1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Support/MDBuilder.h" 28 #include "llvm/Target/TargetData.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===--------------------------------------------------------------------===// 33 // Miscellaneous Helper Methods 34 //===--------------------------------------------------------------------===// 35 36 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 37 unsigned addressSpace = 38 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 39 40 llvm::PointerType *destType = Int8PtrTy; 41 if (addressSpace) 42 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 43 44 if (value->getType() == destType) return value; 45 return Builder.CreateBitCast(value, destType); 46 } 47 48 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 49 /// block. 50 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 51 const Twine &Name) { 52 if (!Builder.isNamePreserving()) 53 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 54 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 55 } 56 57 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 58 llvm::Value *Init) { 59 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 60 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 61 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 62 } 63 64 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 65 const Twine &Name) { 66 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 67 // FIXME: Should we prefer the preferred type alignment here? 68 CharUnits Align = getContext().getTypeAlignInChars(Ty); 69 Alloc->setAlignment(Align.getQuantity()); 70 return Alloc; 71 } 72 73 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 74 const Twine &Name) { 75 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 76 // FIXME: Should we prefer the preferred type alignment here? 77 CharUnits Align = getContext().getTypeAlignInChars(Ty); 78 Alloc->setAlignment(Align.getQuantity()); 79 return Alloc; 80 } 81 82 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 83 /// expression and compare the result against zero, returning an Int1Ty value. 84 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 85 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 86 llvm::Value *MemPtr = EmitScalarExpr(E); 87 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 88 } 89 90 QualType BoolTy = getContext().BoolTy; 91 if (!E->getType()->isAnyComplexType()) 92 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 93 94 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 95 } 96 97 /// EmitIgnoredExpr - Emit code to compute the specified expression, 98 /// ignoring the result. 99 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 100 if (E->isRValue()) 101 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 102 103 // Just emit it as an l-value and drop the result. 104 EmitLValue(E); 105 } 106 107 /// EmitAnyExpr - Emit code to compute the specified expression which 108 /// can have any type. The result is returned as an RValue struct. 109 /// If this is an aggregate expression, AggSlot indicates where the 110 /// result should be returned. 111 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 112 bool IgnoreResult) { 113 if (!hasAggregateLLVMType(E->getType())) 114 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 115 else if (E->getType()->isAnyComplexType()) 116 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 117 118 EmitAggExpr(E, AggSlot, IgnoreResult); 119 return AggSlot.asRValue(); 120 } 121 122 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 123 /// always be accessible even if no aggregate location is provided. 124 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 125 AggValueSlot AggSlot = AggValueSlot::ignored(); 126 127 if (hasAggregateLLVMType(E->getType()) && 128 !E->getType()->isAnyComplexType()) 129 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 130 return EmitAnyExpr(E, AggSlot); 131 } 132 133 /// EmitAnyExprToMem - Evaluate an expression into a given memory 134 /// location. 135 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 136 llvm::Value *Location, 137 Qualifiers Quals, 138 bool IsInit) { 139 // FIXME: This function should take an LValue as an argument. 140 if (E->getType()->isAnyComplexType()) { 141 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 142 } else if (hasAggregateLLVMType(E->getType())) { 143 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 144 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 145 AggValueSlot::IsDestructed_t(IsInit), 146 AggValueSlot::DoesNotNeedGCBarriers, 147 AggValueSlot::IsAliased_t(!IsInit))); 148 } else { 149 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 150 LValue LV = MakeAddrLValue(Location, E->getType()); 151 EmitStoreThroughLValue(RV, LV); 152 } 153 } 154 155 namespace { 156 /// \brief An adjustment to be made to the temporary created when emitting a 157 /// reference binding, which accesses a particular subobject of that temporary. 158 struct SubobjectAdjustment { 159 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 160 161 union { 162 struct { 163 const CastExpr *BasePath; 164 const CXXRecordDecl *DerivedClass; 165 } DerivedToBase; 166 167 FieldDecl *Field; 168 }; 169 170 SubobjectAdjustment(const CastExpr *BasePath, 171 const CXXRecordDecl *DerivedClass) 172 : Kind(DerivedToBaseAdjustment) { 173 DerivedToBase.BasePath = BasePath; 174 DerivedToBase.DerivedClass = DerivedClass; 175 } 176 177 SubobjectAdjustment(FieldDecl *Field) 178 : Kind(FieldAdjustment) { 179 this->Field = Field; 180 } 181 }; 182 } 183 184 static llvm::Value * 185 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 186 const NamedDecl *InitializedDecl) { 187 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 188 if (VD->hasGlobalStorage()) { 189 SmallString<256> Name; 190 llvm::raw_svector_ostream Out(Name); 191 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 192 Out.flush(); 193 194 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 195 196 // Create the reference temporary. 197 llvm::GlobalValue *RefTemp = 198 new llvm::GlobalVariable(CGF.CGM.getModule(), 199 RefTempTy, /*isConstant=*/false, 200 llvm::GlobalValue::InternalLinkage, 201 llvm::Constant::getNullValue(RefTempTy), 202 Name.str()); 203 return RefTemp; 204 } 205 } 206 207 return CGF.CreateMemTemp(Type, "ref.tmp"); 208 } 209 210 static llvm::Value * 211 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 212 llvm::Value *&ReferenceTemporary, 213 const CXXDestructorDecl *&ReferenceTemporaryDtor, 214 QualType &ObjCARCReferenceLifetimeType, 215 const NamedDecl *InitializedDecl) { 216 // Look through single-element init lists that claim to be lvalues. They're 217 // just syntactic wrappers in this case. 218 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 219 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 220 E = ILE->getInit(0); 221 } 222 223 // Look through expressions for materialized temporaries (for now). 224 if (const MaterializeTemporaryExpr *M 225 = dyn_cast<MaterializeTemporaryExpr>(E)) { 226 // Objective-C++ ARC: 227 // If we are binding a reference to a temporary that has ownership, we 228 // need to perform retain/release operations on the temporary. 229 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 230 E->getType()->isObjCLifetimeType() && 231 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 233 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 234 ObjCARCReferenceLifetimeType = E->getType(); 235 236 E = M->GetTemporaryExpr(); 237 } 238 239 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 240 E = DAE->getExpr(); 241 242 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 243 CGF.enterFullExpression(EWC); 244 CodeGenFunction::RunCleanupsScope Scope(CGF); 245 246 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 247 ReferenceTemporary, 248 ReferenceTemporaryDtor, 249 ObjCARCReferenceLifetimeType, 250 InitializedDecl); 251 } 252 253 RValue RV; 254 if (E->isGLValue()) { 255 // Emit the expression as an lvalue. 256 LValue LV = CGF.EmitLValue(E); 257 258 if (LV.isSimple()) 259 return LV.getAddress(); 260 261 // We have to load the lvalue. 262 RV = CGF.EmitLoadOfLValue(LV); 263 } else { 264 if (!ObjCARCReferenceLifetimeType.isNull()) { 265 ReferenceTemporary = CreateReferenceTemporary(CGF, 266 ObjCARCReferenceLifetimeType, 267 InitializedDecl); 268 269 270 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 271 ObjCARCReferenceLifetimeType); 272 273 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 274 RefTempDst, false); 275 276 bool ExtendsLifeOfTemporary = false; 277 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 278 if (Var->extendsLifetimeOfTemporary()) 279 ExtendsLifeOfTemporary = true; 280 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 281 ExtendsLifeOfTemporary = true; 282 } 283 284 if (!ExtendsLifeOfTemporary) { 285 // Since the lifetime of this temporary isn't going to be extended, 286 // we need to clean it up ourselves at the end of the full expression. 287 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 288 case Qualifiers::OCL_None: 289 case Qualifiers::OCL_ExplicitNone: 290 case Qualifiers::OCL_Autoreleasing: 291 break; 292 293 case Qualifiers::OCL_Strong: { 294 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 295 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 296 CGF.pushDestroy(cleanupKind, 297 ReferenceTemporary, 298 ObjCARCReferenceLifetimeType, 299 CodeGenFunction::destroyARCStrongImprecise, 300 cleanupKind & EHCleanup); 301 break; 302 } 303 304 case Qualifiers::OCL_Weak: 305 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 306 CGF.pushDestroy(NormalAndEHCleanup, 307 ReferenceTemporary, 308 ObjCARCReferenceLifetimeType, 309 CodeGenFunction::destroyARCWeak, 310 /*useEHCleanupForArray*/ true); 311 break; 312 } 313 314 ObjCARCReferenceLifetimeType = QualType(); 315 } 316 317 return ReferenceTemporary; 318 } 319 320 SmallVector<SubobjectAdjustment, 2> Adjustments; 321 while (true) { 322 E = E->IgnoreParens(); 323 324 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 325 if ((CE->getCastKind() == CK_DerivedToBase || 326 CE->getCastKind() == CK_UncheckedDerivedToBase) && 327 E->getType()->isRecordType()) { 328 E = CE->getSubExpr(); 329 CXXRecordDecl *Derived 330 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 331 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 332 continue; 333 } 334 335 if (CE->getCastKind() == CK_NoOp) { 336 E = CE->getSubExpr(); 337 continue; 338 } 339 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 340 if (!ME->isArrow() && ME->getBase()->isRValue()) { 341 assert(ME->getBase()->getType()->isRecordType()); 342 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 343 E = ME->getBase(); 344 Adjustments.push_back(SubobjectAdjustment(Field)); 345 continue; 346 } 347 } 348 } 349 350 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 351 if (opaque->getType()->isRecordType()) 352 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 353 354 // Nothing changed. 355 break; 356 } 357 358 // Create a reference temporary if necessary. 359 AggValueSlot AggSlot = AggValueSlot::ignored(); 360 if (CGF.hasAggregateLLVMType(E->getType()) && 361 !E->getType()->isAnyComplexType()) { 362 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 363 InitializedDecl); 364 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 365 AggValueSlot::IsDestructed_t isDestructed 366 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 367 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 368 Qualifiers(), isDestructed, 369 AggValueSlot::DoesNotNeedGCBarriers, 370 AggValueSlot::IsNotAliased); 371 } 372 373 if (InitializedDecl) { 374 // Get the destructor for the reference temporary. 375 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 376 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 377 if (!ClassDecl->hasTrivialDestructor()) 378 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 379 } 380 } 381 382 RV = CGF.EmitAnyExpr(E, AggSlot); 383 384 // Check if need to perform derived-to-base casts and/or field accesses, to 385 // get from the temporary object we created (and, potentially, for which we 386 // extended the lifetime) to the subobject we're binding the reference to. 387 if (!Adjustments.empty()) { 388 llvm::Value *Object = RV.getAggregateAddr(); 389 for (unsigned I = Adjustments.size(); I != 0; --I) { 390 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 391 switch (Adjustment.Kind) { 392 case SubobjectAdjustment::DerivedToBaseAdjustment: 393 Object = 394 CGF.GetAddressOfBaseClass(Object, 395 Adjustment.DerivedToBase.DerivedClass, 396 Adjustment.DerivedToBase.BasePath->path_begin(), 397 Adjustment.DerivedToBase.BasePath->path_end(), 398 /*NullCheckValue=*/false); 399 break; 400 401 case SubobjectAdjustment::FieldAdjustment: { 402 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 403 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 404 if (LV.isSimple()) { 405 Object = LV.getAddress(); 406 break; 407 } 408 409 // For non-simple lvalues, we actually have to create a copy of 410 // the object we're binding to. 411 QualType T = Adjustment.Field->getType().getNonReferenceType() 412 .getUnqualifiedType(); 413 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 414 LValue TempLV = CGF.MakeAddrLValue(Object, 415 Adjustment.Field->getType()); 416 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 417 break; 418 } 419 420 } 421 } 422 423 return Object; 424 } 425 } 426 427 if (RV.isAggregate()) 428 return RV.getAggregateAddr(); 429 430 // Create a temporary variable that we can bind the reference to. 431 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 432 InitializedDecl); 433 434 435 unsigned Alignment = 436 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 437 if (RV.isScalar()) 438 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 439 /*Volatile=*/false, Alignment, E->getType()); 440 else 441 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 442 /*Volatile=*/false); 443 return ReferenceTemporary; 444 } 445 446 RValue 447 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 448 const NamedDecl *InitializedDecl) { 449 llvm::Value *ReferenceTemporary = 0; 450 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 451 QualType ObjCARCReferenceLifetimeType; 452 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 453 ReferenceTemporaryDtor, 454 ObjCARCReferenceLifetimeType, 455 InitializedDecl); 456 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 457 return RValue::get(Value); 458 459 // Make sure to call the destructor for the reference temporary. 460 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 461 if (VD && VD->hasGlobalStorage()) { 462 if (ReferenceTemporaryDtor) { 463 llvm::Constant *DtorFn = 464 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 465 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 466 cast<llvm::Constant>(ReferenceTemporary)); 467 } else { 468 assert(!ObjCARCReferenceLifetimeType.isNull()); 469 // Note: We intentionally do not register a global "destructor" to 470 // release the object. 471 } 472 473 return RValue::get(Value); 474 } 475 476 if (ReferenceTemporaryDtor) 477 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 478 else { 479 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 480 case Qualifiers::OCL_None: 481 llvm_unreachable( 482 "Not a reference temporary that needs to be deallocated"); 483 case Qualifiers::OCL_ExplicitNone: 484 case Qualifiers::OCL_Autoreleasing: 485 // Nothing to do. 486 break; 487 488 case Qualifiers::OCL_Strong: { 489 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 490 CleanupKind cleanupKind = getARCCleanupKind(); 491 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 492 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 493 cleanupKind & EHCleanup); 494 break; 495 } 496 497 case Qualifiers::OCL_Weak: { 498 // __weak objects always get EH cleanups; otherwise, exceptions 499 // could cause really nasty crashes instead of mere leaks. 500 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 501 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 502 break; 503 } 504 } 505 } 506 507 return RValue::get(Value); 508 } 509 510 511 /// getAccessedFieldNo - Given an encoded value and a result number, return the 512 /// input field number being accessed. 513 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 514 const llvm::Constant *Elts) { 515 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 516 ->getZExtValue(); 517 } 518 519 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 520 if (!CatchUndefined) 521 return; 522 523 // This needs to be to the standard address space. 524 Address = Builder.CreateBitCast(Address, Int8PtrTy); 525 526 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 527 528 llvm::Value *Min = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Min); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 532 llvm::ConstantInt::get(IntPtrTy, Size)), 533 Cont, getTrapBB()); 534 EmitBlock(Cont); 535 } 536 537 538 CodeGenFunction::ComplexPairTy CodeGenFunction:: 539 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 540 bool isInc, bool isPre) { 541 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 542 LV.isVolatileQualified()); 543 544 llvm::Value *NextVal; 545 if (isa<llvm::IntegerType>(InVal.first->getType())) { 546 uint64_t AmountVal = isInc ? 1 : -1; 547 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 548 549 // Add the inc/dec to the real part. 550 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 551 } else { 552 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 553 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 554 if (!isInc) 555 FVal.changeSign(); 556 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 557 558 // Add the inc/dec to the real part. 559 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 560 } 561 562 ComplexPairTy IncVal(NextVal, InVal.second); 563 564 // Store the updated result through the lvalue. 565 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 566 567 // If this is a postinc, return the value read from memory, otherwise use the 568 // updated value. 569 return isPre ? IncVal : InVal; 570 } 571 572 573 //===----------------------------------------------------------------------===// 574 // LValue Expression Emission 575 //===----------------------------------------------------------------------===// 576 577 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 578 if (Ty->isVoidType()) 579 return RValue::get(0); 580 581 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 582 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 583 llvm::Value *U = llvm::UndefValue::get(EltTy); 584 return RValue::getComplex(std::make_pair(U, U)); 585 } 586 587 // If this is a use of an undefined aggregate type, the aggregate must have an 588 // identifiable address. Just because the contents of the value are undefined 589 // doesn't mean that the address can't be taken and compared. 590 if (hasAggregateLLVMType(Ty)) { 591 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 592 return RValue::getAggregate(DestPtr); 593 } 594 595 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 596 } 597 598 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 599 const char *Name) { 600 ErrorUnsupported(E, Name); 601 return GetUndefRValue(E->getType()); 602 } 603 604 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 605 const char *Name) { 606 ErrorUnsupported(E, Name); 607 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 608 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 609 } 610 611 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 612 LValue LV = EmitLValue(E); 613 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 614 EmitCheck(LV.getAddress(), 615 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 616 return LV; 617 } 618 619 /// EmitLValue - Emit code to compute a designator that specifies the location 620 /// of the expression. 621 /// 622 /// This can return one of two things: a simple address or a bitfield reference. 623 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 624 /// an LLVM pointer type. 625 /// 626 /// If this returns a bitfield reference, nothing about the pointee type of the 627 /// LLVM value is known: For example, it may not be a pointer to an integer. 628 /// 629 /// If this returns a normal address, and if the lvalue's C type is fixed size, 630 /// this method guarantees that the returned pointer type will point to an LLVM 631 /// type of the same size of the lvalue's type. If the lvalue has a variable 632 /// length type, this is not possible. 633 /// 634 LValue CodeGenFunction::EmitLValue(const Expr *E) { 635 switch (E->getStmtClass()) { 636 default: return EmitUnsupportedLValue(E, "l-value expression"); 637 638 case Expr::ObjCPropertyRefExprClass: 639 llvm_unreachable("cannot emit a property reference directly"); 640 641 case Expr::ObjCSelectorExprClass: 642 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 643 case Expr::ObjCIsaExprClass: 644 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 645 case Expr::BinaryOperatorClass: 646 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 647 case Expr::CompoundAssignOperatorClass: 648 if (!E->getType()->isAnyComplexType()) 649 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 650 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 651 case Expr::CallExprClass: 652 case Expr::CXXMemberCallExprClass: 653 case Expr::CXXOperatorCallExprClass: 654 case Expr::UserDefinedLiteralClass: 655 return EmitCallExprLValue(cast<CallExpr>(E)); 656 case Expr::VAArgExprClass: 657 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 658 case Expr::DeclRefExprClass: 659 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 660 case Expr::ParenExprClass: 661 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 662 case Expr::GenericSelectionExprClass: 663 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 664 case Expr::PredefinedExprClass: 665 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 666 case Expr::StringLiteralClass: 667 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 668 case Expr::ObjCEncodeExprClass: 669 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 670 case Expr::PseudoObjectExprClass: 671 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 672 case Expr::InitListExprClass: 673 return EmitInitListLValue(cast<InitListExpr>(E)); 674 case Expr::CXXTemporaryObjectExprClass: 675 case Expr::CXXConstructExprClass: 676 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 677 case Expr::CXXBindTemporaryExprClass: 678 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 679 case Expr::LambdaExprClass: 680 return EmitLambdaLValue(cast<LambdaExpr>(E)); 681 682 case Expr::ExprWithCleanupsClass: { 683 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 684 enterFullExpression(cleanups); 685 RunCleanupsScope Scope(*this); 686 return EmitLValue(cleanups->getSubExpr()); 687 } 688 689 case Expr::CXXScalarValueInitExprClass: 690 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 691 case Expr::CXXDefaultArgExprClass: 692 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 693 case Expr::CXXTypeidExprClass: 694 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 695 696 case Expr::ObjCMessageExprClass: 697 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 698 case Expr::ObjCIvarRefExprClass: 699 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 700 case Expr::StmtExprClass: 701 return EmitStmtExprLValue(cast<StmtExpr>(E)); 702 case Expr::UnaryOperatorClass: 703 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 704 case Expr::ArraySubscriptExprClass: 705 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 706 case Expr::ExtVectorElementExprClass: 707 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 708 case Expr::MemberExprClass: 709 return EmitMemberExpr(cast<MemberExpr>(E)); 710 case Expr::CompoundLiteralExprClass: 711 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 712 case Expr::ConditionalOperatorClass: 713 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 714 case Expr::BinaryConditionalOperatorClass: 715 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 716 case Expr::ChooseExprClass: 717 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 718 case Expr::OpaqueValueExprClass: 719 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 720 case Expr::SubstNonTypeTemplateParmExprClass: 721 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 722 case Expr::ImplicitCastExprClass: 723 case Expr::CStyleCastExprClass: 724 case Expr::CXXFunctionalCastExprClass: 725 case Expr::CXXStaticCastExprClass: 726 case Expr::CXXDynamicCastExprClass: 727 case Expr::CXXReinterpretCastExprClass: 728 case Expr::CXXConstCastExprClass: 729 case Expr::ObjCBridgedCastExprClass: 730 return EmitCastLValue(cast<CastExpr>(E)); 731 732 case Expr::MaterializeTemporaryExprClass: 733 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 734 } 735 } 736 737 /// Given an object of the given canonical type, can we safely copy a 738 /// value out of it based on its initializer? 739 static bool isConstantEmittableObjectType(QualType type) { 740 assert(type.isCanonical()); 741 assert(!type->isReferenceType()); 742 743 // Must be const-qualified but non-volatile. 744 Qualifiers qs = type.getLocalQualifiers(); 745 if (!qs.hasConst() || qs.hasVolatile()) return false; 746 747 // Otherwise, all object types satisfy this except C++ classes with 748 // mutable subobjects or non-trivial copy/destroy behavior. 749 if (const RecordType *RT = dyn_cast<RecordType>(type)) 750 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 751 if (RD->hasMutableFields() || !RD->isTrivial()) 752 return false; 753 754 return true; 755 } 756 757 /// Can we constant-emit a load of a reference to a variable of the 758 /// given type? This is different from predicates like 759 /// Decl::isUsableInConstantExpressions because we do want it to apply 760 /// in situations that don't necessarily satisfy the language's rules 761 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 762 /// to do this with const float variables even if those variables 763 /// aren't marked 'constexpr'. 764 enum ConstantEmissionKind { 765 CEK_None, 766 CEK_AsReferenceOnly, 767 CEK_AsValueOrReference, 768 CEK_AsValueOnly 769 }; 770 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 771 type = type.getCanonicalType(); 772 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 773 if (isConstantEmittableObjectType(ref->getPointeeType())) 774 return CEK_AsValueOrReference; 775 return CEK_AsReferenceOnly; 776 } 777 if (isConstantEmittableObjectType(type)) 778 return CEK_AsValueOnly; 779 return CEK_None; 780 } 781 782 /// Try to emit a reference to the given value without producing it as 783 /// an l-value. This is actually more than an optimization: we can't 784 /// produce an l-value for variables that we never actually captured 785 /// in a block or lambda, which means const int variables or constexpr 786 /// literals or similar. 787 CodeGenFunction::ConstantEmission 788 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 789 ValueDecl *value = refExpr->getDecl(); 790 791 // The value needs to be an enum constant or a constant variable. 792 ConstantEmissionKind CEK; 793 if (isa<ParmVarDecl>(value)) { 794 CEK = CEK_None; 795 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 796 CEK = checkVarTypeForConstantEmission(var->getType()); 797 } else if (isa<EnumConstantDecl>(value)) { 798 CEK = CEK_AsValueOnly; 799 } else { 800 CEK = CEK_None; 801 } 802 if (CEK == CEK_None) return ConstantEmission(); 803 804 Expr::EvalResult result; 805 bool resultIsReference; 806 QualType resultType; 807 808 // It's best to evaluate all the way as an r-value if that's permitted. 809 if (CEK != CEK_AsReferenceOnly && 810 refExpr->EvaluateAsRValue(result, getContext())) { 811 resultIsReference = false; 812 resultType = refExpr->getType(); 813 814 // Otherwise, try to evaluate as an l-value. 815 } else if (CEK != CEK_AsValueOnly && 816 refExpr->EvaluateAsLValue(result, getContext())) { 817 resultIsReference = true; 818 resultType = value->getType(); 819 820 // Failure. 821 } else { 822 return ConstantEmission(); 823 } 824 825 // In any case, if the initializer has side-effects, abandon ship. 826 if (result.HasSideEffects) 827 return ConstantEmission(); 828 829 // Emit as a constant. 830 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 831 832 // Make sure we emit a debug reference to the global variable. 833 // This should probably fire even for 834 if (isa<VarDecl>(value)) { 835 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 836 EmitDeclRefExprDbgValue(refExpr, C); 837 } else { 838 assert(isa<EnumConstantDecl>(value)); 839 EmitDeclRefExprDbgValue(refExpr, C); 840 } 841 842 // If we emitted a reference constant, we need to dereference that. 843 if (resultIsReference) 844 return ConstantEmission::forReference(C); 845 846 return ConstantEmission::forValue(C); 847 } 848 849 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 850 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 851 lvalue.getAlignment().getQuantity(), 852 lvalue.getType(), lvalue.getTBAAInfo()); 853 } 854 855 static bool hasBooleanRepresentation(QualType Ty) { 856 if (Ty->isBooleanType()) 857 return true; 858 859 if (const EnumType *ET = Ty->getAs<EnumType>()) 860 return ET->getDecl()->getIntegerType()->isBooleanType(); 861 862 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 863 return hasBooleanRepresentation(AT->getValueType()); 864 865 return false; 866 } 867 868 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 869 const EnumType *ET = Ty->getAs<EnumType>(); 870 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 871 CGM.getCodeGenOpts().StrictEnums && 872 !ET->getDecl()->isFixed()); 873 bool IsBool = hasBooleanRepresentation(Ty); 874 if (!IsBool && !IsRegularCPlusPlusEnum) 875 return NULL; 876 877 llvm::APInt Min; 878 llvm::APInt End; 879 if (IsBool) { 880 Min = llvm::APInt(8, 0); 881 End = llvm::APInt(8, 2); 882 } else { 883 const EnumDecl *ED = ET->getDecl(); 884 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 885 unsigned Bitwidth = LTy->getScalarSizeInBits(); 886 unsigned NumNegativeBits = ED->getNumNegativeBits(); 887 unsigned NumPositiveBits = ED->getNumPositiveBits(); 888 889 if (NumNegativeBits) { 890 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 891 assert(NumBits <= Bitwidth); 892 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 893 Min = -End; 894 } else { 895 assert(NumPositiveBits <= Bitwidth); 896 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 897 Min = llvm::APInt(Bitwidth, 0); 898 } 899 } 900 901 llvm::MDBuilder MDHelper(getLLVMContext()); 902 return MDHelper.createRange(Min, End); 903 } 904 905 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 906 unsigned Alignment, QualType Ty, 907 llvm::MDNode *TBAAInfo) { 908 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 909 if (Volatile) 910 Load->setVolatile(true); 911 if (Alignment) 912 Load->setAlignment(Alignment); 913 if (TBAAInfo) 914 CGM.DecorateInstruction(Load, TBAAInfo); 915 // If this is an atomic type, all normal reads must be atomic 916 if (Ty->isAtomicType()) 917 Load->setAtomic(llvm::SequentiallyConsistent); 918 919 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 920 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 921 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 922 923 return EmitFromMemory(Load, Ty); 924 } 925 926 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 927 // Bool has a different representation in memory than in registers. 928 if (hasBooleanRepresentation(Ty)) { 929 // This should really always be an i1, but sometimes it's already 930 // an i8, and it's awkward to track those cases down. 931 if (Value->getType()->isIntegerTy(1)) 932 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 933 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 934 } 935 936 return Value; 937 } 938 939 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 940 // Bool has a different representation in memory than in registers. 941 if (hasBooleanRepresentation(Ty)) { 942 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 943 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 944 } 945 946 return Value; 947 } 948 949 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 950 bool Volatile, unsigned Alignment, 951 QualType Ty, 952 llvm::MDNode *TBAAInfo, 953 bool isInit) { 954 Value = EmitToMemory(Value, Ty); 955 956 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 957 if (Alignment) 958 Store->setAlignment(Alignment); 959 if (TBAAInfo) 960 CGM.DecorateInstruction(Store, TBAAInfo); 961 if (!isInit && Ty->isAtomicType()) 962 Store->setAtomic(llvm::SequentiallyConsistent); 963 } 964 965 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 966 bool isInit) { 967 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 968 lvalue.getAlignment().getQuantity(), lvalue.getType(), 969 lvalue.getTBAAInfo(), isInit); 970 } 971 972 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 973 /// method emits the address of the lvalue, then loads the result as an rvalue, 974 /// returning the rvalue. 975 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 976 if (LV.isObjCWeak()) { 977 // load of a __weak object. 978 llvm::Value *AddrWeakObj = LV.getAddress(); 979 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 980 AddrWeakObj)); 981 } 982 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 983 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 984 985 if (LV.isSimple()) { 986 assert(!LV.getType()->isFunctionType()); 987 988 // Everything needs a load. 989 return RValue::get(EmitLoadOfScalar(LV)); 990 } 991 992 if (LV.isVectorElt()) { 993 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 994 LV.isVolatileQualified()); 995 Load->setAlignment(LV.getAlignment().getQuantity()); 996 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 997 "vecext")); 998 } 999 1000 // If this is a reference to a subset of the elements of a vector, either 1001 // shuffle the input or extract/insert them as appropriate. 1002 if (LV.isExtVectorElt()) 1003 return EmitLoadOfExtVectorElementLValue(LV); 1004 1005 assert(LV.isBitField() && "Unknown LValue type!"); 1006 return EmitLoadOfBitfieldLValue(LV); 1007 } 1008 1009 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1010 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1011 1012 // Get the output type. 1013 llvm::Type *ResLTy = ConvertType(LV.getType()); 1014 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1015 1016 // Compute the result as an OR of all of the individual component accesses. 1017 llvm::Value *Res = 0; 1018 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1019 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1020 1021 // Get the field pointer. 1022 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1023 1024 // Only offset by the field index if used, so that incoming values are not 1025 // required to be structures. 1026 if (AI.FieldIndex) 1027 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1028 1029 // Offset by the byte offset, if used. 1030 if (!AI.FieldByteOffset.isZero()) { 1031 Ptr = EmitCastToVoidPtr(Ptr); 1032 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1033 "bf.field.offs"); 1034 } 1035 1036 // Cast to the access type. 1037 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1038 CGM.getContext().getTargetAddressSpace(LV.getType())); 1039 Ptr = Builder.CreateBitCast(Ptr, PTy); 1040 1041 // Perform the load. 1042 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1043 if (!AI.AccessAlignment.isZero()) 1044 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1045 1046 // Shift out unused low bits and mask out unused high bits. 1047 llvm::Value *Val = Load; 1048 if (AI.FieldBitStart) 1049 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1050 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1051 AI.TargetBitWidth), 1052 "bf.clear"); 1053 1054 // Extend or truncate to the target size. 1055 if (AI.AccessWidth < ResSizeInBits) 1056 Val = Builder.CreateZExt(Val, ResLTy); 1057 else if (AI.AccessWidth > ResSizeInBits) 1058 Val = Builder.CreateTrunc(Val, ResLTy); 1059 1060 // Shift into place, and OR into the result. 1061 if (AI.TargetBitOffset) 1062 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1063 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1064 } 1065 1066 // If the bit-field is signed, perform the sign-extension. 1067 // 1068 // FIXME: This can easily be folded into the load of the high bits, which 1069 // could also eliminate the mask of high bits in some situations. 1070 if (Info.isSigned()) { 1071 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1072 if (ExtraBits) 1073 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1074 ExtraBits, "bf.val.sext"); 1075 } 1076 1077 return RValue::get(Res); 1078 } 1079 1080 // If this is a reference to a subset of the elements of a vector, create an 1081 // appropriate shufflevector. 1082 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1083 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1084 LV.isVolatileQualified()); 1085 Load->setAlignment(LV.getAlignment().getQuantity()); 1086 llvm::Value *Vec = Load; 1087 1088 const llvm::Constant *Elts = LV.getExtVectorElts(); 1089 1090 // If the result of the expression is a non-vector type, we must be extracting 1091 // a single element. Just codegen as an extractelement. 1092 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1093 if (!ExprVT) { 1094 unsigned InIdx = getAccessedFieldNo(0, Elts); 1095 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1096 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1097 } 1098 1099 // Always use shuffle vector to try to retain the original program structure 1100 unsigned NumResultElts = ExprVT->getNumElements(); 1101 1102 SmallVector<llvm::Constant*, 4> Mask; 1103 for (unsigned i = 0; i != NumResultElts; ++i) 1104 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1105 1106 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1107 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1108 MaskV); 1109 return RValue::get(Vec); 1110 } 1111 1112 1113 1114 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1115 /// lvalue, where both are guaranteed to the have the same type, and that type 1116 /// is 'Ty'. 1117 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1118 if (!Dst.isSimple()) { 1119 if (Dst.isVectorElt()) { 1120 // Read/modify/write the vector, inserting the new element. 1121 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1122 Dst.isVolatileQualified()); 1123 Load->setAlignment(Dst.getAlignment().getQuantity()); 1124 llvm::Value *Vec = Load; 1125 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1126 Dst.getVectorIdx(), "vecins"); 1127 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1128 Dst.isVolatileQualified()); 1129 Store->setAlignment(Dst.getAlignment().getQuantity()); 1130 return; 1131 } 1132 1133 // If this is an update of extended vector elements, insert them as 1134 // appropriate. 1135 if (Dst.isExtVectorElt()) 1136 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1137 1138 assert(Dst.isBitField() && "Unknown LValue type"); 1139 return EmitStoreThroughBitfieldLValue(Src, Dst); 1140 } 1141 1142 // There's special magic for assigning into an ARC-qualified l-value. 1143 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1144 switch (Lifetime) { 1145 case Qualifiers::OCL_None: 1146 llvm_unreachable("present but none"); 1147 1148 case Qualifiers::OCL_ExplicitNone: 1149 // nothing special 1150 break; 1151 1152 case Qualifiers::OCL_Strong: 1153 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1154 return; 1155 1156 case Qualifiers::OCL_Weak: 1157 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1158 return; 1159 1160 case Qualifiers::OCL_Autoreleasing: 1161 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1162 Src.getScalarVal())); 1163 // fall into the normal path 1164 break; 1165 } 1166 } 1167 1168 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1169 // load of a __weak object. 1170 llvm::Value *LvalueDst = Dst.getAddress(); 1171 llvm::Value *src = Src.getScalarVal(); 1172 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1173 return; 1174 } 1175 1176 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1177 // load of a __strong object. 1178 llvm::Value *LvalueDst = Dst.getAddress(); 1179 llvm::Value *src = Src.getScalarVal(); 1180 if (Dst.isObjCIvar()) { 1181 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1182 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1183 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1184 llvm::Value *dst = RHS; 1185 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1186 llvm::Value *LHS = 1187 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1188 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1189 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1190 BytesBetween); 1191 } else if (Dst.isGlobalObjCRef()) { 1192 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1193 Dst.isThreadLocalRef()); 1194 } 1195 else 1196 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1197 return; 1198 } 1199 1200 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1201 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1202 } 1203 1204 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1205 llvm::Value **Result) { 1206 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1207 1208 // Get the output type. 1209 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1210 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1211 1212 // Get the source value, truncated to the width of the bit-field. 1213 llvm::Value *SrcVal = Src.getScalarVal(); 1214 1215 if (hasBooleanRepresentation(Dst.getType())) 1216 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1217 1218 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1219 Info.getSize()), 1220 "bf.value"); 1221 1222 // Return the new value of the bit-field, if requested. 1223 if (Result) { 1224 // Cast back to the proper type for result. 1225 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1226 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1227 "bf.reload.val"); 1228 1229 // Sign extend if necessary. 1230 if (Info.isSigned()) { 1231 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1232 if (ExtraBits) 1233 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1234 ExtraBits, "bf.reload.sext"); 1235 } 1236 1237 *Result = ReloadVal; 1238 } 1239 1240 // Iterate over the components, writing each piece to memory. 1241 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1242 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1243 1244 // Get the field pointer. 1245 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1246 unsigned addressSpace = 1247 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1248 1249 // Only offset by the field index if used, so that incoming values are not 1250 // required to be structures. 1251 if (AI.FieldIndex) 1252 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1253 1254 // Offset by the byte offset, if used. 1255 if (!AI.FieldByteOffset.isZero()) { 1256 Ptr = EmitCastToVoidPtr(Ptr); 1257 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1258 "bf.field.offs"); 1259 } 1260 1261 // Cast to the access type. 1262 llvm::Type *AccessLTy = 1263 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1264 1265 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1266 Ptr = Builder.CreateBitCast(Ptr, PTy); 1267 1268 // Extract the piece of the bit-field value to write in this access, limited 1269 // to the values that are part of this access. 1270 llvm::Value *Val = SrcVal; 1271 if (AI.TargetBitOffset) 1272 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1273 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1274 AI.TargetBitWidth)); 1275 1276 // Extend or truncate to the access size. 1277 if (ResSizeInBits < AI.AccessWidth) 1278 Val = Builder.CreateZExt(Val, AccessLTy); 1279 else if (ResSizeInBits > AI.AccessWidth) 1280 Val = Builder.CreateTrunc(Val, AccessLTy); 1281 1282 // Shift into the position in memory. 1283 if (AI.FieldBitStart) 1284 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1285 1286 // If necessary, load and OR in bits that are outside of the bit-field. 1287 if (AI.TargetBitWidth != AI.AccessWidth) { 1288 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1289 if (!AI.AccessAlignment.isZero()) 1290 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1291 1292 // Compute the mask for zeroing the bits that are part of the bit-field. 1293 llvm::APInt InvMask = 1294 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1295 AI.FieldBitStart + AI.TargetBitWidth); 1296 1297 // Apply the mask and OR in to the value to write. 1298 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1299 } 1300 1301 // Write the value. 1302 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1303 Dst.isVolatileQualified()); 1304 if (!AI.AccessAlignment.isZero()) 1305 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1306 } 1307 } 1308 1309 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1310 LValue Dst) { 1311 // This access turns into a read/modify/write of the vector. Load the input 1312 // value now. 1313 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1314 Dst.isVolatileQualified()); 1315 Load->setAlignment(Dst.getAlignment().getQuantity()); 1316 llvm::Value *Vec = Load; 1317 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1318 1319 llvm::Value *SrcVal = Src.getScalarVal(); 1320 1321 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1322 unsigned NumSrcElts = VTy->getNumElements(); 1323 unsigned NumDstElts = 1324 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1325 if (NumDstElts == NumSrcElts) { 1326 // Use shuffle vector is the src and destination are the same number of 1327 // elements and restore the vector mask since it is on the side it will be 1328 // stored. 1329 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1330 for (unsigned i = 0; i != NumSrcElts; ++i) 1331 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1332 1333 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1334 Vec = Builder.CreateShuffleVector(SrcVal, 1335 llvm::UndefValue::get(Vec->getType()), 1336 MaskV); 1337 } else if (NumDstElts > NumSrcElts) { 1338 // Extended the source vector to the same length and then shuffle it 1339 // into the destination. 1340 // FIXME: since we're shuffling with undef, can we just use the indices 1341 // into that? This could be simpler. 1342 SmallVector<llvm::Constant*, 4> ExtMask; 1343 for (unsigned i = 0; i != NumSrcElts; ++i) 1344 ExtMask.push_back(Builder.getInt32(i)); 1345 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1346 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1347 llvm::Value *ExtSrcVal = 1348 Builder.CreateShuffleVector(SrcVal, 1349 llvm::UndefValue::get(SrcVal->getType()), 1350 ExtMaskV); 1351 // build identity 1352 SmallVector<llvm::Constant*, 4> Mask; 1353 for (unsigned i = 0; i != NumDstElts; ++i) 1354 Mask.push_back(Builder.getInt32(i)); 1355 1356 // modify when what gets shuffled in 1357 for (unsigned i = 0; i != NumSrcElts; ++i) 1358 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1359 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1360 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1361 } else { 1362 // We should never shorten the vector 1363 llvm_unreachable("unexpected shorten vector length"); 1364 } 1365 } else { 1366 // If the Src is a scalar (not a vector) it must be updating one element. 1367 unsigned InIdx = getAccessedFieldNo(0, Elts); 1368 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1369 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1370 } 1371 1372 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1373 Dst.isVolatileQualified()); 1374 Store->setAlignment(Dst.getAlignment().getQuantity()); 1375 } 1376 1377 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1378 // generating write-barries API. It is currently a global, ivar, 1379 // or neither. 1380 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1381 LValue &LV, 1382 bool IsMemberAccess=false) { 1383 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1384 return; 1385 1386 if (isa<ObjCIvarRefExpr>(E)) { 1387 QualType ExpTy = E->getType(); 1388 if (IsMemberAccess && ExpTy->isPointerType()) { 1389 // If ivar is a structure pointer, assigning to field of 1390 // this struct follows gcc's behavior and makes it a non-ivar 1391 // writer-barrier conservatively. 1392 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1393 if (ExpTy->isRecordType()) { 1394 LV.setObjCIvar(false); 1395 return; 1396 } 1397 } 1398 LV.setObjCIvar(true); 1399 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1400 LV.setBaseIvarExp(Exp->getBase()); 1401 LV.setObjCArray(E->getType()->isArrayType()); 1402 return; 1403 } 1404 1405 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1406 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1407 if (VD->hasGlobalStorage()) { 1408 LV.setGlobalObjCRef(true); 1409 LV.setThreadLocalRef(VD->isThreadSpecified()); 1410 } 1411 } 1412 LV.setObjCArray(E->getType()->isArrayType()); 1413 return; 1414 } 1415 1416 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1417 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1418 return; 1419 } 1420 1421 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1422 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1423 if (LV.isObjCIvar()) { 1424 // If cast is to a structure pointer, follow gcc's behavior and make it 1425 // a non-ivar write-barrier. 1426 QualType ExpTy = E->getType(); 1427 if (ExpTy->isPointerType()) 1428 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1429 if (ExpTy->isRecordType()) 1430 LV.setObjCIvar(false); 1431 } 1432 return; 1433 } 1434 1435 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1436 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1437 return; 1438 } 1439 1440 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1441 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1442 return; 1443 } 1444 1445 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1446 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1447 return; 1448 } 1449 1450 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1451 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1452 return; 1453 } 1454 1455 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1456 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1457 if (LV.isObjCIvar() && !LV.isObjCArray()) 1458 // Using array syntax to assigning to what an ivar points to is not 1459 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1460 LV.setObjCIvar(false); 1461 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1462 // Using array syntax to assigning to what global points to is not 1463 // same as assigning to the global itself. {id *G;} G[i] = 0; 1464 LV.setGlobalObjCRef(false); 1465 return; 1466 } 1467 1468 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1469 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1470 // We don't know if member is an 'ivar', but this flag is looked at 1471 // only in the context of LV.isObjCIvar(). 1472 LV.setObjCArray(E->getType()->isArrayType()); 1473 return; 1474 } 1475 } 1476 1477 static llvm::Value * 1478 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1479 llvm::Value *V, llvm::Type *IRType, 1480 StringRef Name = StringRef()) { 1481 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1482 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1483 } 1484 1485 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1486 const Expr *E, const VarDecl *VD) { 1487 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1488 "Var decl must have external storage or be a file var decl!"); 1489 1490 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1491 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1492 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1493 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1494 QualType T = E->getType(); 1495 LValue LV; 1496 if (VD->getType()->isReferenceType()) { 1497 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1498 LI->setAlignment(Alignment.getQuantity()); 1499 V = LI; 1500 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1501 } else { 1502 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1503 } 1504 setObjCGCLValueClass(CGF.getContext(), E, LV); 1505 return LV; 1506 } 1507 1508 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1509 const Expr *E, const FunctionDecl *FD) { 1510 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1511 if (!FD->hasPrototype()) { 1512 if (const FunctionProtoType *Proto = 1513 FD->getType()->getAs<FunctionProtoType>()) { 1514 // Ugly case: for a K&R-style definition, the type of the definition 1515 // isn't the same as the type of a use. Correct for this with a 1516 // bitcast. 1517 QualType NoProtoType = 1518 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1519 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1520 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1521 } 1522 } 1523 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1524 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1525 } 1526 1527 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1528 const NamedDecl *ND = E->getDecl(); 1529 CharUnits Alignment = getContext().getDeclAlign(ND); 1530 QualType T = E->getType(); 1531 1532 // FIXME: We should be able to assert this for FunctionDecls as well! 1533 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1534 // those with a valid source location. 1535 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1536 !E->getLocation().isValid()) && 1537 "Should not use decl without marking it used!"); 1538 1539 if (ND->hasAttr<WeakRefAttr>()) { 1540 const ValueDecl *VD = cast<ValueDecl>(ND); 1541 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1542 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1543 } 1544 1545 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1546 // Check if this is a global variable. 1547 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1548 return EmitGlobalVarDeclLValue(*this, E, VD); 1549 1550 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1551 1552 bool NonGCable = VD->hasLocalStorage() && 1553 !VD->getType()->isReferenceType() && 1554 !isBlockVariable; 1555 1556 llvm::Value *V = LocalDeclMap[VD]; 1557 if (!V && VD->isStaticLocal()) 1558 V = CGM.getStaticLocalDeclAddress(VD); 1559 1560 // Use special handling for lambdas. 1561 if (!V) { 1562 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1563 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1564 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1565 LambdaTagType); 1566 return EmitLValueForField(LambdaLV, FD); 1567 } 1568 1569 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1570 CharUnits alignment = getContext().getDeclAlign(VD); 1571 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1572 E->getType(), alignment); 1573 } 1574 1575 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1576 1577 if (isBlockVariable) 1578 V = BuildBlockByrefAddress(V, VD); 1579 1580 LValue LV; 1581 if (VD->getType()->isReferenceType()) { 1582 llvm::LoadInst *LI = Builder.CreateLoad(V); 1583 LI->setAlignment(Alignment.getQuantity()); 1584 V = LI; 1585 LV = MakeNaturalAlignAddrLValue(V, T); 1586 } else { 1587 LV = MakeAddrLValue(V, T, Alignment); 1588 } 1589 1590 if (NonGCable) { 1591 LV.getQuals().removeObjCGCAttr(); 1592 LV.setNonGC(true); 1593 } 1594 setObjCGCLValueClass(getContext(), E, LV); 1595 return LV; 1596 } 1597 1598 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1599 return EmitFunctionDeclLValue(*this, E, fn); 1600 1601 llvm_unreachable("Unhandled DeclRefExpr"); 1602 } 1603 1604 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1605 // __extension__ doesn't affect lvalue-ness. 1606 if (E->getOpcode() == UO_Extension) 1607 return EmitLValue(E->getSubExpr()); 1608 1609 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1610 switch (E->getOpcode()) { 1611 default: llvm_unreachable("Unknown unary operator lvalue!"); 1612 case UO_Deref: { 1613 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1614 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1615 1616 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1617 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1618 1619 // We should not generate __weak write barrier on indirect reference 1620 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1621 // But, we continue to generate __strong write barrier on indirect write 1622 // into a pointer to object. 1623 if (getContext().getLangOpts().ObjC1 && 1624 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1625 LV.isObjCWeak()) 1626 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1627 return LV; 1628 } 1629 case UO_Real: 1630 case UO_Imag: { 1631 LValue LV = EmitLValue(E->getSubExpr()); 1632 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1633 llvm::Value *Addr = LV.getAddress(); 1634 1635 // __real is valid on scalars. This is a faster way of testing that. 1636 // __imag can only produce an rvalue on scalars. 1637 if (E->getOpcode() == UO_Real && 1638 !cast<llvm::PointerType>(Addr->getType()) 1639 ->getElementType()->isStructTy()) { 1640 assert(E->getSubExpr()->getType()->isArithmeticType()); 1641 return LV; 1642 } 1643 1644 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1645 1646 unsigned Idx = E->getOpcode() == UO_Imag; 1647 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1648 Idx, "idx"), 1649 ExprTy); 1650 } 1651 case UO_PreInc: 1652 case UO_PreDec: { 1653 LValue LV = EmitLValue(E->getSubExpr()); 1654 bool isInc = E->getOpcode() == UO_PreInc; 1655 1656 if (E->getType()->isAnyComplexType()) 1657 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1658 else 1659 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1660 return LV; 1661 } 1662 } 1663 } 1664 1665 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1666 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1667 E->getType()); 1668 } 1669 1670 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1671 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1672 E->getType()); 1673 } 1674 1675 1676 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1677 switch (E->getIdentType()) { 1678 default: 1679 return EmitUnsupportedLValue(E, "predefined expression"); 1680 1681 case PredefinedExpr::Func: 1682 case PredefinedExpr::Function: 1683 case PredefinedExpr::PrettyFunction: { 1684 unsigned Type = E->getIdentType(); 1685 std::string GlobalVarName; 1686 1687 switch (Type) { 1688 default: llvm_unreachable("Invalid type"); 1689 case PredefinedExpr::Func: 1690 GlobalVarName = "__func__."; 1691 break; 1692 case PredefinedExpr::Function: 1693 GlobalVarName = "__FUNCTION__."; 1694 break; 1695 case PredefinedExpr::PrettyFunction: 1696 GlobalVarName = "__PRETTY_FUNCTION__."; 1697 break; 1698 } 1699 1700 StringRef FnName = CurFn->getName(); 1701 if (FnName.startswith("\01")) 1702 FnName = FnName.substr(1); 1703 GlobalVarName += FnName; 1704 1705 const Decl *CurDecl = CurCodeDecl; 1706 if (CurDecl == 0) 1707 CurDecl = getContext().getTranslationUnitDecl(); 1708 1709 std::string FunctionName = 1710 (isa<BlockDecl>(CurDecl) 1711 ? FnName.str() 1712 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1713 1714 llvm::Constant *C = 1715 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1716 return MakeAddrLValue(C, E->getType()); 1717 } 1718 } 1719 } 1720 1721 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1722 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1723 1724 // If we are not optimzing, don't collapse all calls to trap in the function 1725 // to the same call, that way, in the debugger they can see which operation 1726 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1727 // to just one per function to save on codesize. 1728 if (GCO.OptimizationLevel && TrapBB) 1729 return TrapBB; 1730 1731 llvm::BasicBlock *Cont = 0; 1732 if (HaveInsertPoint()) { 1733 Cont = createBasicBlock("cont"); 1734 EmitBranch(Cont); 1735 } 1736 TrapBB = createBasicBlock("trap"); 1737 EmitBlock(TrapBB); 1738 1739 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1740 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1741 TrapCall->setDoesNotReturn(); 1742 TrapCall->setDoesNotThrow(); 1743 Builder.CreateUnreachable(); 1744 1745 if (Cont) 1746 EmitBlock(Cont); 1747 return TrapBB; 1748 } 1749 1750 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1751 /// array to pointer, return the array subexpression. 1752 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1753 // If this isn't just an array->pointer decay, bail out. 1754 const CastExpr *CE = dyn_cast<CastExpr>(E); 1755 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1756 return 0; 1757 1758 // If this is a decay from variable width array, bail out. 1759 const Expr *SubExpr = CE->getSubExpr(); 1760 if (SubExpr->getType()->isVariableArrayType()) 1761 return 0; 1762 1763 return SubExpr; 1764 } 1765 1766 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1767 // The index must always be an integer, which is not an aggregate. Emit it. 1768 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1769 QualType IdxTy = E->getIdx()->getType(); 1770 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1771 1772 // If the base is a vector type, then we are forming a vector element lvalue 1773 // with this subscript. 1774 if (E->getBase()->getType()->isVectorType()) { 1775 // Emit the vector as an lvalue to get its address. 1776 LValue LHS = EmitLValue(E->getBase()); 1777 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1778 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1779 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1780 E->getBase()->getType(), LHS.getAlignment()); 1781 } 1782 1783 // Extend or truncate the index type to 32 or 64-bits. 1784 if (Idx->getType() != IntPtrTy) 1785 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1786 1787 // We know that the pointer points to a type of the correct size, unless the 1788 // size is a VLA or Objective-C interface. 1789 llvm::Value *Address = 0; 1790 CharUnits ArrayAlignment; 1791 if (const VariableArrayType *vla = 1792 getContext().getAsVariableArrayType(E->getType())) { 1793 // The base must be a pointer, which is not an aggregate. Emit 1794 // it. It needs to be emitted first in case it's what captures 1795 // the VLA bounds. 1796 Address = EmitScalarExpr(E->getBase()); 1797 1798 // The element count here is the total number of non-VLA elements. 1799 llvm::Value *numElements = getVLASize(vla).first; 1800 1801 // Effectively, the multiply by the VLA size is part of the GEP. 1802 // GEP indexes are signed, and scaling an index isn't permitted to 1803 // signed-overflow, so we use the same semantics for our explicit 1804 // multiply. We suppress this if overflow is not undefined behavior. 1805 if (getLangOpts().isSignedOverflowDefined()) { 1806 Idx = Builder.CreateMul(Idx, numElements); 1807 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1808 } else { 1809 Idx = Builder.CreateNSWMul(Idx, numElements); 1810 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1811 } 1812 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1813 // Indexing over an interface, as in "NSString *P; P[4];" 1814 llvm::Value *InterfaceSize = 1815 llvm::ConstantInt::get(Idx->getType(), 1816 getContext().getTypeSizeInChars(OIT).getQuantity()); 1817 1818 Idx = Builder.CreateMul(Idx, InterfaceSize); 1819 1820 // The base must be a pointer, which is not an aggregate. Emit it. 1821 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1822 Address = EmitCastToVoidPtr(Base); 1823 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1824 Address = Builder.CreateBitCast(Address, Base->getType()); 1825 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1826 // If this is A[i] where A is an array, the frontend will have decayed the 1827 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1828 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1829 // "gep x, i" here. Emit one "gep A, 0, i". 1830 assert(Array->getType()->isArrayType() && 1831 "Array to pointer decay must have array source type!"); 1832 LValue ArrayLV = EmitLValue(Array); 1833 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1834 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1835 llvm::Value *Args[] = { Zero, Idx }; 1836 1837 // Propagate the alignment from the array itself to the result. 1838 ArrayAlignment = ArrayLV.getAlignment(); 1839 1840 if (getContext().getLangOpts().isSignedOverflowDefined()) 1841 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1842 else 1843 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1844 } else { 1845 // The base must be a pointer, which is not an aggregate. Emit it. 1846 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1847 if (getContext().getLangOpts().isSignedOverflowDefined()) 1848 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1849 else 1850 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1851 } 1852 1853 QualType T = E->getBase()->getType()->getPointeeType(); 1854 assert(!T.isNull() && 1855 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1856 1857 1858 // Limit the alignment to that of the result type. 1859 LValue LV; 1860 if (!ArrayAlignment.isZero()) { 1861 CharUnits Align = getContext().getTypeAlignInChars(T); 1862 ArrayAlignment = std::min(Align, ArrayAlignment); 1863 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1864 } else { 1865 LV = MakeNaturalAlignAddrLValue(Address, T); 1866 } 1867 1868 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1869 1870 if (getContext().getLangOpts().ObjC1 && 1871 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1872 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1873 setObjCGCLValueClass(getContext(), E, LV); 1874 } 1875 return LV; 1876 } 1877 1878 static 1879 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1880 SmallVector<unsigned, 4> &Elts) { 1881 SmallVector<llvm::Constant*, 4> CElts; 1882 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1883 CElts.push_back(Builder.getInt32(Elts[i])); 1884 1885 return llvm::ConstantVector::get(CElts); 1886 } 1887 1888 LValue CodeGenFunction:: 1889 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1890 // Emit the base vector as an l-value. 1891 LValue Base; 1892 1893 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1894 if (E->isArrow()) { 1895 // If it is a pointer to a vector, emit the address and form an lvalue with 1896 // it. 1897 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1898 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1899 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1900 Base.getQuals().removeObjCGCAttr(); 1901 } else if (E->getBase()->isGLValue()) { 1902 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1903 // emit the base as an lvalue. 1904 assert(E->getBase()->getType()->isVectorType()); 1905 Base = EmitLValue(E->getBase()); 1906 } else { 1907 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1908 assert(E->getBase()->getType()->isVectorType() && 1909 "Result must be a vector"); 1910 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1911 1912 // Store the vector to memory (because LValue wants an address). 1913 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1914 Builder.CreateStore(Vec, VecMem); 1915 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1916 } 1917 1918 QualType type = 1919 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1920 1921 // Encode the element access list into a vector of unsigned indices. 1922 SmallVector<unsigned, 4> Indices; 1923 E->getEncodedElementAccess(Indices); 1924 1925 if (Base.isSimple()) { 1926 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1927 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 1928 Base.getAlignment()); 1929 } 1930 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1931 1932 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1933 SmallVector<llvm::Constant *, 4> CElts; 1934 1935 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1936 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1937 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1938 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 1939 Base.getAlignment()); 1940 } 1941 1942 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1943 Expr *BaseExpr = E->getBase(); 1944 1945 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1946 LValue BaseLV; 1947 if (E->isArrow()) 1948 BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr), 1949 BaseExpr->getType()->getPointeeType()); 1950 else 1951 BaseLV = EmitLValue(BaseExpr); 1952 1953 NamedDecl *ND = E->getMemberDecl(); 1954 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1955 LValue LV = EmitLValueForField(BaseLV, Field); 1956 setObjCGCLValueClass(getContext(), E, LV); 1957 return LV; 1958 } 1959 1960 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1961 return EmitGlobalVarDeclLValue(*this, E, VD); 1962 1963 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1964 return EmitFunctionDeclLValue(*this, E, FD); 1965 1966 llvm_unreachable("Unhandled member declaration!"); 1967 } 1968 1969 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1970 const FieldDecl *Field, 1971 unsigned CVRQualifiers) { 1972 const CGRecordLayout &RL = 1973 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1974 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1975 return LValue::MakeBitfield(BaseValue, Info, 1976 Field->getType().withCVRQualifiers(CVRQualifiers)); 1977 } 1978 1979 /// EmitLValueForAnonRecordField - Given that the field is a member of 1980 /// an anonymous struct or union buried inside a record, and given 1981 /// that the base value is a pointer to the enclosing record, derive 1982 /// an lvalue for the ultimate field. 1983 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1984 const IndirectFieldDecl *Field, 1985 unsigned CVRQualifiers) { 1986 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1987 IEnd = Field->chain_end(); 1988 while (true) { 1989 QualType RecordTy = 1990 getContext().getTypeDeclType(cast<FieldDecl>(*I)->getParent()); 1991 LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy), 1992 cast<FieldDecl>(*I)); 1993 if (++I == IEnd) return LV; 1994 1995 assert(LV.isSimple()); 1996 BaseValue = LV.getAddress(); 1997 CVRQualifiers |= LV.getVRQualifiers(); 1998 } 1999 } 2000 2001 LValue CodeGenFunction::EmitLValueForField(LValue base, 2002 const FieldDecl *field) { 2003 if (field->isBitField()) 2004 return EmitLValueForBitfield(base.getAddress(), field, 2005 base.getVRQualifiers()); 2006 2007 const RecordDecl *rec = field->getParent(); 2008 QualType type = field->getType(); 2009 CharUnits alignment = getContext().getDeclAlign(field); 2010 2011 // FIXME: It should be impossible to have an LValue without alignment for a 2012 // complete type. 2013 if (!base.getAlignment().isZero()) 2014 alignment = std::min(alignment, base.getAlignment()); 2015 2016 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2017 2018 llvm::Value *addr = base.getAddress(); 2019 unsigned cvr = base.getVRQualifiers(); 2020 if (rec->isUnion()) { 2021 // For unions, there is no pointer adjustment. 2022 assert(!type->isReferenceType() && "union has reference member"); 2023 } else { 2024 // For structs, we GEP to the field that the record layout suggests. 2025 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2026 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2027 2028 // If this is a reference field, load the reference right now. 2029 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2030 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2031 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2032 load->setAlignment(alignment.getQuantity()); 2033 2034 if (CGM.shouldUseTBAA()) { 2035 llvm::MDNode *tbaa; 2036 if (mayAlias) 2037 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2038 else 2039 tbaa = CGM.getTBAAInfo(type); 2040 CGM.DecorateInstruction(load, tbaa); 2041 } 2042 2043 addr = load; 2044 mayAlias = false; 2045 type = refType->getPointeeType(); 2046 if (type->isIncompleteType()) 2047 alignment = CharUnits(); 2048 else 2049 alignment = getContext().getTypeAlignInChars(type); 2050 cvr = 0; // qualifiers don't recursively apply to referencee 2051 } 2052 } 2053 2054 // Make sure that the address is pointing to the right type. This is critical 2055 // for both unions and structs. A union needs a bitcast, a struct element 2056 // will need a bitcast if the LLVM type laid out doesn't match the desired 2057 // type. 2058 addr = EmitBitCastOfLValueToProperType(*this, addr, 2059 CGM.getTypes().ConvertTypeForMem(type), 2060 field->getName()); 2061 2062 if (field->hasAttr<AnnotateAttr>()) 2063 addr = EmitFieldAnnotations(field, addr); 2064 2065 LValue LV = MakeAddrLValue(addr, type, alignment); 2066 LV.getQuals().addCVRQualifiers(cvr); 2067 2068 // __weak attribute on a field is ignored. 2069 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2070 LV.getQuals().removeObjCGCAttr(); 2071 2072 // Fields of may_alias structs act like 'char' for TBAA purposes. 2073 // FIXME: this should get propagated down through anonymous structs 2074 // and unions. 2075 if (mayAlias && LV.getTBAAInfo()) 2076 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2077 2078 return LV; 2079 } 2080 2081 LValue 2082 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2083 const FieldDecl *Field) { 2084 QualType FieldType = Field->getType(); 2085 2086 if (!FieldType->isReferenceType()) 2087 return EmitLValueForField(Base, Field); 2088 2089 const CGRecordLayout &RL = 2090 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2091 unsigned idx = RL.getLLVMFieldNo(Field); 2092 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2093 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2094 2095 // Make sure that the address is pointing to the right type. This is critical 2096 // for both unions and structs. A union needs a bitcast, a struct element 2097 // will need a bitcast if the LLVM type laid out doesn't match the desired 2098 // type. 2099 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2100 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2101 2102 CharUnits Alignment = getContext().getDeclAlign(Field); 2103 2104 // FIXME: It should be impossible to have an LValue without alignment for a 2105 // complete type. 2106 if (!Base.getAlignment().isZero()) 2107 Alignment = std::min(Alignment, Base.getAlignment()); 2108 2109 return MakeAddrLValue(V, FieldType, Alignment); 2110 } 2111 2112 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2113 if (E->isFileScope()) { 2114 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2115 return MakeAddrLValue(GlobalPtr, E->getType()); 2116 } 2117 2118 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2119 const Expr *InitExpr = E->getInitializer(); 2120 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2121 2122 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2123 /*Init*/ true); 2124 2125 return Result; 2126 } 2127 2128 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2129 if (!E->isGLValue()) 2130 // Initializing an aggregate temporary in C++11: T{...}. 2131 return EmitAggExprToLValue(E); 2132 2133 // An lvalue initializer list must be initializing a reference. 2134 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2135 return EmitLValue(E->getInit(0)); 2136 } 2137 2138 LValue CodeGenFunction:: 2139 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2140 if (!expr->isGLValue()) { 2141 // ?: here should be an aggregate. 2142 assert((hasAggregateLLVMType(expr->getType()) && 2143 !expr->getType()->isAnyComplexType()) && 2144 "Unexpected conditional operator!"); 2145 return EmitAggExprToLValue(expr); 2146 } 2147 2148 OpaqueValueMapping binding(*this, expr); 2149 2150 const Expr *condExpr = expr->getCond(); 2151 bool CondExprBool; 2152 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2153 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2154 if (!CondExprBool) std::swap(live, dead); 2155 2156 if (!ContainsLabel(dead)) 2157 return EmitLValue(live); 2158 } 2159 2160 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2161 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2162 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2163 2164 ConditionalEvaluation eval(*this); 2165 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2166 2167 // Any temporaries created here are conditional. 2168 EmitBlock(lhsBlock); 2169 eval.begin(*this); 2170 LValue lhs = EmitLValue(expr->getTrueExpr()); 2171 eval.end(*this); 2172 2173 if (!lhs.isSimple()) 2174 return EmitUnsupportedLValue(expr, "conditional operator"); 2175 2176 lhsBlock = Builder.GetInsertBlock(); 2177 Builder.CreateBr(contBlock); 2178 2179 // Any temporaries created here are conditional. 2180 EmitBlock(rhsBlock); 2181 eval.begin(*this); 2182 LValue rhs = EmitLValue(expr->getFalseExpr()); 2183 eval.end(*this); 2184 if (!rhs.isSimple()) 2185 return EmitUnsupportedLValue(expr, "conditional operator"); 2186 rhsBlock = Builder.GetInsertBlock(); 2187 2188 EmitBlock(contBlock); 2189 2190 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2191 "cond-lvalue"); 2192 phi->addIncoming(lhs.getAddress(), lhsBlock); 2193 phi->addIncoming(rhs.getAddress(), rhsBlock); 2194 return MakeAddrLValue(phi, expr->getType()); 2195 } 2196 2197 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2198 /// type. If the cast is to a reference, we can have the usual lvalue result, 2199 /// otherwise if a cast is needed by the code generator in an lvalue context, 2200 /// then it must mean that we need the address of an aggregate in order to 2201 /// access one of its members. This can happen for all the reasons that casts 2202 /// are permitted with aggregate result, including noop aggregate casts, and 2203 /// cast from scalar to union. 2204 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2205 switch (E->getCastKind()) { 2206 case CK_ToVoid: 2207 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2208 2209 case CK_Dependent: 2210 llvm_unreachable("dependent cast kind in IR gen!"); 2211 2212 // These two casts are currently treated as no-ops, although they could 2213 // potentially be real operations depending on the target's ABI. 2214 case CK_NonAtomicToAtomic: 2215 case CK_AtomicToNonAtomic: 2216 2217 case CK_NoOp: 2218 case CK_LValueToRValue: 2219 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2220 || E->getType()->isRecordType()) 2221 return EmitLValue(E->getSubExpr()); 2222 // Fall through to synthesize a temporary. 2223 2224 case CK_BitCast: 2225 case CK_ArrayToPointerDecay: 2226 case CK_FunctionToPointerDecay: 2227 case CK_NullToMemberPointer: 2228 case CK_NullToPointer: 2229 case CK_IntegralToPointer: 2230 case CK_PointerToIntegral: 2231 case CK_PointerToBoolean: 2232 case CK_VectorSplat: 2233 case CK_IntegralCast: 2234 case CK_IntegralToBoolean: 2235 case CK_IntegralToFloating: 2236 case CK_FloatingToIntegral: 2237 case CK_FloatingToBoolean: 2238 case CK_FloatingCast: 2239 case CK_FloatingRealToComplex: 2240 case CK_FloatingComplexToReal: 2241 case CK_FloatingComplexToBoolean: 2242 case CK_FloatingComplexCast: 2243 case CK_FloatingComplexToIntegralComplex: 2244 case CK_IntegralRealToComplex: 2245 case CK_IntegralComplexToReal: 2246 case CK_IntegralComplexToBoolean: 2247 case CK_IntegralComplexCast: 2248 case CK_IntegralComplexToFloatingComplex: 2249 case CK_DerivedToBaseMemberPointer: 2250 case CK_BaseToDerivedMemberPointer: 2251 case CK_MemberPointerToBoolean: 2252 case CK_ReinterpretMemberPointer: 2253 case CK_AnyPointerToBlockPointerCast: 2254 case CK_ARCProduceObject: 2255 case CK_ARCConsumeObject: 2256 case CK_ARCReclaimReturnedObject: 2257 case CK_ARCExtendBlockObject: 2258 case CK_CopyAndAutoreleaseBlockObject: { 2259 // These casts only produce lvalues when we're binding a reference to a 2260 // temporary realized from a (converted) pure rvalue. Emit the expression 2261 // as a value, copy it into a temporary, and return an lvalue referring to 2262 // that temporary. 2263 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2264 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2265 return MakeAddrLValue(V, E->getType()); 2266 } 2267 2268 case CK_Dynamic: { 2269 LValue LV = EmitLValue(E->getSubExpr()); 2270 llvm::Value *V = LV.getAddress(); 2271 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2272 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2273 } 2274 2275 case CK_ConstructorConversion: 2276 case CK_UserDefinedConversion: 2277 case CK_CPointerToObjCPointerCast: 2278 case CK_BlockPointerToObjCPointerCast: 2279 return EmitLValue(E->getSubExpr()); 2280 2281 case CK_UncheckedDerivedToBase: 2282 case CK_DerivedToBase: { 2283 const RecordType *DerivedClassTy = 2284 E->getSubExpr()->getType()->getAs<RecordType>(); 2285 CXXRecordDecl *DerivedClassDecl = 2286 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2287 2288 LValue LV = EmitLValue(E->getSubExpr()); 2289 llvm::Value *This = LV.getAddress(); 2290 2291 // Perform the derived-to-base conversion 2292 llvm::Value *Base = 2293 GetAddressOfBaseClass(This, DerivedClassDecl, 2294 E->path_begin(), E->path_end(), 2295 /*NullCheckValue=*/false); 2296 2297 return MakeAddrLValue(Base, E->getType()); 2298 } 2299 case CK_ToUnion: 2300 return EmitAggExprToLValue(E); 2301 case CK_BaseToDerived: { 2302 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2303 CXXRecordDecl *DerivedClassDecl = 2304 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2305 2306 LValue LV = EmitLValue(E->getSubExpr()); 2307 2308 // Perform the base-to-derived conversion 2309 llvm::Value *Derived = 2310 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2311 E->path_begin(), E->path_end(), 2312 /*NullCheckValue=*/false); 2313 2314 return MakeAddrLValue(Derived, E->getType()); 2315 } 2316 case CK_LValueBitCast: { 2317 // This must be a reinterpret_cast (or c-style equivalent). 2318 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2319 2320 LValue LV = EmitLValue(E->getSubExpr()); 2321 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2322 ConvertType(CE->getTypeAsWritten())); 2323 return MakeAddrLValue(V, E->getType()); 2324 } 2325 case CK_ObjCObjectLValueCast: { 2326 LValue LV = EmitLValue(E->getSubExpr()); 2327 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2328 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2329 ConvertType(ToType)); 2330 return MakeAddrLValue(V, E->getType()); 2331 } 2332 } 2333 2334 llvm_unreachable("Unhandled lvalue cast kind?"); 2335 } 2336 2337 LValue CodeGenFunction::EmitNullInitializationLValue( 2338 const CXXScalarValueInitExpr *E) { 2339 QualType Ty = E->getType(); 2340 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2341 EmitNullInitialization(LV.getAddress(), Ty); 2342 return LV; 2343 } 2344 2345 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2346 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2347 return getOpaqueLValueMapping(e); 2348 } 2349 2350 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2351 const MaterializeTemporaryExpr *E) { 2352 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2353 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2354 } 2355 2356 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2357 const FieldDecl *FD) { 2358 QualType FT = FD->getType(); 2359 LValue FieldLV = EmitLValueForField(LV, FD); 2360 if (FT->isAnyComplexType()) 2361 return RValue::getComplex( 2362 LoadComplexFromAddr(FieldLV.getAddress(), 2363 FieldLV.isVolatileQualified())); 2364 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2365 return FieldLV.asAggregateRValue(); 2366 2367 return EmitLoadOfLValue(FieldLV); 2368 } 2369 2370 //===--------------------------------------------------------------------===// 2371 // Expression Emission 2372 //===--------------------------------------------------------------------===// 2373 2374 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2375 ReturnValueSlot ReturnValue) { 2376 if (CGDebugInfo *DI = getDebugInfo()) 2377 DI->EmitLocation(Builder, E->getLocStart()); 2378 2379 // Builtins never have block type. 2380 if (E->getCallee()->getType()->isBlockPointerType()) 2381 return EmitBlockCallExpr(E, ReturnValue); 2382 2383 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2384 return EmitCXXMemberCallExpr(CE, ReturnValue); 2385 2386 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2387 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2388 2389 const Decl *TargetDecl = E->getCalleeDecl(); 2390 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2391 if (unsigned builtinID = FD->getBuiltinID()) 2392 return EmitBuiltinExpr(FD, builtinID, E); 2393 } 2394 2395 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2396 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2397 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2398 2399 if (const CXXPseudoDestructorExpr *PseudoDtor 2400 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2401 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2402 if (getContext().getLangOpts().ObjCAutoRefCount && 2403 DestroyedType->isObjCLifetimeType() && 2404 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2405 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2406 // Automatic Reference Counting: 2407 // If the pseudo-expression names a retainable object with weak or 2408 // strong lifetime, the object shall be released. 2409 Expr *BaseExpr = PseudoDtor->getBase(); 2410 llvm::Value *BaseValue = NULL; 2411 Qualifiers BaseQuals; 2412 2413 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2414 if (PseudoDtor->isArrow()) { 2415 BaseValue = EmitScalarExpr(BaseExpr); 2416 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2417 BaseQuals = PTy->getPointeeType().getQualifiers(); 2418 } else { 2419 LValue BaseLV = EmitLValue(BaseExpr); 2420 BaseValue = BaseLV.getAddress(); 2421 QualType BaseTy = BaseExpr->getType(); 2422 BaseQuals = BaseTy.getQualifiers(); 2423 } 2424 2425 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2426 case Qualifiers::OCL_None: 2427 case Qualifiers::OCL_ExplicitNone: 2428 case Qualifiers::OCL_Autoreleasing: 2429 break; 2430 2431 case Qualifiers::OCL_Strong: 2432 EmitARCRelease(Builder.CreateLoad(BaseValue, 2433 PseudoDtor->getDestroyedType().isVolatileQualified()), 2434 /*precise*/ true); 2435 break; 2436 2437 case Qualifiers::OCL_Weak: 2438 EmitARCDestroyWeak(BaseValue); 2439 break; 2440 } 2441 } else { 2442 // C++ [expr.pseudo]p1: 2443 // The result shall only be used as the operand for the function call 2444 // operator (), and the result of such a call has type void. The only 2445 // effect is the evaluation of the postfix-expression before the dot or 2446 // arrow. 2447 EmitScalarExpr(E->getCallee()); 2448 } 2449 2450 return RValue::get(0); 2451 } 2452 2453 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2454 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2455 E->arg_begin(), E->arg_end(), TargetDecl); 2456 } 2457 2458 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2459 // Comma expressions just emit their LHS then their RHS as an l-value. 2460 if (E->getOpcode() == BO_Comma) { 2461 EmitIgnoredExpr(E->getLHS()); 2462 EnsureInsertPoint(); 2463 return EmitLValue(E->getRHS()); 2464 } 2465 2466 if (E->getOpcode() == BO_PtrMemD || 2467 E->getOpcode() == BO_PtrMemI) 2468 return EmitPointerToDataMemberBinaryExpr(E); 2469 2470 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2471 2472 // Note that in all of these cases, __block variables need the RHS 2473 // evaluated first just in case the variable gets moved by the RHS. 2474 2475 if (!hasAggregateLLVMType(E->getType())) { 2476 switch (E->getLHS()->getType().getObjCLifetime()) { 2477 case Qualifiers::OCL_Strong: 2478 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2479 2480 case Qualifiers::OCL_Autoreleasing: 2481 return EmitARCStoreAutoreleasing(E).first; 2482 2483 // No reason to do any of these differently. 2484 case Qualifiers::OCL_None: 2485 case Qualifiers::OCL_ExplicitNone: 2486 case Qualifiers::OCL_Weak: 2487 break; 2488 } 2489 2490 RValue RV = EmitAnyExpr(E->getRHS()); 2491 LValue LV = EmitLValue(E->getLHS()); 2492 EmitStoreThroughLValue(RV, LV); 2493 return LV; 2494 } 2495 2496 if (E->getType()->isAnyComplexType()) 2497 return EmitComplexAssignmentLValue(E); 2498 2499 return EmitAggExprToLValue(E); 2500 } 2501 2502 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2503 RValue RV = EmitCallExpr(E); 2504 2505 if (!RV.isScalar()) 2506 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2507 2508 assert(E->getCallReturnType()->isReferenceType() && 2509 "Can't have a scalar return unless the return type is a " 2510 "reference type!"); 2511 2512 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2513 } 2514 2515 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2516 // FIXME: This shouldn't require another copy. 2517 return EmitAggExprToLValue(E); 2518 } 2519 2520 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2521 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2522 && "binding l-value to type which needs a temporary"); 2523 AggValueSlot Slot = CreateAggTemp(E->getType()); 2524 EmitCXXConstructExpr(E, Slot); 2525 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2526 } 2527 2528 LValue 2529 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2530 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2531 } 2532 2533 LValue 2534 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2535 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2536 Slot.setExternallyDestructed(); 2537 EmitAggExpr(E->getSubExpr(), Slot); 2538 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2539 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2540 } 2541 2542 LValue 2543 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2544 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2545 EmitLambdaExpr(E, Slot); 2546 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2547 } 2548 2549 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2550 RValue RV = EmitObjCMessageExpr(E); 2551 2552 if (!RV.isScalar()) 2553 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2554 2555 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2556 "Can't have a scalar return unless the return type is a " 2557 "reference type!"); 2558 2559 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2560 } 2561 2562 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2563 llvm::Value *V = 2564 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2565 return MakeAddrLValue(V, E->getType()); 2566 } 2567 2568 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2569 const ObjCIvarDecl *Ivar) { 2570 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2571 } 2572 2573 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2574 llvm::Value *BaseValue, 2575 const ObjCIvarDecl *Ivar, 2576 unsigned CVRQualifiers) { 2577 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2578 Ivar, CVRQualifiers); 2579 } 2580 2581 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2582 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2583 llvm::Value *BaseValue = 0; 2584 const Expr *BaseExpr = E->getBase(); 2585 Qualifiers BaseQuals; 2586 QualType ObjectTy; 2587 if (E->isArrow()) { 2588 BaseValue = EmitScalarExpr(BaseExpr); 2589 ObjectTy = BaseExpr->getType()->getPointeeType(); 2590 BaseQuals = ObjectTy.getQualifiers(); 2591 } else { 2592 LValue BaseLV = EmitLValue(BaseExpr); 2593 // FIXME: this isn't right for bitfields. 2594 BaseValue = BaseLV.getAddress(); 2595 ObjectTy = BaseExpr->getType(); 2596 BaseQuals = ObjectTy.getQualifiers(); 2597 } 2598 2599 LValue LV = 2600 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2601 BaseQuals.getCVRQualifiers()); 2602 setObjCGCLValueClass(getContext(), E, LV); 2603 return LV; 2604 } 2605 2606 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2607 // Can only get l-value for message expression returning aggregate type 2608 RValue RV = EmitAnyExprToTemp(E); 2609 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2610 } 2611 2612 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2613 ReturnValueSlot ReturnValue, 2614 CallExpr::const_arg_iterator ArgBeg, 2615 CallExpr::const_arg_iterator ArgEnd, 2616 const Decl *TargetDecl) { 2617 // Get the actual function type. The callee type will always be a pointer to 2618 // function type or a block pointer type. 2619 assert(CalleeType->isFunctionPointerType() && 2620 "Call must have function pointer type!"); 2621 2622 CalleeType = getContext().getCanonicalType(CalleeType); 2623 2624 const FunctionType *FnType 2625 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2626 2627 CallArgList Args; 2628 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2629 2630 const CGFunctionInfo &FnInfo = 2631 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2632 2633 // C99 6.5.2.2p6: 2634 // If the expression that denotes the called function has a type 2635 // that does not include a prototype, [the default argument 2636 // promotions are performed]. If the number of arguments does not 2637 // equal the number of parameters, the behavior is undefined. If 2638 // the function is defined with a type that includes a prototype, 2639 // and either the prototype ends with an ellipsis (, ...) or the 2640 // types of the arguments after promotion are not compatible with 2641 // the types of the parameters, the behavior is undefined. If the 2642 // function is defined with a type that does not include a 2643 // prototype, and the types of the arguments after promotion are 2644 // not compatible with those of the parameters after promotion, 2645 // the behavior is undefined [except in some trivial cases]. 2646 // That is, in the general case, we should assume that a call 2647 // through an unprototyped function type works like a *non-variadic* 2648 // call. The way we make this work is to cast to the exact type 2649 // of the promoted arguments. 2650 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2651 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2652 CalleeTy = CalleeTy->getPointerTo(); 2653 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2654 } 2655 2656 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2657 } 2658 2659 LValue CodeGenFunction:: 2660 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2661 llvm::Value *BaseV; 2662 if (E->getOpcode() == BO_PtrMemI) 2663 BaseV = EmitScalarExpr(E->getLHS()); 2664 else 2665 BaseV = EmitLValue(E->getLHS()).getAddress(); 2666 2667 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2668 2669 const MemberPointerType *MPT 2670 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2671 2672 llvm::Value *AddV = 2673 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2674 2675 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2676 } 2677 2678 static void 2679 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2680 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2681 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2682 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2683 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 2684 2685 switch (E->getOp()) { 2686 case AtomicExpr::AO__c11_atomic_init: 2687 llvm_unreachable("Already handled!"); 2688 2689 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2690 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2691 case AtomicExpr::AO__atomic_compare_exchange: 2692 case AtomicExpr::AO__atomic_compare_exchange_n: { 2693 // Note that cmpxchg only supports specifying one ordering and 2694 // doesn't support weak cmpxchg, at least at the moment. 2695 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2696 LoadVal1->setAlignment(Align); 2697 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2698 LoadVal2->setAlignment(Align); 2699 llvm::AtomicCmpXchgInst *CXI = 2700 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2701 CXI->setVolatile(E->isVolatile()); 2702 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2703 StoreVal1->setAlignment(Align); 2704 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2705 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2706 return; 2707 } 2708 2709 case AtomicExpr::AO__c11_atomic_load: 2710 case AtomicExpr::AO__atomic_load_n: 2711 case AtomicExpr::AO__atomic_load: { 2712 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2713 Load->setAtomic(Order); 2714 Load->setAlignment(Size); 2715 Load->setVolatile(E->isVolatile()); 2716 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2717 StoreDest->setAlignment(Align); 2718 return; 2719 } 2720 2721 case AtomicExpr::AO__c11_atomic_store: 2722 case AtomicExpr::AO__atomic_store: 2723 case AtomicExpr::AO__atomic_store_n: { 2724 assert(!Dest && "Store does not return a value"); 2725 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2726 LoadVal1->setAlignment(Align); 2727 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2728 Store->setAtomic(Order); 2729 Store->setAlignment(Size); 2730 Store->setVolatile(E->isVolatile()); 2731 return; 2732 } 2733 2734 case AtomicExpr::AO__c11_atomic_exchange: 2735 case AtomicExpr::AO__atomic_exchange_n: 2736 case AtomicExpr::AO__atomic_exchange: 2737 Op = llvm::AtomicRMWInst::Xchg; 2738 break; 2739 2740 case AtomicExpr::AO__atomic_add_fetch: 2741 PostOp = llvm::Instruction::Add; 2742 // Fall through. 2743 case AtomicExpr::AO__c11_atomic_fetch_add: 2744 case AtomicExpr::AO__atomic_fetch_add: 2745 Op = llvm::AtomicRMWInst::Add; 2746 break; 2747 2748 case AtomicExpr::AO__atomic_sub_fetch: 2749 PostOp = llvm::Instruction::Sub; 2750 // Fall through. 2751 case AtomicExpr::AO__c11_atomic_fetch_sub: 2752 case AtomicExpr::AO__atomic_fetch_sub: 2753 Op = llvm::AtomicRMWInst::Sub; 2754 break; 2755 2756 case AtomicExpr::AO__atomic_and_fetch: 2757 PostOp = llvm::Instruction::And; 2758 // Fall through. 2759 case AtomicExpr::AO__c11_atomic_fetch_and: 2760 case AtomicExpr::AO__atomic_fetch_and: 2761 Op = llvm::AtomicRMWInst::And; 2762 break; 2763 2764 case AtomicExpr::AO__atomic_or_fetch: 2765 PostOp = llvm::Instruction::Or; 2766 // Fall through. 2767 case AtomicExpr::AO__c11_atomic_fetch_or: 2768 case AtomicExpr::AO__atomic_fetch_or: 2769 Op = llvm::AtomicRMWInst::Or; 2770 break; 2771 2772 case AtomicExpr::AO__atomic_xor_fetch: 2773 PostOp = llvm::Instruction::Xor; 2774 // Fall through. 2775 case AtomicExpr::AO__c11_atomic_fetch_xor: 2776 case AtomicExpr::AO__atomic_fetch_xor: 2777 Op = llvm::AtomicRMWInst::Xor; 2778 break; 2779 2780 case AtomicExpr::AO__atomic_nand_fetch: 2781 PostOp = llvm::Instruction::And; 2782 // Fall through. 2783 case AtomicExpr::AO__atomic_fetch_nand: 2784 Op = llvm::AtomicRMWInst::Nand; 2785 break; 2786 } 2787 2788 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2789 LoadVal1->setAlignment(Align); 2790 llvm::AtomicRMWInst *RMWI = 2791 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2792 RMWI->setVolatile(E->isVolatile()); 2793 2794 // For __atomic_*_fetch operations, perform the operation again to 2795 // determine the value which was written. 2796 llvm::Value *Result = RMWI; 2797 if (PostOp) 2798 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 2799 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 2800 Result = CGF.Builder.CreateNot(Result); 2801 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 2802 StoreDest->setAlignment(Align); 2803 } 2804 2805 // This function emits any expression (scalar, complex, or aggregate) 2806 // into a temporary alloca. 2807 static llvm::Value * 2808 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2809 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2810 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2811 /*Init*/ true); 2812 return DeclPtr; 2813 } 2814 2815 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2816 llvm::Value *Dest) { 2817 if (Ty->isAnyComplexType()) 2818 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2819 if (CGF.hasAggregateLLVMType(Ty)) 2820 return RValue::getAggregate(Dest); 2821 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2822 } 2823 2824 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2825 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2826 QualType MemTy = AtomicTy; 2827 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 2828 MemTy = AT->getValueType(); 2829 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2830 uint64_t Size = sizeChars.getQuantity(); 2831 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2832 unsigned Align = alignChars.getQuantity(); 2833 unsigned MaxInlineWidth = 2834 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2835 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2836 2837 2838 2839 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2840 Ptr = EmitScalarExpr(E->getPtr()); 2841 2842 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 2843 assert(!Dest && "Init does not return a value"); 2844 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 2845 QualType PointeeType 2846 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 2847 EmitScalarInit(EmitScalarExpr(E->getVal1()), 2848 LValue::MakeAddr(Ptr, PointeeType, alignChars, 2849 getContext())); 2850 } else if (E->getType()->isAnyComplexType()) { 2851 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 2852 } else { 2853 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 2854 AtomicTy.getQualifiers(), 2855 AggValueSlot::IsNotDestructed, 2856 AggValueSlot::DoesNotNeedGCBarriers, 2857 AggValueSlot::IsNotAliased); 2858 EmitAggExpr(E->getVal1(), Slot); 2859 } 2860 return RValue::get(0); 2861 } 2862 2863 Order = EmitScalarExpr(E->getOrder()); 2864 2865 switch (E->getOp()) { 2866 case AtomicExpr::AO__c11_atomic_init: 2867 llvm_unreachable("Already handled!"); 2868 2869 case AtomicExpr::AO__c11_atomic_load: 2870 case AtomicExpr::AO__atomic_load_n: 2871 break; 2872 2873 case AtomicExpr::AO__atomic_load: 2874 Dest = EmitScalarExpr(E->getVal1()); 2875 break; 2876 2877 case AtomicExpr::AO__atomic_store: 2878 Val1 = EmitScalarExpr(E->getVal1()); 2879 break; 2880 2881 case AtomicExpr::AO__atomic_exchange: 2882 Val1 = EmitScalarExpr(E->getVal1()); 2883 Dest = EmitScalarExpr(E->getVal2()); 2884 break; 2885 2886 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2887 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2888 case AtomicExpr::AO__atomic_compare_exchange_n: 2889 case AtomicExpr::AO__atomic_compare_exchange: 2890 Val1 = EmitScalarExpr(E->getVal1()); 2891 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 2892 Val2 = EmitScalarExpr(E->getVal2()); 2893 else 2894 Val2 = EmitValToTemp(*this, E->getVal2()); 2895 OrderFail = EmitScalarExpr(E->getOrderFail()); 2896 // Evaluate and discard the 'weak' argument. 2897 if (E->getNumSubExprs() == 6) 2898 EmitScalarExpr(E->getWeak()); 2899 break; 2900 2901 case AtomicExpr::AO__c11_atomic_fetch_add: 2902 case AtomicExpr::AO__c11_atomic_fetch_sub: 2903 if (MemTy->isPointerType()) { 2904 // For pointer arithmetic, we're required to do a bit of math: 2905 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 2906 // ... but only for the C11 builtins. The GNU builtins expect the 2907 // user to multiply by sizeof(T). 2908 QualType Val1Ty = E->getVal1()->getType(); 2909 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2910 CharUnits PointeeIncAmt = 2911 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2912 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2913 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2914 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2915 break; 2916 } 2917 // Fall through. 2918 case AtomicExpr::AO__atomic_fetch_add: 2919 case AtomicExpr::AO__atomic_fetch_sub: 2920 case AtomicExpr::AO__atomic_add_fetch: 2921 case AtomicExpr::AO__atomic_sub_fetch: 2922 case AtomicExpr::AO__c11_atomic_store: 2923 case AtomicExpr::AO__c11_atomic_exchange: 2924 case AtomicExpr::AO__atomic_store_n: 2925 case AtomicExpr::AO__atomic_exchange_n: 2926 case AtomicExpr::AO__c11_atomic_fetch_and: 2927 case AtomicExpr::AO__c11_atomic_fetch_or: 2928 case AtomicExpr::AO__c11_atomic_fetch_xor: 2929 case AtomicExpr::AO__atomic_fetch_and: 2930 case AtomicExpr::AO__atomic_fetch_or: 2931 case AtomicExpr::AO__atomic_fetch_xor: 2932 case AtomicExpr::AO__atomic_fetch_nand: 2933 case AtomicExpr::AO__atomic_and_fetch: 2934 case AtomicExpr::AO__atomic_or_fetch: 2935 case AtomicExpr::AO__atomic_xor_fetch: 2936 case AtomicExpr::AO__atomic_nand_fetch: 2937 Val1 = EmitValToTemp(*this, E->getVal1()); 2938 break; 2939 } 2940 2941 if (!E->getType()->isVoidType() && !Dest) 2942 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2943 2944 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2945 if (UseLibcall) { 2946 2947 llvm::SmallVector<QualType, 5> Params; 2948 CallArgList Args; 2949 // Size is always the first parameter 2950 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2951 getContext().getSizeType()); 2952 // Atomic address is always the second parameter 2953 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2954 getContext().VoidPtrTy); 2955 2956 const char* LibCallName; 2957 QualType RetTy = getContext().VoidTy; 2958 switch (E->getOp()) { 2959 // There is only one libcall for compare an exchange, because there is no 2960 // optimisation benefit possible from a libcall version of a weak compare 2961 // and exchange. 2962 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 2963 // void *desired, int success, int failure) 2964 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2965 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2966 case AtomicExpr::AO__atomic_compare_exchange: 2967 case AtomicExpr::AO__atomic_compare_exchange_n: 2968 LibCallName = "__atomic_compare_exchange"; 2969 RetTy = getContext().BoolTy; 2970 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2971 getContext().VoidPtrTy); 2972 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2973 getContext().VoidPtrTy); 2974 Args.add(RValue::get(Order), 2975 getContext().IntTy); 2976 Order = OrderFail; 2977 break; 2978 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 2979 // int order) 2980 case AtomicExpr::AO__c11_atomic_exchange: 2981 case AtomicExpr::AO__atomic_exchange_n: 2982 case AtomicExpr::AO__atomic_exchange: 2983 LibCallName = "__atomic_exchange"; 2984 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2985 getContext().VoidPtrTy); 2986 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2987 getContext().VoidPtrTy); 2988 break; 2989 // void __atomic_store(size_t size, void *mem, void *val, int order) 2990 case AtomicExpr::AO__c11_atomic_store: 2991 case AtomicExpr::AO__atomic_store: 2992 case AtomicExpr::AO__atomic_store_n: 2993 LibCallName = "__atomic_store"; 2994 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2995 getContext().VoidPtrTy); 2996 break; 2997 // void __atomic_load(size_t size, void *mem, void *return, int order) 2998 case AtomicExpr::AO__c11_atomic_load: 2999 case AtomicExpr::AO__atomic_load: 3000 case AtomicExpr::AO__atomic_load_n: 3001 LibCallName = "__atomic_load"; 3002 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3003 getContext().VoidPtrTy); 3004 break; 3005 #if 0 3006 // These are only defined for 1-16 byte integers. It is not clear what 3007 // their semantics would be on anything else... 3008 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3009 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3010 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3011 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3012 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3013 #endif 3014 default: return EmitUnsupportedRValue(E, "atomic library call"); 3015 } 3016 // order is always the last parameter 3017 Args.add(RValue::get(Order), 3018 getContext().IntTy); 3019 3020 const CGFunctionInfo &FuncInfo = 3021 CGM.getTypes().arrangeFunctionCall(RetTy, Args, 3022 FunctionType::ExtInfo(), RequiredArgs::All); 3023 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3024 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3025 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3026 if (E->isCmpXChg()) 3027 return Res; 3028 if (E->getType()->isVoidType()) 3029 return RValue::get(0); 3030 return ConvertTempToRValue(*this, E->getType(), Dest); 3031 } 3032 3033 llvm::Type *IPtrTy = 3034 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3035 llvm::Value *OrigDest = Dest; 3036 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3037 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3038 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3039 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3040 3041 if (isa<llvm::ConstantInt>(Order)) { 3042 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3043 switch (ord) { 3044 case 0: // memory_order_relaxed 3045 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3046 llvm::Monotonic); 3047 break; 3048 case 1: // memory_order_consume 3049 case 2: // memory_order_acquire 3050 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3051 llvm::Acquire); 3052 break; 3053 case 3: // memory_order_release 3054 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3055 llvm::Release); 3056 break; 3057 case 4: // memory_order_acq_rel 3058 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3059 llvm::AcquireRelease); 3060 break; 3061 case 5: // memory_order_seq_cst 3062 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3063 llvm::SequentiallyConsistent); 3064 break; 3065 default: // invalid order 3066 // We should not ever get here normally, but it's hard to 3067 // enforce that in general. 3068 break; 3069 } 3070 if (E->getType()->isVoidType()) 3071 return RValue::get(0); 3072 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3073 } 3074 3075 // Long case, when Order isn't obviously constant. 3076 3077 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3078 E->getOp() == AtomicExpr::AO__atomic_store || 3079 E->getOp() == AtomicExpr::AO__atomic_store_n; 3080 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3081 E->getOp() == AtomicExpr::AO__atomic_load || 3082 E->getOp() == AtomicExpr::AO__atomic_load_n; 3083 3084 // Create all the relevant BB's 3085 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3086 *AcqRelBB = 0, *SeqCstBB = 0; 3087 MonotonicBB = createBasicBlock("monotonic", CurFn); 3088 if (!IsStore) 3089 AcquireBB = createBasicBlock("acquire", CurFn); 3090 if (!IsLoad) 3091 ReleaseBB = createBasicBlock("release", CurFn); 3092 if (!IsLoad && !IsStore) 3093 AcqRelBB = createBasicBlock("acqrel", CurFn); 3094 SeqCstBB = createBasicBlock("seqcst", CurFn); 3095 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3096 3097 // Create the switch for the split 3098 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3099 // doesn't matter unless someone is crazy enough to use something that 3100 // doesn't fold to a constant for the ordering. 3101 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3102 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3103 3104 // Emit all the different atomics 3105 Builder.SetInsertPoint(MonotonicBB); 3106 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3107 llvm::Monotonic); 3108 Builder.CreateBr(ContBB); 3109 if (!IsStore) { 3110 Builder.SetInsertPoint(AcquireBB); 3111 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3112 llvm::Acquire); 3113 Builder.CreateBr(ContBB); 3114 SI->addCase(Builder.getInt32(1), AcquireBB); 3115 SI->addCase(Builder.getInt32(2), AcquireBB); 3116 } 3117 if (!IsLoad) { 3118 Builder.SetInsertPoint(ReleaseBB); 3119 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3120 llvm::Release); 3121 Builder.CreateBr(ContBB); 3122 SI->addCase(Builder.getInt32(3), ReleaseBB); 3123 } 3124 if (!IsLoad && !IsStore) { 3125 Builder.SetInsertPoint(AcqRelBB); 3126 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3127 llvm::AcquireRelease); 3128 Builder.CreateBr(ContBB); 3129 SI->addCase(Builder.getInt32(4), AcqRelBB); 3130 } 3131 Builder.SetInsertPoint(SeqCstBB); 3132 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3133 llvm::SequentiallyConsistent); 3134 Builder.CreateBr(ContBB); 3135 SI->addCase(Builder.getInt32(5), SeqCstBB); 3136 3137 // Cleanup and return 3138 Builder.SetInsertPoint(ContBB); 3139 if (E->getType()->isVoidType()) 3140 return RValue::get(0); 3141 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3142 } 3143 3144 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3145 assert(Val->getType()->isFPOrFPVectorTy()); 3146 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3147 return; 3148 3149 llvm::MDBuilder MDHelper(getLLVMContext()); 3150 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3151 3152 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3153 } 3154 3155 namespace { 3156 struct LValueOrRValue { 3157 LValue LV; 3158 RValue RV; 3159 }; 3160 } 3161 3162 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3163 const PseudoObjectExpr *E, 3164 bool forLValue, 3165 AggValueSlot slot) { 3166 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3167 3168 // Find the result expression, if any. 3169 const Expr *resultExpr = E->getResultExpr(); 3170 LValueOrRValue result; 3171 3172 for (PseudoObjectExpr::const_semantics_iterator 3173 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3174 const Expr *semantic = *i; 3175 3176 // If this semantic expression is an opaque value, bind it 3177 // to the result of its source expression. 3178 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3179 3180 // If this is the result expression, we may need to evaluate 3181 // directly into the slot. 3182 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3183 OVMA opaqueData; 3184 if (ov == resultExpr && ov->isRValue() && !forLValue && 3185 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3186 !ov->getType()->isAnyComplexType()) { 3187 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3188 3189 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3190 opaqueData = OVMA::bind(CGF, ov, LV); 3191 result.RV = slot.asRValue(); 3192 3193 // Otherwise, emit as normal. 3194 } else { 3195 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3196 3197 // If this is the result, also evaluate the result now. 3198 if (ov == resultExpr) { 3199 if (forLValue) 3200 result.LV = CGF.EmitLValue(ov); 3201 else 3202 result.RV = CGF.EmitAnyExpr(ov, slot); 3203 } 3204 } 3205 3206 opaques.push_back(opaqueData); 3207 3208 // Otherwise, if the expression is the result, evaluate it 3209 // and remember the result. 3210 } else if (semantic == resultExpr) { 3211 if (forLValue) 3212 result.LV = CGF.EmitLValue(semantic); 3213 else 3214 result.RV = CGF.EmitAnyExpr(semantic, slot); 3215 3216 // Otherwise, evaluate the expression in an ignored context. 3217 } else { 3218 CGF.EmitIgnoredExpr(semantic); 3219 } 3220 } 3221 3222 // Unbind all the opaques now. 3223 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3224 opaques[i].unbind(CGF); 3225 3226 return result; 3227 } 3228 3229 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3230 AggValueSlot slot) { 3231 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3232 } 3233 3234 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3235 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3236 } 3237