1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   auto *Alloca = Var.getPointer();
129   assert(isa<llvm::AllocaInst>(Alloca) ||
130          (isa<llvm::AddrSpaceCastInst>(Alloca) &&
131           isa<llvm::AllocaInst>(
132               cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
133 
134   auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
135                                     Var.getAlignment().getAsAlign());
136   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
137   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
138 }
139 
140 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
141   CharUnits Align = getContext().getTypeAlignInChars(Ty);
142   return CreateTempAlloca(ConvertType(Ty), Align, Name);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
146                                        Address *Alloca) {
147   // FIXME: Should we prefer the preferred type alignment here?
148   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
152                                        const Twine &Name, Address *Alloca) {
153   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
154                                     /*ArraySize=*/nullptr, Alloca);
155 
156   if (Ty->isConstantMatrixType()) {
157     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
158     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
159                                                 ArrayTy->getNumElements());
160 
161     Result = Address(
162         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
163         Result.getAlignment());
164   }
165   return Result;
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
169                                                   const Twine &Name) {
170   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
171 }
172 
173 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
174                                                   const Twine &Name) {
175   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
176                                   Name);
177 }
178 
179 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
180 /// expression and compare the result against zero, returning an Int1Ty value.
181 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
182   PGO.setCurrentStmt(E);
183   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
184     llvm::Value *MemPtr = EmitScalarExpr(E);
185     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
186   }
187 
188   QualType BoolTy = getContext().BoolTy;
189   SourceLocation Loc = E->getExprLoc();
190   CGFPOptionsRAII FPOptsRAII(*this, E);
191   if (!E->getType()->isAnyComplexType())
192     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
193 
194   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
195                                        Loc);
196 }
197 
198 /// EmitIgnoredExpr - Emit code to compute the specified expression,
199 /// ignoring the result.
200 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
201   if (E->isRValue())
202     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
203 
204   // Just emit it as an l-value and drop the result.
205   EmitLValue(E);
206 }
207 
208 /// EmitAnyExpr - Emit code to compute the specified expression which
209 /// can have any type.  The result is returned as an RValue struct.
210 /// If this is an aggregate expression, AggSlot indicates where the
211 /// result should be returned.
212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
213                                     AggValueSlot aggSlot,
214                                     bool ignoreResult) {
215   switch (getEvaluationKind(E->getType())) {
216   case TEK_Scalar:
217     return RValue::get(EmitScalarExpr(E, ignoreResult));
218   case TEK_Complex:
219     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
220   case TEK_Aggregate:
221     if (!ignoreResult && aggSlot.isIgnored())
222       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
223     EmitAggExpr(E, aggSlot);
224     return aggSlot.asRValue();
225   }
226   llvm_unreachable("bad evaluation kind");
227 }
228 
229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
230 /// always be accessible even if no aggregate location is provided.
231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
232   AggValueSlot AggSlot = AggValueSlot::ignored();
233 
234   if (hasAggregateEvaluationKind(E->getType()))
235     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
236   return EmitAnyExpr(E, AggSlot);
237 }
238 
239 /// EmitAnyExprToMem - Evaluate an expression into a given memory
240 /// location.
241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
242                                        Address Location,
243                                        Qualifiers Quals,
244                                        bool IsInit) {
245   // FIXME: This function should take an LValue as an argument.
246   switch (getEvaluationKind(E->getType())) {
247   case TEK_Complex:
248     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
249                               /*isInit*/ false);
250     return;
251 
252   case TEK_Aggregate: {
253     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
254                                          AggValueSlot::IsDestructed_t(IsInit),
255                                          AggValueSlot::DoesNotNeedGCBarriers,
256                                          AggValueSlot::IsAliased_t(!IsInit),
257                                          AggValueSlot::MayOverlap));
258     return;
259   }
260 
261   case TEK_Scalar: {
262     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
263     LValue LV = MakeAddrLValue(Location, E->getType());
264     EmitStoreThroughLValue(RV, LV);
265     return;
266   }
267   }
268   llvm_unreachable("bad evaluation kind");
269 }
270 
271 static void
272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
273                      const Expr *E, Address ReferenceTemporary) {
274   // Objective-C++ ARC:
275   //   If we are binding a reference to a temporary that has ownership, we
276   //   need to perform retain/release operations on the temporary.
277   //
278   // FIXME: This should be looking at E, not M.
279   if (auto Lifetime = M->getType().getObjCLifetime()) {
280     switch (Lifetime) {
281     case Qualifiers::OCL_None:
282     case Qualifiers::OCL_ExplicitNone:
283       // Carry on to normal cleanup handling.
284       break;
285 
286     case Qualifiers::OCL_Autoreleasing:
287       // Nothing to do; cleaned up by an autorelease pool.
288       return;
289 
290     case Qualifiers::OCL_Strong:
291     case Qualifiers::OCL_Weak:
292       switch (StorageDuration Duration = M->getStorageDuration()) {
293       case SD_Static:
294         // Note: we intentionally do not register a cleanup to release
295         // the object on program termination.
296         return;
297 
298       case SD_Thread:
299         // FIXME: We should probably register a cleanup in this case.
300         return;
301 
302       case SD_Automatic:
303       case SD_FullExpression:
304         CodeGenFunction::Destroyer *Destroy;
305         CleanupKind CleanupKind;
306         if (Lifetime == Qualifiers::OCL_Strong) {
307           const ValueDecl *VD = M->getExtendingDecl();
308           bool Precise =
309               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
310           CleanupKind = CGF.getARCCleanupKind();
311           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
312                             : &CodeGenFunction::destroyARCStrongImprecise;
313         } else {
314           // __weak objects always get EH cleanups; otherwise, exceptions
315           // could cause really nasty crashes instead of mere leaks.
316           CleanupKind = NormalAndEHCleanup;
317           Destroy = &CodeGenFunction::destroyARCWeak;
318         }
319         if (Duration == SD_FullExpression)
320           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
321                           M->getType(), *Destroy,
322                           CleanupKind & EHCleanup);
323         else
324           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
325                                           M->getType(),
326                                           *Destroy, CleanupKind & EHCleanup);
327         return;
328 
329       case SD_Dynamic:
330         llvm_unreachable("temporary cannot have dynamic storage duration");
331       }
332       llvm_unreachable("unknown storage duration");
333     }
334   }
335 
336   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
337   if (const RecordType *RT =
338           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
339     // Get the destructor for the reference temporary.
340     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
341     if (!ClassDecl->hasTrivialDestructor())
342       ReferenceTemporaryDtor = ClassDecl->getDestructor();
343   }
344 
345   if (!ReferenceTemporaryDtor)
346     return;
347 
348   // Call the destructor for the temporary.
349   switch (M->getStorageDuration()) {
350   case SD_Static:
351   case SD_Thread: {
352     llvm::FunctionCallee CleanupFn;
353     llvm::Constant *CleanupArg;
354     if (E->getType()->isArrayType()) {
355       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
356           ReferenceTemporary, E->getType(),
357           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
358           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
359       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
360     } else {
361       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
362           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
363       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
364     }
365     CGF.CGM.getCXXABI().registerGlobalDtor(
366         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
367     break;
368   }
369 
370   case SD_FullExpression:
371     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
372                     CodeGenFunction::destroyCXXObject,
373                     CGF.getLangOpts().Exceptions);
374     break;
375 
376   case SD_Automatic:
377     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
378                                     ReferenceTemporary, E->getType(),
379                                     CodeGenFunction::destroyCXXObject,
380                                     CGF.getLangOpts().Exceptions);
381     break;
382 
383   case SD_Dynamic:
384     llvm_unreachable("temporary cannot have dynamic storage duration");
385   }
386 }
387 
388 static Address createReferenceTemporary(CodeGenFunction &CGF,
389                                         const MaterializeTemporaryExpr *M,
390                                         const Expr *Inner,
391                                         Address *Alloca = nullptr) {
392   auto &TCG = CGF.getTargetHooks();
393   switch (M->getStorageDuration()) {
394   case SD_FullExpression:
395   case SD_Automatic: {
396     // If we have a constant temporary array or record try to promote it into a
397     // constant global under the same rules a normal constant would've been
398     // promoted. This is easier on the optimizer and generally emits fewer
399     // instructions.
400     QualType Ty = Inner->getType();
401     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
402         (Ty->isArrayType() || Ty->isRecordType()) &&
403         CGF.CGM.isTypeConstant(Ty, true))
404       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
405         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
406           auto AS = AddrSpace.getValue();
407           auto *GV = new llvm::GlobalVariable(
408               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
409               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
410               llvm::GlobalValue::NotThreadLocal,
411               CGF.getContext().getTargetAddressSpace(AS));
412           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
413           GV->setAlignment(alignment.getAsAlign());
414           llvm::Constant *C = GV;
415           if (AS != LangAS::Default)
416             C = TCG.performAddrSpaceCast(
417                 CGF.CGM, GV, AS, LangAS::Default,
418                 GV->getValueType()->getPointerTo(
419                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
420           // FIXME: Should we put the new global into a COMDAT?
421           return Address(C, alignment);
422         }
423       }
424     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
425   }
426   case SD_Thread:
427   case SD_Static:
428     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
429 
430   case SD_Dynamic:
431     llvm_unreachable("temporary can't have dynamic storage duration");
432   }
433   llvm_unreachable("unknown storage duration");
434 }
435 
436 /// Helper method to check if the underlying ABI is AAPCS
437 static bool isAAPCS(const TargetInfo &TargetInfo) {
438   return TargetInfo.getABI().startswith("aapcs");
439 }
440 
441 LValue CodeGenFunction::
442 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
443   const Expr *E = M->getSubExpr();
444 
445   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
446           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
447          "Reference should never be pseudo-strong!");
448 
449   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
450   // as that will cause the lifetime adjustment to be lost for ARC
451   auto ownership = M->getType().getObjCLifetime();
452   if (ownership != Qualifiers::OCL_None &&
453       ownership != Qualifiers::OCL_ExplicitNone) {
454     Address Object = createReferenceTemporary(*this, M, E);
455     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
456       Object = Address(llvm::ConstantExpr::getBitCast(Var,
457                            ConvertTypeForMem(E->getType())
458                              ->getPointerTo(Object.getAddressSpace())),
459                        Object.getAlignment());
460 
461       // createReferenceTemporary will promote the temporary to a global with a
462       // constant initializer if it can.  It can only do this to a value of
463       // ARC-manageable type if the value is global and therefore "immune" to
464       // ref-counting operations.  Therefore we have no need to emit either a
465       // dynamic initialization or a cleanup and we can just return the address
466       // of the temporary.
467       if (Var->hasInitializer())
468         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
469 
470       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471     }
472     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
473                                        AlignmentSource::Decl);
474 
475     switch (getEvaluationKind(E->getType())) {
476     default: llvm_unreachable("expected scalar or aggregate expression");
477     case TEK_Scalar:
478       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
479       break;
480     case TEK_Aggregate: {
481       EmitAggExpr(E, AggValueSlot::forAddr(Object,
482                                            E->getType().getQualifiers(),
483                                            AggValueSlot::IsDestructed,
484                                            AggValueSlot::DoesNotNeedGCBarriers,
485                                            AggValueSlot::IsNotAliased,
486                                            AggValueSlot::DoesNotOverlap));
487       break;
488     }
489     }
490 
491     pushTemporaryCleanup(*this, M, E, Object);
492     return RefTempDst;
493   }
494 
495   SmallVector<const Expr *, 2> CommaLHSs;
496   SmallVector<SubobjectAdjustment, 2> Adjustments;
497   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
498 
499   for (const auto &Ignored : CommaLHSs)
500     EmitIgnoredExpr(Ignored);
501 
502   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
503     if (opaque->getType()->isRecordType()) {
504       assert(Adjustments.empty());
505       return EmitOpaqueValueLValue(opaque);
506     }
507   }
508 
509   // Create and initialize the reference temporary.
510   Address Alloca = Address::invalid();
511   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
512   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
513           Object.getPointer()->stripPointerCasts())) {
514     Object = Address(llvm::ConstantExpr::getBitCast(
515                          cast<llvm::Constant>(Object.getPointer()),
516                          ConvertTypeForMem(E->getType())->getPointerTo()),
517                      Object.getAlignment());
518     // If the temporary is a global and has a constant initializer or is a
519     // constant temporary that we promoted to a global, we may have already
520     // initialized it.
521     if (!Var->hasInitializer()) {
522       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524     }
525   } else {
526     switch (M->getStorageDuration()) {
527     case SD_Automatic:
528       if (auto *Size = EmitLifetimeStart(
529               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530               Alloca.getPointer())) {
531         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532                                                   Alloca, Size);
533       }
534       break;
535 
536     case SD_FullExpression: {
537       if (!ShouldEmitLifetimeMarkers)
538         break;
539 
540       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541       // marker. Instead, start the lifetime of a conditional temporary earlier
542       // so that it's unconditional. Don't do this with sanitizers which need
543       // more precise lifetime marks.
544       ConditionalEvaluation *OldConditional = nullptr;
545       CGBuilderTy::InsertPoint OldIP;
546       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547           !SanOpts.has(SanitizerKind::HWAddress) &&
548           !SanOpts.has(SanitizerKind::Memory) &&
549           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550         OldConditional = OutermostConditional;
551         OutermostConditional = nullptr;
552 
553         OldIP = Builder.saveIP();
554         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555         Builder.restoreIP(CGBuilderTy::InsertPoint(
556             Block, llvm::BasicBlock::iterator(Block->back())));
557       }
558 
559       if (auto *Size = EmitLifetimeStart(
560               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561               Alloca.getPointer())) {
562         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563                                              Size);
564       }
565 
566       if (OldConditional) {
567         OutermostConditional = OldConditional;
568         Builder.restoreIP(OldIP);
569       }
570       break;
571     }
572 
573     default:
574       break;
575     }
576     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577   }
578   pushTemporaryCleanup(*this, M, E, Object);
579 
580   // Perform derived-to-base casts and/or field accesses, to get from the
581   // temporary object we created (and, potentially, for which we extended
582   // the lifetime) to the subobject we're binding the reference to.
583   for (unsigned I = Adjustments.size(); I != 0; --I) {
584     SubobjectAdjustment &Adjustment = Adjustments[I-1];
585     switch (Adjustment.Kind) {
586     case SubobjectAdjustment::DerivedToBaseAdjustment:
587       Object =
588           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
589                                 Adjustment.DerivedToBase.BasePath->path_begin(),
590                                 Adjustment.DerivedToBase.BasePath->path_end(),
591                                 /*NullCheckValue=*/ false, E->getExprLoc());
592       break;
593 
594     case SubobjectAdjustment::FieldAdjustment: {
595       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
596       LV = EmitLValueForField(LV, Adjustment.Field);
597       assert(LV.isSimple() &&
598              "materialized temporary field is not a simple lvalue");
599       Object = LV.getAddress(*this);
600       break;
601     }
602 
603     case SubobjectAdjustment::MemberPointerAdjustment: {
604       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
605       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
606                                                Adjustment.Ptr.MPT);
607       break;
608     }
609     }
610   }
611 
612   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
613 }
614 
615 RValue
616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
617   // Emit the expression as an lvalue.
618   LValue LV = EmitLValue(E);
619   assert(LV.isSimple());
620   llvm::Value *Value = LV.getPointer(*this);
621 
622   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
623     // C++11 [dcl.ref]p5 (as amended by core issue 453):
624     //   If a glvalue to which a reference is directly bound designates neither
625     //   an existing object or function of an appropriate type nor a region of
626     //   storage of suitable size and alignment to contain an object of the
627     //   reference's type, the behavior is undefined.
628     QualType Ty = E->getType();
629     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
630   }
631 
632   return RValue::get(Value);
633 }
634 
635 
636 /// getAccessedFieldNo - Given an encoded value and a result number, return the
637 /// input field number being accessed.
638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
639                                              const llvm::Constant *Elts) {
640   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
641       ->getZExtValue();
642 }
643 
644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
645 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
646                                     llvm::Value *High) {
647   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
648   llvm::Value *K47 = Builder.getInt64(47);
649   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
650   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
651   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
652   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
653   return Builder.CreateMul(B1, KMul);
654 }
655 
656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
657   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
658          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
659 }
660 
661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
662   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
663   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
664          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
665           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
666           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
667 }
668 
669 bool CodeGenFunction::sanitizePerformTypeCheck() const {
670   return SanOpts.has(SanitizerKind::Null) |
671          SanOpts.has(SanitizerKind::Alignment) |
672          SanOpts.has(SanitizerKind::ObjectSize) |
673          SanOpts.has(SanitizerKind::Vptr);
674 }
675 
676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
677                                     llvm::Value *Ptr, QualType Ty,
678                                     CharUnits Alignment,
679                                     SanitizerSet SkippedChecks,
680                                     llvm::Value *ArraySize) {
681   if (!sanitizePerformTypeCheck())
682     return;
683 
684   // Don't check pointers outside the default address space. The null check
685   // isn't correct, the object-size check isn't supported by LLVM, and we can't
686   // communicate the addresses to the runtime handler for the vptr check.
687   if (Ptr->getType()->getPointerAddressSpace())
688     return;
689 
690   // Don't check pointers to volatile data. The behavior here is implementation-
691   // defined.
692   if (Ty.isVolatileQualified())
693     return;
694 
695   SanitizerScope SanScope(this);
696 
697   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
698   llvm::BasicBlock *Done = nullptr;
699 
700   // Quickly determine whether we have a pointer to an alloca. It's possible
701   // to skip null checks, and some alignment checks, for these pointers. This
702   // can reduce compile-time significantly.
703   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
704 
705   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
706   llvm::Value *IsNonNull = nullptr;
707   bool IsGuaranteedNonNull =
708       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
709   bool AllowNullPointers = isNullPointerAllowed(TCK);
710   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
711       !IsGuaranteedNonNull) {
712     // The glvalue must not be an empty glvalue.
713     IsNonNull = Builder.CreateIsNotNull(Ptr);
714 
715     // The IR builder can constant-fold the null check if the pointer points to
716     // a constant.
717     IsGuaranteedNonNull = IsNonNull == True;
718 
719     // Skip the null check if the pointer is known to be non-null.
720     if (!IsGuaranteedNonNull) {
721       if (AllowNullPointers) {
722         // When performing pointer casts, it's OK if the value is null.
723         // Skip the remaining checks in that case.
724         Done = createBasicBlock("null");
725         llvm::BasicBlock *Rest = createBasicBlock("not.null");
726         Builder.CreateCondBr(IsNonNull, Rest, Done);
727         EmitBlock(Rest);
728       } else {
729         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
730       }
731     }
732   }
733 
734   if (SanOpts.has(SanitizerKind::ObjectSize) &&
735       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
736       !Ty->isIncompleteType()) {
737     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
738     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
739     if (ArraySize)
740       Size = Builder.CreateMul(Size, ArraySize);
741 
742     // Degenerate case: new X[0] does not need an objectsize check.
743     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
744     if (!ConstantSize || !ConstantSize->isNullValue()) {
745       // The glvalue must refer to a large enough storage region.
746       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
747       //        to check this.
748       // FIXME: Get object address space
749       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
750       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
751       llvm::Value *Min = Builder.getFalse();
752       llvm::Value *NullIsUnknown = Builder.getFalse();
753       llvm::Value *Dynamic = Builder.getFalse();
754       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
755       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
756           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
757       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
758     }
759   }
760 
761   uint64_t AlignVal = 0;
762   llvm::Value *PtrAsInt = nullptr;
763 
764   if (SanOpts.has(SanitizerKind::Alignment) &&
765       !SkippedChecks.has(SanitizerKind::Alignment)) {
766     AlignVal = Alignment.getQuantity();
767     if (!Ty->isIncompleteType() && !AlignVal)
768       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
769                                              /*ForPointeeType=*/true)
770                      .getQuantity();
771 
772     // The glvalue must be suitably aligned.
773     if (AlignVal > 1 &&
774         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
775       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
776       llvm::Value *Align = Builder.CreateAnd(
777           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
778       llvm::Value *Aligned =
779           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
780       if (Aligned != True)
781         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
782     }
783   }
784 
785   if (Checks.size() > 0) {
786     // Make sure we're not losing information. Alignment needs to be a power of
787     // 2
788     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
789     llvm::Constant *StaticData[] = {
790         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
791         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
792         llvm::ConstantInt::get(Int8Ty, TCK)};
793     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
794               PtrAsInt ? PtrAsInt : Ptr);
795   }
796 
797   // If possible, check that the vptr indicates that there is a subobject of
798   // type Ty at offset zero within this object.
799   //
800   // C++11 [basic.life]p5,6:
801   //   [For storage which does not refer to an object within its lifetime]
802   //   The program has undefined behavior if:
803   //    -- the [pointer or glvalue] is used to access a non-static data member
804   //       or call a non-static member function
805   if (SanOpts.has(SanitizerKind::Vptr) &&
806       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
807     // Ensure that the pointer is non-null before loading it. If there is no
808     // compile-time guarantee, reuse the run-time null check or emit a new one.
809     if (!IsGuaranteedNonNull) {
810       if (!IsNonNull)
811         IsNonNull = Builder.CreateIsNotNull(Ptr);
812       if (!Done)
813         Done = createBasicBlock("vptr.null");
814       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
815       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
816       EmitBlock(VptrNotNull);
817     }
818 
819     // Compute a hash of the mangled name of the type.
820     //
821     // FIXME: This is not guaranteed to be deterministic! Move to a
822     //        fingerprinting mechanism once LLVM provides one. For the time
823     //        being the implementation happens to be deterministic.
824     SmallString<64> MangledName;
825     llvm::raw_svector_ostream Out(MangledName);
826     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
827                                                      Out);
828 
829     // Blacklist based on the mangled type.
830     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
831             SanitizerKind::Vptr, Out.str())) {
832       llvm::hash_code TypeHash = hash_value(Out.str());
833 
834       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
835       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
836       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
837       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
838       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
839       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
840 
841       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
842       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
843 
844       // Look the hash up in our cache.
845       const int CacheSize = 128;
846       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
847       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
848                                                      "__ubsan_vptr_type_cache");
849       llvm::Value *Slot = Builder.CreateAnd(Hash,
850                                             llvm::ConstantInt::get(IntPtrTy,
851                                                                    CacheSize-1));
852       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
853       llvm::Value *CacheVal =
854         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
855                                   getPointerAlign());
856 
857       // If the hash isn't in the cache, call a runtime handler to perform the
858       // hard work of checking whether the vptr is for an object of the right
859       // type. This will either fill in the cache and return, or produce a
860       // diagnostic.
861       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
862       llvm::Constant *StaticData[] = {
863         EmitCheckSourceLocation(Loc),
864         EmitCheckTypeDescriptor(Ty),
865         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
866         llvm::ConstantInt::get(Int8Ty, TCK)
867       };
868       llvm::Value *DynamicData[] = { Ptr, Hash };
869       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
870                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
871                 DynamicData);
872     }
873   }
874 
875   if (Done) {
876     Builder.CreateBr(Done);
877     EmitBlock(Done);
878   }
879 }
880 
881 /// Determine whether this expression refers to a flexible array member in a
882 /// struct. We disable array bounds checks for such members.
883 static bool isFlexibleArrayMemberExpr(const Expr *E) {
884   // For compatibility with existing code, we treat arrays of length 0 or
885   // 1 as flexible array members.
886   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
887   // the two mechanisms.
888   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
889   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
890     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
891     // was produced by macro expansion.
892     if (CAT->getSize().ugt(1))
893       return false;
894   } else if (!isa<IncompleteArrayType>(AT))
895     return false;
896 
897   E = E->IgnoreParens();
898 
899   // A flexible array member must be the last member in the class.
900   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
901     // FIXME: If the base type of the member expr is not FD->getParent(),
902     // this should not be treated as a flexible array member access.
903     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
904       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
905       // member, only a T[0] or T[] member gets that treatment.
906       if (FD->getParent()->isUnion())
907         return true;
908       RecordDecl::field_iterator FI(
909           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
910       return ++FI == FD->getParent()->field_end();
911     }
912   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
913     return IRE->getDecl()->getNextIvar() == nullptr;
914   }
915 
916   return false;
917 }
918 
919 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
920                                                    QualType EltTy) {
921   ASTContext &C = getContext();
922   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
923   if (!EltSize)
924     return nullptr;
925 
926   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
927   if (!ArrayDeclRef)
928     return nullptr;
929 
930   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
931   if (!ParamDecl)
932     return nullptr;
933 
934   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
935   if (!POSAttr)
936     return nullptr;
937 
938   // Don't load the size if it's a lower bound.
939   int POSType = POSAttr->getType();
940   if (POSType != 0 && POSType != 1)
941     return nullptr;
942 
943   // Find the implicit size parameter.
944   auto PassedSizeIt = SizeArguments.find(ParamDecl);
945   if (PassedSizeIt == SizeArguments.end())
946     return nullptr;
947 
948   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
949   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
950   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
951   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
952                                               C.getSizeType(), E->getExprLoc());
953   llvm::Value *SizeOfElement =
954       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
955   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
956 }
957 
958 /// If Base is known to point to the start of an array, return the length of
959 /// that array. Return 0 if the length cannot be determined.
960 static llvm::Value *getArrayIndexingBound(
961     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
962   // For the vector indexing extension, the bound is the number of elements.
963   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
964     IndexedType = Base->getType();
965     return CGF.Builder.getInt32(VT->getNumElements());
966   }
967 
968   Base = Base->IgnoreParens();
969 
970   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
971     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
972         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
973       IndexedType = CE->getSubExpr()->getType();
974       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
975       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
976         return CGF.Builder.getInt(CAT->getSize());
977       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
978         return CGF.getVLASize(VAT).NumElts;
979       // Ignore pass_object_size here. It's not applicable on decayed pointers.
980     }
981   }
982 
983   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
984   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
985     IndexedType = Base->getType();
986     return POS;
987   }
988 
989   return nullptr;
990 }
991 
992 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
993                                       llvm::Value *Index, QualType IndexType,
994                                       bool Accessed) {
995   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
996          "should not be called unless adding bounds checks");
997   SanitizerScope SanScope(this);
998 
999   QualType IndexedType;
1000   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1001   if (!Bound)
1002     return;
1003 
1004   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1005   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1006   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1007 
1008   llvm::Constant *StaticData[] = {
1009     EmitCheckSourceLocation(E->getExprLoc()),
1010     EmitCheckTypeDescriptor(IndexedType),
1011     EmitCheckTypeDescriptor(IndexType)
1012   };
1013   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1014                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1015   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1016             SanitizerHandler::OutOfBounds, StaticData, Index);
1017 }
1018 
1019 
1020 CodeGenFunction::ComplexPairTy CodeGenFunction::
1021 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1022                          bool isInc, bool isPre) {
1023   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1024 
1025   llvm::Value *NextVal;
1026   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1027     uint64_t AmountVal = isInc ? 1 : -1;
1028     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1029 
1030     // Add the inc/dec to the real part.
1031     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1032   } else {
1033     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1034     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1035     if (!isInc)
1036       FVal.changeSign();
1037     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1038 
1039     // Add the inc/dec to the real part.
1040     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1041   }
1042 
1043   ComplexPairTy IncVal(NextVal, InVal.second);
1044 
1045   // Store the updated result through the lvalue.
1046   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1047   if (getLangOpts().OpenMP)
1048     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1049                                                               E->getSubExpr());
1050 
1051   // If this is a postinc, return the value read from memory, otherwise use the
1052   // updated value.
1053   return isPre ? IncVal : InVal;
1054 }
1055 
1056 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1057                                              CodeGenFunction *CGF) {
1058   // Bind VLAs in the cast type.
1059   if (CGF && E->getType()->isVariablyModifiedType())
1060     CGF->EmitVariablyModifiedType(E->getType());
1061 
1062   if (CGDebugInfo *DI = getModuleDebugInfo())
1063     DI->EmitExplicitCastType(E->getType());
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                         LValue Expression Emission
1068 //===----------------------------------------------------------------------===//
1069 
1070 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1071 /// derive a more accurate bound on the alignment of the pointer.
1072 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1073                                                   LValueBaseInfo *BaseInfo,
1074                                                   TBAAAccessInfo *TBAAInfo) {
1075   // We allow this with ObjC object pointers because of fragile ABIs.
1076   assert(E->getType()->isPointerType() ||
1077          E->getType()->isObjCObjectPointerType());
1078   E = E->IgnoreParens();
1079 
1080   // Casts:
1081   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1082     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1083       CGM.EmitExplicitCastExprType(ECE, this);
1084 
1085     switch (CE->getCastKind()) {
1086     // Non-converting casts (but not C's implicit conversion from void*).
1087     case CK_BitCast:
1088     case CK_NoOp:
1089     case CK_AddressSpaceConversion:
1090       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1091         if (PtrTy->getPointeeType()->isVoidType())
1092           break;
1093 
1094         LValueBaseInfo InnerBaseInfo;
1095         TBAAAccessInfo InnerTBAAInfo;
1096         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1097                                                 &InnerBaseInfo,
1098                                                 &InnerTBAAInfo);
1099         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1100         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1101 
1102         if (isa<ExplicitCastExpr>(CE)) {
1103           LValueBaseInfo TargetTypeBaseInfo;
1104           TBAAAccessInfo TargetTypeTBAAInfo;
1105           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1106               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1107           if (TBAAInfo)
1108             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1109                                                  TargetTypeTBAAInfo);
1110           // If the source l-value is opaque, honor the alignment of the
1111           // casted-to type.
1112           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1113             if (BaseInfo)
1114               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1115             Addr = Address(Addr.getPointer(), Align);
1116           }
1117         }
1118 
1119         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1120             CE->getCastKind() == CK_BitCast) {
1121           if (auto PT = E->getType()->getAs<PointerType>())
1122             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1123                                       /*MayBeNull=*/true,
1124                                       CodeGenFunction::CFITCK_UnrelatedCast,
1125                                       CE->getBeginLoc());
1126         }
1127         return CE->getCastKind() != CK_AddressSpaceConversion
1128                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1129                    : Builder.CreateAddrSpaceCast(Addr,
1130                                                  ConvertType(E->getType()));
1131       }
1132       break;
1133 
1134     // Array-to-pointer decay.
1135     case CK_ArrayToPointerDecay:
1136       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1137 
1138     // Derived-to-base conversions.
1139     case CK_UncheckedDerivedToBase:
1140     case CK_DerivedToBase: {
1141       // TODO: Support accesses to members of base classes in TBAA. For now, we
1142       // conservatively pretend that the complete object is of the base class
1143       // type.
1144       if (TBAAInfo)
1145         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1146       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1147       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1148       return GetAddressOfBaseClass(Addr, Derived,
1149                                    CE->path_begin(), CE->path_end(),
1150                                    ShouldNullCheckClassCastValue(CE),
1151                                    CE->getExprLoc());
1152     }
1153 
1154     // TODO: Is there any reason to treat base-to-derived conversions
1155     // specially?
1156     default:
1157       break;
1158     }
1159   }
1160 
1161   // Unary &.
1162   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1163     if (UO->getOpcode() == UO_AddrOf) {
1164       LValue LV = EmitLValue(UO->getSubExpr());
1165       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1166       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1167       return LV.getAddress(*this);
1168     }
1169   }
1170 
1171   // TODO: conditional operators, comma.
1172 
1173   // Otherwise, use the alignment of the type.
1174   CharUnits Align =
1175       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1176   return Address(EmitScalarExpr(E), Align);
1177 }
1178 
1179 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1180   llvm::Value *V = RV.getScalarVal();
1181   if (auto MPT = T->getAs<MemberPointerType>())
1182     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1183   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1184 }
1185 
1186 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1187   if (Ty->isVoidType())
1188     return RValue::get(nullptr);
1189 
1190   switch (getEvaluationKind(Ty)) {
1191   case TEK_Complex: {
1192     llvm::Type *EltTy =
1193       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1194     llvm::Value *U = llvm::UndefValue::get(EltTy);
1195     return RValue::getComplex(std::make_pair(U, U));
1196   }
1197 
1198   // If this is a use of an undefined aggregate type, the aggregate must have an
1199   // identifiable address.  Just because the contents of the value are undefined
1200   // doesn't mean that the address can't be taken and compared.
1201   case TEK_Aggregate: {
1202     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1203     return RValue::getAggregate(DestPtr);
1204   }
1205 
1206   case TEK_Scalar:
1207     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1208   }
1209   llvm_unreachable("bad evaluation kind");
1210 }
1211 
1212 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1213                                               const char *Name) {
1214   ErrorUnsupported(E, Name);
1215   return GetUndefRValue(E->getType());
1216 }
1217 
1218 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1219                                               const char *Name) {
1220   ErrorUnsupported(E, Name);
1221   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1222   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1223                         E->getType());
1224 }
1225 
1226 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1227   const Expr *Base = Obj;
1228   while (!isa<CXXThisExpr>(Base)) {
1229     // The result of a dynamic_cast can be null.
1230     if (isa<CXXDynamicCastExpr>(Base))
1231       return false;
1232 
1233     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1234       Base = CE->getSubExpr();
1235     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1236       Base = PE->getSubExpr();
1237     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1238       if (UO->getOpcode() == UO_Extension)
1239         Base = UO->getSubExpr();
1240       else
1241         return false;
1242     } else {
1243       return false;
1244     }
1245   }
1246   return true;
1247 }
1248 
1249 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1250   LValue LV;
1251   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1252     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1253   else
1254     LV = EmitLValue(E);
1255   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1256     SanitizerSet SkippedChecks;
1257     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1258       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1259       if (IsBaseCXXThis)
1260         SkippedChecks.set(SanitizerKind::Alignment, true);
1261       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1262         SkippedChecks.set(SanitizerKind::Null, true);
1263     }
1264     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1265                   LV.getAlignment(), SkippedChecks);
1266   }
1267   return LV;
1268 }
1269 
1270 /// EmitLValue - Emit code to compute a designator that specifies the location
1271 /// of the expression.
1272 ///
1273 /// This can return one of two things: a simple address or a bitfield reference.
1274 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1275 /// an LLVM pointer type.
1276 ///
1277 /// If this returns a bitfield reference, nothing about the pointee type of the
1278 /// LLVM value is known: For example, it may not be a pointer to an integer.
1279 ///
1280 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1281 /// this method guarantees that the returned pointer type will point to an LLVM
1282 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1283 /// length type, this is not possible.
1284 ///
1285 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1286   ApplyDebugLocation DL(*this, E);
1287   switch (E->getStmtClass()) {
1288   default: return EmitUnsupportedLValue(E, "l-value expression");
1289 
1290   case Expr::ObjCPropertyRefExprClass:
1291     llvm_unreachable("cannot emit a property reference directly");
1292 
1293   case Expr::ObjCSelectorExprClass:
1294     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1295   case Expr::ObjCIsaExprClass:
1296     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1297   case Expr::BinaryOperatorClass:
1298     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1299   case Expr::CompoundAssignOperatorClass: {
1300     QualType Ty = E->getType();
1301     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1302       Ty = AT->getValueType();
1303     if (!Ty->isAnyComplexType())
1304       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1305     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1306   }
1307   case Expr::CallExprClass:
1308   case Expr::CXXMemberCallExprClass:
1309   case Expr::CXXOperatorCallExprClass:
1310   case Expr::UserDefinedLiteralClass:
1311     return EmitCallExprLValue(cast<CallExpr>(E));
1312   case Expr::CXXRewrittenBinaryOperatorClass:
1313     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1314   case Expr::VAArgExprClass:
1315     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1316   case Expr::DeclRefExprClass:
1317     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1318   case Expr::ConstantExprClass: {
1319     const ConstantExpr *CE = cast<ConstantExpr>(E);
1320     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1321       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1322                              ->getCallReturnType(getContext());
1323       return MakeNaturalAlignAddrLValue(Result, RetType);
1324     }
1325     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1326   }
1327   case Expr::ParenExprClass:
1328     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1329   case Expr::GenericSelectionExprClass:
1330     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1331   case Expr::PredefinedExprClass:
1332     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1333   case Expr::StringLiteralClass:
1334     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1335   case Expr::ObjCEncodeExprClass:
1336     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1337   case Expr::PseudoObjectExprClass:
1338     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1339   case Expr::InitListExprClass:
1340     return EmitInitListLValue(cast<InitListExpr>(E));
1341   case Expr::CXXTemporaryObjectExprClass:
1342   case Expr::CXXConstructExprClass:
1343     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1344   case Expr::CXXBindTemporaryExprClass:
1345     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1346   case Expr::CXXUuidofExprClass:
1347     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1348   case Expr::LambdaExprClass:
1349     return EmitAggExprToLValue(E);
1350 
1351   case Expr::ExprWithCleanupsClass: {
1352     const auto *cleanups = cast<ExprWithCleanups>(E);
1353     RunCleanupsScope Scope(*this);
1354     LValue LV = EmitLValue(cleanups->getSubExpr());
1355     if (LV.isSimple()) {
1356       // Defend against branches out of gnu statement expressions surrounded by
1357       // cleanups.
1358       llvm::Value *V = LV.getPointer(*this);
1359       Scope.ForceCleanup({&V});
1360       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1361                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1362     }
1363     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1364     // bitfield lvalue or some other non-simple lvalue?
1365     return LV;
1366   }
1367 
1368   case Expr::CXXDefaultArgExprClass: {
1369     auto *DAE = cast<CXXDefaultArgExpr>(E);
1370     CXXDefaultArgExprScope Scope(*this, DAE);
1371     return EmitLValue(DAE->getExpr());
1372   }
1373   case Expr::CXXDefaultInitExprClass: {
1374     auto *DIE = cast<CXXDefaultInitExpr>(E);
1375     CXXDefaultInitExprScope Scope(*this, DIE);
1376     return EmitLValue(DIE->getExpr());
1377   }
1378   case Expr::CXXTypeidExprClass:
1379     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1380 
1381   case Expr::ObjCMessageExprClass:
1382     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1383   case Expr::ObjCIvarRefExprClass:
1384     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1385   case Expr::StmtExprClass:
1386     return EmitStmtExprLValue(cast<StmtExpr>(E));
1387   case Expr::UnaryOperatorClass:
1388     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1389   case Expr::ArraySubscriptExprClass:
1390     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1391   case Expr::MatrixSubscriptExprClass:
1392     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1393   case Expr::OMPArraySectionExprClass:
1394     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1395   case Expr::ExtVectorElementExprClass:
1396     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1397   case Expr::MemberExprClass:
1398     return EmitMemberExpr(cast<MemberExpr>(E));
1399   case Expr::CompoundLiteralExprClass:
1400     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1401   case Expr::ConditionalOperatorClass:
1402     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1403   case Expr::BinaryConditionalOperatorClass:
1404     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1405   case Expr::ChooseExprClass:
1406     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1407   case Expr::OpaqueValueExprClass:
1408     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1409   case Expr::SubstNonTypeTemplateParmExprClass:
1410     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1411   case Expr::ImplicitCastExprClass:
1412   case Expr::CStyleCastExprClass:
1413   case Expr::CXXFunctionalCastExprClass:
1414   case Expr::CXXStaticCastExprClass:
1415   case Expr::CXXDynamicCastExprClass:
1416   case Expr::CXXReinterpretCastExprClass:
1417   case Expr::CXXConstCastExprClass:
1418   case Expr::CXXAddrspaceCastExprClass:
1419   case Expr::ObjCBridgedCastExprClass:
1420     return EmitCastLValue(cast<CastExpr>(E));
1421 
1422   case Expr::MaterializeTemporaryExprClass:
1423     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1424 
1425   case Expr::CoawaitExprClass:
1426     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1427   case Expr::CoyieldExprClass:
1428     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1429   }
1430 }
1431 
1432 /// Given an object of the given canonical type, can we safely copy a
1433 /// value out of it based on its initializer?
1434 static bool isConstantEmittableObjectType(QualType type) {
1435   assert(type.isCanonical());
1436   assert(!type->isReferenceType());
1437 
1438   // Must be const-qualified but non-volatile.
1439   Qualifiers qs = type.getLocalQualifiers();
1440   if (!qs.hasConst() || qs.hasVolatile()) return false;
1441 
1442   // Otherwise, all object types satisfy this except C++ classes with
1443   // mutable subobjects or non-trivial copy/destroy behavior.
1444   if (const auto *RT = dyn_cast<RecordType>(type))
1445     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1446       if (RD->hasMutableFields() || !RD->isTrivial())
1447         return false;
1448 
1449   return true;
1450 }
1451 
1452 /// Can we constant-emit a load of a reference to a variable of the
1453 /// given type?  This is different from predicates like
1454 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1455 /// in situations that don't necessarily satisfy the language's rules
1456 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1457 /// to do this with const float variables even if those variables
1458 /// aren't marked 'constexpr'.
1459 enum ConstantEmissionKind {
1460   CEK_None,
1461   CEK_AsReferenceOnly,
1462   CEK_AsValueOrReference,
1463   CEK_AsValueOnly
1464 };
1465 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1466   type = type.getCanonicalType();
1467   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1468     if (isConstantEmittableObjectType(ref->getPointeeType()))
1469       return CEK_AsValueOrReference;
1470     return CEK_AsReferenceOnly;
1471   }
1472   if (isConstantEmittableObjectType(type))
1473     return CEK_AsValueOnly;
1474   return CEK_None;
1475 }
1476 
1477 /// Try to emit a reference to the given value without producing it as
1478 /// an l-value.  This is just an optimization, but it avoids us needing
1479 /// to emit global copies of variables if they're named without triggering
1480 /// a formal use in a context where we can't emit a direct reference to them,
1481 /// for instance if a block or lambda or a member of a local class uses a
1482 /// const int variable or constexpr variable from an enclosing function.
1483 CodeGenFunction::ConstantEmission
1484 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1485   ValueDecl *value = refExpr->getDecl();
1486 
1487   // The value needs to be an enum constant or a constant variable.
1488   ConstantEmissionKind CEK;
1489   if (isa<ParmVarDecl>(value)) {
1490     CEK = CEK_None;
1491   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1492     CEK = checkVarTypeForConstantEmission(var->getType());
1493   } else if (isa<EnumConstantDecl>(value)) {
1494     CEK = CEK_AsValueOnly;
1495   } else {
1496     CEK = CEK_None;
1497   }
1498   if (CEK == CEK_None) return ConstantEmission();
1499 
1500   Expr::EvalResult result;
1501   bool resultIsReference;
1502   QualType resultType;
1503 
1504   // It's best to evaluate all the way as an r-value if that's permitted.
1505   if (CEK != CEK_AsReferenceOnly &&
1506       refExpr->EvaluateAsRValue(result, getContext())) {
1507     resultIsReference = false;
1508     resultType = refExpr->getType();
1509 
1510   // Otherwise, try to evaluate as an l-value.
1511   } else if (CEK != CEK_AsValueOnly &&
1512              refExpr->EvaluateAsLValue(result, getContext())) {
1513     resultIsReference = true;
1514     resultType = value->getType();
1515 
1516   // Failure.
1517   } else {
1518     return ConstantEmission();
1519   }
1520 
1521   // In any case, if the initializer has side-effects, abandon ship.
1522   if (result.HasSideEffects)
1523     return ConstantEmission();
1524 
1525   // Emit as a constant.
1526   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1527                                                result.Val, resultType);
1528 
1529   // Make sure we emit a debug reference to the global variable.
1530   // This should probably fire even for
1531   if (isa<VarDecl>(value)) {
1532     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1533       EmitDeclRefExprDbgValue(refExpr, result.Val);
1534   } else {
1535     assert(isa<EnumConstantDecl>(value));
1536     EmitDeclRefExprDbgValue(refExpr, result.Val);
1537   }
1538 
1539   // If we emitted a reference constant, we need to dereference that.
1540   if (resultIsReference)
1541     return ConstantEmission::forReference(C);
1542 
1543   return ConstantEmission::forValue(C);
1544 }
1545 
1546 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1547                                                         const MemberExpr *ME) {
1548   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1549     // Try to emit static variable member expressions as DREs.
1550     return DeclRefExpr::Create(
1551         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1552         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1553         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1554   }
1555   return nullptr;
1556 }
1557 
1558 CodeGenFunction::ConstantEmission
1559 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1560   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1561     return tryEmitAsConstant(DRE);
1562   return ConstantEmission();
1563 }
1564 
1565 llvm::Value *CodeGenFunction::emitScalarConstant(
1566     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1567   assert(Constant && "not a constant");
1568   if (Constant.isReference())
1569     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1570                             E->getExprLoc())
1571         .getScalarVal();
1572   return Constant.getValue();
1573 }
1574 
1575 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1576                                                SourceLocation Loc) {
1577   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1578                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1579                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1580 }
1581 
1582 static bool hasBooleanRepresentation(QualType Ty) {
1583   if (Ty->isBooleanType())
1584     return true;
1585 
1586   if (const EnumType *ET = Ty->getAs<EnumType>())
1587     return ET->getDecl()->getIntegerType()->isBooleanType();
1588 
1589   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1590     return hasBooleanRepresentation(AT->getValueType());
1591 
1592   return false;
1593 }
1594 
1595 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1596                             llvm::APInt &Min, llvm::APInt &End,
1597                             bool StrictEnums, bool IsBool) {
1598   const EnumType *ET = Ty->getAs<EnumType>();
1599   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1600                                 ET && !ET->getDecl()->isFixed();
1601   if (!IsBool && !IsRegularCPlusPlusEnum)
1602     return false;
1603 
1604   if (IsBool) {
1605     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1606     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1607   } else {
1608     const EnumDecl *ED = ET->getDecl();
1609     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1610     unsigned Bitwidth = LTy->getScalarSizeInBits();
1611     unsigned NumNegativeBits = ED->getNumNegativeBits();
1612     unsigned NumPositiveBits = ED->getNumPositiveBits();
1613 
1614     if (NumNegativeBits) {
1615       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1616       assert(NumBits <= Bitwidth);
1617       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1618       Min = -End;
1619     } else {
1620       assert(NumPositiveBits <= Bitwidth);
1621       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1622       Min = llvm::APInt(Bitwidth, 0);
1623     }
1624   }
1625   return true;
1626 }
1627 
1628 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1629   llvm::APInt Min, End;
1630   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1631                        hasBooleanRepresentation(Ty)))
1632     return nullptr;
1633 
1634   llvm::MDBuilder MDHelper(getLLVMContext());
1635   return MDHelper.createRange(Min, End);
1636 }
1637 
1638 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1639                                            SourceLocation Loc) {
1640   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1641   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1642   if (!HasBoolCheck && !HasEnumCheck)
1643     return false;
1644 
1645   bool IsBool = hasBooleanRepresentation(Ty) ||
1646                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1647   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1648   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1649   if (!NeedsBoolCheck && !NeedsEnumCheck)
1650     return false;
1651 
1652   // Single-bit booleans don't need to be checked. Special-case this to avoid
1653   // a bit width mismatch when handling bitfield values. This is handled by
1654   // EmitFromMemory for the non-bitfield case.
1655   if (IsBool &&
1656       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1657     return false;
1658 
1659   llvm::APInt Min, End;
1660   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1661     return true;
1662 
1663   auto &Ctx = getLLVMContext();
1664   SanitizerScope SanScope(this);
1665   llvm::Value *Check;
1666   --End;
1667   if (!Min) {
1668     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1669   } else {
1670     llvm::Value *Upper =
1671         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1672     llvm::Value *Lower =
1673         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1674     Check = Builder.CreateAnd(Upper, Lower);
1675   }
1676   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1677                                   EmitCheckTypeDescriptor(Ty)};
1678   SanitizerMask Kind =
1679       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1680   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1681             StaticArgs, EmitCheckValue(Value));
1682   return true;
1683 }
1684 
1685 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1686                                                QualType Ty,
1687                                                SourceLocation Loc,
1688                                                LValueBaseInfo BaseInfo,
1689                                                TBAAAccessInfo TBAAInfo,
1690                                                bool isNontemporal) {
1691   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1692     // For better performance, handle vector loads differently.
1693     if (Ty->isVectorType()) {
1694       const llvm::Type *EltTy = Addr.getElementType();
1695 
1696       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1697 
1698       // Handle vectors of size 3 like size 4 for better performance.
1699       if (VTy->getNumElements() == 3) {
1700 
1701         // Bitcast to vec4 type.
1702         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1703         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1704         // Now load value.
1705         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1706 
1707         // Shuffle vector to get vec3.
1708         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1709                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1710         return EmitFromMemory(V, Ty);
1711       }
1712     }
1713   }
1714 
1715   // Atomic operations have to be done on integral types.
1716   LValue AtomicLValue =
1717       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1718   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1719     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1720   }
1721 
1722   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1723   if (isNontemporal) {
1724     llvm::MDNode *Node = llvm::MDNode::get(
1725         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1726     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1727   }
1728 
1729   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1730 
1731   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1732     // In order to prevent the optimizer from throwing away the check, don't
1733     // attach range metadata to the load.
1734   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1735     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1736       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1737 
1738   return EmitFromMemory(Load, Ty);
1739 }
1740 
1741 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1742   // Bool has a different representation in memory than in registers.
1743   if (hasBooleanRepresentation(Ty)) {
1744     // This should really always be an i1, but sometimes it's already
1745     // an i8, and it's awkward to track those cases down.
1746     if (Value->getType()->isIntegerTy(1))
1747       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1748     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1749            "wrong value rep of bool");
1750   }
1751 
1752   return Value;
1753 }
1754 
1755 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1756   // Bool has a different representation in memory than in registers.
1757   if (hasBooleanRepresentation(Ty)) {
1758     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1759            "wrong value rep of bool");
1760     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1761   }
1762 
1763   return Value;
1764 }
1765 
1766 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1767 // MatrixType), if it points to a array (the memory type of MatrixType).
1768 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1769                                          bool IsVector = true) {
1770   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1771       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1772   if (ArrayTy && IsVector) {
1773     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1774                                                 ArrayTy->getNumElements());
1775 
1776     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1777   }
1778   auto *VectorTy = dyn_cast<llvm::VectorType>(
1779       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1780   if (VectorTy && !IsVector) {
1781     auto *ArrayTy = llvm::ArrayType::get(
1782         VectorTy->getElementType(),
1783         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1784 
1785     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1786   }
1787 
1788   return Addr;
1789 }
1790 
1791 // Emit a store of a matrix LValue. This may require casting the original
1792 // pointer to memory address (ArrayType) to a pointer to the value type
1793 // (VectorType).
1794 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1795                                     bool isInit, CodeGenFunction &CGF) {
1796   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1797                                            value->getType()->isVectorTy());
1798   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1799                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1800                         lvalue.isNontemporal());
1801 }
1802 
1803 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1804                                         bool Volatile, QualType Ty,
1805                                         LValueBaseInfo BaseInfo,
1806                                         TBAAAccessInfo TBAAInfo,
1807                                         bool isInit, bool isNontemporal) {
1808   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1809     // Handle vectors differently to get better performance.
1810     if (Ty->isVectorType()) {
1811       llvm::Type *SrcTy = Value->getType();
1812       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1813       // Handle vec3 special.
1814       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1815         // Our source is a vec3, do a shuffle vector to make it a vec4.
1816         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1817                                             ArrayRef<int>{0, 1, 2, -1},
1818                                             "extractVec");
1819         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1820       }
1821       if (Addr.getElementType() != SrcTy) {
1822         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1823       }
1824     }
1825   }
1826 
1827   Value = EmitToMemory(Value, Ty);
1828 
1829   LValue AtomicLValue =
1830       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1831   if (Ty->isAtomicType() ||
1832       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1833     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1834     return;
1835   }
1836 
1837   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1838   if (isNontemporal) {
1839     llvm::MDNode *Node =
1840         llvm::MDNode::get(Store->getContext(),
1841                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1842     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1843   }
1844 
1845   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1846 }
1847 
1848 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1849                                         bool isInit) {
1850   if (lvalue.getType()->isConstantMatrixType()) {
1851     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1852     return;
1853   }
1854 
1855   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1856                     lvalue.getType(), lvalue.getBaseInfo(),
1857                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1858 }
1859 
1860 // Emit a load of a LValue of matrix type. This may require casting the pointer
1861 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1862 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1863                                      CodeGenFunction &CGF) {
1864   assert(LV.getType()->isConstantMatrixType());
1865   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1866   LV.setAddress(Addr);
1867   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1868 }
1869 
1870 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1871 /// method emits the address of the lvalue, then loads the result as an rvalue,
1872 /// returning the rvalue.
1873 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1874   if (LV.isObjCWeak()) {
1875     // load of a __weak object.
1876     Address AddrWeakObj = LV.getAddress(*this);
1877     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1878                                                              AddrWeakObj));
1879   }
1880   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1881     // In MRC mode, we do a load+autorelease.
1882     if (!getLangOpts().ObjCAutoRefCount) {
1883       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1884     }
1885 
1886     // In ARC mode, we load retained and then consume the value.
1887     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1888     Object = EmitObjCConsumeObject(LV.getType(), Object);
1889     return RValue::get(Object);
1890   }
1891 
1892   if (LV.isSimple()) {
1893     assert(!LV.getType()->isFunctionType());
1894 
1895     if (LV.getType()->isConstantMatrixType())
1896       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1897 
1898     // Everything needs a load.
1899     return RValue::get(EmitLoadOfScalar(LV, Loc));
1900   }
1901 
1902   if (LV.isVectorElt()) {
1903     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1904                                               LV.isVolatileQualified());
1905     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1906                                                     "vecext"));
1907   }
1908 
1909   // If this is a reference to a subset of the elements of a vector, either
1910   // shuffle the input or extract/insert them as appropriate.
1911   if (LV.isExtVectorElt()) {
1912     return EmitLoadOfExtVectorElementLValue(LV);
1913   }
1914 
1915   // Global Register variables always invoke intrinsics
1916   if (LV.isGlobalReg())
1917     return EmitLoadOfGlobalRegLValue(LV);
1918 
1919   if (LV.isMatrixElt()) {
1920     llvm::LoadInst *Load =
1921         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1922     return RValue::get(
1923         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1924   }
1925 
1926   assert(LV.isBitField() && "Unknown LValue type!");
1927   return EmitLoadOfBitfieldLValue(LV, Loc);
1928 }
1929 
1930 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1931                                                  SourceLocation Loc) {
1932   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1933 
1934   // Get the output type.
1935   llvm::Type *ResLTy = ConvertType(LV.getType());
1936 
1937   Address Ptr = LV.getBitFieldAddress();
1938   llvm::Value *Val =
1939       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1940 
1941   bool UseVolatile = LV.isVolatileQualified() &&
1942                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1943   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1944   const unsigned StorageSize =
1945       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1946   if (Info.IsSigned) {
1947     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1948     unsigned HighBits = StorageSize - Offset - Info.Size;
1949     if (HighBits)
1950       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1951     if (Offset + HighBits)
1952       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1953   } else {
1954     if (Offset)
1955       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1956     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1957       Val = Builder.CreateAnd(
1958           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1959   }
1960   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1961   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1962   return RValue::get(Val);
1963 }
1964 
1965 // If this is a reference to a subset of the elements of a vector, create an
1966 // appropriate shufflevector.
1967 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1968   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1969                                         LV.isVolatileQualified());
1970 
1971   const llvm::Constant *Elts = LV.getExtVectorElts();
1972 
1973   // If the result of the expression is a non-vector type, we must be extracting
1974   // a single element.  Just codegen as an extractelement.
1975   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1976   if (!ExprVT) {
1977     unsigned InIdx = getAccessedFieldNo(0, Elts);
1978     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1979     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1980   }
1981 
1982   // Always use shuffle vector to try to retain the original program structure
1983   unsigned NumResultElts = ExprVT->getNumElements();
1984 
1985   SmallVector<int, 4> Mask;
1986   for (unsigned i = 0; i != NumResultElts; ++i)
1987     Mask.push_back(getAccessedFieldNo(i, Elts));
1988 
1989   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1990                                     Mask);
1991   return RValue::get(Vec);
1992 }
1993 
1994 /// Generates lvalue for partial ext_vector access.
1995 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1996   Address VectorAddress = LV.getExtVectorAddress();
1997   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1998   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1999 
2000   Address CastToPointerElement =
2001     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2002                                  "conv.ptr.element");
2003 
2004   const llvm::Constant *Elts = LV.getExtVectorElts();
2005   unsigned ix = getAccessedFieldNo(0, Elts);
2006 
2007   Address VectorBasePtrPlusIx =
2008     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2009                                    "vector.elt");
2010 
2011   return VectorBasePtrPlusIx;
2012 }
2013 
2014 /// Load of global gamed gegisters are always calls to intrinsics.
2015 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2016   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2017          "Bad type for register variable");
2018   llvm::MDNode *RegName = cast<llvm::MDNode>(
2019       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2020 
2021   // We accept integer and pointer types only
2022   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2023   llvm::Type *Ty = OrigTy;
2024   if (OrigTy->isPointerTy())
2025     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2026   llvm::Type *Types[] = { Ty };
2027 
2028   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2029   llvm::Value *Call = Builder.CreateCall(
2030       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2031   if (OrigTy->isPointerTy())
2032     Call = Builder.CreateIntToPtr(Call, OrigTy);
2033   return RValue::get(Call);
2034 }
2035 
2036 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2037 /// lvalue, where both are guaranteed to the have the same type, and that type
2038 /// is 'Ty'.
2039 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2040                                              bool isInit) {
2041   if (!Dst.isSimple()) {
2042     if (Dst.isVectorElt()) {
2043       // Read/modify/write the vector, inserting the new element.
2044       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2045                                             Dst.isVolatileQualified());
2046       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2047                                         Dst.getVectorIdx(), "vecins");
2048       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2049                           Dst.isVolatileQualified());
2050       return;
2051     }
2052 
2053     // If this is an update of extended vector elements, insert them as
2054     // appropriate.
2055     if (Dst.isExtVectorElt())
2056       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2057 
2058     if (Dst.isGlobalReg())
2059       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2060 
2061     if (Dst.isMatrixElt()) {
2062       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2063       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2064                                         Dst.getMatrixIdx(), "matins");
2065       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2066                           Dst.isVolatileQualified());
2067       return;
2068     }
2069 
2070     assert(Dst.isBitField() && "Unknown LValue type");
2071     return EmitStoreThroughBitfieldLValue(Src, Dst);
2072   }
2073 
2074   // There's special magic for assigning into an ARC-qualified l-value.
2075   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2076     switch (Lifetime) {
2077     case Qualifiers::OCL_None:
2078       llvm_unreachable("present but none");
2079 
2080     case Qualifiers::OCL_ExplicitNone:
2081       // nothing special
2082       break;
2083 
2084     case Qualifiers::OCL_Strong:
2085       if (isInit) {
2086         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2087         break;
2088       }
2089       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2090       return;
2091 
2092     case Qualifiers::OCL_Weak:
2093       if (isInit)
2094         // Initialize and then skip the primitive store.
2095         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2096       else
2097         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2098                          /*ignore*/ true);
2099       return;
2100 
2101     case Qualifiers::OCL_Autoreleasing:
2102       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2103                                                      Src.getScalarVal()));
2104       // fall into the normal path
2105       break;
2106     }
2107   }
2108 
2109   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2110     // load of a __weak object.
2111     Address LvalueDst = Dst.getAddress(*this);
2112     llvm::Value *src = Src.getScalarVal();
2113      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2114     return;
2115   }
2116 
2117   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2118     // load of a __strong object.
2119     Address LvalueDst = Dst.getAddress(*this);
2120     llvm::Value *src = Src.getScalarVal();
2121     if (Dst.isObjCIvar()) {
2122       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2123       llvm::Type *ResultType = IntPtrTy;
2124       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2125       llvm::Value *RHS = dst.getPointer();
2126       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2127       llvm::Value *LHS =
2128         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2129                                "sub.ptr.lhs.cast");
2130       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2131       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2132                                               BytesBetween);
2133     } else if (Dst.isGlobalObjCRef()) {
2134       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2135                                                 Dst.isThreadLocalRef());
2136     }
2137     else
2138       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2139     return;
2140   }
2141 
2142   assert(Src.isScalar() && "Can't emit an agg store with this method");
2143   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2144 }
2145 
2146 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2147                                                      llvm::Value **Result) {
2148   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2149   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2150   Address Ptr = Dst.getBitFieldAddress();
2151 
2152   // Get the source value, truncated to the width of the bit-field.
2153   llvm::Value *SrcVal = Src.getScalarVal();
2154 
2155   // Cast the source to the storage type and shift it into place.
2156   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2157                                  /*isSigned=*/false);
2158   llvm::Value *MaskedVal = SrcVal;
2159 
2160   const bool UseVolatile =
2161       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2162       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2163   const unsigned StorageSize =
2164       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2165   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2166   // See if there are other bits in the bitfield's storage we'll need to load
2167   // and mask together with source before storing.
2168   if (StorageSize != Info.Size) {
2169     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2170     llvm::Value *Val =
2171         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2172 
2173     // Mask the source value as needed.
2174     if (!hasBooleanRepresentation(Dst.getType()))
2175       SrcVal = Builder.CreateAnd(
2176           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2177           "bf.value");
2178     MaskedVal = SrcVal;
2179     if (Offset)
2180       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2181 
2182     // Mask out the original value.
2183     Val = Builder.CreateAnd(
2184         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2185         "bf.clear");
2186 
2187     // Or together the unchanged values and the source value.
2188     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2189   } else {
2190     assert(Offset == 0);
2191     // According to the AACPS:
2192     // When a volatile bit-field is written, and its container does not overlap
2193     // with any non-bit-field member, its container must be read exactly once
2194     // and written exactly once using the access width appropriate to the type
2195     // of the container. The two accesses are not atomic.
2196     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2197         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2198       Builder.CreateLoad(Ptr, true, "bf.load");
2199   }
2200 
2201   // Write the new value back out.
2202   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2203 
2204   // Return the new value of the bit-field, if requested.
2205   if (Result) {
2206     llvm::Value *ResultVal = MaskedVal;
2207 
2208     // Sign extend the value if needed.
2209     if (Info.IsSigned) {
2210       assert(Info.Size <= StorageSize);
2211       unsigned HighBits = StorageSize - Info.Size;
2212       if (HighBits) {
2213         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2214         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2215       }
2216     }
2217 
2218     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2219                                       "bf.result.cast");
2220     *Result = EmitFromMemory(ResultVal, Dst.getType());
2221   }
2222 }
2223 
2224 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2225                                                                LValue Dst) {
2226   // This access turns into a read/modify/write of the vector.  Load the input
2227   // value now.
2228   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2229                                         Dst.isVolatileQualified());
2230   const llvm::Constant *Elts = Dst.getExtVectorElts();
2231 
2232   llvm::Value *SrcVal = Src.getScalarVal();
2233 
2234   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2235     unsigned NumSrcElts = VTy->getNumElements();
2236     unsigned NumDstElts =
2237         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2238     if (NumDstElts == NumSrcElts) {
2239       // Use shuffle vector is the src and destination are the same number of
2240       // elements and restore the vector mask since it is on the side it will be
2241       // stored.
2242       SmallVector<int, 4> Mask(NumDstElts);
2243       for (unsigned i = 0; i != NumSrcElts; ++i)
2244         Mask[getAccessedFieldNo(i, Elts)] = i;
2245 
2246       Vec = Builder.CreateShuffleVector(
2247           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2248     } else if (NumDstElts > NumSrcElts) {
2249       // Extended the source vector to the same length and then shuffle it
2250       // into the destination.
2251       // FIXME: since we're shuffling with undef, can we just use the indices
2252       //        into that?  This could be simpler.
2253       SmallVector<int, 4> ExtMask;
2254       for (unsigned i = 0; i != NumSrcElts; ++i)
2255         ExtMask.push_back(i);
2256       ExtMask.resize(NumDstElts, -1);
2257       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2258           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2259       // build identity
2260       SmallVector<int, 4> Mask;
2261       for (unsigned i = 0; i != NumDstElts; ++i)
2262         Mask.push_back(i);
2263 
2264       // When the vector size is odd and .odd or .hi is used, the last element
2265       // of the Elts constant array will be one past the size of the vector.
2266       // Ignore the last element here, if it is greater than the mask size.
2267       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2268         NumSrcElts--;
2269 
2270       // modify when what gets shuffled in
2271       for (unsigned i = 0; i != NumSrcElts; ++i)
2272         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2273       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2274     } else {
2275       // We should never shorten the vector
2276       llvm_unreachable("unexpected shorten vector length");
2277     }
2278   } else {
2279     // If the Src is a scalar (not a vector) it must be updating one element.
2280     unsigned InIdx = getAccessedFieldNo(0, Elts);
2281     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2282     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2283   }
2284 
2285   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2286                       Dst.isVolatileQualified());
2287 }
2288 
2289 /// Store of global named registers are always calls to intrinsics.
2290 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2291   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2292          "Bad type for register variable");
2293   llvm::MDNode *RegName = cast<llvm::MDNode>(
2294       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2295   assert(RegName && "Register LValue is not metadata");
2296 
2297   // We accept integer and pointer types only
2298   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2299   llvm::Type *Ty = OrigTy;
2300   if (OrigTy->isPointerTy())
2301     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2302   llvm::Type *Types[] = { Ty };
2303 
2304   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2305   llvm::Value *Value = Src.getScalarVal();
2306   if (OrigTy->isPointerTy())
2307     Value = Builder.CreatePtrToInt(Value, Ty);
2308   Builder.CreateCall(
2309       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2310 }
2311 
2312 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2313 // generating write-barries API. It is currently a global, ivar,
2314 // or neither.
2315 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2316                                  LValue &LV,
2317                                  bool IsMemberAccess=false) {
2318   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2319     return;
2320 
2321   if (isa<ObjCIvarRefExpr>(E)) {
2322     QualType ExpTy = E->getType();
2323     if (IsMemberAccess && ExpTy->isPointerType()) {
2324       // If ivar is a structure pointer, assigning to field of
2325       // this struct follows gcc's behavior and makes it a non-ivar
2326       // writer-barrier conservatively.
2327       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2328       if (ExpTy->isRecordType()) {
2329         LV.setObjCIvar(false);
2330         return;
2331       }
2332     }
2333     LV.setObjCIvar(true);
2334     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2335     LV.setBaseIvarExp(Exp->getBase());
2336     LV.setObjCArray(E->getType()->isArrayType());
2337     return;
2338   }
2339 
2340   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2341     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2342       if (VD->hasGlobalStorage()) {
2343         LV.setGlobalObjCRef(true);
2344         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2345       }
2346     }
2347     LV.setObjCArray(E->getType()->isArrayType());
2348     return;
2349   }
2350 
2351   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2352     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2353     return;
2354   }
2355 
2356   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2357     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2358     if (LV.isObjCIvar()) {
2359       // If cast is to a structure pointer, follow gcc's behavior and make it
2360       // a non-ivar write-barrier.
2361       QualType ExpTy = E->getType();
2362       if (ExpTy->isPointerType())
2363         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2364       if (ExpTy->isRecordType())
2365         LV.setObjCIvar(false);
2366     }
2367     return;
2368   }
2369 
2370   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2371     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2372     return;
2373   }
2374 
2375   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2376     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2377     return;
2378   }
2379 
2380   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2381     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2382     return;
2383   }
2384 
2385   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2386     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2387     return;
2388   }
2389 
2390   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2391     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2392     if (LV.isObjCIvar() && !LV.isObjCArray())
2393       // Using array syntax to assigning to what an ivar points to is not
2394       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2395       LV.setObjCIvar(false);
2396     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2397       // Using array syntax to assigning to what global points to is not
2398       // same as assigning to the global itself. {id *G;} G[i] = 0;
2399       LV.setGlobalObjCRef(false);
2400     return;
2401   }
2402 
2403   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2404     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2405     // We don't know if member is an 'ivar', but this flag is looked at
2406     // only in the context of LV.isObjCIvar().
2407     LV.setObjCArray(E->getType()->isArrayType());
2408     return;
2409   }
2410 }
2411 
2412 static llvm::Value *
2413 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2414                                 llvm::Value *V, llvm::Type *IRType,
2415                                 StringRef Name = StringRef()) {
2416   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2417   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2418 }
2419 
2420 static LValue EmitThreadPrivateVarDeclLValue(
2421     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2422     llvm::Type *RealVarTy, SourceLocation Loc) {
2423   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2424     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2425         CGF, VD, Addr, Loc);
2426   else
2427     Addr =
2428         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2429 
2430   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2431   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2432 }
2433 
2434 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2435                                            const VarDecl *VD, QualType T) {
2436   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2437       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2438   // Return an invalid address if variable is MT_To and unified
2439   // memory is not enabled. For all other cases: MT_Link and
2440   // MT_To with unified memory, return a valid address.
2441   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2442                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2443     return Address::invalid();
2444   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2445           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2446            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2447          "Expected link clause OR to clause with unified memory enabled.");
2448   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2449   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2450   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2451 }
2452 
2453 Address
2454 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2455                                      LValueBaseInfo *PointeeBaseInfo,
2456                                      TBAAAccessInfo *PointeeTBAAInfo) {
2457   llvm::LoadInst *Load =
2458       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2459   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2460 
2461   CharUnits Align = CGM.getNaturalTypeAlignment(
2462       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2463       /* forPointeeType= */ true);
2464   return Address(Load, Align);
2465 }
2466 
2467 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2468   LValueBaseInfo PointeeBaseInfo;
2469   TBAAAccessInfo PointeeTBAAInfo;
2470   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2471                                             &PointeeTBAAInfo);
2472   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2473                         PointeeBaseInfo, PointeeTBAAInfo);
2474 }
2475 
2476 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2477                                            const PointerType *PtrTy,
2478                                            LValueBaseInfo *BaseInfo,
2479                                            TBAAAccessInfo *TBAAInfo) {
2480   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2481   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2482                                                    BaseInfo, TBAAInfo,
2483                                                    /*forPointeeType=*/true));
2484 }
2485 
2486 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2487                                                 const PointerType *PtrTy) {
2488   LValueBaseInfo BaseInfo;
2489   TBAAAccessInfo TBAAInfo;
2490   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2491   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2492 }
2493 
2494 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2495                                       const Expr *E, const VarDecl *VD) {
2496   QualType T = E->getType();
2497 
2498   // If it's thread_local, emit a call to its wrapper function instead.
2499   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2500       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2501     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2502   // Check if the variable is marked as declare target with link clause in
2503   // device codegen.
2504   if (CGF.getLangOpts().OpenMPIsDevice) {
2505     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2506     if (Addr.isValid())
2507       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2508   }
2509 
2510   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2511   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2512   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2513   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2514   Address Addr(V, Alignment);
2515   // Emit reference to the private copy of the variable if it is an OpenMP
2516   // threadprivate variable.
2517   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2518       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2519     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2520                                           E->getExprLoc());
2521   }
2522   LValue LV = VD->getType()->isReferenceType() ?
2523       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2524                                     AlignmentSource::Decl) :
2525       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2526   setObjCGCLValueClass(CGF.getContext(), E, LV);
2527   return LV;
2528 }
2529 
2530 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2531                                                GlobalDecl GD) {
2532   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2533   if (FD->hasAttr<WeakRefAttr>()) {
2534     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2535     return aliasee.getPointer();
2536   }
2537 
2538   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2539   if (!FD->hasPrototype()) {
2540     if (const FunctionProtoType *Proto =
2541             FD->getType()->getAs<FunctionProtoType>()) {
2542       // Ugly case: for a K&R-style definition, the type of the definition
2543       // isn't the same as the type of a use.  Correct for this with a
2544       // bitcast.
2545       QualType NoProtoType =
2546           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2547       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2548       V = llvm::ConstantExpr::getBitCast(V,
2549                                       CGM.getTypes().ConvertType(NoProtoType));
2550     }
2551   }
2552   return V;
2553 }
2554 
2555 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2556                                      GlobalDecl GD) {
2557   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2558   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2559   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2560   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2561                             AlignmentSource::Decl);
2562 }
2563 
2564 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2565                                       llvm::Value *ThisValue) {
2566   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2567   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2568   return CGF.EmitLValueForField(LV, FD);
2569 }
2570 
2571 /// Named Registers are named metadata pointing to the register name
2572 /// which will be read from/written to as an argument to the intrinsic
2573 /// @llvm.read/write_register.
2574 /// So far, only the name is being passed down, but other options such as
2575 /// register type, allocation type or even optimization options could be
2576 /// passed down via the metadata node.
2577 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2578   SmallString<64> Name("llvm.named.register.");
2579   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2580   assert(Asm->getLabel().size() < 64-Name.size() &&
2581       "Register name too big");
2582   Name.append(Asm->getLabel());
2583   llvm::NamedMDNode *M =
2584     CGM.getModule().getOrInsertNamedMetadata(Name);
2585   if (M->getNumOperands() == 0) {
2586     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2587                                               Asm->getLabel());
2588     llvm::Metadata *Ops[] = {Str};
2589     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2590   }
2591 
2592   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2593 
2594   llvm::Value *Ptr =
2595     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2596   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2597 }
2598 
2599 /// Determine whether we can emit a reference to \p VD from the current
2600 /// context, despite not necessarily having seen an odr-use of the variable in
2601 /// this context.
2602 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2603                                                const DeclRefExpr *E,
2604                                                const VarDecl *VD,
2605                                                bool IsConstant) {
2606   // For a variable declared in an enclosing scope, do not emit a spurious
2607   // reference even if we have a capture, as that will emit an unwarranted
2608   // reference to our capture state, and will likely generate worse code than
2609   // emitting a local copy.
2610   if (E->refersToEnclosingVariableOrCapture())
2611     return false;
2612 
2613   // For a local declaration declared in this function, we can always reference
2614   // it even if we don't have an odr-use.
2615   if (VD->hasLocalStorage()) {
2616     return VD->getDeclContext() ==
2617            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2618   }
2619 
2620   // For a global declaration, we can emit a reference to it if we know
2621   // for sure that we are able to emit a definition of it.
2622   VD = VD->getDefinition(CGF.getContext());
2623   if (!VD)
2624     return false;
2625 
2626   // Don't emit a spurious reference if it might be to a variable that only
2627   // exists on a different device / target.
2628   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2629   // cross-target reference.
2630   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2631       CGF.getLangOpts().OpenCL) {
2632     return false;
2633   }
2634 
2635   // We can emit a spurious reference only if the linkage implies that we'll
2636   // be emitting a non-interposable symbol that will be retained until link
2637   // time.
2638   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2639   case llvm::GlobalValue::ExternalLinkage:
2640   case llvm::GlobalValue::LinkOnceODRLinkage:
2641   case llvm::GlobalValue::WeakODRLinkage:
2642   case llvm::GlobalValue::InternalLinkage:
2643   case llvm::GlobalValue::PrivateLinkage:
2644     return true;
2645   default:
2646     return false;
2647   }
2648 }
2649 
2650 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2651   const NamedDecl *ND = E->getDecl();
2652   QualType T = E->getType();
2653 
2654   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2655          "should not emit an unevaluated operand");
2656 
2657   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2658     // Global Named registers access via intrinsics only
2659     if (VD->getStorageClass() == SC_Register &&
2660         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2661       return EmitGlobalNamedRegister(VD, CGM);
2662 
2663     // If this DeclRefExpr does not constitute an odr-use of the variable,
2664     // we're not permitted to emit a reference to it in general, and it might
2665     // not be captured if capture would be necessary for a use. Emit the
2666     // constant value directly instead.
2667     if (E->isNonOdrUse() == NOUR_Constant &&
2668         (VD->getType()->isReferenceType() ||
2669          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2670       VD->getAnyInitializer(VD);
2671       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2672           E->getLocation(), *VD->evaluateValue(), VD->getType());
2673       assert(Val && "failed to emit constant expression");
2674 
2675       Address Addr = Address::invalid();
2676       if (!VD->getType()->isReferenceType()) {
2677         // Spill the constant value to a global.
2678         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2679                                            getContext().getDeclAlign(VD));
2680         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2681         auto *PTy = llvm::PointerType::get(
2682             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2683         if (PTy != Addr.getType())
2684           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2685       } else {
2686         // Should we be using the alignment of the constant pointer we emitted?
2687         CharUnits Alignment =
2688             CGM.getNaturalTypeAlignment(E->getType(),
2689                                         /* BaseInfo= */ nullptr,
2690                                         /* TBAAInfo= */ nullptr,
2691                                         /* forPointeeType= */ true);
2692         Addr = Address(Val, Alignment);
2693       }
2694       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2695     }
2696 
2697     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2698 
2699     // Check for captured variables.
2700     if (E->refersToEnclosingVariableOrCapture()) {
2701       VD = VD->getCanonicalDecl();
2702       if (auto *FD = LambdaCaptureFields.lookup(VD))
2703         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2704       if (CapturedStmtInfo) {
2705         auto I = LocalDeclMap.find(VD);
2706         if (I != LocalDeclMap.end()) {
2707           LValue CapLVal;
2708           if (VD->getType()->isReferenceType())
2709             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2710                                                 AlignmentSource::Decl);
2711           else
2712             CapLVal = MakeAddrLValue(I->second, T);
2713           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2714           // in simd context.
2715           if (getLangOpts().OpenMP &&
2716               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2717             CapLVal.setNontemporal(/*Value=*/true);
2718           return CapLVal;
2719         }
2720         LValue CapLVal =
2721             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2722                                     CapturedStmtInfo->getContextValue());
2723         CapLVal = MakeAddrLValue(
2724             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2725             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2726             CapLVal.getTBAAInfo());
2727         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2728         // in simd context.
2729         if (getLangOpts().OpenMP &&
2730             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2731           CapLVal.setNontemporal(/*Value=*/true);
2732         return CapLVal;
2733       }
2734 
2735       assert(isa<BlockDecl>(CurCodeDecl));
2736       Address addr = GetAddrOfBlockDecl(VD);
2737       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2738     }
2739   }
2740 
2741   // FIXME: We should be able to assert this for FunctionDecls as well!
2742   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2743   // those with a valid source location.
2744   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2745           !E->getLocation().isValid()) &&
2746          "Should not use decl without marking it used!");
2747 
2748   if (ND->hasAttr<WeakRefAttr>()) {
2749     const auto *VD = cast<ValueDecl>(ND);
2750     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2751     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2752   }
2753 
2754   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2755     // Check if this is a global variable.
2756     if (VD->hasLinkage() || VD->isStaticDataMember())
2757       return EmitGlobalVarDeclLValue(*this, E, VD);
2758 
2759     Address addr = Address::invalid();
2760 
2761     // The variable should generally be present in the local decl map.
2762     auto iter = LocalDeclMap.find(VD);
2763     if (iter != LocalDeclMap.end()) {
2764       addr = iter->second;
2765 
2766     // Otherwise, it might be static local we haven't emitted yet for
2767     // some reason; most likely, because it's in an outer function.
2768     } else if (VD->isStaticLocal()) {
2769       addr = Address(CGM.getOrCreateStaticVarDecl(
2770           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2771                      getContext().getDeclAlign(VD));
2772 
2773     // No other cases for now.
2774     } else {
2775       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2776     }
2777 
2778 
2779     // Check for OpenMP threadprivate variables.
2780     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2781         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2782       return EmitThreadPrivateVarDeclLValue(
2783           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2784           E->getExprLoc());
2785     }
2786 
2787     // Drill into block byref variables.
2788     bool isBlockByref = VD->isEscapingByref();
2789     if (isBlockByref) {
2790       addr = emitBlockByrefAddress(addr, VD);
2791     }
2792 
2793     // Drill into reference types.
2794     LValue LV = VD->getType()->isReferenceType() ?
2795         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2796         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2797 
2798     bool isLocalStorage = VD->hasLocalStorage();
2799 
2800     bool NonGCable = isLocalStorage &&
2801                      !VD->getType()->isReferenceType() &&
2802                      !isBlockByref;
2803     if (NonGCable) {
2804       LV.getQuals().removeObjCGCAttr();
2805       LV.setNonGC(true);
2806     }
2807 
2808     bool isImpreciseLifetime =
2809       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2810     if (isImpreciseLifetime)
2811       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2812     setObjCGCLValueClass(getContext(), E, LV);
2813     return LV;
2814   }
2815 
2816   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2817     return EmitFunctionDeclLValue(*this, E, FD);
2818 
2819   // FIXME: While we're emitting a binding from an enclosing scope, all other
2820   // DeclRefExprs we see should be implicitly treated as if they also refer to
2821   // an enclosing scope.
2822   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2823     return EmitLValue(BD->getBinding());
2824 
2825   // We can form DeclRefExprs naming GUID declarations when reconstituting
2826   // non-type template parameters into expressions.
2827   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2828     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2829                           AlignmentSource::Decl);
2830 
2831   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2832     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2833                           AlignmentSource::Decl);
2834 
2835   llvm_unreachable("Unhandled DeclRefExpr");
2836 }
2837 
2838 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2839   // __extension__ doesn't affect lvalue-ness.
2840   if (E->getOpcode() == UO_Extension)
2841     return EmitLValue(E->getSubExpr());
2842 
2843   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2844   switch (E->getOpcode()) {
2845   default: llvm_unreachable("Unknown unary operator lvalue!");
2846   case UO_Deref: {
2847     QualType T = E->getSubExpr()->getType()->getPointeeType();
2848     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2849 
2850     LValueBaseInfo BaseInfo;
2851     TBAAAccessInfo TBAAInfo;
2852     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2853                                             &TBAAInfo);
2854     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2855     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2856 
2857     // We should not generate __weak write barrier on indirect reference
2858     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2859     // But, we continue to generate __strong write barrier on indirect write
2860     // into a pointer to object.
2861     if (getLangOpts().ObjC &&
2862         getLangOpts().getGC() != LangOptions::NonGC &&
2863         LV.isObjCWeak())
2864       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2865     return LV;
2866   }
2867   case UO_Real:
2868   case UO_Imag: {
2869     LValue LV = EmitLValue(E->getSubExpr());
2870     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2871 
2872     // __real is valid on scalars.  This is a faster way of testing that.
2873     // __imag can only produce an rvalue on scalars.
2874     if (E->getOpcode() == UO_Real &&
2875         !LV.getAddress(*this).getElementType()->isStructTy()) {
2876       assert(E->getSubExpr()->getType()->isArithmeticType());
2877       return LV;
2878     }
2879 
2880     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2881 
2882     Address Component =
2883         (E->getOpcode() == UO_Real
2884              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2885              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2886     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2887                                    CGM.getTBAAInfoForSubobject(LV, T));
2888     ElemLV.getQuals().addQualifiers(LV.getQuals());
2889     return ElemLV;
2890   }
2891   case UO_PreInc:
2892   case UO_PreDec: {
2893     LValue LV = EmitLValue(E->getSubExpr());
2894     bool isInc = E->getOpcode() == UO_PreInc;
2895 
2896     if (E->getType()->isAnyComplexType())
2897       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2898     else
2899       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2900     return LV;
2901   }
2902   }
2903 }
2904 
2905 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2906   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2907                         E->getType(), AlignmentSource::Decl);
2908 }
2909 
2910 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2911   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2912                         E->getType(), AlignmentSource::Decl);
2913 }
2914 
2915 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2916   auto SL = E->getFunctionName();
2917   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2918   StringRef FnName = CurFn->getName();
2919   if (FnName.startswith("\01"))
2920     FnName = FnName.substr(1);
2921   StringRef NameItems[] = {
2922       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2923   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2924   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2925     std::string Name = std::string(SL->getString());
2926     if (!Name.empty()) {
2927       unsigned Discriminator =
2928           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2929       if (Discriminator)
2930         Name += "_" + Twine(Discriminator + 1).str();
2931       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2932       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2933     } else {
2934       auto C =
2935           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2936       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2937     }
2938   }
2939   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2940   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2941 }
2942 
2943 /// Emit a type description suitable for use by a runtime sanitizer library. The
2944 /// format of a type descriptor is
2945 ///
2946 /// \code
2947 ///   { i16 TypeKind, i16 TypeInfo }
2948 /// \endcode
2949 ///
2950 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2951 /// integer, 1 for a floating point value, and -1 for anything else.
2952 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2953   // Only emit each type's descriptor once.
2954   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2955     return C;
2956 
2957   uint16_t TypeKind = -1;
2958   uint16_t TypeInfo = 0;
2959 
2960   if (T->isIntegerType()) {
2961     TypeKind = 0;
2962     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2963                (T->isSignedIntegerType() ? 1 : 0);
2964   } else if (T->isFloatingType()) {
2965     TypeKind = 1;
2966     TypeInfo = getContext().getTypeSize(T);
2967   }
2968 
2969   // Format the type name as if for a diagnostic, including quotes and
2970   // optionally an 'aka'.
2971   SmallString<32> Buffer;
2972   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2973                                     (intptr_t)T.getAsOpaquePtr(),
2974                                     StringRef(), StringRef(), None, Buffer,
2975                                     None);
2976 
2977   llvm::Constant *Components[] = {
2978     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2979     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2980   };
2981   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2982 
2983   auto *GV = new llvm::GlobalVariable(
2984       CGM.getModule(), Descriptor->getType(),
2985       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2986   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2987   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2988 
2989   // Remember the descriptor for this type.
2990   CGM.setTypeDescriptorInMap(T, GV);
2991 
2992   return GV;
2993 }
2994 
2995 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2996   llvm::Type *TargetTy = IntPtrTy;
2997 
2998   if (V->getType() == TargetTy)
2999     return V;
3000 
3001   // Floating-point types which fit into intptr_t are bitcast to integers
3002   // and then passed directly (after zero-extension, if necessary).
3003   if (V->getType()->isFloatingPointTy()) {
3004     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3005     if (Bits <= TargetTy->getIntegerBitWidth())
3006       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3007                                                          Bits));
3008   }
3009 
3010   // Integers which fit in intptr_t are zero-extended and passed directly.
3011   if (V->getType()->isIntegerTy() &&
3012       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3013     return Builder.CreateZExt(V, TargetTy);
3014 
3015   // Pointers are passed directly, everything else is passed by address.
3016   if (!V->getType()->isPointerTy()) {
3017     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3018     Builder.CreateStore(V, Ptr);
3019     V = Ptr.getPointer();
3020   }
3021   return Builder.CreatePtrToInt(V, TargetTy);
3022 }
3023 
3024 /// Emit a representation of a SourceLocation for passing to a handler
3025 /// in a sanitizer runtime library. The format for this data is:
3026 /// \code
3027 ///   struct SourceLocation {
3028 ///     const char *Filename;
3029 ///     int32_t Line, Column;
3030 ///   };
3031 /// \endcode
3032 /// For an invalid SourceLocation, the Filename pointer is null.
3033 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3034   llvm::Constant *Filename;
3035   int Line, Column;
3036 
3037   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3038   if (PLoc.isValid()) {
3039     StringRef FilenameString = PLoc.getFilename();
3040 
3041     int PathComponentsToStrip =
3042         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3043     if (PathComponentsToStrip < 0) {
3044       assert(PathComponentsToStrip != INT_MIN);
3045       int PathComponentsToKeep = -PathComponentsToStrip;
3046       auto I = llvm::sys::path::rbegin(FilenameString);
3047       auto E = llvm::sys::path::rend(FilenameString);
3048       while (I != E && --PathComponentsToKeep)
3049         ++I;
3050 
3051       FilenameString = FilenameString.substr(I - E);
3052     } else if (PathComponentsToStrip > 0) {
3053       auto I = llvm::sys::path::begin(FilenameString);
3054       auto E = llvm::sys::path::end(FilenameString);
3055       while (I != E && PathComponentsToStrip--)
3056         ++I;
3057 
3058       if (I != E)
3059         FilenameString =
3060             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3061       else
3062         FilenameString = llvm::sys::path::filename(FilenameString);
3063     }
3064 
3065     auto FilenameGV =
3066         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3067     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3068                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3069     Filename = FilenameGV.getPointer();
3070     Line = PLoc.getLine();
3071     Column = PLoc.getColumn();
3072   } else {
3073     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3074     Line = Column = 0;
3075   }
3076 
3077   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3078                             Builder.getInt32(Column)};
3079 
3080   return llvm::ConstantStruct::getAnon(Data);
3081 }
3082 
3083 namespace {
3084 /// Specify under what conditions this check can be recovered
3085 enum class CheckRecoverableKind {
3086   /// Always terminate program execution if this check fails.
3087   Unrecoverable,
3088   /// Check supports recovering, runtime has both fatal (noreturn) and
3089   /// non-fatal handlers for this check.
3090   Recoverable,
3091   /// Runtime conditionally aborts, always need to support recovery.
3092   AlwaysRecoverable
3093 };
3094 }
3095 
3096 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3097   assert(Kind.countPopulation() == 1);
3098   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3099     return CheckRecoverableKind::AlwaysRecoverable;
3100   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3101     return CheckRecoverableKind::Unrecoverable;
3102   else
3103     return CheckRecoverableKind::Recoverable;
3104 }
3105 
3106 namespace {
3107 struct SanitizerHandlerInfo {
3108   char const *const Name;
3109   unsigned Version;
3110 };
3111 }
3112 
3113 const SanitizerHandlerInfo SanitizerHandlers[] = {
3114 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3115     LIST_SANITIZER_CHECKS
3116 #undef SANITIZER_CHECK
3117 };
3118 
3119 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3120                                  llvm::FunctionType *FnType,
3121                                  ArrayRef<llvm::Value *> FnArgs,
3122                                  SanitizerHandler CheckHandler,
3123                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3124                                  llvm::BasicBlock *ContBB) {
3125   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3126   Optional<ApplyDebugLocation> DL;
3127   if (!CGF.Builder.getCurrentDebugLocation()) {
3128     // Ensure that the call has at least an artificial debug location.
3129     DL.emplace(CGF, SourceLocation());
3130   }
3131   bool NeedsAbortSuffix =
3132       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3133   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3134   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3135   const StringRef CheckName = CheckInfo.Name;
3136   std::string FnName = "__ubsan_handle_" + CheckName.str();
3137   if (CheckInfo.Version && !MinimalRuntime)
3138     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3139   if (MinimalRuntime)
3140     FnName += "_minimal";
3141   if (NeedsAbortSuffix)
3142     FnName += "_abort";
3143   bool MayReturn =
3144       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3145 
3146   llvm::AttrBuilder B;
3147   if (!MayReturn) {
3148     B.addAttribute(llvm::Attribute::NoReturn)
3149         .addAttribute(llvm::Attribute::NoUnwind);
3150   }
3151   B.addAttribute(llvm::Attribute::UWTable);
3152 
3153   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3154       FnType, FnName,
3155       llvm::AttributeList::get(CGF.getLLVMContext(),
3156                                llvm::AttributeList::FunctionIndex, B),
3157       /*Local=*/true);
3158   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3159   if (!MayReturn) {
3160     HandlerCall->setDoesNotReturn();
3161     CGF.Builder.CreateUnreachable();
3162   } else {
3163     CGF.Builder.CreateBr(ContBB);
3164   }
3165 }
3166 
3167 void CodeGenFunction::EmitCheck(
3168     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3169     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3170     ArrayRef<llvm::Value *> DynamicArgs) {
3171   assert(IsSanitizerScope);
3172   assert(Checked.size() > 0);
3173   assert(CheckHandler >= 0 &&
3174          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3175   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3176 
3177   llvm::Value *FatalCond = nullptr;
3178   llvm::Value *RecoverableCond = nullptr;
3179   llvm::Value *TrapCond = nullptr;
3180   for (int i = 0, n = Checked.size(); i < n; ++i) {
3181     llvm::Value *Check = Checked[i].first;
3182     // -fsanitize-trap= overrides -fsanitize-recover=.
3183     llvm::Value *&Cond =
3184         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3185             ? TrapCond
3186             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3187                   ? RecoverableCond
3188                   : FatalCond;
3189     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3190   }
3191 
3192   if (TrapCond)
3193     EmitTrapCheck(TrapCond);
3194   if (!FatalCond && !RecoverableCond)
3195     return;
3196 
3197   llvm::Value *JointCond;
3198   if (FatalCond && RecoverableCond)
3199     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3200   else
3201     JointCond = FatalCond ? FatalCond : RecoverableCond;
3202   assert(JointCond);
3203 
3204   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3205   assert(SanOpts.has(Checked[0].second));
3206 #ifndef NDEBUG
3207   for (int i = 1, n = Checked.size(); i < n; ++i) {
3208     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3209            "All recoverable kinds in a single check must be same!");
3210     assert(SanOpts.has(Checked[i].second));
3211   }
3212 #endif
3213 
3214   llvm::BasicBlock *Cont = createBasicBlock("cont");
3215   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3216   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3217   // Give hint that we very much don't expect to execute the handler
3218   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3219   llvm::MDBuilder MDHelper(getLLVMContext());
3220   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3221   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3222   EmitBlock(Handlers);
3223 
3224   // Handler functions take an i8* pointing to the (handler-specific) static
3225   // information block, followed by a sequence of intptr_t arguments
3226   // representing operand values.
3227   SmallVector<llvm::Value *, 4> Args;
3228   SmallVector<llvm::Type *, 4> ArgTypes;
3229   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3230     Args.reserve(DynamicArgs.size() + 1);
3231     ArgTypes.reserve(DynamicArgs.size() + 1);
3232 
3233     // Emit handler arguments and create handler function type.
3234     if (!StaticArgs.empty()) {
3235       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3236       auto *InfoPtr =
3237           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3238                                    llvm::GlobalVariable::PrivateLinkage, Info);
3239       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3240       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3241       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3242       ArgTypes.push_back(Int8PtrTy);
3243     }
3244 
3245     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3246       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3247       ArgTypes.push_back(IntPtrTy);
3248     }
3249   }
3250 
3251   llvm::FunctionType *FnType =
3252     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3253 
3254   if (!FatalCond || !RecoverableCond) {
3255     // Simple case: we need to generate a single handler call, either
3256     // fatal, or non-fatal.
3257     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3258                          (FatalCond != nullptr), Cont);
3259   } else {
3260     // Emit two handler calls: first one for set of unrecoverable checks,
3261     // another one for recoverable.
3262     llvm::BasicBlock *NonFatalHandlerBB =
3263         createBasicBlock("non_fatal." + CheckName);
3264     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3265     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3266     EmitBlock(FatalHandlerBB);
3267     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3268                          NonFatalHandlerBB);
3269     EmitBlock(NonFatalHandlerBB);
3270     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3271                          Cont);
3272   }
3273 
3274   EmitBlock(Cont);
3275 }
3276 
3277 void CodeGenFunction::EmitCfiSlowPathCheck(
3278     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3279     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3280   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3281 
3282   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3283   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3284 
3285   llvm::MDBuilder MDHelper(getLLVMContext());
3286   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3287   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3288 
3289   EmitBlock(CheckBB);
3290 
3291   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3292 
3293   llvm::CallInst *CheckCall;
3294   llvm::FunctionCallee SlowPathFn;
3295   if (WithDiag) {
3296     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3297     auto *InfoPtr =
3298         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3299                                  llvm::GlobalVariable::PrivateLinkage, Info);
3300     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3301     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3302 
3303     SlowPathFn = CGM.getModule().getOrInsertFunction(
3304         "__cfi_slowpath_diag",
3305         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3306                                 false));
3307     CheckCall = Builder.CreateCall(
3308         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3309   } else {
3310     SlowPathFn = CGM.getModule().getOrInsertFunction(
3311         "__cfi_slowpath",
3312         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3313     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3314   }
3315 
3316   CGM.setDSOLocal(
3317       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3318   CheckCall->setDoesNotThrow();
3319 
3320   EmitBlock(Cont);
3321 }
3322 
3323 // Emit a stub for __cfi_check function so that the linker knows about this
3324 // symbol in LTO mode.
3325 void CodeGenFunction::EmitCfiCheckStub() {
3326   llvm::Module *M = &CGM.getModule();
3327   auto &Ctx = M->getContext();
3328   llvm::Function *F = llvm::Function::Create(
3329       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3330       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3331   CGM.setDSOLocal(F);
3332   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3333   // FIXME: consider emitting an intrinsic call like
3334   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3335   // which can be lowered in CrossDSOCFI pass to the actual contents of
3336   // __cfi_check. This would allow inlining of __cfi_check calls.
3337   llvm::CallInst::Create(
3338       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3339   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3340 }
3341 
3342 // This function is basically a switch over the CFI failure kind, which is
3343 // extracted from CFICheckFailData (1st function argument). Each case is either
3344 // llvm.trap or a call to one of the two runtime handlers, based on
3345 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3346 // failure kind) traps, but this should really never happen.  CFICheckFailData
3347 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3348 // check kind; in this case __cfi_check_fail traps as well.
3349 void CodeGenFunction::EmitCfiCheckFail() {
3350   SanitizerScope SanScope(this);
3351   FunctionArgList Args;
3352   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3353                             ImplicitParamDecl::Other);
3354   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3355                             ImplicitParamDecl::Other);
3356   Args.push_back(&ArgData);
3357   Args.push_back(&ArgAddr);
3358 
3359   const CGFunctionInfo &FI =
3360     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3361 
3362   llvm::Function *F = llvm::Function::Create(
3363       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3364       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3365 
3366   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3367   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3368   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3369 
3370   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3371                 SourceLocation());
3372 
3373   // This function should not be affected by blacklist. This function does
3374   // not have a source location, but "src:*" would still apply. Revert any
3375   // changes to SanOpts made in StartFunction.
3376   SanOpts = CGM.getLangOpts().Sanitize;
3377 
3378   llvm::Value *Data =
3379       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3380                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3381   llvm::Value *Addr =
3382       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3383                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3384 
3385   // Data == nullptr means the calling module has trap behaviour for this check.
3386   llvm::Value *DataIsNotNullPtr =
3387       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3388   EmitTrapCheck(DataIsNotNullPtr);
3389 
3390   llvm::StructType *SourceLocationTy =
3391       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3392   llvm::StructType *CfiCheckFailDataTy =
3393       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3394 
3395   llvm::Value *V = Builder.CreateConstGEP2_32(
3396       CfiCheckFailDataTy,
3397       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3398       0);
3399   Address CheckKindAddr(V, getIntAlign());
3400   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3401 
3402   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3403       CGM.getLLVMContext(),
3404       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3405   llvm::Value *ValidVtable = Builder.CreateZExt(
3406       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3407                          {Addr, AllVtables}),
3408       IntPtrTy);
3409 
3410   const std::pair<int, SanitizerMask> CheckKinds[] = {
3411       {CFITCK_VCall, SanitizerKind::CFIVCall},
3412       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3413       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3414       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3415       {CFITCK_ICall, SanitizerKind::CFIICall}};
3416 
3417   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3418   for (auto CheckKindMaskPair : CheckKinds) {
3419     int Kind = CheckKindMaskPair.first;
3420     SanitizerMask Mask = CheckKindMaskPair.second;
3421     llvm::Value *Cond =
3422         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3423     if (CGM.getLangOpts().Sanitize.has(Mask))
3424       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3425                 {Data, Addr, ValidVtable});
3426     else
3427       EmitTrapCheck(Cond);
3428   }
3429 
3430   FinishFunction();
3431   // The only reference to this function will be created during LTO link.
3432   // Make sure it survives until then.
3433   CGM.addUsedGlobal(F);
3434 }
3435 
3436 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3437   if (SanOpts.has(SanitizerKind::Unreachable)) {
3438     SanitizerScope SanScope(this);
3439     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3440                              SanitizerKind::Unreachable),
3441               SanitizerHandler::BuiltinUnreachable,
3442               EmitCheckSourceLocation(Loc), None);
3443   }
3444   Builder.CreateUnreachable();
3445 }
3446 
3447 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3448   llvm::BasicBlock *Cont = createBasicBlock("cont");
3449 
3450   // If we're optimizing, collapse all calls to trap down to just one per
3451   // function to save on code size.
3452   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3453     TrapBB = createBasicBlock("trap");
3454     Builder.CreateCondBr(Checked, Cont, TrapBB);
3455     EmitBlock(TrapBB);
3456     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3457     TrapCall->setDoesNotReturn();
3458     TrapCall->setDoesNotThrow();
3459     Builder.CreateUnreachable();
3460   } else {
3461     Builder.CreateCondBr(Checked, Cont, TrapBB);
3462   }
3463 
3464   EmitBlock(Cont);
3465 }
3466 
3467 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3468   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3469 
3470   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3471     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3472                                   CGM.getCodeGenOpts().TrapFuncName);
3473     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3474   }
3475 
3476   return TrapCall;
3477 }
3478 
3479 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3480                                                  LValueBaseInfo *BaseInfo,
3481                                                  TBAAAccessInfo *TBAAInfo) {
3482   assert(E->getType()->isArrayType() &&
3483          "Array to pointer decay must have array source type!");
3484 
3485   // Expressions of array type can't be bitfields or vector elements.
3486   LValue LV = EmitLValue(E);
3487   Address Addr = LV.getAddress(*this);
3488 
3489   // If the array type was an incomplete type, we need to make sure
3490   // the decay ends up being the right type.
3491   llvm::Type *NewTy = ConvertType(E->getType());
3492   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3493 
3494   // Note that VLA pointers are always decayed, so we don't need to do
3495   // anything here.
3496   if (!E->getType()->isVariableArrayType()) {
3497     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3498            "Expected pointer to array");
3499     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3500   }
3501 
3502   // The result of this decay conversion points to an array element within the
3503   // base lvalue. However, since TBAA currently does not support representing
3504   // accesses to elements of member arrays, we conservatively represent accesses
3505   // to the pointee object as if it had no any base lvalue specified.
3506   // TODO: Support TBAA for member arrays.
3507   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3508   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3509   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3510 
3511   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3512 }
3513 
3514 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3515 /// array to pointer, return the array subexpression.
3516 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3517   // If this isn't just an array->pointer decay, bail out.
3518   const auto *CE = dyn_cast<CastExpr>(E);
3519   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3520     return nullptr;
3521 
3522   // If this is a decay from variable width array, bail out.
3523   const Expr *SubExpr = CE->getSubExpr();
3524   if (SubExpr->getType()->isVariableArrayType())
3525     return nullptr;
3526 
3527   return SubExpr;
3528 }
3529 
3530 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3531                                           llvm::Value *ptr,
3532                                           ArrayRef<llvm::Value*> indices,
3533                                           bool inbounds,
3534                                           bool signedIndices,
3535                                           SourceLocation loc,
3536                                     const llvm::Twine &name = "arrayidx") {
3537   if (inbounds) {
3538     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3539                                       CodeGenFunction::NotSubtraction, loc,
3540                                       name);
3541   } else {
3542     return CGF.Builder.CreateGEP(ptr, indices, name);
3543   }
3544 }
3545 
3546 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3547                                       llvm::Value *idx,
3548                                       CharUnits eltSize) {
3549   // If we have a constant index, we can use the exact offset of the
3550   // element we're accessing.
3551   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3552     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3553     return arrayAlign.alignmentAtOffset(offset);
3554 
3555   // Otherwise, use the worst-case alignment for any element.
3556   } else {
3557     return arrayAlign.alignmentOfArrayElement(eltSize);
3558   }
3559 }
3560 
3561 static QualType getFixedSizeElementType(const ASTContext &ctx,
3562                                         const VariableArrayType *vla) {
3563   QualType eltType;
3564   do {
3565     eltType = vla->getElementType();
3566   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3567   return eltType;
3568 }
3569 
3570 /// Given an array base, check whether its member access belongs to a record
3571 /// with preserve_access_index attribute or not.
3572 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3573   if (!ArrayBase || !CGF.getDebugInfo())
3574     return false;
3575 
3576   // Only support base as either a MemberExpr or DeclRefExpr.
3577   // DeclRefExpr to cover cases like:
3578   //    struct s { int a; int b[10]; };
3579   //    struct s *p;
3580   //    p[1].a
3581   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3582   // p->b[5] is a MemberExpr example.
3583   const Expr *E = ArrayBase->IgnoreImpCasts();
3584   if (const auto *ME = dyn_cast<MemberExpr>(E))
3585     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3586 
3587   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3588     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3589     if (!VarDef)
3590       return false;
3591 
3592     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3593     if (!PtrT)
3594       return false;
3595 
3596     const auto *PointeeT = PtrT->getPointeeType()
3597                              ->getUnqualifiedDesugaredType();
3598     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3599       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3600     return false;
3601   }
3602 
3603   return false;
3604 }
3605 
3606 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3607                                      ArrayRef<llvm::Value *> indices,
3608                                      QualType eltType, bool inbounds,
3609                                      bool signedIndices, SourceLocation loc,
3610                                      QualType *arrayType = nullptr,
3611                                      const Expr *Base = nullptr,
3612                                      const llvm::Twine &name = "arrayidx") {
3613   // All the indices except that last must be zero.
3614 #ifndef NDEBUG
3615   for (auto idx : indices.drop_back())
3616     assert(isa<llvm::ConstantInt>(idx) &&
3617            cast<llvm::ConstantInt>(idx)->isZero());
3618 #endif
3619 
3620   // Determine the element size of the statically-sized base.  This is
3621   // the thing that the indices are expressed in terms of.
3622   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3623     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3624   }
3625 
3626   // We can use that to compute the best alignment of the element.
3627   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3628   CharUnits eltAlign =
3629     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3630 
3631   llvm::Value *eltPtr;
3632   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3633   if (!LastIndex ||
3634       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3635     eltPtr = emitArraySubscriptGEP(
3636         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3637         loc, name);
3638   } else {
3639     // Remember the original array subscript for bpf target
3640     unsigned idx = LastIndex->getZExtValue();
3641     llvm::DIType *DbgInfo = nullptr;
3642     if (arrayType)
3643       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3644     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3645                                                         addr.getPointer(),
3646                                                         indices.size() - 1,
3647                                                         idx, DbgInfo);
3648   }
3649 
3650   return Address(eltPtr, eltAlign);
3651 }
3652 
3653 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3654                                                bool Accessed) {
3655   // The index must always be an integer, which is not an aggregate.  Emit it
3656   // in lexical order (this complexity is, sadly, required by C++17).
3657   llvm::Value *IdxPre =
3658       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3659   bool SignedIndices = false;
3660   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3661     auto *Idx = IdxPre;
3662     if (E->getLHS() != E->getIdx()) {
3663       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3664       Idx = EmitScalarExpr(E->getIdx());
3665     }
3666 
3667     QualType IdxTy = E->getIdx()->getType();
3668     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3669     SignedIndices |= IdxSigned;
3670 
3671     if (SanOpts.has(SanitizerKind::ArrayBounds))
3672       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3673 
3674     // Extend or truncate the index type to 32 or 64-bits.
3675     if (Promote && Idx->getType() != IntPtrTy)
3676       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3677 
3678     return Idx;
3679   };
3680   IdxPre = nullptr;
3681 
3682   // If the base is a vector type, then we are forming a vector element lvalue
3683   // with this subscript.
3684   if (E->getBase()->getType()->isVectorType() &&
3685       !isa<ExtVectorElementExpr>(E->getBase())) {
3686     // Emit the vector as an lvalue to get its address.
3687     LValue LHS = EmitLValue(E->getBase());
3688     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3689     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3690     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3691                                  E->getBase()->getType(), LHS.getBaseInfo(),
3692                                  TBAAAccessInfo());
3693   }
3694 
3695   // All the other cases basically behave like simple offsetting.
3696 
3697   // Handle the extvector case we ignored above.
3698   if (isa<ExtVectorElementExpr>(E->getBase())) {
3699     LValue LV = EmitLValue(E->getBase());
3700     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3701     Address Addr = EmitExtVectorElementLValue(LV);
3702 
3703     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3704     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3705                                  SignedIndices, E->getExprLoc());
3706     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3707                           CGM.getTBAAInfoForSubobject(LV, EltType));
3708   }
3709 
3710   LValueBaseInfo EltBaseInfo;
3711   TBAAAccessInfo EltTBAAInfo;
3712   Address Addr = Address::invalid();
3713   if (const VariableArrayType *vla =
3714            getContext().getAsVariableArrayType(E->getType())) {
3715     // The base must be a pointer, which is not an aggregate.  Emit
3716     // it.  It needs to be emitted first in case it's what captures
3717     // the VLA bounds.
3718     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3719     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3720 
3721     // The element count here is the total number of non-VLA elements.
3722     llvm::Value *numElements = getVLASize(vla).NumElts;
3723 
3724     // Effectively, the multiply by the VLA size is part of the GEP.
3725     // GEP indexes are signed, and scaling an index isn't permitted to
3726     // signed-overflow, so we use the same semantics for our explicit
3727     // multiply.  We suppress this if overflow is not undefined behavior.
3728     if (getLangOpts().isSignedOverflowDefined()) {
3729       Idx = Builder.CreateMul(Idx, numElements);
3730     } else {
3731       Idx = Builder.CreateNSWMul(Idx, numElements);
3732     }
3733 
3734     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3735                                  !getLangOpts().isSignedOverflowDefined(),
3736                                  SignedIndices, E->getExprLoc());
3737 
3738   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3739     // Indexing over an interface, as in "NSString *P; P[4];"
3740 
3741     // Emit the base pointer.
3742     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3743     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3744 
3745     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3746     llvm::Value *InterfaceSizeVal =
3747         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3748 
3749     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3750 
3751     // We don't necessarily build correct LLVM struct types for ObjC
3752     // interfaces, so we can't rely on GEP to do this scaling
3753     // correctly, so we need to cast to i8*.  FIXME: is this actually
3754     // true?  A lot of other things in the fragile ABI would break...
3755     llvm::Type *OrigBaseTy = Addr.getType();
3756     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3757 
3758     // Do the GEP.
3759     CharUnits EltAlign =
3760       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3761     llvm::Value *EltPtr =
3762         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3763                               SignedIndices, E->getExprLoc());
3764     Addr = Address(EltPtr, EltAlign);
3765 
3766     // Cast back.
3767     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3768   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3769     // If this is A[i] where A is an array, the frontend will have decayed the
3770     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3771     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3772     // "gep x, i" here.  Emit one "gep A, 0, i".
3773     assert(Array->getType()->isArrayType() &&
3774            "Array to pointer decay must have array source type!");
3775     LValue ArrayLV;
3776     // For simple multidimensional array indexing, set the 'accessed' flag for
3777     // better bounds-checking of the base expression.
3778     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3779       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3780     else
3781       ArrayLV = EmitLValue(Array);
3782     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3783 
3784     // Propagate the alignment from the array itself to the result.
3785     QualType arrayType = Array->getType();
3786     Addr = emitArraySubscriptGEP(
3787         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3788         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3789         E->getExprLoc(), &arrayType, E->getBase());
3790     EltBaseInfo = ArrayLV.getBaseInfo();
3791     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3792   } else {
3793     // The base must be a pointer; emit it with an estimate of its alignment.
3794     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3795     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3796     QualType ptrType = E->getBase()->getType();
3797     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3798                                  !getLangOpts().isSignedOverflowDefined(),
3799                                  SignedIndices, E->getExprLoc(), &ptrType,
3800                                  E->getBase());
3801   }
3802 
3803   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3804 
3805   if (getLangOpts().ObjC &&
3806       getLangOpts().getGC() != LangOptions::NonGC) {
3807     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3808     setObjCGCLValueClass(getContext(), E, LV);
3809   }
3810   return LV;
3811 }
3812 
3813 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3814   assert(
3815       !E->isIncomplete() &&
3816       "incomplete matrix subscript expressions should be rejected during Sema");
3817   LValue Base = EmitLValue(E->getBase());
3818   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3819   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3820   llvm::Value *NumRows = Builder.getIntN(
3821       RowIdx->getType()->getScalarSizeInBits(),
3822       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
3823   llvm::Value *FinalIdx =
3824       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3825   return LValue::MakeMatrixElt(
3826       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3827       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3828 }
3829 
3830 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3831                                        LValueBaseInfo &BaseInfo,
3832                                        TBAAAccessInfo &TBAAInfo,
3833                                        QualType BaseTy, QualType ElTy,
3834                                        bool IsLowerBound) {
3835   LValue BaseLVal;
3836   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3837     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3838     if (BaseTy->isArrayType()) {
3839       Address Addr = BaseLVal.getAddress(CGF);
3840       BaseInfo = BaseLVal.getBaseInfo();
3841 
3842       // If the array type was an incomplete type, we need to make sure
3843       // the decay ends up being the right type.
3844       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3845       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3846 
3847       // Note that VLA pointers are always decayed, so we don't need to do
3848       // anything here.
3849       if (!BaseTy->isVariableArrayType()) {
3850         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3851                "Expected pointer to array");
3852         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3853       }
3854 
3855       return CGF.Builder.CreateElementBitCast(Addr,
3856                                               CGF.ConvertTypeForMem(ElTy));
3857     }
3858     LValueBaseInfo TypeBaseInfo;
3859     TBAAAccessInfo TypeTBAAInfo;
3860     CharUnits Align =
3861         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3862     BaseInfo.mergeForCast(TypeBaseInfo);
3863     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3864     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3865   }
3866   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3867 }
3868 
3869 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3870                                                 bool IsLowerBound) {
3871   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3872   QualType ResultExprTy;
3873   if (auto *AT = getContext().getAsArrayType(BaseTy))
3874     ResultExprTy = AT->getElementType();
3875   else
3876     ResultExprTy = BaseTy->getPointeeType();
3877   llvm::Value *Idx = nullptr;
3878   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3879     // Requesting lower bound or upper bound, but without provided length and
3880     // without ':' symbol for the default length -> length = 1.
3881     // Idx = LowerBound ?: 0;
3882     if (auto *LowerBound = E->getLowerBound()) {
3883       Idx = Builder.CreateIntCast(
3884           EmitScalarExpr(LowerBound), IntPtrTy,
3885           LowerBound->getType()->hasSignedIntegerRepresentation());
3886     } else
3887       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3888   } else {
3889     // Try to emit length or lower bound as constant. If this is possible, 1
3890     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3891     // IR (LB + Len) - 1.
3892     auto &C = CGM.getContext();
3893     auto *Length = E->getLength();
3894     llvm::APSInt ConstLength;
3895     if (Length) {
3896       // Idx = LowerBound + Length - 1;
3897       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3898         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3899         Length = nullptr;
3900       }
3901       auto *LowerBound = E->getLowerBound();
3902       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3903       if (LowerBound) {
3904         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3905           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3906           LowerBound = nullptr;
3907         }
3908       }
3909       if (!Length)
3910         --ConstLength;
3911       else if (!LowerBound)
3912         --ConstLowerBound;
3913 
3914       if (Length || LowerBound) {
3915         auto *LowerBoundVal =
3916             LowerBound
3917                 ? Builder.CreateIntCast(
3918                       EmitScalarExpr(LowerBound), IntPtrTy,
3919                       LowerBound->getType()->hasSignedIntegerRepresentation())
3920                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3921         auto *LengthVal =
3922             Length
3923                 ? Builder.CreateIntCast(
3924                       EmitScalarExpr(Length), IntPtrTy,
3925                       Length->getType()->hasSignedIntegerRepresentation())
3926                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3927         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3928                                 /*HasNUW=*/false,
3929                                 !getLangOpts().isSignedOverflowDefined());
3930         if (Length && LowerBound) {
3931           Idx = Builder.CreateSub(
3932               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3933               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3934         }
3935       } else
3936         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3937     } else {
3938       // Idx = ArraySize - 1;
3939       QualType ArrayTy = BaseTy->isPointerType()
3940                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3941                              : BaseTy;
3942       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3943         Length = VAT->getSizeExpr();
3944         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3945           ConstLength = *L;
3946           Length = nullptr;
3947         }
3948       } else {
3949         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3950         ConstLength = CAT->getSize();
3951       }
3952       if (Length) {
3953         auto *LengthVal = Builder.CreateIntCast(
3954             EmitScalarExpr(Length), IntPtrTy,
3955             Length->getType()->hasSignedIntegerRepresentation());
3956         Idx = Builder.CreateSub(
3957             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3958             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3959       } else {
3960         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3961         --ConstLength;
3962         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3963       }
3964     }
3965   }
3966   assert(Idx);
3967 
3968   Address EltPtr = Address::invalid();
3969   LValueBaseInfo BaseInfo;
3970   TBAAAccessInfo TBAAInfo;
3971   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3972     // The base must be a pointer, which is not an aggregate.  Emit
3973     // it.  It needs to be emitted first in case it's what captures
3974     // the VLA bounds.
3975     Address Base =
3976         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3977                                 BaseTy, VLA->getElementType(), IsLowerBound);
3978     // The element count here is the total number of non-VLA elements.
3979     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3980 
3981     // Effectively, the multiply by the VLA size is part of the GEP.
3982     // GEP indexes are signed, and scaling an index isn't permitted to
3983     // signed-overflow, so we use the same semantics for our explicit
3984     // multiply.  We suppress this if overflow is not undefined behavior.
3985     if (getLangOpts().isSignedOverflowDefined())
3986       Idx = Builder.CreateMul(Idx, NumElements);
3987     else
3988       Idx = Builder.CreateNSWMul(Idx, NumElements);
3989     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3990                                    !getLangOpts().isSignedOverflowDefined(),
3991                                    /*signedIndices=*/false, E->getExprLoc());
3992   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3993     // If this is A[i] where A is an array, the frontend will have decayed the
3994     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3995     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3996     // "gep x, i" here.  Emit one "gep A, 0, i".
3997     assert(Array->getType()->isArrayType() &&
3998            "Array to pointer decay must have array source type!");
3999     LValue ArrayLV;
4000     // For simple multidimensional array indexing, set the 'accessed' flag for
4001     // better bounds-checking of the base expression.
4002     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4003       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4004     else
4005       ArrayLV = EmitLValue(Array);
4006 
4007     // Propagate the alignment from the array itself to the result.
4008     EltPtr = emitArraySubscriptGEP(
4009         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4010         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4011         /*signedIndices=*/false, E->getExprLoc());
4012     BaseInfo = ArrayLV.getBaseInfo();
4013     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4014   } else {
4015     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4016                                            TBAAInfo, BaseTy, ResultExprTy,
4017                                            IsLowerBound);
4018     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4019                                    !getLangOpts().isSignedOverflowDefined(),
4020                                    /*signedIndices=*/false, E->getExprLoc());
4021   }
4022 
4023   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4024 }
4025 
4026 LValue CodeGenFunction::
4027 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4028   // Emit the base vector as an l-value.
4029   LValue Base;
4030 
4031   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4032   if (E->isArrow()) {
4033     // If it is a pointer to a vector, emit the address and form an lvalue with
4034     // it.
4035     LValueBaseInfo BaseInfo;
4036     TBAAAccessInfo TBAAInfo;
4037     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4038     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4039     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4040     Base.getQuals().removeObjCGCAttr();
4041   } else if (E->getBase()->isGLValue()) {
4042     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4043     // emit the base as an lvalue.
4044     assert(E->getBase()->getType()->isVectorType());
4045     Base = EmitLValue(E->getBase());
4046   } else {
4047     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4048     assert(E->getBase()->getType()->isVectorType() &&
4049            "Result must be a vector");
4050     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4051 
4052     // Store the vector to memory (because LValue wants an address).
4053     Address VecMem = CreateMemTemp(E->getBase()->getType());
4054     Builder.CreateStore(Vec, VecMem);
4055     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4056                           AlignmentSource::Decl);
4057   }
4058 
4059   QualType type =
4060     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4061 
4062   // Encode the element access list into a vector of unsigned indices.
4063   SmallVector<uint32_t, 4> Indices;
4064   E->getEncodedElementAccess(Indices);
4065 
4066   if (Base.isSimple()) {
4067     llvm::Constant *CV =
4068         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4069     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4070                                     Base.getBaseInfo(), TBAAAccessInfo());
4071   }
4072   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4073 
4074   llvm::Constant *BaseElts = Base.getExtVectorElts();
4075   SmallVector<llvm::Constant *, 4> CElts;
4076 
4077   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4078     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4079   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4080   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4081                                   Base.getBaseInfo(), TBAAAccessInfo());
4082 }
4083 
4084 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4085   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4086     EmitIgnoredExpr(E->getBase());
4087     return EmitDeclRefLValue(DRE);
4088   }
4089 
4090   Expr *BaseExpr = E->getBase();
4091   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4092   LValue BaseLV;
4093   if (E->isArrow()) {
4094     LValueBaseInfo BaseInfo;
4095     TBAAAccessInfo TBAAInfo;
4096     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4097     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4098     SanitizerSet SkippedChecks;
4099     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4100     if (IsBaseCXXThis)
4101       SkippedChecks.set(SanitizerKind::Alignment, true);
4102     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4103       SkippedChecks.set(SanitizerKind::Null, true);
4104     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4105                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4106     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4107   } else
4108     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4109 
4110   NamedDecl *ND = E->getMemberDecl();
4111   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4112     LValue LV = EmitLValueForField(BaseLV, Field);
4113     setObjCGCLValueClass(getContext(), E, LV);
4114     if (getLangOpts().OpenMP) {
4115       // If the member was explicitly marked as nontemporal, mark it as
4116       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4117       // to children as nontemporal too.
4118       if ((IsWrappedCXXThis(BaseExpr) &&
4119            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4120           BaseLV.isNontemporal())
4121         LV.setNontemporal(/*Value=*/true);
4122     }
4123     return LV;
4124   }
4125 
4126   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4127     return EmitFunctionDeclLValue(*this, E, FD);
4128 
4129   llvm_unreachable("Unhandled member declaration!");
4130 }
4131 
4132 /// Given that we are currently emitting a lambda, emit an l-value for
4133 /// one of its members.
4134 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4135   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4136   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4137   QualType LambdaTagType =
4138     getContext().getTagDeclType(Field->getParent());
4139   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4140   return EmitLValueForField(LambdaLV, Field);
4141 }
4142 
4143 /// Get the field index in the debug info. The debug info structure/union
4144 /// will ignore the unnamed bitfields.
4145 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4146                                              unsigned FieldIndex) {
4147   unsigned I = 0, Skipped = 0;
4148 
4149   for (auto F : Rec->getDefinition()->fields()) {
4150     if (I == FieldIndex)
4151       break;
4152     if (F->isUnnamedBitfield())
4153       Skipped++;
4154     I++;
4155   }
4156 
4157   return FieldIndex - Skipped;
4158 }
4159 
4160 /// Get the address of a zero-sized field within a record. The resulting
4161 /// address doesn't necessarily have the right type.
4162 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4163                                        const FieldDecl *Field) {
4164   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4165       CGF.getContext().getFieldOffset(Field));
4166   if (Offset.isZero())
4167     return Base;
4168   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4169   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4170 }
4171 
4172 /// Drill down to the storage of a field without walking into
4173 /// reference types.
4174 ///
4175 /// The resulting address doesn't necessarily have the right type.
4176 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4177                                       const FieldDecl *field) {
4178   if (field->isZeroSize(CGF.getContext()))
4179     return emitAddrOfZeroSizeField(CGF, base, field);
4180 
4181   const RecordDecl *rec = field->getParent();
4182 
4183   unsigned idx =
4184     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4185 
4186   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4187 }
4188 
4189 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4190                                         Address addr, const FieldDecl *field) {
4191   const RecordDecl *rec = field->getParent();
4192   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4193       base.getType(), rec->getLocation());
4194 
4195   unsigned idx =
4196       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4197 
4198   return CGF.Builder.CreatePreserveStructAccessIndex(
4199       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4200 }
4201 
4202 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4203   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4204   if (!RD)
4205     return false;
4206 
4207   if (RD->isDynamicClass())
4208     return true;
4209 
4210   for (const auto &Base : RD->bases())
4211     if (hasAnyVptr(Base.getType(), Context))
4212       return true;
4213 
4214   for (const FieldDecl *Field : RD->fields())
4215     if (hasAnyVptr(Field->getType(), Context))
4216       return true;
4217 
4218   return false;
4219 }
4220 
4221 LValue CodeGenFunction::EmitLValueForField(LValue base,
4222                                            const FieldDecl *field) {
4223   LValueBaseInfo BaseInfo = base.getBaseInfo();
4224 
4225   if (field->isBitField()) {
4226     const CGRecordLayout &RL =
4227         CGM.getTypes().getCGRecordLayout(field->getParent());
4228     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4229     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4230                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4231                              Info.VolatileStorageSize != 0 &&
4232                              field->getType()
4233                                  .withCVRQualifiers(base.getVRQualifiers())
4234                                  .isVolatileQualified();
4235     Address Addr = base.getAddress(*this);
4236     unsigned Idx = RL.getLLVMFieldNo(field);
4237     const RecordDecl *rec = field->getParent();
4238     if (!UseVolatile) {
4239       if (!IsInPreservedAIRegion &&
4240           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4241         if (Idx != 0)
4242           // For structs, we GEP to the field that the record layout suggests.
4243           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4244       } else {
4245         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4246             getContext().getRecordType(rec), rec->getLocation());
4247         Addr = Builder.CreatePreserveStructAccessIndex(
4248             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4249             DbgInfo);
4250       }
4251     }
4252     const unsigned SS =
4253         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4254     // Get the access type.
4255     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4256     if (Addr.getElementType() != FieldIntTy)
4257       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4258     if (UseVolatile) {
4259       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4260       if (VolatileOffset)
4261         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4262     }
4263 
4264     QualType fieldType =
4265         field->getType().withCVRQualifiers(base.getVRQualifiers());
4266     // TODO: Support TBAA for bit fields.
4267     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4268     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4269                                 TBAAAccessInfo());
4270   }
4271 
4272   // Fields of may-alias structures are may-alias themselves.
4273   // FIXME: this should get propagated down through anonymous structs
4274   // and unions.
4275   QualType FieldType = field->getType();
4276   const RecordDecl *rec = field->getParent();
4277   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4278   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4279   TBAAAccessInfo FieldTBAAInfo;
4280   if (base.getTBAAInfo().isMayAlias() ||
4281           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4282     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4283   } else if (rec->isUnion()) {
4284     // TODO: Support TBAA for unions.
4285     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4286   } else {
4287     // If no base type been assigned for the base access, then try to generate
4288     // one for this base lvalue.
4289     FieldTBAAInfo = base.getTBAAInfo();
4290     if (!FieldTBAAInfo.BaseType) {
4291         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4292         assert(!FieldTBAAInfo.Offset &&
4293                "Nonzero offset for an access with no base type!");
4294     }
4295 
4296     // Adjust offset to be relative to the base type.
4297     const ASTRecordLayout &Layout =
4298         getContext().getASTRecordLayout(field->getParent());
4299     unsigned CharWidth = getContext().getCharWidth();
4300     if (FieldTBAAInfo.BaseType)
4301       FieldTBAAInfo.Offset +=
4302           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4303 
4304     // Update the final access type and size.
4305     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4306     FieldTBAAInfo.Size =
4307         getContext().getTypeSizeInChars(FieldType).getQuantity();
4308   }
4309 
4310   Address addr = base.getAddress(*this);
4311   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4312     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4313         ClassDef->isDynamicClass()) {
4314       // Getting to any field of dynamic object requires stripping dynamic
4315       // information provided by invariant.group.  This is because accessing
4316       // fields may leak the real address of dynamic object, which could result
4317       // in miscompilation when leaked pointer would be compared.
4318       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4319       addr = Address(stripped, addr.getAlignment());
4320     }
4321   }
4322 
4323   unsigned RecordCVR = base.getVRQualifiers();
4324   if (rec->isUnion()) {
4325     // For unions, there is no pointer adjustment.
4326     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4327         hasAnyVptr(FieldType, getContext()))
4328       // Because unions can easily skip invariant.barriers, we need to add
4329       // a barrier every time CXXRecord field with vptr is referenced.
4330       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4331                      addr.getAlignment());
4332 
4333     if (IsInPreservedAIRegion ||
4334         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4335       // Remember the original union field index
4336       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4337           rec->getLocation());
4338       addr = Address(
4339           Builder.CreatePreserveUnionAccessIndex(
4340               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4341           addr.getAlignment());
4342     }
4343 
4344     if (FieldType->isReferenceType())
4345       addr = Builder.CreateElementBitCast(
4346           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4347   } else {
4348     if (!IsInPreservedAIRegion &&
4349         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4350       // For structs, we GEP to the field that the record layout suggests.
4351       addr = emitAddrOfFieldStorage(*this, addr, field);
4352     else
4353       // Remember the original struct field index
4354       addr = emitPreserveStructAccess(*this, base, addr, field);
4355   }
4356 
4357   // If this is a reference field, load the reference right now.
4358   if (FieldType->isReferenceType()) {
4359     LValue RefLVal =
4360         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4361     if (RecordCVR & Qualifiers::Volatile)
4362       RefLVal.getQuals().addVolatile();
4363     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4364 
4365     // Qualifiers on the struct don't apply to the referencee.
4366     RecordCVR = 0;
4367     FieldType = FieldType->getPointeeType();
4368   }
4369 
4370   // Make sure that the address is pointing to the right type.  This is critical
4371   // for both unions and structs.  A union needs a bitcast, a struct element
4372   // will need a bitcast if the LLVM type laid out doesn't match the desired
4373   // type.
4374   addr = Builder.CreateElementBitCast(
4375       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4376 
4377   if (field->hasAttr<AnnotateAttr>())
4378     addr = EmitFieldAnnotations(field, addr);
4379 
4380   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4381   LV.getQuals().addCVRQualifiers(RecordCVR);
4382 
4383   // __weak attribute on a field is ignored.
4384   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4385     LV.getQuals().removeObjCGCAttr();
4386 
4387   return LV;
4388 }
4389 
4390 LValue
4391 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4392                                                   const FieldDecl *Field) {
4393   QualType FieldType = Field->getType();
4394 
4395   if (!FieldType->isReferenceType())
4396     return EmitLValueForField(Base, Field);
4397 
4398   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4399 
4400   // Make sure that the address is pointing to the right type.
4401   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4402   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4403 
4404   // TODO: Generate TBAA information that describes this access as a structure
4405   // member access and not just an access to an object of the field's type. This
4406   // should be similar to what we do in EmitLValueForField().
4407   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4408   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4409   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4410   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4411                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4412 }
4413 
4414 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4415   if (E->isFileScope()) {
4416     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4417     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4418   }
4419   if (E->getType()->isVariablyModifiedType())
4420     // make sure to emit the VLA size.
4421     EmitVariablyModifiedType(E->getType());
4422 
4423   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4424   const Expr *InitExpr = E->getInitializer();
4425   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4426 
4427   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4428                    /*Init*/ true);
4429 
4430   // Block-scope compound literals are destroyed at the end of the enclosing
4431   // scope in C.
4432   if (!getLangOpts().CPlusPlus)
4433     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4434       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4435                                   E->getType(), getDestroyer(DtorKind),
4436                                   DtorKind & EHCleanup);
4437 
4438   return Result;
4439 }
4440 
4441 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4442   if (!E->isGLValue())
4443     // Initializing an aggregate temporary in C++11: T{...}.
4444     return EmitAggExprToLValue(E);
4445 
4446   // An lvalue initializer list must be initializing a reference.
4447   assert(E->isTransparent() && "non-transparent glvalue init list");
4448   return EmitLValue(E->getInit(0));
4449 }
4450 
4451 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4452 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4453 /// LValue is returned and the current block has been terminated.
4454 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4455                                                     const Expr *Operand) {
4456   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4457     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4458     return None;
4459   }
4460 
4461   return CGF.EmitLValue(Operand);
4462 }
4463 
4464 LValue CodeGenFunction::
4465 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4466   if (!expr->isGLValue()) {
4467     // ?: here should be an aggregate.
4468     assert(hasAggregateEvaluationKind(expr->getType()) &&
4469            "Unexpected conditional operator!");
4470     return EmitAggExprToLValue(expr);
4471   }
4472 
4473   OpaqueValueMapping binding(*this, expr);
4474 
4475   const Expr *condExpr = expr->getCond();
4476   bool CondExprBool;
4477   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4478     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4479     if (!CondExprBool) std::swap(live, dead);
4480 
4481     if (!ContainsLabel(dead)) {
4482       // If the true case is live, we need to track its region.
4483       if (CondExprBool)
4484         incrementProfileCounter(expr);
4485       // If a throw expression we emit it and return an undefined lvalue
4486       // because it can't be used.
4487       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4488         EmitCXXThrowExpr(ThrowExpr);
4489         llvm::Type *Ty =
4490             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4491         return MakeAddrLValue(
4492             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4493             dead->getType());
4494       }
4495       return EmitLValue(live);
4496     }
4497   }
4498 
4499   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4500   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4501   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4502 
4503   ConditionalEvaluation eval(*this);
4504   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4505 
4506   // Any temporaries created here are conditional.
4507   EmitBlock(lhsBlock);
4508   incrementProfileCounter(expr);
4509   eval.begin(*this);
4510   Optional<LValue> lhs =
4511       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4512   eval.end(*this);
4513 
4514   if (lhs && !lhs->isSimple())
4515     return EmitUnsupportedLValue(expr, "conditional operator");
4516 
4517   lhsBlock = Builder.GetInsertBlock();
4518   if (lhs)
4519     Builder.CreateBr(contBlock);
4520 
4521   // Any temporaries created here are conditional.
4522   EmitBlock(rhsBlock);
4523   eval.begin(*this);
4524   Optional<LValue> rhs =
4525       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4526   eval.end(*this);
4527   if (rhs && !rhs->isSimple())
4528     return EmitUnsupportedLValue(expr, "conditional operator");
4529   rhsBlock = Builder.GetInsertBlock();
4530 
4531   EmitBlock(contBlock);
4532 
4533   if (lhs && rhs) {
4534     llvm::PHINode *phi =
4535         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4536     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4537     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4538     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4539     AlignmentSource alignSource =
4540       std::max(lhs->getBaseInfo().getAlignmentSource(),
4541                rhs->getBaseInfo().getAlignmentSource());
4542     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4543         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4544     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4545                           TBAAInfo);
4546   } else {
4547     assert((lhs || rhs) &&
4548            "both operands of glvalue conditional are throw-expressions?");
4549     return lhs ? *lhs : *rhs;
4550   }
4551 }
4552 
4553 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4554 /// type. If the cast is to a reference, we can have the usual lvalue result,
4555 /// otherwise if a cast is needed by the code generator in an lvalue context,
4556 /// then it must mean that we need the address of an aggregate in order to
4557 /// access one of its members.  This can happen for all the reasons that casts
4558 /// are permitted with aggregate result, including noop aggregate casts, and
4559 /// cast from scalar to union.
4560 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4561   switch (E->getCastKind()) {
4562   case CK_ToVoid:
4563   case CK_BitCast:
4564   case CK_LValueToRValueBitCast:
4565   case CK_ArrayToPointerDecay:
4566   case CK_FunctionToPointerDecay:
4567   case CK_NullToMemberPointer:
4568   case CK_NullToPointer:
4569   case CK_IntegralToPointer:
4570   case CK_PointerToIntegral:
4571   case CK_PointerToBoolean:
4572   case CK_VectorSplat:
4573   case CK_IntegralCast:
4574   case CK_BooleanToSignedIntegral:
4575   case CK_IntegralToBoolean:
4576   case CK_IntegralToFloating:
4577   case CK_FloatingToIntegral:
4578   case CK_FloatingToBoolean:
4579   case CK_FloatingCast:
4580   case CK_FloatingRealToComplex:
4581   case CK_FloatingComplexToReal:
4582   case CK_FloatingComplexToBoolean:
4583   case CK_FloatingComplexCast:
4584   case CK_FloatingComplexToIntegralComplex:
4585   case CK_IntegralRealToComplex:
4586   case CK_IntegralComplexToReal:
4587   case CK_IntegralComplexToBoolean:
4588   case CK_IntegralComplexCast:
4589   case CK_IntegralComplexToFloatingComplex:
4590   case CK_DerivedToBaseMemberPointer:
4591   case CK_BaseToDerivedMemberPointer:
4592   case CK_MemberPointerToBoolean:
4593   case CK_ReinterpretMemberPointer:
4594   case CK_AnyPointerToBlockPointerCast:
4595   case CK_ARCProduceObject:
4596   case CK_ARCConsumeObject:
4597   case CK_ARCReclaimReturnedObject:
4598   case CK_ARCExtendBlockObject:
4599   case CK_CopyAndAutoreleaseBlockObject:
4600   case CK_IntToOCLSampler:
4601   case CK_FloatingToFixedPoint:
4602   case CK_FixedPointToFloating:
4603   case CK_FixedPointCast:
4604   case CK_FixedPointToBoolean:
4605   case CK_FixedPointToIntegral:
4606   case CK_IntegralToFixedPoint:
4607     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4608 
4609   case CK_Dependent:
4610     llvm_unreachable("dependent cast kind in IR gen!");
4611 
4612   case CK_BuiltinFnToFnPtr:
4613     llvm_unreachable("builtin functions are handled elsewhere");
4614 
4615   // These are never l-values; just use the aggregate emission code.
4616   case CK_NonAtomicToAtomic:
4617   case CK_AtomicToNonAtomic:
4618     return EmitAggExprToLValue(E);
4619 
4620   case CK_Dynamic: {
4621     LValue LV = EmitLValue(E->getSubExpr());
4622     Address V = LV.getAddress(*this);
4623     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4624     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4625   }
4626 
4627   case CK_ConstructorConversion:
4628   case CK_UserDefinedConversion:
4629   case CK_CPointerToObjCPointerCast:
4630   case CK_BlockPointerToObjCPointerCast:
4631   case CK_NoOp:
4632   case CK_LValueToRValue:
4633     return EmitLValue(E->getSubExpr());
4634 
4635   case CK_UncheckedDerivedToBase:
4636   case CK_DerivedToBase: {
4637     const auto *DerivedClassTy =
4638         E->getSubExpr()->getType()->castAs<RecordType>();
4639     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4640 
4641     LValue LV = EmitLValue(E->getSubExpr());
4642     Address This = LV.getAddress(*this);
4643 
4644     // Perform the derived-to-base conversion
4645     Address Base = GetAddressOfBaseClass(
4646         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4647         /*NullCheckValue=*/false, E->getExprLoc());
4648 
4649     // TODO: Support accesses to members of base classes in TBAA. For now, we
4650     // conservatively pretend that the complete object is of the base class
4651     // type.
4652     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4653                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4654   }
4655   case CK_ToUnion:
4656     return EmitAggExprToLValue(E);
4657   case CK_BaseToDerived: {
4658     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4659     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4660 
4661     LValue LV = EmitLValue(E->getSubExpr());
4662 
4663     // Perform the base-to-derived conversion
4664     Address Derived = GetAddressOfDerivedClass(
4665         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4666         /*NullCheckValue=*/false);
4667 
4668     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4669     // performed and the object is not of the derived type.
4670     if (sanitizePerformTypeCheck())
4671       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4672                     Derived.getPointer(), E->getType());
4673 
4674     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4675       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4676                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4677                                 E->getBeginLoc());
4678 
4679     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4680                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4681   }
4682   case CK_LValueBitCast: {
4683     // This must be a reinterpret_cast (or c-style equivalent).
4684     const auto *CE = cast<ExplicitCastExpr>(E);
4685 
4686     CGM.EmitExplicitCastExprType(CE, this);
4687     LValue LV = EmitLValue(E->getSubExpr());
4688     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4689                                       ConvertType(CE->getTypeAsWritten()));
4690 
4691     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4692       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4693                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4694                                 E->getBeginLoc());
4695 
4696     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4697                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4698   }
4699   case CK_AddressSpaceConversion: {
4700     LValue LV = EmitLValue(E->getSubExpr());
4701     QualType DestTy = getContext().getPointerType(E->getType());
4702     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4703         *this, LV.getPointer(*this),
4704         E->getSubExpr()->getType().getAddressSpace(),
4705         E->getType().getAddressSpace(), ConvertType(DestTy));
4706     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4707                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4708   }
4709   case CK_ObjCObjectLValueCast: {
4710     LValue LV = EmitLValue(E->getSubExpr());
4711     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4712                                              ConvertType(E->getType()));
4713     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4714                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4715   }
4716   case CK_ZeroToOCLOpaqueType:
4717     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4718   }
4719 
4720   llvm_unreachable("Unhandled lvalue cast kind?");
4721 }
4722 
4723 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4724   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4725   return getOrCreateOpaqueLValueMapping(e);
4726 }
4727 
4728 LValue
4729 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4730   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4731 
4732   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4733       it = OpaqueLValues.find(e);
4734 
4735   if (it != OpaqueLValues.end())
4736     return it->second;
4737 
4738   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4739   return EmitLValue(e->getSourceExpr());
4740 }
4741 
4742 RValue
4743 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4744   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4745 
4746   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4747       it = OpaqueRValues.find(e);
4748 
4749   if (it != OpaqueRValues.end())
4750     return it->second;
4751 
4752   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4753   return EmitAnyExpr(e->getSourceExpr());
4754 }
4755 
4756 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4757                                            const FieldDecl *FD,
4758                                            SourceLocation Loc) {
4759   QualType FT = FD->getType();
4760   LValue FieldLV = EmitLValueForField(LV, FD);
4761   switch (getEvaluationKind(FT)) {
4762   case TEK_Complex:
4763     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4764   case TEK_Aggregate:
4765     return FieldLV.asAggregateRValue(*this);
4766   case TEK_Scalar:
4767     // This routine is used to load fields one-by-one to perform a copy, so
4768     // don't load reference fields.
4769     if (FD->getType()->isReferenceType())
4770       return RValue::get(FieldLV.getPointer(*this));
4771     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4772     // primitive load.
4773     if (FieldLV.isBitField())
4774       return EmitLoadOfLValue(FieldLV, Loc);
4775     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4776   }
4777   llvm_unreachable("bad evaluation kind");
4778 }
4779 
4780 //===--------------------------------------------------------------------===//
4781 //                             Expression Emission
4782 //===--------------------------------------------------------------------===//
4783 
4784 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4785                                      ReturnValueSlot ReturnValue) {
4786   // Builtins never have block type.
4787   if (E->getCallee()->getType()->isBlockPointerType())
4788     return EmitBlockCallExpr(E, ReturnValue);
4789 
4790   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4791     return EmitCXXMemberCallExpr(CE, ReturnValue);
4792 
4793   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4794     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4795 
4796   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4797     if (const CXXMethodDecl *MD =
4798           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4799       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4800 
4801   CGCallee callee = EmitCallee(E->getCallee());
4802 
4803   if (callee.isBuiltin()) {
4804     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4805                            E, ReturnValue);
4806   }
4807 
4808   if (callee.isPseudoDestructor()) {
4809     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4810   }
4811 
4812   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4813 }
4814 
4815 /// Emit a CallExpr without considering whether it might be a subclass.
4816 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4817                                            ReturnValueSlot ReturnValue) {
4818   CGCallee Callee = EmitCallee(E->getCallee());
4819   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4820 }
4821 
4822 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4823   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4824 
4825   if (auto builtinID = FD->getBuiltinID()) {
4826     // Replaceable builtin provide their own implementation of a builtin. Unless
4827     // we are in the builtin implementation itself, don't call the actual
4828     // builtin. If we are in the builtin implementation, avoid trivial infinite
4829     // recursion.
4830     if (!FD->isInlineBuiltinDeclaration() ||
4831         CGF.CurFn->getName() == FD->getName())
4832       return CGCallee::forBuiltin(builtinID, FD);
4833   }
4834 
4835   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4836   return CGCallee::forDirect(calleePtr, GD);
4837 }
4838 
4839 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4840   E = E->IgnoreParens();
4841 
4842   // Look through function-to-pointer decay.
4843   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4844     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4845         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4846       return EmitCallee(ICE->getSubExpr());
4847     }
4848 
4849   // Resolve direct calls.
4850   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4851     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4852       return EmitDirectCallee(*this, FD);
4853     }
4854   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4855     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4856       EmitIgnoredExpr(ME->getBase());
4857       return EmitDirectCallee(*this, FD);
4858     }
4859 
4860   // Look through template substitutions.
4861   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4862     return EmitCallee(NTTP->getReplacement());
4863 
4864   // Treat pseudo-destructor calls differently.
4865   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4866     return CGCallee::forPseudoDestructor(PDE);
4867   }
4868 
4869   // Otherwise, we have an indirect reference.
4870   llvm::Value *calleePtr;
4871   QualType functionType;
4872   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4873     calleePtr = EmitScalarExpr(E);
4874     functionType = ptrType->getPointeeType();
4875   } else {
4876     functionType = E->getType();
4877     calleePtr = EmitLValue(E).getPointer(*this);
4878   }
4879   assert(functionType->isFunctionType());
4880 
4881   GlobalDecl GD;
4882   if (const auto *VD =
4883           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4884     GD = GlobalDecl(VD);
4885 
4886   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4887   CGCallee callee(calleeInfo, calleePtr);
4888   return callee;
4889 }
4890 
4891 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4892   // Comma expressions just emit their LHS then their RHS as an l-value.
4893   if (E->getOpcode() == BO_Comma) {
4894     EmitIgnoredExpr(E->getLHS());
4895     EnsureInsertPoint();
4896     return EmitLValue(E->getRHS());
4897   }
4898 
4899   if (E->getOpcode() == BO_PtrMemD ||
4900       E->getOpcode() == BO_PtrMemI)
4901     return EmitPointerToDataMemberBinaryExpr(E);
4902 
4903   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4904 
4905   // Note that in all of these cases, __block variables need the RHS
4906   // evaluated first just in case the variable gets moved by the RHS.
4907 
4908   switch (getEvaluationKind(E->getType())) {
4909   case TEK_Scalar: {
4910     switch (E->getLHS()->getType().getObjCLifetime()) {
4911     case Qualifiers::OCL_Strong:
4912       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4913 
4914     case Qualifiers::OCL_Autoreleasing:
4915       return EmitARCStoreAutoreleasing(E).first;
4916 
4917     // No reason to do any of these differently.
4918     case Qualifiers::OCL_None:
4919     case Qualifiers::OCL_ExplicitNone:
4920     case Qualifiers::OCL_Weak:
4921       break;
4922     }
4923 
4924     RValue RV = EmitAnyExpr(E->getRHS());
4925     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4926     if (RV.isScalar())
4927       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4928     EmitStoreThroughLValue(RV, LV);
4929     if (getLangOpts().OpenMP)
4930       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4931                                                                 E->getLHS());
4932     return LV;
4933   }
4934 
4935   case TEK_Complex:
4936     return EmitComplexAssignmentLValue(E);
4937 
4938   case TEK_Aggregate:
4939     return EmitAggExprToLValue(E);
4940   }
4941   llvm_unreachable("bad evaluation kind");
4942 }
4943 
4944 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4945   RValue RV = EmitCallExpr(E);
4946 
4947   if (!RV.isScalar())
4948     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4949                           AlignmentSource::Decl);
4950 
4951   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4952          "Can't have a scalar return unless the return type is a "
4953          "reference type!");
4954 
4955   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4956 }
4957 
4958 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4959   // FIXME: This shouldn't require another copy.
4960   return EmitAggExprToLValue(E);
4961 }
4962 
4963 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4964   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4965          && "binding l-value to type which needs a temporary");
4966   AggValueSlot Slot = CreateAggTemp(E->getType());
4967   EmitCXXConstructExpr(E, Slot);
4968   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4969 }
4970 
4971 LValue
4972 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4973   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4974 }
4975 
4976 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4977   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4978                                       ConvertType(E->getType()));
4979 }
4980 
4981 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4982   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4983                         AlignmentSource::Decl);
4984 }
4985 
4986 LValue
4987 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4988   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4989   Slot.setExternallyDestructed();
4990   EmitAggExpr(E->getSubExpr(), Slot);
4991   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4992   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4993 }
4994 
4995 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4996   RValue RV = EmitObjCMessageExpr(E);
4997 
4998   if (!RV.isScalar())
4999     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5000                           AlignmentSource::Decl);
5001 
5002   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5003          "Can't have a scalar return unless the return type is a "
5004          "reference type!");
5005 
5006   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5007 }
5008 
5009 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5010   Address V =
5011     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5012   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5013 }
5014 
5015 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5016                                              const ObjCIvarDecl *Ivar) {
5017   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5018 }
5019 
5020 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5021                                           llvm::Value *BaseValue,
5022                                           const ObjCIvarDecl *Ivar,
5023                                           unsigned CVRQualifiers) {
5024   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5025                                                    Ivar, CVRQualifiers);
5026 }
5027 
5028 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5029   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5030   llvm::Value *BaseValue = nullptr;
5031   const Expr *BaseExpr = E->getBase();
5032   Qualifiers BaseQuals;
5033   QualType ObjectTy;
5034   if (E->isArrow()) {
5035     BaseValue = EmitScalarExpr(BaseExpr);
5036     ObjectTy = BaseExpr->getType()->getPointeeType();
5037     BaseQuals = ObjectTy.getQualifiers();
5038   } else {
5039     LValue BaseLV = EmitLValue(BaseExpr);
5040     BaseValue = BaseLV.getPointer(*this);
5041     ObjectTy = BaseExpr->getType();
5042     BaseQuals = ObjectTy.getQualifiers();
5043   }
5044 
5045   LValue LV =
5046     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5047                       BaseQuals.getCVRQualifiers());
5048   setObjCGCLValueClass(getContext(), E, LV);
5049   return LV;
5050 }
5051 
5052 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5053   // Can only get l-value for message expression returning aggregate type
5054   RValue RV = EmitAnyExprToTemp(E);
5055   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5056                         AlignmentSource::Decl);
5057 }
5058 
5059 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5060                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5061                                  llvm::Value *Chain) {
5062   // Get the actual function type. The callee type will always be a pointer to
5063   // function type or a block pointer type.
5064   assert(CalleeType->isFunctionPointerType() &&
5065          "Call must have function pointer type!");
5066 
5067   const Decl *TargetDecl =
5068       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5069 
5070   CalleeType = getContext().getCanonicalType(CalleeType);
5071 
5072   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5073 
5074   CGCallee Callee = OrigCallee;
5075 
5076   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5077       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5078     if (llvm::Constant *PrefixSig =
5079             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5080       SanitizerScope SanScope(this);
5081       // Remove any (C++17) exception specifications, to allow calling e.g. a
5082       // noexcept function through a non-noexcept pointer.
5083       auto ProtoTy =
5084         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5085       llvm::Constant *FTRTTIConst =
5086           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5087       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
5088       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5089           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5090 
5091       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5092 
5093       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5094           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5095       llvm::Value *CalleeSigPtr =
5096           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5097       llvm::Value *CalleeSig =
5098           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5099       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5100 
5101       llvm::BasicBlock *Cont = createBasicBlock("cont");
5102       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5103       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5104 
5105       EmitBlock(TypeCheck);
5106       llvm::Value *CalleeRTTIPtr =
5107           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5108       llvm::Value *CalleeRTTIEncoded =
5109           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5110       llvm::Value *CalleeRTTI =
5111           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5112       llvm::Value *CalleeRTTIMatch =
5113           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5114       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5115                                       EmitCheckTypeDescriptor(CalleeType)};
5116       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5117                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5118                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5119 
5120       Builder.CreateBr(Cont);
5121       EmitBlock(Cont);
5122     }
5123   }
5124 
5125   const auto *FnType = cast<FunctionType>(PointeeType);
5126 
5127   // If we are checking indirect calls and this call is indirect, check that the
5128   // function pointer is a member of the bit set for the function type.
5129   if (SanOpts.has(SanitizerKind::CFIICall) &&
5130       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5131     SanitizerScope SanScope(this);
5132     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5133 
5134     llvm::Metadata *MD;
5135     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5136       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5137     else
5138       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5139 
5140     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5141 
5142     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5143     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5144     llvm::Value *TypeTest = Builder.CreateCall(
5145         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5146 
5147     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5148     llvm::Constant *StaticData[] = {
5149         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5150         EmitCheckSourceLocation(E->getBeginLoc()),
5151         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5152     };
5153     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5154       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5155                            CastedCallee, StaticData);
5156     } else {
5157       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5158                 SanitizerHandler::CFICheckFail, StaticData,
5159                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5160     }
5161   }
5162 
5163   CallArgList Args;
5164   if (Chain)
5165     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5166              CGM.getContext().VoidPtrTy);
5167 
5168   // C++17 requires that we evaluate arguments to a call using assignment syntax
5169   // right-to-left, and that we evaluate arguments to certain other operators
5170   // left-to-right. Note that we allow this to override the order dictated by
5171   // the calling convention on the MS ABI, which means that parameter
5172   // destruction order is not necessarily reverse construction order.
5173   // FIXME: Revisit this based on C++ committee response to unimplementability.
5174   EvaluationOrder Order = EvaluationOrder::Default;
5175   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5176     if (OCE->isAssignmentOp())
5177       Order = EvaluationOrder::ForceRightToLeft;
5178     else {
5179       switch (OCE->getOperator()) {
5180       case OO_LessLess:
5181       case OO_GreaterGreater:
5182       case OO_AmpAmp:
5183       case OO_PipePipe:
5184       case OO_Comma:
5185       case OO_ArrowStar:
5186         Order = EvaluationOrder::ForceLeftToRight;
5187         break;
5188       default:
5189         break;
5190       }
5191     }
5192   }
5193 
5194   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5195                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5196 
5197   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5198       Args, FnType, /*ChainCall=*/Chain);
5199 
5200   // C99 6.5.2.2p6:
5201   //   If the expression that denotes the called function has a type
5202   //   that does not include a prototype, [the default argument
5203   //   promotions are performed]. If the number of arguments does not
5204   //   equal the number of parameters, the behavior is undefined. If
5205   //   the function is defined with a type that includes a prototype,
5206   //   and either the prototype ends with an ellipsis (, ...) or the
5207   //   types of the arguments after promotion are not compatible with
5208   //   the types of the parameters, the behavior is undefined. If the
5209   //   function is defined with a type that does not include a
5210   //   prototype, and the types of the arguments after promotion are
5211   //   not compatible with those of the parameters after promotion,
5212   //   the behavior is undefined [except in some trivial cases].
5213   // That is, in the general case, we should assume that a call
5214   // through an unprototyped function type works like a *non-variadic*
5215   // call.  The way we make this work is to cast to the exact type
5216   // of the promoted arguments.
5217   //
5218   // Chain calls use this same code path to add the invisible chain parameter
5219   // to the function type.
5220   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5221     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5222     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5223     CalleeTy = CalleeTy->getPointerTo(AS);
5224 
5225     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5226     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5227     Callee.setFunctionPointer(CalleePtr);
5228   }
5229 
5230   llvm::CallBase *CallOrInvoke = nullptr;
5231   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5232                          E->getExprLoc());
5233 
5234   // Generate function declaration DISuprogram in order to be used
5235   // in debug info about call sites.
5236   if (CGDebugInfo *DI = getDebugInfo()) {
5237     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5238       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5239                                   CalleeDecl);
5240   }
5241 
5242   return Call;
5243 }
5244 
5245 LValue CodeGenFunction::
5246 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5247   Address BaseAddr = Address::invalid();
5248   if (E->getOpcode() == BO_PtrMemI) {
5249     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5250   } else {
5251     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5252   }
5253 
5254   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5255   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5256 
5257   LValueBaseInfo BaseInfo;
5258   TBAAAccessInfo TBAAInfo;
5259   Address MemberAddr =
5260     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5261                                     &TBAAInfo);
5262 
5263   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5264 }
5265 
5266 /// Given the address of a temporary variable, produce an r-value of
5267 /// its type.
5268 RValue CodeGenFunction::convertTempToRValue(Address addr,
5269                                             QualType type,
5270                                             SourceLocation loc) {
5271   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5272   switch (getEvaluationKind(type)) {
5273   case TEK_Complex:
5274     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5275   case TEK_Aggregate:
5276     return lvalue.asAggregateRValue(*this);
5277   case TEK_Scalar:
5278     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5279   }
5280   llvm_unreachable("bad evaluation kind");
5281 }
5282 
5283 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5284   assert(Val->getType()->isFPOrFPVectorTy());
5285   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5286     return;
5287 
5288   llvm::MDBuilder MDHelper(getLLVMContext());
5289   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5290 
5291   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5292 }
5293 
5294 namespace {
5295   struct LValueOrRValue {
5296     LValue LV;
5297     RValue RV;
5298   };
5299 }
5300 
5301 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5302                                            const PseudoObjectExpr *E,
5303                                            bool forLValue,
5304                                            AggValueSlot slot) {
5305   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5306 
5307   // Find the result expression, if any.
5308   const Expr *resultExpr = E->getResultExpr();
5309   LValueOrRValue result;
5310 
5311   for (PseudoObjectExpr::const_semantics_iterator
5312          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5313     const Expr *semantic = *i;
5314 
5315     // If this semantic expression is an opaque value, bind it
5316     // to the result of its source expression.
5317     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5318       // Skip unique OVEs.
5319       if (ov->isUnique()) {
5320         assert(ov != resultExpr &&
5321                "A unique OVE cannot be used as the result expression");
5322         continue;
5323       }
5324 
5325       // If this is the result expression, we may need to evaluate
5326       // directly into the slot.
5327       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5328       OVMA opaqueData;
5329       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5330           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5331         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5332         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5333                                        AlignmentSource::Decl);
5334         opaqueData = OVMA::bind(CGF, ov, LV);
5335         result.RV = slot.asRValue();
5336 
5337       // Otherwise, emit as normal.
5338       } else {
5339         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5340 
5341         // If this is the result, also evaluate the result now.
5342         if (ov == resultExpr) {
5343           if (forLValue)
5344             result.LV = CGF.EmitLValue(ov);
5345           else
5346             result.RV = CGF.EmitAnyExpr(ov, slot);
5347         }
5348       }
5349 
5350       opaques.push_back(opaqueData);
5351 
5352     // Otherwise, if the expression is the result, evaluate it
5353     // and remember the result.
5354     } else if (semantic == resultExpr) {
5355       if (forLValue)
5356         result.LV = CGF.EmitLValue(semantic);
5357       else
5358         result.RV = CGF.EmitAnyExpr(semantic, slot);
5359 
5360     // Otherwise, evaluate the expression in an ignored context.
5361     } else {
5362       CGF.EmitIgnoredExpr(semantic);
5363     }
5364   }
5365 
5366   // Unbind all the opaques now.
5367   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5368     opaques[i].unbind(CGF);
5369 
5370   return result;
5371 }
5372 
5373 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5374                                                AggValueSlot slot) {
5375   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5376 }
5377 
5378 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5379   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5380 }
5381