1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     auto CurIP = Builder.saveIP();
78     Builder.SetInsertPoint(AllocaInsertPt);
79     V = getTargetHooks().performAddrSpaceCast(
80         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
81         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
82     Builder.restoreIP(CurIP);
83   }
84 
85   return Address(V, Align);
86 }
87 
88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
90 /// insertion point of the builder.
91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
92                                                     const Twine &Name,
93                                                     llvm::Value *ArraySize) {
94   if (ArraySize)
95     return Builder.CreateAlloca(Ty, ArraySize, Name);
96   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
97                               ArraySize, Name, AllocaInsertPt);
98 }
99 
100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
101 /// default alignment of the corresponding LLVM type, which is *not*
102 /// guaranteed to be related in any way to the expected alignment of
103 /// an AST type that might have been lowered to Ty.
104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
105                                                       const Twine &Name) {
106   CharUnits Align =
107     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
108   return CreateTempAlloca(Ty, Align, Name);
109 }
110 
111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
112   assert(isa<llvm::AllocaInst>(Var.getPointer()));
113   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
114   Store->setAlignment(Var.getAlignment().getQuantity());
115   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
116   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
117 }
118 
119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
120   CharUnits Align = getContext().getTypeAlignInChars(Ty);
121   return CreateTempAlloca(ConvertType(Ty), Align, Name);
122 }
123 
124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
125                                        bool CastToDefaultAddrSpace) {
126   // FIXME: Should we prefer the preferred type alignment here?
127   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
128                        CastToDefaultAddrSpace);
129 }
130 
131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
132                                        const Twine &Name,
133                                        bool CastToDefaultAddrSpace) {
134   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
135                           CastToDefaultAddrSpace);
136 }
137 
138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
139 /// expression and compare the result against zero, returning an Int1Ty value.
140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
141   PGO.setCurrentStmt(E);
142   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
143     llvm::Value *MemPtr = EmitScalarExpr(E);
144     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
145   }
146 
147   QualType BoolTy = getContext().BoolTy;
148   SourceLocation Loc = E->getExprLoc();
149   if (!E->getType()->isAnyComplexType())
150     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
151 
152   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
153                                        Loc);
154 }
155 
156 /// EmitIgnoredExpr - Emit code to compute the specified expression,
157 /// ignoring the result.
158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
159   if (E->isRValue())
160     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
161 
162   // Just emit it as an l-value and drop the result.
163   EmitLValue(E);
164 }
165 
166 /// EmitAnyExpr - Emit code to compute the specified expression which
167 /// can have any type.  The result is returned as an RValue struct.
168 /// If this is an aggregate expression, AggSlot indicates where the
169 /// result should be returned.
170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
171                                     AggValueSlot aggSlot,
172                                     bool ignoreResult) {
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Scalar:
175     return RValue::get(EmitScalarExpr(E, ignoreResult));
176   case TEK_Complex:
177     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
178   case TEK_Aggregate:
179     if (!ignoreResult && aggSlot.isIgnored())
180       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
181     EmitAggExpr(E, aggSlot);
182     return aggSlot.asRValue();
183   }
184   llvm_unreachable("bad evaluation kind");
185 }
186 
187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
188 /// always be accessible even if no aggregate location is provided.
189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
190   AggValueSlot AggSlot = AggValueSlot::ignored();
191 
192   if (hasAggregateEvaluationKind(E->getType()))
193     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
194   return EmitAnyExpr(E, AggSlot);
195 }
196 
197 /// EmitAnyExprToMem - Evaluate an expression into a given memory
198 /// location.
199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
200                                        Address Location,
201                                        Qualifiers Quals,
202                                        bool IsInit) {
203   // FIXME: This function should take an LValue as an argument.
204   switch (getEvaluationKind(E->getType())) {
205   case TEK_Complex:
206     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
207                               /*isInit*/ false);
208     return;
209 
210   case TEK_Aggregate: {
211     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
212                                          AggValueSlot::IsDestructed_t(IsInit),
213                                          AggValueSlot::DoesNotNeedGCBarriers,
214                                          AggValueSlot::IsAliased_t(!IsInit)));
215     return;
216   }
217 
218   case TEK_Scalar: {
219     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
220     LValue LV = MakeAddrLValue(Location, E->getType());
221     EmitStoreThroughLValue(RV, LV);
222     return;
223   }
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 static void
229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
230                      const Expr *E, Address ReferenceTemporary) {
231   // Objective-C++ ARC:
232   //   If we are binding a reference to a temporary that has ownership, we
233   //   need to perform retain/release operations on the temporary.
234   //
235   // FIXME: This should be looking at E, not M.
236   if (auto Lifetime = M->getType().getObjCLifetime()) {
237     switch (Lifetime) {
238     case Qualifiers::OCL_None:
239     case Qualifiers::OCL_ExplicitNone:
240       // Carry on to normal cleanup handling.
241       break;
242 
243     case Qualifiers::OCL_Autoreleasing:
244       // Nothing to do; cleaned up by an autorelease pool.
245       return;
246 
247     case Qualifiers::OCL_Strong:
248     case Qualifiers::OCL_Weak:
249       switch (StorageDuration Duration = M->getStorageDuration()) {
250       case SD_Static:
251         // Note: we intentionally do not register a cleanup to release
252         // the object on program termination.
253         return;
254 
255       case SD_Thread:
256         // FIXME: We should probably register a cleanup in this case.
257         return;
258 
259       case SD_Automatic:
260       case SD_FullExpression:
261         CodeGenFunction::Destroyer *Destroy;
262         CleanupKind CleanupKind;
263         if (Lifetime == Qualifiers::OCL_Strong) {
264           const ValueDecl *VD = M->getExtendingDecl();
265           bool Precise =
266               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
267           CleanupKind = CGF.getARCCleanupKind();
268           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
269                             : &CodeGenFunction::destroyARCStrongImprecise;
270         } else {
271           // __weak objects always get EH cleanups; otherwise, exceptions
272           // could cause really nasty crashes instead of mere leaks.
273           CleanupKind = NormalAndEHCleanup;
274           Destroy = &CodeGenFunction::destroyARCWeak;
275         }
276         if (Duration == SD_FullExpression)
277           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
278                           M->getType(), *Destroy,
279                           CleanupKind & EHCleanup);
280         else
281           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
282                                           M->getType(),
283                                           *Destroy, CleanupKind & EHCleanup);
284         return;
285 
286       case SD_Dynamic:
287         llvm_unreachable("temporary cannot have dynamic storage duration");
288       }
289       llvm_unreachable("unknown storage duration");
290     }
291   }
292 
293   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
294   if (const RecordType *RT =
295           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
296     // Get the destructor for the reference temporary.
297     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
298     if (!ClassDecl->hasTrivialDestructor())
299       ReferenceTemporaryDtor = ClassDecl->getDestructor();
300   }
301 
302   if (!ReferenceTemporaryDtor)
303     return;
304 
305   // Call the destructor for the temporary.
306   switch (M->getStorageDuration()) {
307   case SD_Static:
308   case SD_Thread: {
309     llvm::Constant *CleanupFn;
310     llvm::Constant *CleanupArg;
311     if (E->getType()->isArrayType()) {
312       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
313           ReferenceTemporary, E->getType(),
314           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
315           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
316       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
317     } else {
318       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
319                                                StructorType::Complete);
320       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
321     }
322     CGF.CGM.getCXXABI().registerGlobalDtor(
323         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
324     break;
325   }
326 
327   case SD_FullExpression:
328     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
329                     CodeGenFunction::destroyCXXObject,
330                     CGF.getLangOpts().Exceptions);
331     break;
332 
333   case SD_Automatic:
334     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
335                                     ReferenceTemporary, E->getType(),
336                                     CodeGenFunction::destroyCXXObject,
337                                     CGF.getLangOpts().Exceptions);
338     break;
339 
340   case SD_Dynamic:
341     llvm_unreachable("temporary cannot have dynamic storage duration");
342   }
343 }
344 
345 static Address createReferenceTemporary(CodeGenFunction &CGF,
346                                         const MaterializeTemporaryExpr *M,
347                                         const Expr *Inner) {
348   auto &TCG = CGF.getTargetHooks();
349   switch (M->getStorageDuration()) {
350   case SD_FullExpression:
351   case SD_Automatic: {
352     // If we have a constant temporary array or record try to promote it into a
353     // constant global under the same rules a normal constant would've been
354     // promoted. This is easier on the optimizer and generally emits fewer
355     // instructions.
356     QualType Ty = Inner->getType();
357     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
358         (Ty->isArrayType() || Ty->isRecordType()) &&
359         CGF.CGM.isTypeConstant(Ty, true))
360       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
361         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
362           auto AS = AddrSpace.getValue();
363           auto *GV = new llvm::GlobalVariable(
364               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
365               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
366               llvm::GlobalValue::NotThreadLocal,
367               CGF.getContext().getTargetAddressSpace(AS));
368           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
369           GV->setAlignment(alignment.getQuantity());
370           llvm::Constant *C = GV;
371           if (AS != LangAS::Default)
372             C = TCG.performAddrSpaceCast(
373                 CGF.CGM, GV, AS, LangAS::Default,
374                 GV->getValueType()->getPointerTo(
375                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
376           // FIXME: Should we put the new global into a COMDAT?
377           return Address(C, alignment);
378         }
379       }
380     return CGF.CreateMemTemp(Ty, "ref.tmp");
381   }
382   case SD_Thread:
383   case SD_Static:
384     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
385 
386   case SD_Dynamic:
387     llvm_unreachable("temporary can't have dynamic storage duration");
388   }
389   llvm_unreachable("unknown storage duration");
390 }
391 
392 LValue CodeGenFunction::
393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
394   const Expr *E = M->GetTemporaryExpr();
395 
396     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
397     // as that will cause the lifetime adjustment to be lost for ARC
398   auto ownership = M->getType().getObjCLifetime();
399   if (ownership != Qualifiers::OCL_None &&
400       ownership != Qualifiers::OCL_ExplicitNone) {
401     Address Object = createReferenceTemporary(*this, M, E);
402     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
403       Object = Address(llvm::ConstantExpr::getBitCast(Var,
404                            ConvertTypeForMem(E->getType())
405                              ->getPointerTo(Object.getAddressSpace())),
406                        Object.getAlignment());
407 
408       // createReferenceTemporary will promote the temporary to a global with a
409       // constant initializer if it can.  It can only do this to a value of
410       // ARC-manageable type if the value is global and therefore "immune" to
411       // ref-counting operations.  Therefore we have no need to emit either a
412       // dynamic initialization or a cleanup and we can just return the address
413       // of the temporary.
414       if (Var->hasInitializer())
415         return MakeAddrLValue(Object, M->getType(),
416                               LValueBaseInfo(AlignmentSource::Decl, false));
417 
418       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
419     }
420     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
421                                        LValueBaseInfo(AlignmentSource::Decl,
422                                                       false));
423 
424     switch (getEvaluationKind(E->getType())) {
425     default: llvm_unreachable("expected scalar or aggregate expression");
426     case TEK_Scalar:
427       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
428       break;
429     case TEK_Aggregate: {
430       EmitAggExpr(E, AggValueSlot::forAddr(Object,
431                                            E->getType().getQualifiers(),
432                                            AggValueSlot::IsDestructed,
433                                            AggValueSlot::DoesNotNeedGCBarriers,
434                                            AggValueSlot::IsNotAliased));
435       break;
436     }
437     }
438 
439     pushTemporaryCleanup(*this, M, E, Object);
440     return RefTempDst;
441   }
442 
443   SmallVector<const Expr *, 2> CommaLHSs;
444   SmallVector<SubobjectAdjustment, 2> Adjustments;
445   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
446 
447   for (const auto &Ignored : CommaLHSs)
448     EmitIgnoredExpr(Ignored);
449 
450   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
451     if (opaque->getType()->isRecordType()) {
452       assert(Adjustments.empty());
453       return EmitOpaqueValueLValue(opaque);
454     }
455   }
456 
457   // Create and initialize the reference temporary.
458   Address Object = createReferenceTemporary(*this, M, E);
459   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
460           Object.getPointer()->stripPointerCasts())) {
461     Object = Address(llvm::ConstantExpr::getBitCast(
462                          cast<llvm::Constant>(Object.getPointer()),
463                          ConvertTypeForMem(E->getType())->getPointerTo()),
464                      Object.getAlignment());
465     // If the temporary is a global and has a constant initializer or is a
466     // constant temporary that we promoted to a global, we may have already
467     // initialized it.
468     if (!Var->hasInitializer()) {
469       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
471     }
472   } else {
473     switch (M->getStorageDuration()) {
474     case SD_Automatic:
475     case SD_FullExpression:
476       if (auto *Size = EmitLifetimeStart(
477               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
478               Object.getPointer())) {
479         if (M->getStorageDuration() == SD_Automatic)
480           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
481                                                     Object, Size);
482         else
483           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
484                                                Size);
485       }
486       break;
487     default:
488       break;
489     }
490     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
491   }
492   pushTemporaryCleanup(*this, M, E, Object);
493 
494   // Perform derived-to-base casts and/or field accesses, to get from the
495   // temporary object we created (and, potentially, for which we extended
496   // the lifetime) to the subobject we're binding the reference to.
497   for (unsigned I = Adjustments.size(); I != 0; --I) {
498     SubobjectAdjustment &Adjustment = Adjustments[I-1];
499     switch (Adjustment.Kind) {
500     case SubobjectAdjustment::DerivedToBaseAdjustment:
501       Object =
502           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
503                                 Adjustment.DerivedToBase.BasePath->path_begin(),
504                                 Adjustment.DerivedToBase.BasePath->path_end(),
505                                 /*NullCheckValue=*/ false, E->getExprLoc());
506       break;
507 
508     case SubobjectAdjustment::FieldAdjustment: {
509       LValue LV = MakeAddrLValue(Object, E->getType(),
510                                  LValueBaseInfo(AlignmentSource::Decl, false));
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(),
528                         LValueBaseInfo(AlignmentSource::Decl, false));
529 }
530 
531 RValue
532 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
533   // Emit the expression as an lvalue.
534   LValue LV = EmitLValue(E);
535   assert(LV.isSimple());
536   llvm::Value *Value = LV.getPointer();
537 
538   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
539     // C++11 [dcl.ref]p5 (as amended by core issue 453):
540     //   If a glvalue to which a reference is directly bound designates neither
541     //   an existing object or function of an appropriate type nor a region of
542     //   storage of suitable size and alignment to contain an object of the
543     //   reference's type, the behavior is undefined.
544     QualType Ty = E->getType();
545     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
546   }
547 
548   return RValue::get(Value);
549 }
550 
551 
552 /// getAccessedFieldNo - Given an encoded value and a result number, return the
553 /// input field number being accessed.
554 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
555                                              const llvm::Constant *Elts) {
556   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
557       ->getZExtValue();
558 }
559 
560 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
561 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
562                                     llvm::Value *High) {
563   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
564   llvm::Value *K47 = Builder.getInt64(47);
565   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
566   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
567   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
568   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
569   return Builder.CreateMul(B1, KMul);
570 }
571 
572 bool CodeGenFunction::sanitizePerformTypeCheck() const {
573   return SanOpts.has(SanitizerKind::Null) |
574          SanOpts.has(SanitizerKind::Alignment) |
575          SanOpts.has(SanitizerKind::ObjectSize) |
576          SanOpts.has(SanitizerKind::Vptr);
577 }
578 
579 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
580                                     llvm::Value *Ptr, QualType Ty,
581                                     CharUnits Alignment,
582                                     SanitizerSet SkippedChecks) {
583   if (!sanitizePerformTypeCheck())
584     return;
585 
586   // Don't check pointers outside the default address space. The null check
587   // isn't correct, the object-size check isn't supported by LLVM, and we can't
588   // communicate the addresses to the runtime handler for the vptr check.
589   if (Ptr->getType()->getPointerAddressSpace())
590     return;
591 
592   // Don't check pointers to volatile data. The behavior here is implementation-
593   // defined.
594   if (Ty.isVolatileQualified())
595     return;
596 
597   SanitizerScope SanScope(this);
598 
599   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
600   llvm::BasicBlock *Done = nullptr;
601 
602   // Quickly determine whether we have a pointer to an alloca. It's possible
603   // to skip null checks, and some alignment checks, for these pointers. This
604   // can reduce compile-time significantly.
605   auto PtrToAlloca =
606       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
607 
608   llvm::Value *IsNonNull = nullptr;
609   bool IsGuaranteedNonNull =
610       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
611   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
612                            TCK == TCK_UpcastToVirtualBase;
613   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
614       !IsGuaranteedNonNull) {
615     // The glvalue must not be an empty glvalue.
616     IsNonNull = Builder.CreateIsNotNull(Ptr);
617 
618     // The IR builder can constant-fold the null check if the pointer points to
619     // a constant.
620     IsGuaranteedNonNull =
621         IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext());
622 
623     // Skip the null check if the pointer is known to be non-null.
624     if (!IsGuaranteedNonNull) {
625       if (AllowNullPointers) {
626         // When performing pointer casts, it's OK if the value is null.
627         // Skip the remaining checks in that case.
628         Done = createBasicBlock("null");
629         llvm::BasicBlock *Rest = createBasicBlock("not.null");
630         Builder.CreateCondBr(IsNonNull, Rest, Done);
631         EmitBlock(Rest);
632       } else {
633         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
634       }
635     }
636   }
637 
638   if (SanOpts.has(SanitizerKind::ObjectSize) &&
639       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
640       !Ty->isIncompleteType()) {
641     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
642 
643     // The glvalue must refer to a large enough storage region.
644     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
645     //        to check this.
646     // FIXME: Get object address space
647     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
648     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
649     llvm::Value *Min = Builder.getFalse();
650     llvm::Value *NullIsUnknown = Builder.getFalse();
651     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
652     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
653         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
654         llvm::ConstantInt::get(IntPtrTy, Size));
655     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
656   }
657 
658   uint64_t AlignVal = 0;
659 
660   if (SanOpts.has(SanitizerKind::Alignment) &&
661       !SkippedChecks.has(SanitizerKind::Alignment)) {
662     AlignVal = Alignment.getQuantity();
663     if (!Ty->isIncompleteType() && !AlignVal)
664       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
665 
666     // The glvalue must be suitably aligned.
667     if (AlignVal > 1 &&
668         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
669       llvm::Value *Align =
670           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
671                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
672       llvm::Value *Aligned =
673         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
674       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
675     }
676   }
677 
678   if (Checks.size() > 0) {
679     // Make sure we're not losing information. Alignment needs to be a power of
680     // 2
681     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
682     llvm::Constant *StaticData[] = {
683         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
684         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
685         llvm::ConstantInt::get(Int8Ty, TCK)};
686     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
687   }
688 
689   // If possible, check that the vptr indicates that there is a subobject of
690   // type Ty at offset zero within this object.
691   //
692   // C++11 [basic.life]p5,6:
693   //   [For storage which does not refer to an object within its lifetime]
694   //   The program has undefined behavior if:
695   //    -- the [pointer or glvalue] is used to access a non-static data member
696   //       or call a non-static member function
697   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
698   if (SanOpts.has(SanitizerKind::Vptr) &&
699       !SkippedChecks.has(SanitizerKind::Vptr) &&
700       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
701        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
702        TCK == TCK_UpcastToVirtualBase) &&
703       RD && RD->hasDefinition() && RD->isDynamicClass()) {
704     // Ensure that the pointer is non-null before loading it. If there is no
705     // compile-time guarantee, reuse the run-time null check or emit a new one.
706     if (!IsGuaranteedNonNull) {
707       if (!IsNonNull)
708         IsNonNull = Builder.CreateIsNotNull(Ptr);
709       if (!Done)
710         Done = createBasicBlock("vptr.null");
711       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
712       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
713       EmitBlock(VptrNotNull);
714     }
715 
716     // Compute a hash of the mangled name of the type.
717     //
718     // FIXME: This is not guaranteed to be deterministic! Move to a
719     //        fingerprinting mechanism once LLVM provides one. For the time
720     //        being the implementation happens to be deterministic.
721     SmallString<64> MangledName;
722     llvm::raw_svector_ostream Out(MangledName);
723     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
724                                                      Out);
725 
726     // Blacklist based on the mangled type.
727     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
728             SanitizerKind::Vptr, Out.str())) {
729       llvm::hash_code TypeHash = hash_value(Out.str());
730 
731       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
732       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
733       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
734       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
735       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
736       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
737 
738       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
739       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
740 
741       // Look the hash up in our cache.
742       const int CacheSize = 128;
743       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
744       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
745                                                      "__ubsan_vptr_type_cache");
746       llvm::Value *Slot = Builder.CreateAnd(Hash,
747                                             llvm::ConstantInt::get(IntPtrTy,
748                                                                    CacheSize-1));
749       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
750       llvm::Value *CacheVal =
751         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
752                                   getPointerAlign());
753 
754       // If the hash isn't in the cache, call a runtime handler to perform the
755       // hard work of checking whether the vptr is for an object of the right
756       // type. This will either fill in the cache and return, or produce a
757       // diagnostic.
758       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
759       llvm::Constant *StaticData[] = {
760         EmitCheckSourceLocation(Loc),
761         EmitCheckTypeDescriptor(Ty),
762         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
763         llvm::ConstantInt::get(Int8Ty, TCK)
764       };
765       llvm::Value *DynamicData[] = { Ptr, Hash };
766       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
767                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
768                 DynamicData);
769     }
770   }
771 
772   if (Done) {
773     Builder.CreateBr(Done);
774     EmitBlock(Done);
775   }
776 }
777 
778 /// Determine whether this expression refers to a flexible array member in a
779 /// struct. We disable array bounds checks for such members.
780 static bool isFlexibleArrayMemberExpr(const Expr *E) {
781   // For compatibility with existing code, we treat arrays of length 0 or
782   // 1 as flexible array members.
783   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
784   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
785     if (CAT->getSize().ugt(1))
786       return false;
787   } else if (!isa<IncompleteArrayType>(AT))
788     return false;
789 
790   E = E->IgnoreParens();
791 
792   // A flexible array member must be the last member in the class.
793   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
794     // FIXME: If the base type of the member expr is not FD->getParent(),
795     // this should not be treated as a flexible array member access.
796     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
797       RecordDecl::field_iterator FI(
798           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
799       return ++FI == FD->getParent()->field_end();
800     }
801   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
802     return IRE->getDecl()->getNextIvar() == nullptr;
803   }
804 
805   return false;
806 }
807 
808 /// If Base is known to point to the start of an array, return the length of
809 /// that array. Return 0 if the length cannot be determined.
810 static llvm::Value *getArrayIndexingBound(
811     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
812   // For the vector indexing extension, the bound is the number of elements.
813   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
814     IndexedType = Base->getType();
815     return CGF.Builder.getInt32(VT->getNumElements());
816   }
817 
818   Base = Base->IgnoreParens();
819 
820   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
821     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
822         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
823       IndexedType = CE->getSubExpr()->getType();
824       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
825       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
826         return CGF.Builder.getInt(CAT->getSize());
827       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
828         return CGF.getVLASize(VAT).first;
829     }
830   }
831 
832   return nullptr;
833 }
834 
835 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
836                                       llvm::Value *Index, QualType IndexType,
837                                       bool Accessed) {
838   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
839          "should not be called unless adding bounds checks");
840   SanitizerScope SanScope(this);
841 
842   QualType IndexedType;
843   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
844   if (!Bound)
845     return;
846 
847   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
848   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
849   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
850 
851   llvm::Constant *StaticData[] = {
852     EmitCheckSourceLocation(E->getExprLoc()),
853     EmitCheckTypeDescriptor(IndexedType),
854     EmitCheckTypeDescriptor(IndexType)
855   };
856   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
857                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
858   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
859             SanitizerHandler::OutOfBounds, StaticData, Index);
860 }
861 
862 
863 CodeGenFunction::ComplexPairTy CodeGenFunction::
864 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
865                          bool isInc, bool isPre) {
866   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
867 
868   llvm::Value *NextVal;
869   if (isa<llvm::IntegerType>(InVal.first->getType())) {
870     uint64_t AmountVal = isInc ? 1 : -1;
871     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
872 
873     // Add the inc/dec to the real part.
874     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
875   } else {
876     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
877     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
878     if (!isInc)
879       FVal.changeSign();
880     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
881 
882     // Add the inc/dec to the real part.
883     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
884   }
885 
886   ComplexPairTy IncVal(NextVal, InVal.second);
887 
888   // Store the updated result through the lvalue.
889   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
890 
891   // If this is a postinc, return the value read from memory, otherwise use the
892   // updated value.
893   return isPre ? IncVal : InVal;
894 }
895 
896 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
897                                              CodeGenFunction *CGF) {
898   // Bind VLAs in the cast type.
899   if (CGF && E->getType()->isVariablyModifiedType())
900     CGF->EmitVariablyModifiedType(E->getType());
901 
902   if (CGDebugInfo *DI = getModuleDebugInfo())
903     DI->EmitExplicitCastType(E->getType());
904 }
905 
906 //===----------------------------------------------------------------------===//
907 //                         LValue Expression Emission
908 //===----------------------------------------------------------------------===//
909 
910 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
911 /// derive a more accurate bound on the alignment of the pointer.
912 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
913                                                   LValueBaseInfo *BaseInfo) {
914   // We allow this with ObjC object pointers because of fragile ABIs.
915   assert(E->getType()->isPointerType() ||
916          E->getType()->isObjCObjectPointerType());
917   E = E->IgnoreParens();
918 
919   // Casts:
920   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
921     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
922       CGM.EmitExplicitCastExprType(ECE, this);
923 
924     switch (CE->getCastKind()) {
925     // Non-converting casts (but not C's implicit conversion from void*).
926     case CK_BitCast:
927     case CK_NoOp:
928     case CK_AddressSpaceConversion:
929       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
930         if (PtrTy->getPointeeType()->isVoidType())
931           break;
932 
933         LValueBaseInfo InnerInfo;
934         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo);
935         if (BaseInfo) *BaseInfo = InnerInfo;
936 
937         // If this is an explicit bitcast, and the source l-value is
938         // opaque, honor the alignment of the casted-to type.
939         if (isa<ExplicitCastExpr>(CE) &&
940             InnerInfo.getAlignmentSource() != AlignmentSource::Decl) {
941           LValueBaseInfo ExpInfo;
942           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
943                                                            &ExpInfo);
944           if (BaseInfo)
945             BaseInfo->mergeForCast(ExpInfo);
946           Addr = Address(Addr.getPointer(), Align);
947         }
948 
949         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
950             CE->getCastKind() == CK_BitCast) {
951           if (auto PT = E->getType()->getAs<PointerType>())
952             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
953                                       /*MayBeNull=*/true,
954                                       CodeGenFunction::CFITCK_UnrelatedCast,
955                                       CE->getLocStart());
956         }
957         return CE->getCastKind() != CK_AddressSpaceConversion
958                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
959                    : Builder.CreateAddrSpaceCast(Addr,
960                                                  ConvertType(E->getType()));
961       }
962       break;
963 
964     // Array-to-pointer decay.
965     case CK_ArrayToPointerDecay:
966       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo);
967 
968     // Derived-to-base conversions.
969     case CK_UncheckedDerivedToBase:
970     case CK_DerivedToBase: {
971       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
972       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
973       return GetAddressOfBaseClass(Addr, Derived,
974                                    CE->path_begin(), CE->path_end(),
975                                    ShouldNullCheckClassCastValue(CE),
976                                    CE->getExprLoc());
977     }
978 
979     // TODO: Is there any reason to treat base-to-derived conversions
980     // specially?
981     default:
982       break;
983     }
984   }
985 
986   // Unary &.
987   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
988     if (UO->getOpcode() == UO_AddrOf) {
989       LValue LV = EmitLValue(UO->getSubExpr());
990       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
991       return LV.getAddress();
992     }
993   }
994 
995   // TODO: conditional operators, comma.
996 
997   // Otherwise, use the alignment of the type.
998   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo);
999   return Address(EmitScalarExpr(E), Align);
1000 }
1001 
1002 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1003   if (Ty->isVoidType())
1004     return RValue::get(nullptr);
1005 
1006   switch (getEvaluationKind(Ty)) {
1007   case TEK_Complex: {
1008     llvm::Type *EltTy =
1009       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1010     llvm::Value *U = llvm::UndefValue::get(EltTy);
1011     return RValue::getComplex(std::make_pair(U, U));
1012   }
1013 
1014   // If this is a use of an undefined aggregate type, the aggregate must have an
1015   // identifiable address.  Just because the contents of the value are undefined
1016   // doesn't mean that the address can't be taken and compared.
1017   case TEK_Aggregate: {
1018     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1019     return RValue::getAggregate(DestPtr);
1020   }
1021 
1022   case TEK_Scalar:
1023     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1024   }
1025   llvm_unreachable("bad evaluation kind");
1026 }
1027 
1028 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1029                                               const char *Name) {
1030   ErrorUnsupported(E, Name);
1031   return GetUndefRValue(E->getType());
1032 }
1033 
1034 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1035                                               const char *Name) {
1036   ErrorUnsupported(E, Name);
1037   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1038   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1039                         E->getType());
1040 }
1041 
1042 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1043   const Expr *Base = Obj;
1044   while (!isa<CXXThisExpr>(Base)) {
1045     // The result of a dynamic_cast can be null.
1046     if (isa<CXXDynamicCastExpr>(Base))
1047       return false;
1048 
1049     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1050       Base = CE->getSubExpr();
1051     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1052       Base = PE->getSubExpr();
1053     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1054       if (UO->getOpcode() == UO_Extension)
1055         Base = UO->getSubExpr();
1056       else
1057         return false;
1058     } else {
1059       return false;
1060     }
1061   }
1062   return true;
1063 }
1064 
1065 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1066   LValue LV;
1067   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1068     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1069   else
1070     LV = EmitLValue(E);
1071   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1072     SanitizerSet SkippedChecks;
1073     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1074       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1075       if (IsBaseCXXThis)
1076         SkippedChecks.set(SanitizerKind::Alignment, true);
1077       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1078         SkippedChecks.set(SanitizerKind::Null, true);
1079     }
1080     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1081                   E->getType(), LV.getAlignment(), SkippedChecks);
1082   }
1083   return LV;
1084 }
1085 
1086 /// EmitLValue - Emit code to compute a designator that specifies the location
1087 /// of the expression.
1088 ///
1089 /// This can return one of two things: a simple address or a bitfield reference.
1090 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1091 /// an LLVM pointer type.
1092 ///
1093 /// If this returns a bitfield reference, nothing about the pointee type of the
1094 /// LLVM value is known: For example, it may not be a pointer to an integer.
1095 ///
1096 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1097 /// this method guarantees that the returned pointer type will point to an LLVM
1098 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1099 /// length type, this is not possible.
1100 ///
1101 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1102   ApplyDebugLocation DL(*this, E);
1103   switch (E->getStmtClass()) {
1104   default: return EmitUnsupportedLValue(E, "l-value expression");
1105 
1106   case Expr::ObjCPropertyRefExprClass:
1107     llvm_unreachable("cannot emit a property reference directly");
1108 
1109   case Expr::ObjCSelectorExprClass:
1110     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1111   case Expr::ObjCIsaExprClass:
1112     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1113   case Expr::BinaryOperatorClass:
1114     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1115   case Expr::CompoundAssignOperatorClass: {
1116     QualType Ty = E->getType();
1117     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1118       Ty = AT->getValueType();
1119     if (!Ty->isAnyComplexType())
1120       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1121     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1122   }
1123   case Expr::CallExprClass:
1124   case Expr::CXXMemberCallExprClass:
1125   case Expr::CXXOperatorCallExprClass:
1126   case Expr::UserDefinedLiteralClass:
1127     return EmitCallExprLValue(cast<CallExpr>(E));
1128   case Expr::VAArgExprClass:
1129     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1130   case Expr::DeclRefExprClass:
1131     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1132   case Expr::ParenExprClass:
1133     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1134   case Expr::GenericSelectionExprClass:
1135     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1136   case Expr::PredefinedExprClass:
1137     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1138   case Expr::StringLiteralClass:
1139     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1140   case Expr::ObjCEncodeExprClass:
1141     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1142   case Expr::PseudoObjectExprClass:
1143     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1144   case Expr::InitListExprClass:
1145     return EmitInitListLValue(cast<InitListExpr>(E));
1146   case Expr::CXXTemporaryObjectExprClass:
1147   case Expr::CXXConstructExprClass:
1148     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1149   case Expr::CXXBindTemporaryExprClass:
1150     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1151   case Expr::CXXUuidofExprClass:
1152     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1153   case Expr::LambdaExprClass:
1154     return EmitLambdaLValue(cast<LambdaExpr>(E));
1155 
1156   case Expr::ExprWithCleanupsClass: {
1157     const auto *cleanups = cast<ExprWithCleanups>(E);
1158     enterFullExpression(cleanups);
1159     RunCleanupsScope Scope(*this);
1160     LValue LV = EmitLValue(cleanups->getSubExpr());
1161     if (LV.isSimple()) {
1162       // Defend against branches out of gnu statement expressions surrounded by
1163       // cleanups.
1164       llvm::Value *V = LV.getPointer();
1165       Scope.ForceCleanup({&V});
1166       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1167                               getContext(), LV.getBaseInfo(),
1168                               LV.getTBAAAccessType());
1169     }
1170     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1171     // bitfield lvalue or some other non-simple lvalue?
1172     return LV;
1173   }
1174 
1175   case Expr::CXXDefaultArgExprClass:
1176     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1177   case Expr::CXXDefaultInitExprClass: {
1178     CXXDefaultInitExprScope Scope(*this);
1179     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1180   }
1181   case Expr::CXXTypeidExprClass:
1182     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1183 
1184   case Expr::ObjCMessageExprClass:
1185     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1186   case Expr::ObjCIvarRefExprClass:
1187     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1188   case Expr::StmtExprClass:
1189     return EmitStmtExprLValue(cast<StmtExpr>(E));
1190   case Expr::UnaryOperatorClass:
1191     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1192   case Expr::ArraySubscriptExprClass:
1193     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1194   case Expr::OMPArraySectionExprClass:
1195     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1196   case Expr::ExtVectorElementExprClass:
1197     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1198   case Expr::MemberExprClass:
1199     return EmitMemberExpr(cast<MemberExpr>(E));
1200   case Expr::CompoundLiteralExprClass:
1201     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1202   case Expr::ConditionalOperatorClass:
1203     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1204   case Expr::BinaryConditionalOperatorClass:
1205     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1206   case Expr::ChooseExprClass:
1207     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1208   case Expr::OpaqueValueExprClass:
1209     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1210   case Expr::SubstNonTypeTemplateParmExprClass:
1211     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1212   case Expr::ImplicitCastExprClass:
1213   case Expr::CStyleCastExprClass:
1214   case Expr::CXXFunctionalCastExprClass:
1215   case Expr::CXXStaticCastExprClass:
1216   case Expr::CXXDynamicCastExprClass:
1217   case Expr::CXXReinterpretCastExprClass:
1218   case Expr::CXXConstCastExprClass:
1219   case Expr::ObjCBridgedCastExprClass:
1220     return EmitCastLValue(cast<CastExpr>(E));
1221 
1222   case Expr::MaterializeTemporaryExprClass:
1223     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1224 
1225   case Expr::CoawaitExprClass:
1226     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1227   case Expr::CoyieldExprClass:
1228     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1229   }
1230 }
1231 
1232 /// Given an object of the given canonical type, can we safely copy a
1233 /// value out of it based on its initializer?
1234 static bool isConstantEmittableObjectType(QualType type) {
1235   assert(type.isCanonical());
1236   assert(!type->isReferenceType());
1237 
1238   // Must be const-qualified but non-volatile.
1239   Qualifiers qs = type.getLocalQualifiers();
1240   if (!qs.hasConst() || qs.hasVolatile()) return false;
1241 
1242   // Otherwise, all object types satisfy this except C++ classes with
1243   // mutable subobjects or non-trivial copy/destroy behavior.
1244   if (const auto *RT = dyn_cast<RecordType>(type))
1245     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1246       if (RD->hasMutableFields() || !RD->isTrivial())
1247         return false;
1248 
1249   return true;
1250 }
1251 
1252 /// Can we constant-emit a load of a reference to a variable of the
1253 /// given type?  This is different from predicates like
1254 /// Decl::isUsableInConstantExpressions because we do want it to apply
1255 /// in situations that don't necessarily satisfy the language's rules
1256 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1257 /// to do this with const float variables even if those variables
1258 /// aren't marked 'constexpr'.
1259 enum ConstantEmissionKind {
1260   CEK_None,
1261   CEK_AsReferenceOnly,
1262   CEK_AsValueOrReference,
1263   CEK_AsValueOnly
1264 };
1265 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1266   type = type.getCanonicalType();
1267   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1268     if (isConstantEmittableObjectType(ref->getPointeeType()))
1269       return CEK_AsValueOrReference;
1270     return CEK_AsReferenceOnly;
1271   }
1272   if (isConstantEmittableObjectType(type))
1273     return CEK_AsValueOnly;
1274   return CEK_None;
1275 }
1276 
1277 /// Try to emit a reference to the given value without producing it as
1278 /// an l-value.  This is actually more than an optimization: we can't
1279 /// produce an l-value for variables that we never actually captured
1280 /// in a block or lambda, which means const int variables or constexpr
1281 /// literals or similar.
1282 CodeGenFunction::ConstantEmission
1283 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1284   ValueDecl *value = refExpr->getDecl();
1285 
1286   // The value needs to be an enum constant or a constant variable.
1287   ConstantEmissionKind CEK;
1288   if (isa<ParmVarDecl>(value)) {
1289     CEK = CEK_None;
1290   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1291     CEK = checkVarTypeForConstantEmission(var->getType());
1292   } else if (isa<EnumConstantDecl>(value)) {
1293     CEK = CEK_AsValueOnly;
1294   } else {
1295     CEK = CEK_None;
1296   }
1297   if (CEK == CEK_None) return ConstantEmission();
1298 
1299   Expr::EvalResult result;
1300   bool resultIsReference;
1301   QualType resultType;
1302 
1303   // It's best to evaluate all the way as an r-value if that's permitted.
1304   if (CEK != CEK_AsReferenceOnly &&
1305       refExpr->EvaluateAsRValue(result, getContext())) {
1306     resultIsReference = false;
1307     resultType = refExpr->getType();
1308 
1309   // Otherwise, try to evaluate as an l-value.
1310   } else if (CEK != CEK_AsValueOnly &&
1311              refExpr->EvaluateAsLValue(result, getContext())) {
1312     resultIsReference = true;
1313     resultType = value->getType();
1314 
1315   // Failure.
1316   } else {
1317     return ConstantEmission();
1318   }
1319 
1320   // In any case, if the initializer has side-effects, abandon ship.
1321   if (result.HasSideEffects)
1322     return ConstantEmission();
1323 
1324   // Emit as a constant.
1325   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1326                                                result.Val, resultType);
1327 
1328   // Make sure we emit a debug reference to the global variable.
1329   // This should probably fire even for
1330   if (isa<VarDecl>(value)) {
1331     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1332       EmitDeclRefExprDbgValue(refExpr, result.Val);
1333   } else {
1334     assert(isa<EnumConstantDecl>(value));
1335     EmitDeclRefExprDbgValue(refExpr, result.Val);
1336   }
1337 
1338   // If we emitted a reference constant, we need to dereference that.
1339   if (resultIsReference)
1340     return ConstantEmission::forReference(C);
1341 
1342   return ConstantEmission::forValue(C);
1343 }
1344 
1345 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1346                                                         const MemberExpr *ME) {
1347   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1348     // Try to emit static variable member expressions as DREs.
1349     return DeclRefExpr::Create(
1350         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1351         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1352         ME->getType(), ME->getValueKind());
1353   }
1354   return nullptr;
1355 }
1356 
1357 CodeGenFunction::ConstantEmission
1358 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1359   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1360     return tryEmitAsConstant(DRE);
1361   return ConstantEmission();
1362 }
1363 
1364 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1365                                                SourceLocation Loc) {
1366   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1367                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1368                           lvalue.getTBAAAccessType(),
1369                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1370                           lvalue.isNontemporal());
1371 }
1372 
1373 static bool hasBooleanRepresentation(QualType Ty) {
1374   if (Ty->isBooleanType())
1375     return true;
1376 
1377   if (const EnumType *ET = Ty->getAs<EnumType>())
1378     return ET->getDecl()->getIntegerType()->isBooleanType();
1379 
1380   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1381     return hasBooleanRepresentation(AT->getValueType());
1382 
1383   return false;
1384 }
1385 
1386 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1387                             llvm::APInt &Min, llvm::APInt &End,
1388                             bool StrictEnums, bool IsBool) {
1389   const EnumType *ET = Ty->getAs<EnumType>();
1390   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1391                                 ET && !ET->getDecl()->isFixed();
1392   if (!IsBool && !IsRegularCPlusPlusEnum)
1393     return false;
1394 
1395   if (IsBool) {
1396     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1397     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1398   } else {
1399     const EnumDecl *ED = ET->getDecl();
1400     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1401     unsigned Bitwidth = LTy->getScalarSizeInBits();
1402     unsigned NumNegativeBits = ED->getNumNegativeBits();
1403     unsigned NumPositiveBits = ED->getNumPositiveBits();
1404 
1405     if (NumNegativeBits) {
1406       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1407       assert(NumBits <= Bitwidth);
1408       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1409       Min = -End;
1410     } else {
1411       assert(NumPositiveBits <= Bitwidth);
1412       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1413       Min = llvm::APInt(Bitwidth, 0);
1414     }
1415   }
1416   return true;
1417 }
1418 
1419 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1420   llvm::APInt Min, End;
1421   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1422                        hasBooleanRepresentation(Ty)))
1423     return nullptr;
1424 
1425   llvm::MDBuilder MDHelper(getLLVMContext());
1426   return MDHelper.createRange(Min, End);
1427 }
1428 
1429 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1430                                            SourceLocation Loc) {
1431   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1432   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1433   if (!HasBoolCheck && !HasEnumCheck)
1434     return false;
1435 
1436   bool IsBool = hasBooleanRepresentation(Ty) ||
1437                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1438   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1439   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1440   if (!NeedsBoolCheck && !NeedsEnumCheck)
1441     return false;
1442 
1443   // Single-bit booleans don't need to be checked. Special-case this to avoid
1444   // a bit width mismatch when handling bitfield values. This is handled by
1445   // EmitFromMemory for the non-bitfield case.
1446   if (IsBool &&
1447       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1448     return false;
1449 
1450   llvm::APInt Min, End;
1451   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1452     return true;
1453 
1454   SanitizerScope SanScope(this);
1455   llvm::Value *Check;
1456   --End;
1457   if (!Min) {
1458     Check = Builder.CreateICmpULE(
1459         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1460   } else {
1461     llvm::Value *Upper = Builder.CreateICmpSLE(
1462         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1463     llvm::Value *Lower = Builder.CreateICmpSGE(
1464         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1465     Check = Builder.CreateAnd(Upper, Lower);
1466   }
1467   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1468                                   EmitCheckTypeDescriptor(Ty)};
1469   SanitizerMask Kind =
1470       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1471   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1472             StaticArgs, EmitCheckValue(Value));
1473   return true;
1474 }
1475 
1476 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1477                                                QualType Ty,
1478                                                SourceLocation Loc,
1479                                                LValueBaseInfo BaseInfo,
1480                                                llvm::MDNode *TBAAAccessType,
1481                                                QualType TBAABaseType,
1482                                                uint64_t TBAAOffset,
1483                                                bool isNontemporal) {
1484   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1485     // For better performance, handle vector loads differently.
1486     if (Ty->isVectorType()) {
1487       const llvm::Type *EltTy = Addr.getElementType();
1488 
1489       const auto *VTy = cast<llvm::VectorType>(EltTy);
1490 
1491       // Handle vectors of size 3 like size 4 for better performance.
1492       if (VTy->getNumElements() == 3) {
1493 
1494         // Bitcast to vec4 type.
1495         llvm::VectorType *vec4Ty =
1496             llvm::VectorType::get(VTy->getElementType(), 4);
1497         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1498         // Now load value.
1499         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1500 
1501         // Shuffle vector to get vec3.
1502         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1503                                         {0, 1, 2}, "extractVec");
1504         return EmitFromMemory(V, Ty);
1505       }
1506     }
1507   }
1508 
1509   // Atomic operations have to be done on integral types.
1510   LValue AtomicLValue =
1511       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAAccessType);
1512   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1513     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1514   }
1515 
1516   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1517   if (isNontemporal) {
1518     llvm::MDNode *Node = llvm::MDNode::get(
1519         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1520     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1521   }
1522   if (TBAAAccessType) {
1523     bool MayAlias = BaseInfo.getMayAlias();
1524     llvm::MDNode *TBAA = MayAlias
1525         ? CGM.getTBAAMayAliasTypeInfo()
1526         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAAccessType, TBAAOffset);
1527     if (TBAA)
1528       CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias);
1529   }
1530 
1531   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1532     // In order to prevent the optimizer from throwing away the check, don't
1533     // attach range metadata to the load.
1534   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1535     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1536       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1537 
1538   return EmitFromMemory(Load, Ty);
1539 }
1540 
1541 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1542   // Bool has a different representation in memory than in registers.
1543   if (hasBooleanRepresentation(Ty)) {
1544     // This should really always be an i1, but sometimes it's already
1545     // an i8, and it's awkward to track those cases down.
1546     if (Value->getType()->isIntegerTy(1))
1547       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1548     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1549            "wrong value rep of bool");
1550   }
1551 
1552   return Value;
1553 }
1554 
1555 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1556   // Bool has a different representation in memory than in registers.
1557   if (hasBooleanRepresentation(Ty)) {
1558     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1559            "wrong value rep of bool");
1560     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1561   }
1562 
1563   return Value;
1564 }
1565 
1566 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1567                                         bool Volatile, QualType Ty,
1568                                         LValueBaseInfo BaseInfo,
1569                                         llvm::MDNode *TBAAAccessType,
1570                                         bool isInit, QualType TBAABaseType,
1571                                         uint64_t TBAAOffset,
1572                                         bool isNontemporal) {
1573 
1574   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1575     // Handle vectors differently to get better performance.
1576     if (Ty->isVectorType()) {
1577       llvm::Type *SrcTy = Value->getType();
1578       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1579       // Handle vec3 special.
1580       if (VecTy && VecTy->getNumElements() == 3) {
1581         // Our source is a vec3, do a shuffle vector to make it a vec4.
1582         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1583                                   Builder.getInt32(2),
1584                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1585         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1586         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1587                                             MaskV, "extractVec");
1588         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1589       }
1590       if (Addr.getElementType() != SrcTy) {
1591         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1592       }
1593     }
1594   }
1595 
1596   Value = EmitToMemory(Value, Ty);
1597 
1598   LValue AtomicLValue =
1599       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAAccessType);
1600   if (Ty->isAtomicType() ||
1601       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1602     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1603     return;
1604   }
1605 
1606   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1607   if (isNontemporal) {
1608     llvm::MDNode *Node =
1609         llvm::MDNode::get(Store->getContext(),
1610                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1611     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1612   }
1613   if (TBAAAccessType) {
1614     bool MayAlias = BaseInfo.getMayAlias();
1615     llvm::MDNode *TBAA = MayAlias
1616         ? CGM.getTBAAMayAliasTypeInfo()
1617         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAAccessType, TBAAOffset);
1618     if (TBAA)
1619       CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias);
1620   }
1621 }
1622 
1623 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1624                                         bool isInit) {
1625   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1626                     lvalue.getType(), lvalue.getBaseInfo(),
1627                     lvalue.getTBAAAccessType(), isInit,
1628                     lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1629                     lvalue.isNontemporal());
1630 }
1631 
1632 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1633 /// method emits the address of the lvalue, then loads the result as an rvalue,
1634 /// returning the rvalue.
1635 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1636   if (LV.isObjCWeak()) {
1637     // load of a __weak object.
1638     Address AddrWeakObj = LV.getAddress();
1639     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1640                                                              AddrWeakObj));
1641   }
1642   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1643     // In MRC mode, we do a load+autorelease.
1644     if (!getLangOpts().ObjCAutoRefCount) {
1645       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1646     }
1647 
1648     // In ARC mode, we load retained and then consume the value.
1649     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1650     Object = EmitObjCConsumeObject(LV.getType(), Object);
1651     return RValue::get(Object);
1652   }
1653 
1654   if (LV.isSimple()) {
1655     assert(!LV.getType()->isFunctionType());
1656 
1657     // Everything needs a load.
1658     return RValue::get(EmitLoadOfScalar(LV, Loc));
1659   }
1660 
1661   if (LV.isVectorElt()) {
1662     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1663                                               LV.isVolatileQualified());
1664     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1665                                                     "vecext"));
1666   }
1667 
1668   // If this is a reference to a subset of the elements of a vector, either
1669   // shuffle the input or extract/insert them as appropriate.
1670   if (LV.isExtVectorElt())
1671     return EmitLoadOfExtVectorElementLValue(LV);
1672 
1673   // Global Register variables always invoke intrinsics
1674   if (LV.isGlobalReg())
1675     return EmitLoadOfGlobalRegLValue(LV);
1676 
1677   assert(LV.isBitField() && "Unknown LValue type!");
1678   return EmitLoadOfBitfieldLValue(LV, Loc);
1679 }
1680 
1681 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1682                                                  SourceLocation Loc) {
1683   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1684 
1685   // Get the output type.
1686   llvm::Type *ResLTy = ConvertType(LV.getType());
1687 
1688   Address Ptr = LV.getBitFieldAddress();
1689   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1690 
1691   if (Info.IsSigned) {
1692     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1693     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1694     if (HighBits)
1695       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1696     if (Info.Offset + HighBits)
1697       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1698   } else {
1699     if (Info.Offset)
1700       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1701     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1702       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1703                                                               Info.Size),
1704                               "bf.clear");
1705   }
1706   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1707   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1708   return RValue::get(Val);
1709 }
1710 
1711 // If this is a reference to a subset of the elements of a vector, create an
1712 // appropriate shufflevector.
1713 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1714   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1715                                         LV.isVolatileQualified());
1716 
1717   const llvm::Constant *Elts = LV.getExtVectorElts();
1718 
1719   // If the result of the expression is a non-vector type, we must be extracting
1720   // a single element.  Just codegen as an extractelement.
1721   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1722   if (!ExprVT) {
1723     unsigned InIdx = getAccessedFieldNo(0, Elts);
1724     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1725     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1726   }
1727 
1728   // Always use shuffle vector to try to retain the original program structure
1729   unsigned NumResultElts = ExprVT->getNumElements();
1730 
1731   SmallVector<llvm::Constant*, 4> Mask;
1732   for (unsigned i = 0; i != NumResultElts; ++i)
1733     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1734 
1735   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1736   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1737                                     MaskV);
1738   return RValue::get(Vec);
1739 }
1740 
1741 /// @brief Generates lvalue for partial ext_vector access.
1742 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1743   Address VectorAddress = LV.getExtVectorAddress();
1744   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1745   QualType EQT = ExprVT->getElementType();
1746   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1747 
1748   Address CastToPointerElement =
1749     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1750                                  "conv.ptr.element");
1751 
1752   const llvm::Constant *Elts = LV.getExtVectorElts();
1753   unsigned ix = getAccessedFieldNo(0, Elts);
1754 
1755   Address VectorBasePtrPlusIx =
1756     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1757                                    getContext().getTypeSizeInChars(EQT),
1758                                    "vector.elt");
1759 
1760   return VectorBasePtrPlusIx;
1761 }
1762 
1763 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1764 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1765   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1766          "Bad type for register variable");
1767   llvm::MDNode *RegName = cast<llvm::MDNode>(
1768       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1769 
1770   // We accept integer and pointer types only
1771   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1772   llvm::Type *Ty = OrigTy;
1773   if (OrigTy->isPointerTy())
1774     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1775   llvm::Type *Types[] = { Ty };
1776 
1777   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1778   llvm::Value *Call = Builder.CreateCall(
1779       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1780   if (OrigTy->isPointerTy())
1781     Call = Builder.CreateIntToPtr(Call, OrigTy);
1782   return RValue::get(Call);
1783 }
1784 
1785 
1786 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1787 /// lvalue, where both are guaranteed to the have the same type, and that type
1788 /// is 'Ty'.
1789 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1790                                              bool isInit) {
1791   if (!Dst.isSimple()) {
1792     if (Dst.isVectorElt()) {
1793       // Read/modify/write the vector, inserting the new element.
1794       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1795                                             Dst.isVolatileQualified());
1796       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1797                                         Dst.getVectorIdx(), "vecins");
1798       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1799                           Dst.isVolatileQualified());
1800       return;
1801     }
1802 
1803     // If this is an update of extended vector elements, insert them as
1804     // appropriate.
1805     if (Dst.isExtVectorElt())
1806       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1807 
1808     if (Dst.isGlobalReg())
1809       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1810 
1811     assert(Dst.isBitField() && "Unknown LValue type");
1812     return EmitStoreThroughBitfieldLValue(Src, Dst);
1813   }
1814 
1815   // There's special magic for assigning into an ARC-qualified l-value.
1816   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1817     switch (Lifetime) {
1818     case Qualifiers::OCL_None:
1819       llvm_unreachable("present but none");
1820 
1821     case Qualifiers::OCL_ExplicitNone:
1822       // nothing special
1823       break;
1824 
1825     case Qualifiers::OCL_Strong:
1826       if (isInit) {
1827         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1828         break;
1829       }
1830       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1831       return;
1832 
1833     case Qualifiers::OCL_Weak:
1834       if (isInit)
1835         // Initialize and then skip the primitive store.
1836         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1837       else
1838         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1839       return;
1840 
1841     case Qualifiers::OCL_Autoreleasing:
1842       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1843                                                      Src.getScalarVal()));
1844       // fall into the normal path
1845       break;
1846     }
1847   }
1848 
1849   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1850     // load of a __weak object.
1851     Address LvalueDst = Dst.getAddress();
1852     llvm::Value *src = Src.getScalarVal();
1853      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1854     return;
1855   }
1856 
1857   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1858     // load of a __strong object.
1859     Address LvalueDst = Dst.getAddress();
1860     llvm::Value *src = Src.getScalarVal();
1861     if (Dst.isObjCIvar()) {
1862       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1863       llvm::Type *ResultType = IntPtrTy;
1864       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1865       llvm::Value *RHS = dst.getPointer();
1866       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1867       llvm::Value *LHS =
1868         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1869                                "sub.ptr.lhs.cast");
1870       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1871       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1872                                               BytesBetween);
1873     } else if (Dst.isGlobalObjCRef()) {
1874       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1875                                                 Dst.isThreadLocalRef());
1876     }
1877     else
1878       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1879     return;
1880   }
1881 
1882   assert(Src.isScalar() && "Can't emit an agg store with this method");
1883   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1884 }
1885 
1886 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1887                                                      llvm::Value **Result) {
1888   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1889   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1890   Address Ptr = Dst.getBitFieldAddress();
1891 
1892   // Get the source value, truncated to the width of the bit-field.
1893   llvm::Value *SrcVal = Src.getScalarVal();
1894 
1895   // Cast the source to the storage type and shift it into place.
1896   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1897                                  /*IsSigned=*/false);
1898   llvm::Value *MaskedVal = SrcVal;
1899 
1900   // See if there are other bits in the bitfield's storage we'll need to load
1901   // and mask together with source before storing.
1902   if (Info.StorageSize != Info.Size) {
1903     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1904     llvm::Value *Val =
1905       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1906 
1907     // Mask the source value as needed.
1908     if (!hasBooleanRepresentation(Dst.getType()))
1909       SrcVal = Builder.CreateAnd(SrcVal,
1910                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1911                                                             Info.Size),
1912                                  "bf.value");
1913     MaskedVal = SrcVal;
1914     if (Info.Offset)
1915       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1916 
1917     // Mask out the original value.
1918     Val = Builder.CreateAnd(Val,
1919                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1920                                                      Info.Offset,
1921                                                      Info.Offset + Info.Size),
1922                             "bf.clear");
1923 
1924     // Or together the unchanged values and the source value.
1925     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1926   } else {
1927     assert(Info.Offset == 0);
1928   }
1929 
1930   // Write the new value back out.
1931   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1932 
1933   // Return the new value of the bit-field, if requested.
1934   if (Result) {
1935     llvm::Value *ResultVal = MaskedVal;
1936 
1937     // Sign extend the value if needed.
1938     if (Info.IsSigned) {
1939       assert(Info.Size <= Info.StorageSize);
1940       unsigned HighBits = Info.StorageSize - Info.Size;
1941       if (HighBits) {
1942         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1943         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1944       }
1945     }
1946 
1947     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1948                                       "bf.result.cast");
1949     *Result = EmitFromMemory(ResultVal, Dst.getType());
1950   }
1951 }
1952 
1953 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1954                                                                LValue Dst) {
1955   // This access turns into a read/modify/write of the vector.  Load the input
1956   // value now.
1957   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1958                                         Dst.isVolatileQualified());
1959   const llvm::Constant *Elts = Dst.getExtVectorElts();
1960 
1961   llvm::Value *SrcVal = Src.getScalarVal();
1962 
1963   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1964     unsigned NumSrcElts = VTy->getNumElements();
1965     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1966     if (NumDstElts == NumSrcElts) {
1967       // Use shuffle vector is the src and destination are the same number of
1968       // elements and restore the vector mask since it is on the side it will be
1969       // stored.
1970       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1971       for (unsigned i = 0; i != NumSrcElts; ++i)
1972         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1973 
1974       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1975       Vec = Builder.CreateShuffleVector(SrcVal,
1976                                         llvm::UndefValue::get(Vec->getType()),
1977                                         MaskV);
1978     } else if (NumDstElts > NumSrcElts) {
1979       // Extended the source vector to the same length and then shuffle it
1980       // into the destination.
1981       // FIXME: since we're shuffling with undef, can we just use the indices
1982       //        into that?  This could be simpler.
1983       SmallVector<llvm::Constant*, 4> ExtMask;
1984       for (unsigned i = 0; i != NumSrcElts; ++i)
1985         ExtMask.push_back(Builder.getInt32(i));
1986       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1987       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1988       llvm::Value *ExtSrcVal =
1989         Builder.CreateShuffleVector(SrcVal,
1990                                     llvm::UndefValue::get(SrcVal->getType()),
1991                                     ExtMaskV);
1992       // build identity
1993       SmallVector<llvm::Constant*, 4> Mask;
1994       for (unsigned i = 0; i != NumDstElts; ++i)
1995         Mask.push_back(Builder.getInt32(i));
1996 
1997       // When the vector size is odd and .odd or .hi is used, the last element
1998       // of the Elts constant array will be one past the size of the vector.
1999       // Ignore the last element here, if it is greater than the mask size.
2000       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2001         NumSrcElts--;
2002 
2003       // modify when what gets shuffled in
2004       for (unsigned i = 0; i != NumSrcElts; ++i)
2005         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2006       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2007       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2008     } else {
2009       // We should never shorten the vector
2010       llvm_unreachable("unexpected shorten vector length");
2011     }
2012   } else {
2013     // If the Src is a scalar (not a vector) it must be updating one element.
2014     unsigned InIdx = getAccessedFieldNo(0, Elts);
2015     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2016     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2017   }
2018 
2019   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2020                       Dst.isVolatileQualified());
2021 }
2022 
2023 /// @brief Store of global named registers are always calls to intrinsics.
2024 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2025   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2026          "Bad type for register variable");
2027   llvm::MDNode *RegName = cast<llvm::MDNode>(
2028       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2029   assert(RegName && "Register LValue is not metadata");
2030 
2031   // We accept integer and pointer types only
2032   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2033   llvm::Type *Ty = OrigTy;
2034   if (OrigTy->isPointerTy())
2035     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2036   llvm::Type *Types[] = { Ty };
2037 
2038   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2039   llvm::Value *Value = Src.getScalarVal();
2040   if (OrigTy->isPointerTy())
2041     Value = Builder.CreatePtrToInt(Value, Ty);
2042   Builder.CreateCall(
2043       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2044 }
2045 
2046 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2047 // generating write-barries API. It is currently a global, ivar,
2048 // or neither.
2049 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2050                                  LValue &LV,
2051                                  bool IsMemberAccess=false) {
2052   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2053     return;
2054 
2055   if (isa<ObjCIvarRefExpr>(E)) {
2056     QualType ExpTy = E->getType();
2057     if (IsMemberAccess && ExpTy->isPointerType()) {
2058       // If ivar is a structure pointer, assigning to field of
2059       // this struct follows gcc's behavior and makes it a non-ivar
2060       // writer-barrier conservatively.
2061       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2062       if (ExpTy->isRecordType()) {
2063         LV.setObjCIvar(false);
2064         return;
2065       }
2066     }
2067     LV.setObjCIvar(true);
2068     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2069     LV.setBaseIvarExp(Exp->getBase());
2070     LV.setObjCArray(E->getType()->isArrayType());
2071     return;
2072   }
2073 
2074   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2075     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2076       if (VD->hasGlobalStorage()) {
2077         LV.setGlobalObjCRef(true);
2078         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2079       }
2080     }
2081     LV.setObjCArray(E->getType()->isArrayType());
2082     return;
2083   }
2084 
2085   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2086     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2087     return;
2088   }
2089 
2090   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2091     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2092     if (LV.isObjCIvar()) {
2093       // If cast is to a structure pointer, follow gcc's behavior and make it
2094       // a non-ivar write-barrier.
2095       QualType ExpTy = E->getType();
2096       if (ExpTy->isPointerType())
2097         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2098       if (ExpTy->isRecordType())
2099         LV.setObjCIvar(false);
2100     }
2101     return;
2102   }
2103 
2104   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2105     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2106     return;
2107   }
2108 
2109   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2110     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2111     return;
2112   }
2113 
2114   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2115     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2116     return;
2117   }
2118 
2119   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2120     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2121     return;
2122   }
2123 
2124   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2125     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2126     if (LV.isObjCIvar() && !LV.isObjCArray())
2127       // Using array syntax to assigning to what an ivar points to is not
2128       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2129       LV.setObjCIvar(false);
2130     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2131       // Using array syntax to assigning to what global points to is not
2132       // same as assigning to the global itself. {id *G;} G[i] = 0;
2133       LV.setGlobalObjCRef(false);
2134     return;
2135   }
2136 
2137   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2138     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2139     // We don't know if member is an 'ivar', but this flag is looked at
2140     // only in the context of LV.isObjCIvar().
2141     LV.setObjCArray(E->getType()->isArrayType());
2142     return;
2143   }
2144 }
2145 
2146 static llvm::Value *
2147 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2148                                 llvm::Value *V, llvm::Type *IRType,
2149                                 StringRef Name = StringRef()) {
2150   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2151   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2152 }
2153 
2154 static LValue EmitThreadPrivateVarDeclLValue(
2155     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2156     llvm::Type *RealVarTy, SourceLocation Loc) {
2157   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2158   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2159   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2160   return CGF.MakeAddrLValue(Addr, T, BaseInfo);
2161 }
2162 
2163 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2164                                              const ReferenceType *RefTy,
2165                                              LValueBaseInfo *BaseInfo) {
2166   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2167   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2168                                               BaseInfo, /*forPointee*/ true));
2169 }
2170 
2171 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2172                                                   const ReferenceType *RefTy) {
2173   LValueBaseInfo BaseInfo;
2174   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo);
2175   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo);
2176 }
2177 
2178 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2179                                            const PointerType *PtrTy,
2180                                            LValueBaseInfo *BaseInfo) {
2181   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2182   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2183                                                BaseInfo,
2184                                                /*forPointeeType=*/true));
2185 }
2186 
2187 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2188                                                 const PointerType *PtrTy) {
2189   LValueBaseInfo BaseInfo;
2190   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo);
2191   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo);
2192 }
2193 
2194 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2195                                       const Expr *E, const VarDecl *VD) {
2196   QualType T = E->getType();
2197 
2198   // If it's thread_local, emit a call to its wrapper function instead.
2199   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2200       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2201     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2202 
2203   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2204   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2205   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2206   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2207   Address Addr(V, Alignment);
2208   LValue LV;
2209   // Emit reference to the private copy of the variable if it is an OpenMP
2210   // threadprivate variable.
2211   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2212     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2213                                           E->getExprLoc());
2214   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2215     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2216   } else {
2217     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2218     LV = CGF.MakeAddrLValue(Addr, T, BaseInfo);
2219   }
2220   setObjCGCLValueClass(CGF.getContext(), E, LV);
2221   return LV;
2222 }
2223 
2224 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2225                                                const FunctionDecl *FD) {
2226   if (FD->hasAttr<WeakRefAttr>()) {
2227     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2228     return aliasee.getPointer();
2229   }
2230 
2231   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2232   if (!FD->hasPrototype()) {
2233     if (const FunctionProtoType *Proto =
2234             FD->getType()->getAs<FunctionProtoType>()) {
2235       // Ugly case: for a K&R-style definition, the type of the definition
2236       // isn't the same as the type of a use.  Correct for this with a
2237       // bitcast.
2238       QualType NoProtoType =
2239           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2240       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2241       V = llvm::ConstantExpr::getBitCast(V,
2242                                       CGM.getTypes().ConvertType(NoProtoType));
2243     }
2244   }
2245   return V;
2246 }
2247 
2248 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2249                                      const Expr *E, const FunctionDecl *FD) {
2250   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2251   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2252   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2253   return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo);
2254 }
2255 
2256 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2257                                       llvm::Value *ThisValue) {
2258   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2259   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2260   return CGF.EmitLValueForField(LV, FD);
2261 }
2262 
2263 /// Named Registers are named metadata pointing to the register name
2264 /// which will be read from/written to as an argument to the intrinsic
2265 /// @llvm.read/write_register.
2266 /// So far, only the name is being passed down, but other options such as
2267 /// register type, allocation type or even optimization options could be
2268 /// passed down via the metadata node.
2269 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2270   SmallString<64> Name("llvm.named.register.");
2271   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2272   assert(Asm->getLabel().size() < 64-Name.size() &&
2273       "Register name too big");
2274   Name.append(Asm->getLabel());
2275   llvm::NamedMDNode *M =
2276     CGM.getModule().getOrInsertNamedMetadata(Name);
2277   if (M->getNumOperands() == 0) {
2278     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2279                                               Asm->getLabel());
2280     llvm::Metadata *Ops[] = {Str};
2281     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2282   }
2283 
2284   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2285 
2286   llvm::Value *Ptr =
2287     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2288   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2289 }
2290 
2291 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2292   const NamedDecl *ND = E->getDecl();
2293   QualType T = E->getType();
2294 
2295   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2296     // Global Named registers access via intrinsics only
2297     if (VD->getStorageClass() == SC_Register &&
2298         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2299       return EmitGlobalNamedRegister(VD, CGM);
2300 
2301     // A DeclRefExpr for a reference initialized by a constant expression can
2302     // appear without being odr-used. Directly emit the constant initializer.
2303     const Expr *Init = VD->getAnyInitializer(VD);
2304     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2305         VD->isUsableInConstantExpressions(getContext()) &&
2306         VD->checkInitIsICE() &&
2307         // Do not emit if it is private OpenMP variable.
2308         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2309           LocalDeclMap.count(VD))) {
2310       llvm::Constant *Val =
2311         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2312                                             *VD->evaluateValue(),
2313                                             VD->getType());
2314       assert(Val && "failed to emit reference constant expression");
2315       // FIXME: Eventually we will want to emit vector element references.
2316 
2317       // Should we be using the alignment of the constant pointer we emitted?
2318       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2319                                                     /*pointee*/ true);
2320       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2321       return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo);
2322     }
2323 
2324     // Check for captured variables.
2325     if (E->refersToEnclosingVariableOrCapture()) {
2326       VD = VD->getCanonicalDecl();
2327       if (auto *FD = LambdaCaptureFields.lookup(VD))
2328         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2329       else if (CapturedStmtInfo) {
2330         auto I = LocalDeclMap.find(VD);
2331         if (I != LocalDeclMap.end()) {
2332           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2333             return EmitLoadOfReferenceLValue(I->second, RefTy);
2334           return MakeAddrLValue(I->second, T);
2335         }
2336         LValue CapLVal =
2337             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2338                                     CapturedStmtInfo->getContextValue());
2339         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2340         return MakeAddrLValue(
2341             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2342             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias));
2343       }
2344 
2345       assert(isa<BlockDecl>(CurCodeDecl));
2346       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2347       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2348       return MakeAddrLValue(addr, T, BaseInfo);
2349     }
2350   }
2351 
2352   // FIXME: We should be able to assert this for FunctionDecls as well!
2353   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2354   // those with a valid source location.
2355   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2356           !E->getLocation().isValid()) &&
2357          "Should not use decl without marking it used!");
2358 
2359   if (ND->hasAttr<WeakRefAttr>()) {
2360     const auto *VD = cast<ValueDecl>(ND);
2361     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2362     return MakeAddrLValue(Aliasee, T,
2363                           LValueBaseInfo(AlignmentSource::Decl, false));
2364   }
2365 
2366   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2367     // Check if this is a global variable.
2368     if (VD->hasLinkage() || VD->isStaticDataMember())
2369       return EmitGlobalVarDeclLValue(*this, E, VD);
2370 
2371     Address addr = Address::invalid();
2372 
2373     // The variable should generally be present in the local decl map.
2374     auto iter = LocalDeclMap.find(VD);
2375     if (iter != LocalDeclMap.end()) {
2376       addr = iter->second;
2377 
2378     // Otherwise, it might be static local we haven't emitted yet for
2379     // some reason; most likely, because it's in an outer function.
2380     } else if (VD->isStaticLocal()) {
2381       addr = Address(CGM.getOrCreateStaticVarDecl(
2382           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2383                      getContext().getDeclAlign(VD));
2384 
2385     // No other cases for now.
2386     } else {
2387       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2388     }
2389 
2390 
2391     // Check for OpenMP threadprivate variables.
2392     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2393       return EmitThreadPrivateVarDeclLValue(
2394           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2395           E->getExprLoc());
2396     }
2397 
2398     // Drill into block byref variables.
2399     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2400     if (isBlockByref) {
2401       addr = emitBlockByrefAddress(addr, VD);
2402     }
2403 
2404     // Drill into reference types.
2405     LValue LV;
2406     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2407       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2408     } else {
2409       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2410       LV = MakeAddrLValue(addr, T, BaseInfo);
2411     }
2412 
2413     bool isLocalStorage = VD->hasLocalStorage();
2414 
2415     bool NonGCable = isLocalStorage &&
2416                      !VD->getType()->isReferenceType() &&
2417                      !isBlockByref;
2418     if (NonGCable) {
2419       LV.getQuals().removeObjCGCAttr();
2420       LV.setNonGC(true);
2421     }
2422 
2423     bool isImpreciseLifetime =
2424       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2425     if (isImpreciseLifetime)
2426       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2427     setObjCGCLValueClass(getContext(), E, LV);
2428     return LV;
2429   }
2430 
2431   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2432     return EmitFunctionDeclLValue(*this, E, FD);
2433 
2434   // FIXME: While we're emitting a binding from an enclosing scope, all other
2435   // DeclRefExprs we see should be implicitly treated as if they also refer to
2436   // an enclosing scope.
2437   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2438     return EmitLValue(BD->getBinding());
2439 
2440   llvm_unreachable("Unhandled DeclRefExpr");
2441 }
2442 
2443 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2444   // __extension__ doesn't affect lvalue-ness.
2445   if (E->getOpcode() == UO_Extension)
2446     return EmitLValue(E->getSubExpr());
2447 
2448   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2449   switch (E->getOpcode()) {
2450   default: llvm_unreachable("Unknown unary operator lvalue!");
2451   case UO_Deref: {
2452     QualType T = E->getSubExpr()->getType()->getPointeeType();
2453     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2454 
2455     LValueBaseInfo BaseInfo;
2456     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo);
2457     LValue LV = MakeAddrLValue(Addr, T, BaseInfo);
2458     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2459 
2460     // We should not generate __weak write barrier on indirect reference
2461     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2462     // But, we continue to generate __strong write barrier on indirect write
2463     // into a pointer to object.
2464     if (getLangOpts().ObjC1 &&
2465         getLangOpts().getGC() != LangOptions::NonGC &&
2466         LV.isObjCWeak())
2467       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2468     return LV;
2469   }
2470   case UO_Real:
2471   case UO_Imag: {
2472     LValue LV = EmitLValue(E->getSubExpr());
2473     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2474 
2475     // __real is valid on scalars.  This is a faster way of testing that.
2476     // __imag can only produce an rvalue on scalars.
2477     if (E->getOpcode() == UO_Real &&
2478         !LV.getAddress().getElementType()->isStructTy()) {
2479       assert(E->getSubExpr()->getType()->isArithmeticType());
2480       return LV;
2481     }
2482 
2483     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2484 
2485     Address Component =
2486       (E->getOpcode() == UO_Real
2487          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2488          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2489     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo());
2490     ElemLV.getQuals().addQualifiers(LV.getQuals());
2491     return ElemLV;
2492   }
2493   case UO_PreInc:
2494   case UO_PreDec: {
2495     LValue LV = EmitLValue(E->getSubExpr());
2496     bool isInc = E->getOpcode() == UO_PreInc;
2497 
2498     if (E->getType()->isAnyComplexType())
2499       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2500     else
2501       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2502     return LV;
2503   }
2504   }
2505 }
2506 
2507 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2508   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2509                         E->getType(),
2510                         LValueBaseInfo(AlignmentSource::Decl, false));
2511 }
2512 
2513 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2514   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2515                         E->getType(),
2516                         LValueBaseInfo(AlignmentSource::Decl, false));
2517 }
2518 
2519 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2520   auto SL = E->getFunctionName();
2521   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2522   StringRef FnName = CurFn->getName();
2523   if (FnName.startswith("\01"))
2524     FnName = FnName.substr(1);
2525   StringRef NameItems[] = {
2526       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2527   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2528   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2529   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2530     std::string Name = SL->getString();
2531     if (!Name.empty()) {
2532       unsigned Discriminator =
2533           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2534       if (Discriminator)
2535         Name += "_" + Twine(Discriminator + 1).str();
2536       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2537       return MakeAddrLValue(C, E->getType(), BaseInfo);
2538     } else {
2539       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2540       return MakeAddrLValue(C, E->getType(), BaseInfo);
2541     }
2542   }
2543   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2544   return MakeAddrLValue(C, E->getType(), BaseInfo);
2545 }
2546 
2547 /// Emit a type description suitable for use by a runtime sanitizer library. The
2548 /// format of a type descriptor is
2549 ///
2550 /// \code
2551 ///   { i16 TypeKind, i16 TypeInfo }
2552 /// \endcode
2553 ///
2554 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2555 /// integer, 1 for a floating point value, and -1 for anything else.
2556 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2557   // Only emit each type's descriptor once.
2558   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2559     return C;
2560 
2561   uint16_t TypeKind = -1;
2562   uint16_t TypeInfo = 0;
2563 
2564   if (T->isIntegerType()) {
2565     TypeKind = 0;
2566     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2567                (T->isSignedIntegerType() ? 1 : 0);
2568   } else if (T->isFloatingType()) {
2569     TypeKind = 1;
2570     TypeInfo = getContext().getTypeSize(T);
2571   }
2572 
2573   // Format the type name as if for a diagnostic, including quotes and
2574   // optionally an 'aka'.
2575   SmallString<32> Buffer;
2576   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2577                                     (intptr_t)T.getAsOpaquePtr(),
2578                                     StringRef(), StringRef(), None, Buffer,
2579                                     None);
2580 
2581   llvm::Constant *Components[] = {
2582     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2583     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2584   };
2585   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2586 
2587   auto *GV = new llvm::GlobalVariable(
2588       CGM.getModule(), Descriptor->getType(),
2589       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2590   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2591   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2592 
2593   // Remember the descriptor for this type.
2594   CGM.setTypeDescriptorInMap(T, GV);
2595 
2596   return GV;
2597 }
2598 
2599 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2600   llvm::Type *TargetTy = IntPtrTy;
2601 
2602   // Floating-point types which fit into intptr_t are bitcast to integers
2603   // and then passed directly (after zero-extension, if necessary).
2604   if (V->getType()->isFloatingPointTy()) {
2605     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2606     if (Bits <= TargetTy->getIntegerBitWidth())
2607       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2608                                                          Bits));
2609   }
2610 
2611   // Integers which fit in intptr_t are zero-extended and passed directly.
2612   if (V->getType()->isIntegerTy() &&
2613       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2614     return Builder.CreateZExt(V, TargetTy);
2615 
2616   // Pointers are passed directly, everything else is passed by address.
2617   if (!V->getType()->isPointerTy()) {
2618     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2619     Builder.CreateStore(V, Ptr);
2620     V = Ptr.getPointer();
2621   }
2622   return Builder.CreatePtrToInt(V, TargetTy);
2623 }
2624 
2625 /// \brief Emit a representation of a SourceLocation for passing to a handler
2626 /// in a sanitizer runtime library. The format for this data is:
2627 /// \code
2628 ///   struct SourceLocation {
2629 ///     const char *Filename;
2630 ///     int32_t Line, Column;
2631 ///   };
2632 /// \endcode
2633 /// For an invalid SourceLocation, the Filename pointer is null.
2634 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2635   llvm::Constant *Filename;
2636   int Line, Column;
2637 
2638   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2639   if (PLoc.isValid()) {
2640     StringRef FilenameString = PLoc.getFilename();
2641 
2642     int PathComponentsToStrip =
2643         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2644     if (PathComponentsToStrip < 0) {
2645       assert(PathComponentsToStrip != INT_MIN);
2646       int PathComponentsToKeep = -PathComponentsToStrip;
2647       auto I = llvm::sys::path::rbegin(FilenameString);
2648       auto E = llvm::sys::path::rend(FilenameString);
2649       while (I != E && --PathComponentsToKeep)
2650         ++I;
2651 
2652       FilenameString = FilenameString.substr(I - E);
2653     } else if (PathComponentsToStrip > 0) {
2654       auto I = llvm::sys::path::begin(FilenameString);
2655       auto E = llvm::sys::path::end(FilenameString);
2656       while (I != E && PathComponentsToStrip--)
2657         ++I;
2658 
2659       if (I != E)
2660         FilenameString =
2661             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2662       else
2663         FilenameString = llvm::sys::path::filename(FilenameString);
2664     }
2665 
2666     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2667     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2668                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2669     Filename = FilenameGV.getPointer();
2670     Line = PLoc.getLine();
2671     Column = PLoc.getColumn();
2672   } else {
2673     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2674     Line = Column = 0;
2675   }
2676 
2677   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2678                             Builder.getInt32(Column)};
2679 
2680   return llvm::ConstantStruct::getAnon(Data);
2681 }
2682 
2683 namespace {
2684 /// \brief Specify under what conditions this check can be recovered
2685 enum class CheckRecoverableKind {
2686   /// Always terminate program execution if this check fails.
2687   Unrecoverable,
2688   /// Check supports recovering, runtime has both fatal (noreturn) and
2689   /// non-fatal handlers for this check.
2690   Recoverable,
2691   /// Runtime conditionally aborts, always need to support recovery.
2692   AlwaysRecoverable
2693 };
2694 }
2695 
2696 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2697   assert(llvm::countPopulation(Kind) == 1);
2698   switch (Kind) {
2699   case SanitizerKind::Vptr:
2700     return CheckRecoverableKind::AlwaysRecoverable;
2701   case SanitizerKind::Return:
2702   case SanitizerKind::Unreachable:
2703     return CheckRecoverableKind::Unrecoverable;
2704   default:
2705     return CheckRecoverableKind::Recoverable;
2706   }
2707 }
2708 
2709 namespace {
2710 struct SanitizerHandlerInfo {
2711   char const *const Name;
2712   unsigned Version;
2713 };
2714 }
2715 
2716 const SanitizerHandlerInfo SanitizerHandlers[] = {
2717 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2718     LIST_SANITIZER_CHECKS
2719 #undef SANITIZER_CHECK
2720 };
2721 
2722 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2723                                  llvm::FunctionType *FnType,
2724                                  ArrayRef<llvm::Value *> FnArgs,
2725                                  SanitizerHandler CheckHandler,
2726                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2727                                  llvm::BasicBlock *ContBB) {
2728   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2729   bool NeedsAbortSuffix =
2730       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2731   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2732   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2733   const StringRef CheckName = CheckInfo.Name;
2734   std::string FnName = "__ubsan_handle_" + CheckName.str();
2735   if (CheckInfo.Version && !MinimalRuntime)
2736     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2737   if (MinimalRuntime)
2738     FnName += "_minimal";
2739   if (NeedsAbortSuffix)
2740     FnName += "_abort";
2741   bool MayReturn =
2742       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2743 
2744   llvm::AttrBuilder B;
2745   if (!MayReturn) {
2746     B.addAttribute(llvm::Attribute::NoReturn)
2747         .addAttribute(llvm::Attribute::NoUnwind);
2748   }
2749   B.addAttribute(llvm::Attribute::UWTable);
2750 
2751   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2752       FnType, FnName,
2753       llvm::AttributeList::get(CGF.getLLVMContext(),
2754                                llvm::AttributeList::FunctionIndex, B),
2755       /*Local=*/true);
2756   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2757   if (!MayReturn) {
2758     HandlerCall->setDoesNotReturn();
2759     CGF.Builder.CreateUnreachable();
2760   } else {
2761     CGF.Builder.CreateBr(ContBB);
2762   }
2763 }
2764 
2765 void CodeGenFunction::EmitCheck(
2766     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2767     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2768     ArrayRef<llvm::Value *> DynamicArgs) {
2769   assert(IsSanitizerScope);
2770   assert(Checked.size() > 0);
2771   assert(CheckHandler >= 0 &&
2772          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2773   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2774 
2775   llvm::Value *FatalCond = nullptr;
2776   llvm::Value *RecoverableCond = nullptr;
2777   llvm::Value *TrapCond = nullptr;
2778   for (int i = 0, n = Checked.size(); i < n; ++i) {
2779     llvm::Value *Check = Checked[i].first;
2780     // -fsanitize-trap= overrides -fsanitize-recover=.
2781     llvm::Value *&Cond =
2782         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2783             ? TrapCond
2784             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2785                   ? RecoverableCond
2786                   : FatalCond;
2787     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2788   }
2789 
2790   if (TrapCond)
2791     EmitTrapCheck(TrapCond);
2792   if (!FatalCond && !RecoverableCond)
2793     return;
2794 
2795   llvm::Value *JointCond;
2796   if (FatalCond && RecoverableCond)
2797     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2798   else
2799     JointCond = FatalCond ? FatalCond : RecoverableCond;
2800   assert(JointCond);
2801 
2802   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2803   assert(SanOpts.has(Checked[0].second));
2804 #ifndef NDEBUG
2805   for (int i = 1, n = Checked.size(); i < n; ++i) {
2806     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2807            "All recoverable kinds in a single check must be same!");
2808     assert(SanOpts.has(Checked[i].second));
2809   }
2810 #endif
2811 
2812   llvm::BasicBlock *Cont = createBasicBlock("cont");
2813   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2814   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2815   // Give hint that we very much don't expect to execute the handler
2816   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2817   llvm::MDBuilder MDHelper(getLLVMContext());
2818   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2819   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2820   EmitBlock(Handlers);
2821 
2822   // Handler functions take an i8* pointing to the (handler-specific) static
2823   // information block, followed by a sequence of intptr_t arguments
2824   // representing operand values.
2825   SmallVector<llvm::Value *, 4> Args;
2826   SmallVector<llvm::Type *, 4> ArgTypes;
2827   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2828     Args.reserve(DynamicArgs.size() + 1);
2829     ArgTypes.reserve(DynamicArgs.size() + 1);
2830 
2831     // Emit handler arguments and create handler function type.
2832     if (!StaticArgs.empty()) {
2833       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2834       auto *InfoPtr =
2835           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2836                                    llvm::GlobalVariable::PrivateLinkage, Info);
2837       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2838       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2839       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2840       ArgTypes.push_back(Int8PtrTy);
2841     }
2842 
2843     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2844       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2845       ArgTypes.push_back(IntPtrTy);
2846     }
2847   }
2848 
2849   llvm::FunctionType *FnType =
2850     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2851 
2852   if (!FatalCond || !RecoverableCond) {
2853     // Simple case: we need to generate a single handler call, either
2854     // fatal, or non-fatal.
2855     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2856                          (FatalCond != nullptr), Cont);
2857   } else {
2858     // Emit two handler calls: first one for set of unrecoverable checks,
2859     // another one for recoverable.
2860     llvm::BasicBlock *NonFatalHandlerBB =
2861         createBasicBlock("non_fatal." + CheckName);
2862     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2863     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2864     EmitBlock(FatalHandlerBB);
2865     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2866                          NonFatalHandlerBB);
2867     EmitBlock(NonFatalHandlerBB);
2868     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2869                          Cont);
2870   }
2871 
2872   EmitBlock(Cont);
2873 }
2874 
2875 void CodeGenFunction::EmitCfiSlowPathCheck(
2876     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2877     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2878   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2879 
2880   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2881   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2882 
2883   llvm::MDBuilder MDHelper(getLLVMContext());
2884   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2885   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2886 
2887   EmitBlock(CheckBB);
2888 
2889   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2890 
2891   llvm::CallInst *CheckCall;
2892   if (WithDiag) {
2893     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2894     auto *InfoPtr =
2895         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2896                                  llvm::GlobalVariable::PrivateLinkage, Info);
2897     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2898     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2899 
2900     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2901         "__cfi_slowpath_diag",
2902         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2903                                 false));
2904     CheckCall = Builder.CreateCall(
2905         SlowPathDiagFn,
2906         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2907   } else {
2908     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2909         "__cfi_slowpath",
2910         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2911     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2912   }
2913 
2914   CheckCall->setDoesNotThrow();
2915 
2916   EmitBlock(Cont);
2917 }
2918 
2919 // Emit a stub for __cfi_check function so that the linker knows about this
2920 // symbol in LTO mode.
2921 void CodeGenFunction::EmitCfiCheckStub() {
2922   llvm::Module *M = &CGM.getModule();
2923   auto &Ctx = M->getContext();
2924   llvm::Function *F = llvm::Function::Create(
2925       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2926       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2927   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2928   // FIXME: consider emitting an intrinsic call like
2929   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2930   // which can be lowered in CrossDSOCFI pass to the actual contents of
2931   // __cfi_check. This would allow inlining of __cfi_check calls.
2932   llvm::CallInst::Create(
2933       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2934   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2935 }
2936 
2937 // This function is basically a switch over the CFI failure kind, which is
2938 // extracted from CFICheckFailData (1st function argument). Each case is either
2939 // llvm.trap or a call to one of the two runtime handlers, based on
2940 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2941 // failure kind) traps, but this should really never happen.  CFICheckFailData
2942 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2943 // check kind; in this case __cfi_check_fail traps as well.
2944 void CodeGenFunction::EmitCfiCheckFail() {
2945   SanitizerScope SanScope(this);
2946   FunctionArgList Args;
2947   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2948                             ImplicitParamDecl::Other);
2949   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2950                             ImplicitParamDecl::Other);
2951   Args.push_back(&ArgData);
2952   Args.push_back(&ArgAddr);
2953 
2954   const CGFunctionInfo &FI =
2955     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2956 
2957   llvm::Function *F = llvm::Function::Create(
2958       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2959       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2960   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2961 
2962   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2963                 SourceLocation());
2964 
2965   llvm::Value *Data =
2966       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2967                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2968   llvm::Value *Addr =
2969       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2970                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2971 
2972   // Data == nullptr means the calling module has trap behaviour for this check.
2973   llvm::Value *DataIsNotNullPtr =
2974       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2975   EmitTrapCheck(DataIsNotNullPtr);
2976 
2977   llvm::StructType *SourceLocationTy =
2978       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2979   llvm::StructType *CfiCheckFailDataTy =
2980       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2981 
2982   llvm::Value *V = Builder.CreateConstGEP2_32(
2983       CfiCheckFailDataTy,
2984       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2985       0);
2986   Address CheckKindAddr(V, getIntAlign());
2987   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2988 
2989   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2990       CGM.getLLVMContext(),
2991       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2992   llvm::Value *ValidVtable = Builder.CreateZExt(
2993       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2994                          {Addr, AllVtables}),
2995       IntPtrTy);
2996 
2997   const std::pair<int, SanitizerMask> CheckKinds[] = {
2998       {CFITCK_VCall, SanitizerKind::CFIVCall},
2999       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3000       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3001       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3002       {CFITCK_ICall, SanitizerKind::CFIICall}};
3003 
3004   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3005   for (auto CheckKindMaskPair : CheckKinds) {
3006     int Kind = CheckKindMaskPair.first;
3007     SanitizerMask Mask = CheckKindMaskPair.second;
3008     llvm::Value *Cond =
3009         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3010     if (CGM.getLangOpts().Sanitize.has(Mask))
3011       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3012                 {Data, Addr, ValidVtable});
3013     else
3014       EmitTrapCheck(Cond);
3015   }
3016 
3017   FinishFunction();
3018   // The only reference to this function will be created during LTO link.
3019   // Make sure it survives until then.
3020   CGM.addUsedGlobal(F);
3021 }
3022 
3023 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3024   llvm::BasicBlock *Cont = createBasicBlock("cont");
3025 
3026   // If we're optimizing, collapse all calls to trap down to just one per
3027   // function to save on code size.
3028   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3029     TrapBB = createBasicBlock("trap");
3030     Builder.CreateCondBr(Checked, Cont, TrapBB);
3031     EmitBlock(TrapBB);
3032     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3033     TrapCall->setDoesNotReturn();
3034     TrapCall->setDoesNotThrow();
3035     Builder.CreateUnreachable();
3036   } else {
3037     Builder.CreateCondBr(Checked, Cont, TrapBB);
3038   }
3039 
3040   EmitBlock(Cont);
3041 }
3042 
3043 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3044   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3045 
3046   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3047     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3048                                   CGM.getCodeGenOpts().TrapFuncName);
3049     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3050   }
3051 
3052   return TrapCall;
3053 }
3054 
3055 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3056                                                  LValueBaseInfo *BaseInfo) {
3057   assert(E->getType()->isArrayType() &&
3058          "Array to pointer decay must have array source type!");
3059 
3060   // Expressions of array type can't be bitfields or vector elements.
3061   LValue LV = EmitLValue(E);
3062   Address Addr = LV.getAddress();
3063   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3064 
3065   // If the array type was an incomplete type, we need to make sure
3066   // the decay ends up being the right type.
3067   llvm::Type *NewTy = ConvertType(E->getType());
3068   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3069 
3070   // Note that VLA pointers are always decayed, so we don't need to do
3071   // anything here.
3072   if (!E->getType()->isVariableArrayType()) {
3073     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3074            "Expected pointer to array");
3075     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3076   }
3077 
3078   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3079   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3080 }
3081 
3082 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3083 /// array to pointer, return the array subexpression.
3084 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3085   // If this isn't just an array->pointer decay, bail out.
3086   const auto *CE = dyn_cast<CastExpr>(E);
3087   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3088     return nullptr;
3089 
3090   // If this is a decay from variable width array, bail out.
3091   const Expr *SubExpr = CE->getSubExpr();
3092   if (SubExpr->getType()->isVariableArrayType())
3093     return nullptr;
3094 
3095   return SubExpr;
3096 }
3097 
3098 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3099                                           llvm::Value *ptr,
3100                                           ArrayRef<llvm::Value*> indices,
3101                                           bool inbounds,
3102                                           bool signedIndices,
3103                                           SourceLocation loc,
3104                                     const llvm::Twine &name = "arrayidx") {
3105   if (inbounds) {
3106     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3107                                       CodeGenFunction::NotSubtraction, loc,
3108                                       name);
3109   } else {
3110     return CGF.Builder.CreateGEP(ptr, indices, name);
3111   }
3112 }
3113 
3114 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3115                                       llvm::Value *idx,
3116                                       CharUnits eltSize) {
3117   // If we have a constant index, we can use the exact offset of the
3118   // element we're accessing.
3119   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3120     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3121     return arrayAlign.alignmentAtOffset(offset);
3122 
3123   // Otherwise, use the worst-case alignment for any element.
3124   } else {
3125     return arrayAlign.alignmentOfArrayElement(eltSize);
3126   }
3127 }
3128 
3129 static QualType getFixedSizeElementType(const ASTContext &ctx,
3130                                         const VariableArrayType *vla) {
3131   QualType eltType;
3132   do {
3133     eltType = vla->getElementType();
3134   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3135   return eltType;
3136 }
3137 
3138 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3139                                      ArrayRef<llvm::Value *> indices,
3140                                      QualType eltType, bool inbounds,
3141                                      bool signedIndices, SourceLocation loc,
3142                                      const llvm::Twine &name = "arrayidx") {
3143   // All the indices except that last must be zero.
3144 #ifndef NDEBUG
3145   for (auto idx : indices.drop_back())
3146     assert(isa<llvm::ConstantInt>(idx) &&
3147            cast<llvm::ConstantInt>(idx)->isZero());
3148 #endif
3149 
3150   // Determine the element size of the statically-sized base.  This is
3151   // the thing that the indices are expressed in terms of.
3152   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3153     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3154   }
3155 
3156   // We can use that to compute the best alignment of the element.
3157   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3158   CharUnits eltAlign =
3159     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3160 
3161   llvm::Value *eltPtr = emitArraySubscriptGEP(
3162       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3163   return Address(eltPtr, eltAlign);
3164 }
3165 
3166 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3167                                                bool Accessed) {
3168   // The index must always be an integer, which is not an aggregate.  Emit it
3169   // in lexical order (this complexity is, sadly, required by C++17).
3170   llvm::Value *IdxPre =
3171       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3172   bool SignedIndices = false;
3173   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3174     auto *Idx = IdxPre;
3175     if (E->getLHS() != E->getIdx()) {
3176       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3177       Idx = EmitScalarExpr(E->getIdx());
3178     }
3179 
3180     QualType IdxTy = E->getIdx()->getType();
3181     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3182     SignedIndices |= IdxSigned;
3183 
3184     if (SanOpts.has(SanitizerKind::ArrayBounds))
3185       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3186 
3187     // Extend or truncate the index type to 32 or 64-bits.
3188     if (Promote && Idx->getType() != IntPtrTy)
3189       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3190 
3191     return Idx;
3192   };
3193   IdxPre = nullptr;
3194 
3195   // If the base is a vector type, then we are forming a vector element lvalue
3196   // with this subscript.
3197   if (E->getBase()->getType()->isVectorType() &&
3198       !isa<ExtVectorElementExpr>(E->getBase())) {
3199     // Emit the vector as an lvalue to get its address.
3200     LValue LHS = EmitLValue(E->getBase());
3201     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3202     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3203     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3204                                  E->getBase()->getType(),
3205                                  LHS.getBaseInfo());
3206   }
3207 
3208   // All the other cases basically behave like simple offsetting.
3209 
3210   // Handle the extvector case we ignored above.
3211   if (isa<ExtVectorElementExpr>(E->getBase())) {
3212     LValue LV = EmitLValue(E->getBase());
3213     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3214     Address Addr = EmitExtVectorElementLValue(LV);
3215 
3216     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3217     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3218                                  SignedIndices, E->getExprLoc());
3219     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo());
3220   }
3221 
3222   LValueBaseInfo BaseInfo;
3223   Address Addr = Address::invalid();
3224   if (const VariableArrayType *vla =
3225            getContext().getAsVariableArrayType(E->getType())) {
3226     // The base must be a pointer, which is not an aggregate.  Emit
3227     // it.  It needs to be emitted first in case it's what captures
3228     // the VLA bounds.
3229     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3230     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3231 
3232     // The element count here is the total number of non-VLA elements.
3233     llvm::Value *numElements = getVLASize(vla).first;
3234 
3235     // Effectively, the multiply by the VLA size is part of the GEP.
3236     // GEP indexes are signed, and scaling an index isn't permitted to
3237     // signed-overflow, so we use the same semantics for our explicit
3238     // multiply.  We suppress this if overflow is not undefined behavior.
3239     if (getLangOpts().isSignedOverflowDefined()) {
3240       Idx = Builder.CreateMul(Idx, numElements);
3241     } else {
3242       Idx = Builder.CreateNSWMul(Idx, numElements);
3243     }
3244 
3245     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3246                                  !getLangOpts().isSignedOverflowDefined(),
3247                                  SignedIndices, E->getExprLoc());
3248 
3249   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3250     // Indexing over an interface, as in "NSString *P; P[4];"
3251 
3252     // Emit the base pointer.
3253     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3254     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3255 
3256     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3257     llvm::Value *InterfaceSizeVal =
3258         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3259 
3260     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3261 
3262     // We don't necessarily build correct LLVM struct types for ObjC
3263     // interfaces, so we can't rely on GEP to do this scaling
3264     // correctly, so we need to cast to i8*.  FIXME: is this actually
3265     // true?  A lot of other things in the fragile ABI would break...
3266     llvm::Type *OrigBaseTy = Addr.getType();
3267     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3268 
3269     // Do the GEP.
3270     CharUnits EltAlign =
3271       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3272     llvm::Value *EltPtr =
3273         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3274                               SignedIndices, E->getExprLoc());
3275     Addr = Address(EltPtr, EltAlign);
3276 
3277     // Cast back.
3278     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3279   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3280     // If this is A[i] where A is an array, the frontend will have decayed the
3281     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3282     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3283     // "gep x, i" here.  Emit one "gep A, 0, i".
3284     assert(Array->getType()->isArrayType() &&
3285            "Array to pointer decay must have array source type!");
3286     LValue ArrayLV;
3287     // For simple multidimensional array indexing, set the 'accessed' flag for
3288     // better bounds-checking of the base expression.
3289     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3290       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3291     else
3292       ArrayLV = EmitLValue(Array);
3293     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3294 
3295     // Propagate the alignment from the array itself to the result.
3296     Addr = emitArraySubscriptGEP(
3297         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3298         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3299         E->getExprLoc());
3300     BaseInfo = ArrayLV.getBaseInfo();
3301   } else {
3302     // The base must be a pointer; emit it with an estimate of its alignment.
3303     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3304     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3305     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3306                                  !getLangOpts().isSignedOverflowDefined(),
3307                                  SignedIndices, E->getExprLoc());
3308   }
3309 
3310   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo);
3311 
3312   // TODO: Preserve/extend path TBAA metadata?
3313 
3314   if (getLangOpts().ObjC1 &&
3315       getLangOpts().getGC() != LangOptions::NonGC) {
3316     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3317     setObjCGCLValueClass(getContext(), E, LV);
3318   }
3319   return LV;
3320 }
3321 
3322 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3323                                        LValueBaseInfo &BaseInfo,
3324                                        QualType BaseTy, QualType ElTy,
3325                                        bool IsLowerBound) {
3326   LValue BaseLVal;
3327   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3328     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3329     if (BaseTy->isArrayType()) {
3330       Address Addr = BaseLVal.getAddress();
3331       BaseInfo = BaseLVal.getBaseInfo();
3332 
3333       // If the array type was an incomplete type, we need to make sure
3334       // the decay ends up being the right type.
3335       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3336       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3337 
3338       // Note that VLA pointers are always decayed, so we don't need to do
3339       // anything here.
3340       if (!BaseTy->isVariableArrayType()) {
3341         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3342                "Expected pointer to array");
3343         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3344                                            "arraydecay");
3345       }
3346 
3347       return CGF.Builder.CreateElementBitCast(Addr,
3348                                               CGF.ConvertTypeForMem(ElTy));
3349     }
3350     LValueBaseInfo TypeInfo;
3351     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3352     BaseInfo.mergeForCast(TypeInfo);
3353     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3354   }
3355   return CGF.EmitPointerWithAlignment(Base, &BaseInfo);
3356 }
3357 
3358 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3359                                                 bool IsLowerBound) {
3360   QualType BaseTy;
3361   if (auto *ASE =
3362           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3363     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3364   else
3365     BaseTy = E->getBase()->getType();
3366   QualType ResultExprTy;
3367   if (auto *AT = getContext().getAsArrayType(BaseTy))
3368     ResultExprTy = AT->getElementType();
3369   else
3370     ResultExprTy = BaseTy->getPointeeType();
3371   llvm::Value *Idx = nullptr;
3372   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3373     // Requesting lower bound or upper bound, but without provided length and
3374     // without ':' symbol for the default length -> length = 1.
3375     // Idx = LowerBound ?: 0;
3376     if (auto *LowerBound = E->getLowerBound()) {
3377       Idx = Builder.CreateIntCast(
3378           EmitScalarExpr(LowerBound), IntPtrTy,
3379           LowerBound->getType()->hasSignedIntegerRepresentation());
3380     } else
3381       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3382   } else {
3383     // Try to emit length or lower bound as constant. If this is possible, 1
3384     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3385     // IR (LB + Len) - 1.
3386     auto &C = CGM.getContext();
3387     auto *Length = E->getLength();
3388     llvm::APSInt ConstLength;
3389     if (Length) {
3390       // Idx = LowerBound + Length - 1;
3391       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3392         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3393         Length = nullptr;
3394       }
3395       auto *LowerBound = E->getLowerBound();
3396       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3397       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3398         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3399         LowerBound = nullptr;
3400       }
3401       if (!Length)
3402         --ConstLength;
3403       else if (!LowerBound)
3404         --ConstLowerBound;
3405 
3406       if (Length || LowerBound) {
3407         auto *LowerBoundVal =
3408             LowerBound
3409                 ? Builder.CreateIntCast(
3410                       EmitScalarExpr(LowerBound), IntPtrTy,
3411                       LowerBound->getType()->hasSignedIntegerRepresentation())
3412                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3413         auto *LengthVal =
3414             Length
3415                 ? Builder.CreateIntCast(
3416                       EmitScalarExpr(Length), IntPtrTy,
3417                       Length->getType()->hasSignedIntegerRepresentation())
3418                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3419         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3420                                 /*HasNUW=*/false,
3421                                 !getLangOpts().isSignedOverflowDefined());
3422         if (Length && LowerBound) {
3423           Idx = Builder.CreateSub(
3424               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3425               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3426         }
3427       } else
3428         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3429     } else {
3430       // Idx = ArraySize - 1;
3431       QualType ArrayTy = BaseTy->isPointerType()
3432                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3433                              : BaseTy;
3434       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3435         Length = VAT->getSizeExpr();
3436         if (Length->isIntegerConstantExpr(ConstLength, C))
3437           Length = nullptr;
3438       } else {
3439         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3440         ConstLength = CAT->getSize();
3441       }
3442       if (Length) {
3443         auto *LengthVal = Builder.CreateIntCast(
3444             EmitScalarExpr(Length), IntPtrTy,
3445             Length->getType()->hasSignedIntegerRepresentation());
3446         Idx = Builder.CreateSub(
3447             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3448             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3449       } else {
3450         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3451         --ConstLength;
3452         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3453       }
3454     }
3455   }
3456   assert(Idx);
3457 
3458   Address EltPtr = Address::invalid();
3459   LValueBaseInfo BaseInfo;
3460   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3461     // The base must be a pointer, which is not an aggregate.  Emit
3462     // it.  It needs to be emitted first in case it's what captures
3463     // the VLA bounds.
3464     Address Base =
3465         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy,
3466                                 VLA->getElementType(), IsLowerBound);
3467     // The element count here is the total number of non-VLA elements.
3468     llvm::Value *NumElements = getVLASize(VLA).first;
3469 
3470     // Effectively, the multiply by the VLA size is part of the GEP.
3471     // GEP indexes are signed, and scaling an index isn't permitted to
3472     // signed-overflow, so we use the same semantics for our explicit
3473     // multiply.  We suppress this if overflow is not undefined behavior.
3474     if (getLangOpts().isSignedOverflowDefined())
3475       Idx = Builder.CreateMul(Idx, NumElements);
3476     else
3477       Idx = Builder.CreateNSWMul(Idx, NumElements);
3478     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3479                                    !getLangOpts().isSignedOverflowDefined(),
3480                                    /*SignedIndices=*/false, E->getExprLoc());
3481   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3482     // If this is A[i] where A is an array, the frontend will have decayed the
3483     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3484     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3485     // "gep x, i" here.  Emit one "gep A, 0, i".
3486     assert(Array->getType()->isArrayType() &&
3487            "Array to pointer decay must have array source type!");
3488     LValue ArrayLV;
3489     // For simple multidimensional array indexing, set the 'accessed' flag for
3490     // better bounds-checking of the base expression.
3491     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3492       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3493     else
3494       ArrayLV = EmitLValue(Array);
3495 
3496     // Propagate the alignment from the array itself to the result.
3497     EltPtr = emitArraySubscriptGEP(
3498         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3499         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3500         /*SignedIndices=*/false, E->getExprLoc());
3501     BaseInfo = ArrayLV.getBaseInfo();
3502   } else {
3503     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3504                                            BaseTy, ResultExprTy, IsLowerBound);
3505     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3506                                    !getLangOpts().isSignedOverflowDefined(),
3507                                    /*SignedIndices=*/false, E->getExprLoc());
3508   }
3509 
3510   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo);
3511 }
3512 
3513 LValue CodeGenFunction::
3514 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3515   // Emit the base vector as an l-value.
3516   LValue Base;
3517 
3518   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3519   if (E->isArrow()) {
3520     // If it is a pointer to a vector, emit the address and form an lvalue with
3521     // it.
3522     LValueBaseInfo BaseInfo;
3523     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3524     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3525     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo);
3526     Base.getQuals().removeObjCGCAttr();
3527   } else if (E->getBase()->isGLValue()) {
3528     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3529     // emit the base as an lvalue.
3530     assert(E->getBase()->getType()->isVectorType());
3531     Base = EmitLValue(E->getBase());
3532   } else {
3533     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3534     assert(E->getBase()->getType()->isVectorType() &&
3535            "Result must be a vector");
3536     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3537 
3538     // Store the vector to memory (because LValue wants an address).
3539     Address VecMem = CreateMemTemp(E->getBase()->getType());
3540     Builder.CreateStore(Vec, VecMem);
3541     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3542                           LValueBaseInfo(AlignmentSource::Decl, false));
3543   }
3544 
3545   QualType type =
3546     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3547 
3548   // Encode the element access list into a vector of unsigned indices.
3549   SmallVector<uint32_t, 4> Indices;
3550   E->getEncodedElementAccess(Indices);
3551 
3552   if (Base.isSimple()) {
3553     llvm::Constant *CV =
3554         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3555     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3556                                     Base.getBaseInfo());
3557   }
3558   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3559 
3560   llvm::Constant *BaseElts = Base.getExtVectorElts();
3561   SmallVector<llvm::Constant *, 4> CElts;
3562 
3563   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3564     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3565   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3566   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3567                                   Base.getBaseInfo());
3568 }
3569 
3570 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3571   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3572     EmitIgnoredExpr(E->getBase());
3573     return EmitDeclRefLValue(DRE);
3574   }
3575 
3576   Expr *BaseExpr = E->getBase();
3577   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3578   LValue BaseLV;
3579   if (E->isArrow()) {
3580     LValueBaseInfo BaseInfo;
3581     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo);
3582     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3583     SanitizerSet SkippedChecks;
3584     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3585     if (IsBaseCXXThis)
3586       SkippedChecks.set(SanitizerKind::Alignment, true);
3587     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3588       SkippedChecks.set(SanitizerKind::Null, true);
3589     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3590                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3591     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo);
3592   } else
3593     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3594 
3595   NamedDecl *ND = E->getMemberDecl();
3596   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3597     LValue LV = EmitLValueForField(BaseLV, Field);
3598     setObjCGCLValueClass(getContext(), E, LV);
3599     return LV;
3600   }
3601 
3602   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3603     return EmitFunctionDeclLValue(*this, E, FD);
3604 
3605   llvm_unreachable("Unhandled member declaration!");
3606 }
3607 
3608 /// Given that we are currently emitting a lambda, emit an l-value for
3609 /// one of its members.
3610 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3611   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3612   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3613   QualType LambdaTagType =
3614     getContext().getTagDeclType(Field->getParent());
3615   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3616   return EmitLValueForField(LambdaLV, Field);
3617 }
3618 
3619 /// Drill down to the storage of a field without walking into
3620 /// reference types.
3621 ///
3622 /// The resulting address doesn't necessarily have the right type.
3623 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3624                                       const FieldDecl *field) {
3625   const RecordDecl *rec = field->getParent();
3626 
3627   unsigned idx =
3628     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3629 
3630   CharUnits offset;
3631   // Adjust the alignment down to the given offset.
3632   // As a special case, if the LLVM field index is 0, we know that this
3633   // is zero.
3634   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3635                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3636          "LLVM field at index zero had non-zero offset?");
3637   if (idx != 0) {
3638     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3639     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3640     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3641   }
3642 
3643   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3644 }
3645 
3646 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3647   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3648   if (!RD)
3649     return false;
3650 
3651   if (RD->isDynamicClass())
3652     return true;
3653 
3654   for (const auto &Base : RD->bases())
3655     if (hasAnyVptr(Base.getType(), Context))
3656       return true;
3657 
3658   for (const FieldDecl *Field : RD->fields())
3659     if (hasAnyVptr(Field->getType(), Context))
3660       return true;
3661 
3662   return false;
3663 }
3664 
3665 LValue CodeGenFunction::EmitLValueForField(LValue base,
3666                                            const FieldDecl *field) {
3667   LValueBaseInfo BaseInfo = base.getBaseInfo();
3668   AlignmentSource fieldAlignSource =
3669     getFieldAlignmentSource(BaseInfo.getAlignmentSource());
3670   LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias());
3671 
3672   QualType type = field->getType();
3673   const RecordDecl *rec = field->getParent();
3674   if (rec->isUnion() || rec->hasAttr<MayAliasAttr>() || type->isVectorType())
3675     FieldBaseInfo.setMayAlias(true);
3676   bool mayAlias = FieldBaseInfo.getMayAlias();
3677 
3678   if (field->isBitField()) {
3679     const CGRecordLayout &RL =
3680       CGM.getTypes().getCGRecordLayout(field->getParent());
3681     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3682     Address Addr = base.getAddress();
3683     unsigned Idx = RL.getLLVMFieldNo(field);
3684     if (Idx != 0)
3685       // For structs, we GEP to the field that the record layout suggests.
3686       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3687                                      field->getName());
3688     // Get the access type.
3689     llvm::Type *FieldIntTy =
3690       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3691     if (Addr.getElementType() != FieldIntTy)
3692       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3693 
3694     QualType fieldType =
3695       field->getType().withCVRQualifiers(base.getVRQualifiers());
3696     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo);
3697   }
3698 
3699   Address addr = base.getAddress();
3700   unsigned cvr = base.getVRQualifiers();
3701   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3702   if (rec->isUnion()) {
3703     // For unions, there is no pointer adjustment.
3704     assert(!type->isReferenceType() && "union has reference member");
3705     // TODO: handle path-aware TBAA for union.
3706     TBAAPath = false;
3707 
3708     const auto FieldType = field->getType();
3709     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3710         hasAnyVptr(FieldType, getContext()))
3711       // Because unions can easily skip invariant.barriers, we need to add
3712       // a barrier every time CXXRecord field with vptr is referenced.
3713       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3714                      addr.getAlignment());
3715   } else {
3716     // For structs, we GEP to the field that the record layout suggests.
3717     addr = emitAddrOfFieldStorage(*this, addr, field);
3718 
3719     // If this is a reference field, load the reference right now.
3720     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3721       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3722       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3723 
3724       // Loading the reference will disable path-aware TBAA.
3725       TBAAPath = false;
3726       if (CGM.shouldUseTBAA()) {
3727         llvm::MDNode *tbaa = mayAlias ? CGM.getTBAAMayAliasTypeInfo() :
3728                                         CGM.getTBAATypeInfo(type);
3729         if (tbaa)
3730           CGM.DecorateInstructionWithTBAA(load, tbaa);
3731       }
3732 
3733       mayAlias = false;
3734       type = refType->getPointeeType();
3735 
3736       CharUnits alignment =
3737         getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true);
3738       FieldBaseInfo.setMayAlias(false);
3739       addr = Address(load, alignment);
3740 
3741       // Qualifiers on the struct don't apply to the referencee, and
3742       // we'll pick up CVR from the actual type later, so reset these
3743       // additional qualifiers now.
3744       cvr = 0;
3745     }
3746   }
3747 
3748   // Make sure that the address is pointing to the right type.  This is critical
3749   // for both unions and structs.  A union needs a bitcast, a struct element
3750   // will need a bitcast if the LLVM type laid out doesn't match the desired
3751   // type.
3752   addr = Builder.CreateElementBitCast(addr,
3753                                       CGM.getTypes().ConvertTypeForMem(type),
3754                                       field->getName());
3755 
3756   if (field->hasAttr<AnnotateAttr>())
3757     addr = EmitFieldAnnotations(field, addr);
3758 
3759   LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo);
3760   LV.getQuals().addCVRQualifiers(cvr);
3761   if (TBAAPath) {
3762     const ASTRecordLayout &Layout =
3763         getContext().getASTRecordLayout(field->getParent());
3764     // Set the base type to be the base type of the base LValue and
3765     // update offset to be relative to the base type.
3766     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3767     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3768                      Layout.getFieldOffset(field->getFieldIndex()) /
3769                                            getContext().getCharWidth());
3770   }
3771 
3772   // __weak attribute on a field is ignored.
3773   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3774     LV.getQuals().removeObjCGCAttr();
3775 
3776   // Fields of may_alias structs act like 'char' for TBAA purposes.
3777   // FIXME: this should get propagated down through anonymous structs
3778   // and unions.
3779   if (mayAlias && LV.getTBAAAccessType())
3780     LV.setTBAAAccessType(CGM.getTBAAMayAliasTypeInfo());
3781 
3782   return LV;
3783 }
3784 
3785 LValue
3786 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3787                                                   const FieldDecl *Field) {
3788   QualType FieldType = Field->getType();
3789 
3790   if (!FieldType->isReferenceType())
3791     return EmitLValueForField(Base, Field);
3792 
3793   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3794 
3795   // Make sure that the address is pointing to the right type.
3796   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3797   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3798 
3799   // TODO: access-path TBAA?
3800   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3801   LValueBaseInfo FieldBaseInfo(
3802       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3803       BaseInfo.getMayAlias());
3804   return MakeAddrLValue(V, FieldType, FieldBaseInfo);
3805 }
3806 
3807 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3808   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
3809   if (E->isFileScope()) {
3810     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3811     return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo);
3812   }
3813   if (E->getType()->isVariablyModifiedType())
3814     // make sure to emit the VLA size.
3815     EmitVariablyModifiedType(E->getType());
3816 
3817   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3818   const Expr *InitExpr = E->getInitializer();
3819   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo);
3820 
3821   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3822                    /*Init*/ true);
3823 
3824   return Result;
3825 }
3826 
3827 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3828   if (!E->isGLValue())
3829     // Initializing an aggregate temporary in C++11: T{...}.
3830     return EmitAggExprToLValue(E);
3831 
3832   // An lvalue initializer list must be initializing a reference.
3833   assert(E->isTransparent() && "non-transparent glvalue init list");
3834   return EmitLValue(E->getInit(0));
3835 }
3836 
3837 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3838 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3839 /// LValue is returned and the current block has been terminated.
3840 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3841                                                     const Expr *Operand) {
3842   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3843     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3844     return None;
3845   }
3846 
3847   return CGF.EmitLValue(Operand);
3848 }
3849 
3850 LValue CodeGenFunction::
3851 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3852   if (!expr->isGLValue()) {
3853     // ?: here should be an aggregate.
3854     assert(hasAggregateEvaluationKind(expr->getType()) &&
3855            "Unexpected conditional operator!");
3856     return EmitAggExprToLValue(expr);
3857   }
3858 
3859   OpaqueValueMapping binding(*this, expr);
3860 
3861   const Expr *condExpr = expr->getCond();
3862   bool CondExprBool;
3863   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3864     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3865     if (!CondExprBool) std::swap(live, dead);
3866 
3867     if (!ContainsLabel(dead)) {
3868       // If the true case is live, we need to track its region.
3869       if (CondExprBool)
3870         incrementProfileCounter(expr);
3871       return EmitLValue(live);
3872     }
3873   }
3874 
3875   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3876   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3877   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3878 
3879   ConditionalEvaluation eval(*this);
3880   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3881 
3882   // Any temporaries created here are conditional.
3883   EmitBlock(lhsBlock);
3884   incrementProfileCounter(expr);
3885   eval.begin(*this);
3886   Optional<LValue> lhs =
3887       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3888   eval.end(*this);
3889 
3890   if (lhs && !lhs->isSimple())
3891     return EmitUnsupportedLValue(expr, "conditional operator");
3892 
3893   lhsBlock = Builder.GetInsertBlock();
3894   if (lhs)
3895     Builder.CreateBr(contBlock);
3896 
3897   // Any temporaries created here are conditional.
3898   EmitBlock(rhsBlock);
3899   eval.begin(*this);
3900   Optional<LValue> rhs =
3901       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3902   eval.end(*this);
3903   if (rhs && !rhs->isSimple())
3904     return EmitUnsupportedLValue(expr, "conditional operator");
3905   rhsBlock = Builder.GetInsertBlock();
3906 
3907   EmitBlock(contBlock);
3908 
3909   if (lhs && rhs) {
3910     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3911                                            2, "cond-lvalue");
3912     phi->addIncoming(lhs->getPointer(), lhsBlock);
3913     phi->addIncoming(rhs->getPointer(), rhsBlock);
3914     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3915     AlignmentSource alignSource =
3916       std::max(lhs->getBaseInfo().getAlignmentSource(),
3917                rhs->getBaseInfo().getAlignmentSource());
3918     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3919                     rhs->getBaseInfo().getMayAlias();
3920     return MakeAddrLValue(result, expr->getType(),
3921                           LValueBaseInfo(alignSource, MayAlias));
3922   } else {
3923     assert((lhs || rhs) &&
3924            "both operands of glvalue conditional are throw-expressions?");
3925     return lhs ? *lhs : *rhs;
3926   }
3927 }
3928 
3929 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3930 /// type. If the cast is to a reference, we can have the usual lvalue result,
3931 /// otherwise if a cast is needed by the code generator in an lvalue context,
3932 /// then it must mean that we need the address of an aggregate in order to
3933 /// access one of its members.  This can happen for all the reasons that casts
3934 /// are permitted with aggregate result, including noop aggregate casts, and
3935 /// cast from scalar to union.
3936 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3937   switch (E->getCastKind()) {
3938   case CK_ToVoid:
3939   case CK_BitCast:
3940   case CK_ArrayToPointerDecay:
3941   case CK_FunctionToPointerDecay:
3942   case CK_NullToMemberPointer:
3943   case CK_NullToPointer:
3944   case CK_IntegralToPointer:
3945   case CK_PointerToIntegral:
3946   case CK_PointerToBoolean:
3947   case CK_VectorSplat:
3948   case CK_IntegralCast:
3949   case CK_BooleanToSignedIntegral:
3950   case CK_IntegralToBoolean:
3951   case CK_IntegralToFloating:
3952   case CK_FloatingToIntegral:
3953   case CK_FloatingToBoolean:
3954   case CK_FloatingCast:
3955   case CK_FloatingRealToComplex:
3956   case CK_FloatingComplexToReal:
3957   case CK_FloatingComplexToBoolean:
3958   case CK_FloatingComplexCast:
3959   case CK_FloatingComplexToIntegralComplex:
3960   case CK_IntegralRealToComplex:
3961   case CK_IntegralComplexToReal:
3962   case CK_IntegralComplexToBoolean:
3963   case CK_IntegralComplexCast:
3964   case CK_IntegralComplexToFloatingComplex:
3965   case CK_DerivedToBaseMemberPointer:
3966   case CK_BaseToDerivedMemberPointer:
3967   case CK_MemberPointerToBoolean:
3968   case CK_ReinterpretMemberPointer:
3969   case CK_AnyPointerToBlockPointerCast:
3970   case CK_ARCProduceObject:
3971   case CK_ARCConsumeObject:
3972   case CK_ARCReclaimReturnedObject:
3973   case CK_ARCExtendBlockObject:
3974   case CK_CopyAndAutoreleaseBlockObject:
3975   case CK_AddressSpaceConversion:
3976   case CK_IntToOCLSampler:
3977     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3978 
3979   case CK_Dependent:
3980     llvm_unreachable("dependent cast kind in IR gen!");
3981 
3982   case CK_BuiltinFnToFnPtr:
3983     llvm_unreachable("builtin functions are handled elsewhere");
3984 
3985   // These are never l-values; just use the aggregate emission code.
3986   case CK_NonAtomicToAtomic:
3987   case CK_AtomicToNonAtomic:
3988     return EmitAggExprToLValue(E);
3989 
3990   case CK_Dynamic: {
3991     LValue LV = EmitLValue(E->getSubExpr());
3992     Address V = LV.getAddress();
3993     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3994     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3995   }
3996 
3997   case CK_ConstructorConversion:
3998   case CK_UserDefinedConversion:
3999   case CK_CPointerToObjCPointerCast:
4000   case CK_BlockPointerToObjCPointerCast:
4001   case CK_NoOp:
4002   case CK_LValueToRValue:
4003     return EmitLValue(E->getSubExpr());
4004 
4005   case CK_UncheckedDerivedToBase:
4006   case CK_DerivedToBase: {
4007     const RecordType *DerivedClassTy =
4008       E->getSubExpr()->getType()->getAs<RecordType>();
4009     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4010 
4011     LValue LV = EmitLValue(E->getSubExpr());
4012     Address This = LV.getAddress();
4013 
4014     // Perform the derived-to-base conversion
4015     Address Base = GetAddressOfBaseClass(
4016         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4017         /*NullCheckValue=*/false, E->getExprLoc());
4018 
4019     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo());
4020   }
4021   case CK_ToUnion:
4022     return EmitAggExprToLValue(E);
4023   case CK_BaseToDerived: {
4024     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4025     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4026 
4027     LValue LV = EmitLValue(E->getSubExpr());
4028 
4029     // Perform the base-to-derived conversion
4030     Address Derived =
4031       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4032                                E->path_begin(), E->path_end(),
4033                                /*NullCheckValue=*/false);
4034 
4035     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4036     // performed and the object is not of the derived type.
4037     if (sanitizePerformTypeCheck())
4038       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4039                     Derived.getPointer(), E->getType());
4040 
4041     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4042       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4043                                 /*MayBeNull=*/false,
4044                                 CFITCK_DerivedCast, E->getLocStart());
4045 
4046     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo());
4047   }
4048   case CK_LValueBitCast: {
4049     // This must be a reinterpret_cast (or c-style equivalent).
4050     const auto *CE = cast<ExplicitCastExpr>(E);
4051 
4052     CGM.EmitExplicitCastExprType(CE, this);
4053     LValue LV = EmitLValue(E->getSubExpr());
4054     Address V = Builder.CreateBitCast(LV.getAddress(),
4055                                       ConvertType(CE->getTypeAsWritten()));
4056 
4057     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4058       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4059                                 /*MayBeNull=*/false,
4060                                 CFITCK_UnrelatedCast, E->getLocStart());
4061 
4062     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4063   }
4064   case CK_ObjCObjectLValueCast: {
4065     LValue LV = EmitLValue(E->getSubExpr());
4066     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4067                                              ConvertType(E->getType()));
4068     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4069   }
4070   case CK_ZeroToOCLQueue:
4071     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4072   case CK_ZeroToOCLEvent:
4073     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4074   }
4075 
4076   llvm_unreachable("Unhandled lvalue cast kind?");
4077 }
4078 
4079 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4080   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4081   return getOpaqueLValueMapping(e);
4082 }
4083 
4084 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4085                                            const FieldDecl *FD,
4086                                            SourceLocation Loc) {
4087   QualType FT = FD->getType();
4088   LValue FieldLV = EmitLValueForField(LV, FD);
4089   switch (getEvaluationKind(FT)) {
4090   case TEK_Complex:
4091     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4092   case TEK_Aggregate:
4093     return FieldLV.asAggregateRValue();
4094   case TEK_Scalar:
4095     // This routine is used to load fields one-by-one to perform a copy, so
4096     // don't load reference fields.
4097     if (FD->getType()->isReferenceType())
4098       return RValue::get(FieldLV.getPointer());
4099     return EmitLoadOfLValue(FieldLV, Loc);
4100   }
4101   llvm_unreachable("bad evaluation kind");
4102 }
4103 
4104 //===--------------------------------------------------------------------===//
4105 //                             Expression Emission
4106 //===--------------------------------------------------------------------===//
4107 
4108 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4109                                      ReturnValueSlot ReturnValue) {
4110   // Builtins never have block type.
4111   if (E->getCallee()->getType()->isBlockPointerType())
4112     return EmitBlockCallExpr(E, ReturnValue);
4113 
4114   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4115     return EmitCXXMemberCallExpr(CE, ReturnValue);
4116 
4117   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4118     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4119 
4120   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4121     if (const CXXMethodDecl *MD =
4122           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4123       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4124 
4125   CGCallee callee = EmitCallee(E->getCallee());
4126 
4127   if (callee.isBuiltin()) {
4128     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4129                            E, ReturnValue);
4130   }
4131 
4132   if (callee.isPseudoDestructor()) {
4133     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4134   }
4135 
4136   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4137 }
4138 
4139 /// Emit a CallExpr without considering whether it might be a subclass.
4140 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4141                                            ReturnValueSlot ReturnValue) {
4142   CGCallee Callee = EmitCallee(E->getCallee());
4143   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4144 }
4145 
4146 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4147   if (auto builtinID = FD->getBuiltinID()) {
4148     return CGCallee::forBuiltin(builtinID, FD);
4149   }
4150 
4151   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4152   return CGCallee::forDirect(calleePtr, FD);
4153 }
4154 
4155 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4156   E = E->IgnoreParens();
4157 
4158   // Look through function-to-pointer decay.
4159   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4160     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4161         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4162       return EmitCallee(ICE->getSubExpr());
4163     }
4164 
4165   // Resolve direct calls.
4166   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4167     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4168       return EmitDirectCallee(*this, FD);
4169     }
4170   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4171     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4172       EmitIgnoredExpr(ME->getBase());
4173       return EmitDirectCallee(*this, FD);
4174     }
4175 
4176   // Look through template substitutions.
4177   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4178     return EmitCallee(NTTP->getReplacement());
4179 
4180   // Treat pseudo-destructor calls differently.
4181   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4182     return CGCallee::forPseudoDestructor(PDE);
4183   }
4184 
4185   // Otherwise, we have an indirect reference.
4186   llvm::Value *calleePtr;
4187   QualType functionType;
4188   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4189     calleePtr = EmitScalarExpr(E);
4190     functionType = ptrType->getPointeeType();
4191   } else {
4192     functionType = E->getType();
4193     calleePtr = EmitLValue(E).getPointer();
4194   }
4195   assert(functionType->isFunctionType());
4196   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4197                           E->getReferencedDeclOfCallee());
4198   CGCallee callee(calleeInfo, calleePtr);
4199   return callee;
4200 }
4201 
4202 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4203   // Comma expressions just emit their LHS then their RHS as an l-value.
4204   if (E->getOpcode() == BO_Comma) {
4205     EmitIgnoredExpr(E->getLHS());
4206     EnsureInsertPoint();
4207     return EmitLValue(E->getRHS());
4208   }
4209 
4210   if (E->getOpcode() == BO_PtrMemD ||
4211       E->getOpcode() == BO_PtrMemI)
4212     return EmitPointerToDataMemberBinaryExpr(E);
4213 
4214   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4215 
4216   // Note that in all of these cases, __block variables need the RHS
4217   // evaluated first just in case the variable gets moved by the RHS.
4218 
4219   switch (getEvaluationKind(E->getType())) {
4220   case TEK_Scalar: {
4221     switch (E->getLHS()->getType().getObjCLifetime()) {
4222     case Qualifiers::OCL_Strong:
4223       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4224 
4225     case Qualifiers::OCL_Autoreleasing:
4226       return EmitARCStoreAutoreleasing(E).first;
4227 
4228     // No reason to do any of these differently.
4229     case Qualifiers::OCL_None:
4230     case Qualifiers::OCL_ExplicitNone:
4231     case Qualifiers::OCL_Weak:
4232       break;
4233     }
4234 
4235     RValue RV = EmitAnyExpr(E->getRHS());
4236     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4237     if (RV.isScalar())
4238       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4239     EmitStoreThroughLValue(RV, LV);
4240     return LV;
4241   }
4242 
4243   case TEK_Complex:
4244     return EmitComplexAssignmentLValue(E);
4245 
4246   case TEK_Aggregate:
4247     return EmitAggExprToLValue(E);
4248   }
4249   llvm_unreachable("bad evaluation kind");
4250 }
4251 
4252 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4253   RValue RV = EmitCallExpr(E);
4254 
4255   if (!RV.isScalar())
4256     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4257                           LValueBaseInfo(AlignmentSource::Decl, false));
4258 
4259   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4260          "Can't have a scalar return unless the return type is a "
4261          "reference type!");
4262 
4263   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4264 }
4265 
4266 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4267   // FIXME: This shouldn't require another copy.
4268   return EmitAggExprToLValue(E);
4269 }
4270 
4271 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4272   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4273          && "binding l-value to type which needs a temporary");
4274   AggValueSlot Slot = CreateAggTemp(E->getType());
4275   EmitCXXConstructExpr(E, Slot);
4276   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4277                         LValueBaseInfo(AlignmentSource::Decl, false));
4278 }
4279 
4280 LValue
4281 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4282   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4283 }
4284 
4285 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4286   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4287                                       ConvertType(E->getType()));
4288 }
4289 
4290 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4291   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4292                         LValueBaseInfo(AlignmentSource::Decl, false));
4293 }
4294 
4295 LValue
4296 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4297   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4298   Slot.setExternallyDestructed();
4299   EmitAggExpr(E->getSubExpr(), Slot);
4300   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4301   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4302                         LValueBaseInfo(AlignmentSource::Decl, false));
4303 }
4304 
4305 LValue
4306 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4307   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4308   EmitLambdaExpr(E, Slot);
4309   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4310                         LValueBaseInfo(AlignmentSource::Decl, false));
4311 }
4312 
4313 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4314   RValue RV = EmitObjCMessageExpr(E);
4315 
4316   if (!RV.isScalar())
4317     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4318                           LValueBaseInfo(AlignmentSource::Decl, false));
4319 
4320   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4321          "Can't have a scalar return unless the return type is a "
4322          "reference type!");
4323 
4324   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4325 }
4326 
4327 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4328   Address V =
4329     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4330   return MakeAddrLValue(V, E->getType(),
4331                         LValueBaseInfo(AlignmentSource::Decl, false));
4332 }
4333 
4334 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4335                                              const ObjCIvarDecl *Ivar) {
4336   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4337 }
4338 
4339 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4340                                           llvm::Value *BaseValue,
4341                                           const ObjCIvarDecl *Ivar,
4342                                           unsigned CVRQualifiers) {
4343   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4344                                                    Ivar, CVRQualifiers);
4345 }
4346 
4347 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4348   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4349   llvm::Value *BaseValue = nullptr;
4350   const Expr *BaseExpr = E->getBase();
4351   Qualifiers BaseQuals;
4352   QualType ObjectTy;
4353   if (E->isArrow()) {
4354     BaseValue = EmitScalarExpr(BaseExpr);
4355     ObjectTy = BaseExpr->getType()->getPointeeType();
4356     BaseQuals = ObjectTy.getQualifiers();
4357   } else {
4358     LValue BaseLV = EmitLValue(BaseExpr);
4359     BaseValue = BaseLV.getPointer();
4360     ObjectTy = BaseExpr->getType();
4361     BaseQuals = ObjectTy.getQualifiers();
4362   }
4363 
4364   LValue LV =
4365     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4366                       BaseQuals.getCVRQualifiers());
4367   setObjCGCLValueClass(getContext(), E, LV);
4368   return LV;
4369 }
4370 
4371 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4372   // Can only get l-value for message expression returning aggregate type
4373   RValue RV = EmitAnyExprToTemp(E);
4374   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4375                         LValueBaseInfo(AlignmentSource::Decl, false));
4376 }
4377 
4378 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4379                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4380                                  llvm::Value *Chain) {
4381   // Get the actual function type. The callee type will always be a pointer to
4382   // function type or a block pointer type.
4383   assert(CalleeType->isFunctionPointerType() &&
4384          "Call must have function pointer type!");
4385 
4386   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4387 
4388   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4389     // We can only guarantee that a function is called from the correct
4390     // context/function based on the appropriate target attributes,
4391     // so only check in the case where we have both always_inline and target
4392     // since otherwise we could be making a conditional call after a check for
4393     // the proper cpu features (and it won't cause code generation issues due to
4394     // function based code generation).
4395     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4396         TargetDecl->hasAttr<TargetAttr>())
4397       checkTargetFeatures(E, FD);
4398 
4399   CalleeType = getContext().getCanonicalType(CalleeType);
4400 
4401   const auto *FnType =
4402       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4403 
4404   CGCallee Callee = OrigCallee;
4405 
4406   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4407       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4408     if (llvm::Constant *PrefixSig =
4409             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4410       SanitizerScope SanScope(this);
4411       llvm::Constant *FTRTTIConst =
4412           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4413       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4414       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4415           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4416 
4417       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4418 
4419       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4420           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4421       llvm::Value *CalleeSigPtr =
4422           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4423       llvm::Value *CalleeSig =
4424           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4425       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4426 
4427       llvm::BasicBlock *Cont = createBasicBlock("cont");
4428       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4429       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4430 
4431       EmitBlock(TypeCheck);
4432       llvm::Value *CalleeRTTIPtr =
4433           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4434       llvm::Value *CalleeRTTIEncoded =
4435           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4436       llvm::Value *CalleeRTTI =
4437           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4438       llvm::Value *CalleeRTTIMatch =
4439           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4440       llvm::Constant *StaticData[] = {
4441         EmitCheckSourceLocation(E->getLocStart()),
4442         EmitCheckTypeDescriptor(CalleeType)
4443       };
4444       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4445                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4446 
4447       Builder.CreateBr(Cont);
4448       EmitBlock(Cont);
4449     }
4450   }
4451 
4452   // If we are checking indirect calls and this call is indirect, check that the
4453   // function pointer is a member of the bit set for the function type.
4454   if (SanOpts.has(SanitizerKind::CFIICall) &&
4455       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4456     SanitizerScope SanScope(this);
4457     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4458 
4459     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4460     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4461 
4462     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4463     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4464     llvm::Value *TypeTest = Builder.CreateCall(
4465         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4466 
4467     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4468     llvm::Constant *StaticData[] = {
4469         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4470         EmitCheckSourceLocation(E->getLocStart()),
4471         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4472     };
4473     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4474       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4475                            CastedCallee, StaticData);
4476     } else {
4477       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4478                 SanitizerHandler::CFICheckFail, StaticData,
4479                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4480     }
4481   }
4482 
4483   CallArgList Args;
4484   if (Chain)
4485     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4486              CGM.getContext().VoidPtrTy);
4487 
4488   // C++17 requires that we evaluate arguments to a call using assignment syntax
4489   // right-to-left, and that we evaluate arguments to certain other operators
4490   // left-to-right. Note that we allow this to override the order dictated by
4491   // the calling convention on the MS ABI, which means that parameter
4492   // destruction order is not necessarily reverse construction order.
4493   // FIXME: Revisit this based on C++ committee response to unimplementability.
4494   EvaluationOrder Order = EvaluationOrder::Default;
4495   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4496     if (OCE->isAssignmentOp())
4497       Order = EvaluationOrder::ForceRightToLeft;
4498     else {
4499       switch (OCE->getOperator()) {
4500       case OO_LessLess:
4501       case OO_GreaterGreater:
4502       case OO_AmpAmp:
4503       case OO_PipePipe:
4504       case OO_Comma:
4505       case OO_ArrowStar:
4506         Order = EvaluationOrder::ForceLeftToRight;
4507         break;
4508       default:
4509         break;
4510       }
4511     }
4512   }
4513 
4514   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4515                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4516 
4517   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4518       Args, FnType, /*isChainCall=*/Chain);
4519 
4520   // C99 6.5.2.2p6:
4521   //   If the expression that denotes the called function has a type
4522   //   that does not include a prototype, [the default argument
4523   //   promotions are performed]. If the number of arguments does not
4524   //   equal the number of parameters, the behavior is undefined. If
4525   //   the function is defined with a type that includes a prototype,
4526   //   and either the prototype ends with an ellipsis (, ...) or the
4527   //   types of the arguments after promotion are not compatible with
4528   //   the types of the parameters, the behavior is undefined. If the
4529   //   function is defined with a type that does not include a
4530   //   prototype, and the types of the arguments after promotion are
4531   //   not compatible with those of the parameters after promotion,
4532   //   the behavior is undefined [except in some trivial cases].
4533   // That is, in the general case, we should assume that a call
4534   // through an unprototyped function type works like a *non-variadic*
4535   // call.  The way we make this work is to cast to the exact type
4536   // of the promoted arguments.
4537   //
4538   // Chain calls use this same code path to add the invisible chain parameter
4539   // to the function type.
4540   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4541     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4542     CalleeTy = CalleeTy->getPointerTo();
4543 
4544     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4545     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4546     Callee.setFunctionPointer(CalleePtr);
4547   }
4548 
4549   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4550 }
4551 
4552 LValue CodeGenFunction::
4553 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4554   Address BaseAddr = Address::invalid();
4555   if (E->getOpcode() == BO_PtrMemI) {
4556     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4557   } else {
4558     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4559   }
4560 
4561   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4562 
4563   const MemberPointerType *MPT
4564     = E->getRHS()->getType()->getAs<MemberPointerType>();
4565 
4566   LValueBaseInfo BaseInfo;
4567   Address MemberAddr =
4568     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo);
4569 
4570   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo);
4571 }
4572 
4573 /// Given the address of a temporary variable, produce an r-value of
4574 /// its type.
4575 RValue CodeGenFunction::convertTempToRValue(Address addr,
4576                                             QualType type,
4577                                             SourceLocation loc) {
4578   LValue lvalue = MakeAddrLValue(addr, type,
4579                                  LValueBaseInfo(AlignmentSource::Decl, false));
4580   switch (getEvaluationKind(type)) {
4581   case TEK_Complex:
4582     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4583   case TEK_Aggregate:
4584     return lvalue.asAggregateRValue();
4585   case TEK_Scalar:
4586     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4587   }
4588   llvm_unreachable("bad evaluation kind");
4589 }
4590 
4591 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4592   assert(Val->getType()->isFPOrFPVectorTy());
4593   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4594     return;
4595 
4596   llvm::MDBuilder MDHelper(getLLVMContext());
4597   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4598 
4599   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4600 }
4601 
4602 namespace {
4603   struct LValueOrRValue {
4604     LValue LV;
4605     RValue RV;
4606   };
4607 }
4608 
4609 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4610                                            const PseudoObjectExpr *E,
4611                                            bool forLValue,
4612                                            AggValueSlot slot) {
4613   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4614 
4615   // Find the result expression, if any.
4616   const Expr *resultExpr = E->getResultExpr();
4617   LValueOrRValue result;
4618 
4619   for (PseudoObjectExpr::const_semantics_iterator
4620          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4621     const Expr *semantic = *i;
4622 
4623     // If this semantic expression is an opaque value, bind it
4624     // to the result of its source expression.
4625     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4626 
4627       // If this is the result expression, we may need to evaluate
4628       // directly into the slot.
4629       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4630       OVMA opaqueData;
4631       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4632           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4633         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4634         LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
4635         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4636                                        BaseInfo);
4637         opaqueData = OVMA::bind(CGF, ov, LV);
4638         result.RV = slot.asRValue();
4639 
4640       // Otherwise, emit as normal.
4641       } else {
4642         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4643 
4644         // If this is the result, also evaluate the result now.
4645         if (ov == resultExpr) {
4646           if (forLValue)
4647             result.LV = CGF.EmitLValue(ov);
4648           else
4649             result.RV = CGF.EmitAnyExpr(ov, slot);
4650         }
4651       }
4652 
4653       opaques.push_back(opaqueData);
4654 
4655     // Otherwise, if the expression is the result, evaluate it
4656     // and remember the result.
4657     } else if (semantic == resultExpr) {
4658       if (forLValue)
4659         result.LV = CGF.EmitLValue(semantic);
4660       else
4661         result.RV = CGF.EmitAnyExpr(semantic, slot);
4662 
4663     // Otherwise, evaluate the expression in an ignored context.
4664     } else {
4665       CGF.EmitIgnoredExpr(semantic);
4666     }
4667   }
4668 
4669   // Unbind all the opaques now.
4670   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4671     opaques[i].unbind(CGF);
4672 
4673   return result;
4674 }
4675 
4676 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4677                                                AggValueSlot slot) {
4678   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4679 }
4680 
4681 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4682   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4683 }
4684