1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getAsAlign());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getAsAlign());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getAsAlign());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 /// Helper method to check if the underlying ABI is AAPCS
419 static bool isAAPCS(const TargetInfo &TargetInfo) {
420   return TargetInfo.getABI().startswith("aapcs");
421 }
422 
423 LValue CodeGenFunction::
424 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
425   const Expr *E = M->getSubExpr();
426 
427   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
428           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
429          "Reference should never be pseudo-strong!");
430 
431   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
432   // as that will cause the lifetime adjustment to be lost for ARC
433   auto ownership = M->getType().getObjCLifetime();
434   if (ownership != Qualifiers::OCL_None &&
435       ownership != Qualifiers::OCL_ExplicitNone) {
436     Address Object = createReferenceTemporary(*this, M, E);
437     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
438       Object = Address(llvm::ConstantExpr::getBitCast(Var,
439                            ConvertTypeForMem(E->getType())
440                              ->getPointerTo(Object.getAddressSpace())),
441                        Object.getAlignment());
442 
443       // createReferenceTemporary will promote the temporary to a global with a
444       // constant initializer if it can.  It can only do this to a value of
445       // ARC-manageable type if the value is global and therefore "immune" to
446       // ref-counting operations.  Therefore we have no need to emit either a
447       // dynamic initialization or a cleanup and we can just return the address
448       // of the temporary.
449       if (Var->hasInitializer())
450         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
451 
452       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
453     }
454     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
455                                        AlignmentSource::Decl);
456 
457     switch (getEvaluationKind(E->getType())) {
458     default: llvm_unreachable("expected scalar or aggregate expression");
459     case TEK_Scalar:
460       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
461       break;
462     case TEK_Aggregate: {
463       EmitAggExpr(E, AggValueSlot::forAddr(Object,
464                                            E->getType().getQualifiers(),
465                                            AggValueSlot::IsDestructed,
466                                            AggValueSlot::DoesNotNeedGCBarriers,
467                                            AggValueSlot::IsNotAliased,
468                                            AggValueSlot::DoesNotOverlap));
469       break;
470     }
471     }
472 
473     pushTemporaryCleanup(*this, M, E, Object);
474     return RefTempDst;
475   }
476 
477   SmallVector<const Expr *, 2> CommaLHSs;
478   SmallVector<SubobjectAdjustment, 2> Adjustments;
479   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
480 
481   for (const auto &Ignored : CommaLHSs)
482     EmitIgnoredExpr(Ignored);
483 
484   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
485     if (opaque->getType()->isRecordType()) {
486       assert(Adjustments.empty());
487       return EmitOpaqueValueLValue(opaque);
488     }
489   }
490 
491   // Create and initialize the reference temporary.
492   Address Alloca = Address::invalid();
493   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
494   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
495           Object.getPointer()->stripPointerCasts())) {
496     Object = Address(llvm::ConstantExpr::getBitCast(
497                          cast<llvm::Constant>(Object.getPointer()),
498                          ConvertTypeForMem(E->getType())->getPointerTo()),
499                      Object.getAlignment());
500     // If the temporary is a global and has a constant initializer or is a
501     // constant temporary that we promoted to a global, we may have already
502     // initialized it.
503     if (!Var->hasInitializer()) {
504       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
505       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
506     }
507   } else {
508     switch (M->getStorageDuration()) {
509     case SD_Automatic:
510       if (auto *Size = EmitLifetimeStart(
511               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
512               Alloca.getPointer())) {
513         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
514                                                   Alloca, Size);
515       }
516       break;
517 
518     case SD_FullExpression: {
519       if (!ShouldEmitLifetimeMarkers)
520         break;
521 
522       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
523       // marker. Instead, start the lifetime of a conditional temporary earlier
524       // so that it's unconditional. Don't do this with sanitizers which need
525       // more precise lifetime marks.
526       ConditionalEvaluation *OldConditional = nullptr;
527       CGBuilderTy::InsertPoint OldIP;
528       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
529           !SanOpts.has(SanitizerKind::HWAddress) &&
530           !SanOpts.has(SanitizerKind::Memory) &&
531           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
532         OldConditional = OutermostConditional;
533         OutermostConditional = nullptr;
534 
535         OldIP = Builder.saveIP();
536         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
537         Builder.restoreIP(CGBuilderTy::InsertPoint(
538             Block, llvm::BasicBlock::iterator(Block->back())));
539       }
540 
541       if (auto *Size = EmitLifetimeStart(
542               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
543               Alloca.getPointer())) {
544         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
545                                              Size);
546       }
547 
548       if (OldConditional) {
549         OutermostConditional = OldConditional;
550         Builder.restoreIP(OldIP);
551       }
552       break;
553     }
554 
555     default:
556       break;
557     }
558     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
559   }
560   pushTemporaryCleanup(*this, M, E, Object);
561 
562   // Perform derived-to-base casts and/or field accesses, to get from the
563   // temporary object we created (and, potentially, for which we extended
564   // the lifetime) to the subobject we're binding the reference to.
565   for (unsigned I = Adjustments.size(); I != 0; --I) {
566     SubobjectAdjustment &Adjustment = Adjustments[I-1];
567     switch (Adjustment.Kind) {
568     case SubobjectAdjustment::DerivedToBaseAdjustment:
569       Object =
570           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
571                                 Adjustment.DerivedToBase.BasePath->path_begin(),
572                                 Adjustment.DerivedToBase.BasePath->path_end(),
573                                 /*NullCheckValue=*/ false, E->getExprLoc());
574       break;
575 
576     case SubobjectAdjustment::FieldAdjustment: {
577       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
578       LV = EmitLValueForField(LV, Adjustment.Field);
579       assert(LV.isSimple() &&
580              "materialized temporary field is not a simple lvalue");
581       Object = LV.getAddress(*this);
582       break;
583     }
584 
585     case SubobjectAdjustment::MemberPointerAdjustment: {
586       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
587       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
588                                                Adjustment.Ptr.MPT);
589       break;
590     }
591     }
592   }
593 
594   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
595 }
596 
597 RValue
598 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
599   // Emit the expression as an lvalue.
600   LValue LV = EmitLValue(E);
601   assert(LV.isSimple());
602   llvm::Value *Value = LV.getPointer(*this);
603 
604   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
605     // C++11 [dcl.ref]p5 (as amended by core issue 453):
606     //   If a glvalue to which a reference is directly bound designates neither
607     //   an existing object or function of an appropriate type nor a region of
608     //   storage of suitable size and alignment to contain an object of the
609     //   reference's type, the behavior is undefined.
610     QualType Ty = E->getType();
611     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
612   }
613 
614   return RValue::get(Value);
615 }
616 
617 
618 /// getAccessedFieldNo - Given an encoded value and a result number, return the
619 /// input field number being accessed.
620 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
621                                              const llvm::Constant *Elts) {
622   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
623       ->getZExtValue();
624 }
625 
626 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
627 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
628                                     llvm::Value *High) {
629   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
630   llvm::Value *K47 = Builder.getInt64(47);
631   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
632   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
633   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
634   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
635   return Builder.CreateMul(B1, KMul);
636 }
637 
638 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
639   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
640          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
641 }
642 
643 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
644   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
645   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
646          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
647           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
648           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
649 }
650 
651 bool CodeGenFunction::sanitizePerformTypeCheck() const {
652   return SanOpts.has(SanitizerKind::Null) |
653          SanOpts.has(SanitizerKind::Alignment) |
654          SanOpts.has(SanitizerKind::ObjectSize) |
655          SanOpts.has(SanitizerKind::Vptr);
656 }
657 
658 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
659                                     llvm::Value *Ptr, QualType Ty,
660                                     CharUnits Alignment,
661                                     SanitizerSet SkippedChecks,
662                                     llvm::Value *ArraySize) {
663   if (!sanitizePerformTypeCheck())
664     return;
665 
666   // Don't check pointers outside the default address space. The null check
667   // isn't correct, the object-size check isn't supported by LLVM, and we can't
668   // communicate the addresses to the runtime handler for the vptr check.
669   if (Ptr->getType()->getPointerAddressSpace())
670     return;
671 
672   // Don't check pointers to volatile data. The behavior here is implementation-
673   // defined.
674   if (Ty.isVolatileQualified())
675     return;
676 
677   SanitizerScope SanScope(this);
678 
679   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
680   llvm::BasicBlock *Done = nullptr;
681 
682   // Quickly determine whether we have a pointer to an alloca. It's possible
683   // to skip null checks, and some alignment checks, for these pointers. This
684   // can reduce compile-time significantly.
685   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
686 
687   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
688   llvm::Value *IsNonNull = nullptr;
689   bool IsGuaranteedNonNull =
690       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
691   bool AllowNullPointers = isNullPointerAllowed(TCK);
692   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
693       !IsGuaranteedNonNull) {
694     // The glvalue must not be an empty glvalue.
695     IsNonNull = Builder.CreateIsNotNull(Ptr);
696 
697     // The IR builder can constant-fold the null check if the pointer points to
698     // a constant.
699     IsGuaranteedNonNull = IsNonNull == True;
700 
701     // Skip the null check if the pointer is known to be non-null.
702     if (!IsGuaranteedNonNull) {
703       if (AllowNullPointers) {
704         // When performing pointer casts, it's OK if the value is null.
705         // Skip the remaining checks in that case.
706         Done = createBasicBlock("null");
707         llvm::BasicBlock *Rest = createBasicBlock("not.null");
708         Builder.CreateCondBr(IsNonNull, Rest, Done);
709         EmitBlock(Rest);
710       } else {
711         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
712       }
713     }
714   }
715 
716   if (SanOpts.has(SanitizerKind::ObjectSize) &&
717       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
718       !Ty->isIncompleteType()) {
719     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
720     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
721     if (ArraySize)
722       Size = Builder.CreateMul(Size, ArraySize);
723 
724     // Degenerate case: new X[0] does not need an objectsize check.
725     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
726     if (!ConstantSize || !ConstantSize->isNullValue()) {
727       // The glvalue must refer to a large enough storage region.
728       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
729       //        to check this.
730       // FIXME: Get object address space
731       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
732       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
733       llvm::Value *Min = Builder.getFalse();
734       llvm::Value *NullIsUnknown = Builder.getFalse();
735       llvm::Value *Dynamic = Builder.getFalse();
736       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
737       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
738           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
739       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
740     }
741   }
742 
743   uint64_t AlignVal = 0;
744   llvm::Value *PtrAsInt = nullptr;
745 
746   if (SanOpts.has(SanitizerKind::Alignment) &&
747       !SkippedChecks.has(SanitizerKind::Alignment)) {
748     AlignVal = Alignment.getQuantity();
749     if (!Ty->isIncompleteType() && !AlignVal)
750       AlignVal =
751           getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true)
752               .getQuantity();
753 
754     // The glvalue must be suitably aligned.
755     if (AlignVal > 1 &&
756         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
757       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
758       llvm::Value *Align = Builder.CreateAnd(
759           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
760       llvm::Value *Aligned =
761           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
762       if (Aligned != True)
763         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
764     }
765   }
766 
767   if (Checks.size() > 0) {
768     // Make sure we're not losing information. Alignment needs to be a power of
769     // 2
770     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
771     llvm::Constant *StaticData[] = {
772         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
773         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
774         llvm::ConstantInt::get(Int8Ty, TCK)};
775     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
776               PtrAsInt ? PtrAsInt : Ptr);
777   }
778 
779   // If possible, check that the vptr indicates that there is a subobject of
780   // type Ty at offset zero within this object.
781   //
782   // C++11 [basic.life]p5,6:
783   //   [For storage which does not refer to an object within its lifetime]
784   //   The program has undefined behavior if:
785   //    -- the [pointer or glvalue] is used to access a non-static data member
786   //       or call a non-static member function
787   if (SanOpts.has(SanitizerKind::Vptr) &&
788       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
789     // Ensure that the pointer is non-null before loading it. If there is no
790     // compile-time guarantee, reuse the run-time null check or emit a new one.
791     if (!IsGuaranteedNonNull) {
792       if (!IsNonNull)
793         IsNonNull = Builder.CreateIsNotNull(Ptr);
794       if (!Done)
795         Done = createBasicBlock("vptr.null");
796       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
797       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
798       EmitBlock(VptrNotNull);
799     }
800 
801     // Compute a hash of the mangled name of the type.
802     //
803     // FIXME: This is not guaranteed to be deterministic! Move to a
804     //        fingerprinting mechanism once LLVM provides one. For the time
805     //        being the implementation happens to be deterministic.
806     SmallString<64> MangledName;
807     llvm::raw_svector_ostream Out(MangledName);
808     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
809                                                      Out);
810 
811     // Blacklist based on the mangled type.
812     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
813             SanitizerKind::Vptr, Out.str())) {
814       llvm::hash_code TypeHash = hash_value(Out.str());
815 
816       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
817       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
818       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
819       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
820       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
821       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
822 
823       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
824       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
825 
826       // Look the hash up in our cache.
827       const int CacheSize = 128;
828       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
829       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
830                                                      "__ubsan_vptr_type_cache");
831       llvm::Value *Slot = Builder.CreateAnd(Hash,
832                                             llvm::ConstantInt::get(IntPtrTy,
833                                                                    CacheSize-1));
834       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
835       llvm::Value *CacheVal =
836         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
837                                   getPointerAlign());
838 
839       // If the hash isn't in the cache, call a runtime handler to perform the
840       // hard work of checking whether the vptr is for an object of the right
841       // type. This will either fill in the cache and return, or produce a
842       // diagnostic.
843       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
844       llvm::Constant *StaticData[] = {
845         EmitCheckSourceLocation(Loc),
846         EmitCheckTypeDescriptor(Ty),
847         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
848         llvm::ConstantInt::get(Int8Ty, TCK)
849       };
850       llvm::Value *DynamicData[] = { Ptr, Hash };
851       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
852                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
853                 DynamicData);
854     }
855   }
856 
857   if (Done) {
858     Builder.CreateBr(Done);
859     EmitBlock(Done);
860   }
861 }
862 
863 /// Determine whether this expression refers to a flexible array member in a
864 /// struct. We disable array bounds checks for such members.
865 static bool isFlexibleArrayMemberExpr(const Expr *E) {
866   // For compatibility with existing code, we treat arrays of length 0 or
867   // 1 as flexible array members.
868   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
869   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
870     if (CAT->getSize().ugt(1))
871       return false;
872   } else if (!isa<IncompleteArrayType>(AT))
873     return false;
874 
875   E = E->IgnoreParens();
876 
877   // A flexible array member must be the last member in the class.
878   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
879     // FIXME: If the base type of the member expr is not FD->getParent(),
880     // this should not be treated as a flexible array member access.
881     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
882       RecordDecl::field_iterator FI(
883           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
884       return ++FI == FD->getParent()->field_end();
885     }
886   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
887     return IRE->getDecl()->getNextIvar() == nullptr;
888   }
889 
890   return false;
891 }
892 
893 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
894                                                    QualType EltTy) {
895   ASTContext &C = getContext();
896   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
897   if (!EltSize)
898     return nullptr;
899 
900   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
901   if (!ArrayDeclRef)
902     return nullptr;
903 
904   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
905   if (!ParamDecl)
906     return nullptr;
907 
908   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
909   if (!POSAttr)
910     return nullptr;
911 
912   // Don't load the size if it's a lower bound.
913   int POSType = POSAttr->getType();
914   if (POSType != 0 && POSType != 1)
915     return nullptr;
916 
917   // Find the implicit size parameter.
918   auto PassedSizeIt = SizeArguments.find(ParamDecl);
919   if (PassedSizeIt == SizeArguments.end())
920     return nullptr;
921 
922   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
923   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
924   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
925   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
926                                               C.getSizeType(), E->getExprLoc());
927   llvm::Value *SizeOfElement =
928       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
929   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
930 }
931 
932 /// If Base is known to point to the start of an array, return the length of
933 /// that array. Return 0 if the length cannot be determined.
934 static llvm::Value *getArrayIndexingBound(
935     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
936   // For the vector indexing extension, the bound is the number of elements.
937   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
938     IndexedType = Base->getType();
939     return CGF.Builder.getInt32(VT->getNumElements());
940   }
941 
942   Base = Base->IgnoreParens();
943 
944   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
945     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
946         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
947       IndexedType = CE->getSubExpr()->getType();
948       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
949       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
950         return CGF.Builder.getInt(CAT->getSize());
951       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
952         return CGF.getVLASize(VAT).NumElts;
953       // Ignore pass_object_size here. It's not applicable on decayed pointers.
954     }
955   }
956 
957   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
958   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
959     IndexedType = Base->getType();
960     return POS;
961   }
962 
963   return nullptr;
964 }
965 
966 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
967                                       llvm::Value *Index, QualType IndexType,
968                                       bool Accessed) {
969   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
970          "should not be called unless adding bounds checks");
971   SanitizerScope SanScope(this);
972 
973   QualType IndexedType;
974   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
975   if (!Bound)
976     return;
977 
978   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
979   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
980   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
981 
982   llvm::Constant *StaticData[] = {
983     EmitCheckSourceLocation(E->getExprLoc()),
984     EmitCheckTypeDescriptor(IndexedType),
985     EmitCheckTypeDescriptor(IndexType)
986   };
987   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
988                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
989   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
990             SanitizerHandler::OutOfBounds, StaticData, Index);
991 }
992 
993 
994 CodeGenFunction::ComplexPairTy CodeGenFunction::
995 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
996                          bool isInc, bool isPre) {
997   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
998 
999   llvm::Value *NextVal;
1000   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1001     uint64_t AmountVal = isInc ? 1 : -1;
1002     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1003 
1004     // Add the inc/dec to the real part.
1005     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1006   } else {
1007     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1008     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1009     if (!isInc)
1010       FVal.changeSign();
1011     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1012 
1013     // Add the inc/dec to the real part.
1014     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1015   }
1016 
1017   ComplexPairTy IncVal(NextVal, InVal.second);
1018 
1019   // Store the updated result through the lvalue.
1020   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1021   if (getLangOpts().OpenMP)
1022     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1023                                                               E->getSubExpr());
1024 
1025   // If this is a postinc, return the value read from memory, otherwise use the
1026   // updated value.
1027   return isPre ? IncVal : InVal;
1028 }
1029 
1030 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1031                                              CodeGenFunction *CGF) {
1032   // Bind VLAs in the cast type.
1033   if (CGF && E->getType()->isVariablyModifiedType())
1034     CGF->EmitVariablyModifiedType(E->getType());
1035 
1036   if (CGDebugInfo *DI = getModuleDebugInfo())
1037     DI->EmitExplicitCastType(E->getType());
1038 }
1039 
1040 //===----------------------------------------------------------------------===//
1041 //                         LValue Expression Emission
1042 //===----------------------------------------------------------------------===//
1043 
1044 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1045 /// derive a more accurate bound on the alignment of the pointer.
1046 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1047                                                   LValueBaseInfo *BaseInfo,
1048                                                   TBAAAccessInfo *TBAAInfo) {
1049   // We allow this with ObjC object pointers because of fragile ABIs.
1050   assert(E->getType()->isPointerType() ||
1051          E->getType()->isObjCObjectPointerType());
1052   E = E->IgnoreParens();
1053 
1054   // Casts:
1055   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1056     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1057       CGM.EmitExplicitCastExprType(ECE, this);
1058 
1059     switch (CE->getCastKind()) {
1060     // Non-converting casts (but not C's implicit conversion from void*).
1061     case CK_BitCast:
1062     case CK_NoOp:
1063     case CK_AddressSpaceConversion:
1064       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1065         if (PtrTy->getPointeeType()->isVoidType())
1066           break;
1067 
1068         LValueBaseInfo InnerBaseInfo;
1069         TBAAAccessInfo InnerTBAAInfo;
1070         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1071                                                 &InnerBaseInfo,
1072                                                 &InnerTBAAInfo);
1073         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1074         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1075 
1076         if (isa<ExplicitCastExpr>(CE)) {
1077           LValueBaseInfo TargetTypeBaseInfo;
1078           TBAAAccessInfo TargetTypeTBAAInfo;
1079           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1080                                                            &TargetTypeBaseInfo,
1081                                                            &TargetTypeTBAAInfo);
1082           if (TBAAInfo)
1083             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1084                                                  TargetTypeTBAAInfo);
1085           // If the source l-value is opaque, honor the alignment of the
1086           // casted-to type.
1087           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1088             if (BaseInfo)
1089               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1090             Addr = Address(Addr.getPointer(), Align);
1091           }
1092         }
1093 
1094         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1095             CE->getCastKind() == CK_BitCast) {
1096           if (auto PT = E->getType()->getAs<PointerType>())
1097             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1098                                       /*MayBeNull=*/true,
1099                                       CodeGenFunction::CFITCK_UnrelatedCast,
1100                                       CE->getBeginLoc());
1101         }
1102         return CE->getCastKind() != CK_AddressSpaceConversion
1103                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1104                    : Builder.CreateAddrSpaceCast(Addr,
1105                                                  ConvertType(E->getType()));
1106       }
1107       break;
1108 
1109     // Array-to-pointer decay.
1110     case CK_ArrayToPointerDecay:
1111       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1112 
1113     // Derived-to-base conversions.
1114     case CK_UncheckedDerivedToBase:
1115     case CK_DerivedToBase: {
1116       // TODO: Support accesses to members of base classes in TBAA. For now, we
1117       // conservatively pretend that the complete object is of the base class
1118       // type.
1119       if (TBAAInfo)
1120         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1121       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1122       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1123       return GetAddressOfBaseClass(Addr, Derived,
1124                                    CE->path_begin(), CE->path_end(),
1125                                    ShouldNullCheckClassCastValue(CE),
1126                                    CE->getExprLoc());
1127     }
1128 
1129     // TODO: Is there any reason to treat base-to-derived conversions
1130     // specially?
1131     default:
1132       break;
1133     }
1134   }
1135 
1136   // Unary &.
1137   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1138     if (UO->getOpcode() == UO_AddrOf) {
1139       LValue LV = EmitLValue(UO->getSubExpr());
1140       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1141       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1142       return LV.getAddress(*this);
1143     }
1144   }
1145 
1146   // TODO: conditional operators, comma.
1147 
1148   // Otherwise, use the alignment of the type.
1149   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1150                                                    TBAAInfo);
1151   return Address(EmitScalarExpr(E), Align);
1152 }
1153 
1154 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1155   if (Ty->isVoidType())
1156     return RValue::get(nullptr);
1157 
1158   switch (getEvaluationKind(Ty)) {
1159   case TEK_Complex: {
1160     llvm::Type *EltTy =
1161       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1162     llvm::Value *U = llvm::UndefValue::get(EltTy);
1163     return RValue::getComplex(std::make_pair(U, U));
1164   }
1165 
1166   // If this is a use of an undefined aggregate type, the aggregate must have an
1167   // identifiable address.  Just because the contents of the value are undefined
1168   // doesn't mean that the address can't be taken and compared.
1169   case TEK_Aggregate: {
1170     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1171     return RValue::getAggregate(DestPtr);
1172   }
1173 
1174   case TEK_Scalar:
1175     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1176   }
1177   llvm_unreachable("bad evaluation kind");
1178 }
1179 
1180 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1181                                               const char *Name) {
1182   ErrorUnsupported(E, Name);
1183   return GetUndefRValue(E->getType());
1184 }
1185 
1186 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1187                                               const char *Name) {
1188   ErrorUnsupported(E, Name);
1189   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1190   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1191                         E->getType());
1192 }
1193 
1194 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1195   const Expr *Base = Obj;
1196   while (!isa<CXXThisExpr>(Base)) {
1197     // The result of a dynamic_cast can be null.
1198     if (isa<CXXDynamicCastExpr>(Base))
1199       return false;
1200 
1201     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1202       Base = CE->getSubExpr();
1203     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1204       Base = PE->getSubExpr();
1205     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1206       if (UO->getOpcode() == UO_Extension)
1207         Base = UO->getSubExpr();
1208       else
1209         return false;
1210     } else {
1211       return false;
1212     }
1213   }
1214   return true;
1215 }
1216 
1217 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1218   LValue LV;
1219   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1220     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1221   else
1222     LV = EmitLValue(E);
1223   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1224     SanitizerSet SkippedChecks;
1225     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1226       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1227       if (IsBaseCXXThis)
1228         SkippedChecks.set(SanitizerKind::Alignment, true);
1229       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1230         SkippedChecks.set(SanitizerKind::Null, true);
1231     }
1232     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1233                   LV.getAlignment(), SkippedChecks);
1234   }
1235   return LV;
1236 }
1237 
1238 /// EmitLValue - Emit code to compute a designator that specifies the location
1239 /// of the expression.
1240 ///
1241 /// This can return one of two things: a simple address or a bitfield reference.
1242 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1243 /// an LLVM pointer type.
1244 ///
1245 /// If this returns a bitfield reference, nothing about the pointee type of the
1246 /// LLVM value is known: For example, it may not be a pointer to an integer.
1247 ///
1248 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1249 /// this method guarantees that the returned pointer type will point to an LLVM
1250 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1251 /// length type, this is not possible.
1252 ///
1253 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1254   ApplyDebugLocation DL(*this, E);
1255   switch (E->getStmtClass()) {
1256   default: return EmitUnsupportedLValue(E, "l-value expression");
1257 
1258   case Expr::ObjCPropertyRefExprClass:
1259     llvm_unreachable("cannot emit a property reference directly");
1260 
1261   case Expr::ObjCSelectorExprClass:
1262     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1263   case Expr::ObjCIsaExprClass:
1264     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1265   case Expr::BinaryOperatorClass:
1266     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1267   case Expr::CompoundAssignOperatorClass: {
1268     QualType Ty = E->getType();
1269     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1270       Ty = AT->getValueType();
1271     if (!Ty->isAnyComplexType())
1272       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1273     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1274   }
1275   case Expr::CallExprClass:
1276   case Expr::CXXMemberCallExprClass:
1277   case Expr::CXXOperatorCallExprClass:
1278   case Expr::UserDefinedLiteralClass:
1279     return EmitCallExprLValue(cast<CallExpr>(E));
1280   case Expr::CXXRewrittenBinaryOperatorClass:
1281     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1282   case Expr::VAArgExprClass:
1283     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1284   case Expr::DeclRefExprClass:
1285     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1286   case Expr::ConstantExprClass:
1287     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1288   case Expr::ParenExprClass:
1289     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1290   case Expr::GenericSelectionExprClass:
1291     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1292   case Expr::PredefinedExprClass:
1293     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1294   case Expr::StringLiteralClass:
1295     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1296   case Expr::ObjCEncodeExprClass:
1297     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1298   case Expr::PseudoObjectExprClass:
1299     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1300   case Expr::InitListExprClass:
1301     return EmitInitListLValue(cast<InitListExpr>(E));
1302   case Expr::CXXTemporaryObjectExprClass:
1303   case Expr::CXXConstructExprClass:
1304     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1305   case Expr::CXXBindTemporaryExprClass:
1306     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1307   case Expr::CXXUuidofExprClass:
1308     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1309   case Expr::LambdaExprClass:
1310     return EmitAggExprToLValue(E);
1311 
1312   case Expr::ExprWithCleanupsClass: {
1313     const auto *cleanups = cast<ExprWithCleanups>(E);
1314     enterFullExpression(cleanups);
1315     RunCleanupsScope Scope(*this);
1316     LValue LV = EmitLValue(cleanups->getSubExpr());
1317     if (LV.isSimple()) {
1318       // Defend against branches out of gnu statement expressions surrounded by
1319       // cleanups.
1320       llvm::Value *V = LV.getPointer(*this);
1321       Scope.ForceCleanup({&V});
1322       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1323                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1324     }
1325     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1326     // bitfield lvalue or some other non-simple lvalue?
1327     return LV;
1328   }
1329 
1330   case Expr::CXXDefaultArgExprClass: {
1331     auto *DAE = cast<CXXDefaultArgExpr>(E);
1332     CXXDefaultArgExprScope Scope(*this, DAE);
1333     return EmitLValue(DAE->getExpr());
1334   }
1335   case Expr::CXXDefaultInitExprClass: {
1336     auto *DIE = cast<CXXDefaultInitExpr>(E);
1337     CXXDefaultInitExprScope Scope(*this, DIE);
1338     return EmitLValue(DIE->getExpr());
1339   }
1340   case Expr::CXXTypeidExprClass:
1341     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1342 
1343   case Expr::ObjCMessageExprClass:
1344     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1345   case Expr::ObjCIvarRefExprClass:
1346     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1347   case Expr::StmtExprClass:
1348     return EmitStmtExprLValue(cast<StmtExpr>(E));
1349   case Expr::UnaryOperatorClass:
1350     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1351   case Expr::ArraySubscriptExprClass:
1352     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1353   case Expr::OMPArraySectionExprClass:
1354     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1355   case Expr::ExtVectorElementExprClass:
1356     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1357   case Expr::MemberExprClass:
1358     return EmitMemberExpr(cast<MemberExpr>(E));
1359   case Expr::CompoundLiteralExprClass:
1360     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1361   case Expr::ConditionalOperatorClass:
1362     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1363   case Expr::BinaryConditionalOperatorClass:
1364     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1365   case Expr::ChooseExprClass:
1366     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1367   case Expr::OpaqueValueExprClass:
1368     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1369   case Expr::SubstNonTypeTemplateParmExprClass:
1370     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1371   case Expr::ImplicitCastExprClass:
1372   case Expr::CStyleCastExprClass:
1373   case Expr::CXXFunctionalCastExprClass:
1374   case Expr::CXXStaticCastExprClass:
1375   case Expr::CXXDynamicCastExprClass:
1376   case Expr::CXXReinterpretCastExprClass:
1377   case Expr::CXXConstCastExprClass:
1378   case Expr::ObjCBridgedCastExprClass:
1379     return EmitCastLValue(cast<CastExpr>(E));
1380 
1381   case Expr::MaterializeTemporaryExprClass:
1382     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1383 
1384   case Expr::CoawaitExprClass:
1385     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1386   case Expr::CoyieldExprClass:
1387     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1388   }
1389 }
1390 
1391 /// Given an object of the given canonical type, can we safely copy a
1392 /// value out of it based on its initializer?
1393 static bool isConstantEmittableObjectType(QualType type) {
1394   assert(type.isCanonical());
1395   assert(!type->isReferenceType());
1396 
1397   // Must be const-qualified but non-volatile.
1398   Qualifiers qs = type.getLocalQualifiers();
1399   if (!qs.hasConst() || qs.hasVolatile()) return false;
1400 
1401   // Otherwise, all object types satisfy this except C++ classes with
1402   // mutable subobjects or non-trivial copy/destroy behavior.
1403   if (const auto *RT = dyn_cast<RecordType>(type))
1404     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1405       if (RD->hasMutableFields() || !RD->isTrivial())
1406         return false;
1407 
1408   return true;
1409 }
1410 
1411 /// Can we constant-emit a load of a reference to a variable of the
1412 /// given type?  This is different from predicates like
1413 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1414 /// in situations that don't necessarily satisfy the language's rules
1415 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1416 /// to do this with const float variables even if those variables
1417 /// aren't marked 'constexpr'.
1418 enum ConstantEmissionKind {
1419   CEK_None,
1420   CEK_AsReferenceOnly,
1421   CEK_AsValueOrReference,
1422   CEK_AsValueOnly
1423 };
1424 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1425   type = type.getCanonicalType();
1426   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1427     if (isConstantEmittableObjectType(ref->getPointeeType()))
1428       return CEK_AsValueOrReference;
1429     return CEK_AsReferenceOnly;
1430   }
1431   if (isConstantEmittableObjectType(type))
1432     return CEK_AsValueOnly;
1433   return CEK_None;
1434 }
1435 
1436 /// Try to emit a reference to the given value without producing it as
1437 /// an l-value.  This is just an optimization, but it avoids us needing
1438 /// to emit global copies of variables if they're named without triggering
1439 /// a formal use in a context where we can't emit a direct reference to them,
1440 /// for instance if a block or lambda or a member of a local class uses a
1441 /// const int variable or constexpr variable from an enclosing function.
1442 CodeGenFunction::ConstantEmission
1443 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1444   ValueDecl *value = refExpr->getDecl();
1445 
1446   // The value needs to be an enum constant or a constant variable.
1447   ConstantEmissionKind CEK;
1448   if (isa<ParmVarDecl>(value)) {
1449     CEK = CEK_None;
1450   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1451     CEK = checkVarTypeForConstantEmission(var->getType());
1452   } else if (isa<EnumConstantDecl>(value)) {
1453     CEK = CEK_AsValueOnly;
1454   } else {
1455     CEK = CEK_None;
1456   }
1457   if (CEK == CEK_None) return ConstantEmission();
1458 
1459   Expr::EvalResult result;
1460   bool resultIsReference;
1461   QualType resultType;
1462 
1463   // It's best to evaluate all the way as an r-value if that's permitted.
1464   if (CEK != CEK_AsReferenceOnly &&
1465       refExpr->EvaluateAsRValue(result, getContext())) {
1466     resultIsReference = false;
1467     resultType = refExpr->getType();
1468 
1469   // Otherwise, try to evaluate as an l-value.
1470   } else if (CEK != CEK_AsValueOnly &&
1471              refExpr->EvaluateAsLValue(result, getContext())) {
1472     resultIsReference = true;
1473     resultType = value->getType();
1474 
1475   // Failure.
1476   } else {
1477     return ConstantEmission();
1478   }
1479 
1480   // In any case, if the initializer has side-effects, abandon ship.
1481   if (result.HasSideEffects)
1482     return ConstantEmission();
1483 
1484   // Emit as a constant.
1485   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1486                                                result.Val, resultType);
1487 
1488   // Make sure we emit a debug reference to the global variable.
1489   // This should probably fire even for
1490   if (isa<VarDecl>(value)) {
1491     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1492       EmitDeclRefExprDbgValue(refExpr, result.Val);
1493   } else {
1494     assert(isa<EnumConstantDecl>(value));
1495     EmitDeclRefExprDbgValue(refExpr, result.Val);
1496   }
1497 
1498   // If we emitted a reference constant, we need to dereference that.
1499   if (resultIsReference)
1500     return ConstantEmission::forReference(C);
1501 
1502   return ConstantEmission::forValue(C);
1503 }
1504 
1505 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1506                                                         const MemberExpr *ME) {
1507   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1508     // Try to emit static variable member expressions as DREs.
1509     return DeclRefExpr::Create(
1510         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1511         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1512         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1513   }
1514   return nullptr;
1515 }
1516 
1517 CodeGenFunction::ConstantEmission
1518 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1519   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1520     return tryEmitAsConstant(DRE);
1521   return ConstantEmission();
1522 }
1523 
1524 llvm::Value *CodeGenFunction::emitScalarConstant(
1525     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1526   assert(Constant && "not a constant");
1527   if (Constant.isReference())
1528     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1529                             E->getExprLoc())
1530         .getScalarVal();
1531   return Constant.getValue();
1532 }
1533 
1534 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1535                                                SourceLocation Loc) {
1536   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1537                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1538                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1539 }
1540 
1541 static bool hasBooleanRepresentation(QualType Ty) {
1542   if (Ty->isBooleanType())
1543     return true;
1544 
1545   if (const EnumType *ET = Ty->getAs<EnumType>())
1546     return ET->getDecl()->getIntegerType()->isBooleanType();
1547 
1548   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1549     return hasBooleanRepresentation(AT->getValueType());
1550 
1551   return false;
1552 }
1553 
1554 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1555                             llvm::APInt &Min, llvm::APInt &End,
1556                             bool StrictEnums, bool IsBool) {
1557   const EnumType *ET = Ty->getAs<EnumType>();
1558   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1559                                 ET && !ET->getDecl()->isFixed();
1560   if (!IsBool && !IsRegularCPlusPlusEnum)
1561     return false;
1562 
1563   if (IsBool) {
1564     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1565     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1566   } else {
1567     const EnumDecl *ED = ET->getDecl();
1568     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1569     unsigned Bitwidth = LTy->getScalarSizeInBits();
1570     unsigned NumNegativeBits = ED->getNumNegativeBits();
1571     unsigned NumPositiveBits = ED->getNumPositiveBits();
1572 
1573     if (NumNegativeBits) {
1574       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1575       assert(NumBits <= Bitwidth);
1576       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1577       Min = -End;
1578     } else {
1579       assert(NumPositiveBits <= Bitwidth);
1580       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1581       Min = llvm::APInt(Bitwidth, 0);
1582     }
1583   }
1584   return true;
1585 }
1586 
1587 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1588   llvm::APInt Min, End;
1589   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1590                        hasBooleanRepresentation(Ty)))
1591     return nullptr;
1592 
1593   llvm::MDBuilder MDHelper(getLLVMContext());
1594   return MDHelper.createRange(Min, End);
1595 }
1596 
1597 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1598                                            SourceLocation Loc) {
1599   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1600   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1601   if (!HasBoolCheck && !HasEnumCheck)
1602     return false;
1603 
1604   bool IsBool = hasBooleanRepresentation(Ty) ||
1605                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1606   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1607   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1608   if (!NeedsBoolCheck && !NeedsEnumCheck)
1609     return false;
1610 
1611   // Single-bit booleans don't need to be checked. Special-case this to avoid
1612   // a bit width mismatch when handling bitfield values. This is handled by
1613   // EmitFromMemory for the non-bitfield case.
1614   if (IsBool &&
1615       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1616     return false;
1617 
1618   llvm::APInt Min, End;
1619   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1620     return true;
1621 
1622   auto &Ctx = getLLVMContext();
1623   SanitizerScope SanScope(this);
1624   llvm::Value *Check;
1625   --End;
1626   if (!Min) {
1627     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1628   } else {
1629     llvm::Value *Upper =
1630         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1631     llvm::Value *Lower =
1632         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1633     Check = Builder.CreateAnd(Upper, Lower);
1634   }
1635   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1636                                   EmitCheckTypeDescriptor(Ty)};
1637   SanitizerMask Kind =
1638       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1639   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1640             StaticArgs, EmitCheckValue(Value));
1641   return true;
1642 }
1643 
1644 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1645                                                QualType Ty,
1646                                                SourceLocation Loc,
1647                                                LValueBaseInfo BaseInfo,
1648                                                TBAAAccessInfo TBAAInfo,
1649                                                bool isNontemporal) {
1650   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1651     // For better performance, handle vector loads differently.
1652     if (Ty->isVectorType()) {
1653       const llvm::Type *EltTy = Addr.getElementType();
1654 
1655       const auto *VTy = cast<llvm::VectorType>(EltTy);
1656 
1657       // Handle vectors of size 3 like size 4 for better performance.
1658       if (VTy->getNumElements() == 3) {
1659 
1660         // Bitcast to vec4 type.
1661         llvm::VectorType *vec4Ty =
1662             llvm::VectorType::get(VTy->getElementType(), 4);
1663         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1664         // Now load value.
1665         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1666 
1667         // Shuffle vector to get vec3.
1668         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1669                                         {0, 1, 2}, "extractVec");
1670         return EmitFromMemory(V, Ty);
1671       }
1672     }
1673   }
1674 
1675   // Atomic operations have to be done on integral types.
1676   LValue AtomicLValue =
1677       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1678   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1679     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1680   }
1681 
1682   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1683   if (isNontemporal) {
1684     llvm::MDNode *Node = llvm::MDNode::get(
1685         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1686     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1687   }
1688 
1689   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1690 
1691   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1692     // In order to prevent the optimizer from throwing away the check, don't
1693     // attach range metadata to the load.
1694   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1695     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1696       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1697 
1698   return EmitFromMemory(Load, Ty);
1699 }
1700 
1701 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1702   // Bool has a different representation in memory than in registers.
1703   if (hasBooleanRepresentation(Ty)) {
1704     // This should really always be an i1, but sometimes it's already
1705     // an i8, and it's awkward to track those cases down.
1706     if (Value->getType()->isIntegerTy(1))
1707       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1708     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1709            "wrong value rep of bool");
1710   }
1711 
1712   return Value;
1713 }
1714 
1715 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1716   // Bool has a different representation in memory than in registers.
1717   if (hasBooleanRepresentation(Ty)) {
1718     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1719            "wrong value rep of bool");
1720     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1721   }
1722 
1723   return Value;
1724 }
1725 
1726 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1727                                         bool Volatile, QualType Ty,
1728                                         LValueBaseInfo BaseInfo,
1729                                         TBAAAccessInfo TBAAInfo,
1730                                         bool isInit, bool isNontemporal) {
1731   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1732     // Handle vectors differently to get better performance.
1733     if (Ty->isVectorType()) {
1734       llvm::Type *SrcTy = Value->getType();
1735       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1736       // Handle vec3 special.
1737       if (VecTy && VecTy->getNumElements() == 3) {
1738         // Our source is a vec3, do a shuffle vector to make it a vec4.
1739         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1740                                   Builder.getInt32(2),
1741                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1742         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1743         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1744                                             MaskV, "extractVec");
1745         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1746       }
1747       if (Addr.getElementType() != SrcTy) {
1748         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1749       }
1750     }
1751   }
1752 
1753   Value = EmitToMemory(Value, Ty);
1754 
1755   LValue AtomicLValue =
1756       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1757   if (Ty->isAtomicType() ||
1758       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1759     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1760     return;
1761   }
1762 
1763   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1764   if (isNontemporal) {
1765     llvm::MDNode *Node =
1766         llvm::MDNode::get(Store->getContext(),
1767                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1768     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1769   }
1770 
1771   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1772 }
1773 
1774 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1775                                         bool isInit) {
1776   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1777                     lvalue.getType(), lvalue.getBaseInfo(),
1778                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1779 }
1780 
1781 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1782 /// method emits the address of the lvalue, then loads the result as an rvalue,
1783 /// returning the rvalue.
1784 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1785   if (LV.isObjCWeak()) {
1786     // load of a __weak object.
1787     Address AddrWeakObj = LV.getAddress(*this);
1788     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1789                                                              AddrWeakObj));
1790   }
1791   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1792     // In MRC mode, we do a load+autorelease.
1793     if (!getLangOpts().ObjCAutoRefCount) {
1794       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1795     }
1796 
1797     // In ARC mode, we load retained and then consume the value.
1798     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1799     Object = EmitObjCConsumeObject(LV.getType(), Object);
1800     return RValue::get(Object);
1801   }
1802 
1803   if (LV.isSimple()) {
1804     assert(!LV.getType()->isFunctionType());
1805 
1806     // Everything needs a load.
1807     return RValue::get(EmitLoadOfScalar(LV, Loc));
1808   }
1809 
1810   if (LV.isVectorElt()) {
1811     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1812                                               LV.isVolatileQualified());
1813     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1814                                                     "vecext"));
1815   }
1816 
1817   // If this is a reference to a subset of the elements of a vector, either
1818   // shuffle the input or extract/insert them as appropriate.
1819   if (LV.isExtVectorElt())
1820     return EmitLoadOfExtVectorElementLValue(LV);
1821 
1822   // Global Register variables always invoke intrinsics
1823   if (LV.isGlobalReg())
1824     return EmitLoadOfGlobalRegLValue(LV);
1825 
1826   assert(LV.isBitField() && "Unknown LValue type!");
1827   return EmitLoadOfBitfieldLValue(LV, Loc);
1828 }
1829 
1830 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1831                                                  SourceLocation Loc) {
1832   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1833 
1834   // Get the output type.
1835   llvm::Type *ResLTy = ConvertType(LV.getType());
1836 
1837   Address Ptr = LV.getBitFieldAddress();
1838   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1839 
1840   if (Info.IsSigned) {
1841     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1842     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1843     if (HighBits)
1844       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1845     if (Info.Offset + HighBits)
1846       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1847   } else {
1848     if (Info.Offset)
1849       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1850     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1851       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1852                                                               Info.Size),
1853                               "bf.clear");
1854   }
1855   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1856   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1857   return RValue::get(Val);
1858 }
1859 
1860 // If this is a reference to a subset of the elements of a vector, create an
1861 // appropriate shufflevector.
1862 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1863   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1864                                         LV.isVolatileQualified());
1865 
1866   const llvm::Constant *Elts = LV.getExtVectorElts();
1867 
1868   // If the result of the expression is a non-vector type, we must be extracting
1869   // a single element.  Just codegen as an extractelement.
1870   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1871   if (!ExprVT) {
1872     unsigned InIdx = getAccessedFieldNo(0, Elts);
1873     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1874     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1875   }
1876 
1877   // Always use shuffle vector to try to retain the original program structure
1878   unsigned NumResultElts = ExprVT->getNumElements();
1879 
1880   SmallVector<llvm::Constant*, 4> Mask;
1881   for (unsigned i = 0; i != NumResultElts; ++i)
1882     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1883 
1884   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1885   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1886                                     MaskV);
1887   return RValue::get(Vec);
1888 }
1889 
1890 /// Generates lvalue for partial ext_vector access.
1891 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1892   Address VectorAddress = LV.getExtVectorAddress();
1893   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1894   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1895 
1896   Address CastToPointerElement =
1897     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1898                                  "conv.ptr.element");
1899 
1900   const llvm::Constant *Elts = LV.getExtVectorElts();
1901   unsigned ix = getAccessedFieldNo(0, Elts);
1902 
1903   Address VectorBasePtrPlusIx =
1904     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1905                                    "vector.elt");
1906 
1907   return VectorBasePtrPlusIx;
1908 }
1909 
1910 /// Load of global gamed gegisters are always calls to intrinsics.
1911 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1912   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1913          "Bad type for register variable");
1914   llvm::MDNode *RegName = cast<llvm::MDNode>(
1915       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1916 
1917   // We accept integer and pointer types only
1918   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1919   llvm::Type *Ty = OrigTy;
1920   if (OrigTy->isPointerTy())
1921     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1922   llvm::Type *Types[] = { Ty };
1923 
1924   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1925   llvm::Value *Call = Builder.CreateCall(
1926       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1927   if (OrigTy->isPointerTy())
1928     Call = Builder.CreateIntToPtr(Call, OrigTy);
1929   return RValue::get(Call);
1930 }
1931 
1932 
1933 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1934 /// lvalue, where both are guaranteed to the have the same type, and that type
1935 /// is 'Ty'.
1936 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1937                                              bool isInit) {
1938   if (!Dst.isSimple()) {
1939     if (Dst.isVectorElt()) {
1940       // Read/modify/write the vector, inserting the new element.
1941       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1942                                             Dst.isVolatileQualified());
1943       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1944                                         Dst.getVectorIdx(), "vecins");
1945       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1946                           Dst.isVolatileQualified());
1947       return;
1948     }
1949 
1950     // If this is an update of extended vector elements, insert them as
1951     // appropriate.
1952     if (Dst.isExtVectorElt())
1953       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1954 
1955     if (Dst.isGlobalReg())
1956       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1957 
1958     assert(Dst.isBitField() && "Unknown LValue type");
1959     return EmitStoreThroughBitfieldLValue(Src, Dst);
1960   }
1961 
1962   // There's special magic for assigning into an ARC-qualified l-value.
1963   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1964     switch (Lifetime) {
1965     case Qualifiers::OCL_None:
1966       llvm_unreachable("present but none");
1967 
1968     case Qualifiers::OCL_ExplicitNone:
1969       // nothing special
1970       break;
1971 
1972     case Qualifiers::OCL_Strong:
1973       if (isInit) {
1974         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1975         break;
1976       }
1977       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1978       return;
1979 
1980     case Qualifiers::OCL_Weak:
1981       if (isInit)
1982         // Initialize and then skip the primitive store.
1983         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
1984       else
1985         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
1986                          /*ignore*/ true);
1987       return;
1988 
1989     case Qualifiers::OCL_Autoreleasing:
1990       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1991                                                      Src.getScalarVal()));
1992       // fall into the normal path
1993       break;
1994     }
1995   }
1996 
1997   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1998     // load of a __weak object.
1999     Address LvalueDst = Dst.getAddress(*this);
2000     llvm::Value *src = Src.getScalarVal();
2001      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2002     return;
2003   }
2004 
2005   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2006     // load of a __strong object.
2007     Address LvalueDst = Dst.getAddress(*this);
2008     llvm::Value *src = Src.getScalarVal();
2009     if (Dst.isObjCIvar()) {
2010       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2011       llvm::Type *ResultType = IntPtrTy;
2012       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2013       llvm::Value *RHS = dst.getPointer();
2014       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2015       llvm::Value *LHS =
2016         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2017                                "sub.ptr.lhs.cast");
2018       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2019       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2020                                               BytesBetween);
2021     } else if (Dst.isGlobalObjCRef()) {
2022       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2023                                                 Dst.isThreadLocalRef());
2024     }
2025     else
2026       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2027     return;
2028   }
2029 
2030   assert(Src.isScalar() && "Can't emit an agg store with this method");
2031   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2032 }
2033 
2034 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2035                                                      llvm::Value **Result) {
2036   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2037   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2038   Address Ptr = Dst.getBitFieldAddress();
2039 
2040   // Get the source value, truncated to the width of the bit-field.
2041   llvm::Value *SrcVal = Src.getScalarVal();
2042 
2043   // Cast the source to the storage type and shift it into place.
2044   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2045                                  /*isSigned=*/false);
2046   llvm::Value *MaskedVal = SrcVal;
2047 
2048   // See if there are other bits in the bitfield's storage we'll need to load
2049   // and mask together with source before storing.
2050   if (Info.StorageSize != Info.Size) {
2051     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2052     llvm::Value *Val =
2053       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2054 
2055     // Mask the source value as needed.
2056     if (!hasBooleanRepresentation(Dst.getType()))
2057       SrcVal = Builder.CreateAnd(SrcVal,
2058                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2059                                                             Info.Size),
2060                                  "bf.value");
2061     MaskedVal = SrcVal;
2062     if (Info.Offset)
2063       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2064 
2065     // Mask out the original value.
2066     Val = Builder.CreateAnd(Val,
2067                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2068                                                      Info.Offset,
2069                                                      Info.Offset + Info.Size),
2070                             "bf.clear");
2071 
2072     // Or together the unchanged values and the source value.
2073     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2074   } else {
2075     assert(Info.Offset == 0);
2076     // According to the AACPS:
2077     // When a volatile bit-field is written, and its container does not overlap
2078     // with any non-bit-field member, its container must be read exactly once and
2079     // written exactly once using the access width appropriate to the type of the
2080     // container. The two accesses are not atomic.
2081     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2082         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2083       Builder.CreateLoad(Ptr, true, "bf.load");
2084   }
2085 
2086   // Write the new value back out.
2087   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2088 
2089   // Return the new value of the bit-field, if requested.
2090   if (Result) {
2091     llvm::Value *ResultVal = MaskedVal;
2092 
2093     // Sign extend the value if needed.
2094     if (Info.IsSigned) {
2095       assert(Info.Size <= Info.StorageSize);
2096       unsigned HighBits = Info.StorageSize - Info.Size;
2097       if (HighBits) {
2098         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2099         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2100       }
2101     }
2102 
2103     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2104                                       "bf.result.cast");
2105     *Result = EmitFromMemory(ResultVal, Dst.getType());
2106   }
2107 }
2108 
2109 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2110                                                                LValue Dst) {
2111   // This access turns into a read/modify/write of the vector.  Load the input
2112   // value now.
2113   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2114                                         Dst.isVolatileQualified());
2115   const llvm::Constant *Elts = Dst.getExtVectorElts();
2116 
2117   llvm::Value *SrcVal = Src.getScalarVal();
2118 
2119   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2120     unsigned NumSrcElts = VTy->getNumElements();
2121     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2122     if (NumDstElts == NumSrcElts) {
2123       // Use shuffle vector is the src and destination are the same number of
2124       // elements and restore the vector mask since it is on the side it will be
2125       // stored.
2126       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2127       for (unsigned i = 0; i != NumSrcElts; ++i)
2128         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2129 
2130       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2131       Vec = Builder.CreateShuffleVector(SrcVal,
2132                                         llvm::UndefValue::get(Vec->getType()),
2133                                         MaskV);
2134     } else if (NumDstElts > NumSrcElts) {
2135       // Extended the source vector to the same length and then shuffle it
2136       // into the destination.
2137       // FIXME: since we're shuffling with undef, can we just use the indices
2138       //        into that?  This could be simpler.
2139       SmallVector<llvm::Constant*, 4> ExtMask;
2140       for (unsigned i = 0; i != NumSrcElts; ++i)
2141         ExtMask.push_back(Builder.getInt32(i));
2142       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2143       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2144       llvm::Value *ExtSrcVal =
2145         Builder.CreateShuffleVector(SrcVal,
2146                                     llvm::UndefValue::get(SrcVal->getType()),
2147                                     ExtMaskV);
2148       // build identity
2149       SmallVector<llvm::Constant*, 4> Mask;
2150       for (unsigned i = 0; i != NumDstElts; ++i)
2151         Mask.push_back(Builder.getInt32(i));
2152 
2153       // When the vector size is odd and .odd or .hi is used, the last element
2154       // of the Elts constant array will be one past the size of the vector.
2155       // Ignore the last element here, if it is greater than the mask size.
2156       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2157         NumSrcElts--;
2158 
2159       // modify when what gets shuffled in
2160       for (unsigned i = 0; i != NumSrcElts; ++i)
2161         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2162       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2163       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2164     } else {
2165       // We should never shorten the vector
2166       llvm_unreachable("unexpected shorten vector length");
2167     }
2168   } else {
2169     // If the Src is a scalar (not a vector) it must be updating one element.
2170     unsigned InIdx = getAccessedFieldNo(0, Elts);
2171     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2172     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2173   }
2174 
2175   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2176                       Dst.isVolatileQualified());
2177 }
2178 
2179 /// Store of global named registers are always calls to intrinsics.
2180 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2181   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2182          "Bad type for register variable");
2183   llvm::MDNode *RegName = cast<llvm::MDNode>(
2184       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2185   assert(RegName && "Register LValue is not metadata");
2186 
2187   // We accept integer and pointer types only
2188   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2189   llvm::Type *Ty = OrigTy;
2190   if (OrigTy->isPointerTy())
2191     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2192   llvm::Type *Types[] = { Ty };
2193 
2194   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2195   llvm::Value *Value = Src.getScalarVal();
2196   if (OrigTy->isPointerTy())
2197     Value = Builder.CreatePtrToInt(Value, Ty);
2198   Builder.CreateCall(
2199       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2200 }
2201 
2202 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2203 // generating write-barries API. It is currently a global, ivar,
2204 // or neither.
2205 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2206                                  LValue &LV,
2207                                  bool IsMemberAccess=false) {
2208   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2209     return;
2210 
2211   if (isa<ObjCIvarRefExpr>(E)) {
2212     QualType ExpTy = E->getType();
2213     if (IsMemberAccess && ExpTy->isPointerType()) {
2214       // If ivar is a structure pointer, assigning to field of
2215       // this struct follows gcc's behavior and makes it a non-ivar
2216       // writer-barrier conservatively.
2217       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2218       if (ExpTy->isRecordType()) {
2219         LV.setObjCIvar(false);
2220         return;
2221       }
2222     }
2223     LV.setObjCIvar(true);
2224     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2225     LV.setBaseIvarExp(Exp->getBase());
2226     LV.setObjCArray(E->getType()->isArrayType());
2227     return;
2228   }
2229 
2230   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2231     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2232       if (VD->hasGlobalStorage()) {
2233         LV.setGlobalObjCRef(true);
2234         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2235       }
2236     }
2237     LV.setObjCArray(E->getType()->isArrayType());
2238     return;
2239   }
2240 
2241   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2242     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2243     return;
2244   }
2245 
2246   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2247     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2248     if (LV.isObjCIvar()) {
2249       // If cast is to a structure pointer, follow gcc's behavior and make it
2250       // a non-ivar write-barrier.
2251       QualType ExpTy = E->getType();
2252       if (ExpTy->isPointerType())
2253         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2254       if (ExpTy->isRecordType())
2255         LV.setObjCIvar(false);
2256     }
2257     return;
2258   }
2259 
2260   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2261     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2262     return;
2263   }
2264 
2265   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2266     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2267     return;
2268   }
2269 
2270   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2271     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2272     return;
2273   }
2274 
2275   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2276     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2277     return;
2278   }
2279 
2280   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2281     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2282     if (LV.isObjCIvar() && !LV.isObjCArray())
2283       // Using array syntax to assigning to what an ivar points to is not
2284       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2285       LV.setObjCIvar(false);
2286     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2287       // Using array syntax to assigning to what global points to is not
2288       // same as assigning to the global itself. {id *G;} G[i] = 0;
2289       LV.setGlobalObjCRef(false);
2290     return;
2291   }
2292 
2293   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2294     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2295     // We don't know if member is an 'ivar', but this flag is looked at
2296     // only in the context of LV.isObjCIvar().
2297     LV.setObjCArray(E->getType()->isArrayType());
2298     return;
2299   }
2300 }
2301 
2302 static llvm::Value *
2303 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2304                                 llvm::Value *V, llvm::Type *IRType,
2305                                 StringRef Name = StringRef()) {
2306   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2307   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2308 }
2309 
2310 static LValue EmitThreadPrivateVarDeclLValue(
2311     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2312     llvm::Type *RealVarTy, SourceLocation Loc) {
2313   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2314   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2315   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2316 }
2317 
2318 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2319                                            const VarDecl *VD, QualType T) {
2320   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2321       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2322   // Return an invalid address if variable is MT_To and unified
2323   // memory is not enabled. For all other cases: MT_Link and
2324   // MT_To with unified memory, return a valid address.
2325   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2326                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2327     return Address::invalid();
2328   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2329           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2330            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2331          "Expected link clause OR to clause with unified memory enabled.");
2332   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2333   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2334   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2335 }
2336 
2337 Address
2338 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2339                                      LValueBaseInfo *PointeeBaseInfo,
2340                                      TBAAAccessInfo *PointeeTBAAInfo) {
2341   llvm::LoadInst *Load =
2342       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2343   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2344 
2345   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2346                                             PointeeBaseInfo, PointeeTBAAInfo,
2347                                             /* forPointeeType= */ true);
2348   return Address(Load, Align);
2349 }
2350 
2351 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2352   LValueBaseInfo PointeeBaseInfo;
2353   TBAAAccessInfo PointeeTBAAInfo;
2354   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2355                                             &PointeeTBAAInfo);
2356   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2357                         PointeeBaseInfo, PointeeTBAAInfo);
2358 }
2359 
2360 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2361                                            const PointerType *PtrTy,
2362                                            LValueBaseInfo *BaseInfo,
2363                                            TBAAAccessInfo *TBAAInfo) {
2364   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2365   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2366                                                BaseInfo, TBAAInfo,
2367                                                /*forPointeeType=*/true));
2368 }
2369 
2370 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2371                                                 const PointerType *PtrTy) {
2372   LValueBaseInfo BaseInfo;
2373   TBAAAccessInfo TBAAInfo;
2374   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2375   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2376 }
2377 
2378 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2379                                       const Expr *E, const VarDecl *VD) {
2380   QualType T = E->getType();
2381 
2382   // If it's thread_local, emit a call to its wrapper function instead.
2383   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2384       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2385     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2386   // Check if the variable is marked as declare target with link clause in
2387   // device codegen.
2388   if (CGF.getLangOpts().OpenMPIsDevice) {
2389     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2390     if (Addr.isValid())
2391       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2392   }
2393 
2394   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2395   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2396   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2397   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2398   Address Addr(V, Alignment);
2399   // Emit reference to the private copy of the variable if it is an OpenMP
2400   // threadprivate variable.
2401   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2402       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2403     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2404                                           E->getExprLoc());
2405   }
2406   LValue LV = VD->getType()->isReferenceType() ?
2407       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2408                                     AlignmentSource::Decl) :
2409       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2410   setObjCGCLValueClass(CGF.getContext(), E, LV);
2411   return LV;
2412 }
2413 
2414 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2415                                                const FunctionDecl *FD) {
2416   if (FD->hasAttr<WeakRefAttr>()) {
2417     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2418     return aliasee.getPointer();
2419   }
2420 
2421   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2422   if (!FD->hasPrototype()) {
2423     if (const FunctionProtoType *Proto =
2424             FD->getType()->getAs<FunctionProtoType>()) {
2425       // Ugly case: for a K&R-style definition, the type of the definition
2426       // isn't the same as the type of a use.  Correct for this with a
2427       // bitcast.
2428       QualType NoProtoType =
2429           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2430       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2431       V = llvm::ConstantExpr::getBitCast(V,
2432                                       CGM.getTypes().ConvertType(NoProtoType));
2433     }
2434   }
2435   return V;
2436 }
2437 
2438 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2439                                      const Expr *E, const FunctionDecl *FD) {
2440   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2441   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2442   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2443                             AlignmentSource::Decl);
2444 }
2445 
2446 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2447                                       llvm::Value *ThisValue) {
2448   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2449   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2450   return CGF.EmitLValueForField(LV, FD);
2451 }
2452 
2453 /// Named Registers are named metadata pointing to the register name
2454 /// which will be read from/written to as an argument to the intrinsic
2455 /// @llvm.read/write_register.
2456 /// So far, only the name is being passed down, but other options such as
2457 /// register type, allocation type or even optimization options could be
2458 /// passed down via the metadata node.
2459 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2460   SmallString<64> Name("llvm.named.register.");
2461   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2462   assert(Asm->getLabel().size() < 64-Name.size() &&
2463       "Register name too big");
2464   Name.append(Asm->getLabel());
2465   llvm::NamedMDNode *M =
2466     CGM.getModule().getOrInsertNamedMetadata(Name);
2467   if (M->getNumOperands() == 0) {
2468     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2469                                               Asm->getLabel());
2470     llvm::Metadata *Ops[] = {Str};
2471     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2472   }
2473 
2474   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2475 
2476   llvm::Value *Ptr =
2477     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2478   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2479 }
2480 
2481 /// Determine whether we can emit a reference to \p VD from the current
2482 /// context, despite not necessarily having seen an odr-use of the variable in
2483 /// this context.
2484 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2485                                                const DeclRefExpr *E,
2486                                                const VarDecl *VD,
2487                                                bool IsConstant) {
2488   // For a variable declared in an enclosing scope, do not emit a spurious
2489   // reference even if we have a capture, as that will emit an unwarranted
2490   // reference to our capture state, and will likely generate worse code than
2491   // emitting a local copy.
2492   if (E->refersToEnclosingVariableOrCapture())
2493     return false;
2494 
2495   // For a local declaration declared in this function, we can always reference
2496   // it even if we don't have an odr-use.
2497   if (VD->hasLocalStorage()) {
2498     return VD->getDeclContext() ==
2499            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2500   }
2501 
2502   // For a global declaration, we can emit a reference to it if we know
2503   // for sure that we are able to emit a definition of it.
2504   VD = VD->getDefinition(CGF.getContext());
2505   if (!VD)
2506     return false;
2507 
2508   // Don't emit a spurious reference if it might be to a variable that only
2509   // exists on a different device / target.
2510   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2511   // cross-target reference.
2512   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2513       CGF.getLangOpts().OpenCL) {
2514     return false;
2515   }
2516 
2517   // We can emit a spurious reference only if the linkage implies that we'll
2518   // be emitting a non-interposable symbol that will be retained until link
2519   // time.
2520   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2521   case llvm::GlobalValue::ExternalLinkage:
2522   case llvm::GlobalValue::LinkOnceODRLinkage:
2523   case llvm::GlobalValue::WeakODRLinkage:
2524   case llvm::GlobalValue::InternalLinkage:
2525   case llvm::GlobalValue::PrivateLinkage:
2526     return true;
2527   default:
2528     return false;
2529   }
2530 }
2531 
2532 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2533   const NamedDecl *ND = E->getDecl();
2534   QualType T = E->getType();
2535 
2536   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2537          "should not emit an unevaluated operand");
2538 
2539   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2540     // Global Named registers access via intrinsics only
2541     if (VD->getStorageClass() == SC_Register &&
2542         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2543       return EmitGlobalNamedRegister(VD, CGM);
2544 
2545     // If this DeclRefExpr does not constitute an odr-use of the variable,
2546     // we're not permitted to emit a reference to it in general, and it might
2547     // not be captured if capture would be necessary for a use. Emit the
2548     // constant value directly instead.
2549     if (E->isNonOdrUse() == NOUR_Constant &&
2550         (VD->getType()->isReferenceType() ||
2551          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2552       VD->getAnyInitializer(VD);
2553       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2554           E->getLocation(), *VD->evaluateValue(), VD->getType());
2555       assert(Val && "failed to emit constant expression");
2556 
2557       Address Addr = Address::invalid();
2558       if (!VD->getType()->isReferenceType()) {
2559         // Spill the constant value to a global.
2560         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2561                                            getContext().getDeclAlign(VD));
2562         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2563         auto *PTy = llvm::PointerType::get(
2564             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2565         if (PTy != Addr.getType())
2566           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2567       } else {
2568         // Should we be using the alignment of the constant pointer we emitted?
2569         CharUnits Alignment =
2570             getNaturalTypeAlignment(E->getType(),
2571                                     /* BaseInfo= */ nullptr,
2572                                     /* TBAAInfo= */ nullptr,
2573                                     /* forPointeeType= */ true);
2574         Addr = Address(Val, Alignment);
2575       }
2576       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2577     }
2578 
2579     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2580 
2581     // Check for captured variables.
2582     if (E->refersToEnclosingVariableOrCapture()) {
2583       VD = VD->getCanonicalDecl();
2584       if (auto *FD = LambdaCaptureFields.lookup(VD))
2585         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2586       if (CapturedStmtInfo) {
2587         auto I = LocalDeclMap.find(VD);
2588         if (I != LocalDeclMap.end()) {
2589           LValue CapLVal;
2590           if (VD->getType()->isReferenceType())
2591             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2592                                                 AlignmentSource::Decl);
2593           else
2594             CapLVal = MakeAddrLValue(I->second, T);
2595           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2596           // in simd context.
2597           if (getLangOpts().OpenMP &&
2598               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2599             CapLVal.setNontemporal(/*Value=*/true);
2600           return CapLVal;
2601         }
2602         LValue CapLVal =
2603             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2604                                     CapturedStmtInfo->getContextValue());
2605         CapLVal = MakeAddrLValue(
2606             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2607             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2608             CapLVal.getTBAAInfo());
2609         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2610         // in simd context.
2611         if (getLangOpts().OpenMP &&
2612             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2613           CapLVal.setNontemporal(/*Value=*/true);
2614         return CapLVal;
2615       }
2616 
2617       assert(isa<BlockDecl>(CurCodeDecl));
2618       Address addr = GetAddrOfBlockDecl(VD);
2619       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2620     }
2621   }
2622 
2623   // FIXME: We should be able to assert this for FunctionDecls as well!
2624   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2625   // those with a valid source location.
2626   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2627           !E->getLocation().isValid()) &&
2628          "Should not use decl without marking it used!");
2629 
2630   if (ND->hasAttr<WeakRefAttr>()) {
2631     const auto *VD = cast<ValueDecl>(ND);
2632     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2633     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2634   }
2635 
2636   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2637     // Check if this is a global variable.
2638     if (VD->hasLinkage() || VD->isStaticDataMember())
2639       return EmitGlobalVarDeclLValue(*this, E, VD);
2640 
2641     Address addr = Address::invalid();
2642 
2643     // The variable should generally be present in the local decl map.
2644     auto iter = LocalDeclMap.find(VD);
2645     if (iter != LocalDeclMap.end()) {
2646       addr = iter->second;
2647 
2648     // Otherwise, it might be static local we haven't emitted yet for
2649     // some reason; most likely, because it's in an outer function.
2650     } else if (VD->isStaticLocal()) {
2651       addr = Address(CGM.getOrCreateStaticVarDecl(
2652           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2653                      getContext().getDeclAlign(VD));
2654 
2655     // No other cases for now.
2656     } else {
2657       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2658     }
2659 
2660 
2661     // Check for OpenMP threadprivate variables.
2662     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2663         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2664       return EmitThreadPrivateVarDeclLValue(
2665           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2666           E->getExprLoc());
2667     }
2668 
2669     // Drill into block byref variables.
2670     bool isBlockByref = VD->isEscapingByref();
2671     if (isBlockByref) {
2672       addr = emitBlockByrefAddress(addr, VD);
2673     }
2674 
2675     // Drill into reference types.
2676     LValue LV = VD->getType()->isReferenceType() ?
2677         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2678         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2679 
2680     bool isLocalStorage = VD->hasLocalStorage();
2681 
2682     bool NonGCable = isLocalStorage &&
2683                      !VD->getType()->isReferenceType() &&
2684                      !isBlockByref;
2685     if (NonGCable) {
2686       LV.getQuals().removeObjCGCAttr();
2687       LV.setNonGC(true);
2688     }
2689 
2690     bool isImpreciseLifetime =
2691       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2692     if (isImpreciseLifetime)
2693       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2694     setObjCGCLValueClass(getContext(), E, LV);
2695     return LV;
2696   }
2697 
2698   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2699     return EmitFunctionDeclLValue(*this, E, FD);
2700 
2701   // FIXME: While we're emitting a binding from an enclosing scope, all other
2702   // DeclRefExprs we see should be implicitly treated as if they also refer to
2703   // an enclosing scope.
2704   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2705     return EmitLValue(BD->getBinding());
2706 
2707   llvm_unreachable("Unhandled DeclRefExpr");
2708 }
2709 
2710 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2711   // __extension__ doesn't affect lvalue-ness.
2712   if (E->getOpcode() == UO_Extension)
2713     return EmitLValue(E->getSubExpr());
2714 
2715   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2716   switch (E->getOpcode()) {
2717   default: llvm_unreachable("Unknown unary operator lvalue!");
2718   case UO_Deref: {
2719     QualType T = E->getSubExpr()->getType()->getPointeeType();
2720     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2721 
2722     LValueBaseInfo BaseInfo;
2723     TBAAAccessInfo TBAAInfo;
2724     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2725                                             &TBAAInfo);
2726     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2727     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2728 
2729     // We should not generate __weak write barrier on indirect reference
2730     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2731     // But, we continue to generate __strong write barrier on indirect write
2732     // into a pointer to object.
2733     if (getLangOpts().ObjC &&
2734         getLangOpts().getGC() != LangOptions::NonGC &&
2735         LV.isObjCWeak())
2736       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2737     return LV;
2738   }
2739   case UO_Real:
2740   case UO_Imag: {
2741     LValue LV = EmitLValue(E->getSubExpr());
2742     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2743 
2744     // __real is valid on scalars.  This is a faster way of testing that.
2745     // __imag can only produce an rvalue on scalars.
2746     if (E->getOpcode() == UO_Real &&
2747         !LV.getAddress(*this).getElementType()->isStructTy()) {
2748       assert(E->getSubExpr()->getType()->isArithmeticType());
2749       return LV;
2750     }
2751 
2752     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2753 
2754     Address Component =
2755         (E->getOpcode() == UO_Real
2756              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2757              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2758     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2759                                    CGM.getTBAAInfoForSubobject(LV, T));
2760     ElemLV.getQuals().addQualifiers(LV.getQuals());
2761     return ElemLV;
2762   }
2763   case UO_PreInc:
2764   case UO_PreDec: {
2765     LValue LV = EmitLValue(E->getSubExpr());
2766     bool isInc = E->getOpcode() == UO_PreInc;
2767 
2768     if (E->getType()->isAnyComplexType())
2769       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2770     else
2771       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2772     return LV;
2773   }
2774   }
2775 }
2776 
2777 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2778   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2779                         E->getType(), AlignmentSource::Decl);
2780 }
2781 
2782 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2783   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2784                         E->getType(), AlignmentSource::Decl);
2785 }
2786 
2787 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2788   auto SL = E->getFunctionName();
2789   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2790   StringRef FnName = CurFn->getName();
2791   if (FnName.startswith("\01"))
2792     FnName = FnName.substr(1);
2793   StringRef NameItems[] = {
2794       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2795   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2796   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2797     std::string Name = std::string(SL->getString());
2798     if (!Name.empty()) {
2799       unsigned Discriminator =
2800           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2801       if (Discriminator)
2802         Name += "_" + Twine(Discriminator + 1).str();
2803       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2804       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2805     } else {
2806       auto C =
2807           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2808       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2809     }
2810   }
2811   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2812   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2813 }
2814 
2815 /// Emit a type description suitable for use by a runtime sanitizer library. The
2816 /// format of a type descriptor is
2817 ///
2818 /// \code
2819 ///   { i16 TypeKind, i16 TypeInfo }
2820 /// \endcode
2821 ///
2822 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2823 /// integer, 1 for a floating point value, and -1 for anything else.
2824 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2825   // Only emit each type's descriptor once.
2826   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2827     return C;
2828 
2829   uint16_t TypeKind = -1;
2830   uint16_t TypeInfo = 0;
2831 
2832   if (T->isIntegerType()) {
2833     TypeKind = 0;
2834     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2835                (T->isSignedIntegerType() ? 1 : 0);
2836   } else if (T->isFloatingType()) {
2837     TypeKind = 1;
2838     TypeInfo = getContext().getTypeSize(T);
2839   }
2840 
2841   // Format the type name as if for a diagnostic, including quotes and
2842   // optionally an 'aka'.
2843   SmallString<32> Buffer;
2844   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2845                                     (intptr_t)T.getAsOpaquePtr(),
2846                                     StringRef(), StringRef(), None, Buffer,
2847                                     None);
2848 
2849   llvm::Constant *Components[] = {
2850     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2851     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2852   };
2853   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2854 
2855   auto *GV = new llvm::GlobalVariable(
2856       CGM.getModule(), Descriptor->getType(),
2857       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2858   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2859   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2860 
2861   // Remember the descriptor for this type.
2862   CGM.setTypeDescriptorInMap(T, GV);
2863 
2864   return GV;
2865 }
2866 
2867 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2868   llvm::Type *TargetTy = IntPtrTy;
2869 
2870   if (V->getType() == TargetTy)
2871     return V;
2872 
2873   // Floating-point types which fit into intptr_t are bitcast to integers
2874   // and then passed directly (after zero-extension, if necessary).
2875   if (V->getType()->isFloatingPointTy()) {
2876     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2877     if (Bits <= TargetTy->getIntegerBitWidth())
2878       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2879                                                          Bits));
2880   }
2881 
2882   // Integers which fit in intptr_t are zero-extended and passed directly.
2883   if (V->getType()->isIntegerTy() &&
2884       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2885     return Builder.CreateZExt(V, TargetTy);
2886 
2887   // Pointers are passed directly, everything else is passed by address.
2888   if (!V->getType()->isPointerTy()) {
2889     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2890     Builder.CreateStore(V, Ptr);
2891     V = Ptr.getPointer();
2892   }
2893   return Builder.CreatePtrToInt(V, TargetTy);
2894 }
2895 
2896 /// Emit a representation of a SourceLocation for passing to a handler
2897 /// in a sanitizer runtime library. The format for this data is:
2898 /// \code
2899 ///   struct SourceLocation {
2900 ///     const char *Filename;
2901 ///     int32_t Line, Column;
2902 ///   };
2903 /// \endcode
2904 /// For an invalid SourceLocation, the Filename pointer is null.
2905 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2906   llvm::Constant *Filename;
2907   int Line, Column;
2908 
2909   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2910   if (PLoc.isValid()) {
2911     StringRef FilenameString = PLoc.getFilename();
2912 
2913     int PathComponentsToStrip =
2914         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2915     if (PathComponentsToStrip < 0) {
2916       assert(PathComponentsToStrip != INT_MIN);
2917       int PathComponentsToKeep = -PathComponentsToStrip;
2918       auto I = llvm::sys::path::rbegin(FilenameString);
2919       auto E = llvm::sys::path::rend(FilenameString);
2920       while (I != E && --PathComponentsToKeep)
2921         ++I;
2922 
2923       FilenameString = FilenameString.substr(I - E);
2924     } else if (PathComponentsToStrip > 0) {
2925       auto I = llvm::sys::path::begin(FilenameString);
2926       auto E = llvm::sys::path::end(FilenameString);
2927       while (I != E && PathComponentsToStrip--)
2928         ++I;
2929 
2930       if (I != E)
2931         FilenameString =
2932             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2933       else
2934         FilenameString = llvm::sys::path::filename(FilenameString);
2935     }
2936 
2937     auto FilenameGV =
2938         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
2939     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2940                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2941     Filename = FilenameGV.getPointer();
2942     Line = PLoc.getLine();
2943     Column = PLoc.getColumn();
2944   } else {
2945     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2946     Line = Column = 0;
2947   }
2948 
2949   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2950                             Builder.getInt32(Column)};
2951 
2952   return llvm::ConstantStruct::getAnon(Data);
2953 }
2954 
2955 namespace {
2956 /// Specify under what conditions this check can be recovered
2957 enum class CheckRecoverableKind {
2958   /// Always terminate program execution if this check fails.
2959   Unrecoverable,
2960   /// Check supports recovering, runtime has both fatal (noreturn) and
2961   /// non-fatal handlers for this check.
2962   Recoverable,
2963   /// Runtime conditionally aborts, always need to support recovery.
2964   AlwaysRecoverable
2965 };
2966 }
2967 
2968 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2969   assert(Kind.countPopulation() == 1);
2970   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2971     return CheckRecoverableKind::AlwaysRecoverable;
2972   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2973     return CheckRecoverableKind::Unrecoverable;
2974   else
2975     return CheckRecoverableKind::Recoverable;
2976 }
2977 
2978 namespace {
2979 struct SanitizerHandlerInfo {
2980   char const *const Name;
2981   unsigned Version;
2982 };
2983 }
2984 
2985 const SanitizerHandlerInfo SanitizerHandlers[] = {
2986 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2987     LIST_SANITIZER_CHECKS
2988 #undef SANITIZER_CHECK
2989 };
2990 
2991 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2992                                  llvm::FunctionType *FnType,
2993                                  ArrayRef<llvm::Value *> FnArgs,
2994                                  SanitizerHandler CheckHandler,
2995                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2996                                  llvm::BasicBlock *ContBB) {
2997   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2998   Optional<ApplyDebugLocation> DL;
2999   if (!CGF.Builder.getCurrentDebugLocation()) {
3000     // Ensure that the call has at least an artificial debug location.
3001     DL.emplace(CGF, SourceLocation());
3002   }
3003   bool NeedsAbortSuffix =
3004       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3005   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3006   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3007   const StringRef CheckName = CheckInfo.Name;
3008   std::string FnName = "__ubsan_handle_" + CheckName.str();
3009   if (CheckInfo.Version && !MinimalRuntime)
3010     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3011   if (MinimalRuntime)
3012     FnName += "_minimal";
3013   if (NeedsAbortSuffix)
3014     FnName += "_abort";
3015   bool MayReturn =
3016       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3017 
3018   llvm::AttrBuilder B;
3019   if (!MayReturn) {
3020     B.addAttribute(llvm::Attribute::NoReturn)
3021         .addAttribute(llvm::Attribute::NoUnwind);
3022   }
3023   B.addAttribute(llvm::Attribute::UWTable);
3024 
3025   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3026       FnType, FnName,
3027       llvm::AttributeList::get(CGF.getLLVMContext(),
3028                                llvm::AttributeList::FunctionIndex, B),
3029       /*Local=*/true);
3030   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3031   if (!MayReturn) {
3032     HandlerCall->setDoesNotReturn();
3033     CGF.Builder.CreateUnreachable();
3034   } else {
3035     CGF.Builder.CreateBr(ContBB);
3036   }
3037 }
3038 
3039 void CodeGenFunction::EmitCheck(
3040     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3041     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3042     ArrayRef<llvm::Value *> DynamicArgs) {
3043   assert(IsSanitizerScope);
3044   assert(Checked.size() > 0);
3045   assert(CheckHandler >= 0 &&
3046          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3047   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3048 
3049   llvm::Value *FatalCond = nullptr;
3050   llvm::Value *RecoverableCond = nullptr;
3051   llvm::Value *TrapCond = nullptr;
3052   for (int i = 0, n = Checked.size(); i < n; ++i) {
3053     llvm::Value *Check = Checked[i].first;
3054     // -fsanitize-trap= overrides -fsanitize-recover=.
3055     llvm::Value *&Cond =
3056         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3057             ? TrapCond
3058             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3059                   ? RecoverableCond
3060                   : FatalCond;
3061     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3062   }
3063 
3064   if (TrapCond)
3065     EmitTrapCheck(TrapCond);
3066   if (!FatalCond && !RecoverableCond)
3067     return;
3068 
3069   llvm::Value *JointCond;
3070   if (FatalCond && RecoverableCond)
3071     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3072   else
3073     JointCond = FatalCond ? FatalCond : RecoverableCond;
3074   assert(JointCond);
3075 
3076   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3077   assert(SanOpts.has(Checked[0].second));
3078 #ifndef NDEBUG
3079   for (int i = 1, n = Checked.size(); i < n; ++i) {
3080     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3081            "All recoverable kinds in a single check must be same!");
3082     assert(SanOpts.has(Checked[i].second));
3083   }
3084 #endif
3085 
3086   llvm::BasicBlock *Cont = createBasicBlock("cont");
3087   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3088   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3089   // Give hint that we very much don't expect to execute the handler
3090   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3091   llvm::MDBuilder MDHelper(getLLVMContext());
3092   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3093   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3094   EmitBlock(Handlers);
3095 
3096   // Handler functions take an i8* pointing to the (handler-specific) static
3097   // information block, followed by a sequence of intptr_t arguments
3098   // representing operand values.
3099   SmallVector<llvm::Value *, 4> Args;
3100   SmallVector<llvm::Type *, 4> ArgTypes;
3101   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3102     Args.reserve(DynamicArgs.size() + 1);
3103     ArgTypes.reserve(DynamicArgs.size() + 1);
3104 
3105     // Emit handler arguments and create handler function type.
3106     if (!StaticArgs.empty()) {
3107       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3108       auto *InfoPtr =
3109           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3110                                    llvm::GlobalVariable::PrivateLinkage, Info);
3111       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3112       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3113       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3114       ArgTypes.push_back(Int8PtrTy);
3115     }
3116 
3117     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3118       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3119       ArgTypes.push_back(IntPtrTy);
3120     }
3121   }
3122 
3123   llvm::FunctionType *FnType =
3124     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3125 
3126   if (!FatalCond || !RecoverableCond) {
3127     // Simple case: we need to generate a single handler call, either
3128     // fatal, or non-fatal.
3129     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3130                          (FatalCond != nullptr), Cont);
3131   } else {
3132     // Emit two handler calls: first one for set of unrecoverable checks,
3133     // another one for recoverable.
3134     llvm::BasicBlock *NonFatalHandlerBB =
3135         createBasicBlock("non_fatal." + CheckName);
3136     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3137     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3138     EmitBlock(FatalHandlerBB);
3139     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3140                          NonFatalHandlerBB);
3141     EmitBlock(NonFatalHandlerBB);
3142     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3143                          Cont);
3144   }
3145 
3146   EmitBlock(Cont);
3147 }
3148 
3149 void CodeGenFunction::EmitCfiSlowPathCheck(
3150     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3151     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3152   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3153 
3154   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3155   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3156 
3157   llvm::MDBuilder MDHelper(getLLVMContext());
3158   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3159   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3160 
3161   EmitBlock(CheckBB);
3162 
3163   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3164 
3165   llvm::CallInst *CheckCall;
3166   llvm::FunctionCallee SlowPathFn;
3167   if (WithDiag) {
3168     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3169     auto *InfoPtr =
3170         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3171                                  llvm::GlobalVariable::PrivateLinkage, Info);
3172     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3173     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3174 
3175     SlowPathFn = CGM.getModule().getOrInsertFunction(
3176         "__cfi_slowpath_diag",
3177         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3178                                 false));
3179     CheckCall = Builder.CreateCall(
3180         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3181   } else {
3182     SlowPathFn = CGM.getModule().getOrInsertFunction(
3183         "__cfi_slowpath",
3184         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3185     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3186   }
3187 
3188   CGM.setDSOLocal(
3189       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3190   CheckCall->setDoesNotThrow();
3191 
3192   EmitBlock(Cont);
3193 }
3194 
3195 // Emit a stub for __cfi_check function so that the linker knows about this
3196 // symbol in LTO mode.
3197 void CodeGenFunction::EmitCfiCheckStub() {
3198   llvm::Module *M = &CGM.getModule();
3199   auto &Ctx = M->getContext();
3200   llvm::Function *F = llvm::Function::Create(
3201       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3202       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3203   CGM.setDSOLocal(F);
3204   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3205   // FIXME: consider emitting an intrinsic call like
3206   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3207   // which can be lowered in CrossDSOCFI pass to the actual contents of
3208   // __cfi_check. This would allow inlining of __cfi_check calls.
3209   llvm::CallInst::Create(
3210       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3211   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3212 }
3213 
3214 // This function is basically a switch over the CFI failure kind, which is
3215 // extracted from CFICheckFailData (1st function argument). Each case is either
3216 // llvm.trap or a call to one of the two runtime handlers, based on
3217 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3218 // failure kind) traps, but this should really never happen.  CFICheckFailData
3219 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3220 // check kind; in this case __cfi_check_fail traps as well.
3221 void CodeGenFunction::EmitCfiCheckFail() {
3222   SanitizerScope SanScope(this);
3223   FunctionArgList Args;
3224   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3225                             ImplicitParamDecl::Other);
3226   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3227                             ImplicitParamDecl::Other);
3228   Args.push_back(&ArgData);
3229   Args.push_back(&ArgAddr);
3230 
3231   const CGFunctionInfo &FI =
3232     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3233 
3234   llvm::Function *F = llvm::Function::Create(
3235       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3236       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3237 
3238   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3239   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3240   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3241 
3242   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3243                 SourceLocation());
3244 
3245   // This function should not be affected by blacklist. This function does
3246   // not have a source location, but "src:*" would still apply. Revert any
3247   // changes to SanOpts made in StartFunction.
3248   SanOpts = CGM.getLangOpts().Sanitize;
3249 
3250   llvm::Value *Data =
3251       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3252                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3253   llvm::Value *Addr =
3254       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3255                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3256 
3257   // Data == nullptr means the calling module has trap behaviour for this check.
3258   llvm::Value *DataIsNotNullPtr =
3259       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3260   EmitTrapCheck(DataIsNotNullPtr);
3261 
3262   llvm::StructType *SourceLocationTy =
3263       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3264   llvm::StructType *CfiCheckFailDataTy =
3265       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3266 
3267   llvm::Value *V = Builder.CreateConstGEP2_32(
3268       CfiCheckFailDataTy,
3269       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3270       0);
3271   Address CheckKindAddr(V, getIntAlign());
3272   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3273 
3274   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3275       CGM.getLLVMContext(),
3276       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3277   llvm::Value *ValidVtable = Builder.CreateZExt(
3278       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3279                          {Addr, AllVtables}),
3280       IntPtrTy);
3281 
3282   const std::pair<int, SanitizerMask> CheckKinds[] = {
3283       {CFITCK_VCall, SanitizerKind::CFIVCall},
3284       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3285       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3286       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3287       {CFITCK_ICall, SanitizerKind::CFIICall}};
3288 
3289   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3290   for (auto CheckKindMaskPair : CheckKinds) {
3291     int Kind = CheckKindMaskPair.first;
3292     SanitizerMask Mask = CheckKindMaskPair.second;
3293     llvm::Value *Cond =
3294         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3295     if (CGM.getLangOpts().Sanitize.has(Mask))
3296       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3297                 {Data, Addr, ValidVtable});
3298     else
3299       EmitTrapCheck(Cond);
3300   }
3301 
3302   FinishFunction();
3303   // The only reference to this function will be created during LTO link.
3304   // Make sure it survives until then.
3305   CGM.addUsedGlobal(F);
3306 }
3307 
3308 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3309   if (SanOpts.has(SanitizerKind::Unreachable)) {
3310     SanitizerScope SanScope(this);
3311     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3312                              SanitizerKind::Unreachable),
3313               SanitizerHandler::BuiltinUnreachable,
3314               EmitCheckSourceLocation(Loc), None);
3315   }
3316   Builder.CreateUnreachable();
3317 }
3318 
3319 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3320   llvm::BasicBlock *Cont = createBasicBlock("cont");
3321 
3322   // If we're optimizing, collapse all calls to trap down to just one per
3323   // function to save on code size.
3324   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3325     TrapBB = createBasicBlock("trap");
3326     Builder.CreateCondBr(Checked, Cont, TrapBB);
3327     EmitBlock(TrapBB);
3328     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3329     TrapCall->setDoesNotReturn();
3330     TrapCall->setDoesNotThrow();
3331     Builder.CreateUnreachable();
3332   } else {
3333     Builder.CreateCondBr(Checked, Cont, TrapBB);
3334   }
3335 
3336   EmitBlock(Cont);
3337 }
3338 
3339 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3340   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3341 
3342   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3343     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3344                                   CGM.getCodeGenOpts().TrapFuncName);
3345     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3346   }
3347 
3348   return TrapCall;
3349 }
3350 
3351 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3352                                                  LValueBaseInfo *BaseInfo,
3353                                                  TBAAAccessInfo *TBAAInfo) {
3354   assert(E->getType()->isArrayType() &&
3355          "Array to pointer decay must have array source type!");
3356 
3357   // Expressions of array type can't be bitfields or vector elements.
3358   LValue LV = EmitLValue(E);
3359   Address Addr = LV.getAddress(*this);
3360 
3361   // If the array type was an incomplete type, we need to make sure
3362   // the decay ends up being the right type.
3363   llvm::Type *NewTy = ConvertType(E->getType());
3364   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3365 
3366   // Note that VLA pointers are always decayed, so we don't need to do
3367   // anything here.
3368   if (!E->getType()->isVariableArrayType()) {
3369     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3370            "Expected pointer to array");
3371     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3372   }
3373 
3374   // The result of this decay conversion points to an array element within the
3375   // base lvalue. However, since TBAA currently does not support representing
3376   // accesses to elements of member arrays, we conservatively represent accesses
3377   // to the pointee object as if it had no any base lvalue specified.
3378   // TODO: Support TBAA for member arrays.
3379   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3380   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3381   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3382 
3383   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3384 }
3385 
3386 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3387 /// array to pointer, return the array subexpression.
3388 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3389   // If this isn't just an array->pointer decay, bail out.
3390   const auto *CE = dyn_cast<CastExpr>(E);
3391   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3392     return nullptr;
3393 
3394   // If this is a decay from variable width array, bail out.
3395   const Expr *SubExpr = CE->getSubExpr();
3396   if (SubExpr->getType()->isVariableArrayType())
3397     return nullptr;
3398 
3399   return SubExpr;
3400 }
3401 
3402 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3403                                           llvm::Value *ptr,
3404                                           ArrayRef<llvm::Value*> indices,
3405                                           bool inbounds,
3406                                           bool signedIndices,
3407                                           SourceLocation loc,
3408                                     const llvm::Twine &name = "arrayidx") {
3409   if (inbounds) {
3410     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3411                                       CodeGenFunction::NotSubtraction, loc,
3412                                       name);
3413   } else {
3414     return CGF.Builder.CreateGEP(ptr, indices, name);
3415   }
3416 }
3417 
3418 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3419                                       llvm::Value *idx,
3420                                       CharUnits eltSize) {
3421   // If we have a constant index, we can use the exact offset of the
3422   // element we're accessing.
3423   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3424     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3425     return arrayAlign.alignmentAtOffset(offset);
3426 
3427   // Otherwise, use the worst-case alignment for any element.
3428   } else {
3429     return arrayAlign.alignmentOfArrayElement(eltSize);
3430   }
3431 }
3432 
3433 static QualType getFixedSizeElementType(const ASTContext &ctx,
3434                                         const VariableArrayType *vla) {
3435   QualType eltType;
3436   do {
3437     eltType = vla->getElementType();
3438   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3439   return eltType;
3440 }
3441 
3442 /// Given an array base, check whether its member access belongs to a record
3443 /// with preserve_access_index attribute or not.
3444 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3445   if (!ArrayBase || !CGF.getDebugInfo())
3446     return false;
3447 
3448   // Only support base as either a MemberExpr or DeclRefExpr.
3449   // DeclRefExpr to cover cases like:
3450   //    struct s { int a; int b[10]; };
3451   //    struct s *p;
3452   //    p[1].a
3453   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3454   // p->b[5] is a MemberExpr example.
3455   const Expr *E = ArrayBase->IgnoreImpCasts();
3456   if (const auto *ME = dyn_cast<MemberExpr>(E))
3457     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3458 
3459   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3460     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3461     if (!VarDef)
3462       return false;
3463 
3464     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3465     if (!PtrT)
3466       return false;
3467 
3468     const auto *PointeeT = PtrT->getPointeeType()
3469                              ->getUnqualifiedDesugaredType();
3470     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3471       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3472     return false;
3473   }
3474 
3475   return false;
3476 }
3477 
3478 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3479                                      ArrayRef<llvm::Value *> indices,
3480                                      QualType eltType, bool inbounds,
3481                                      bool signedIndices, SourceLocation loc,
3482                                      QualType *arrayType = nullptr,
3483                                      const Expr *Base = nullptr,
3484                                      const llvm::Twine &name = "arrayidx") {
3485   // All the indices except that last must be zero.
3486 #ifndef NDEBUG
3487   for (auto idx : indices.drop_back())
3488     assert(isa<llvm::ConstantInt>(idx) &&
3489            cast<llvm::ConstantInt>(idx)->isZero());
3490 #endif
3491 
3492   // Determine the element size of the statically-sized base.  This is
3493   // the thing that the indices are expressed in terms of.
3494   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3495     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3496   }
3497 
3498   // We can use that to compute the best alignment of the element.
3499   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3500   CharUnits eltAlign =
3501     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3502 
3503   llvm::Value *eltPtr;
3504   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3505   if (!LastIndex ||
3506       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3507     eltPtr = emitArraySubscriptGEP(
3508         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3509         loc, name);
3510   } else {
3511     // Remember the original array subscript for bpf target
3512     unsigned idx = LastIndex->getZExtValue();
3513     llvm::DIType *DbgInfo = nullptr;
3514     if (arrayType)
3515       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3516     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3517                                                         addr.getPointer(),
3518                                                         indices.size() - 1,
3519                                                         idx, DbgInfo);
3520   }
3521 
3522   return Address(eltPtr, eltAlign);
3523 }
3524 
3525 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3526                                                bool Accessed) {
3527   // The index must always be an integer, which is not an aggregate.  Emit it
3528   // in lexical order (this complexity is, sadly, required by C++17).
3529   llvm::Value *IdxPre =
3530       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3531   bool SignedIndices = false;
3532   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3533     auto *Idx = IdxPre;
3534     if (E->getLHS() != E->getIdx()) {
3535       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3536       Idx = EmitScalarExpr(E->getIdx());
3537     }
3538 
3539     QualType IdxTy = E->getIdx()->getType();
3540     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3541     SignedIndices |= IdxSigned;
3542 
3543     if (SanOpts.has(SanitizerKind::ArrayBounds))
3544       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3545 
3546     // Extend or truncate the index type to 32 or 64-bits.
3547     if (Promote && Idx->getType() != IntPtrTy)
3548       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3549 
3550     return Idx;
3551   };
3552   IdxPre = nullptr;
3553 
3554   // If the base is a vector type, then we are forming a vector element lvalue
3555   // with this subscript.
3556   if (E->getBase()->getType()->isVectorType() &&
3557       !isa<ExtVectorElementExpr>(E->getBase())) {
3558     // Emit the vector as an lvalue to get its address.
3559     LValue LHS = EmitLValue(E->getBase());
3560     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3561     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3562     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3563                                  E->getBase()->getType(), LHS.getBaseInfo(),
3564                                  TBAAAccessInfo());
3565   }
3566 
3567   // All the other cases basically behave like simple offsetting.
3568 
3569   // Handle the extvector case we ignored above.
3570   if (isa<ExtVectorElementExpr>(E->getBase())) {
3571     LValue LV = EmitLValue(E->getBase());
3572     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3573     Address Addr = EmitExtVectorElementLValue(LV);
3574 
3575     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3576     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3577                                  SignedIndices, E->getExprLoc());
3578     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3579                           CGM.getTBAAInfoForSubobject(LV, EltType));
3580   }
3581 
3582   LValueBaseInfo EltBaseInfo;
3583   TBAAAccessInfo EltTBAAInfo;
3584   Address Addr = Address::invalid();
3585   if (const VariableArrayType *vla =
3586            getContext().getAsVariableArrayType(E->getType())) {
3587     // The base must be a pointer, which is not an aggregate.  Emit
3588     // it.  It needs to be emitted first in case it's what captures
3589     // the VLA bounds.
3590     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3591     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3592 
3593     // The element count here is the total number of non-VLA elements.
3594     llvm::Value *numElements = getVLASize(vla).NumElts;
3595 
3596     // Effectively, the multiply by the VLA size is part of the GEP.
3597     // GEP indexes are signed, and scaling an index isn't permitted to
3598     // signed-overflow, so we use the same semantics for our explicit
3599     // multiply.  We suppress this if overflow is not undefined behavior.
3600     if (getLangOpts().isSignedOverflowDefined()) {
3601       Idx = Builder.CreateMul(Idx, numElements);
3602     } else {
3603       Idx = Builder.CreateNSWMul(Idx, numElements);
3604     }
3605 
3606     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3607                                  !getLangOpts().isSignedOverflowDefined(),
3608                                  SignedIndices, E->getExprLoc());
3609 
3610   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3611     // Indexing over an interface, as in "NSString *P; P[4];"
3612 
3613     // Emit the base pointer.
3614     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3615     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3616 
3617     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3618     llvm::Value *InterfaceSizeVal =
3619         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3620 
3621     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3622 
3623     // We don't necessarily build correct LLVM struct types for ObjC
3624     // interfaces, so we can't rely on GEP to do this scaling
3625     // correctly, so we need to cast to i8*.  FIXME: is this actually
3626     // true?  A lot of other things in the fragile ABI would break...
3627     llvm::Type *OrigBaseTy = Addr.getType();
3628     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3629 
3630     // Do the GEP.
3631     CharUnits EltAlign =
3632       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3633     llvm::Value *EltPtr =
3634         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3635                               SignedIndices, E->getExprLoc());
3636     Addr = Address(EltPtr, EltAlign);
3637 
3638     // Cast back.
3639     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3640   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3641     // If this is A[i] where A is an array, the frontend will have decayed the
3642     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3643     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3644     // "gep x, i" here.  Emit one "gep A, 0, i".
3645     assert(Array->getType()->isArrayType() &&
3646            "Array to pointer decay must have array source type!");
3647     LValue ArrayLV;
3648     // For simple multidimensional array indexing, set the 'accessed' flag for
3649     // better bounds-checking of the base expression.
3650     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3651       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3652     else
3653       ArrayLV = EmitLValue(Array);
3654     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3655 
3656     // Propagate the alignment from the array itself to the result.
3657     QualType arrayType = Array->getType();
3658     Addr = emitArraySubscriptGEP(
3659         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3660         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3661         E->getExprLoc(), &arrayType, E->getBase());
3662     EltBaseInfo = ArrayLV.getBaseInfo();
3663     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3664   } else {
3665     // The base must be a pointer; emit it with an estimate of its alignment.
3666     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3667     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3668     QualType ptrType = E->getBase()->getType();
3669     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3670                                  !getLangOpts().isSignedOverflowDefined(),
3671                                  SignedIndices, E->getExprLoc(), &ptrType,
3672                                  E->getBase());
3673   }
3674 
3675   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3676 
3677   if (getLangOpts().ObjC &&
3678       getLangOpts().getGC() != LangOptions::NonGC) {
3679     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3680     setObjCGCLValueClass(getContext(), E, LV);
3681   }
3682   return LV;
3683 }
3684 
3685 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3686                                        LValueBaseInfo &BaseInfo,
3687                                        TBAAAccessInfo &TBAAInfo,
3688                                        QualType BaseTy, QualType ElTy,
3689                                        bool IsLowerBound) {
3690   LValue BaseLVal;
3691   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3692     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3693     if (BaseTy->isArrayType()) {
3694       Address Addr = BaseLVal.getAddress(CGF);
3695       BaseInfo = BaseLVal.getBaseInfo();
3696 
3697       // If the array type was an incomplete type, we need to make sure
3698       // the decay ends up being the right type.
3699       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3700       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3701 
3702       // Note that VLA pointers are always decayed, so we don't need to do
3703       // anything here.
3704       if (!BaseTy->isVariableArrayType()) {
3705         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3706                "Expected pointer to array");
3707         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3708       }
3709 
3710       return CGF.Builder.CreateElementBitCast(Addr,
3711                                               CGF.ConvertTypeForMem(ElTy));
3712     }
3713     LValueBaseInfo TypeBaseInfo;
3714     TBAAAccessInfo TypeTBAAInfo;
3715     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3716                                                   &TypeTBAAInfo);
3717     BaseInfo.mergeForCast(TypeBaseInfo);
3718     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3719     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3720   }
3721   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3722 }
3723 
3724 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3725                                                 bool IsLowerBound) {
3726   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3727   QualType ResultExprTy;
3728   if (auto *AT = getContext().getAsArrayType(BaseTy))
3729     ResultExprTy = AT->getElementType();
3730   else
3731     ResultExprTy = BaseTy->getPointeeType();
3732   llvm::Value *Idx = nullptr;
3733   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3734     // Requesting lower bound or upper bound, but without provided length and
3735     // without ':' symbol for the default length -> length = 1.
3736     // Idx = LowerBound ?: 0;
3737     if (auto *LowerBound = E->getLowerBound()) {
3738       Idx = Builder.CreateIntCast(
3739           EmitScalarExpr(LowerBound), IntPtrTy,
3740           LowerBound->getType()->hasSignedIntegerRepresentation());
3741     } else
3742       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3743   } else {
3744     // Try to emit length or lower bound as constant. If this is possible, 1
3745     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3746     // IR (LB + Len) - 1.
3747     auto &C = CGM.getContext();
3748     auto *Length = E->getLength();
3749     llvm::APSInt ConstLength;
3750     if (Length) {
3751       // Idx = LowerBound + Length - 1;
3752       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3753         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3754         Length = nullptr;
3755       }
3756       auto *LowerBound = E->getLowerBound();
3757       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3758       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3759         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3760         LowerBound = nullptr;
3761       }
3762       if (!Length)
3763         --ConstLength;
3764       else if (!LowerBound)
3765         --ConstLowerBound;
3766 
3767       if (Length || LowerBound) {
3768         auto *LowerBoundVal =
3769             LowerBound
3770                 ? Builder.CreateIntCast(
3771                       EmitScalarExpr(LowerBound), IntPtrTy,
3772                       LowerBound->getType()->hasSignedIntegerRepresentation())
3773                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3774         auto *LengthVal =
3775             Length
3776                 ? Builder.CreateIntCast(
3777                       EmitScalarExpr(Length), IntPtrTy,
3778                       Length->getType()->hasSignedIntegerRepresentation())
3779                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3780         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3781                                 /*HasNUW=*/false,
3782                                 !getLangOpts().isSignedOverflowDefined());
3783         if (Length && LowerBound) {
3784           Idx = Builder.CreateSub(
3785               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3786               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3787         }
3788       } else
3789         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3790     } else {
3791       // Idx = ArraySize - 1;
3792       QualType ArrayTy = BaseTy->isPointerType()
3793                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3794                              : BaseTy;
3795       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3796         Length = VAT->getSizeExpr();
3797         if (Length->isIntegerConstantExpr(ConstLength, C))
3798           Length = nullptr;
3799       } else {
3800         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3801         ConstLength = CAT->getSize();
3802       }
3803       if (Length) {
3804         auto *LengthVal = Builder.CreateIntCast(
3805             EmitScalarExpr(Length), IntPtrTy,
3806             Length->getType()->hasSignedIntegerRepresentation());
3807         Idx = Builder.CreateSub(
3808             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3809             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3810       } else {
3811         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3812         --ConstLength;
3813         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3814       }
3815     }
3816   }
3817   assert(Idx);
3818 
3819   Address EltPtr = Address::invalid();
3820   LValueBaseInfo BaseInfo;
3821   TBAAAccessInfo TBAAInfo;
3822   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3823     // The base must be a pointer, which is not an aggregate.  Emit
3824     // it.  It needs to be emitted first in case it's what captures
3825     // the VLA bounds.
3826     Address Base =
3827         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3828                                 BaseTy, VLA->getElementType(), IsLowerBound);
3829     // The element count here is the total number of non-VLA elements.
3830     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3831 
3832     // Effectively, the multiply by the VLA size is part of the GEP.
3833     // GEP indexes are signed, and scaling an index isn't permitted to
3834     // signed-overflow, so we use the same semantics for our explicit
3835     // multiply.  We suppress this if overflow is not undefined behavior.
3836     if (getLangOpts().isSignedOverflowDefined())
3837       Idx = Builder.CreateMul(Idx, NumElements);
3838     else
3839       Idx = Builder.CreateNSWMul(Idx, NumElements);
3840     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3841                                    !getLangOpts().isSignedOverflowDefined(),
3842                                    /*signedIndices=*/false, E->getExprLoc());
3843   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3844     // If this is A[i] where A is an array, the frontend will have decayed the
3845     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3846     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3847     // "gep x, i" here.  Emit one "gep A, 0, i".
3848     assert(Array->getType()->isArrayType() &&
3849            "Array to pointer decay must have array source type!");
3850     LValue ArrayLV;
3851     // For simple multidimensional array indexing, set the 'accessed' flag for
3852     // better bounds-checking of the base expression.
3853     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3854       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3855     else
3856       ArrayLV = EmitLValue(Array);
3857 
3858     // Propagate the alignment from the array itself to the result.
3859     EltPtr = emitArraySubscriptGEP(
3860         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3861         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3862         /*signedIndices=*/false, E->getExprLoc());
3863     BaseInfo = ArrayLV.getBaseInfo();
3864     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3865   } else {
3866     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3867                                            TBAAInfo, BaseTy, ResultExprTy,
3868                                            IsLowerBound);
3869     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3870                                    !getLangOpts().isSignedOverflowDefined(),
3871                                    /*signedIndices=*/false, E->getExprLoc());
3872   }
3873 
3874   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3875 }
3876 
3877 LValue CodeGenFunction::
3878 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3879   // Emit the base vector as an l-value.
3880   LValue Base;
3881 
3882   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3883   if (E->isArrow()) {
3884     // If it is a pointer to a vector, emit the address and form an lvalue with
3885     // it.
3886     LValueBaseInfo BaseInfo;
3887     TBAAAccessInfo TBAAInfo;
3888     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3889     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3890     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3891     Base.getQuals().removeObjCGCAttr();
3892   } else if (E->getBase()->isGLValue()) {
3893     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3894     // emit the base as an lvalue.
3895     assert(E->getBase()->getType()->isVectorType());
3896     Base = EmitLValue(E->getBase());
3897   } else {
3898     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3899     assert(E->getBase()->getType()->isVectorType() &&
3900            "Result must be a vector");
3901     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3902 
3903     // Store the vector to memory (because LValue wants an address).
3904     Address VecMem = CreateMemTemp(E->getBase()->getType());
3905     Builder.CreateStore(Vec, VecMem);
3906     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3907                           AlignmentSource::Decl);
3908   }
3909 
3910   QualType type =
3911     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3912 
3913   // Encode the element access list into a vector of unsigned indices.
3914   SmallVector<uint32_t, 4> Indices;
3915   E->getEncodedElementAccess(Indices);
3916 
3917   if (Base.isSimple()) {
3918     llvm::Constant *CV =
3919         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3920     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3921                                     Base.getBaseInfo(), TBAAAccessInfo());
3922   }
3923   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3924 
3925   llvm::Constant *BaseElts = Base.getExtVectorElts();
3926   SmallVector<llvm::Constant *, 4> CElts;
3927 
3928   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3929     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3930   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3931   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3932                                   Base.getBaseInfo(), TBAAAccessInfo());
3933 }
3934 
3935 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3936   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3937     EmitIgnoredExpr(E->getBase());
3938     return EmitDeclRefLValue(DRE);
3939   }
3940 
3941   Expr *BaseExpr = E->getBase();
3942   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3943   LValue BaseLV;
3944   if (E->isArrow()) {
3945     LValueBaseInfo BaseInfo;
3946     TBAAAccessInfo TBAAInfo;
3947     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3948     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3949     SanitizerSet SkippedChecks;
3950     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3951     if (IsBaseCXXThis)
3952       SkippedChecks.set(SanitizerKind::Alignment, true);
3953     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3954       SkippedChecks.set(SanitizerKind::Null, true);
3955     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3956                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3957     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3958   } else
3959     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3960 
3961   NamedDecl *ND = E->getMemberDecl();
3962   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3963     LValue LV = EmitLValueForField(BaseLV, Field);
3964     setObjCGCLValueClass(getContext(), E, LV);
3965     if (getLangOpts().OpenMP) {
3966       // If the member was explicitly marked as nontemporal, mark it as
3967       // nontemporal. If the base lvalue is marked as nontemporal, mark access
3968       // to children as nontemporal too.
3969       if ((IsWrappedCXXThis(BaseExpr) &&
3970            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
3971           BaseLV.isNontemporal())
3972         LV.setNontemporal(/*Value=*/true);
3973     }
3974     return LV;
3975   }
3976 
3977   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3978     return EmitFunctionDeclLValue(*this, E, FD);
3979 
3980   llvm_unreachable("Unhandled member declaration!");
3981 }
3982 
3983 /// Given that we are currently emitting a lambda, emit an l-value for
3984 /// one of its members.
3985 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3986   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3987   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3988   QualType LambdaTagType =
3989     getContext().getTagDeclType(Field->getParent());
3990   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3991   return EmitLValueForField(LambdaLV, Field);
3992 }
3993 
3994 /// Get the field index in the debug info. The debug info structure/union
3995 /// will ignore the unnamed bitfields.
3996 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3997                                              unsigned FieldIndex) {
3998   unsigned I = 0, Skipped = 0;
3999 
4000   for (auto F : Rec->getDefinition()->fields()) {
4001     if (I == FieldIndex)
4002       break;
4003     if (F->isUnnamedBitfield())
4004       Skipped++;
4005     I++;
4006   }
4007 
4008   return FieldIndex - Skipped;
4009 }
4010 
4011 /// Get the address of a zero-sized field within a record. The resulting
4012 /// address doesn't necessarily have the right type.
4013 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4014                                        const FieldDecl *Field) {
4015   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4016       CGF.getContext().getFieldOffset(Field));
4017   if (Offset.isZero())
4018     return Base;
4019   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4020   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4021 }
4022 
4023 /// Drill down to the storage of a field without walking into
4024 /// reference types.
4025 ///
4026 /// The resulting address doesn't necessarily have the right type.
4027 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4028                                       const FieldDecl *field) {
4029   if (field->isZeroSize(CGF.getContext()))
4030     return emitAddrOfZeroSizeField(CGF, base, field);
4031 
4032   const RecordDecl *rec = field->getParent();
4033 
4034   unsigned idx =
4035     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4036 
4037   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4038 }
4039 
4040 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4041                                         Address addr, const FieldDecl *field) {
4042   const RecordDecl *rec = field->getParent();
4043   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4044       base.getType(), rec->getLocation());
4045 
4046   unsigned idx =
4047       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4048 
4049   return CGF.Builder.CreatePreserveStructAccessIndex(
4050       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4051 }
4052 
4053 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4054   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4055   if (!RD)
4056     return false;
4057 
4058   if (RD->isDynamicClass())
4059     return true;
4060 
4061   for (const auto &Base : RD->bases())
4062     if (hasAnyVptr(Base.getType(), Context))
4063       return true;
4064 
4065   for (const FieldDecl *Field : RD->fields())
4066     if (hasAnyVptr(Field->getType(), Context))
4067       return true;
4068 
4069   return false;
4070 }
4071 
4072 LValue CodeGenFunction::EmitLValueForField(LValue base,
4073                                            const FieldDecl *field) {
4074   LValueBaseInfo BaseInfo = base.getBaseInfo();
4075 
4076   if (field->isBitField()) {
4077     const CGRecordLayout &RL =
4078       CGM.getTypes().getCGRecordLayout(field->getParent());
4079     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4080     Address Addr = base.getAddress(*this);
4081     unsigned Idx = RL.getLLVMFieldNo(field);
4082     const RecordDecl *rec = field->getParent();
4083     if (!IsInPreservedAIRegion &&
4084         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4085       if (Idx != 0)
4086         // For structs, we GEP to the field that the record layout suggests.
4087         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4088     } else {
4089       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4090           getContext().getRecordType(rec), rec->getLocation());
4091       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4092           getDebugInfoFIndex(rec, field->getFieldIndex()),
4093           DbgInfo);
4094     }
4095 
4096     // Get the access type.
4097     llvm::Type *FieldIntTy =
4098       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4099     if (Addr.getElementType() != FieldIntTy)
4100       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4101 
4102     QualType fieldType =
4103       field->getType().withCVRQualifiers(base.getVRQualifiers());
4104     // TODO: Support TBAA for bit fields.
4105     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4106     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4107                                 TBAAAccessInfo());
4108   }
4109 
4110   // Fields of may-alias structures are may-alias themselves.
4111   // FIXME: this should get propagated down through anonymous structs
4112   // and unions.
4113   QualType FieldType = field->getType();
4114   const RecordDecl *rec = field->getParent();
4115   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4116   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4117   TBAAAccessInfo FieldTBAAInfo;
4118   if (base.getTBAAInfo().isMayAlias() ||
4119           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4120     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4121   } else if (rec->isUnion()) {
4122     // TODO: Support TBAA for unions.
4123     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4124   } else {
4125     // If no base type been assigned for the base access, then try to generate
4126     // one for this base lvalue.
4127     FieldTBAAInfo = base.getTBAAInfo();
4128     if (!FieldTBAAInfo.BaseType) {
4129         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4130         assert(!FieldTBAAInfo.Offset &&
4131                "Nonzero offset for an access with no base type!");
4132     }
4133 
4134     // Adjust offset to be relative to the base type.
4135     const ASTRecordLayout &Layout =
4136         getContext().getASTRecordLayout(field->getParent());
4137     unsigned CharWidth = getContext().getCharWidth();
4138     if (FieldTBAAInfo.BaseType)
4139       FieldTBAAInfo.Offset +=
4140           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4141 
4142     // Update the final access type and size.
4143     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4144     FieldTBAAInfo.Size =
4145         getContext().getTypeSizeInChars(FieldType).getQuantity();
4146   }
4147 
4148   Address addr = base.getAddress(*this);
4149   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4150     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4151         ClassDef->isDynamicClass()) {
4152       // Getting to any field of dynamic object requires stripping dynamic
4153       // information provided by invariant.group.  This is because accessing
4154       // fields may leak the real address of dynamic object, which could result
4155       // in miscompilation when leaked pointer would be compared.
4156       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4157       addr = Address(stripped, addr.getAlignment());
4158     }
4159   }
4160 
4161   unsigned RecordCVR = base.getVRQualifiers();
4162   if (rec->isUnion()) {
4163     // For unions, there is no pointer adjustment.
4164     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4165         hasAnyVptr(FieldType, getContext()))
4166       // Because unions can easily skip invariant.barriers, we need to add
4167       // a barrier every time CXXRecord field with vptr is referenced.
4168       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4169                      addr.getAlignment());
4170 
4171     if (IsInPreservedAIRegion ||
4172         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4173       // Remember the original union field index
4174       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4175           rec->getLocation());
4176       addr = Address(
4177           Builder.CreatePreserveUnionAccessIndex(
4178               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4179           addr.getAlignment());
4180     }
4181 
4182     if (FieldType->isReferenceType())
4183       addr = Builder.CreateElementBitCast(
4184           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4185   } else {
4186     if (!IsInPreservedAIRegion &&
4187         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4188       // For structs, we GEP to the field that the record layout suggests.
4189       addr = emitAddrOfFieldStorage(*this, addr, field);
4190     else
4191       // Remember the original struct field index
4192       addr = emitPreserveStructAccess(*this, base, addr, field);
4193   }
4194 
4195   // If this is a reference field, load the reference right now.
4196   if (FieldType->isReferenceType()) {
4197     LValue RefLVal =
4198         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4199     if (RecordCVR & Qualifiers::Volatile)
4200       RefLVal.getQuals().addVolatile();
4201     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4202 
4203     // Qualifiers on the struct don't apply to the referencee.
4204     RecordCVR = 0;
4205     FieldType = FieldType->getPointeeType();
4206   }
4207 
4208   // Make sure that the address is pointing to the right type.  This is critical
4209   // for both unions and structs.  A union needs a bitcast, a struct element
4210   // will need a bitcast if the LLVM type laid out doesn't match the desired
4211   // type.
4212   addr = Builder.CreateElementBitCast(
4213       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4214 
4215   if (field->hasAttr<AnnotateAttr>())
4216     addr = EmitFieldAnnotations(field, addr);
4217 
4218   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4219   LV.getQuals().addCVRQualifiers(RecordCVR);
4220 
4221   // __weak attribute on a field is ignored.
4222   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4223     LV.getQuals().removeObjCGCAttr();
4224 
4225   return LV;
4226 }
4227 
4228 LValue
4229 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4230                                                   const FieldDecl *Field) {
4231   QualType FieldType = Field->getType();
4232 
4233   if (!FieldType->isReferenceType())
4234     return EmitLValueForField(Base, Field);
4235 
4236   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4237 
4238   // Make sure that the address is pointing to the right type.
4239   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4240   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4241 
4242   // TODO: Generate TBAA information that describes this access as a structure
4243   // member access and not just an access to an object of the field's type. This
4244   // should be similar to what we do in EmitLValueForField().
4245   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4246   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4247   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4248   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4249                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4250 }
4251 
4252 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4253   if (E->isFileScope()) {
4254     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4255     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4256   }
4257   if (E->getType()->isVariablyModifiedType())
4258     // make sure to emit the VLA size.
4259     EmitVariablyModifiedType(E->getType());
4260 
4261   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4262   const Expr *InitExpr = E->getInitializer();
4263   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4264 
4265   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4266                    /*Init*/ true);
4267 
4268   return Result;
4269 }
4270 
4271 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4272   if (!E->isGLValue())
4273     // Initializing an aggregate temporary in C++11: T{...}.
4274     return EmitAggExprToLValue(E);
4275 
4276   // An lvalue initializer list must be initializing a reference.
4277   assert(E->isTransparent() && "non-transparent glvalue init list");
4278   return EmitLValue(E->getInit(0));
4279 }
4280 
4281 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4282 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4283 /// LValue is returned and the current block has been terminated.
4284 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4285                                                     const Expr *Operand) {
4286   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4287     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4288     return None;
4289   }
4290 
4291   return CGF.EmitLValue(Operand);
4292 }
4293 
4294 LValue CodeGenFunction::
4295 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4296   if (!expr->isGLValue()) {
4297     // ?: here should be an aggregate.
4298     assert(hasAggregateEvaluationKind(expr->getType()) &&
4299            "Unexpected conditional operator!");
4300     return EmitAggExprToLValue(expr);
4301   }
4302 
4303   OpaqueValueMapping binding(*this, expr);
4304 
4305   const Expr *condExpr = expr->getCond();
4306   bool CondExprBool;
4307   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4308     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4309     if (!CondExprBool) std::swap(live, dead);
4310 
4311     if (!ContainsLabel(dead)) {
4312       // If the true case is live, we need to track its region.
4313       if (CondExprBool)
4314         incrementProfileCounter(expr);
4315       return EmitLValue(live);
4316     }
4317   }
4318 
4319   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4320   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4321   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4322 
4323   ConditionalEvaluation eval(*this);
4324   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4325 
4326   // Any temporaries created here are conditional.
4327   EmitBlock(lhsBlock);
4328   incrementProfileCounter(expr);
4329   eval.begin(*this);
4330   Optional<LValue> lhs =
4331       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4332   eval.end(*this);
4333 
4334   if (lhs && !lhs->isSimple())
4335     return EmitUnsupportedLValue(expr, "conditional operator");
4336 
4337   lhsBlock = Builder.GetInsertBlock();
4338   if (lhs)
4339     Builder.CreateBr(contBlock);
4340 
4341   // Any temporaries created here are conditional.
4342   EmitBlock(rhsBlock);
4343   eval.begin(*this);
4344   Optional<LValue> rhs =
4345       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4346   eval.end(*this);
4347   if (rhs && !rhs->isSimple())
4348     return EmitUnsupportedLValue(expr, "conditional operator");
4349   rhsBlock = Builder.GetInsertBlock();
4350 
4351   EmitBlock(contBlock);
4352 
4353   if (lhs && rhs) {
4354     llvm::PHINode *phi =
4355         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4356     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4357     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4358     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4359     AlignmentSource alignSource =
4360       std::max(lhs->getBaseInfo().getAlignmentSource(),
4361                rhs->getBaseInfo().getAlignmentSource());
4362     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4363         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4364     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4365                           TBAAInfo);
4366   } else {
4367     assert((lhs || rhs) &&
4368            "both operands of glvalue conditional are throw-expressions?");
4369     return lhs ? *lhs : *rhs;
4370   }
4371 }
4372 
4373 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4374 /// type. If the cast is to a reference, we can have the usual lvalue result,
4375 /// otherwise if a cast is needed by the code generator in an lvalue context,
4376 /// then it must mean that we need the address of an aggregate in order to
4377 /// access one of its members.  This can happen for all the reasons that casts
4378 /// are permitted with aggregate result, including noop aggregate casts, and
4379 /// cast from scalar to union.
4380 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4381   switch (E->getCastKind()) {
4382   case CK_ToVoid:
4383   case CK_BitCast:
4384   case CK_LValueToRValueBitCast:
4385   case CK_ArrayToPointerDecay:
4386   case CK_FunctionToPointerDecay:
4387   case CK_NullToMemberPointer:
4388   case CK_NullToPointer:
4389   case CK_IntegralToPointer:
4390   case CK_PointerToIntegral:
4391   case CK_PointerToBoolean:
4392   case CK_VectorSplat:
4393   case CK_IntegralCast:
4394   case CK_BooleanToSignedIntegral:
4395   case CK_IntegralToBoolean:
4396   case CK_IntegralToFloating:
4397   case CK_FloatingToIntegral:
4398   case CK_FloatingToBoolean:
4399   case CK_FloatingCast:
4400   case CK_FloatingRealToComplex:
4401   case CK_FloatingComplexToReal:
4402   case CK_FloatingComplexToBoolean:
4403   case CK_FloatingComplexCast:
4404   case CK_FloatingComplexToIntegralComplex:
4405   case CK_IntegralRealToComplex:
4406   case CK_IntegralComplexToReal:
4407   case CK_IntegralComplexToBoolean:
4408   case CK_IntegralComplexCast:
4409   case CK_IntegralComplexToFloatingComplex:
4410   case CK_DerivedToBaseMemberPointer:
4411   case CK_BaseToDerivedMemberPointer:
4412   case CK_MemberPointerToBoolean:
4413   case CK_ReinterpretMemberPointer:
4414   case CK_AnyPointerToBlockPointerCast:
4415   case CK_ARCProduceObject:
4416   case CK_ARCConsumeObject:
4417   case CK_ARCReclaimReturnedObject:
4418   case CK_ARCExtendBlockObject:
4419   case CK_CopyAndAutoreleaseBlockObject:
4420   case CK_IntToOCLSampler:
4421   case CK_FixedPointCast:
4422   case CK_FixedPointToBoolean:
4423   case CK_FixedPointToIntegral:
4424   case CK_IntegralToFixedPoint:
4425     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4426 
4427   case CK_Dependent:
4428     llvm_unreachable("dependent cast kind in IR gen!");
4429 
4430   case CK_BuiltinFnToFnPtr:
4431     llvm_unreachable("builtin functions are handled elsewhere");
4432 
4433   // These are never l-values; just use the aggregate emission code.
4434   case CK_NonAtomicToAtomic:
4435   case CK_AtomicToNonAtomic:
4436     return EmitAggExprToLValue(E);
4437 
4438   case CK_Dynamic: {
4439     LValue LV = EmitLValue(E->getSubExpr());
4440     Address V = LV.getAddress(*this);
4441     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4442     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4443   }
4444 
4445   case CK_ConstructorConversion:
4446   case CK_UserDefinedConversion:
4447   case CK_CPointerToObjCPointerCast:
4448   case CK_BlockPointerToObjCPointerCast:
4449   case CK_NoOp:
4450   case CK_LValueToRValue:
4451     return EmitLValue(E->getSubExpr());
4452 
4453   case CK_UncheckedDerivedToBase:
4454   case CK_DerivedToBase: {
4455     const auto *DerivedClassTy =
4456         E->getSubExpr()->getType()->castAs<RecordType>();
4457     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4458 
4459     LValue LV = EmitLValue(E->getSubExpr());
4460     Address This = LV.getAddress(*this);
4461 
4462     // Perform the derived-to-base conversion
4463     Address Base = GetAddressOfBaseClass(
4464         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4465         /*NullCheckValue=*/false, E->getExprLoc());
4466 
4467     // TODO: Support accesses to members of base classes in TBAA. For now, we
4468     // conservatively pretend that the complete object is of the base class
4469     // type.
4470     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4471                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4472   }
4473   case CK_ToUnion:
4474     return EmitAggExprToLValue(E);
4475   case CK_BaseToDerived: {
4476     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4477     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4478 
4479     LValue LV = EmitLValue(E->getSubExpr());
4480 
4481     // Perform the base-to-derived conversion
4482     Address Derived = GetAddressOfDerivedClass(
4483         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4484         /*NullCheckValue=*/false);
4485 
4486     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4487     // performed and the object is not of the derived type.
4488     if (sanitizePerformTypeCheck())
4489       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4490                     Derived.getPointer(), E->getType());
4491 
4492     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4493       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4494                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4495                                 E->getBeginLoc());
4496 
4497     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4498                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4499   }
4500   case CK_LValueBitCast: {
4501     // This must be a reinterpret_cast (or c-style equivalent).
4502     const auto *CE = cast<ExplicitCastExpr>(E);
4503 
4504     CGM.EmitExplicitCastExprType(CE, this);
4505     LValue LV = EmitLValue(E->getSubExpr());
4506     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4507                                       ConvertType(CE->getTypeAsWritten()));
4508 
4509     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4510       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4511                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4512                                 E->getBeginLoc());
4513 
4514     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4515                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4516   }
4517   case CK_AddressSpaceConversion: {
4518     LValue LV = EmitLValue(E->getSubExpr());
4519     QualType DestTy = getContext().getPointerType(E->getType());
4520     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4521         *this, LV.getPointer(*this),
4522         E->getSubExpr()->getType().getAddressSpace(),
4523         E->getType().getAddressSpace(), ConvertType(DestTy));
4524     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4525                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4526   }
4527   case CK_ObjCObjectLValueCast: {
4528     LValue LV = EmitLValue(E->getSubExpr());
4529     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4530                                              ConvertType(E->getType()));
4531     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4532                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4533   }
4534   case CK_ZeroToOCLOpaqueType:
4535     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4536   }
4537 
4538   llvm_unreachable("Unhandled lvalue cast kind?");
4539 }
4540 
4541 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4542   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4543   return getOrCreateOpaqueLValueMapping(e);
4544 }
4545 
4546 LValue
4547 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4548   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4549 
4550   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4551       it = OpaqueLValues.find(e);
4552 
4553   if (it != OpaqueLValues.end())
4554     return it->second;
4555 
4556   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4557   return EmitLValue(e->getSourceExpr());
4558 }
4559 
4560 RValue
4561 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4562   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4563 
4564   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4565       it = OpaqueRValues.find(e);
4566 
4567   if (it != OpaqueRValues.end())
4568     return it->second;
4569 
4570   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4571   return EmitAnyExpr(e->getSourceExpr());
4572 }
4573 
4574 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4575                                            const FieldDecl *FD,
4576                                            SourceLocation Loc) {
4577   QualType FT = FD->getType();
4578   LValue FieldLV = EmitLValueForField(LV, FD);
4579   switch (getEvaluationKind(FT)) {
4580   case TEK_Complex:
4581     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4582   case TEK_Aggregate:
4583     return FieldLV.asAggregateRValue(*this);
4584   case TEK_Scalar:
4585     // This routine is used to load fields one-by-one to perform a copy, so
4586     // don't load reference fields.
4587     if (FD->getType()->isReferenceType())
4588       return RValue::get(FieldLV.getPointer(*this));
4589     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4590     // primitive load.
4591     if (FieldLV.isBitField())
4592       return EmitLoadOfLValue(FieldLV, Loc);
4593     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4594   }
4595   llvm_unreachable("bad evaluation kind");
4596 }
4597 
4598 //===--------------------------------------------------------------------===//
4599 //                             Expression Emission
4600 //===--------------------------------------------------------------------===//
4601 
4602 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4603                                      ReturnValueSlot ReturnValue) {
4604   // Builtins never have block type.
4605   if (E->getCallee()->getType()->isBlockPointerType())
4606     return EmitBlockCallExpr(E, ReturnValue);
4607 
4608   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4609     return EmitCXXMemberCallExpr(CE, ReturnValue);
4610 
4611   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4612     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4613 
4614   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4615     if (const CXXMethodDecl *MD =
4616           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4617       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4618 
4619   CGCallee callee = EmitCallee(E->getCallee());
4620 
4621   if (callee.isBuiltin()) {
4622     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4623                            E, ReturnValue);
4624   }
4625 
4626   if (callee.isPseudoDestructor()) {
4627     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4628   }
4629 
4630   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4631 }
4632 
4633 /// Emit a CallExpr without considering whether it might be a subclass.
4634 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4635                                            ReturnValueSlot ReturnValue) {
4636   CGCallee Callee = EmitCallee(E->getCallee());
4637   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4638 }
4639 
4640 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4641 
4642   if (auto builtinID = FD->getBuiltinID()) {
4643     // Replaceable builtin provide their own implementation of a builtin. Unless
4644     // we are in the builtin implementation itself, don't call the actual
4645     // builtin. If we are in the builtin implementation, avoid trivial infinite
4646     // recursion.
4647     if (!FD->isInlineBuiltinDeclaration() ||
4648         CGF.CurFn->getName() == FD->getName())
4649       return CGCallee::forBuiltin(builtinID, FD);
4650   }
4651 
4652   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4653   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4654 }
4655 
4656 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4657   E = E->IgnoreParens();
4658 
4659   // Look through function-to-pointer decay.
4660   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4661     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4662         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4663       return EmitCallee(ICE->getSubExpr());
4664     }
4665 
4666   // Resolve direct calls.
4667   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4668     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4669       return EmitDirectCallee(*this, FD);
4670     }
4671   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4672     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4673       EmitIgnoredExpr(ME->getBase());
4674       return EmitDirectCallee(*this, FD);
4675     }
4676 
4677   // Look through template substitutions.
4678   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4679     return EmitCallee(NTTP->getReplacement());
4680 
4681   // Treat pseudo-destructor calls differently.
4682   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4683     return CGCallee::forPseudoDestructor(PDE);
4684   }
4685 
4686   // Otherwise, we have an indirect reference.
4687   llvm::Value *calleePtr;
4688   QualType functionType;
4689   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4690     calleePtr = EmitScalarExpr(E);
4691     functionType = ptrType->getPointeeType();
4692   } else {
4693     functionType = E->getType();
4694     calleePtr = EmitLValue(E).getPointer(*this);
4695   }
4696   assert(functionType->isFunctionType());
4697 
4698   GlobalDecl GD;
4699   if (const auto *VD =
4700           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4701     GD = GlobalDecl(VD);
4702 
4703   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4704   CGCallee callee(calleeInfo, calleePtr);
4705   return callee;
4706 }
4707 
4708 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4709   // Comma expressions just emit their LHS then their RHS as an l-value.
4710   if (E->getOpcode() == BO_Comma) {
4711     EmitIgnoredExpr(E->getLHS());
4712     EnsureInsertPoint();
4713     return EmitLValue(E->getRHS());
4714   }
4715 
4716   if (E->getOpcode() == BO_PtrMemD ||
4717       E->getOpcode() == BO_PtrMemI)
4718     return EmitPointerToDataMemberBinaryExpr(E);
4719 
4720   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4721 
4722   // Note that in all of these cases, __block variables need the RHS
4723   // evaluated first just in case the variable gets moved by the RHS.
4724 
4725   switch (getEvaluationKind(E->getType())) {
4726   case TEK_Scalar: {
4727     switch (E->getLHS()->getType().getObjCLifetime()) {
4728     case Qualifiers::OCL_Strong:
4729       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4730 
4731     case Qualifiers::OCL_Autoreleasing:
4732       return EmitARCStoreAutoreleasing(E).first;
4733 
4734     // No reason to do any of these differently.
4735     case Qualifiers::OCL_None:
4736     case Qualifiers::OCL_ExplicitNone:
4737     case Qualifiers::OCL_Weak:
4738       break;
4739     }
4740 
4741     RValue RV = EmitAnyExpr(E->getRHS());
4742     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4743     if (RV.isScalar())
4744       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4745     EmitStoreThroughLValue(RV, LV);
4746     if (getLangOpts().OpenMP)
4747       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4748                                                                 E->getLHS());
4749     return LV;
4750   }
4751 
4752   case TEK_Complex:
4753     return EmitComplexAssignmentLValue(E);
4754 
4755   case TEK_Aggregate:
4756     return EmitAggExprToLValue(E);
4757   }
4758   llvm_unreachable("bad evaluation kind");
4759 }
4760 
4761 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4762   RValue RV = EmitCallExpr(E);
4763 
4764   if (!RV.isScalar())
4765     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4766                           AlignmentSource::Decl);
4767 
4768   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4769          "Can't have a scalar return unless the return type is a "
4770          "reference type!");
4771 
4772   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4773 }
4774 
4775 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4776   // FIXME: This shouldn't require another copy.
4777   return EmitAggExprToLValue(E);
4778 }
4779 
4780 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4781   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4782          && "binding l-value to type which needs a temporary");
4783   AggValueSlot Slot = CreateAggTemp(E->getType());
4784   EmitCXXConstructExpr(E, Slot);
4785   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4786 }
4787 
4788 LValue
4789 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4790   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4791 }
4792 
4793 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4794   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4795                                       ConvertType(E->getType()));
4796 }
4797 
4798 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4799   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4800                         AlignmentSource::Decl);
4801 }
4802 
4803 LValue
4804 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4805   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4806   Slot.setExternallyDestructed();
4807   EmitAggExpr(E->getSubExpr(), Slot);
4808   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4809   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4810 }
4811 
4812 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4813   RValue RV = EmitObjCMessageExpr(E);
4814 
4815   if (!RV.isScalar())
4816     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4817                           AlignmentSource::Decl);
4818 
4819   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4820          "Can't have a scalar return unless the return type is a "
4821          "reference type!");
4822 
4823   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4824 }
4825 
4826 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4827   Address V =
4828     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4829   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4830 }
4831 
4832 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4833                                              const ObjCIvarDecl *Ivar) {
4834   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4835 }
4836 
4837 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4838                                           llvm::Value *BaseValue,
4839                                           const ObjCIvarDecl *Ivar,
4840                                           unsigned CVRQualifiers) {
4841   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4842                                                    Ivar, CVRQualifiers);
4843 }
4844 
4845 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4846   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4847   llvm::Value *BaseValue = nullptr;
4848   const Expr *BaseExpr = E->getBase();
4849   Qualifiers BaseQuals;
4850   QualType ObjectTy;
4851   if (E->isArrow()) {
4852     BaseValue = EmitScalarExpr(BaseExpr);
4853     ObjectTy = BaseExpr->getType()->getPointeeType();
4854     BaseQuals = ObjectTy.getQualifiers();
4855   } else {
4856     LValue BaseLV = EmitLValue(BaseExpr);
4857     BaseValue = BaseLV.getPointer(*this);
4858     ObjectTy = BaseExpr->getType();
4859     BaseQuals = ObjectTy.getQualifiers();
4860   }
4861 
4862   LValue LV =
4863     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4864                       BaseQuals.getCVRQualifiers());
4865   setObjCGCLValueClass(getContext(), E, LV);
4866   return LV;
4867 }
4868 
4869 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4870   // Can only get l-value for message expression returning aggregate type
4871   RValue RV = EmitAnyExprToTemp(E);
4872   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4873                         AlignmentSource::Decl);
4874 }
4875 
4876 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4877                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4878                                  llvm::Value *Chain) {
4879   // Get the actual function type. The callee type will always be a pointer to
4880   // function type or a block pointer type.
4881   assert(CalleeType->isFunctionPointerType() &&
4882          "Call must have function pointer type!");
4883 
4884   const Decl *TargetDecl =
4885       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4886 
4887   CalleeType = getContext().getCanonicalType(CalleeType);
4888 
4889   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4890 
4891   CGCallee Callee = OrigCallee;
4892 
4893   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4894       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4895     if (llvm::Constant *PrefixSig =
4896             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4897       SanitizerScope SanScope(this);
4898       // Remove any (C++17) exception specifications, to allow calling e.g. a
4899       // noexcept function through a non-noexcept pointer.
4900       auto ProtoTy =
4901         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4902       llvm::Constant *FTRTTIConst =
4903           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4904       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4905       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4906           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4907 
4908       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4909 
4910       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4911           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4912       llvm::Value *CalleeSigPtr =
4913           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4914       llvm::Value *CalleeSig =
4915           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4916       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4917 
4918       llvm::BasicBlock *Cont = createBasicBlock("cont");
4919       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4920       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4921 
4922       EmitBlock(TypeCheck);
4923       llvm::Value *CalleeRTTIPtr =
4924           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4925       llvm::Value *CalleeRTTIEncoded =
4926           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4927       llvm::Value *CalleeRTTI =
4928           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4929       llvm::Value *CalleeRTTIMatch =
4930           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4931       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4932                                       EmitCheckTypeDescriptor(CalleeType)};
4933       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4934                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4935                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4936 
4937       Builder.CreateBr(Cont);
4938       EmitBlock(Cont);
4939     }
4940   }
4941 
4942   const auto *FnType = cast<FunctionType>(PointeeType);
4943 
4944   // If we are checking indirect calls and this call is indirect, check that the
4945   // function pointer is a member of the bit set for the function type.
4946   if (SanOpts.has(SanitizerKind::CFIICall) &&
4947       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4948     SanitizerScope SanScope(this);
4949     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4950 
4951     llvm::Metadata *MD;
4952     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4953       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4954     else
4955       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4956 
4957     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4958 
4959     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4960     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4961     llvm::Value *TypeTest = Builder.CreateCall(
4962         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4963 
4964     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4965     llvm::Constant *StaticData[] = {
4966         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4967         EmitCheckSourceLocation(E->getBeginLoc()),
4968         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4969     };
4970     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4971       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4972                            CastedCallee, StaticData);
4973     } else {
4974       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4975                 SanitizerHandler::CFICheckFail, StaticData,
4976                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4977     }
4978   }
4979 
4980   CallArgList Args;
4981   if (Chain)
4982     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4983              CGM.getContext().VoidPtrTy);
4984 
4985   // C++17 requires that we evaluate arguments to a call using assignment syntax
4986   // right-to-left, and that we evaluate arguments to certain other operators
4987   // left-to-right. Note that we allow this to override the order dictated by
4988   // the calling convention on the MS ABI, which means that parameter
4989   // destruction order is not necessarily reverse construction order.
4990   // FIXME: Revisit this based on C++ committee response to unimplementability.
4991   EvaluationOrder Order = EvaluationOrder::Default;
4992   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4993     if (OCE->isAssignmentOp())
4994       Order = EvaluationOrder::ForceRightToLeft;
4995     else {
4996       switch (OCE->getOperator()) {
4997       case OO_LessLess:
4998       case OO_GreaterGreater:
4999       case OO_AmpAmp:
5000       case OO_PipePipe:
5001       case OO_Comma:
5002       case OO_ArrowStar:
5003         Order = EvaluationOrder::ForceLeftToRight;
5004         break;
5005       default:
5006         break;
5007       }
5008     }
5009   }
5010 
5011   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5012                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5013 
5014   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5015       Args, FnType, /*ChainCall=*/Chain);
5016 
5017   // C99 6.5.2.2p6:
5018   //   If the expression that denotes the called function has a type
5019   //   that does not include a prototype, [the default argument
5020   //   promotions are performed]. If the number of arguments does not
5021   //   equal the number of parameters, the behavior is undefined. If
5022   //   the function is defined with a type that includes a prototype,
5023   //   and either the prototype ends with an ellipsis (, ...) or the
5024   //   types of the arguments after promotion are not compatible with
5025   //   the types of the parameters, the behavior is undefined. If the
5026   //   function is defined with a type that does not include a
5027   //   prototype, and the types of the arguments after promotion are
5028   //   not compatible with those of the parameters after promotion,
5029   //   the behavior is undefined [except in some trivial cases].
5030   // That is, in the general case, we should assume that a call
5031   // through an unprototyped function type works like a *non-variadic*
5032   // call.  The way we make this work is to cast to the exact type
5033   // of the promoted arguments.
5034   //
5035   // Chain calls use this same code path to add the invisible chain parameter
5036   // to the function type.
5037   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5038     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5039     CalleeTy = CalleeTy->getPointerTo();
5040 
5041     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5042     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5043     Callee.setFunctionPointer(CalleePtr);
5044   }
5045 
5046   llvm::CallBase *CallOrInvoke = nullptr;
5047   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5048                          E->getExprLoc());
5049 
5050   // Generate function declaration DISuprogram in order to be used
5051   // in debug info about call sites.
5052   if (CGDebugInfo *DI = getDebugInfo()) {
5053     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5054       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5055                                   CalleeDecl);
5056   }
5057 
5058   return Call;
5059 }
5060 
5061 LValue CodeGenFunction::
5062 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5063   Address BaseAddr = Address::invalid();
5064   if (E->getOpcode() == BO_PtrMemI) {
5065     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5066   } else {
5067     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5068   }
5069 
5070   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5071   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5072 
5073   LValueBaseInfo BaseInfo;
5074   TBAAAccessInfo TBAAInfo;
5075   Address MemberAddr =
5076     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5077                                     &TBAAInfo);
5078 
5079   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5080 }
5081 
5082 /// Given the address of a temporary variable, produce an r-value of
5083 /// its type.
5084 RValue CodeGenFunction::convertTempToRValue(Address addr,
5085                                             QualType type,
5086                                             SourceLocation loc) {
5087   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5088   switch (getEvaluationKind(type)) {
5089   case TEK_Complex:
5090     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5091   case TEK_Aggregate:
5092     return lvalue.asAggregateRValue(*this);
5093   case TEK_Scalar:
5094     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5095   }
5096   llvm_unreachable("bad evaluation kind");
5097 }
5098 
5099 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5100   assert(Val->getType()->isFPOrFPVectorTy());
5101   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5102     return;
5103 
5104   llvm::MDBuilder MDHelper(getLLVMContext());
5105   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5106 
5107   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5108 }
5109 
5110 namespace {
5111   struct LValueOrRValue {
5112     LValue LV;
5113     RValue RV;
5114   };
5115 }
5116 
5117 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5118                                            const PseudoObjectExpr *E,
5119                                            bool forLValue,
5120                                            AggValueSlot slot) {
5121   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5122 
5123   // Find the result expression, if any.
5124   const Expr *resultExpr = E->getResultExpr();
5125   LValueOrRValue result;
5126 
5127   for (PseudoObjectExpr::const_semantics_iterator
5128          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5129     const Expr *semantic = *i;
5130 
5131     // If this semantic expression is an opaque value, bind it
5132     // to the result of its source expression.
5133     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5134       // Skip unique OVEs.
5135       if (ov->isUnique()) {
5136         assert(ov != resultExpr &&
5137                "A unique OVE cannot be used as the result expression");
5138         continue;
5139       }
5140 
5141       // If this is the result expression, we may need to evaluate
5142       // directly into the slot.
5143       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5144       OVMA opaqueData;
5145       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5146           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5147         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5148         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5149                                        AlignmentSource::Decl);
5150         opaqueData = OVMA::bind(CGF, ov, LV);
5151         result.RV = slot.asRValue();
5152 
5153       // Otherwise, emit as normal.
5154       } else {
5155         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5156 
5157         // If this is the result, also evaluate the result now.
5158         if (ov == resultExpr) {
5159           if (forLValue)
5160             result.LV = CGF.EmitLValue(ov);
5161           else
5162             result.RV = CGF.EmitAnyExpr(ov, slot);
5163         }
5164       }
5165 
5166       opaques.push_back(opaqueData);
5167 
5168     // Otherwise, if the expression is the result, evaluate it
5169     // and remember the result.
5170     } else if (semantic == resultExpr) {
5171       if (forLValue)
5172         result.LV = CGF.EmitLValue(semantic);
5173       else
5174         result.RV = CGF.EmitAnyExpr(semantic, slot);
5175 
5176     // Otherwise, evaluate the expression in an ignored context.
5177     } else {
5178       CGF.EmitIgnoredExpr(semantic);
5179     }
5180   }
5181 
5182   // Unbind all the opaques now.
5183   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5184     opaques[i].unbind(CGF);
5185 
5186   return result;
5187 }
5188 
5189 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5190                                                AggValueSlot slot) {
5191   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5192 }
5193 
5194 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5195   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5196 }
5197