1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Support/MDBuilder.h"
28 #include "llvm/Target/TargetData.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===--------------------------------------------------------------------===//
33 //                        Miscellaneous Helper Methods
34 //===--------------------------------------------------------------------===//
35 
36 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
37   unsigned addressSpace =
38     cast<llvm::PointerType>(value->getType())->getAddressSpace();
39 
40   llvm::PointerType *destType = Int8PtrTy;
41   if (addressSpace)
42     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
43 
44   if (value->getType() == destType) return value;
45   return Builder.CreateBitCast(value, destType);
46 }
47 
48 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
49 /// block.
50 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
51                                                     const Twine &Name) {
52   if (!Builder.isNamePreserving())
53     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
54   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
55 }
56 
57 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
58                                      llvm::Value *Init) {
59   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
60   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
61   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
62 }
63 
64 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
65                                                 const Twine &Name) {
66   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
67   // FIXME: Should we prefer the preferred type alignment here?
68   CharUnits Align = getContext().getTypeAlignInChars(Ty);
69   Alloc->setAlignment(Align.getQuantity());
70   return Alloc;
71 }
72 
73 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
74                                                  const Twine &Name) {
75   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
76   // FIXME: Should we prefer the preferred type alignment here?
77   CharUnits Align = getContext().getTypeAlignInChars(Ty);
78   Alloc->setAlignment(Align.getQuantity());
79   return Alloc;
80 }
81 
82 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
83 /// expression and compare the result against zero, returning an Int1Ty value.
84 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
85   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
86     llvm::Value *MemPtr = EmitScalarExpr(E);
87     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
88   }
89 
90   QualType BoolTy = getContext().BoolTy;
91   if (!E->getType()->isAnyComplexType())
92     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
93 
94   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
95 }
96 
97 /// EmitIgnoredExpr - Emit code to compute the specified expression,
98 /// ignoring the result.
99 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
100   if (E->isRValue())
101     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
102 
103   // Just emit it as an l-value and drop the result.
104   EmitLValue(E);
105 }
106 
107 /// EmitAnyExpr - Emit code to compute the specified expression which
108 /// can have any type.  The result is returned as an RValue struct.
109 /// If this is an aggregate expression, AggSlot indicates where the
110 /// result should be returned.
111 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
112                                     bool IgnoreResult) {
113   if (!hasAggregateLLVMType(E->getType()))
114     return RValue::get(EmitScalarExpr(E, IgnoreResult));
115   else if (E->getType()->isAnyComplexType())
116     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
117 
118   EmitAggExpr(E, AggSlot, IgnoreResult);
119   return AggSlot.asRValue();
120 }
121 
122 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
123 /// always be accessible even if no aggregate location is provided.
124 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
125   AggValueSlot AggSlot = AggValueSlot::ignored();
126 
127   if (hasAggregateLLVMType(E->getType()) &&
128       !E->getType()->isAnyComplexType())
129     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
130   return EmitAnyExpr(E, AggSlot);
131 }
132 
133 /// EmitAnyExprToMem - Evaluate an expression into a given memory
134 /// location.
135 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
136                                        llvm::Value *Location,
137                                        Qualifiers Quals,
138                                        bool IsInit) {
139   // FIXME: This function should take an LValue as an argument.
140   if (E->getType()->isAnyComplexType()) {
141     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
142   } else if (hasAggregateLLVMType(E->getType())) {
143     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
144     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
145                                          AggValueSlot::IsDestructed_t(IsInit),
146                                          AggValueSlot::DoesNotNeedGCBarriers,
147                                          AggValueSlot::IsAliased_t(!IsInit)));
148   } else {
149     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
150     LValue LV = MakeAddrLValue(Location, E->getType());
151     EmitStoreThroughLValue(RV, LV);
152   }
153 }
154 
155 namespace {
156 /// \brief An adjustment to be made to the temporary created when emitting a
157 /// reference binding, which accesses a particular subobject of that temporary.
158   struct SubobjectAdjustment {
159     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
160 
161     union {
162       struct {
163         const CastExpr *BasePath;
164         const CXXRecordDecl *DerivedClass;
165       } DerivedToBase;
166 
167       FieldDecl *Field;
168     };
169 
170     SubobjectAdjustment(const CastExpr *BasePath,
171                         const CXXRecordDecl *DerivedClass)
172       : Kind(DerivedToBaseAdjustment) {
173       DerivedToBase.BasePath = BasePath;
174       DerivedToBase.DerivedClass = DerivedClass;
175     }
176 
177     SubobjectAdjustment(FieldDecl *Field)
178       : Kind(FieldAdjustment) {
179       this->Field = Field;
180     }
181   };
182 }
183 
184 static llvm::Value *
185 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
186                          const NamedDecl *InitializedDecl) {
187   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
188     if (VD->hasGlobalStorage()) {
189       SmallString<256> Name;
190       llvm::raw_svector_ostream Out(Name);
191       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
192       Out.flush();
193 
194       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
195 
196       // Create the reference temporary.
197       llvm::GlobalValue *RefTemp =
198         new llvm::GlobalVariable(CGF.CGM.getModule(),
199                                  RefTempTy, /*isConstant=*/false,
200                                  llvm::GlobalValue::InternalLinkage,
201                                  llvm::Constant::getNullValue(RefTempTy),
202                                  Name.str());
203       return RefTemp;
204     }
205   }
206 
207   return CGF.CreateMemTemp(Type, "ref.tmp");
208 }
209 
210 static llvm::Value *
211 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
212                             llvm::Value *&ReferenceTemporary,
213                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
214                             QualType &ObjCARCReferenceLifetimeType,
215                             const NamedDecl *InitializedDecl) {
216   // Look through single-element init lists that claim to be lvalues. They're
217   // just syntactic wrappers in this case.
218   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
219     if (ILE->getNumInits() == 1 && ILE->isGLValue())
220       E = ILE->getInit(0);
221   }
222 
223   // Look through expressions for materialized temporaries (for now).
224   if (const MaterializeTemporaryExpr *M
225                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
226     // Objective-C++ ARC:
227     //   If we are binding a reference to a temporary that has ownership, we
228     //   need to perform retain/release operations on the temporary.
229     if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
230         E->getType()->isObjCLifetimeType() &&
231         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
233          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
234       ObjCARCReferenceLifetimeType = E->getType();
235 
236     E = M->GetTemporaryExpr();
237   }
238 
239   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
240     E = DAE->getExpr();
241 
242   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
243     CGF.enterFullExpression(EWC);
244     CodeGenFunction::RunCleanupsScope Scope(CGF);
245 
246     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
247                                        ReferenceTemporary,
248                                        ReferenceTemporaryDtor,
249                                        ObjCARCReferenceLifetimeType,
250                                        InitializedDecl);
251   }
252 
253   RValue RV;
254   if (E->isGLValue()) {
255     // Emit the expression as an lvalue.
256     LValue LV = CGF.EmitLValue(E);
257 
258     if (LV.isSimple())
259       return LV.getAddress();
260 
261     // We have to load the lvalue.
262     RV = CGF.EmitLoadOfLValue(LV);
263   } else {
264     if (!ObjCARCReferenceLifetimeType.isNull()) {
265       ReferenceTemporary = CreateReferenceTemporary(CGF,
266                                                   ObjCARCReferenceLifetimeType,
267                                                     InitializedDecl);
268 
269 
270       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
271                                              ObjCARCReferenceLifetimeType);
272 
273       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
274                          RefTempDst, false);
275 
276       bool ExtendsLifeOfTemporary = false;
277       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
278         if (Var->extendsLifetimeOfTemporary())
279           ExtendsLifeOfTemporary = true;
280       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
281         ExtendsLifeOfTemporary = true;
282       }
283 
284       if (!ExtendsLifeOfTemporary) {
285         // Since the lifetime of this temporary isn't going to be extended,
286         // we need to clean it up ourselves at the end of the full expression.
287         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
288         case Qualifiers::OCL_None:
289         case Qualifiers::OCL_ExplicitNone:
290         case Qualifiers::OCL_Autoreleasing:
291           break;
292 
293         case Qualifiers::OCL_Strong: {
294           assert(!ObjCARCReferenceLifetimeType->isArrayType());
295           CleanupKind cleanupKind = CGF.getARCCleanupKind();
296           CGF.pushDestroy(cleanupKind,
297                           ReferenceTemporary,
298                           ObjCARCReferenceLifetimeType,
299                           CodeGenFunction::destroyARCStrongImprecise,
300                           cleanupKind & EHCleanup);
301           break;
302         }
303 
304         case Qualifiers::OCL_Weak:
305           assert(!ObjCARCReferenceLifetimeType->isArrayType());
306           CGF.pushDestroy(NormalAndEHCleanup,
307                           ReferenceTemporary,
308                           ObjCARCReferenceLifetimeType,
309                           CodeGenFunction::destroyARCWeak,
310                           /*useEHCleanupForArray*/ true);
311           break;
312         }
313 
314         ObjCARCReferenceLifetimeType = QualType();
315       }
316 
317       return ReferenceTemporary;
318     }
319 
320     SmallVector<SubobjectAdjustment, 2> Adjustments;
321     while (true) {
322       E = E->IgnoreParens();
323 
324       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
325         if ((CE->getCastKind() == CK_DerivedToBase ||
326              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
327             E->getType()->isRecordType()) {
328           E = CE->getSubExpr();
329           CXXRecordDecl *Derived
330             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
331           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
332           continue;
333         }
334 
335         if (CE->getCastKind() == CK_NoOp) {
336           E = CE->getSubExpr();
337           continue;
338         }
339       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
340         if (!ME->isArrow() && ME->getBase()->isRValue()) {
341           assert(ME->getBase()->getType()->isRecordType());
342           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
343             E = ME->getBase();
344             Adjustments.push_back(SubobjectAdjustment(Field));
345             continue;
346           }
347         }
348       }
349 
350       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
351         if (opaque->getType()->isRecordType())
352           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
353 
354       // Nothing changed.
355       break;
356     }
357 
358     // Create a reference temporary if necessary.
359     AggValueSlot AggSlot = AggValueSlot::ignored();
360     if (CGF.hasAggregateLLVMType(E->getType()) &&
361         !E->getType()->isAnyComplexType()) {
362       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
363                                                     InitializedDecl);
364       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
365       AggValueSlot::IsDestructed_t isDestructed
366         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
367       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
368                                       Qualifiers(), isDestructed,
369                                       AggValueSlot::DoesNotNeedGCBarriers,
370                                       AggValueSlot::IsNotAliased);
371     }
372 
373     if (InitializedDecl) {
374       // Get the destructor for the reference temporary.
375       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
376         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
377         if (!ClassDecl->hasTrivialDestructor())
378           ReferenceTemporaryDtor = ClassDecl->getDestructor();
379       }
380     }
381 
382     RV = CGF.EmitAnyExpr(E, AggSlot);
383 
384     // Check if need to perform derived-to-base casts and/or field accesses, to
385     // get from the temporary object we created (and, potentially, for which we
386     // extended the lifetime) to the subobject we're binding the reference to.
387     if (!Adjustments.empty()) {
388       llvm::Value *Object = RV.getAggregateAddr();
389       for (unsigned I = Adjustments.size(); I != 0; --I) {
390         SubobjectAdjustment &Adjustment = Adjustments[I-1];
391         switch (Adjustment.Kind) {
392         case SubobjectAdjustment::DerivedToBaseAdjustment:
393           Object =
394               CGF.GetAddressOfBaseClass(Object,
395                                         Adjustment.DerivedToBase.DerivedClass,
396                               Adjustment.DerivedToBase.BasePath->path_begin(),
397                               Adjustment.DerivedToBase.BasePath->path_end(),
398                                         /*NullCheckValue=*/false);
399           break;
400 
401         case SubobjectAdjustment::FieldAdjustment: {
402           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
403           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
404           if (LV.isSimple()) {
405             Object = LV.getAddress();
406             break;
407           }
408 
409           // For non-simple lvalues, we actually have to create a copy of
410           // the object we're binding to.
411           QualType T = Adjustment.Field->getType().getNonReferenceType()
412                                                   .getUnqualifiedType();
413           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
414           LValue TempLV = CGF.MakeAddrLValue(Object,
415                                              Adjustment.Field->getType());
416           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
417           break;
418         }
419 
420         }
421       }
422 
423       return Object;
424     }
425   }
426 
427   if (RV.isAggregate())
428     return RV.getAggregateAddr();
429 
430   // Create a temporary variable that we can bind the reference to.
431   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
432                                                 InitializedDecl);
433 
434 
435   unsigned Alignment =
436     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
437   if (RV.isScalar())
438     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
439                           /*Volatile=*/false, Alignment, E->getType());
440   else
441     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
442                            /*Volatile=*/false);
443   return ReferenceTemporary;
444 }
445 
446 RValue
447 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
448                                             const NamedDecl *InitializedDecl) {
449   llvm::Value *ReferenceTemporary = 0;
450   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
451   QualType ObjCARCReferenceLifetimeType;
452   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
453                                                    ReferenceTemporaryDtor,
454                                                    ObjCARCReferenceLifetimeType,
455                                                    InitializedDecl);
456   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
457     return RValue::get(Value);
458 
459   // Make sure to call the destructor for the reference temporary.
460   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
461   if (VD && VD->hasGlobalStorage()) {
462     if (ReferenceTemporaryDtor) {
463       llvm::Constant *DtorFn =
464         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
465       CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
466                                     cast<llvm::Constant>(ReferenceTemporary));
467     } else {
468       assert(!ObjCARCReferenceLifetimeType.isNull());
469       // Note: We intentionally do not register a global "destructor" to
470       // release the object.
471     }
472 
473     return RValue::get(Value);
474   }
475 
476   if (ReferenceTemporaryDtor)
477     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
478   else {
479     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
480     case Qualifiers::OCL_None:
481       llvm_unreachable(
482                       "Not a reference temporary that needs to be deallocated");
483     case Qualifiers::OCL_ExplicitNone:
484     case Qualifiers::OCL_Autoreleasing:
485       // Nothing to do.
486       break;
487 
488     case Qualifiers::OCL_Strong: {
489       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
490       CleanupKind cleanupKind = getARCCleanupKind();
491       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
492                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
493                   cleanupKind & EHCleanup);
494       break;
495     }
496 
497     case Qualifiers::OCL_Weak: {
498       // __weak objects always get EH cleanups; otherwise, exceptions
499       // could cause really nasty crashes instead of mere leaks.
500       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
501                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
502       break;
503     }
504     }
505   }
506 
507   return RValue::get(Value);
508 }
509 
510 
511 /// getAccessedFieldNo - Given an encoded value and a result number, return the
512 /// input field number being accessed.
513 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
514                                              const llvm::Constant *Elts) {
515   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
516       ->getZExtValue();
517 }
518 
519 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
520   if (!CatchUndefined)
521     return;
522 
523   // This needs to be to the standard address space.
524   Address = Builder.CreateBitCast(Address, Int8PtrTy);
525 
526   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
527 
528   llvm::Value *Min = Builder.getFalse();
529   llvm::Value *C = Builder.CreateCall2(F, Address, Min);
530   llvm::BasicBlock *Cont = createBasicBlock();
531   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
532                                         llvm::ConstantInt::get(IntPtrTy, Size)),
533                        Cont, getTrapBB());
534   EmitBlock(Cont);
535 }
536 
537 
538 CodeGenFunction::ComplexPairTy CodeGenFunction::
539 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
540                          bool isInc, bool isPre) {
541   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
542                                             LV.isVolatileQualified());
543 
544   llvm::Value *NextVal;
545   if (isa<llvm::IntegerType>(InVal.first->getType())) {
546     uint64_t AmountVal = isInc ? 1 : -1;
547     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
548 
549     // Add the inc/dec to the real part.
550     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
551   } else {
552     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
553     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
554     if (!isInc)
555       FVal.changeSign();
556     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
557 
558     // Add the inc/dec to the real part.
559     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
560   }
561 
562   ComplexPairTy IncVal(NextVal, InVal.second);
563 
564   // Store the updated result through the lvalue.
565   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
566 
567   // If this is a postinc, return the value read from memory, otherwise use the
568   // updated value.
569   return isPre ? IncVal : InVal;
570 }
571 
572 
573 //===----------------------------------------------------------------------===//
574 //                         LValue Expression Emission
575 //===----------------------------------------------------------------------===//
576 
577 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
578   if (Ty->isVoidType())
579     return RValue::get(0);
580 
581   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
582     llvm::Type *EltTy = ConvertType(CTy->getElementType());
583     llvm::Value *U = llvm::UndefValue::get(EltTy);
584     return RValue::getComplex(std::make_pair(U, U));
585   }
586 
587   // If this is a use of an undefined aggregate type, the aggregate must have an
588   // identifiable address.  Just because the contents of the value are undefined
589   // doesn't mean that the address can't be taken and compared.
590   if (hasAggregateLLVMType(Ty)) {
591     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
592     return RValue::getAggregate(DestPtr);
593   }
594 
595   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
596 }
597 
598 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
599                                               const char *Name) {
600   ErrorUnsupported(E, Name);
601   return GetUndefRValue(E->getType());
602 }
603 
604 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
605                                               const char *Name) {
606   ErrorUnsupported(E, Name);
607   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
608   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
609 }
610 
611 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
612   LValue LV = EmitLValue(E);
613   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
614     EmitCheck(LV.getAddress(),
615               getContext().getTypeSizeInChars(E->getType()).getQuantity());
616   return LV;
617 }
618 
619 /// EmitLValue - Emit code to compute a designator that specifies the location
620 /// of the expression.
621 ///
622 /// This can return one of two things: a simple address or a bitfield reference.
623 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
624 /// an LLVM pointer type.
625 ///
626 /// If this returns a bitfield reference, nothing about the pointee type of the
627 /// LLVM value is known: For example, it may not be a pointer to an integer.
628 ///
629 /// If this returns a normal address, and if the lvalue's C type is fixed size,
630 /// this method guarantees that the returned pointer type will point to an LLVM
631 /// type of the same size of the lvalue's type.  If the lvalue has a variable
632 /// length type, this is not possible.
633 ///
634 LValue CodeGenFunction::EmitLValue(const Expr *E) {
635   switch (E->getStmtClass()) {
636   default: return EmitUnsupportedLValue(E, "l-value expression");
637 
638   case Expr::ObjCPropertyRefExprClass:
639     llvm_unreachable("cannot emit a property reference directly");
640 
641   case Expr::ObjCSelectorExprClass:
642   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
643   case Expr::ObjCIsaExprClass:
644     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
645   case Expr::BinaryOperatorClass:
646     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
647   case Expr::CompoundAssignOperatorClass:
648     if (!E->getType()->isAnyComplexType())
649       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
650     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
651   case Expr::CallExprClass:
652   case Expr::CXXMemberCallExprClass:
653   case Expr::CXXOperatorCallExprClass:
654   case Expr::UserDefinedLiteralClass:
655     return EmitCallExprLValue(cast<CallExpr>(E));
656   case Expr::VAArgExprClass:
657     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
658   case Expr::DeclRefExprClass:
659     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
660   case Expr::ParenExprClass:
661     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
662   case Expr::GenericSelectionExprClass:
663     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
664   case Expr::PredefinedExprClass:
665     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
666   case Expr::StringLiteralClass:
667     return EmitStringLiteralLValue(cast<StringLiteral>(E));
668   case Expr::ObjCEncodeExprClass:
669     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
670   case Expr::PseudoObjectExprClass:
671     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
672   case Expr::InitListExprClass:
673     return EmitInitListLValue(cast<InitListExpr>(E));
674   case Expr::CXXTemporaryObjectExprClass:
675   case Expr::CXXConstructExprClass:
676     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
677   case Expr::CXXBindTemporaryExprClass:
678     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
679   case Expr::LambdaExprClass:
680     return EmitLambdaLValue(cast<LambdaExpr>(E));
681 
682   case Expr::ExprWithCleanupsClass: {
683     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
684     enterFullExpression(cleanups);
685     RunCleanupsScope Scope(*this);
686     return EmitLValue(cleanups->getSubExpr());
687   }
688 
689   case Expr::CXXScalarValueInitExprClass:
690     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
691   case Expr::CXXDefaultArgExprClass:
692     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
693   case Expr::CXXTypeidExprClass:
694     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
695 
696   case Expr::ObjCMessageExprClass:
697     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
698   case Expr::ObjCIvarRefExprClass:
699     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
700   case Expr::StmtExprClass:
701     return EmitStmtExprLValue(cast<StmtExpr>(E));
702   case Expr::UnaryOperatorClass:
703     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
704   case Expr::ArraySubscriptExprClass:
705     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
706   case Expr::ExtVectorElementExprClass:
707     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
708   case Expr::MemberExprClass:
709     return EmitMemberExpr(cast<MemberExpr>(E));
710   case Expr::CompoundLiteralExprClass:
711     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
712   case Expr::ConditionalOperatorClass:
713     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
714   case Expr::BinaryConditionalOperatorClass:
715     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
716   case Expr::ChooseExprClass:
717     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
718   case Expr::OpaqueValueExprClass:
719     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
720   case Expr::SubstNonTypeTemplateParmExprClass:
721     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
722   case Expr::ImplicitCastExprClass:
723   case Expr::CStyleCastExprClass:
724   case Expr::CXXFunctionalCastExprClass:
725   case Expr::CXXStaticCastExprClass:
726   case Expr::CXXDynamicCastExprClass:
727   case Expr::CXXReinterpretCastExprClass:
728   case Expr::CXXConstCastExprClass:
729   case Expr::ObjCBridgedCastExprClass:
730     return EmitCastLValue(cast<CastExpr>(E));
731 
732   case Expr::MaterializeTemporaryExprClass:
733     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
734   }
735 }
736 
737 /// Given an object of the given canonical type, can we safely copy a
738 /// value out of it based on its initializer?
739 static bool isConstantEmittableObjectType(QualType type) {
740   assert(type.isCanonical());
741   assert(!type->isReferenceType());
742 
743   // Must be const-qualified but non-volatile.
744   Qualifiers qs = type.getLocalQualifiers();
745   if (!qs.hasConst() || qs.hasVolatile()) return false;
746 
747   // Otherwise, all object types satisfy this except C++ classes with
748   // mutable subobjects or non-trivial copy/destroy behavior.
749   if (const RecordType *RT = dyn_cast<RecordType>(type))
750     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
751       if (RD->hasMutableFields() || !RD->isTrivial())
752         return false;
753 
754   return true;
755 }
756 
757 /// Can we constant-emit a load of a reference to a variable of the
758 /// given type?  This is different from predicates like
759 /// Decl::isUsableInConstantExpressions because we do want it to apply
760 /// in situations that don't necessarily satisfy the language's rules
761 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
762 /// to do this with const float variables even if those variables
763 /// aren't marked 'constexpr'.
764 enum ConstantEmissionKind {
765   CEK_None,
766   CEK_AsReferenceOnly,
767   CEK_AsValueOrReference,
768   CEK_AsValueOnly
769 };
770 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
771   type = type.getCanonicalType();
772   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
773     if (isConstantEmittableObjectType(ref->getPointeeType()))
774       return CEK_AsValueOrReference;
775     return CEK_AsReferenceOnly;
776   }
777   if (isConstantEmittableObjectType(type))
778     return CEK_AsValueOnly;
779   return CEK_None;
780 }
781 
782 /// Try to emit a reference to the given value without producing it as
783 /// an l-value.  This is actually more than an optimization: we can't
784 /// produce an l-value for variables that we never actually captured
785 /// in a block or lambda, which means const int variables or constexpr
786 /// literals or similar.
787 CodeGenFunction::ConstantEmission
788 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
789   ValueDecl *value = refExpr->getDecl();
790 
791   // The value needs to be an enum constant or a constant variable.
792   ConstantEmissionKind CEK;
793   if (isa<ParmVarDecl>(value)) {
794     CEK = CEK_None;
795   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
796     CEK = checkVarTypeForConstantEmission(var->getType());
797   } else if (isa<EnumConstantDecl>(value)) {
798     CEK = CEK_AsValueOnly;
799   } else {
800     CEK = CEK_None;
801   }
802   if (CEK == CEK_None) return ConstantEmission();
803 
804   Expr::EvalResult result;
805   bool resultIsReference;
806   QualType resultType;
807 
808   // It's best to evaluate all the way as an r-value if that's permitted.
809   if (CEK != CEK_AsReferenceOnly &&
810       refExpr->EvaluateAsRValue(result, getContext())) {
811     resultIsReference = false;
812     resultType = refExpr->getType();
813 
814   // Otherwise, try to evaluate as an l-value.
815   } else if (CEK != CEK_AsValueOnly &&
816              refExpr->EvaluateAsLValue(result, getContext())) {
817     resultIsReference = true;
818     resultType = value->getType();
819 
820   // Failure.
821   } else {
822     return ConstantEmission();
823   }
824 
825   // In any case, if the initializer has side-effects, abandon ship.
826   if (result.HasSideEffects)
827     return ConstantEmission();
828 
829   // Emit as a constant.
830   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
831 
832   // Make sure we emit a debug reference to the global variable.
833   // This should probably fire even for
834   if (isa<VarDecl>(value)) {
835     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
836       EmitDeclRefExprDbgValue(refExpr, C);
837   } else {
838     assert(isa<EnumConstantDecl>(value));
839     EmitDeclRefExprDbgValue(refExpr, C);
840   }
841 
842   // If we emitted a reference constant, we need to dereference that.
843   if (resultIsReference)
844     return ConstantEmission::forReference(C);
845 
846   return ConstantEmission::forValue(C);
847 }
848 
849 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
850   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
851                           lvalue.getAlignment().getQuantity(),
852                           lvalue.getType(), lvalue.getTBAAInfo());
853 }
854 
855 static bool hasBooleanRepresentation(QualType Ty) {
856   if (Ty->isBooleanType())
857     return true;
858 
859   if (const EnumType *ET = Ty->getAs<EnumType>())
860     return ET->getDecl()->getIntegerType()->isBooleanType();
861 
862   if (const AtomicType *AT = Ty->getAs<AtomicType>())
863     return hasBooleanRepresentation(AT->getValueType());
864 
865   return false;
866 }
867 
868 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
869   const EnumType *ET = Ty->getAs<EnumType>();
870   bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
871                                  CGM.getCodeGenOpts().StrictEnums &&
872                                  !ET->getDecl()->isFixed());
873   bool IsBool = hasBooleanRepresentation(Ty);
874   if (!IsBool && !IsRegularCPlusPlusEnum)
875     return NULL;
876 
877   llvm::APInt Min;
878   llvm::APInt End;
879   if (IsBool) {
880     Min = llvm::APInt(8, 0);
881     End = llvm::APInt(8, 2);
882   } else {
883     const EnumDecl *ED = ET->getDecl();
884     llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
885     unsigned Bitwidth = LTy->getScalarSizeInBits();
886     unsigned NumNegativeBits = ED->getNumNegativeBits();
887     unsigned NumPositiveBits = ED->getNumPositiveBits();
888 
889     if (NumNegativeBits) {
890       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
891       assert(NumBits <= Bitwidth);
892       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
893       Min = -End;
894     } else {
895       assert(NumPositiveBits <= Bitwidth);
896       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
897       Min = llvm::APInt(Bitwidth, 0);
898     }
899   }
900 
901   llvm::MDBuilder MDHelper(getLLVMContext());
902   return MDHelper.createRange(Min, End);
903 }
904 
905 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
906                                               unsigned Alignment, QualType Ty,
907                                               llvm::MDNode *TBAAInfo) {
908   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
909   if (Volatile)
910     Load->setVolatile(true);
911   if (Alignment)
912     Load->setAlignment(Alignment);
913   if (TBAAInfo)
914     CGM.DecorateInstruction(Load, TBAAInfo);
915   // If this is an atomic type, all normal reads must be atomic
916   if (Ty->isAtomicType())
917     Load->setAtomic(llvm::SequentiallyConsistent);
918 
919   if (CGM.getCodeGenOpts().OptimizationLevel > 0)
920     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
921       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
922 
923   return EmitFromMemory(Load, Ty);
924 }
925 
926 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
927   // Bool has a different representation in memory than in registers.
928   if (hasBooleanRepresentation(Ty)) {
929     // This should really always be an i1, but sometimes it's already
930     // an i8, and it's awkward to track those cases down.
931     if (Value->getType()->isIntegerTy(1))
932       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
933     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
934   }
935 
936   return Value;
937 }
938 
939 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
940   // Bool has a different representation in memory than in registers.
941   if (hasBooleanRepresentation(Ty)) {
942     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
943     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
944   }
945 
946   return Value;
947 }
948 
949 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
950                                         bool Volatile, unsigned Alignment,
951                                         QualType Ty,
952                                         llvm::MDNode *TBAAInfo,
953                                         bool isInit) {
954   Value = EmitToMemory(Value, Ty);
955 
956   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
957   if (Alignment)
958     Store->setAlignment(Alignment);
959   if (TBAAInfo)
960     CGM.DecorateInstruction(Store, TBAAInfo);
961   if (!isInit && Ty->isAtomicType())
962     Store->setAtomic(llvm::SequentiallyConsistent);
963 }
964 
965 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
966     bool isInit) {
967   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
968                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
969                     lvalue.getTBAAInfo(), isInit);
970 }
971 
972 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
973 /// method emits the address of the lvalue, then loads the result as an rvalue,
974 /// returning the rvalue.
975 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
976   if (LV.isObjCWeak()) {
977     // load of a __weak object.
978     llvm::Value *AddrWeakObj = LV.getAddress();
979     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
980                                                              AddrWeakObj));
981   }
982   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
983     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
984 
985   if (LV.isSimple()) {
986     assert(!LV.getType()->isFunctionType());
987 
988     // Everything needs a load.
989     return RValue::get(EmitLoadOfScalar(LV));
990   }
991 
992   if (LV.isVectorElt()) {
993     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
994                                               LV.isVolatileQualified());
995     Load->setAlignment(LV.getAlignment().getQuantity());
996     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
997                                                     "vecext"));
998   }
999 
1000   // If this is a reference to a subset of the elements of a vector, either
1001   // shuffle the input or extract/insert them as appropriate.
1002   if (LV.isExtVectorElt())
1003     return EmitLoadOfExtVectorElementLValue(LV);
1004 
1005   assert(LV.isBitField() && "Unknown LValue type!");
1006   return EmitLoadOfBitfieldLValue(LV);
1007 }
1008 
1009 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1010   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1011 
1012   // Get the output type.
1013   llvm::Type *ResLTy = ConvertType(LV.getType());
1014   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1015 
1016   // Compute the result as an OR of all of the individual component accesses.
1017   llvm::Value *Res = 0;
1018   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1019     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1020 
1021     // Get the field pointer.
1022     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1023 
1024     // Only offset by the field index if used, so that incoming values are not
1025     // required to be structures.
1026     if (AI.FieldIndex)
1027       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1028 
1029     // Offset by the byte offset, if used.
1030     if (!AI.FieldByteOffset.isZero()) {
1031       Ptr = EmitCastToVoidPtr(Ptr);
1032       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1033                                        "bf.field.offs");
1034     }
1035 
1036     // Cast to the access type.
1037     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1038                        CGM.getContext().getTargetAddressSpace(LV.getType()));
1039     Ptr = Builder.CreateBitCast(Ptr, PTy);
1040 
1041     // Perform the load.
1042     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1043     if (!AI.AccessAlignment.isZero())
1044       Load->setAlignment(AI.AccessAlignment.getQuantity());
1045 
1046     // Shift out unused low bits and mask out unused high bits.
1047     llvm::Value *Val = Load;
1048     if (AI.FieldBitStart)
1049       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1050     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1051                                                             AI.TargetBitWidth),
1052                             "bf.clear");
1053 
1054     // Extend or truncate to the target size.
1055     if (AI.AccessWidth < ResSizeInBits)
1056       Val = Builder.CreateZExt(Val, ResLTy);
1057     else if (AI.AccessWidth > ResSizeInBits)
1058       Val = Builder.CreateTrunc(Val, ResLTy);
1059 
1060     // Shift into place, and OR into the result.
1061     if (AI.TargetBitOffset)
1062       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1063     Res = Res ? Builder.CreateOr(Res, Val) : Val;
1064   }
1065 
1066   // If the bit-field is signed, perform the sign-extension.
1067   //
1068   // FIXME: This can easily be folded into the load of the high bits, which
1069   // could also eliminate the mask of high bits in some situations.
1070   if (Info.isSigned()) {
1071     unsigned ExtraBits = ResSizeInBits - Info.getSize();
1072     if (ExtraBits)
1073       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1074                                ExtraBits, "bf.val.sext");
1075   }
1076 
1077   return RValue::get(Res);
1078 }
1079 
1080 // If this is a reference to a subset of the elements of a vector, create an
1081 // appropriate shufflevector.
1082 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1083   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1084                                             LV.isVolatileQualified());
1085   Load->setAlignment(LV.getAlignment().getQuantity());
1086   llvm::Value *Vec = Load;
1087 
1088   const llvm::Constant *Elts = LV.getExtVectorElts();
1089 
1090   // If the result of the expression is a non-vector type, we must be extracting
1091   // a single element.  Just codegen as an extractelement.
1092   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1093   if (!ExprVT) {
1094     unsigned InIdx = getAccessedFieldNo(0, Elts);
1095     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1096     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1097   }
1098 
1099   // Always use shuffle vector to try to retain the original program structure
1100   unsigned NumResultElts = ExprVT->getNumElements();
1101 
1102   SmallVector<llvm::Constant*, 4> Mask;
1103   for (unsigned i = 0; i != NumResultElts; ++i)
1104     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1105 
1106   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1107   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1108                                     MaskV);
1109   return RValue::get(Vec);
1110 }
1111 
1112 
1113 
1114 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1115 /// lvalue, where both are guaranteed to the have the same type, and that type
1116 /// is 'Ty'.
1117 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1118   if (!Dst.isSimple()) {
1119     if (Dst.isVectorElt()) {
1120       // Read/modify/write the vector, inserting the new element.
1121       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1122                                                 Dst.isVolatileQualified());
1123       Load->setAlignment(Dst.getAlignment().getQuantity());
1124       llvm::Value *Vec = Load;
1125       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1126                                         Dst.getVectorIdx(), "vecins");
1127       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1128                                                    Dst.isVolatileQualified());
1129       Store->setAlignment(Dst.getAlignment().getQuantity());
1130       return;
1131     }
1132 
1133     // If this is an update of extended vector elements, insert them as
1134     // appropriate.
1135     if (Dst.isExtVectorElt())
1136       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1137 
1138     assert(Dst.isBitField() && "Unknown LValue type");
1139     return EmitStoreThroughBitfieldLValue(Src, Dst);
1140   }
1141 
1142   // There's special magic for assigning into an ARC-qualified l-value.
1143   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1144     switch (Lifetime) {
1145     case Qualifiers::OCL_None:
1146       llvm_unreachable("present but none");
1147 
1148     case Qualifiers::OCL_ExplicitNone:
1149       // nothing special
1150       break;
1151 
1152     case Qualifiers::OCL_Strong:
1153       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1154       return;
1155 
1156     case Qualifiers::OCL_Weak:
1157       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1158       return;
1159 
1160     case Qualifiers::OCL_Autoreleasing:
1161       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1162                                                      Src.getScalarVal()));
1163       // fall into the normal path
1164       break;
1165     }
1166   }
1167 
1168   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1169     // load of a __weak object.
1170     llvm::Value *LvalueDst = Dst.getAddress();
1171     llvm::Value *src = Src.getScalarVal();
1172      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1173     return;
1174   }
1175 
1176   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1177     // load of a __strong object.
1178     llvm::Value *LvalueDst = Dst.getAddress();
1179     llvm::Value *src = Src.getScalarVal();
1180     if (Dst.isObjCIvar()) {
1181       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1182       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1183       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1184       llvm::Value *dst = RHS;
1185       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1186       llvm::Value *LHS =
1187         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1188       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1189       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1190                                               BytesBetween);
1191     } else if (Dst.isGlobalObjCRef()) {
1192       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1193                                                 Dst.isThreadLocalRef());
1194     }
1195     else
1196       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1197     return;
1198   }
1199 
1200   assert(Src.isScalar() && "Can't emit an agg store with this method");
1201   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1202 }
1203 
1204 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1205                                                      llvm::Value **Result) {
1206   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1207 
1208   // Get the output type.
1209   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1210   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1211 
1212   // Get the source value, truncated to the width of the bit-field.
1213   llvm::Value *SrcVal = Src.getScalarVal();
1214 
1215   if (hasBooleanRepresentation(Dst.getType()))
1216     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1217 
1218   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1219                                                                 Info.getSize()),
1220                              "bf.value");
1221 
1222   // Return the new value of the bit-field, if requested.
1223   if (Result) {
1224     // Cast back to the proper type for result.
1225     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1226     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1227                                                    "bf.reload.val");
1228 
1229     // Sign extend if necessary.
1230     if (Info.isSigned()) {
1231       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1232       if (ExtraBits)
1233         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1234                                        ExtraBits, "bf.reload.sext");
1235     }
1236 
1237     *Result = ReloadVal;
1238   }
1239 
1240   // Iterate over the components, writing each piece to memory.
1241   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1242     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1243 
1244     // Get the field pointer.
1245     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1246     unsigned addressSpace =
1247       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1248 
1249     // Only offset by the field index if used, so that incoming values are not
1250     // required to be structures.
1251     if (AI.FieldIndex)
1252       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1253 
1254     // Offset by the byte offset, if used.
1255     if (!AI.FieldByteOffset.isZero()) {
1256       Ptr = EmitCastToVoidPtr(Ptr);
1257       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1258                                        "bf.field.offs");
1259     }
1260 
1261     // Cast to the access type.
1262     llvm::Type *AccessLTy =
1263       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1264 
1265     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1266     Ptr = Builder.CreateBitCast(Ptr, PTy);
1267 
1268     // Extract the piece of the bit-field value to write in this access, limited
1269     // to the values that are part of this access.
1270     llvm::Value *Val = SrcVal;
1271     if (AI.TargetBitOffset)
1272       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1273     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1274                                                             AI.TargetBitWidth));
1275 
1276     // Extend or truncate to the access size.
1277     if (ResSizeInBits < AI.AccessWidth)
1278       Val = Builder.CreateZExt(Val, AccessLTy);
1279     else if (ResSizeInBits > AI.AccessWidth)
1280       Val = Builder.CreateTrunc(Val, AccessLTy);
1281 
1282     // Shift into the position in memory.
1283     if (AI.FieldBitStart)
1284       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1285 
1286     // If necessary, load and OR in bits that are outside of the bit-field.
1287     if (AI.TargetBitWidth != AI.AccessWidth) {
1288       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1289       if (!AI.AccessAlignment.isZero())
1290         Load->setAlignment(AI.AccessAlignment.getQuantity());
1291 
1292       // Compute the mask for zeroing the bits that are part of the bit-field.
1293       llvm::APInt InvMask =
1294         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1295                                  AI.FieldBitStart + AI.TargetBitWidth);
1296 
1297       // Apply the mask and OR in to the value to write.
1298       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1299     }
1300 
1301     // Write the value.
1302     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1303                                                  Dst.isVolatileQualified());
1304     if (!AI.AccessAlignment.isZero())
1305       Store->setAlignment(AI.AccessAlignment.getQuantity());
1306   }
1307 }
1308 
1309 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1310                                                                LValue Dst) {
1311   // This access turns into a read/modify/write of the vector.  Load the input
1312   // value now.
1313   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1314                                             Dst.isVolatileQualified());
1315   Load->setAlignment(Dst.getAlignment().getQuantity());
1316   llvm::Value *Vec = Load;
1317   const llvm::Constant *Elts = Dst.getExtVectorElts();
1318 
1319   llvm::Value *SrcVal = Src.getScalarVal();
1320 
1321   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1322     unsigned NumSrcElts = VTy->getNumElements();
1323     unsigned NumDstElts =
1324        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1325     if (NumDstElts == NumSrcElts) {
1326       // Use shuffle vector is the src and destination are the same number of
1327       // elements and restore the vector mask since it is on the side it will be
1328       // stored.
1329       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1330       for (unsigned i = 0; i != NumSrcElts; ++i)
1331         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1332 
1333       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1334       Vec = Builder.CreateShuffleVector(SrcVal,
1335                                         llvm::UndefValue::get(Vec->getType()),
1336                                         MaskV);
1337     } else if (NumDstElts > NumSrcElts) {
1338       // Extended the source vector to the same length and then shuffle it
1339       // into the destination.
1340       // FIXME: since we're shuffling with undef, can we just use the indices
1341       //        into that?  This could be simpler.
1342       SmallVector<llvm::Constant*, 4> ExtMask;
1343       for (unsigned i = 0; i != NumSrcElts; ++i)
1344         ExtMask.push_back(Builder.getInt32(i));
1345       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1346       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1347       llvm::Value *ExtSrcVal =
1348         Builder.CreateShuffleVector(SrcVal,
1349                                     llvm::UndefValue::get(SrcVal->getType()),
1350                                     ExtMaskV);
1351       // build identity
1352       SmallVector<llvm::Constant*, 4> Mask;
1353       for (unsigned i = 0; i != NumDstElts; ++i)
1354         Mask.push_back(Builder.getInt32(i));
1355 
1356       // modify when what gets shuffled in
1357       for (unsigned i = 0; i != NumSrcElts; ++i)
1358         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1359       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1360       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1361     } else {
1362       // We should never shorten the vector
1363       llvm_unreachable("unexpected shorten vector length");
1364     }
1365   } else {
1366     // If the Src is a scalar (not a vector) it must be updating one element.
1367     unsigned InIdx = getAccessedFieldNo(0, Elts);
1368     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1369     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1370   }
1371 
1372   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1373                                                Dst.isVolatileQualified());
1374   Store->setAlignment(Dst.getAlignment().getQuantity());
1375 }
1376 
1377 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1378 // generating write-barries API. It is currently a global, ivar,
1379 // or neither.
1380 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1381                                  LValue &LV,
1382                                  bool IsMemberAccess=false) {
1383   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1384     return;
1385 
1386   if (isa<ObjCIvarRefExpr>(E)) {
1387     QualType ExpTy = E->getType();
1388     if (IsMemberAccess && ExpTy->isPointerType()) {
1389       // If ivar is a structure pointer, assigning to field of
1390       // this struct follows gcc's behavior and makes it a non-ivar
1391       // writer-barrier conservatively.
1392       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1393       if (ExpTy->isRecordType()) {
1394         LV.setObjCIvar(false);
1395         return;
1396       }
1397     }
1398     LV.setObjCIvar(true);
1399     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1400     LV.setBaseIvarExp(Exp->getBase());
1401     LV.setObjCArray(E->getType()->isArrayType());
1402     return;
1403   }
1404 
1405   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1406     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1407       if (VD->hasGlobalStorage()) {
1408         LV.setGlobalObjCRef(true);
1409         LV.setThreadLocalRef(VD->isThreadSpecified());
1410       }
1411     }
1412     LV.setObjCArray(E->getType()->isArrayType());
1413     return;
1414   }
1415 
1416   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1417     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1418     return;
1419   }
1420 
1421   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1422     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1423     if (LV.isObjCIvar()) {
1424       // If cast is to a structure pointer, follow gcc's behavior and make it
1425       // a non-ivar write-barrier.
1426       QualType ExpTy = E->getType();
1427       if (ExpTy->isPointerType())
1428         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1429       if (ExpTy->isRecordType())
1430         LV.setObjCIvar(false);
1431     }
1432     return;
1433   }
1434 
1435   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1436     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1437     return;
1438   }
1439 
1440   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1441     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1442     return;
1443   }
1444 
1445   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1446     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1447     return;
1448   }
1449 
1450   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1451     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1452     return;
1453   }
1454 
1455   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1456     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1457     if (LV.isObjCIvar() && !LV.isObjCArray())
1458       // Using array syntax to assigning to what an ivar points to is not
1459       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1460       LV.setObjCIvar(false);
1461     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1462       // Using array syntax to assigning to what global points to is not
1463       // same as assigning to the global itself. {id *G;} G[i] = 0;
1464       LV.setGlobalObjCRef(false);
1465     return;
1466   }
1467 
1468   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1469     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1470     // We don't know if member is an 'ivar', but this flag is looked at
1471     // only in the context of LV.isObjCIvar().
1472     LV.setObjCArray(E->getType()->isArrayType());
1473     return;
1474   }
1475 }
1476 
1477 static llvm::Value *
1478 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1479                                 llvm::Value *V, llvm::Type *IRType,
1480                                 StringRef Name = StringRef()) {
1481   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1482   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1483 }
1484 
1485 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1486                                       const Expr *E, const VarDecl *VD) {
1487   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1488          "Var decl must have external storage or be a file var decl!");
1489 
1490   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1491   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1492   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1493   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1494   QualType T = E->getType();
1495   LValue LV;
1496   if (VD->getType()->isReferenceType()) {
1497     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1498     LI->setAlignment(Alignment.getQuantity());
1499     V = LI;
1500     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1501   } else {
1502     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1503   }
1504   setObjCGCLValueClass(CGF.getContext(), E, LV);
1505   return LV;
1506 }
1507 
1508 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1509                                      const Expr *E, const FunctionDecl *FD) {
1510   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1511   if (!FD->hasPrototype()) {
1512     if (const FunctionProtoType *Proto =
1513             FD->getType()->getAs<FunctionProtoType>()) {
1514       // Ugly case: for a K&R-style definition, the type of the definition
1515       // isn't the same as the type of a use.  Correct for this with a
1516       // bitcast.
1517       QualType NoProtoType =
1518           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1519       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1520       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1521     }
1522   }
1523   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1524   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1525 }
1526 
1527 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1528   const NamedDecl *ND = E->getDecl();
1529   CharUnits Alignment = getContext().getDeclAlign(ND);
1530   QualType T = E->getType();
1531 
1532   // FIXME: We should be able to assert this for FunctionDecls as well!
1533   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1534   // those with a valid source location.
1535   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1536           !E->getLocation().isValid()) &&
1537          "Should not use decl without marking it used!");
1538 
1539   if (ND->hasAttr<WeakRefAttr>()) {
1540     const ValueDecl *VD = cast<ValueDecl>(ND);
1541     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1542     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1543   }
1544 
1545   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1546     // Check if this is a global variable.
1547     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1548       return EmitGlobalVarDeclLValue(*this, E, VD);
1549 
1550     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1551 
1552     bool NonGCable = VD->hasLocalStorage() &&
1553                      !VD->getType()->isReferenceType() &&
1554                      !isBlockVariable;
1555 
1556     llvm::Value *V = LocalDeclMap[VD];
1557     if (!V && VD->isStaticLocal())
1558       V = CGM.getStaticLocalDeclAddress(VD);
1559 
1560     // Use special handling for lambdas.
1561     if (!V) {
1562       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1563         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1564         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1565                                                      LambdaTagType);
1566         return EmitLValueForField(LambdaLV, FD);
1567       }
1568 
1569       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1570       CharUnits alignment = getContext().getDeclAlign(VD);
1571       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1572                             E->getType(), alignment);
1573     }
1574 
1575     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1576 
1577     if (isBlockVariable)
1578       V = BuildBlockByrefAddress(V, VD);
1579 
1580     LValue LV;
1581     if (VD->getType()->isReferenceType()) {
1582       llvm::LoadInst *LI = Builder.CreateLoad(V);
1583       LI->setAlignment(Alignment.getQuantity());
1584       V = LI;
1585       LV = MakeNaturalAlignAddrLValue(V, T);
1586     } else {
1587       LV = MakeAddrLValue(V, T, Alignment);
1588     }
1589 
1590     if (NonGCable) {
1591       LV.getQuals().removeObjCGCAttr();
1592       LV.setNonGC(true);
1593     }
1594     setObjCGCLValueClass(getContext(), E, LV);
1595     return LV;
1596   }
1597 
1598   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1599     return EmitFunctionDeclLValue(*this, E, fn);
1600 
1601   llvm_unreachable("Unhandled DeclRefExpr");
1602 }
1603 
1604 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1605   // __extension__ doesn't affect lvalue-ness.
1606   if (E->getOpcode() == UO_Extension)
1607     return EmitLValue(E->getSubExpr());
1608 
1609   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1610   switch (E->getOpcode()) {
1611   default: llvm_unreachable("Unknown unary operator lvalue!");
1612   case UO_Deref: {
1613     QualType T = E->getSubExpr()->getType()->getPointeeType();
1614     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1615 
1616     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1617     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1618 
1619     // We should not generate __weak write barrier on indirect reference
1620     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1621     // But, we continue to generate __strong write barrier on indirect write
1622     // into a pointer to object.
1623     if (getContext().getLangOpts().ObjC1 &&
1624         getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1625         LV.isObjCWeak())
1626       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1627     return LV;
1628   }
1629   case UO_Real:
1630   case UO_Imag: {
1631     LValue LV = EmitLValue(E->getSubExpr());
1632     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1633     llvm::Value *Addr = LV.getAddress();
1634 
1635     // __real is valid on scalars.  This is a faster way of testing that.
1636     // __imag can only produce an rvalue on scalars.
1637     if (E->getOpcode() == UO_Real &&
1638         !cast<llvm::PointerType>(Addr->getType())
1639            ->getElementType()->isStructTy()) {
1640       assert(E->getSubExpr()->getType()->isArithmeticType());
1641       return LV;
1642     }
1643 
1644     assert(E->getSubExpr()->getType()->isAnyComplexType());
1645 
1646     unsigned Idx = E->getOpcode() == UO_Imag;
1647     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1648                                                   Idx, "idx"),
1649                           ExprTy);
1650   }
1651   case UO_PreInc:
1652   case UO_PreDec: {
1653     LValue LV = EmitLValue(E->getSubExpr());
1654     bool isInc = E->getOpcode() == UO_PreInc;
1655 
1656     if (E->getType()->isAnyComplexType())
1657       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1658     else
1659       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1660     return LV;
1661   }
1662   }
1663 }
1664 
1665 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1666   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1667                         E->getType());
1668 }
1669 
1670 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1671   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1672                         E->getType());
1673 }
1674 
1675 
1676 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1677   switch (E->getIdentType()) {
1678   default:
1679     return EmitUnsupportedLValue(E, "predefined expression");
1680 
1681   case PredefinedExpr::Func:
1682   case PredefinedExpr::Function:
1683   case PredefinedExpr::PrettyFunction: {
1684     unsigned Type = E->getIdentType();
1685     std::string GlobalVarName;
1686 
1687     switch (Type) {
1688     default: llvm_unreachable("Invalid type");
1689     case PredefinedExpr::Func:
1690       GlobalVarName = "__func__.";
1691       break;
1692     case PredefinedExpr::Function:
1693       GlobalVarName = "__FUNCTION__.";
1694       break;
1695     case PredefinedExpr::PrettyFunction:
1696       GlobalVarName = "__PRETTY_FUNCTION__.";
1697       break;
1698     }
1699 
1700     StringRef FnName = CurFn->getName();
1701     if (FnName.startswith("\01"))
1702       FnName = FnName.substr(1);
1703     GlobalVarName += FnName;
1704 
1705     const Decl *CurDecl = CurCodeDecl;
1706     if (CurDecl == 0)
1707       CurDecl = getContext().getTranslationUnitDecl();
1708 
1709     std::string FunctionName =
1710         (isa<BlockDecl>(CurDecl)
1711          ? FnName.str()
1712          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1713 
1714     llvm::Constant *C =
1715       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1716     return MakeAddrLValue(C, E->getType());
1717   }
1718   }
1719 }
1720 
1721 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1722   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1723 
1724   // If we are not optimzing, don't collapse all calls to trap in the function
1725   // to the same call, that way, in the debugger they can see which operation
1726   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1727   // to just one per function to save on codesize.
1728   if (GCO.OptimizationLevel && TrapBB)
1729     return TrapBB;
1730 
1731   llvm::BasicBlock *Cont = 0;
1732   if (HaveInsertPoint()) {
1733     Cont = createBasicBlock("cont");
1734     EmitBranch(Cont);
1735   }
1736   TrapBB = createBasicBlock("trap");
1737   EmitBlock(TrapBB);
1738 
1739   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1740   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1741   TrapCall->setDoesNotReturn();
1742   TrapCall->setDoesNotThrow();
1743   Builder.CreateUnreachable();
1744 
1745   if (Cont)
1746     EmitBlock(Cont);
1747   return TrapBB;
1748 }
1749 
1750 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1751 /// array to pointer, return the array subexpression.
1752 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1753   // If this isn't just an array->pointer decay, bail out.
1754   const CastExpr *CE = dyn_cast<CastExpr>(E);
1755   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1756     return 0;
1757 
1758   // If this is a decay from variable width array, bail out.
1759   const Expr *SubExpr = CE->getSubExpr();
1760   if (SubExpr->getType()->isVariableArrayType())
1761     return 0;
1762 
1763   return SubExpr;
1764 }
1765 
1766 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1767   // The index must always be an integer, which is not an aggregate.  Emit it.
1768   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1769   QualType IdxTy  = E->getIdx()->getType();
1770   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1771 
1772   // If the base is a vector type, then we are forming a vector element lvalue
1773   // with this subscript.
1774   if (E->getBase()->getType()->isVectorType()) {
1775     // Emit the vector as an lvalue to get its address.
1776     LValue LHS = EmitLValue(E->getBase());
1777     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1778     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1779     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1780                                  E->getBase()->getType(), LHS.getAlignment());
1781   }
1782 
1783   // Extend or truncate the index type to 32 or 64-bits.
1784   if (Idx->getType() != IntPtrTy)
1785     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1786 
1787   // We know that the pointer points to a type of the correct size, unless the
1788   // size is a VLA or Objective-C interface.
1789   llvm::Value *Address = 0;
1790   CharUnits ArrayAlignment;
1791   if (const VariableArrayType *vla =
1792         getContext().getAsVariableArrayType(E->getType())) {
1793     // The base must be a pointer, which is not an aggregate.  Emit
1794     // it.  It needs to be emitted first in case it's what captures
1795     // the VLA bounds.
1796     Address = EmitScalarExpr(E->getBase());
1797 
1798     // The element count here is the total number of non-VLA elements.
1799     llvm::Value *numElements = getVLASize(vla).first;
1800 
1801     // Effectively, the multiply by the VLA size is part of the GEP.
1802     // GEP indexes are signed, and scaling an index isn't permitted to
1803     // signed-overflow, so we use the same semantics for our explicit
1804     // multiply.  We suppress this if overflow is not undefined behavior.
1805     if (getLangOpts().isSignedOverflowDefined()) {
1806       Idx = Builder.CreateMul(Idx, numElements);
1807       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1808     } else {
1809       Idx = Builder.CreateNSWMul(Idx, numElements);
1810       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1811     }
1812   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1813     // Indexing over an interface, as in "NSString *P; P[4];"
1814     llvm::Value *InterfaceSize =
1815       llvm::ConstantInt::get(Idx->getType(),
1816           getContext().getTypeSizeInChars(OIT).getQuantity());
1817 
1818     Idx = Builder.CreateMul(Idx, InterfaceSize);
1819 
1820     // The base must be a pointer, which is not an aggregate.  Emit it.
1821     llvm::Value *Base = EmitScalarExpr(E->getBase());
1822     Address = EmitCastToVoidPtr(Base);
1823     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1824     Address = Builder.CreateBitCast(Address, Base->getType());
1825   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1826     // If this is A[i] where A is an array, the frontend will have decayed the
1827     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1828     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1829     // "gep x, i" here.  Emit one "gep A, 0, i".
1830     assert(Array->getType()->isArrayType() &&
1831            "Array to pointer decay must have array source type!");
1832     LValue ArrayLV = EmitLValue(Array);
1833     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1834     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1835     llvm::Value *Args[] = { Zero, Idx };
1836 
1837     // Propagate the alignment from the array itself to the result.
1838     ArrayAlignment = ArrayLV.getAlignment();
1839 
1840     if (getContext().getLangOpts().isSignedOverflowDefined())
1841       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1842     else
1843       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1844   } else {
1845     // The base must be a pointer, which is not an aggregate.  Emit it.
1846     llvm::Value *Base = EmitScalarExpr(E->getBase());
1847     if (getContext().getLangOpts().isSignedOverflowDefined())
1848       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1849     else
1850       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1851   }
1852 
1853   QualType T = E->getBase()->getType()->getPointeeType();
1854   assert(!T.isNull() &&
1855          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1856 
1857 
1858   // Limit the alignment to that of the result type.
1859   LValue LV;
1860   if (!ArrayAlignment.isZero()) {
1861     CharUnits Align = getContext().getTypeAlignInChars(T);
1862     ArrayAlignment = std::min(Align, ArrayAlignment);
1863     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1864   } else {
1865     LV = MakeNaturalAlignAddrLValue(Address, T);
1866   }
1867 
1868   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1869 
1870   if (getContext().getLangOpts().ObjC1 &&
1871       getContext().getLangOpts().getGC() != LangOptions::NonGC) {
1872     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1873     setObjCGCLValueClass(getContext(), E, LV);
1874   }
1875   return LV;
1876 }
1877 
1878 static
1879 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1880                                        SmallVector<unsigned, 4> &Elts) {
1881   SmallVector<llvm::Constant*, 4> CElts;
1882   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1883     CElts.push_back(Builder.getInt32(Elts[i]));
1884 
1885   return llvm::ConstantVector::get(CElts);
1886 }
1887 
1888 LValue CodeGenFunction::
1889 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1890   // Emit the base vector as an l-value.
1891   LValue Base;
1892 
1893   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1894   if (E->isArrow()) {
1895     // If it is a pointer to a vector, emit the address and form an lvalue with
1896     // it.
1897     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1898     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1899     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1900     Base.getQuals().removeObjCGCAttr();
1901   } else if (E->getBase()->isGLValue()) {
1902     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1903     // emit the base as an lvalue.
1904     assert(E->getBase()->getType()->isVectorType());
1905     Base = EmitLValue(E->getBase());
1906   } else {
1907     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1908     assert(E->getBase()->getType()->isVectorType() &&
1909            "Result must be a vector");
1910     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1911 
1912     // Store the vector to memory (because LValue wants an address).
1913     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1914     Builder.CreateStore(Vec, VecMem);
1915     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1916   }
1917 
1918   QualType type =
1919     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1920 
1921   // Encode the element access list into a vector of unsigned indices.
1922   SmallVector<unsigned, 4> Indices;
1923   E->getEncodedElementAccess(Indices);
1924 
1925   if (Base.isSimple()) {
1926     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1927     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
1928                                     Base.getAlignment());
1929   }
1930   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1931 
1932   llvm::Constant *BaseElts = Base.getExtVectorElts();
1933   SmallVector<llvm::Constant *, 4> CElts;
1934 
1935   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1936     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1937   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1938   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
1939                                   Base.getAlignment());
1940 }
1941 
1942 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1943   Expr *BaseExpr = E->getBase();
1944 
1945   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1946   LValue BaseLV;
1947   if (E->isArrow())
1948     BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr),
1949                                         BaseExpr->getType()->getPointeeType());
1950   else
1951     BaseLV = EmitLValue(BaseExpr);
1952 
1953   NamedDecl *ND = E->getMemberDecl();
1954   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1955     LValue LV = EmitLValueForField(BaseLV, Field);
1956     setObjCGCLValueClass(getContext(), E, LV);
1957     return LV;
1958   }
1959 
1960   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1961     return EmitGlobalVarDeclLValue(*this, E, VD);
1962 
1963   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1964     return EmitFunctionDeclLValue(*this, E, FD);
1965 
1966   llvm_unreachable("Unhandled member declaration!");
1967 }
1968 
1969 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1970                                               const FieldDecl *Field,
1971                                               unsigned CVRQualifiers) {
1972   const CGRecordLayout &RL =
1973     CGM.getTypes().getCGRecordLayout(Field->getParent());
1974   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1975   return LValue::MakeBitfield(BaseValue, Info,
1976                           Field->getType().withCVRQualifiers(CVRQualifiers));
1977 }
1978 
1979 /// EmitLValueForAnonRecordField - Given that the field is a member of
1980 /// an anonymous struct or union buried inside a record, and given
1981 /// that the base value is a pointer to the enclosing record, derive
1982 /// an lvalue for the ultimate field.
1983 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1984                                              const IndirectFieldDecl *Field,
1985                                                      unsigned CVRQualifiers) {
1986   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1987     IEnd = Field->chain_end();
1988   while (true) {
1989     QualType RecordTy =
1990         getContext().getTypeDeclType(cast<FieldDecl>(*I)->getParent());
1991     LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy),
1992                                    cast<FieldDecl>(*I));
1993     if (++I == IEnd) return LV;
1994 
1995     assert(LV.isSimple());
1996     BaseValue = LV.getAddress();
1997     CVRQualifiers |= LV.getVRQualifiers();
1998   }
1999 }
2000 
2001 LValue CodeGenFunction::EmitLValueForField(LValue base,
2002                                            const FieldDecl *field) {
2003   if (field->isBitField())
2004     return EmitLValueForBitfield(base.getAddress(), field,
2005                                  base.getVRQualifiers());
2006 
2007   const RecordDecl *rec = field->getParent();
2008   QualType type = field->getType();
2009   CharUnits alignment = getContext().getDeclAlign(field);
2010 
2011   // FIXME: It should be impossible to have an LValue without alignment for a
2012   // complete type.
2013   if (!base.getAlignment().isZero())
2014     alignment = std::min(alignment, base.getAlignment());
2015 
2016   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2017 
2018   llvm::Value *addr = base.getAddress();
2019   unsigned cvr = base.getVRQualifiers();
2020   if (rec->isUnion()) {
2021     // For unions, there is no pointer adjustment.
2022     assert(!type->isReferenceType() && "union has reference member");
2023   } else {
2024     // For structs, we GEP to the field that the record layout suggests.
2025     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2026     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2027 
2028     // If this is a reference field, load the reference right now.
2029     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2030       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2031       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2032       load->setAlignment(alignment.getQuantity());
2033 
2034       if (CGM.shouldUseTBAA()) {
2035         llvm::MDNode *tbaa;
2036         if (mayAlias)
2037           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2038         else
2039           tbaa = CGM.getTBAAInfo(type);
2040         CGM.DecorateInstruction(load, tbaa);
2041       }
2042 
2043       addr = load;
2044       mayAlias = false;
2045       type = refType->getPointeeType();
2046       if (type->isIncompleteType())
2047         alignment = CharUnits();
2048       else
2049         alignment = getContext().getTypeAlignInChars(type);
2050       cvr = 0; // qualifiers don't recursively apply to referencee
2051     }
2052   }
2053 
2054   // Make sure that the address is pointing to the right type.  This is critical
2055   // for both unions and structs.  A union needs a bitcast, a struct element
2056   // will need a bitcast if the LLVM type laid out doesn't match the desired
2057   // type.
2058   addr = EmitBitCastOfLValueToProperType(*this, addr,
2059                                          CGM.getTypes().ConvertTypeForMem(type),
2060                                          field->getName());
2061 
2062   if (field->hasAttr<AnnotateAttr>())
2063     addr = EmitFieldAnnotations(field, addr);
2064 
2065   LValue LV = MakeAddrLValue(addr, type, alignment);
2066   LV.getQuals().addCVRQualifiers(cvr);
2067 
2068   // __weak attribute on a field is ignored.
2069   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2070     LV.getQuals().removeObjCGCAttr();
2071 
2072   // Fields of may_alias structs act like 'char' for TBAA purposes.
2073   // FIXME: this should get propagated down through anonymous structs
2074   // and unions.
2075   if (mayAlias && LV.getTBAAInfo())
2076     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2077 
2078   return LV;
2079 }
2080 
2081 LValue
2082 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2083                                                   const FieldDecl *Field) {
2084   QualType FieldType = Field->getType();
2085 
2086   if (!FieldType->isReferenceType())
2087     return EmitLValueForField(Base, Field);
2088 
2089   const CGRecordLayout &RL =
2090     CGM.getTypes().getCGRecordLayout(Field->getParent());
2091   unsigned idx = RL.getLLVMFieldNo(Field);
2092   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2093   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2094 
2095   // Make sure that the address is pointing to the right type.  This is critical
2096   // for both unions and structs.  A union needs a bitcast, a struct element
2097   // will need a bitcast if the LLVM type laid out doesn't match the desired
2098   // type.
2099   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2100   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2101 
2102   CharUnits Alignment = getContext().getDeclAlign(Field);
2103 
2104   // FIXME: It should be impossible to have an LValue without alignment for a
2105   // complete type.
2106   if (!Base.getAlignment().isZero())
2107     Alignment = std::min(Alignment, Base.getAlignment());
2108 
2109   return MakeAddrLValue(V, FieldType, Alignment);
2110 }
2111 
2112 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2113   if (E->isFileScope()) {
2114     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2115     return MakeAddrLValue(GlobalPtr, E->getType());
2116   }
2117 
2118   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2119   const Expr *InitExpr = E->getInitializer();
2120   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2121 
2122   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2123                    /*Init*/ true);
2124 
2125   return Result;
2126 }
2127 
2128 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2129   if (!E->isGLValue())
2130     // Initializing an aggregate temporary in C++11: T{...}.
2131     return EmitAggExprToLValue(E);
2132 
2133   // An lvalue initializer list must be initializing a reference.
2134   assert(E->getNumInits() == 1 && "reference init with multiple values");
2135   return EmitLValue(E->getInit(0));
2136 }
2137 
2138 LValue CodeGenFunction::
2139 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2140   if (!expr->isGLValue()) {
2141     // ?: here should be an aggregate.
2142     assert((hasAggregateLLVMType(expr->getType()) &&
2143             !expr->getType()->isAnyComplexType()) &&
2144            "Unexpected conditional operator!");
2145     return EmitAggExprToLValue(expr);
2146   }
2147 
2148   OpaqueValueMapping binding(*this, expr);
2149 
2150   const Expr *condExpr = expr->getCond();
2151   bool CondExprBool;
2152   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2153     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2154     if (!CondExprBool) std::swap(live, dead);
2155 
2156     if (!ContainsLabel(dead))
2157       return EmitLValue(live);
2158   }
2159 
2160   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2161   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2162   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2163 
2164   ConditionalEvaluation eval(*this);
2165   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2166 
2167   // Any temporaries created here are conditional.
2168   EmitBlock(lhsBlock);
2169   eval.begin(*this);
2170   LValue lhs = EmitLValue(expr->getTrueExpr());
2171   eval.end(*this);
2172 
2173   if (!lhs.isSimple())
2174     return EmitUnsupportedLValue(expr, "conditional operator");
2175 
2176   lhsBlock = Builder.GetInsertBlock();
2177   Builder.CreateBr(contBlock);
2178 
2179   // Any temporaries created here are conditional.
2180   EmitBlock(rhsBlock);
2181   eval.begin(*this);
2182   LValue rhs = EmitLValue(expr->getFalseExpr());
2183   eval.end(*this);
2184   if (!rhs.isSimple())
2185     return EmitUnsupportedLValue(expr, "conditional operator");
2186   rhsBlock = Builder.GetInsertBlock();
2187 
2188   EmitBlock(contBlock);
2189 
2190   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2191                                          "cond-lvalue");
2192   phi->addIncoming(lhs.getAddress(), lhsBlock);
2193   phi->addIncoming(rhs.getAddress(), rhsBlock);
2194   return MakeAddrLValue(phi, expr->getType());
2195 }
2196 
2197 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2198 /// type. If the cast is to a reference, we can have the usual lvalue result,
2199 /// otherwise if a cast is needed by the code generator in an lvalue context,
2200 /// then it must mean that we need the address of an aggregate in order to
2201 /// access one of its members.  This can happen for all the reasons that casts
2202 /// are permitted with aggregate result, including noop aggregate casts, and
2203 /// cast from scalar to union.
2204 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2205   switch (E->getCastKind()) {
2206   case CK_ToVoid:
2207     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2208 
2209   case CK_Dependent:
2210     llvm_unreachable("dependent cast kind in IR gen!");
2211 
2212   // These two casts are currently treated as no-ops, although they could
2213   // potentially be real operations depending on the target's ABI.
2214   case CK_NonAtomicToAtomic:
2215   case CK_AtomicToNonAtomic:
2216 
2217   case CK_NoOp:
2218   case CK_LValueToRValue:
2219     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2220         || E->getType()->isRecordType())
2221       return EmitLValue(E->getSubExpr());
2222     // Fall through to synthesize a temporary.
2223 
2224   case CK_BitCast:
2225   case CK_ArrayToPointerDecay:
2226   case CK_FunctionToPointerDecay:
2227   case CK_NullToMemberPointer:
2228   case CK_NullToPointer:
2229   case CK_IntegralToPointer:
2230   case CK_PointerToIntegral:
2231   case CK_PointerToBoolean:
2232   case CK_VectorSplat:
2233   case CK_IntegralCast:
2234   case CK_IntegralToBoolean:
2235   case CK_IntegralToFloating:
2236   case CK_FloatingToIntegral:
2237   case CK_FloatingToBoolean:
2238   case CK_FloatingCast:
2239   case CK_FloatingRealToComplex:
2240   case CK_FloatingComplexToReal:
2241   case CK_FloatingComplexToBoolean:
2242   case CK_FloatingComplexCast:
2243   case CK_FloatingComplexToIntegralComplex:
2244   case CK_IntegralRealToComplex:
2245   case CK_IntegralComplexToReal:
2246   case CK_IntegralComplexToBoolean:
2247   case CK_IntegralComplexCast:
2248   case CK_IntegralComplexToFloatingComplex:
2249   case CK_DerivedToBaseMemberPointer:
2250   case CK_BaseToDerivedMemberPointer:
2251   case CK_MemberPointerToBoolean:
2252   case CK_ReinterpretMemberPointer:
2253   case CK_AnyPointerToBlockPointerCast:
2254   case CK_ARCProduceObject:
2255   case CK_ARCConsumeObject:
2256   case CK_ARCReclaimReturnedObject:
2257   case CK_ARCExtendBlockObject:
2258   case CK_CopyAndAutoreleaseBlockObject: {
2259     // These casts only produce lvalues when we're binding a reference to a
2260     // temporary realized from a (converted) pure rvalue. Emit the expression
2261     // as a value, copy it into a temporary, and return an lvalue referring to
2262     // that temporary.
2263     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2264     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2265     return MakeAddrLValue(V, E->getType());
2266   }
2267 
2268   case CK_Dynamic: {
2269     LValue LV = EmitLValue(E->getSubExpr());
2270     llvm::Value *V = LV.getAddress();
2271     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2272     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2273   }
2274 
2275   case CK_ConstructorConversion:
2276   case CK_UserDefinedConversion:
2277   case CK_CPointerToObjCPointerCast:
2278   case CK_BlockPointerToObjCPointerCast:
2279     return EmitLValue(E->getSubExpr());
2280 
2281   case CK_UncheckedDerivedToBase:
2282   case CK_DerivedToBase: {
2283     const RecordType *DerivedClassTy =
2284       E->getSubExpr()->getType()->getAs<RecordType>();
2285     CXXRecordDecl *DerivedClassDecl =
2286       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2287 
2288     LValue LV = EmitLValue(E->getSubExpr());
2289     llvm::Value *This = LV.getAddress();
2290 
2291     // Perform the derived-to-base conversion
2292     llvm::Value *Base =
2293       GetAddressOfBaseClass(This, DerivedClassDecl,
2294                             E->path_begin(), E->path_end(),
2295                             /*NullCheckValue=*/false);
2296 
2297     return MakeAddrLValue(Base, E->getType());
2298   }
2299   case CK_ToUnion:
2300     return EmitAggExprToLValue(E);
2301   case CK_BaseToDerived: {
2302     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2303     CXXRecordDecl *DerivedClassDecl =
2304       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2305 
2306     LValue LV = EmitLValue(E->getSubExpr());
2307 
2308     // Perform the base-to-derived conversion
2309     llvm::Value *Derived =
2310       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2311                                E->path_begin(), E->path_end(),
2312                                /*NullCheckValue=*/false);
2313 
2314     return MakeAddrLValue(Derived, E->getType());
2315   }
2316   case CK_LValueBitCast: {
2317     // This must be a reinterpret_cast (or c-style equivalent).
2318     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2319 
2320     LValue LV = EmitLValue(E->getSubExpr());
2321     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2322                                            ConvertType(CE->getTypeAsWritten()));
2323     return MakeAddrLValue(V, E->getType());
2324   }
2325   case CK_ObjCObjectLValueCast: {
2326     LValue LV = EmitLValue(E->getSubExpr());
2327     QualType ToType = getContext().getLValueReferenceType(E->getType());
2328     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2329                                            ConvertType(ToType));
2330     return MakeAddrLValue(V, E->getType());
2331   }
2332   }
2333 
2334   llvm_unreachable("Unhandled lvalue cast kind?");
2335 }
2336 
2337 LValue CodeGenFunction::EmitNullInitializationLValue(
2338                                               const CXXScalarValueInitExpr *E) {
2339   QualType Ty = E->getType();
2340   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2341   EmitNullInitialization(LV.getAddress(), Ty);
2342   return LV;
2343 }
2344 
2345 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2346   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2347   return getOpaqueLValueMapping(e);
2348 }
2349 
2350 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2351                                            const MaterializeTemporaryExpr *E) {
2352   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2353   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2354 }
2355 
2356 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2357                                            const FieldDecl *FD) {
2358   QualType FT = FD->getType();
2359   LValue FieldLV = EmitLValueForField(LV, FD);
2360   if (FT->isAnyComplexType())
2361     return RValue::getComplex(
2362         LoadComplexFromAddr(FieldLV.getAddress(),
2363                             FieldLV.isVolatileQualified()));
2364   else if (CodeGenFunction::hasAggregateLLVMType(FT))
2365     return FieldLV.asAggregateRValue();
2366 
2367   return EmitLoadOfLValue(FieldLV);
2368 }
2369 
2370 //===--------------------------------------------------------------------===//
2371 //                             Expression Emission
2372 //===--------------------------------------------------------------------===//
2373 
2374 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2375                                      ReturnValueSlot ReturnValue) {
2376   if (CGDebugInfo *DI = getDebugInfo())
2377     DI->EmitLocation(Builder, E->getLocStart());
2378 
2379   // Builtins never have block type.
2380   if (E->getCallee()->getType()->isBlockPointerType())
2381     return EmitBlockCallExpr(E, ReturnValue);
2382 
2383   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2384     return EmitCXXMemberCallExpr(CE, ReturnValue);
2385 
2386   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2387     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2388 
2389   const Decl *TargetDecl = E->getCalleeDecl();
2390   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2391     if (unsigned builtinID = FD->getBuiltinID())
2392       return EmitBuiltinExpr(FD, builtinID, E);
2393   }
2394 
2395   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2396     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2397       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2398 
2399   if (const CXXPseudoDestructorExpr *PseudoDtor
2400           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2401     QualType DestroyedType = PseudoDtor->getDestroyedType();
2402     if (getContext().getLangOpts().ObjCAutoRefCount &&
2403         DestroyedType->isObjCLifetimeType() &&
2404         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2405          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2406       // Automatic Reference Counting:
2407       //   If the pseudo-expression names a retainable object with weak or
2408       //   strong lifetime, the object shall be released.
2409       Expr *BaseExpr = PseudoDtor->getBase();
2410       llvm::Value *BaseValue = NULL;
2411       Qualifiers BaseQuals;
2412 
2413       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2414       if (PseudoDtor->isArrow()) {
2415         BaseValue = EmitScalarExpr(BaseExpr);
2416         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2417         BaseQuals = PTy->getPointeeType().getQualifiers();
2418       } else {
2419         LValue BaseLV = EmitLValue(BaseExpr);
2420         BaseValue = BaseLV.getAddress();
2421         QualType BaseTy = BaseExpr->getType();
2422         BaseQuals = BaseTy.getQualifiers();
2423       }
2424 
2425       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2426       case Qualifiers::OCL_None:
2427       case Qualifiers::OCL_ExplicitNone:
2428       case Qualifiers::OCL_Autoreleasing:
2429         break;
2430 
2431       case Qualifiers::OCL_Strong:
2432         EmitARCRelease(Builder.CreateLoad(BaseValue,
2433                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2434                        /*precise*/ true);
2435         break;
2436 
2437       case Qualifiers::OCL_Weak:
2438         EmitARCDestroyWeak(BaseValue);
2439         break;
2440       }
2441     } else {
2442       // C++ [expr.pseudo]p1:
2443       //   The result shall only be used as the operand for the function call
2444       //   operator (), and the result of such a call has type void. The only
2445       //   effect is the evaluation of the postfix-expression before the dot or
2446       //   arrow.
2447       EmitScalarExpr(E->getCallee());
2448     }
2449 
2450     return RValue::get(0);
2451   }
2452 
2453   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2454   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2455                   E->arg_begin(), E->arg_end(), TargetDecl);
2456 }
2457 
2458 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2459   // Comma expressions just emit their LHS then their RHS as an l-value.
2460   if (E->getOpcode() == BO_Comma) {
2461     EmitIgnoredExpr(E->getLHS());
2462     EnsureInsertPoint();
2463     return EmitLValue(E->getRHS());
2464   }
2465 
2466   if (E->getOpcode() == BO_PtrMemD ||
2467       E->getOpcode() == BO_PtrMemI)
2468     return EmitPointerToDataMemberBinaryExpr(E);
2469 
2470   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2471 
2472   // Note that in all of these cases, __block variables need the RHS
2473   // evaluated first just in case the variable gets moved by the RHS.
2474 
2475   if (!hasAggregateLLVMType(E->getType())) {
2476     switch (E->getLHS()->getType().getObjCLifetime()) {
2477     case Qualifiers::OCL_Strong:
2478       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2479 
2480     case Qualifiers::OCL_Autoreleasing:
2481       return EmitARCStoreAutoreleasing(E).first;
2482 
2483     // No reason to do any of these differently.
2484     case Qualifiers::OCL_None:
2485     case Qualifiers::OCL_ExplicitNone:
2486     case Qualifiers::OCL_Weak:
2487       break;
2488     }
2489 
2490     RValue RV = EmitAnyExpr(E->getRHS());
2491     LValue LV = EmitLValue(E->getLHS());
2492     EmitStoreThroughLValue(RV, LV);
2493     return LV;
2494   }
2495 
2496   if (E->getType()->isAnyComplexType())
2497     return EmitComplexAssignmentLValue(E);
2498 
2499   return EmitAggExprToLValue(E);
2500 }
2501 
2502 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2503   RValue RV = EmitCallExpr(E);
2504 
2505   if (!RV.isScalar())
2506     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2507 
2508   assert(E->getCallReturnType()->isReferenceType() &&
2509          "Can't have a scalar return unless the return type is a "
2510          "reference type!");
2511 
2512   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2513 }
2514 
2515 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2516   // FIXME: This shouldn't require another copy.
2517   return EmitAggExprToLValue(E);
2518 }
2519 
2520 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2521   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2522          && "binding l-value to type which needs a temporary");
2523   AggValueSlot Slot = CreateAggTemp(E->getType());
2524   EmitCXXConstructExpr(E, Slot);
2525   return MakeAddrLValue(Slot.getAddr(), E->getType());
2526 }
2527 
2528 LValue
2529 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2530   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2531 }
2532 
2533 LValue
2534 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2535   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2536   Slot.setExternallyDestructed();
2537   EmitAggExpr(E->getSubExpr(), Slot);
2538   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2539   return MakeAddrLValue(Slot.getAddr(), E->getType());
2540 }
2541 
2542 LValue
2543 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2544   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2545   EmitLambdaExpr(E, Slot);
2546   return MakeAddrLValue(Slot.getAddr(), E->getType());
2547 }
2548 
2549 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2550   RValue RV = EmitObjCMessageExpr(E);
2551 
2552   if (!RV.isScalar())
2553     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2554 
2555   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2556          "Can't have a scalar return unless the return type is a "
2557          "reference type!");
2558 
2559   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2560 }
2561 
2562 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2563   llvm::Value *V =
2564     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2565   return MakeAddrLValue(V, E->getType());
2566 }
2567 
2568 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2569                                              const ObjCIvarDecl *Ivar) {
2570   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2571 }
2572 
2573 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2574                                           llvm::Value *BaseValue,
2575                                           const ObjCIvarDecl *Ivar,
2576                                           unsigned CVRQualifiers) {
2577   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2578                                                    Ivar, CVRQualifiers);
2579 }
2580 
2581 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2582   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2583   llvm::Value *BaseValue = 0;
2584   const Expr *BaseExpr = E->getBase();
2585   Qualifiers BaseQuals;
2586   QualType ObjectTy;
2587   if (E->isArrow()) {
2588     BaseValue = EmitScalarExpr(BaseExpr);
2589     ObjectTy = BaseExpr->getType()->getPointeeType();
2590     BaseQuals = ObjectTy.getQualifiers();
2591   } else {
2592     LValue BaseLV = EmitLValue(BaseExpr);
2593     // FIXME: this isn't right for bitfields.
2594     BaseValue = BaseLV.getAddress();
2595     ObjectTy = BaseExpr->getType();
2596     BaseQuals = ObjectTy.getQualifiers();
2597   }
2598 
2599   LValue LV =
2600     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2601                       BaseQuals.getCVRQualifiers());
2602   setObjCGCLValueClass(getContext(), E, LV);
2603   return LV;
2604 }
2605 
2606 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2607   // Can only get l-value for message expression returning aggregate type
2608   RValue RV = EmitAnyExprToTemp(E);
2609   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2610 }
2611 
2612 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2613                                  ReturnValueSlot ReturnValue,
2614                                  CallExpr::const_arg_iterator ArgBeg,
2615                                  CallExpr::const_arg_iterator ArgEnd,
2616                                  const Decl *TargetDecl) {
2617   // Get the actual function type. The callee type will always be a pointer to
2618   // function type or a block pointer type.
2619   assert(CalleeType->isFunctionPointerType() &&
2620          "Call must have function pointer type!");
2621 
2622   CalleeType = getContext().getCanonicalType(CalleeType);
2623 
2624   const FunctionType *FnType
2625     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2626 
2627   CallArgList Args;
2628   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2629 
2630   const CGFunctionInfo &FnInfo =
2631     CGM.getTypes().arrangeFunctionCall(Args, FnType);
2632 
2633   // C99 6.5.2.2p6:
2634   //   If the expression that denotes the called function has a type
2635   //   that does not include a prototype, [the default argument
2636   //   promotions are performed]. If the number of arguments does not
2637   //   equal the number of parameters, the behavior is undefined. If
2638   //   the function is defined with a type that includes a prototype,
2639   //   and either the prototype ends with an ellipsis (, ...) or the
2640   //   types of the arguments after promotion are not compatible with
2641   //   the types of the parameters, the behavior is undefined. If the
2642   //   function is defined with a type that does not include a
2643   //   prototype, and the types of the arguments after promotion are
2644   //   not compatible with those of the parameters after promotion,
2645   //   the behavior is undefined [except in some trivial cases].
2646   // That is, in the general case, we should assume that a call
2647   // through an unprototyped function type works like a *non-variadic*
2648   // call.  The way we make this work is to cast to the exact type
2649   // of the promoted arguments.
2650   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2651     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2652     CalleeTy = CalleeTy->getPointerTo();
2653     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2654   }
2655 
2656   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2657 }
2658 
2659 LValue CodeGenFunction::
2660 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2661   llvm::Value *BaseV;
2662   if (E->getOpcode() == BO_PtrMemI)
2663     BaseV = EmitScalarExpr(E->getLHS());
2664   else
2665     BaseV = EmitLValue(E->getLHS()).getAddress();
2666 
2667   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2668 
2669   const MemberPointerType *MPT
2670     = E->getRHS()->getType()->getAs<MemberPointerType>();
2671 
2672   llvm::Value *AddV =
2673     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2674 
2675   return MakeAddrLValue(AddV, MPT->getPointeeType());
2676 }
2677 
2678 static void
2679 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2680              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2681              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2682   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2683   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2684 
2685   switch (E->getOp()) {
2686   case AtomicExpr::AO__c11_atomic_init:
2687     llvm_unreachable("Already handled!");
2688 
2689   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2690   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2691   case AtomicExpr::AO__atomic_compare_exchange:
2692   case AtomicExpr::AO__atomic_compare_exchange_n: {
2693     // Note that cmpxchg only supports specifying one ordering and
2694     // doesn't support weak cmpxchg, at least at the moment.
2695     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2696     LoadVal1->setAlignment(Align);
2697     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2698     LoadVal2->setAlignment(Align);
2699     llvm::AtomicCmpXchgInst *CXI =
2700         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2701     CXI->setVolatile(E->isVolatile());
2702     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2703     StoreVal1->setAlignment(Align);
2704     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2705     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2706     return;
2707   }
2708 
2709   case AtomicExpr::AO__c11_atomic_load:
2710   case AtomicExpr::AO__atomic_load_n:
2711   case AtomicExpr::AO__atomic_load: {
2712     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2713     Load->setAtomic(Order);
2714     Load->setAlignment(Size);
2715     Load->setVolatile(E->isVolatile());
2716     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2717     StoreDest->setAlignment(Align);
2718     return;
2719   }
2720 
2721   case AtomicExpr::AO__c11_atomic_store:
2722   case AtomicExpr::AO__atomic_store:
2723   case AtomicExpr::AO__atomic_store_n: {
2724     assert(!Dest && "Store does not return a value");
2725     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2726     LoadVal1->setAlignment(Align);
2727     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2728     Store->setAtomic(Order);
2729     Store->setAlignment(Size);
2730     Store->setVolatile(E->isVolatile());
2731     return;
2732   }
2733 
2734   case AtomicExpr::AO__c11_atomic_exchange:
2735   case AtomicExpr::AO__atomic_exchange_n:
2736   case AtomicExpr::AO__atomic_exchange:
2737     Op = llvm::AtomicRMWInst::Xchg;
2738     break;
2739 
2740   case AtomicExpr::AO__atomic_add_fetch:
2741     PostOp = llvm::Instruction::Add;
2742     // Fall through.
2743   case AtomicExpr::AO__c11_atomic_fetch_add:
2744   case AtomicExpr::AO__atomic_fetch_add:
2745     Op = llvm::AtomicRMWInst::Add;
2746     break;
2747 
2748   case AtomicExpr::AO__atomic_sub_fetch:
2749     PostOp = llvm::Instruction::Sub;
2750     // Fall through.
2751   case AtomicExpr::AO__c11_atomic_fetch_sub:
2752   case AtomicExpr::AO__atomic_fetch_sub:
2753     Op = llvm::AtomicRMWInst::Sub;
2754     break;
2755 
2756   case AtomicExpr::AO__atomic_and_fetch:
2757     PostOp = llvm::Instruction::And;
2758     // Fall through.
2759   case AtomicExpr::AO__c11_atomic_fetch_and:
2760   case AtomicExpr::AO__atomic_fetch_and:
2761     Op = llvm::AtomicRMWInst::And;
2762     break;
2763 
2764   case AtomicExpr::AO__atomic_or_fetch:
2765     PostOp = llvm::Instruction::Or;
2766     // Fall through.
2767   case AtomicExpr::AO__c11_atomic_fetch_or:
2768   case AtomicExpr::AO__atomic_fetch_or:
2769     Op = llvm::AtomicRMWInst::Or;
2770     break;
2771 
2772   case AtomicExpr::AO__atomic_xor_fetch:
2773     PostOp = llvm::Instruction::Xor;
2774     // Fall through.
2775   case AtomicExpr::AO__c11_atomic_fetch_xor:
2776   case AtomicExpr::AO__atomic_fetch_xor:
2777     Op = llvm::AtomicRMWInst::Xor;
2778     break;
2779 
2780   case AtomicExpr::AO__atomic_nand_fetch:
2781     PostOp = llvm::Instruction::And;
2782     // Fall through.
2783   case AtomicExpr::AO__atomic_fetch_nand:
2784     Op = llvm::AtomicRMWInst::Nand;
2785     break;
2786   }
2787 
2788   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2789   LoadVal1->setAlignment(Align);
2790   llvm::AtomicRMWInst *RMWI =
2791       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2792   RMWI->setVolatile(E->isVolatile());
2793 
2794   // For __atomic_*_fetch operations, perform the operation again to
2795   // determine the value which was written.
2796   llvm::Value *Result = RMWI;
2797   if (PostOp)
2798     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
2799   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
2800     Result = CGF.Builder.CreateNot(Result);
2801   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
2802   StoreDest->setAlignment(Align);
2803 }
2804 
2805 // This function emits any expression (scalar, complex, or aggregate)
2806 // into a temporary alloca.
2807 static llvm::Value *
2808 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2809   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2810   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2811                        /*Init*/ true);
2812   return DeclPtr;
2813 }
2814 
2815 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2816                                   llvm::Value *Dest) {
2817   if (Ty->isAnyComplexType())
2818     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2819   if (CGF.hasAggregateLLVMType(Ty))
2820     return RValue::getAggregate(Dest);
2821   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2822 }
2823 
2824 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2825   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2826   QualType MemTy = AtomicTy;
2827   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
2828     MemTy = AT->getValueType();
2829   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2830   uint64_t Size = sizeChars.getQuantity();
2831   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2832   unsigned Align = alignChars.getQuantity();
2833   unsigned MaxInlineWidth =
2834       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2835   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2836 
2837 
2838 
2839   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2840   Ptr = EmitScalarExpr(E->getPtr());
2841 
2842   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
2843     assert(!Dest && "Init does not return a value");
2844     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
2845       QualType PointeeType
2846         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
2847       EmitScalarInit(EmitScalarExpr(E->getVal1()),
2848                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
2849                                       getContext()));
2850     } else if (E->getType()->isAnyComplexType()) {
2851       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
2852     } else {
2853       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
2854                                         AtomicTy.getQualifiers(),
2855                                         AggValueSlot::IsNotDestructed,
2856                                         AggValueSlot::DoesNotNeedGCBarriers,
2857                                         AggValueSlot::IsNotAliased);
2858       EmitAggExpr(E->getVal1(), Slot);
2859     }
2860     return RValue::get(0);
2861   }
2862 
2863   Order = EmitScalarExpr(E->getOrder());
2864 
2865   switch (E->getOp()) {
2866   case AtomicExpr::AO__c11_atomic_init:
2867     llvm_unreachable("Already handled!");
2868 
2869   case AtomicExpr::AO__c11_atomic_load:
2870   case AtomicExpr::AO__atomic_load_n:
2871     break;
2872 
2873   case AtomicExpr::AO__atomic_load:
2874     Dest = EmitScalarExpr(E->getVal1());
2875     break;
2876 
2877   case AtomicExpr::AO__atomic_store:
2878     Val1 = EmitScalarExpr(E->getVal1());
2879     break;
2880 
2881   case AtomicExpr::AO__atomic_exchange:
2882     Val1 = EmitScalarExpr(E->getVal1());
2883     Dest = EmitScalarExpr(E->getVal2());
2884     break;
2885 
2886   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2887   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2888   case AtomicExpr::AO__atomic_compare_exchange_n:
2889   case AtomicExpr::AO__atomic_compare_exchange:
2890     Val1 = EmitScalarExpr(E->getVal1());
2891     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
2892       Val2 = EmitScalarExpr(E->getVal2());
2893     else
2894       Val2 = EmitValToTemp(*this, E->getVal2());
2895     OrderFail = EmitScalarExpr(E->getOrderFail());
2896     // Evaluate and discard the 'weak' argument.
2897     if (E->getNumSubExprs() == 6)
2898       EmitScalarExpr(E->getWeak());
2899     break;
2900 
2901   case AtomicExpr::AO__c11_atomic_fetch_add:
2902   case AtomicExpr::AO__c11_atomic_fetch_sub:
2903     if (MemTy->isPointerType()) {
2904       // For pointer arithmetic, we're required to do a bit of math:
2905       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
2906       // ... but only for the C11 builtins. The GNU builtins expect the
2907       // user to multiply by sizeof(T).
2908       QualType Val1Ty = E->getVal1()->getType();
2909       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2910       CharUnits PointeeIncAmt =
2911           getContext().getTypeSizeInChars(MemTy->getPointeeType());
2912       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2913       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2914       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2915       break;
2916     }
2917     // Fall through.
2918   case AtomicExpr::AO__atomic_fetch_add:
2919   case AtomicExpr::AO__atomic_fetch_sub:
2920   case AtomicExpr::AO__atomic_add_fetch:
2921   case AtomicExpr::AO__atomic_sub_fetch:
2922   case AtomicExpr::AO__c11_atomic_store:
2923   case AtomicExpr::AO__c11_atomic_exchange:
2924   case AtomicExpr::AO__atomic_store_n:
2925   case AtomicExpr::AO__atomic_exchange_n:
2926   case AtomicExpr::AO__c11_atomic_fetch_and:
2927   case AtomicExpr::AO__c11_atomic_fetch_or:
2928   case AtomicExpr::AO__c11_atomic_fetch_xor:
2929   case AtomicExpr::AO__atomic_fetch_and:
2930   case AtomicExpr::AO__atomic_fetch_or:
2931   case AtomicExpr::AO__atomic_fetch_xor:
2932   case AtomicExpr::AO__atomic_fetch_nand:
2933   case AtomicExpr::AO__atomic_and_fetch:
2934   case AtomicExpr::AO__atomic_or_fetch:
2935   case AtomicExpr::AO__atomic_xor_fetch:
2936   case AtomicExpr::AO__atomic_nand_fetch:
2937     Val1 = EmitValToTemp(*this, E->getVal1());
2938     break;
2939   }
2940 
2941   if (!E->getType()->isVoidType() && !Dest)
2942     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2943 
2944   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2945   if (UseLibcall) {
2946 
2947     llvm::SmallVector<QualType, 5> Params;
2948     CallArgList Args;
2949     // Size is always the first parameter
2950     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2951              getContext().getSizeType());
2952     // Atomic address is always the second parameter
2953     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2954              getContext().VoidPtrTy);
2955 
2956     const char* LibCallName;
2957     QualType RetTy = getContext().VoidTy;
2958     switch (E->getOp()) {
2959     // There is only one libcall for compare an exchange, because there is no
2960     // optimisation benefit possible from a libcall version of a weak compare
2961     // and exchange.
2962     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
2963     //                                void *desired, int success, int failure)
2964     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2965     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2966     case AtomicExpr::AO__atomic_compare_exchange:
2967     case AtomicExpr::AO__atomic_compare_exchange_n:
2968       LibCallName = "__atomic_compare_exchange";
2969       RetTy = getContext().BoolTy;
2970       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2971                getContext().VoidPtrTy);
2972       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2973                getContext().VoidPtrTy);
2974       Args.add(RValue::get(Order),
2975                getContext().IntTy);
2976       Order = OrderFail;
2977       break;
2978     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
2979     //                        int order)
2980     case AtomicExpr::AO__c11_atomic_exchange:
2981     case AtomicExpr::AO__atomic_exchange_n:
2982     case AtomicExpr::AO__atomic_exchange:
2983       LibCallName = "__atomic_exchange";
2984       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2985                getContext().VoidPtrTy);
2986       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2987                getContext().VoidPtrTy);
2988       break;
2989     // void __atomic_store(size_t size, void *mem, void *val, int order)
2990     case AtomicExpr::AO__c11_atomic_store:
2991     case AtomicExpr::AO__atomic_store:
2992     case AtomicExpr::AO__atomic_store_n:
2993       LibCallName = "__atomic_store";
2994       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2995                getContext().VoidPtrTy);
2996       break;
2997     // void __atomic_load(size_t size, void *mem, void *return, int order)
2998     case AtomicExpr::AO__c11_atomic_load:
2999     case AtomicExpr::AO__atomic_load:
3000     case AtomicExpr::AO__atomic_load_n:
3001       LibCallName = "__atomic_load";
3002       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3003                getContext().VoidPtrTy);
3004       break;
3005 #if 0
3006     // These are only defined for 1-16 byte integers.  It is not clear what
3007     // their semantics would be on anything else...
3008     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3009     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3010     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3011     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3012     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3013 #endif
3014     default: return EmitUnsupportedRValue(E, "atomic library call");
3015     }
3016     // order is always the last parameter
3017     Args.add(RValue::get(Order),
3018              getContext().IntTy);
3019 
3020     const CGFunctionInfo &FuncInfo =
3021         CGM.getTypes().arrangeFunctionCall(RetTy, Args,
3022             FunctionType::ExtInfo(), RequiredArgs::All);
3023     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3024     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3025     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3026     if (E->isCmpXChg())
3027       return Res;
3028     if (E->getType()->isVoidType())
3029       return RValue::get(0);
3030     return ConvertTempToRValue(*this, E->getType(), Dest);
3031   }
3032 
3033   llvm::Type *IPtrTy =
3034       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3035   llvm::Value *OrigDest = Dest;
3036   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3037   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3038   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3039   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3040 
3041   if (isa<llvm::ConstantInt>(Order)) {
3042     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3043     switch (ord) {
3044     case 0:  // memory_order_relaxed
3045       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3046                    llvm::Monotonic);
3047       break;
3048     case 1:  // memory_order_consume
3049     case 2:  // memory_order_acquire
3050       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3051                    llvm::Acquire);
3052       break;
3053     case 3:  // memory_order_release
3054       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3055                    llvm::Release);
3056       break;
3057     case 4:  // memory_order_acq_rel
3058       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3059                    llvm::AcquireRelease);
3060       break;
3061     case 5:  // memory_order_seq_cst
3062       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3063                    llvm::SequentiallyConsistent);
3064       break;
3065     default: // invalid order
3066       // We should not ever get here normally, but it's hard to
3067       // enforce that in general.
3068       break;
3069     }
3070     if (E->getType()->isVoidType())
3071       return RValue::get(0);
3072     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3073   }
3074 
3075   // Long case, when Order isn't obviously constant.
3076 
3077   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3078                  E->getOp() == AtomicExpr::AO__atomic_store ||
3079                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3080   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3081                 E->getOp() == AtomicExpr::AO__atomic_load ||
3082                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3083 
3084   // Create all the relevant BB's
3085   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3086                    *AcqRelBB = 0, *SeqCstBB = 0;
3087   MonotonicBB = createBasicBlock("monotonic", CurFn);
3088   if (!IsStore)
3089     AcquireBB = createBasicBlock("acquire", CurFn);
3090   if (!IsLoad)
3091     ReleaseBB = createBasicBlock("release", CurFn);
3092   if (!IsLoad && !IsStore)
3093     AcqRelBB = createBasicBlock("acqrel", CurFn);
3094   SeqCstBB = createBasicBlock("seqcst", CurFn);
3095   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3096 
3097   // Create the switch for the split
3098   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3099   // doesn't matter unless someone is crazy enough to use something that
3100   // doesn't fold to a constant for the ordering.
3101   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3102   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3103 
3104   // Emit all the different atomics
3105   Builder.SetInsertPoint(MonotonicBB);
3106   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3107                llvm::Monotonic);
3108   Builder.CreateBr(ContBB);
3109   if (!IsStore) {
3110     Builder.SetInsertPoint(AcquireBB);
3111     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3112                  llvm::Acquire);
3113     Builder.CreateBr(ContBB);
3114     SI->addCase(Builder.getInt32(1), AcquireBB);
3115     SI->addCase(Builder.getInt32(2), AcquireBB);
3116   }
3117   if (!IsLoad) {
3118     Builder.SetInsertPoint(ReleaseBB);
3119     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3120                  llvm::Release);
3121     Builder.CreateBr(ContBB);
3122     SI->addCase(Builder.getInt32(3), ReleaseBB);
3123   }
3124   if (!IsLoad && !IsStore) {
3125     Builder.SetInsertPoint(AcqRelBB);
3126     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3127                  llvm::AcquireRelease);
3128     Builder.CreateBr(ContBB);
3129     SI->addCase(Builder.getInt32(4), AcqRelBB);
3130   }
3131   Builder.SetInsertPoint(SeqCstBB);
3132   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3133                llvm::SequentiallyConsistent);
3134   Builder.CreateBr(ContBB);
3135   SI->addCase(Builder.getInt32(5), SeqCstBB);
3136 
3137   // Cleanup and return
3138   Builder.SetInsertPoint(ContBB);
3139   if (E->getType()->isVoidType())
3140     return RValue::get(0);
3141   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3142 }
3143 
3144 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3145   assert(Val->getType()->isFPOrFPVectorTy());
3146   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3147     return;
3148 
3149   llvm::MDBuilder MDHelper(getLLVMContext());
3150   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3151 
3152   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3153 }
3154 
3155 namespace {
3156   struct LValueOrRValue {
3157     LValue LV;
3158     RValue RV;
3159   };
3160 }
3161 
3162 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3163                                            const PseudoObjectExpr *E,
3164                                            bool forLValue,
3165                                            AggValueSlot slot) {
3166   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3167 
3168   // Find the result expression, if any.
3169   const Expr *resultExpr = E->getResultExpr();
3170   LValueOrRValue result;
3171 
3172   for (PseudoObjectExpr::const_semantics_iterator
3173          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3174     const Expr *semantic = *i;
3175 
3176     // If this semantic expression is an opaque value, bind it
3177     // to the result of its source expression.
3178     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3179 
3180       // If this is the result expression, we may need to evaluate
3181       // directly into the slot.
3182       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3183       OVMA opaqueData;
3184       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3185           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3186           !ov->getType()->isAnyComplexType()) {
3187         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3188 
3189         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3190         opaqueData = OVMA::bind(CGF, ov, LV);
3191         result.RV = slot.asRValue();
3192 
3193       // Otherwise, emit as normal.
3194       } else {
3195         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3196 
3197         // If this is the result, also evaluate the result now.
3198         if (ov == resultExpr) {
3199           if (forLValue)
3200             result.LV = CGF.EmitLValue(ov);
3201           else
3202             result.RV = CGF.EmitAnyExpr(ov, slot);
3203         }
3204       }
3205 
3206       opaques.push_back(opaqueData);
3207 
3208     // Otherwise, if the expression is the result, evaluate it
3209     // and remember the result.
3210     } else if (semantic == resultExpr) {
3211       if (forLValue)
3212         result.LV = CGF.EmitLValue(semantic);
3213       else
3214         result.RV = CGF.EmitAnyExpr(semantic, slot);
3215 
3216     // Otherwise, evaluate the expression in an ignored context.
3217     } else {
3218       CGF.EmitIgnoredExpr(semantic);
3219     }
3220   }
3221 
3222   // Unbind all the opaques now.
3223   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3224     opaques[i].unbind(CGF);
3225 
3226   return result;
3227 }
3228 
3229 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3230                                                AggValueSlot slot) {
3231   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3232 }
3233 
3234 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3235   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3236 }
3237