialized it. 503 if (!Var->hasInitializer()) { 504 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 505 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 506 } 507 } else { 508 switch (M->getStorageDuration()) { 509 case SD_Automatic: 510 if (auto *Size = EmitLifetimeStart( 511 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 512 Alloca.getPointer())) { 513 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 514 Alloca, Size); 515 } 516 break; 517 518 case SD_FullExpression: { 519 if (!ShouldEmitLifetimeMarkers) 520 break; 521 522 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 523 // marker. Instead, start the lifetime of a conditional temporary earlier 524 // so that it's unconditional. Don't do this with sanitizers which need 525 // more precise lifetime marks. 526 ConditionalEvaluation *OldConditional = nullptr; 527 CGBuilderTy::InsertPoint OldIP; 528 if (isInConditionalBranch() && !E->getType().isDestructedType() && 529 !SanOpts.has(SanitizerKind::HWAddress) && 530 !SanOpts.has(SanitizerKind::Memory) && 531 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 532 OldConditional = OutermostConditional; 533 OutermostConditional = nullptr; 534 535 OldIP = Builder.saveIP(); 536 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 537 Builder.restoreIP(CGBuilderTy::InsertPoint( 538 Block, llvm::BasicBlock::iterator(Block->back()))); 539 } 540 541 if (auto *Size = EmitLifetimeStart( 542 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 543 Alloca.getPointer())) { 544 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 545 Size); 546 } 547 548 if (OldConditional) { 549 OutermostConditional = OldConditional; 550 Builder.restoreIP(OldIP); 551 } 552 break; 553 } 554 555 default: 556 break; 557 } 558 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 559 } 560 pushTemporaryCleanup(*this, M, E, Object); 561 562 // Perform derived-to-base casts and/or field accesses, to get from the 563 // temporary object we created (and, potentially, for which we extended 564 // the lifetime) to the subobject we're binding the reference to. 565 for (unsigned I = Adjustments.size(); I != 0; --I) { 566 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 567 switch (Adjustment.Kind) { 568 case SubobjectAdjustment::DerivedToBaseAdjustment: 569 Object = 570 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 571 Adjustment.DerivedToBase.BasePath->path_begin(), 572 Adjustment.DerivedToBase.BasePath->path_end(), 573 /*NullCheckValue=*/ false, E->getExprLoc()); 574 break; 575 576 case SubobjectAdjustment::FieldAdjustment: { 577 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 578 LV = EmitLValueForField(LV, Adjustment.Field); 579 assert(LV.isSimple() && 580 "materialized temporary field is not a simple lvalue"); 581 Object = LV.getAddress(*this); 582 break; 583 } 584 585 case SubobjectAdjustment::MemberPointerAdjustment: { 586 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 587 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 588 Adjustment.Ptr.MPT); 589 break; 590 } 591 } 592 } 593 594 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 595 } 596 597 RValue 598 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 599 // Emit the expression as an lvalue. 600 LValue LV = EmitLValue(E); 601 assert(LV.isSimple()); 602 llvm::Value *Value = LV.getPointer(*this); 603 604 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 605 // C++11 [dcl.ref]p5 (as amended by core issue 453): 606 // If a glvalue to which a reference is directly bound designates neither 607 // an existing object or function of an appropriate type nor a region of 608 // storage of suitable size and alignment to contain an object of the 609 // reference's type, the behavior is undefined. 610 QualType Ty = E->getType(); 611 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 612 } 613 614 return RValue::get(Value); 615 } 616 617 618 /// getAccessedFieldNo - Given an encoded value and a result number, return the 619 /// input field number being accessed. 620 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 621 const llvm::Constant *Elts) { 622 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 623 ->getZExtValue(); 624 } 625 626 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 627 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 628 llvm::Value *High) { 629 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 630 llvm::Value *K47 = Builder.getInt64(47); 631 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 632 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 633 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 634 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 635 return Builder.CreateMul(B1, KMul); 636 } 637 638 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 639 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 640 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 641 } 642 643 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 644 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 645 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 646 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 647 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 648 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 649 } 650 651 bool CodeGenFunction::sanitizePerformTypeCheck() const { 652 return SanOpts.has(SanitizerKind::Null) | 653 SanOpts.has(SanitizerKind::Alignment) | 654 SanOpts.has(SanitizerKind::ObjectSize) | 655 SanOpts.has(SanitizerKind::Vptr); 656 } 657 658 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 659 llvm::Value *Ptr, QualType Ty, 660 CharUnits Alignment, 661 SanitizerSet SkippedChecks, 662 llvm::Value *ArraySize) { 663 if (!sanitizePerformTypeCheck()) 664 return; 665 666 // Don't check pointers outside the default address space. The null check 667 // isn't correct, the object-size check isn't supported by LLVM, and we can't 668 // communicate the addresses to the runtime handler for the vptr check. 669 if (Ptr->getType()->getPointerAddressSpace()) 670 return; 671 672 // Don't check pointers to volatile data. The behavior here is implementation- 673 // defined. 674 if (Ty.isVolatileQualified()) 675 return; 676 677 SanitizerScope SanScope(this); 678 679 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 680 llvm::BasicBlock *Done = nullptr; 681 682 // Quickly determine whether we have a pointer to an alloca. It's possible 683 // to skip null checks, and some alignment checks, for these pointers. This 684 // can reduce compile-time significantly. 685 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 686 687 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 688 llvm::Value *IsNonNull = nullptr; 689 bool IsGuaranteedNonNull = 690 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 691 bool AllowNullPointers = isNullPointerAllowed(TCK); 692 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 693 !IsGuaranteedNonNull) { 694 // The glvalue must not be an empty glvalue. 695 IsNonNull = Builder.CreateIsNotNull(Ptr); 696 697 // The IR builder can constant-fold the null check if the pointer points to 698 // a constant. 699 IsGuaranteedNonNull = IsNonNull == True; 700 701 // Skip the null check if the pointer is known to be non-null. 702 if (!IsGuaranteedNonNull) { 703 if (AllowNullPointers) { 704 // When performing pointer casts, it's OK if the value is null. 705 // Skip the remaining checks in that case. 706 Done = createBasicBlock("null"); 707 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 708 Builder.CreateCondBr(IsNonNull, Rest, Done); 709 EmitBlock(Rest); 710 } else { 711 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 712 } 713 } 714 } 715 716 if (SanOpts.has(SanitizerKind::ObjectSize) && 717 !SkippedChecks.has(SanitizerKind::ObjectSize) && 718 !Ty->isIncompleteType()) { 719 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 720 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 721 if (ArraySize) 722 Size = Builder.CreateMul(Size, ArraySize); 723 724 // Degenerate case: new X[0] does not need an objectsize check. 725 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 726 if (!ConstantSize || !ConstantSize->isNullValue()) { 727 // The glvalue must refer to a large enough storage region. 728 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 729 // to check this. 730 // FIXME: Get object address space 731 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 732 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 733 llvm::Value *Min = Builder.getFalse(); 734 llvm::Value *NullIsUnknown = Builder.getFalse(); 735 llvm::Value *Dynamic = Builder.getFalse(); 736 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 737 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 738 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 739 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 740 } 741 } 742 743 uint64_t AlignVal = 0; 744 llvm::Value *PtrAsInt = nullptr; 745 746 if (SanOpts.has(SanitizerKind::Alignment) && 747 !SkippedChecks.has(SanitizerKind::Alignment)) { 748 AlignVal = Alignment.getQuantity(); 749 if (!Ty->isIncompleteType() && !AlignVal) 750 AlignVal = 751 getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true) 752 .getQuantity(); 753 754 // The glvalue must be suitably aligned. 755 if (AlignVal > 1 && 756 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 757 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 758 llvm::Value *Align = Builder.CreateAnd( 759 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 760 llvm::Value *Aligned = 761 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 762 if (Aligned != True) 763 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 764 } 765 } 766 767 if (Checks.size() > 0) { 768 // Make sure we're not losing information. Alignment needs to be a power of 769 // 2 770 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 771 llvm::Constant *StaticData[] = { 772 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 773 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 774 llvm::ConstantInt::get(Int8Ty, TCK)}; 775 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 776 PtrAsInt ? PtrAsInt : Ptr); 777 } 778 779 // If possible, check that the vptr indicates that there is a subobject of 780 // type Ty at offset zero within this object. 781 // 782 // C++11 [basic.life]p5,6: 783 // [For storage which does not refer to an object within its lifetime] 784 // The program has undefined behavior if: 785 // -- the [pointer or glvalue] is used to access a non-static data member 786 // or call a non-static member function 787 if (SanOpts.has(SanitizerKind::Vptr) && 788 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 789 // Ensure that the pointer is non-null before loading it. If there is no 790 // compile-time guarantee, reuse the run-time null check or emit a new one. 791 if (!IsGuaranteedNonNull) { 792 if (!IsNonNull) 793 IsNonNull = Builder.CreateIsNotNull(Ptr); 794 if (!Done) 795 Done = createBasicBlock("vptr.null"); 796 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 797 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 798 EmitBlock(VptrNotNull); 799 } 800 801 // Compute a hash of the mangled name of the type. 802 // 803 // FIXME: This is not guaranteed to be deterministic! Move to a 804 // fingerprinting mechanism once LLVM provides one. For the time 805 // being the implementation happens to be deterministic. 806 SmallString<64> MangledName; 807 llvm::raw_svector_ostream Out(MangledName); 808 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 809 Out); 810 811 // Blacklist based on the mangled type. 812 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 813 SanitizerKind::Vptr, Out.str())) { 814 llvm::hash_code TypeHash = hash_value(Out.str()); 815 816 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 817 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 818 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 819 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 820 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 821 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 822 823 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 824 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 825 826 // Look the hash up in our cache. 827 const int CacheSize = 128; 828 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 829 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 830 "__ubsan_vptr_type_cache"); 831 llvm::Value *Slot = Builder.CreateAnd(Hash, 832 llvm::ConstantInt::get(IntPtrTy, 833 CacheSize-1)); 834 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 835 llvm::Value *CacheVal = 836 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 837 getPointerAlign()); 838 839 // If the hash isn't in the cache, call a runtime handler to perform the 840 // hard work of checking whether the vptr is for an object of the right 841 // type. This will either fill in the cache and return, or produce a 842 // diagnostic. 843 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 844 llvm::Constant *StaticData[] = { 845 EmitCheckSourceLocation(Loc), 846 EmitCheckTypeDescriptor(Ty), 847 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 848 llvm::ConstantInt::get(Int8Ty, TCK) 849 }; 850 llvm::Value *DynamicData[] = { Ptr, Hash }; 851 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 852 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 853 DynamicData); 854 } 855 } 856 857 if (Done) { 858 Builder.CreateBr(Done); 859 EmitBlock(Done); 860 } 861 } 862 863 /// Determine whether this expression refers to a flexible array member in a 864 /// struct. We disable array bounds checks for such members. 865 static bool isFlexibleArrayMemberExpr(const Expr *E) { 866 // For compatibility with existing code, we treat arrays of length 0 or 867 // 1 as flexible array members. 868 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 869 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 870 if (CAT->getSize().ugt(1)) 871 return false; 872 } else if (!isa<IncompleteArrayType>(AT)) 873 return false; 874 875 E = E->IgnoreParens(); 876 877 // A flexible array member must be the last member in the class. 878 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 879 // FIXME: If the base type of the member expr is not FD->getParent(), 880 // this should not be treated as a flexible array member access. 881 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 882 RecordDecl::field_iterator FI( 883 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 884 return ++FI == FD->getParent()->field_end(); 885 } 886 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 887 return IRE->getDecl()->getNextIvar() == nullptr; 888 } 889 890 return false; 891 } 892 893 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 894 QualType EltTy) { 895 ASTContext &C = getContext(); 896 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 897 if (!EltSize) 898 return nullptr; 899 900 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 901 if (!ArrayDeclRef) 902 return nullptr; 903 904 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 905 if (!ParamDecl) 906 return nullptr; 907 908 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 909 if (!POSAttr) 910 return nullptr; 911 912 // Don't load the size if it's a lower bound. 913 int POSType = POSAttr->getType(); 914 if (POSType != 0 && POSType != 1) 915 return nullptr; 916 917 // Find the implicit size parameter. 918 auto PassedSizeIt = SizeArguments.find(ParamDecl); 919 if (PassedSizeIt == SizeArguments.end()) 920 return nullptr; 921 922 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 923 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 924 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 925 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 926 C.getSizeType(), E->getExprLoc()); 927 llvm::Value *SizeOfElement = 928 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 929 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 930 } 931 932 /// If Base is known to point to the start of an array, return the length of 933 /// that array. Return 0 if the length cannot be determined. 934 static llvm::Value *getArrayIndexingBound( 935 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 936 // For the vector indexing extension, the bound is the number of elements. 937 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 938 IndexedType = Base->getType(); 939 return CGF.Builder.getInt32(VT->getNumElements()); 940 } 941 942 Base = Base->IgnoreParens(); 943 944 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 945 if (CE->getCastKind() == CK_ArrayToPointerDecay && 946 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 947 IndexedType = CE->getSubExpr()->getType(); 948 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 949 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 950 return CGF.Builder.getInt(CAT->getSize()); 951 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 952 return CGF.getVLASize(VAT).NumElts; 953 // Ignore pass_object_size here. It's not applicable on decayed pointers. 954 } 955 } 956 957 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 958 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 959 IndexedType = Base->getType(); 960 return POS; 961 } 962 963 return nullptr; 964 } 965 966 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 967 llvm::Value *Index, QualType IndexType, 968 bool Accessed) { 969 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 970 "should not be called unless adding bounds checks"); 971 SanitizerScope SanScope(this); 972 973 QualType IndexedType; 974 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 975 if (!Bound) 976 return; 977 978 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 979 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 980 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 981 982 llvm::Constant *StaticData[] = { 983 EmitCheckSourceLocation(E->getExprLoc()), 984 EmitCheckTypeDescriptor(IndexedType), 985 EmitCheckTypeDescriptor(IndexType) 986 }; 987 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 988 : Builder.CreateICmpULE(IndexVal, BoundVal); 989 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 990 SanitizerHandler::OutOfBounds, StaticData, Index); 991 } 992 993 994 CodeGenFunction::ComplexPairTy CodeGenFunction:: 995 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 996 bool isInc, bool isPre) { 997 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 998 999 llvm::Value *NextVal; 1000 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1001 uint64_t AmountVal = isInc ? 1 : -1; 1002 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1003 1004 // Add the inc/dec to the real part. 1005 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1006 } else { 1007 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1008 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1009 if (!isInc) 1010 FVal.changeSign(); 1011 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1012 1013 // Add the inc/dec to the real part. 1014 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1015 } 1016 1017 ComplexPairTy IncVal(NextVal, InVal.second); 1018 1019 // Store the updated result through the lvalue. 1020 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1021 if (getLangOpts().OpenMP) 1022 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1023 E->getSubExpr()); 1024 1025 // If this is a postinc, return the value read from memory, otherwise use the 1026 // updated value. 1027 return isPre ? IncVal : InVal; 1028 } 1029 1030 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1031 CodeGenFunction *CGF) { 1032 // Bind VLAs in the cast type. 1033 if (CGF && E->getType()->isVariablyModifiedType()) 1034 CGF->EmitVariablyModifiedType(E->getType()); 1035 1036 if (CGDebugInfo *DI = getModuleDebugInfo()) 1037 DI->EmitExplicitCastType(E->getType()); 1038 } 1039 1040 //===----------------------------------------------------------------------===// 1041 // LValue Expression Emission 1042 //===----------------------------------------------------------------------===// 1043 1044 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1045 /// derive a more accurate bound on the alignment of the pointer. 1046 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1047 LValueBaseInfo *BaseInfo, 1048 TBAAAccessInfo *TBAAInfo) { 1049 // We allow this with ObjC object pointers because of fragile ABIs. 1050 assert(E->getType()->isPointerType() || 1051 E->getType()->isObjCObjectPointerType()); 1052 E = E->IgnoreParens(); 1053 1054 // Casts: 1055 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1056 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1057 CGM.EmitExplicitCastExprType(ECE, this); 1058 1059 switch (CE->getCastKind()) { 1060 // Non-converting casts (but not C's implicit conversion from void*). 1061 case CK_BitCast: 1062 case CK_NoOp: 1063 case CK_AddressSpaceConversion: 1064 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1065 if (PtrTy->getPointeeType()->isVoidType()) 1066 break; 1067 1068 LValueBaseInfo InnerBaseInfo; 1069 TBAAAccessInfo InnerTBAAInfo; 1070 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1071 &InnerBaseInfo, 1072 &InnerTBAAInfo); 1073 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1074 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1075 1076 if (isa<ExplicitCastExpr>(CE)) { 1077 LValueBaseInfo TargetTypeBaseInfo; 1078 TBAAAccessInfo TargetTypeTBAAInfo; 1079 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1080 &TargetTypeBaseInfo, 1081 &TargetTypeTBAAInfo); 1082 if (TBAAInfo) 1083 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1084 TargetTypeTBAAInfo); 1085 // If the source l-value is opaque, honor the alignment of the 1086 // casted-to type. 1087 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1088 if (BaseInfo) 1089 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1090 Addr = Address(Addr.getPointer(), Align); 1091 } 1092 } 1093 1094 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1095 CE->getCastKind() == CK_BitCast) { 1096 if (auto PT = E->getType()->getAs<PointerType>()) 1097 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1098 /*MayBeNull=*/true, 1099 CodeGenFunction::CFITCK_UnrelatedCast, 1100 CE->getBeginLoc()); 1101 } 1102 return CE->getCastKind() != CK_AddressSpaceConversion 1103 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1104 : Builder.CreateAddrSpaceCast(Addr, 1105 ConvertType(E->getType())); 1106 } 1107 break; 1108 1109 // Array-to-pointer decay. 1110 case CK_ArrayToPointerDecay: 1111 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1112 1113 // Derived-to-base conversions. 1114 case CK_UncheckedDerivedToBase: 1115 case CK_DerivedToBase: { 1116 // TODO: Support accesses to members of base classes in TBAA. For now, we 1117 // conservatively pretend that the complete object is of the base class 1118 // type. 1119 if (TBAAInfo) 1120 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1121 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1122 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1123 return GetAddressOfBaseClass(Addr, Derived, 1124 CE->path_begin(), CE->path_end(), 1125 ShouldNullCheckClassCastValue(CE), 1126 CE->getExprLoc()); 1127 } 1128 1129 // TODO: Is there any reason to treat base-to-derived conversions 1130 // specially? 1131 default: 1132 break; 1133 } 1134 } 1135 1136 // Unary &. 1137 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1138 if (UO->getOpcode() == UO_AddrOf) { 1139 LValue LV = EmitLValue(UO->getSubExpr()); 1140 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1141 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1142 return LV.getAddress(*this); 1143 } 1144 } 1145 1146 // TODO: conditional operators, comma. 1147 1148 // Otherwise, use the alignment of the type. 1149 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1150 TBAAInfo); 1151 return Address(EmitScalarExpr(E), Align); 1152 } 1153 1154 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1155 if (Ty->isVoidType()) 1156 return RValue::get(nullptr); 1157 1158 switch (getEvaluationKind(Ty)) { 1159 case TEK_Complex: { 1160 llvm::Type *EltTy = 1161 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1162 llvm::Value *U = llvm::UndefValue::get(EltTy); 1163 return RValue::getComplex(std::make_pair(U, U)); 1164 } 1165 1166 // If this is a use of an undefined aggregate type, the aggregate must have an 1167 // identifiable address. Just because the contents of the value are undefined 1168 // doesn't mean that the address can't be taken and compared. 1169 case TEK_Aggregate: { 1170 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1171 return RValue::getAggregate(DestPtr); 1172 } 1173 1174 case TEK_Scalar: 1175 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1176 } 1177 llvm_unreachable("bad evaluation kind"); 1178 } 1179 1180 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1181 const char *Name) { 1182 ErrorUnsupported(E, Name); 1183 return GetUndefRValue(E->getType()); 1184 } 1185 1186 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1187 const char *Name) { 1188 ErrorUnsupported(E, Name); 1189 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1190 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1191 E->getType()); 1192 } 1193 1194 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1195 const Expr *Base = Obj; 1196 while (!isa<CXXThisExpr>(Base)) { 1197 // The result of a dynamic_cast can be null. 1198 if (isa<CXXDynamicCastExpr>(Base)) 1199 return false; 1200 1201 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1202 Base = CE->getSubExpr(); 1203 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1204 Base = PE->getSubExpr(); 1205 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1206 if (UO->getOpcode() == UO_Extension) 1207 Base = UO->getSubExpr(); 1208 else 1209 return false; 1210 } else { 1211 return false; 1212 } 1213 } 1214 return true; 1215 } 1216 1217 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1218 LValue LV; 1219 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1220 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1221 else 1222 LV = EmitLValue(E); 1223 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1224 SanitizerSet SkippedChecks; 1225 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1226 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1227 if (IsBaseCXXThis) 1228 SkippedChecks.set(SanitizerKind::Alignment, true); 1229 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1230 SkippedChecks.set(SanitizerKind::Null, true); 1231 } 1232 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1233 LV.getAlignment(), SkippedChecks); 1234 } 1235 return LV; 1236 } 1237 1238 /// EmitLValue - Emit code to compute a designator that specifies the location 1239 /// of the expression. 1240 /// 1241 /// This can return one of two things: a simple address or a bitfield reference. 1242 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1243 /// an LLVM pointer type. 1244 /// 1245 /// If this returns a bitfield reference, nothing about the pointee type of the 1246 /// LLVM value is known: For example, it may not be a pointer to an integer. 1247 /// 1248 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1249 /// this method guarantees that the returned pointer type will point to an LLVM 1250 /// type of the same size of the lvalue's type. If the lvalue has a variable 1251 /// length type, this is not possible. 1252 /// 1253 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1254 ApplyDebugLocation DL(*this, E); 1255 switch (E->getStmtClass()) { 1256 default: return EmitUnsupportedLValue(E, "l-value expression"); 1257 1258 case Expr::ObjCPropertyRefExprClass: 1259 llvm_unreachable("cannot emit a property reference directly"); 1260 1261 case Expr::ObjCSelectorExprClass: 1262 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1263 case Expr::ObjCIsaExprClass: 1264 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1265 case Expr::BinaryOperatorClass: 1266 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1267 case Expr::CompoundAssignOperatorClass: { 1268 QualType Ty = E->getType(); 1269 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1270 Ty = AT->getValueType(); 1271 if (!Ty->isAnyComplexType()) 1272 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1273 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1274 } 1275 case Expr::CallExprClass: 1276 case Expr::CXXMemberCallExprClass: 1277 case Expr::CXXOperatorCallExprClass: 1278 case Expr::UserDefinedLiteralClass: 1279 return EmitCallExprLValue(cast<CallExpr>(E)); 1280 case Expr::CXXRewrittenBinaryOperatorClass: 1281 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1282 case Expr::VAArgExprClass: 1283 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1284 case Expr::DeclRefExprClass: 1285 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1286 case Expr::ConstantExprClass: 1287 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1288 case Expr::ParenExprClass: 1289 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1290 case Expr::GenericSelectionExprClass: 1291 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1292 case Expr::PredefinedExprClass: 1293 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1294 case Expr::StringLiteralClass: 1295 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1296 case Expr::ObjCEncodeExprClass: 1297 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1298 case Expr::PseudoObjectExprClass: 1299 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1300 case Expr::InitListExprClass: 1301 return EmitInitListLValue(cast<InitListExpr>(E)); 1302 case Expr::CXXTemporaryObjectExprClass: 1303 case Expr::CXXConstructExprClass: 1304 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1305 case Expr::CXXBindTemporaryExprClass: 1306 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1307 case Expr::CXXUuidofExprClass: 1308 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1309 case Expr::LambdaExprClass: 1310 return EmitAggExprToLValue(E); 1311 1312 case Expr::ExprWithCleanupsClass: { 1313 const auto *cleanups = cast<ExprWithCleanups>(E); 1314 enterFullExpression(cleanups); 1315 RunCleanupsScope Scope(*this); 1316 LValue LV = EmitLValue(cleanups->getSubExpr()); 1317 if (LV.isSimple()) { 1318 // Defend against branches out of gnu statement expressions surrounded by 1319 // cleanups. 1320 llvm::Value *V = LV.getPointer(*this); 1321 Scope.ForceCleanup({&V}); 1322 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1323 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1324 } 1325 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1326 // bitfield lvalue or some other non-simple lvalue? 1327 return LV; 1328 } 1329 1330 case Expr::CXXDefaultArgExprClass: { 1331 auto *DAE = cast<CXXDefaultArgExpr>(E); 1332 CXXDefaultArgExprScope Scope(*this, DAE); 1333 return EmitLValue(DAE->getExpr()); 1334 } 1335 case Expr::CXXDefaultInitExprClass: { 1336 auto *DIE = cast<CXXDefaultInitExpr>(E); 1337 CXXDefaultInitExprScope Scope(*this, DIE); 1338 return EmitLValue(DIE->getExpr()); 1339 } 1340 case Expr::CXXTypeidExprClass: 1341 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1342 1343 case Expr::ObjCMessageExprClass: 1344 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1345 case Expr::ObjCIvarRefExprClass: 1346 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1347 case Expr::StmtExprClass: 1348 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1349 case Expr::UnaryOperatorClass: 1350 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1351 case Expr::ArraySubscriptExprClass: 1352 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1353 case Expr::OMPArraySectionExprClass: 1354 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1355 case Expr::ExtVectorElementExprClass: 1356 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1357 case Expr::MemberExprClass: 1358 return EmitMemberExpr(cast<MemberExpr>(E)); 1359 case Expr::CompoundLiteralExprClass: 1360 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1361 case Expr::ConditionalOperatorClass: 1362 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1363 case Expr::BinaryConditionalOperatorClass: 1364 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1365 case Expr::ChooseExprClass: 1366 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1367 case Expr::OpaqueValueExprClass: 1368 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1369 case Expr::SubstNonTypeTemplateParmExprClass: 1370 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1371 case Expr::ImplicitCastExprClass: 1372 case Expr::CStyleCastExprClass: 1373 case Expr::CXXFunctionalCastExprClass: 1374 case Expr::CXXStaticCastExprClass: 1375 case Expr::CXXDynamicCastExprClass: 1376 case Expr::CXXReinterpretCastExprClass: 1377 case Expr::CXXConstCastExprClass: 1378 case Expr::ObjCBridgedCastExprClass: 1379 return EmitCastLValue(cast<CastExpr>(E)); 1380 1381 case Expr::MaterializeTemporaryExprClass: 1382 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1383 1384 case Expr::CoawaitExprClass: 1385 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1386 case Expr::CoyieldExprClass: 1387 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1388 } 1389 } 1390 1391 /// Given an object of the given canonical type, can we safely copy a 1392 /// value out of it based on its initializer? 1393 static bool isConstantEmittableObjectType(QualType type) { 1394 assert(type.isCanonical()); 1395 assert(!type->isReferenceType()); 1396 1397 // Must be const-qualified but non-volatile. 1398 Qualifiers qs = type.getLocalQualifiers(); 1399 if (!qs.hasConst() || qs.hasVolatile()) return false; 1400 1401 // Otherwise, all object types satisfy this except C++ classes with 1402 // mutable subobjects or non-trivial copy/destroy behavior. 1403 if (const auto *RT = dyn_cast<RecordType>(type)) 1404 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1405 if (RD->hasMutableFields() || !RD->isTrivial()) 1406 return false; 1407 1408 return true; 1409 } 1410 1411 /// Can we constant-emit a load of a reference to a variable of the 1412 /// given type? This is different from predicates like 1413 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1414 /// in situations that don't necessarily satisfy the language's rules 1415 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1416 /// to do this with const float variables even if those variables 1417 /// aren't marked 'constexpr'. 1418 enum ConstantEmissionKind { 1419 CEK_None, 1420 CEK_AsReferenceOnly, 1421 CEK_AsValueOrReference, 1422 CEK_AsValueOnly 1423 }; 1424 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1425 type = type.getCanonicalType(); 1426 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1427 if (isConstantEmittableObjectType(ref->getPointeeType())) 1428 return CEK_AsValueOrReference; 1429 return CEK_AsReferenceOnly; 1430 } 1431 if (isConstantEmittableObjectType(type)) 1432 return CEK_AsValueOnly; 1433 return CEK_None; 1434 } 1435 1436 /// Try to emit a reference to the given value without producing it as 1437 /// an l-value. This is just an optimization, but it avoids us needing 1438 /// to emit global copies of variables if they're named without triggering 1439 /// a formal use in a context where we can't emit a direct reference to them, 1440 /// for instance if a block or lambda or a member of a local class uses a 1441 /// const int variable or constexpr variable from an enclosing function. 1442 CodeGenFunction::ConstantEmission 1443 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1444 ValueDecl *value = refExpr->getDecl(); 1445 1446 // The value needs to be an enum constant or a constant variable. 1447 ConstantEmissionKind CEK; 1448 if (isa<ParmVarDecl>(value)) { 1449 CEK = CEK_None; 1450 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1451 CEK = checkVarTypeForConstantEmission(var->getType()); 1452 } else if (isa<EnumConstantDecl>(value)) { 1453 CEK = CEK_AsValueOnly; 1454 } else { 1455 CEK = CEK_None; 1456 } 1457 if (CEK == CEK_None) return ConstantEmission(); 1458 1459 Expr::EvalResult result; 1460 bool resultIsReference; 1461 QualType resultType; 1462 1463 // It's best to evaluate all the way as an r-value if that's permitted. 1464 if (CEK != CEK_AsReferenceOnly && 1465 refExpr->EvaluateAsRValue(result, getContext())) { 1466 resultIsReference = false; 1467 resultType = refExpr->getType(); 1468 1469 // Otherwise, try to evaluate as an l-value. 1470 } else if (CEK != CEK_AsValueOnly && 1471 refExpr->EvaluateAsLValue(result, getContext())) { 1472 resultIsReference = true; 1473 resultType = value->getType(); 1474 1475 // Failure. 1476 } else { 1477 return ConstantEmission(); 1478 } 1479 1480 // In any case, if the initializer has side-effects, abandon ship. 1481 if (result.HasSideEffects) 1482 return ConstantEmission(); 1483 1484 // Emit as a constant. 1485 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1486 result.Val, resultType); 1487 1488 // Make sure we emit a debug reference to the global variable. 1489 // This should probably fire even for 1490 if (isa<VarDecl>(value)) { 1491 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1492 EmitDeclRefExprDbgValue(refExpr, result.Val); 1493 } else { 1494 assert(isa<EnumConstantDecl>(value)); 1495 EmitDeclRefExprDbgValue(refExpr, result.Val); 1496 } 1497 1498 // If we emitted a reference constant, we need to dereference that. 1499 if (resultIsReference) 1500 return ConstantEmission::forReference(C); 1501 1502 return ConstantEmission::forValue(C); 1503 } 1504 1505 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1506 const MemberExpr *ME) { 1507 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1508 // Try to emit static variable member expressions as DREs. 1509 return DeclRefExpr::Create( 1510 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1511 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1512 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1513 } 1514 return nullptr; 1515 } 1516 1517 CodeGenFunction::ConstantEmission 1518 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1519 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1520 return tryEmitAsConstant(DRE); 1521 return ConstantEmission(); 1522 } 1523 1524 llvm::Value *CodeGenFunction::emitScalarConstant( 1525 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1526 assert(Constant && "not a constant"); 1527 if (Constant.isReference()) 1528 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1529 E->getExprLoc()) 1530 .getScalarVal(); 1531 return Constant.getValue(); 1532 } 1533 1534 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1535 SourceLocation Loc) { 1536 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1537 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1538 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1539 } 1540 1541 static bool hasBooleanRepresentation(QualType Ty) { 1542 if (Ty->isBooleanType()) 1543 return true; 1544 1545 if (const EnumType *ET = Ty->getAs<EnumType>()) 1546 return ET->getDecl()->getIntegerType()->isBooleanType(); 1547 1548 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1549 return hasBooleanRepresentation(AT->getValueType()); 1550 1551 return false; 1552 } 1553 1554 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1555 llvm::APInt &Min, llvm::APInt &End, 1556 bool StrictEnums, bool IsBool) { 1557 const EnumType *ET = Ty->getAs<EnumType>(); 1558 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1559 ET && !ET->getDecl()->isFixed(); 1560 if (!IsBool && !IsRegularCPlusPlusEnum) 1561 return false; 1562 1563 if (IsBool) { 1564 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1565 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1566 } else { 1567 const EnumDecl *ED = ET->getDecl(); 1568 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1569 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1570 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1571 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1572 1573 if (NumNegativeBits) { 1574 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1575 assert(NumBits <= Bitwidth); 1576 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1577 Min = -End; 1578 } else { 1579 assert(NumPositiveBits <= Bitwidth); 1580 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1581 Min = llvm::APInt(Bitwidth, 0); 1582 } 1583 } 1584 return true; 1585 } 1586 1587 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1588 llvm::APInt Min, End; 1589 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1590 hasBooleanRepresentation(Ty))) 1591 return nullptr; 1592 1593 llvm::MDBuilder MDHelper(getLLVMContext()); 1594 return MDHelper.createRange(Min, End); 1595 } 1596 1597 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1598 SourceLocation Loc) { 1599 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1600 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1601 if (!HasBoolCheck && !HasEnumCheck) 1602 return false; 1603 1604 bool IsBool = hasBooleanRepresentation(Ty) || 1605 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1606 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1607 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1608 if (!NeedsBoolCheck && !NeedsEnumCheck) 1609 return false; 1610 1611 // Single-bit booleans don't need to be checked. Special-case this to avoid 1612 // a bit width mismatch when handling bitfield values. This is handled by 1613 // EmitFromMemory for the non-bitfield case. 1614 if (IsBool && 1615 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1616 return false; 1617 1618 llvm::APInt Min, End; 1619 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1620 return true; 1621 1622 auto &Ctx = getLLVMContext(); 1623 SanitizerScope SanScope(this); 1624 llvm::Value *Check; 1625 --End; 1626 if (!Min) { 1627 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1628 } else { 1629 llvm::Value *Upper = 1630 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1631 llvm::Value *Lower = 1632 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1633 Check = Builder.CreateAnd(Upper, Lower); 1634 } 1635 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1636 EmitCheckTypeDescriptor(Ty)}; 1637 SanitizerMask Kind = 1638 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1639 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1640 StaticArgs, EmitCheckValue(Value)); 1641 return true; 1642 } 1643 1644 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1645 QualType Ty, 1646 SourceLocation Loc, 1647 LValueBaseInfo BaseInfo, 1648 TBAAAccessInfo TBAAInfo, 1649 bool isNontemporal) { 1650 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1651 // For better performance, handle vector loads differently. 1652 if (Ty->isVectorType()) { 1653 const llvm::Type *EltTy = Addr.getElementType(); 1654 1655 const auto *VTy = cast<llvm::VectorType>(EltTy); 1656 1657 // Handle vectors of size 3 like size 4 for better performance. 1658 if (VTy->getNumElements() == 3) { 1659 1660 // Bitcast to vec4 type. 1661 llvm::VectorType *vec4Ty = 1662 llvm::VectorType::get(VTy->getElementType(), 4); 1663 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1664 // Now load value. 1665 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1666 1667 // Shuffle vector to get vec3. 1668 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1669 {0, 1, 2}, "extractVec"); 1670 return EmitFromMemory(V, Ty); 1671 } 1672 } 1673 } 1674 1675 // Atomic operations have to be done on integral types. 1676 LValue AtomicLValue = 1677 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1678 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1679 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1680 } 1681 1682 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1683 if (isNontemporal) { 1684 llvm::MDNode *Node = llvm::MDNode::get( 1685 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1686 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1687 } 1688 1689 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1690 1691 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1692 // In order to prevent the optimizer from throwing away the check, don't 1693 // attach range metadata to the load. 1694 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1695 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1696 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1697 1698 return EmitFromMemory(Load, Ty); 1699 } 1700 1701 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1702 // Bool has a different representation in memory than in registers. 1703 if (hasBooleanRepresentation(Ty)) { 1704 // This should really always be an i1, but sometimes it's already 1705 // an i8, and it's awkward to track those cases down. 1706 if (Value->getType()->isIntegerTy(1)) 1707 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1708 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1709 "wrong value rep of bool"); 1710 } 1711 1712 return Value; 1713 } 1714 1715 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1716 // Bool has a different representation in memory than in registers. 1717 if (hasBooleanRepresentation(Ty)) { 1718 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1719 "wrong value rep of bool"); 1720 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1721 } 1722 1723 return Value; 1724 } 1725 1726 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1727 bool Volatile, QualType Ty, 1728 LValueBaseInfo BaseInfo, 1729 TBAAAccessInfo TBAAInfo, 1730 bool isInit, bool isNontemporal) { 1731 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1732 // Handle vectors differently to get better performance. 1733 if (Ty->isVectorType()) { 1734 llvm::Type *SrcTy = Value->getType(); 1735 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1736 // Handle vec3 special. 1737 if (VecTy && VecTy->getNumElements() == 3) { 1738 // Our source is a vec3, do a shuffle vector to make it a vec4. 1739 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1740 Builder.getInt32(2), 1741 llvm::UndefValue::get(Builder.getInt32Ty())}; 1742 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1743 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1744 MaskV, "extractVec"); 1745 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1746 } 1747 if (Addr.getElementType() != SrcTy) { 1748 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1749 } 1750 } 1751 } 1752 1753 Value = EmitToMemory(Value, Ty); 1754 1755 LValue AtomicLValue = 1756 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1757 if (Ty->isAtomicType() || 1758 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1759 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1760 return; 1761 } 1762 1763 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1764 if (isNontemporal) { 1765 llvm::MDNode *Node = 1766 llvm::MDNode::get(Store->getContext(), 1767 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1768 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1769 } 1770 1771 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1772 } 1773 1774 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1775 bool isInit) { 1776 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1777 lvalue.getType(), lvalue.getBaseInfo(), 1778 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1779 } 1780 1781 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1782 /// method emits the address of the lvalue, then loads the result as an rvalue, 1783 /// returning the rvalue. 1784 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1785 if (LV.isObjCWeak()) { 1786 // load of a __weak object. 1787 Address AddrWeakObj = LV.getAddress(*this); 1788 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1789 AddrWeakObj)); 1790 } 1791 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1792 // In MRC mode, we do a load+autorelease. 1793 if (!getLangOpts().ObjCAutoRefCount) { 1794 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1795 } 1796 1797 // In ARC mode, we load retained and then consume the value. 1798 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1799 Object = EmitObjCConsumeObject(LV.getType(), Object); 1800 return RValue::get(Object); 1801 } 1802 1803 if (LV.isSimple()) { 1804 assert(!LV.getType()->isFunctionType()); 1805 1806 // Everything needs a load. 1807 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1808 } 1809 1810 if (LV.isVectorElt()) { 1811 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1812 LV.isVolatileQualified()); 1813 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1814 "vecext")); 1815 } 1816 1817 // If this is a reference to a subset of the elements of a vector, either 1818 // shuffle the input or extract/insert them as appropriate. 1819 if (LV.isExtVectorElt()) 1820 return EmitLoadOfExtVectorElementLValue(LV); 1821 1822 // Global Register variables always invoke intrinsics 1823 if (LV.isGlobalReg()) 1824 return EmitLoadOfGlobalRegLValue(LV); 1825 1826 assert(LV.isBitField() && "Unknown LValue type!"); 1827 return EmitLoadOfBitfieldLValue(LV, Loc); 1828 } 1829 1830 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1831 SourceLocation Loc) { 1832 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1833 1834 // Get the output type. 1835 llvm::Type *ResLTy = ConvertType(LV.getType()); 1836 1837 Address Ptr = LV.getBitFieldAddress(); 1838 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1839 1840 if (Info.IsSigned) { 1841 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1842 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1843 if (HighBits) 1844 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1845 if (Info.Offset + HighBits) 1846 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1847 } else { 1848 if (Info.Offset) 1849 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1850 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1851 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1852 Info.Size), 1853 "bf.clear"); 1854 } 1855 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1856 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1857 return RValue::get(Val); 1858 } 1859 1860 // If this is a reference to a subset of the elements of a vector, create an 1861 // appropriate shufflevector. 1862 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1863 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1864 LV.isVolatileQualified()); 1865 1866 const llvm::Constant *Elts = LV.getExtVectorElts(); 1867 1868 // If the result of the expression is a non-vector type, we must be extracting 1869 // a single element. Just codegen as an extractelement. 1870 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1871 if (!ExprVT) { 1872 unsigned InIdx = getAccessedFieldNo(0, Elts); 1873 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1874 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1875 } 1876 1877 // Always use shuffle vector to try to retain the original program structure 1878 unsigned NumResultElts = ExprVT->getNumElements(); 1879 1880 SmallVector<llvm::Constant*, 4> Mask; 1881 for (unsigned i = 0; i != NumResultElts; ++i) 1882 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1883 1884 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1885 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1886 MaskV); 1887 return RValue::get(Vec); 1888 } 1889 1890 /// Generates lvalue for partial ext_vector access. 1891 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1892 Address VectorAddress = LV.getExtVectorAddress(); 1893 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1894 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1895 1896 Address CastToPointerElement = 1897 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1898 "conv.ptr.element"); 1899 1900 const llvm::Constant *Elts = LV.getExtVectorElts(); 1901 unsigned ix = getAccessedFieldNo(0, Elts); 1902 1903 Address VectorBasePtrPlusIx = 1904 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1905 "vector.elt"); 1906 1907 return VectorBasePtrPlusIx; 1908 } 1909 1910 /// Load of global gamed gegisters are always calls to intrinsics. 1911 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1912 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1913 "Bad type for register variable"); 1914 llvm::MDNode *RegName = cast<llvm::MDNode>( 1915 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1916 1917 // We accept integer and pointer types only 1918 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1919 llvm::Type *Ty = OrigTy; 1920 if (OrigTy->isPointerTy()) 1921 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1922 llvm::Type *Types[] = { Ty }; 1923 1924 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1925 llvm::Value *Call = Builder.CreateCall( 1926 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1927 if (OrigTy->isPointerTy()) 1928 Call = Builder.CreateIntToPtr(Call, OrigTy); 1929 return RValue::get(Call); 1930 } 1931 1932 1933 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1934 /// lvalue, where both are guaranteed to the have the same type, and that type 1935 /// is 'Ty'. 1936 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1937 bool isInit) { 1938 if (!Dst.isSimple()) { 1939 if (Dst.isVectorElt()) { 1940 // Read/modify/write the vector, inserting the new element. 1941 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1942 Dst.isVolatileQualified()); 1943 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1944 Dst.getVectorIdx(), "vecins"); 1945 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1946 Dst.isVolatileQualified()); 1947 return; 1948 } 1949 1950 // If this is an update of extended vector elements, insert them as 1951 // appropriate. 1952 if (Dst.isExtVectorElt()) 1953 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1954 1955 if (Dst.isGlobalReg()) 1956 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1957 1958 assert(Dst.isBitField() && "Unknown LValue type"); 1959 return EmitStoreThroughBitfieldLValue(Src, Dst); 1960 } 1961 1962 // There's special magic for assigning into an ARC-qualified l-value. 1963 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1964 switch (Lifetime) { 1965 case Qualifiers::OCL_None: 1966 llvm_unreachable("present but none"); 1967 1968 case Qualifiers::OCL_ExplicitNone: 1969 // nothing special 1970 break; 1971 1972 case Qualifiers::OCL_Strong: 1973 if (isInit) { 1974 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1975 break; 1976 } 1977 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1978 return; 1979 1980 case Qualifiers::OCL_Weak: 1981 if (isInit) 1982 // Initialize and then skip the primitive store. 1983 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1984 else 1985 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1986 /*ignore*/ true); 1987 return; 1988 1989 case Qualifiers::OCL_Autoreleasing: 1990 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1991 Src.getScalarVal())); 1992 // fall into the normal path 1993 break; 1994 } 1995 } 1996 1997 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1998 // load of a __weak object. 1999 Address LvalueDst = Dst.getAddress(*this); 2000 llvm::Value *src = Src.getScalarVal(); 2001 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2002 return; 2003 } 2004 2005 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2006 // load of a __strong object. 2007 Address LvalueDst = Dst.getAddress(*this); 2008 llvm::Value *src = Src.getScalarVal(); 2009 if (Dst.isObjCIvar()) { 2010 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2011 llvm::Type *ResultType = IntPtrTy; 2012 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2013 llvm::Value *RHS = dst.getPointer(); 2014 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2015 llvm::Value *LHS = 2016 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2017 "sub.ptr.lhs.cast"); 2018 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2019 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2020 BytesBetween); 2021 } else if (Dst.isGlobalObjCRef()) { 2022 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2023 Dst.isThreadLocalRef()); 2024 } 2025 else 2026 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2027 return; 2028 } 2029 2030 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2031 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2032 } 2033 2034 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2035 llvm::Value **Result) { 2036 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2037 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2038 Address Ptr = Dst.getBitFieldAddress(); 2039 2040 // Get the source value, truncated to the width of the bit-field. 2041 llvm::Value *SrcVal = Src.getScalarVal(); 2042 2043 // Cast the source to the storage type and shift it into place. 2044 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2045 /*isSigned=*/false); 2046 llvm::Value *MaskedVal = SrcVal; 2047 2048 // See if there are other bits in the bitfield's storage we'll need to load 2049 // and mask together with source before storing. 2050 if (Info.StorageSize != Info.Size) { 2051 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2052 llvm::Value *Val = 2053 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2054 2055 // Mask the source value as needed. 2056 if (!hasBooleanRepresentation(Dst.getType())) 2057 SrcVal = Builder.CreateAnd(SrcVal, 2058 llvm::APInt::getLowBitsSet(Info.StorageSize, 2059 Info.Size), 2060 "bf.value"); 2061 MaskedVal = SrcVal; 2062 if (Info.Offset) 2063 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2064 2065 // Mask out the original value. 2066 Val = Builder.CreateAnd(Val, 2067 ~llvm::APInt::getBitsSet(Info.StorageSize, 2068 Info.Offset, 2069 Info.Offset + Info.Size), 2070 "bf.clear"); 2071 2072 // Or together the unchanged values and the source value. 2073 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2074 } else { 2075 assert(Info.Offset == 0); 2076 // According to the AACPS: 2077 // When a volatile bit-field is written, and its container does not overlap 2078 // with any non-bit-field member, its container must be read exactly once and 2079 // written exactly once using the access width appropriate to the type of the 2080 // container. The two accesses are not atomic. 2081 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2082 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2083 Builder.CreateLoad(Ptr, true, "bf.load"); 2084 } 2085 2086 // Write the new value back out. 2087 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2088 2089 // Return the new value of the bit-field, if requested. 2090 if (Result) { 2091 llvm::Value *ResultVal = MaskedVal; 2092 2093 // Sign extend the value if needed. 2094 if (Info.IsSigned) { 2095 assert(Info.Size <= Info.StorageSize); 2096 unsigned HighBits = Info.StorageSize - Info.Size; 2097 if (HighBits) { 2098 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2099 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2100 } 2101 } 2102 2103 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2104 "bf.result.cast"); 2105 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2106 } 2107 } 2108 2109 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2110 LValue Dst) { 2111 // This access turns into a read/modify/write of the vector. Load the input 2112 // value now. 2113 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2114 Dst.isVolatileQualified()); 2115 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2116 2117 llvm::Value *SrcVal = Src.getScalarVal(); 2118 2119 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2120 unsigned NumSrcElts = VTy->getNumElements(); 2121 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2122 if (NumDstElts == NumSrcElts) { 2123 // Use shuffle vector is the src and destination are the same number of 2124 // elements and restore the vector mask since it is on the side it will be 2125 // stored. 2126 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2127 for (unsigned i = 0; i != NumSrcElts; ++i) 2128 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2129 2130 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2131 Vec = Builder.CreateShuffleVector(SrcVal, 2132 llvm::UndefValue::get(Vec->getType()), 2133 MaskV); 2134 } else if (NumDstElts > NumSrcElts) { 2135 // Extended the source vector to the same length and then shuffle it 2136 // into the destination. 2137 // FIXME: since we're shuffling with undef, can we just use the indices 2138 // into that? This could be simpler. 2139 SmallVector<llvm::Constant*, 4> ExtMask; 2140 for (unsigned i = 0; i != NumSrcElts; ++i) 2141 ExtMask.push_back(Builder.getInt32(i)); 2142 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2143 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2144 llvm::Value *ExtSrcVal = 2145 Builder.CreateShuffleVector(SrcVal, 2146 llvm::UndefValue::get(SrcVal->getType()), 2147 ExtMaskV); 2148 // build identity 2149 SmallVector<llvm::Constant*, 4> Mask; 2150 for (unsigned i = 0; i != NumDstElts; ++i) 2151 Mask.push_back(Builder.getInt32(i)); 2152 2153 // When the vector size is odd and .odd or .hi is used, the last element 2154 // of the Elts constant array will be one past the size of the vector. 2155 // Ignore the last element here, if it is greater than the mask size. 2156 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2157 NumSrcElts--; 2158 2159 // modify when what gets shuffled in 2160 for (unsigned i = 0; i != NumSrcElts; ++i) 2161 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2162 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2163 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2164 } else { 2165 // We should never shorten the vector 2166 llvm_unreachable("unexpected shorten vector length"); 2167 } 2168 } else { 2169 // If the Src is a scalar (not a vector) it must be updating one element. 2170 unsigned InIdx = getAccessedFieldNo(0, Elts); 2171 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2172 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2173 } 2174 2175 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2176 Dst.isVolatileQualified()); 2177 } 2178 2179 /// Store of global named registers are always calls to intrinsics. 2180 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2181 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2182 "Bad type for register variable"); 2183 llvm::MDNode *RegName = cast<llvm::MDNode>( 2184 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2185 assert(RegName && "Register LValue is not metadata"); 2186 2187 // We accept integer and pointer types only 2188 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2189 llvm::Type *Ty = OrigTy; 2190 if (OrigTy->isPointerTy()) 2191 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2192 llvm::Type *Types[] = { Ty }; 2193 2194 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2195 llvm::Value *Value = Src.getScalarVal(); 2196 if (OrigTy->isPointerTy()) 2197 Value = Builder.CreatePtrToInt(Value, Ty); 2198 Builder.CreateCall( 2199 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2200 } 2201 2202 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2203 // generating write-barries API. It is currently a global, ivar, 2204 // or neither. 2205 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2206 LValue &LV, 2207 bool IsMemberAccess=false) { 2208 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2209 return; 2210 2211 if (isa<ObjCIvarRefExpr>(E)) { 2212 QualType ExpTy = E->getType(); 2213 if (IsMemberAccess && ExpTy->isPointerType()) { 2214 // If ivar is a structure pointer, assigning to field of 2215 // this struct follows gcc's behavior and makes it a non-ivar 2216 // writer-barrier conservatively. 2217 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2218 if (ExpTy->isRecordType()) { 2219 LV.setObjCIvar(false); 2220 return; 2221 } 2222 } 2223 LV.setObjCIvar(true); 2224 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2225 LV.setBaseIvarExp(Exp->getBase()); 2226 LV.setObjCArray(E->getType()->isArrayType()); 2227 return; 2228 } 2229 2230 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2231 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2232 if (VD->hasGlobalStorage()) { 2233 LV.setGlobalObjCRef(true); 2234 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2235 } 2236 } 2237 LV.setObjCArray(E->getType()->isArrayType()); 2238 return; 2239 } 2240 2241 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2242 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2243 return; 2244 } 2245 2246 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2247 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2248 if (LV.isObjCIvar()) { 2249 // If cast is to a structure pointer, follow gcc's behavior and make it 2250 // a non-ivar write-barrier. 2251 QualType ExpTy = E->getType(); 2252 if (ExpTy->isPointerType()) 2253 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2254 if (ExpTy->isRecordType()) 2255 LV.setObjCIvar(false); 2256 } 2257 return; 2258 } 2259 2260 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2261 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2262 return; 2263 } 2264 2265 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2266 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2267 return; 2268 } 2269 2270 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2271 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2272 return; 2273 } 2274 2275 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2276 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2277 return; 2278 } 2279 2280 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2281 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2282 if (LV.isObjCIvar() && !LV.isObjCArray()) 2283 // Using array syntax to assigning to what an ivar points to is not 2284 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2285 LV.setObjCIvar(false); 2286 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2287 // Using array syntax to assigning to what global points to is not 2288 // same as assigning to the global itself. {id *G;} G[i] = 0; 2289 LV.setGlobalObjCRef(false); 2290 return; 2291 } 2292 2293 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2294 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2295 // We don't know if member is an 'ivar', but this flag is looked at 2296 // only in the context of LV.isObjCIvar(). 2297 LV.setObjCArray(E->getType()->isArrayType()); 2298 return; 2299 } 2300 } 2301 2302 static llvm::Value * 2303 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2304 llvm::Value *V, llvm::Type *IRType, 2305 StringRef Name = StringRef()) { 2306 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2307 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2308 } 2309 2310 static LValue EmitThreadPrivateVarDeclLValue( 2311 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2312 llvm::Type *RealVarTy, SourceLocation Loc) { 2313 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2314 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2315 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2316 } 2317 2318 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2319 const VarDecl *VD, QualType T) { 2320 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2321 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2322 // Return an invalid address if variable is MT_To and unified 2323 // memory is not enabled. For all other cases: MT_Link and 2324 // MT_To with unified memory, return a valid address. 2325 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2326 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2327 return Address::invalid(); 2328 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2329 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2330 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2331 "Expected link clause OR to clause with unified memory enabled."); 2332 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2333 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2334 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2335 } 2336 2337 Address 2338 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2339 LValueBaseInfo *PointeeBaseInfo, 2340 TBAAAccessInfo *PointeeTBAAInfo) { 2341 llvm::LoadInst *Load = 2342 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2343 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2344 2345 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2346 PointeeBaseInfo, PointeeTBAAInfo, 2347 /* forPointeeType= */ true); 2348 return Address(Load, Align); 2349 } 2350 2351 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2352 LValueBaseInfo PointeeBaseInfo; 2353 TBAAAccessInfo PointeeTBAAInfo; 2354 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2355 &PointeeTBAAInfo); 2356 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2357 PointeeBaseInfo, PointeeTBAAInfo); 2358 } 2359 2360 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2361 const PointerType *PtrTy, 2362 LValueBaseInfo *BaseInfo, 2363 TBAAAccessInfo *TBAAInfo) { 2364 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2365 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2366 BaseInfo, TBAAInfo, 2367 /*forPointeeType=*/true)); 2368 } 2369 2370 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2371 const PointerType *PtrTy) { 2372 LValueBaseInfo BaseInfo; 2373 TBAAAccessInfo TBAAInfo; 2374 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2375 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2376 } 2377 2378 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2379 const Expr *E, const VarDecl *VD) { 2380 QualType T = E->getType(); 2381 2382 // If it's thread_local, emit a call to its wrapper function instead. 2383 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2384 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2385 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2386 // Check if the variable is marked as declare target with link clause in 2387 // device codegen. 2388 if (CGF.getLangOpts().OpenMPIsDevice) { 2389 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2390 if (Addr.isValid()) 2391 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2392 } 2393 2394 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2395 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2396 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2397 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2398 Address Addr(V, Alignment); 2399 // Emit reference to the private copy of the variable if it is an OpenMP 2400 // threadprivate variable. 2401 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2402 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2403 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2404 E->getExprLoc()); 2405 } 2406 LValue LV = VD->getType()->isReferenceType() ? 2407 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2408 AlignmentSource::Decl) : 2409 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2410 setObjCGCLValueClass(CGF.getContext(), E, LV); 2411 return LV; 2412 } 2413 2414 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2415 const FunctionDecl *FD) { 2416 if (FD->hasAttr<WeakRefAttr>()) { 2417 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2418 return aliasee.getPointer(); 2419 } 2420 2421 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2422 if (!FD->hasPrototype()) { 2423 if (const FunctionProtoType *Proto = 2424 FD->getType()->getAs<FunctionProtoType>()) { 2425 // Ugly case: for a K&R-style definition, the type of the definition 2426 // isn't the same as the type of a use. Correct for this with a 2427 // bitcast. 2428 QualType NoProtoType = 2429 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2430 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2431 V = llvm::ConstantExpr::getBitCast(V, 2432 CGM.getTypes().ConvertType(NoProtoType)); 2433 } 2434 } 2435 return V; 2436 } 2437 2438 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2439 const Expr *E, const FunctionDecl *FD) { 2440 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2441 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2442 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2443 AlignmentSource::Decl); 2444 } 2445 2446 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2447 llvm::Value *ThisValue) { 2448 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2449 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2450 return CGF.EmitLValueForField(LV, FD); 2451 } 2452 2453 /// Named Registers are named metadata pointing to the register name 2454 /// which will be read from/written to as an argument to the intrinsic 2455 /// @llvm.read/write_register. 2456 /// So far, only the name is being passed down, but other options such as 2457 /// register type, allocation type or even optimization options could be 2458 /// passed down via the metadata node. 2459 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2460 SmallString<64> Name("llvm.named.register."); 2461 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2462 assert(Asm->getLabel().size() < 64-Name.size() && 2463 "Register name too big"); 2464 Name.append(Asm->getLabel()); 2465 llvm::NamedMDNode *M = 2466 CGM.getModule().getOrInsertNamedMetadata(Name); 2467 if (M->getNumOperands() == 0) { 2468 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2469 Asm->getLabel()); 2470 llvm::Metadata *Ops[] = {Str}; 2471 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2472 } 2473 2474 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2475 2476 llvm::Value *Ptr = 2477 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2478 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2479 } 2480 2481 /// Determine whether we can emit a reference to \p VD from the current 2482 /// context, despite not necessarily having seen an odr-use of the variable in 2483 /// this context. 2484 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2485 const DeclRefExpr *E, 2486 const VarDecl *VD, 2487 bool IsConstant) { 2488 // For a variable declared in an enclosing scope, do not emit a spurious 2489 // reference even if we have a capture, as that will emit an unwarranted 2490 // reference to our capture state, and will likely generate worse code than 2491 // emitting a local copy. 2492 if (E->refersToEnclosingVariableOrCapture()) 2493 return false; 2494 2495 // For a local declaration declared in this function, we can always reference 2496 // it even if we don't have an odr-use. 2497 if (VD->hasLocalStorage()) { 2498 return VD->getDeclContext() == 2499 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2500 } 2501 2502 // For a global declaration, we can emit a reference to it if we know 2503 // for sure that we are able to emit a definition of it. 2504 VD = VD->getDefinition(CGF.getContext()); 2505 if (!VD) 2506 return false; 2507 2508 // Don't emit a spurious reference if it might be to a variable that only 2509 // exists on a different device / target. 2510 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2511 // cross-target reference. 2512 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2513 CGF.getLangOpts().OpenCL) { 2514 return false; 2515 } 2516 2517 // We can emit a spurious reference only if the linkage implies that we'll 2518 // be emitting a non-interposable symbol that will be retained until link 2519 // time. 2520 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2521 case llvm::GlobalValue::ExternalLinkage: 2522 case llvm::GlobalValue::LinkOnceODRLinkage: 2523 case llvm::GlobalValue::WeakODRLinkage: 2524 case llvm::GlobalValue::InternalLinkage: 2525 case llvm::GlobalValue::PrivateLinkage: 2526 return true; 2527 default: 2528 return false; 2529 } 2530 } 2531 2532 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2533 const NamedDecl *ND = E->getDecl(); 2534 QualType T = E->getType(); 2535 2536 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2537 "should not emit an unevaluated operand"); 2538 2539 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2540 // Global Named registers access via intrinsics only 2541 if (VD->getStorageClass() == SC_Register && 2542 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2543 return EmitGlobalNamedRegister(VD, CGM); 2544 2545 // If this DeclRefExpr does not constitute an odr-use of the variable, 2546 // we're not permitted to emit a reference to it in general, and it might 2547 // not be captured if capture would be necessary for a use. Emit the 2548 // constant value directly instead. 2549 if (E->isNonOdrUse() == NOUR_Constant && 2550 (VD->getType()->isReferenceType() || 2551 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2552 VD->getAnyInitializer(VD); 2553 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2554 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2555 assert(Val && "failed to emit constant expression"); 2556 2557 Address Addr = Address::invalid(); 2558 if (!VD->getType()->isReferenceType()) { 2559 // Spill the constant value to a global. 2560 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2561 getContext().getDeclAlign(VD)); 2562 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2563 auto *PTy = llvm::PointerType::get( 2564 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2565 if (PTy != Addr.getType()) 2566 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2567 } else { 2568 // Should we be using the alignment of the constant pointer we emitted? 2569 CharUnits Alignment = 2570 getNaturalTypeAlignment(E->getType(), 2571 /* BaseInfo= */ nullptr, 2572 /* TBAAInfo= */ nullptr, 2573 /* forPointeeType= */ true); 2574 Addr = Address(Val, Alignment); 2575 } 2576 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2577 } 2578 2579 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2580 2581 // Check for captured variables. 2582 if (E->refersToEnclosingVariableOrCapture()) { 2583 VD = VD->getCanonicalDecl(); 2584 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2585 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2586 if (CapturedStmtInfo) { 2587 auto I = LocalDeclMap.find(VD); 2588 if (I != LocalDeclMap.end()) { 2589 LValue CapLVal; 2590 if (VD->getType()->isReferenceType()) 2591 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2592 AlignmentSource::Decl); 2593 else 2594 CapLVal = MakeAddrLValue(I->second, T); 2595 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2596 // in simd context. 2597 if (getLangOpts().OpenMP && 2598 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2599 CapLVal.setNontemporal(/*Value=*/true); 2600 return CapLVal; 2601 } 2602 LValue CapLVal = 2603 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2604 CapturedStmtInfo->getContextValue()); 2605 CapLVal = MakeAddrLValue( 2606 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2607 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2608 CapLVal.getTBAAInfo()); 2609 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2610 // in simd context. 2611 if (getLangOpts().OpenMP && 2612 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2613 CapLVal.setNontemporal(/*Value=*/true); 2614 return CapLVal; 2615 } 2616 2617 assert(isa<BlockDecl>(CurCodeDecl)); 2618 Address addr = GetAddrOfBlockDecl(VD); 2619 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2620 } 2621 } 2622 2623 // FIXME: We should be able to assert this for FunctionDecls as well! 2624 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2625 // those with a valid source location. 2626 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2627 !E->getLocation().isValid()) && 2628 "Should not use decl without marking it used!"); 2629 2630 if (ND->hasAttr<WeakRefAttr>()) { 2631 const auto *VD = cast<ValueDecl>(ND); 2632 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2633 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2634 } 2635 2636 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2637 // Check if this is a global variable. 2638 if (VD->hasLinkage() || VD->isStaticDataMember()) 2639 return EmitGlobalVarDeclLValue(*this, E, VD); 2640 2641 Address addr = Address::invalid(); 2642 2643 // The variable should generally be present in the local decl map. 2644 auto iter = LocalDeclMap.find(VD); 2645 if (iter != LocalDeclMap.end()) { 2646 addr = iter->second; 2647 2648 // Otherwise, it might be static local we haven't emitted yet for 2649 // some reason; most likely, because it's in an outer function. 2650 } else if (VD->isStaticLocal()) { 2651 addr = Address(CGM.getOrCreateStaticVarDecl( 2652 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2653 getContext().getDeclAlign(VD)); 2654 2655 // No other cases for now. 2656 } else { 2657 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2658 } 2659 2660 2661 // Check for OpenMP threadprivate variables. 2662 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2663 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2664 return EmitThreadPrivateVarDeclLValue( 2665 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2666 E->getExprLoc()); 2667 } 2668 2669 // Drill into block byref variables. 2670 bool isBlockByref = VD->isEscapingByref(); 2671 if (isBlockByref) { 2672 addr = emitBlockByrefAddress(addr, VD); 2673 } 2674 2675 // Drill into reference types. 2676 LValue LV = VD->getType()->isReferenceType() ? 2677 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2678 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2679 2680 bool isLocalStorage = VD->hasLocalStorage(); 2681 2682 bool NonGCable = isLocalStorage && 2683 !VD->getType()->isReferenceType() && 2684 !isBlockByref; 2685 if (NonGCable) { 2686 LV.getQuals().removeObjCGCAttr(); 2687 LV.setNonGC(true); 2688 } 2689 2690 bool isImpreciseLifetime = 2691 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2692 if (isImpreciseLifetime) 2693 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2694 setObjCGCLValueClass(getContext(), E, LV); 2695 return LV; 2696 } 2697 2698 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2699 return EmitFunctionDeclLValue(*this, E, FD); 2700 2701 // FIXME: While we're emitting a binding from an enclosing scope, all other 2702 // DeclRefExprs we see should be implicitly treated as if they also refer to 2703 // an enclosing scope. 2704 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2705 return EmitLValue(BD->getBinding()); 2706 2707 llvm_unreachable("Unhandled DeclRefExpr"); 2708 } 2709 2710 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2711 // __extension__ doesn't affect lvalue-ness. 2712 if (E->getOpcode() == UO_Extension) 2713 return EmitLValue(E->getSubExpr()); 2714 2715 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2716 switch (E->getOpcode()) { 2717 default: llvm_unreachable("Unknown unary operator lvalue!"); 2718 case UO_Deref: { 2719 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2720 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2721 2722 LValueBaseInfo BaseInfo; 2723 TBAAAccessInfo TBAAInfo; 2724 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2725 &TBAAInfo); 2726 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2727 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2728 2729 // We should not generate __weak write barrier on indirect reference 2730 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2731 // But, we continue to generate __strong write barrier on indirect write 2732 // into a pointer to object. 2733 if (getLangOpts().ObjC && 2734 getLangOpts().getGC() != LangOptions::NonGC && 2735 LV.isObjCWeak()) 2736 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2737 return LV; 2738 } 2739 case UO_Real: 2740 case UO_Imag: { 2741 LValue LV = EmitLValue(E->getSubExpr()); 2742 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2743 2744 // __real is valid on scalars. This is a faster way of testing that. 2745 // __imag can only produce an rvalue on scalars. 2746 if (E->getOpcode() == UO_Real && 2747 !LV.getAddress(*this).getElementType()->isStructTy()) { 2748 assert(E->getSubExpr()->getType()->isArithmeticType()); 2749 return LV; 2750 } 2751 2752 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2753 2754 Address Component = 2755 (E->getOpcode() == UO_Real 2756 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2757 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2758 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2759 CGM.getTBAAInfoForSubobject(LV, T)); 2760 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2761 return ElemLV; 2762 } 2763 case UO_PreInc: 2764 case UO_PreDec: { 2765 LValue LV = EmitLValue(E->getSubExpr()); 2766 bool isInc = E->getOpcode() == UO_PreInc; 2767 2768 if (E->getType()->isAnyComplexType()) 2769 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2770 else 2771 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2772 return LV; 2773 } 2774 } 2775 } 2776 2777 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2778 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2779 E->getType(), AlignmentSource::Decl); 2780 } 2781 2782 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2783 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2784 E->getType(), AlignmentSource::Decl); 2785 } 2786 2787 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2788 auto SL = E->getFunctionName(); 2789 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2790 StringRef FnName = CurFn->getName(); 2791 if (FnName.startswith("\01")) 2792 FnName = FnName.substr(1); 2793 StringRef NameItems[] = { 2794 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2795 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2796 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2797 std::string Name = std::string(SL->getString()); 2798 if (!Name.empty()) { 2799 unsigned Discriminator = 2800 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2801 if (Discriminator) 2802 Name += "_" + Twine(Discriminator + 1).str(); 2803 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2804 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2805 } else { 2806 auto C = 2807 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2808 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2809 } 2810 } 2811 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2812 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2813 } 2814 2815 /// Emit a type description suitable for use by a runtime sanitizer library. The 2816 /// format of a type descriptor is 2817 /// 2818 /// \code 2819 /// { i16 TypeKind, i16 TypeInfo } 2820 /// \endcode 2821 /// 2822 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2823 /// integer, 1 for a floating point value, and -1 for anything else. 2824 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2825 // Only emit each type's descriptor once. 2826 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2827 return C; 2828 2829 uint16_t TypeKind = -1; 2830 uint16_t TypeInfo = 0; 2831 2832 if (T->isIntegerType()) { 2833 TypeKind = 0; 2834 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2835 (T->isSignedIntegerType() ? 1 : 0); 2836 } else if (T->isFloatingType()) { 2837 TypeKind = 1; 2838 TypeInfo = getContext().getTypeSize(T); 2839 } 2840 2841 // Format the type name as if for a diagnostic, including quotes and 2842 // optionally an 'aka'. 2843 SmallString<32> Buffer; 2844 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2845 (intptr_t)T.getAsOpaquePtr(), 2846 StringRef(), StringRef(), None, Buffer, 2847 None); 2848 2849 llvm::Constant *Components[] = { 2850 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2851 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2852 }; 2853 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2854 2855 auto *GV = new llvm::GlobalVariable( 2856 CGM.getModule(), Descriptor->getType(), 2857 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2858 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2859 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2860 2861 // Remember the descriptor for this type. 2862 CGM.setTypeDescriptorInMap(T, GV); 2863 2864 return GV; 2865 } 2866 2867 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2868 llvm::Type *TargetTy = IntPtrTy; 2869 2870 if (V->getType() == TargetTy) 2871 return V; 2872 2873 // Floating-point types which fit into intptr_t are bitcast to integers 2874 // and then passed directly (after zero-extension, if necessary). 2875 if (V->getType()->isFloatingPointTy()) { 2876 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2877 if (Bits <= TargetTy->getIntegerBitWidth()) 2878 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2879 Bits)); 2880 } 2881 2882 // Integers which fit in intptr_t are zero-extended and passed directly. 2883 if (V->getType()->isIntegerTy() && 2884 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2885 return Builder.CreateZExt(V, TargetTy); 2886 2887 // Pointers are passed directly, everything else is passed by address. 2888 if (!V->getType()->isPointerTy()) { 2889 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2890 Builder.CreateStore(V, Ptr); 2891 V = Ptr.getPointer(); 2892 } 2893 return Builder.CreatePtrToInt(V, TargetTy); 2894 } 2895 2896 /// Emit a representation of a SourceLocation for passing to a handler 2897 /// in a sanitizer runtime library. The format for this data is: 2898 /// \code 2899 /// struct SourceLocation { 2900 /// const char *Filename; 2901 /// int32_t Line, Column; 2902 /// }; 2903 /// \endcode 2904 /// For an invalid SourceLocation, the Filename pointer is null. 2905 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2906 llvm::Constant *Filename; 2907 int Line, Column; 2908 2909 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2910 if (PLoc.isValid()) { 2911 StringRef FilenameString = PLoc.getFilename(); 2912 2913 int PathComponentsToStrip = 2914 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2915 if (PathComponentsToStrip < 0) { 2916 assert(PathComponentsToStrip != INT_MIN); 2917 int PathComponentsToKeep = -PathComponentsToStrip; 2918 auto I = llvm::sys::path::rbegin(FilenameString); 2919 auto E = llvm::sys::path::rend(FilenameString); 2920 while (I != E && --PathComponentsToKeep) 2921 ++I; 2922 2923 FilenameString = FilenameString.substr(I - E); 2924 } else if (PathComponentsToStrip > 0) { 2925 auto I = llvm::sys::path::begin(FilenameString); 2926 auto E = llvm::sys::path::end(FilenameString); 2927 while (I != E && PathComponentsToStrip--) 2928 ++I; 2929 2930 if (I != E) 2931 FilenameString = 2932 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2933 else 2934 FilenameString = llvm::sys::path::filename(FilenameString); 2935 } 2936 2937 auto FilenameGV = 2938 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 2939 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2940 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2941 Filename = FilenameGV.getPointer(); 2942 Line = PLoc.getLine(); 2943 Column = PLoc.getColumn(); 2944 } else { 2945 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2946 Line = Column = 0; 2947 } 2948 2949 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2950 Builder.getInt32(Column)}; 2951 2952 return llvm::ConstantStruct::getAnon(Data); 2953 } 2954 2955 namespace { 2956 /// Specify under what conditions this check can be recovered 2957 enum class CheckRecoverableKind { 2958 /// Always terminate program execution if this check fails. 2959 Unrecoverable, 2960 /// Check supports recovering, runtime has both fatal (noreturn) and 2961 /// non-fatal handlers for this check. 2962 Recoverable, 2963 /// Runtime conditionally aborts, always need to support recovery. 2964 AlwaysRecoverable 2965 }; 2966 } 2967 2968 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2969 assert(Kind.countPopulation() == 1); 2970 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2971 return CheckRecoverableKind::AlwaysRecoverable; 2972 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2973 return CheckRecoverableKind::Unrecoverable; 2974 else 2975 return CheckRecoverableKind::Recoverable; 2976 } 2977 2978 namespace { 2979 struct SanitizerHandlerInfo { 2980 char const *const Name; 2981 unsigned Version; 2982 }; 2983 } 2984 2985 const SanitizerHandlerInfo SanitizerHandlers[] = { 2986 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2987 LIST_SANITIZER_CHECKS 2988 #undef SANITIZER_CHECK 2989 }; 2990 2991 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2992 llvm::FunctionType *FnType, 2993 ArrayRef<llvm::Value *> FnArgs, 2994 SanitizerHandler CheckHandler, 2995 CheckRecoverableKind RecoverKind, bool IsFatal, 2996 llvm::BasicBlock *ContBB) { 2997 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2998 Optional<ApplyDebugLocation> DL; 2999 if (!CGF.Builder.getCurrentDebugLocation()) { 3000 // Ensure that the call has at least an artificial debug location. 3001 DL.emplace(CGF, SourceLocation()); 3002 } 3003 bool NeedsAbortSuffix = 3004 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3005 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3006 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3007 const StringRef CheckName = CheckInfo.Name; 3008 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3009 if (CheckInfo.Version && !MinimalRuntime) 3010 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3011 if (MinimalRuntime) 3012 FnName += "_minimal"; 3013 if (NeedsAbortSuffix) 3014 FnName += "_abort"; 3015 bool MayReturn = 3016 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3017 3018 llvm::AttrBuilder B; 3019 if (!MayReturn) { 3020 B.addAttribute(llvm::Attribute::NoReturn) 3021 .addAttribute(llvm::Attribute::NoUnwind); 3022 } 3023 B.addAttribute(llvm::Attribute::UWTable); 3024 3025 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3026 FnType, FnName, 3027 llvm::AttributeList::get(CGF.getLLVMContext(), 3028 llvm::AttributeList::FunctionIndex, B), 3029 /*Local=*/true); 3030 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3031 if (!MayReturn) { 3032 HandlerCall->setDoesNotReturn(); 3033 CGF.Builder.CreateUnreachable(); 3034 } else { 3035 CGF.Builder.CreateBr(ContBB); 3036 } 3037 } 3038 3039 void CodeGenFunction::EmitCheck( 3040 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3041 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3042 ArrayRef<llvm::Value *> DynamicArgs) { 3043 assert(IsSanitizerScope); 3044 assert(Checked.size() > 0); 3045 assert(CheckHandler >= 0 && 3046 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3047 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3048 3049 llvm::Value *FatalCond = nullptr; 3050 llvm::Value *RecoverableCond = nullptr; 3051 llvm::Value *TrapCond = nullptr; 3052 for (int i = 0, n = Checked.size(); i < n; ++i) { 3053 llvm::Value *Check = Checked[i].first; 3054 // -fsanitize-trap= overrides -fsanitize-recover=. 3055 llvm::Value *&Cond = 3056 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3057 ? TrapCond 3058 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3059 ? RecoverableCond 3060 : FatalCond; 3061 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3062 } 3063 3064 if (TrapCond) 3065 EmitTrapCheck(TrapCond); 3066 if (!FatalCond && !RecoverableCond) 3067 return; 3068 3069 llvm::Value *JointCond; 3070 if (FatalCond && RecoverableCond) 3071 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3072 else 3073 JointCond = FatalCond ? FatalCond : RecoverableCond; 3074 assert(JointCond); 3075 3076 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3077 assert(SanOpts.has(Checked[0].second)); 3078 #ifndef NDEBUG 3079 for (int i = 1, n = Checked.size(); i < n; ++i) { 3080 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3081 "All recoverable kinds in a single check must be same!"); 3082 assert(SanOpts.has(Checked[i].second)); 3083 } 3084 #endif 3085 3086 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3087 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3088 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3089 // Give hint that we very much don't expect to execute the handler 3090 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3091 llvm::MDBuilder MDHelper(getLLVMContext()); 3092 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3093 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3094 EmitBlock(Handlers); 3095 3096 // Handler functions take an i8* pointing to the (handler-specific) static 3097 // information block, followed by a sequence of intptr_t arguments 3098 // representing operand values. 3099 SmallVector<llvm::Value *, 4> Args; 3100 SmallVector<llvm::Type *, 4> ArgTypes; 3101 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3102 Args.reserve(DynamicArgs.size() + 1); 3103 ArgTypes.reserve(DynamicArgs.size() + 1); 3104 3105 // Emit handler arguments and create handler function type. 3106 if (!StaticArgs.empty()) { 3107 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3108 auto *InfoPtr = 3109 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3110 llvm::GlobalVariable::PrivateLinkage, Info); 3111 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3112 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3113 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3114 ArgTypes.push_back(Int8PtrTy); 3115 } 3116 3117 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3118 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3119 ArgTypes.push_back(IntPtrTy); 3120 } 3121 } 3122 3123 llvm::FunctionType *FnType = 3124 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3125 3126 if (!FatalCond || !RecoverableCond) { 3127 // Simple case: we need to generate a single handler call, either 3128 // fatal, or non-fatal. 3129 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3130 (FatalCond != nullptr), Cont); 3131 } else { 3132 // Emit two handler calls: first one for set of unrecoverable checks, 3133 // another one for recoverable. 3134 llvm::BasicBlock *NonFatalHandlerBB = 3135 createBasicBlock("non_fatal." + CheckName); 3136 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3137 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3138 EmitBlock(FatalHandlerBB); 3139 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3140 NonFatalHandlerBB); 3141 EmitBlock(NonFatalHandlerBB); 3142 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3143 Cont); 3144 } 3145 3146 EmitBlock(Cont); 3147 } 3148 3149 void CodeGenFunction::EmitCfiSlowPathCheck( 3150 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3151 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3152 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3153 3154 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3155 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3156 3157 llvm::MDBuilder MDHelper(getLLVMContext()); 3158 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3159 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3160 3161 EmitBlock(CheckBB); 3162 3163 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3164 3165 llvm::CallInst *CheckCall; 3166 llvm::FunctionCallee SlowPathFn; 3167 if (WithDiag) { 3168 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3169 auto *InfoPtr = 3170 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3171 llvm::GlobalVariable::PrivateLinkage, Info); 3172 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3173 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3174 3175 SlowPathFn = CGM.getModule().getOrInsertFunction( 3176 "__cfi_slowpath_diag", 3177 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3178 false)); 3179 CheckCall = Builder.CreateCall( 3180 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3181 } else { 3182 SlowPathFn = CGM.getModule().getOrInsertFunction( 3183 "__cfi_slowpath", 3184 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3185 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3186 } 3187 3188 CGM.setDSOLocal( 3189 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3190 CheckCall->setDoesNotThrow(); 3191 3192 EmitBlock(Cont); 3193 } 3194 3195 // Emit a stub for __cfi_check function so that the linker knows about this 3196 // symbol in LTO mode. 3197 void CodeGenFunction::EmitCfiCheckStub() { 3198 llvm::Module *M = &CGM.getModule(); 3199 auto &Ctx = M->getContext(); 3200 llvm::Function *F = llvm::Function::Create( 3201 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3202 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3203 CGM.setDSOLocal(F); 3204 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3205 // FIXME: consider emitting an intrinsic call like 3206 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3207 // which can be lowered in CrossDSOCFI pass to the actual contents of 3208 // __cfi_check. This would allow inlining of __cfi_check calls. 3209 llvm::CallInst::Create( 3210 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3211 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3212 } 3213 3214 // This function is basically a switch over the CFI failure kind, which is 3215 // extracted from CFICheckFailData (1st function argument). Each case is either 3216 // llvm.trap or a call to one of the two runtime handlers, based on 3217 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3218 // failure kind) traps, but this should really never happen. CFICheckFailData 3219 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3220 // check kind; in this case __cfi_check_fail traps as well. 3221 void CodeGenFunction::EmitCfiCheckFail() { 3222 SanitizerScope SanScope(this); 3223 FunctionArgList Args; 3224 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3225 ImplicitParamDecl::Other); 3226 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3227 ImplicitParamDecl::Other); 3228 Args.push_back(&ArgData); 3229 Args.push_back(&ArgAddr); 3230 3231 const CGFunctionInfo &FI = 3232 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3233 3234 llvm::Function *F = llvm::Function::Create( 3235 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3236 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3237 3238 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3239 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3240 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3241 3242 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3243 SourceLocation()); 3244 3245 // This function should not be affected by blacklist. This function does 3246 // not have a source location, but "src:*" would still apply. Revert any 3247 // changes to SanOpts made in StartFunction. 3248 SanOpts = CGM.getLangOpts().Sanitize; 3249 3250 llvm::Value *Data = 3251 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3252 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3253 llvm::Value *Addr = 3254 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3255 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3256 3257 // Data == nullptr means the calling module has trap behaviour for this check. 3258 llvm::Value *DataIsNotNullPtr = 3259 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3260 EmitTrapCheck(DataIsNotNullPtr); 3261 3262 llvm::StructType *SourceLocationTy = 3263 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3264 llvm::StructType *CfiCheckFailDataTy = 3265 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3266 3267 llvm::Value *V = Builder.CreateConstGEP2_32( 3268 CfiCheckFailDataTy, 3269 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3270 0); 3271 Address CheckKindAddr(V, getIntAlign()); 3272 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3273 3274 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3275 CGM.getLLVMContext(), 3276 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3277 llvm::Value *ValidVtable = Builder.CreateZExt( 3278 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3279 {Addr, AllVtables}), 3280 IntPtrTy); 3281 3282 const std::pair<int, SanitizerMask> CheckKinds[] = { 3283 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3284 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3285 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3286 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3287 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3288 3289 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3290 for (auto CheckKindMaskPair : CheckKinds) { 3291 int Kind = CheckKindMaskPair.first; 3292 SanitizerMask Mask = CheckKindMaskPair.second; 3293 llvm::Value *Cond = 3294 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3295 if (CGM.getLangOpts().Sanitize.has(Mask)) 3296 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3297 {Data, Addr, ValidVtable}); 3298 else 3299 EmitTrapCheck(Cond); 3300 } 3301 3302 FinishFunction(); 3303 // The only reference to this function will be created during LTO link. 3304 // Make sure it survives until then. 3305 CGM.addUsedGlobal(F); 3306 } 3307 3308 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3309 if (SanOpts.has(SanitizerKind::Unreachable)) { 3310 SanitizerScope SanScope(this); 3311 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3312 SanitizerKind::Unreachable), 3313 SanitizerHandler::BuiltinUnreachable, 3314 EmitCheckSourceLocation(Loc), None); 3315 } 3316 Builder.CreateUnreachable(); 3317 } 3318 3319 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3320 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3321 3322 // If we're optimizing, collapse all calls to trap down to just one per 3323 // function to save on code size. 3324 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3325 TrapBB = createBasicBlock("trap"); 3326 Builder.CreateCondBr(Checked, Cont, TrapBB); 3327 EmitBlock(TrapBB); 3328 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3329 TrapCall->setDoesNotReturn(); 3330 TrapCall->setDoesNotThrow(); 3331 Builder.CreateUnreachable(); 3332 } else { 3333 Builder.CreateCondBr(Checked, Cont, TrapBB); 3334 } 3335 3336 EmitBlock(Cont); 3337 } 3338 3339 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3340 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3341 3342 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3343 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3344 CGM.getCodeGenOpts().TrapFuncName); 3345 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3346 } 3347 3348 return TrapCall; 3349 } 3350 3351 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3352 LValueBaseInfo *BaseInfo, 3353 TBAAAccessInfo *TBAAInfo) { 3354 assert(E->getType()->isArrayType() && 3355 "Array to pointer decay must have array source type!"); 3356 3357 // Expressions of array type can't be bitfields or vector elements. 3358 LValue LV = EmitLValue(E); 3359 Address Addr = LV.getAddress(*this); 3360 3361 // If the array type was an incomplete type, we need to make sure 3362 // the decay ends up being the right type. 3363 llvm::Type *NewTy = ConvertType(E->getType()); 3364 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3365 3366 // Note that VLA pointers are always decayed, so we don't need to do 3367 // anything here. 3368 if (!E->getType()->isVariableArrayType()) { 3369 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3370 "Expected pointer to array"); 3371 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3372 } 3373 3374 // The result of this decay conversion points to an array element within the 3375 // base lvalue. However, since TBAA currently does not support representing 3376 // accesses to elements of member arrays, we conservatively represent accesses 3377 // to the pointee object as if it had no any base lvalue specified. 3378 // TODO: Support TBAA for member arrays. 3379 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3380 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3381 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3382 3383 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3384 } 3385 3386 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3387 /// array to pointer, return the array subexpression. 3388 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3389 // If this isn't just an array->pointer decay, bail out. 3390 const auto *CE = dyn_cast<CastExpr>(E); 3391 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3392 return nullptr; 3393 3394 // If this is a decay from variable width array, bail out. 3395 const Expr *SubExpr = CE->getSubExpr(); 3396 if (SubExpr->getType()->isVariableArrayType()) 3397 return nullptr; 3398 3399 return SubExpr; 3400 } 3401 3402 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3403 llvm::Value *ptr, 3404 ArrayRef<llvm::Value*> indices, 3405 bool inbounds, 3406 bool signedIndices, 3407 SourceLocation loc, 3408 const llvm::Twine &name = "arrayidx") { 3409 if (inbounds) { 3410 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3411 CodeGenFunction::NotSubtraction, loc, 3412 name); 3413 } else { 3414 return CGF.Builder.CreateGEP(ptr, indices, name); 3415 } 3416 } 3417 3418 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3419 llvm::Value *idx, 3420 CharUnits eltSize) { 3421 // If we have a constant index, we can use the exact offset of the 3422 // element we're accessing. 3423 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3424 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3425 return arrayAlign.alignmentAtOffset(offset); 3426 3427 // Otherwise, use the worst-case alignment for any element. 3428 } else { 3429 return arrayAlign.alignmentOfArrayElement(eltSize); 3430 } 3431 } 3432 3433 static QualType getFixedSizeElementType(const ASTContext &ctx, 3434 const VariableArrayType *vla) { 3435 QualType eltType; 3436 do { 3437 eltType = vla->getElementType(); 3438 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3439 return eltType; 3440 } 3441 3442 /// Given an array base, check whether its member access belongs to a record 3443 /// with preserve_access_index attribute or not. 3444 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3445 if (!ArrayBase || !CGF.getDebugInfo()) 3446 return false; 3447 3448 // Only support base as either a MemberExpr or DeclRefExpr. 3449 // DeclRefExpr to cover cases like: 3450 // struct s { int a; int b[10]; }; 3451 // struct s *p; 3452 // p[1].a 3453 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3454 // p->b[5] is a MemberExpr example. 3455 const Expr *E = ArrayBase->IgnoreImpCasts(); 3456 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3457 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3458 3459 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3460 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3461 if (!VarDef) 3462 return false; 3463 3464 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3465 if (!PtrT) 3466 return false; 3467 3468 const auto *PointeeT = PtrT->getPointeeType() 3469 ->getUnqualifiedDesugaredType(); 3470 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3471 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3472 return false; 3473 } 3474 3475 return false; 3476 } 3477 3478 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3479 ArrayRef<llvm::Value *> indices, 3480 QualType eltType, bool inbounds, 3481 bool signedIndices, SourceLocation loc, 3482 QualType *arrayType = nullptr, 3483 const Expr *Base = nullptr, 3484 const llvm::Twine &name = "arrayidx") { 3485 // All the indices except that last must be zero. 3486 #ifndef NDEBUG 3487 for (auto idx : indices.drop_back()) 3488 assert(isa<llvm::ConstantInt>(idx) && 3489 cast<llvm::ConstantInt>(idx)->isZero()); 3490 #endif 3491 3492 // Determine the element size of the statically-sized base. This is 3493 // the thing that the indices are expressed in terms of. 3494 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3495 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3496 } 3497 3498 // We can use that to compute the best alignment of the element. 3499 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3500 CharUnits eltAlign = 3501 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3502 3503 llvm::Value *eltPtr; 3504 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3505 if (!LastIndex || 3506 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3507 eltPtr = emitArraySubscriptGEP( 3508 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3509 loc, name); 3510 } else { 3511 // Remember the original array subscript for bpf target 3512 unsigned idx = LastIndex->getZExtValue(); 3513 llvm::DIType *DbgInfo = nullptr; 3514 if (arrayType) 3515 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3516 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3517 addr.getPointer(), 3518 indices.size() - 1, 3519 idx, DbgInfo); 3520 } 3521 3522 return Address(eltPtr, eltAlign); 3523 } 3524 3525 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3526 bool Accessed) { 3527 // The index must always be an integer, which is not an aggregate. Emit it 3528 // in lexical order (this complexity is, sadly, required by C++17). 3529 llvm::Value *IdxPre = 3530 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3531 bool SignedIndices = false; 3532 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3533 auto *Idx = IdxPre; 3534 if (E->getLHS() != E->getIdx()) { 3535 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3536 Idx = EmitScalarExpr(E->getIdx()); 3537 } 3538 3539 QualType IdxTy = E->getIdx()->getType(); 3540 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3541 SignedIndices |= IdxSigned; 3542 3543 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3544 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3545 3546 // Extend or truncate the index type to 32 or 64-bits. 3547 if (Promote && Idx->getType() != IntPtrTy) 3548 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3549 3550 return Idx; 3551 }; 3552 IdxPre = nullptr; 3553 3554 // If the base is a vector type, then we are forming a vector element lvalue 3555 // with this subscript. 3556 if (E->getBase()->getType()->isVectorType() && 3557 !isa<ExtVectorElementExpr>(E->getBase())) { 3558 // Emit the vector as an lvalue to get its address. 3559 LValue LHS = EmitLValue(E->getBase()); 3560 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3561 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3562 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3563 E->getBase()->getType(), LHS.getBaseInfo(), 3564 TBAAAccessInfo()); 3565 } 3566 3567 // All the other cases basically behave like simple offsetting. 3568 3569 // Handle the extvector case we ignored above. 3570 if (isa<ExtVectorElementExpr>(E->getBase())) { 3571 LValue LV = EmitLValue(E->getBase()); 3572 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3573 Address Addr = EmitExtVectorElementLValue(LV); 3574 3575 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3576 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3577 SignedIndices, E->getExprLoc()); 3578 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3579 CGM.getTBAAInfoForSubobject(LV, EltType)); 3580 } 3581 3582 LValueBaseInfo EltBaseInfo; 3583 TBAAAccessInfo EltTBAAInfo; 3584 Address Addr = Address::invalid(); 3585 if (const VariableArrayType *vla = 3586 getContext().getAsVariableArrayType(E->getType())) { 3587 // The base must be a pointer, which is not an aggregate. Emit 3588 // it. It needs to be emitted first in case it's what captures 3589 // the VLA bounds. 3590 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3591 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3592 3593 // The element count here is the total number of non-VLA elements. 3594 llvm::Value *numElements = getVLASize(vla).NumElts; 3595 3596 // Effectively, the multiply by the VLA size is part of the GEP. 3597 // GEP indexes are signed, and scaling an index isn't permitted to 3598 // signed-overflow, so we use the same semantics for our explicit 3599 // multiply. We suppress this if overflow is not undefined behavior. 3600 if (getLangOpts().isSignedOverflowDefined()) { 3601 Idx = Builder.CreateMul(Idx, numElements); 3602 } else { 3603 Idx = Builder.CreateNSWMul(Idx, numElements); 3604 } 3605 3606 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3607 !getLangOpts().isSignedOverflowDefined(), 3608 SignedIndices, E->getExprLoc()); 3609 3610 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3611 // Indexing over an interface, as in "NSString *P; P[4];" 3612 3613 // Emit the base pointer. 3614 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3615 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3616 3617 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3618 llvm::Value *InterfaceSizeVal = 3619 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3620 3621 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3622 3623 // We don't necessarily build correct LLVM struct types for ObjC 3624 // interfaces, so we can't rely on GEP to do this scaling 3625 // correctly, so we need to cast to i8*. FIXME: is this actually 3626 // true? A lot of other things in the fragile ABI would break... 3627 llvm::Type *OrigBaseTy = Addr.getType(); 3628 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3629 3630 // Do the GEP. 3631 CharUnits EltAlign = 3632 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3633 llvm::Value *EltPtr = 3634 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3635 SignedIndices, E->getExprLoc()); 3636 Addr = Address(EltPtr, EltAlign); 3637 3638 // Cast back. 3639 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3640 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3641 // If this is A[i] where A is an array, the frontend will have decayed the 3642 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3643 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3644 // "gep x, i" here. Emit one "gep A, 0, i". 3645 assert(Array->getType()->isArrayType() && 3646 "Array to pointer decay must have array source type!"); 3647 LValue ArrayLV; 3648 // For simple multidimensional array indexing, set the 'accessed' flag for 3649 // better bounds-checking of the base expression. 3650 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3651 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3652 else 3653 ArrayLV = EmitLValue(Array); 3654 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3655 3656 // Propagate the alignment from the array itself to the result. 3657 QualType arrayType = Array->getType(); 3658 Addr = emitArraySubscriptGEP( 3659 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3660 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3661 E->getExprLoc(), &arrayType, E->getBase()); 3662 EltBaseInfo = ArrayLV.getBaseInfo(); 3663 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3664 } else { 3665 // The base must be a pointer; emit it with an estimate of its alignment. 3666 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3667 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3668 QualType ptrType = E->getBase()->getType(); 3669 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3670 !getLangOpts().isSignedOverflowDefined(), 3671 SignedIndices, E->getExprLoc(), &ptrType, 3672 E->getBase()); 3673 } 3674 3675 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3676 3677 if (getLangOpts().ObjC && 3678 getLangOpts().getGC() != LangOptions::NonGC) { 3679 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3680 setObjCGCLValueClass(getContext(), E, LV); 3681 } 3682 return LV; 3683 } 3684 3685 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3686 LValueBaseInfo &BaseInfo, 3687 TBAAAccessInfo &TBAAInfo, 3688 QualType BaseTy, QualType ElTy, 3689 bool IsLowerBound) { 3690 LValue BaseLVal; 3691 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3692 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3693 if (BaseTy->isArrayType()) { 3694 Address Addr = BaseLVal.getAddress(CGF); 3695 BaseInfo = BaseLVal.getBaseInfo(); 3696 3697 // If the array type was an incomplete type, we need to make sure 3698 // the decay ends up being the right type. 3699 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3700 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3701 3702 // Note that VLA pointers are always decayed, so we don't need to do 3703 // anything here. 3704 if (!BaseTy->isVariableArrayType()) { 3705 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3706 "Expected pointer to array"); 3707 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3708 } 3709 3710 return CGF.Builder.CreateElementBitCast(Addr, 3711 CGF.ConvertTypeForMem(ElTy)); 3712 } 3713 LValueBaseInfo TypeBaseInfo; 3714 TBAAAccessInfo TypeTBAAInfo; 3715 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3716 &TypeTBAAInfo); 3717 BaseInfo.mergeForCast(TypeBaseInfo); 3718 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3719 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3720 } 3721 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3722 } 3723 3724 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3725 bool IsLowerBound) { 3726 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3727 QualType ResultExprTy; 3728 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3729 ResultExprTy = AT->getElementType(); 3730 else 3731 ResultExprTy = BaseTy->getPointeeType(); 3732 llvm::Value *Idx = nullptr; 3733 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3734 // Requesting lower bound or upper bound, but without provided length and 3735 // without ':' symbol for the default length -> length = 1. 3736 // Idx = LowerBound ?: 0; 3737 if (auto *LowerBound = E->getLowerBound()) { 3738 Idx = Builder.CreateIntCast( 3739 EmitScalarExpr(LowerBound), IntPtrTy, 3740 LowerBound->getType()->hasSignedIntegerRepresentation()); 3741 } else 3742 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3743 } else { 3744 // Try to emit length or lower bound as constant. If this is possible, 1 3745 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3746 // IR (LB + Len) - 1. 3747 auto &C = CGM.getContext(); 3748 auto *Length = E->getLength(); 3749 llvm::APSInt ConstLength; 3750 if (Length) { 3751 // Idx = LowerBound + Length - 1; 3752 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3753 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3754 Length = nullptr; 3755 } 3756 auto *LowerBound = E->getLowerBound(); 3757 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3758 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3759 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3760 LowerBound = nullptr; 3761 } 3762 if (!Length) 3763 --ConstLength; 3764 else if (!LowerBound) 3765 --ConstLowerBound; 3766 3767 if (Length || LowerBound) { 3768 auto *LowerBoundVal = 3769 LowerBound 3770 ? Builder.CreateIntCast( 3771 EmitScalarExpr(LowerBound), IntPtrTy, 3772 LowerBound->getType()->hasSignedIntegerRepresentation()) 3773 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3774 auto *LengthVal = 3775 Length 3776 ? Builder.CreateIntCast( 3777 EmitScalarExpr(Length), IntPtrTy, 3778 Length->getType()->hasSignedIntegerRepresentation()) 3779 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3780 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3781 /*HasNUW=*/false, 3782 !getLangOpts().isSignedOverflowDefined()); 3783 if (Length && LowerBound) { 3784 Idx = Builder.CreateSub( 3785 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3786 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3787 } 3788 } else 3789 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3790 } else { 3791 // Idx = ArraySize - 1; 3792 QualType ArrayTy = BaseTy->isPointerType() 3793 ? E->getBase()->IgnoreParenImpCasts()->getType() 3794 : BaseTy; 3795 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3796 Length = VAT->getSizeExpr(); 3797 if (Length->isIntegerConstantExpr(ConstLength, C)) 3798 Length = nullptr; 3799 } else { 3800 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3801 ConstLength = CAT->getSize(); 3802 } 3803 if (Length) { 3804 auto *LengthVal = Builder.CreateIntCast( 3805 EmitScalarExpr(Length), IntPtrTy, 3806 Length->getType()->hasSignedIntegerRepresentation()); 3807 Idx = Builder.CreateSub( 3808 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3809 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3810 } else { 3811 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3812 --ConstLength; 3813 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3814 } 3815 } 3816 } 3817 assert(Idx); 3818 3819 Address EltPtr = Address::invalid(); 3820 LValueBaseInfo BaseInfo; 3821 TBAAAccessInfo TBAAInfo; 3822 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3823 // The base must be a pointer, which is not an aggregate. Emit 3824 // it. It needs to be emitted first in case it's what captures 3825 // the VLA bounds. 3826 Address Base = 3827 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3828 BaseTy, VLA->getElementType(), IsLowerBound); 3829 // The element count here is the total number of non-VLA elements. 3830 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3831 3832 // Effectively, the multiply by the VLA size is part of the GEP. 3833 // GEP indexes are signed, and scaling an index isn't permitted to 3834 // signed-overflow, so we use the same semantics for our explicit 3835 // multiply. We suppress this if overflow is not undefined behavior. 3836 if (getLangOpts().isSignedOverflowDefined()) 3837 Idx = Builder.CreateMul(Idx, NumElements); 3838 else 3839 Idx = Builder.CreateNSWMul(Idx, NumElements); 3840 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3841 !getLangOpts().isSignedOverflowDefined(), 3842 /*signedIndices=*/false, E->getExprLoc()); 3843 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3844 // If this is A[i] where A is an array, the frontend will have decayed the 3845 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3846 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3847 // "gep x, i" here. Emit one "gep A, 0, i". 3848 assert(Array->getType()->isArrayType() && 3849 "Array to pointer decay must have array source type!"); 3850 LValue ArrayLV; 3851 // For simple multidimensional array indexing, set the 'accessed' flag for 3852 // better bounds-checking of the base expression. 3853 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3854 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3855 else 3856 ArrayLV = EmitLValue(Array); 3857 3858 // Propagate the alignment from the array itself to the result. 3859 EltPtr = emitArraySubscriptGEP( 3860 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3861 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3862 /*signedIndices=*/false, E->getExprLoc()); 3863 BaseInfo = ArrayLV.getBaseInfo(); 3864 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3865 } else { 3866 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3867 TBAAInfo, BaseTy, ResultExprTy, 3868 IsLowerBound); 3869 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3870 !getLangOpts().isSignedOverflowDefined(), 3871 /*signedIndices=*/false, E->getExprLoc()); 3872 } 3873 3874 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3875 } 3876 3877 LValue CodeGenFunction:: 3878 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3879 // Emit the base vector as an l-value. 3880 LValue Base; 3881 3882 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3883 if (E->isArrow()) { 3884 // If it is a pointer to a vector, emit the address and form an lvalue with 3885 // it. 3886 LValueBaseInfo BaseInfo; 3887 TBAAAccessInfo TBAAInfo; 3888 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3889 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3890 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3891 Base.getQuals().removeObjCGCAttr(); 3892 } else if (E->getBase()->isGLValue()) { 3893 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3894 // emit the base as an lvalue. 3895 assert(E->getBase()->getType()->isVectorType()); 3896 Base = EmitLValue(E->getBase()); 3897 } else { 3898 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3899 assert(E->getBase()->getType()->isVectorType() && 3900 "Result must be a vector"); 3901 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3902 3903 // Store the vector to memory (because LValue wants an address). 3904 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3905 Builder.CreateStore(Vec, VecMem); 3906 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3907 AlignmentSource::Decl); 3908 } 3909 3910 QualType type = 3911 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3912 3913 // Encode the element access list into a vector of unsigned indices. 3914 SmallVector<uint32_t, 4> Indices; 3915 E->getEncodedElementAccess(Indices); 3916 3917 if (Base.isSimple()) { 3918 llvm::Constant *CV = 3919 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3920 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3921 Base.getBaseInfo(), TBAAAccessInfo()); 3922 } 3923 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3924 3925 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3926 SmallVector<llvm::Constant *, 4> CElts; 3927 3928 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3929 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3930 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3931 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3932 Base.getBaseInfo(), TBAAAccessInfo()); 3933 } 3934 3935 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3936 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3937 EmitIgnoredExpr(E->getBase()); 3938 return EmitDeclRefLValue(DRE); 3939 } 3940 3941 Expr *BaseExpr = E->getBase(); 3942 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3943 LValue BaseLV; 3944 if (E->isArrow()) { 3945 LValueBaseInfo BaseInfo; 3946 TBAAAccessInfo TBAAInfo; 3947 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3948 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3949 SanitizerSet SkippedChecks; 3950 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3951 if (IsBaseCXXThis) 3952 SkippedChecks.set(SanitizerKind::Alignment, true); 3953 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3954 SkippedChecks.set(SanitizerKind::Null, true); 3955 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3956 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3957 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3958 } else 3959 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3960 3961 NamedDecl *ND = E->getMemberDecl(); 3962 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3963 LValue LV = EmitLValueForField(BaseLV, Field); 3964 setObjCGCLValueClass(getContext(), E, LV); 3965 if (getLangOpts().OpenMP) { 3966 // If the member was explicitly marked as nontemporal, mark it as 3967 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3968 // to children as nontemporal too. 3969 if ((IsWrappedCXXThis(BaseExpr) && 3970 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3971 BaseLV.isNontemporal()) 3972 LV.setNontemporal(/*Value=*/true); 3973 } 3974 return LV; 3975 } 3976 3977 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3978 return EmitFunctionDeclLValue(*this, E, FD); 3979 3980 llvm_unreachable("Unhandled member declaration!"); 3981 } 3982 3983 /// Given that we are currently emitting a lambda, emit an l-value for 3984 /// one of its members. 3985 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3986 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3987 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3988 QualType LambdaTagType = 3989 getContext().getTagDeclType(Field->getParent()); 3990 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3991 return EmitLValueForField(LambdaLV, Field); 3992 } 3993 3994 /// Get the field index in the debug info. The debug info structure/union 3995 /// will ignore the unnamed bitfields. 3996 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3997 unsigned FieldIndex) { 3998 unsigned I = 0, Skipped = 0; 3999 4000 for (auto F : Rec->getDefinition()->fields()) { 4001 if (I == FieldIndex) 4002 break; 4003 if (F->isUnnamedBitfield()) 4004 Skipped++; 4005 I++; 4006 } 4007 4008 return FieldIndex - Skipped; 4009 } 4010 4011 /// Get the address of a zero-sized field within a record. The resulting 4012 /// address doesn't necessarily have the right type. 4013 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4014 const FieldDecl *Field) { 4015 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4016 CGF.getContext().getFieldOffset(Field)); 4017 if (Offset.isZero()) 4018 return Base; 4019 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4020 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4021 } 4022 4023 /// Drill down to the storage of a field without walking into 4024 /// reference types. 4025 /// 4026 /// The resulting address doesn't necessarily have the right type. 4027 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4028 const FieldDecl *field) { 4029 if (field->isZeroSize(CGF.getContext())) 4030 return emitAddrOfZeroSizeField(CGF, base, field); 4031 4032 const RecordDecl *rec = field->getParent(); 4033 4034 unsigned idx = 4035 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4036 4037 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4038 } 4039 4040 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4041 Address addr, const FieldDecl *field) { 4042 const RecordDecl *rec = field->getParent(); 4043 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4044 base.getType(), rec->getLocation()); 4045 4046 unsigned idx = 4047 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4048 4049 return CGF.Builder.CreatePreserveStructAccessIndex( 4050 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4051 } 4052 4053 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4054 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4055 if (!RD) 4056 return false; 4057 4058 if (RD->isDynamicClass()) 4059 return true; 4060 4061 for (const auto &Base : RD->bases()) 4062 if (hasAnyVptr(Base.getType(), Context)) 4063 return true; 4064 4065 for (const FieldDecl *Field : RD->fields()) 4066 if (hasAnyVptr(Field->getType(), Context)) 4067 return true; 4068 4069 return false; 4070 } 4071 4072 LValue CodeGenFunction::EmitLValueForField(LValue base, 4073 const FieldDecl *field) { 4074 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4075 4076 if (field->isBitField()) { 4077 const CGRecordLayout &RL = 4078 CGM.getTypes().getCGRecordLayout(field->getParent()); 4079 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4080 Address Addr = base.getAddress(*this); 4081 unsigned Idx = RL.getLLVMFieldNo(field); 4082 const RecordDecl *rec = field->getParent(); 4083 if (!IsInPreservedAIRegion && 4084 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4085 if (Idx != 0) 4086 // For structs, we GEP to the field that the record layout suggests. 4087 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4088 } else { 4089 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4090 getContext().getRecordType(rec), rec->getLocation()); 4091 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4092 getDebugInfoFIndex(rec, field->getFieldIndex()), 4093 DbgInfo); 4094 } 4095 4096 // Get the access type. 4097 llvm::Type *FieldIntTy = 4098 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4099 if (Addr.getElementType() != FieldIntTy) 4100 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4101 4102 QualType fieldType = 4103 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4104 // TODO: Support TBAA for bit fields. 4105 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4106 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4107 TBAAAccessInfo()); 4108 } 4109 4110 // Fields of may-alias structures are may-alias themselves. 4111 // FIXME: this should get propagated down through anonymous structs 4112 // and unions. 4113 QualType FieldType = field->getType(); 4114 const RecordDecl *rec = field->getParent(); 4115 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4116 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4117 TBAAAccessInfo FieldTBAAInfo; 4118 if (base.getTBAAInfo().isMayAlias() || 4119 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4120 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4121 } else if (rec->isUnion()) { 4122 // TODO: Support TBAA for unions. 4123 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4124 } else { 4125 // If no base type been assigned for the base access, then try to generate 4126 // one for this base lvalue. 4127 FieldTBAAInfo = base.getTBAAInfo(); 4128 if (!FieldTBAAInfo.BaseType) { 4129 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4130 assert(!FieldTBAAInfo.Offset && 4131 "Nonzero offset for an access with no base type!"); 4132 } 4133 4134 // Adjust offset to be relative to the base type. 4135 const ASTRecordLayout &Layout = 4136 getContext().getASTRecordLayout(field->getParent()); 4137 unsigned CharWidth = getContext().getCharWidth(); 4138 if (FieldTBAAInfo.BaseType) 4139 FieldTBAAInfo.Offset += 4140 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4141 4142 // Update the final access type and size. 4143 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4144 FieldTBAAInfo.Size = 4145 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4146 } 4147 4148 Address addr = base.getAddress(*this); 4149 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4150 if (CGM.getCodeGenOpts().StrictVTablePointers && 4151 ClassDef->isDynamicClass()) { 4152 // Getting to any field of dynamic object requires stripping dynamic 4153 // information provided by invariant.group. This is because accessing 4154 // fields may leak the real address of dynamic object, which could result 4155 // in miscompilation when leaked pointer would be compared. 4156 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4157 addr = Address(stripped, addr.getAlignment()); 4158 } 4159 } 4160 4161 unsigned RecordCVR = base.getVRQualifiers(); 4162 if (rec->isUnion()) { 4163 // For unions, there is no pointer adjustment. 4164 if (CGM.getCodeGenOpts().StrictVTablePointers && 4165 hasAnyVptr(FieldType, getContext())) 4166 // Because unions can easily skip invariant.barriers, we need to add 4167 // a barrier every time CXXRecord field with vptr is referenced. 4168 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4169 addr.getAlignment()); 4170 4171 if (IsInPreservedAIRegion || 4172 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4173 // Remember the original union field index 4174 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4175 rec->getLocation()); 4176 addr = Address( 4177 Builder.CreatePreserveUnionAccessIndex( 4178 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4179 addr.getAlignment()); 4180 } 4181 4182 if (FieldType->isReferenceType()) 4183 addr = Builder.CreateElementBitCast( 4184 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4185 } else { 4186 if (!IsInPreservedAIRegion && 4187 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4188 // For structs, we GEP to the field that the record layout suggests. 4189 addr = emitAddrOfFieldStorage(*this, addr, field); 4190 else 4191 // Remember the original struct field index 4192 addr = emitPreserveStructAccess(*this, base, addr, field); 4193 } 4194 4195 // If this is a reference field, load the reference right now. 4196 if (FieldType->isReferenceType()) { 4197 LValue RefLVal = 4198 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4199 if (RecordCVR & Qualifiers::Volatile) 4200 RefLVal.getQuals().addVolatile(); 4201 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4202 4203 // Qualifiers on the struct don't apply to the referencee. 4204 RecordCVR = 0; 4205 FieldType = FieldType->getPointeeType(); 4206 } 4207 4208 // Make sure that the address is pointing to the right type. This is critical 4209 // for both unions and structs. A union needs a bitcast, a struct element 4210 // will need a bitcast if the LLVM type laid out doesn't match the desired 4211 // type. 4212 addr = Builder.CreateElementBitCast( 4213 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4214 4215 if (field->hasAttr<AnnotateAttr>()) 4216 addr = EmitFieldAnnotations(field, addr); 4217 4218 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4219 LV.getQuals().addCVRQualifiers(RecordCVR); 4220 4221 // __weak attribute on a field is ignored. 4222 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4223 LV.getQuals().removeObjCGCAttr(); 4224 4225 return LV; 4226 } 4227 4228 LValue 4229 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4230 const FieldDecl *Field) { 4231 QualType FieldType = Field->getType(); 4232 4233 if (!FieldType->isReferenceType()) 4234 return EmitLValueForField(Base, Field); 4235 4236 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4237 4238 // Make sure that the address is pointing to the right type. 4239 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4240 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4241 4242 // TODO: Generate TBAA information that describes this access as a structure 4243 // member access and not just an access to an object of the field's type. This 4244 // should be similar to what we do in EmitLValueForField(). 4245 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4246 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4247 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4248 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4249 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4250 } 4251 4252 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4253 if (E->isFileScope()) { 4254 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4255 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4256 } 4257 if (E->getType()->isVariablyModifiedType()) 4258 // make sure to emit the VLA size. 4259 EmitVariablyModifiedType(E->getType()); 4260 4261 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4262 const Expr *InitExpr = E->getInitializer(); 4263 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4264 4265 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4266 /*Init*/ true); 4267 4268 return Result; 4269 } 4270 4271 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4272 if (!E->isGLValue()) 4273 // Initializing an aggregate temporary in C++11: T{...}. 4274 return EmitAggExprToLValue(E); 4275 4276 // An lvalue initializer list must be initializing a reference. 4277 assert(E->isTransparent() && "non-transparent glvalue init list"); 4278 return EmitLValue(E->getInit(0)); 4279 } 4280 4281 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4282 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4283 /// LValue is returned and the current block has been terminated. 4284 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4285 const Expr *Operand) { 4286 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4287 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4288 return None; 4289 } 4290 4291 return CGF.EmitLValue(Operand); 4292 } 4293 4294 LValue CodeGenFunction:: 4295 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4296 if (!expr->isGLValue()) { 4297 // ?: here should be an aggregate. 4298 assert(hasAggregateEvaluationKind(expr->getType()) && 4299 "Unexpected conditional operator!"); 4300 return EmitAggExprToLValue(expr); 4301 } 4302 4303 OpaqueValueMapping binding(*this, expr); 4304 4305 const Expr *condExpr = expr->getCond(); 4306 bool CondExprBool; 4307 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4308 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4309 if (!CondExprBool) std::swap(live, dead); 4310 4311 if (!ContainsLabel(dead)) { 4312 // If the true case is live, we need to track its region. 4313 if (CondExprBool) 4314 incrementProfileCounter(expr); 4315 return EmitLValue(live); 4316 } 4317 } 4318 4319 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4320 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4321 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4322 4323 ConditionalEvaluation eval(*this); 4324 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4325 4326 // Any temporaries created here are conditional. 4327 EmitBlock(lhsBlock); 4328 incrementProfileCounter(expr); 4329 eval.begin(*this); 4330 Optional<LValue> lhs = 4331 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4332 eval.end(*this); 4333 4334 if (lhs && !lhs->isSimple()) 4335 return EmitUnsupportedLValue(expr, "conditional operator"); 4336 4337 lhsBlock = Builder.GetInsertBlock(); 4338 if (lhs) 4339 Builder.CreateBr(contBlock); 4340 4341 // Any temporaries created here are conditional. 4342 EmitBlock(rhsBlock); 4343 eval.begin(*this); 4344 Optional<LValue> rhs = 4345 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4346 eval.end(*this); 4347 if (rhs && !rhs->isSimple()) 4348 return EmitUnsupportedLValue(expr, "conditional operator"); 4349 rhsBlock = Builder.GetInsertBlock(); 4350 4351 EmitBlock(contBlock); 4352 4353 if (lhs && rhs) { 4354 llvm::PHINode *phi = 4355 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4356 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4357 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4358 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4359 AlignmentSource alignSource = 4360 std::max(lhs->getBaseInfo().getAlignmentSource(), 4361 rhs->getBaseInfo().getAlignmentSource()); 4362 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4363 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4364 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4365 TBAAInfo); 4366 } else { 4367 assert((lhs || rhs) && 4368 "both operands of glvalue conditional are throw-expressions?"); 4369 return lhs ? *lhs : *rhs; 4370 } 4371 } 4372 4373 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4374 /// type. If the cast is to a reference, we can have the usual lvalue result, 4375 /// otherwise if a cast is needed by the code generator in an lvalue context, 4376 /// then it must mean that we need the address of an aggregate in order to 4377 /// access one of its members. This can happen for all the reasons that casts 4378 /// are permitted with aggregate result, including noop aggregate casts, and 4379 /// cast from scalar to union. 4380 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4381 switch (E->getCastKind()) { 4382 case CK_ToVoid: 4383 case CK_BitCast: 4384 case CK_LValueToRValueBitCast: 4385 case CK_ArrayToPointerDecay: 4386 case CK_FunctionToPointerDecay: 4387 case CK_NullToMemberPointer: 4388 case CK_NullToPointer: 4389 case CK_IntegralToPointer: 4390 case CK_PointerToIntegral: 4391 case CK_PointerToBoolean: 4392 case CK_VectorSplat: 4393 case CK_IntegralCast: 4394 case CK_BooleanToSignedIntegral: 4395 case CK_IntegralToBoolean: 4396 case CK_IntegralToFloating: 4397 case CK_FloatingToIntegral: 4398 case CK_FloatingToBoolean: 4399 case CK_FloatingCast: 4400 case CK_FloatingRealToComplex: 4401 case CK_FloatingComplexToReal: 4402 case CK_FloatingComplexToBoolean: 4403 case CK_FloatingComplexCast: 4404 case CK_FloatingComplexToIntegralComplex: 4405 case CK_IntegralRealToComplex: 4406 case CK_IntegralComplexToReal: 4407 case CK_IntegralComplexToBoolean: 4408 case CK_IntegralComplexCast: 4409 case CK_IntegralComplexToFloatingComplex: 4410 case CK_DerivedToBaseMemberPointer: 4411 case CK_BaseToDerivedMemberPointer: 4412 case CK_MemberPointerToBoolean: 4413 case CK_ReinterpretMemberPointer: 4414 case CK_AnyPointerToBlockPointerCast: 4415 case CK_ARCProduceObject: 4416 case CK_ARCConsumeObject: 4417 case CK_ARCReclaimReturnedObject: 4418 case CK_ARCExtendBlockObject: 4419 case CK_CopyAndAutoreleaseBlockObject: 4420 case CK_IntToOCLSampler: 4421 case CK_FixedPointCast: 4422 case CK_FixedPointToBoolean: 4423 case CK_FixedPointToIntegral: 4424 case CK_IntegralToFixedPoint: 4425 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4426 4427 case CK_Dependent: 4428 llvm_unreachable("dependent cast kind in IR gen!"); 4429 4430 case CK_BuiltinFnToFnPtr: 4431 llvm_unreachable("builtin functions are handled elsewhere"); 4432 4433 // These are never l-values; just use the aggregate emission code. 4434 case CK_NonAtomicToAtomic: 4435 case CK_AtomicToNonAtomic: 4436 return EmitAggExprToLValue(E); 4437 4438 case CK_Dynamic: { 4439 LValue LV = EmitLValue(E->getSubExpr()); 4440 Address V = LV.getAddress(*this); 4441 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4442 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4443 } 4444 4445 case CK_ConstructorConversion: 4446 case CK_UserDefinedConversion: 4447 case CK_CPointerToObjCPointerCast: 4448 case CK_BlockPointerToObjCPointerCast: 4449 case CK_NoOp: 4450 case CK_LValueToRValue: 4451 return EmitLValue(E->getSubExpr()); 4452 4453 case CK_UncheckedDerivedToBase: 4454 case CK_DerivedToBase: { 4455 const auto *DerivedClassTy = 4456 E->getSubExpr()->getType()->castAs<RecordType>(); 4457 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4458 4459 LValue LV = EmitLValue(E->getSubExpr()); 4460 Address This = LV.getAddress(*this); 4461 4462 // Perform the derived-to-base conversion 4463 Address Base = GetAddressOfBaseClass( 4464 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4465 /*NullCheckValue=*/false, E->getExprLoc()); 4466 4467 // TODO: Support accesses to members of base classes in TBAA. For now, we 4468 // conservatively pretend that the complete object is of the base class 4469 // type. 4470 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4471 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4472 } 4473 case CK_ToUnion: 4474 return EmitAggExprToLValue(E); 4475 case CK_BaseToDerived: { 4476 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4477 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4478 4479 LValue LV = EmitLValue(E->getSubExpr()); 4480 4481 // Perform the base-to-derived conversion 4482 Address Derived = GetAddressOfDerivedClass( 4483 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4484 /*NullCheckValue=*/false); 4485 4486 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4487 // performed and the object is not of the derived type. 4488 if (sanitizePerformTypeCheck()) 4489 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4490 Derived.getPointer(), E->getType()); 4491 4492 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4493 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4494 /*MayBeNull=*/false, CFITCK_DerivedCast, 4495 E->getBeginLoc()); 4496 4497 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4498 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4499 } 4500 case CK_LValueBitCast: { 4501 // This must be a reinterpret_cast (or c-style equivalent). 4502 const auto *CE = cast<ExplicitCastExpr>(E); 4503 4504 CGM.EmitExplicitCastExprType(CE, this); 4505 LValue LV = EmitLValue(E->getSubExpr()); 4506 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4507 ConvertType(CE->getTypeAsWritten())); 4508 4509 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4510 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4511 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4512 E->getBeginLoc()); 4513 4514 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4515 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4516 } 4517 case CK_AddressSpaceConversion: { 4518 LValue LV = EmitLValue(E->getSubExpr()); 4519 QualType DestTy = getContext().getPointerType(E->getType()); 4520 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4521 *this, LV.getPointer(*this), 4522 E->getSubExpr()->getType().getAddressSpace(), 4523 E->getType().getAddressSpace(), ConvertType(DestTy)); 4524 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4525 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4526 } 4527 case CK_ObjCObjectLValueCast: { 4528 LValue LV = EmitLValue(E->getSubExpr()); 4529 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4530 ConvertType(E->getType())); 4531 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4532 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4533 } 4534 case CK_ZeroToOCLOpaqueType: 4535 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4536 } 4537 4538 llvm_unreachable("Unhandled lvalue cast kind?"); 4539 } 4540 4541 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4542 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4543 return getOrCreateOpaqueLValueMapping(e); 4544 } 4545 4546 LValue 4547 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4548 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4549 4550 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4551 it = OpaqueLValues.find(e); 4552 4553 if (it != OpaqueLValues.end()) 4554 return it->second; 4555 4556 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4557 return EmitLValue(e->getSourceExpr()); 4558 } 4559 4560 RValue 4561 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4562 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4563 4564 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4565 it = OpaqueRValues.find(e); 4566 4567 if (it != OpaqueRValues.end()) 4568 return it->second; 4569 4570 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4571 return EmitAnyExpr(e->getSourceExpr()); 4572 } 4573 4574 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4575 const FieldDecl *FD, 4576 SourceLocation Loc) { 4577 QualType FT = FD->getType(); 4578 LValue FieldLV = EmitLValueForField(LV, FD); 4579 switch (getEvaluationKind(FT)) { 4580 case TEK_Complex: 4581 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4582 case TEK_Aggregate: 4583 return FieldLV.asAggregateRValue(*this); 4584 case TEK_Scalar: 4585 // This routine is used to load fields one-by-one to perform a copy, so 4586 // don't load reference fields. 4587 if (FD->getType()->isReferenceType()) 4588 return RValue::get(FieldLV.getPointer(*this)); 4589 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4590 // primitive load. 4591 if (FieldLV.isBitField()) 4592 return EmitLoadOfLValue(FieldLV, Loc); 4593 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4594 } 4595 llvm_unreachable("bad evaluation kind"); 4596 } 4597 4598 //===--------------------------------------------------------------------===// 4599 // Expression Emission 4600 //===--------------------------------------------------------------------===// 4601 4602 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4603 ReturnValueSlot ReturnValue) { 4604 // Builtins never have block type. 4605 if (E->getCallee()->getType()->isBlockPointerType()) 4606 return EmitBlockCallExpr(E, ReturnValue); 4607 4608 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4609 return EmitCXXMemberCallExpr(CE, ReturnValue); 4610 4611 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4612 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4613 4614 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4615 if (const CXXMethodDecl *MD = 4616 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4617 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4618 4619 CGCallee callee = EmitCallee(E->getCallee()); 4620 4621 if (callee.isBuiltin()) { 4622 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4623 E, ReturnValue); 4624 } 4625 4626 if (callee.isPseudoDestructor()) { 4627 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4628 } 4629 4630 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4631 } 4632 4633 /// Emit a CallExpr without considering whether it might be a subclass. 4634 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4635 ReturnValueSlot ReturnValue) { 4636 CGCallee Callee = EmitCallee(E->getCallee()); 4637 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4638 } 4639 4640 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4641 4642 if (auto builtinID = FD->getBuiltinID()) { 4643 // Replaceable builtin provide their own implementation of a builtin. Unless 4644 // we are in the builtin implementation itself, don't call the actual 4645 // builtin. If we are in the builtin implementation, avoid trivial infinite 4646 // recursion. 4647 if (!FD->isInlineBuiltinDeclaration() || 4648 CGF.CurFn->getName() == FD->getName()) 4649 return CGCallee::forBuiltin(builtinID, FD); 4650 } 4651 4652 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4653 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4654 } 4655 4656 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4657 E = E->IgnoreParens(); 4658 4659 // Look through function-to-pointer decay. 4660 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4661 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4662 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4663 return EmitCallee(ICE->getSubExpr()); 4664 } 4665 4666 // Resolve direct calls. 4667 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4668 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4669 return EmitDirectCallee(*this, FD); 4670 } 4671 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4672 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4673 EmitIgnoredExpr(ME->getBase()); 4674 return EmitDirectCallee(*this, FD); 4675 } 4676 4677 // Look through template substitutions. 4678 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4679 return EmitCallee(NTTP->getReplacement()); 4680 4681 // Treat pseudo-destructor calls differently. 4682 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4683 return CGCallee::forPseudoDestructor(PDE); 4684 } 4685 4686 // Otherwise, we have an indirect reference. 4687 llvm::Value *calleePtr; 4688 QualType functionType; 4689 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4690 calleePtr = EmitScalarExpr(E); 4691 functionType = ptrType->getPointeeType(); 4692 } else { 4693 functionType = E->getType(); 4694 calleePtr = EmitLValue(E).getPointer(*this); 4695 } 4696 assert(functionType->isFunctionType()); 4697 4698 GlobalDecl GD; 4699 if (const auto *VD = 4700 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4701 GD = GlobalDecl(VD); 4702 4703 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4704 CGCallee callee(calleeInfo, calleePtr); 4705 return callee; 4706 } 4707 4708 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4709 // Comma expressions just emit their LHS then their RHS as an l-value. 4710 if (E->getOpcode() == BO_Comma) { 4711 EmitIgnoredExpr(E->getLHS()); 4712 EnsureInsertPoint(); 4713 return EmitLValue(E->getRHS()); 4714 } 4715 4716 if (E->getOpcode() == BO_PtrMemD || 4717 E->getOpcode() == BO_PtrMemI) 4718 return EmitPointerToDataMemberBinaryExpr(E); 4719 4720 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4721 4722 // Note that in all of these cases, __block variables need the RHS 4723 // evaluated first just in case the variable gets moved by the RHS. 4724 4725 switch (getEvaluationKind(E->getType())) { 4726 case TEK_Scalar: { 4727 switch (E->getLHS()->getType().getObjCLifetime()) { 4728 case Qualifiers::OCL_Strong: 4729 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4730 4731 case Qualifiers::OCL_Autoreleasing: 4732 return EmitARCStoreAutoreleasing(E).first; 4733 4734 // No reason to do any of these differently. 4735 case Qualifiers::OCL_None: 4736 case Qualifiers::OCL_ExplicitNone: 4737 case Qualifiers::OCL_Weak: 4738 break; 4739 } 4740 4741 RValue RV = EmitAnyExpr(E->getRHS()); 4742 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4743 if (RV.isScalar()) 4744 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4745 EmitStoreThroughLValue(RV, LV); 4746 if (getLangOpts().OpenMP) 4747 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4748 E->getLHS()); 4749 return LV; 4750 } 4751 4752 case TEK_Complex: 4753 return EmitComplexAssignmentLValue(E); 4754 4755 case TEK_Aggregate: 4756 return EmitAggExprToLValue(E); 4757 } 4758 llvm_unreachable("bad evaluation kind"); 4759 } 4760 4761 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4762 RValue RV = EmitCallExpr(E); 4763 4764 if (!RV.isScalar()) 4765 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4766 AlignmentSource::Decl); 4767 4768 assert(E->getCallReturnType(getContext())->isReferenceType() && 4769 "Can't have a scalar return unless the return type is a " 4770 "reference type!"); 4771 4772 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4773 } 4774 4775 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4776 // FIXME: This shouldn't require another copy. 4777 return EmitAggExprToLValue(E); 4778 } 4779 4780 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4781 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4782 && "binding l-value to type which needs a temporary"); 4783 AggValueSlot Slot = CreateAggTemp(E->getType()); 4784 EmitCXXConstructExpr(E, Slot); 4785 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4786 } 4787 4788 LValue 4789 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4790 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4791 } 4792 4793 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4794 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4795 ConvertType(E->getType())); 4796 } 4797 4798 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4799 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4800 AlignmentSource::Decl); 4801 } 4802 4803 LValue 4804 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4805 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4806 Slot.setExternallyDestructed(); 4807 EmitAggExpr(E->getSubExpr(), Slot); 4808 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4809 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4810 } 4811 4812 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4813 RValue RV = EmitObjCMessageExpr(E); 4814 4815 if (!RV.isScalar()) 4816 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4817 AlignmentSource::Decl); 4818 4819 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4820 "Can't have a scalar return unless the return type is a " 4821 "reference type!"); 4822 4823 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4824 } 4825 4826 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4827 Address V = 4828 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4829 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4830 } 4831 4832 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4833 const ObjCIvarDecl *Ivar) { 4834 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4835 } 4836 4837 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4838 llvm::Value *BaseValue, 4839 const ObjCIvarDecl *Ivar, 4840 unsigned CVRQualifiers) { 4841 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4842 Ivar, CVRQualifiers); 4843 } 4844 4845 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4846 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4847 llvm::Value *BaseValue = nullptr; 4848 const Expr *BaseExpr = E->getBase(); 4849 Qualifiers BaseQuals; 4850 QualType ObjectTy; 4851 if (E->isArrow()) { 4852 BaseValue = EmitScalarExpr(BaseExpr); 4853 ObjectTy = BaseExpr->getType()->getPointeeType(); 4854 BaseQuals = ObjectTy.getQualifiers(); 4855 } else { 4856 LValue BaseLV = EmitLValue(BaseExpr); 4857 BaseValue = BaseLV.getPointer(*this); 4858 ObjectTy = BaseExpr->getType(); 4859 BaseQuals = ObjectTy.getQualifiers(); 4860 } 4861 4862 LValue LV = 4863 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4864 BaseQuals.getCVRQualifiers()); 4865 setObjCGCLValueClass(getContext(), E, LV); 4866 return LV; 4867 } 4868 4869 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4870 // Can only get l-value for message expression returning aggregate type 4871 RValue RV = EmitAnyExprToTemp(E); 4872 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4873 AlignmentSource::Decl); 4874 } 4875 4876 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4877 const CallExpr *E, ReturnValueSlot ReturnValue, 4878 llvm::Value *Chain) { 4879 // Get the actual function type. The callee type will always be a pointer to 4880 // function type or a block pointer type. 4881 assert(CalleeType->isFunctionPointerType() && 4882 "Call must have function pointer type!"); 4883 4884 const Decl *TargetDecl = 4885 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4886 4887 CalleeType = getContext().getCanonicalType(CalleeType); 4888 4889 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4890 4891 CGCallee Callee = OrigCallee; 4892 4893 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4894 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4895 if (llvm::Constant *PrefixSig = 4896 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4897 SanitizerScope SanScope(this); 4898 // Remove any (C++17) exception specifications, to allow calling e.g. a 4899 // noexcept function through a non-noexcept pointer. 4900 auto ProtoTy = 4901 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4902 llvm::Constant *FTRTTIConst = 4903 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4904 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4905 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4906 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4907 4908 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4909 4910 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4911 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4912 llvm::Value *CalleeSigPtr = 4913 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4914 llvm::Value *CalleeSig = 4915 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4916 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4917 4918 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4919 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4920 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4921 4922 EmitBlock(TypeCheck); 4923 llvm::Value *CalleeRTTIPtr = 4924 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4925 llvm::Value *CalleeRTTIEncoded = 4926 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4927 llvm::Value *CalleeRTTI = 4928 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4929 llvm::Value *CalleeRTTIMatch = 4930 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4931 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4932 EmitCheckTypeDescriptor(CalleeType)}; 4933 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4934 SanitizerHandler::FunctionTypeMismatch, StaticData, 4935 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4936 4937 Builder.CreateBr(Cont); 4938 EmitBlock(Cont); 4939 } 4940 } 4941 4942 const auto *FnType = cast<FunctionType>(PointeeType); 4943 4944 // If we are checking indirect calls and this call is indirect, check that the 4945 // function pointer is a member of the bit set for the function type. 4946 if (SanOpts.has(SanitizerKind::CFIICall) && 4947 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4948 SanitizerScope SanScope(this); 4949 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4950 4951 llvm::Metadata *MD; 4952 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4953 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4954 else 4955 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4956 4957 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4958 4959 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4960 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4961 llvm::Value *TypeTest = Builder.CreateCall( 4962 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4963 4964 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4965 llvm::Constant *StaticData[] = { 4966 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4967 EmitCheckSourceLocation(E->getBeginLoc()), 4968 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4969 }; 4970 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4971 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4972 CastedCallee, StaticData); 4973 } else { 4974 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4975 SanitizerHandler::CFICheckFail, StaticData, 4976 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4977 } 4978 } 4979 4980 CallArgList Args; 4981 if (Chain) 4982 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4983 CGM.getContext().VoidPtrTy); 4984 4985 // C++17 requires that we evaluate arguments to a call using assignment syntax 4986 // right-to-left, and that we evaluate arguments to certain other operators 4987 // left-to-right. Note that we allow this to override the order dictated by 4988 // the calling convention on the MS ABI, which means that parameter 4989 // destruction order is not necessarily reverse construction order. 4990 // FIXME: Revisit this based on C++ committee response to unimplementability. 4991 EvaluationOrder Order = EvaluationOrder::Default; 4992 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4993 if (OCE->isAssignmentOp()) 4994 Order = EvaluationOrder::ForceRightToLeft; 4995 else { 4996 switch (OCE->getOperator()) { 4997 case OO_LessLess: 4998 case OO_GreaterGreater: 4999 case OO_AmpAmp: 5000 case OO_PipePipe: 5001 case OO_Comma: 5002 case OO_ArrowStar: 5003 Order = EvaluationOrder::ForceLeftToRight; 5004 break; 5005 default: 5006 break; 5007 } 5008 } 5009 } 5010 5011 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5012 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5013 5014 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5015 Args, FnType, /*ChainCall=*/Chain); 5016 5017 // C99 6.5.2.2p6: 5018 // If the expression that denotes the called function has a type 5019 // that does not include a prototype, [the default argument 5020 // promotions are performed]. If the number of arguments does not 5021 // equal the number of parameters, the behavior is undefined. If 5022 // the function is defined with a type that includes a prototype, 5023 // and either the prototype ends with an ellipsis (, ...) or the 5024 // types of the arguments after promotion are not compatible with 5025 // the types of the parameters, the behavior is undefined. If the 5026 // function is defined with a type that does not include a 5027 // prototype, and the types of the arguments after promotion are 5028 // not compatible with those of the parameters after promotion, 5029 // the behavior is undefined [except in some trivial cases]. 5030 // That is, in the general case, we should assume that a call 5031 // through an unprototyped function type works like a *non-variadic* 5032 // call. The way we make this work is to cast to the exact type 5033 // of the promoted arguments. 5034 // 5035 // Chain calls use this same code path to add the invisible chain parameter 5036 // to the function type. 5037 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5038 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5039 CalleeTy = CalleeTy->getPointerTo(); 5040 5041 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5042 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5043 Callee.setFunctionPointer(CalleePtr); 5044 } 5045 5046 llvm::CallBase *CallOrInvoke = nullptr; 5047 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5048 E->getExprLoc()); 5049 5050 // Generate function declaration DISuprogram in order to be used 5051 // in debug info about call sites. 5052 if (CGDebugInfo *DI = getDebugInfo()) { 5053 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5054 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5055 CalleeDecl); 5056 } 5057 5058 return Call; 5059 } 5060 5061 LValue CodeGenFunction:: 5062 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5063 Address BaseAddr = Address::invalid(); 5064 if (E->getOpcode() == BO_PtrMemI) { 5065 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5066 } else { 5067 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5068 } 5069 5070 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5071 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5072 5073 LValueBaseInfo BaseInfo; 5074 TBAAAccessInfo TBAAInfo; 5075 Address MemberAddr = 5076 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5077 &TBAAInfo); 5078 5079 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5080 } 5081 5082 /// Given the address of a temporary variable, produce an r-value of 5083 /// its type. 5084 RValue CodeGenFunction::convertTempToRValue(Address addr, 5085 QualType type, 5086 SourceLocation loc) { 5087 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5088 switch (getEvaluationKind(type)) { 5089 case TEK_Complex: 5090 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5091 case TEK_Aggregate: 5092 return lvalue.asAggregateRValue(*this); 5093 case TEK_Scalar: 5094 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5095 } 5096 llvm_unreachable("bad evaluation kind"); 5097 } 5098 5099 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5100 assert(Val->getType()->isFPOrFPVectorTy()); 5101 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5102 return; 5103 5104 llvm::MDBuilder MDHelper(getLLVMContext()); 5105 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5106 5107 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5108 } 5109 5110 namespace { 5111 struct LValueOrRValue { 5112 LValue LV; 5113 RValue RV; 5114 }; 5115 } 5116 5117 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5118 const PseudoObjectExpr *E, 5119 bool forLValue, 5120 AggValueSlot slot) { 5121 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5122 5123 // Find the result expression, if any. 5124 const Expr *resultExpr = E->getResultExpr(); 5125 LValueOrRValue result; 5126 5127 for (PseudoObjectExpr::const_semantics_iterator 5128 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5129 const Expr *semantic = *i; 5130 5131 // If this semantic expression is an opaque value, bind it 5132 // to the result of its source expression. 5133 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5134 // Skip unique OVEs. 5135 if (ov->isUnique()) { 5136 assert(ov != resultExpr && 5137 "A unique OVE cannot be used as the result expression"); 5138 continue; 5139 } 5140 5141 // If this is the result expression, we may need to evaluate 5142 // directly into the slot. 5143 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5144 OVMA opaqueData; 5145 if (ov == resultExpr && ov->isRValue() && !forLValue && 5146 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5147 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5148 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5149 AlignmentSource::Decl); 5150 opaqueData = OVMA::bind(CGF, ov, LV); 5151 result.RV = slot.asRValue(); 5152 5153 // Otherwise, emit as normal. 5154 } else { 5155 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5156 5157 // If this is the result, also evaluate the result now. 5158 if (ov == resultExpr) { 5159 if (forLValue) 5160 result.LV = CGF.EmitLValue(ov); 5161 else 5162 result.RV = CGF.EmitAnyExpr(ov, slot); 5163 } 5164 } 5165 5166 opaques.push_back(opaqueData); 5167 5168 // Otherwise, if the expression is the result, evaluate it 5169 // and remember the result. 5170 } else if (semantic == resultExpr) { 5171 if (forLValue) 5172 result.LV = CGF.EmitLValue(semantic); 5173 else 5174 result.RV = CGF.EmitAnyExpr(semantic, slot); 5175 5176 // Otherwise, evaluate the expression in an ignored context. 5177 } else { 5178 CGF.EmitIgnoredExpr(semantic); 5179 } 5180 } 5181 5182 // Unbind all the opaques now. 5183 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5184 opaques[i].unbind(CGF); 5185 5186 return result; 5187 } 5188 5189 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5190 AggValueSlot slot) { 5191 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5192 } 5193 5194 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5195 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5196 } 5197