1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getAsAlign());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getAsAlign());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getAsAlign());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->getSubExpr();
421 
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425 
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437 
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446 
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451 
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467 
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471 
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475 
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478 
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485 
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512 
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516 
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this with sanitizers which need
520       // more precise lifetime marks.
521       ConditionalEvaluation *OldConditional = nullptr;
522       CGBuilderTy::InsertPoint OldIP;
523       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
524           !SanOpts.has(SanitizerKind::HWAddress) &&
525           !SanOpts.has(SanitizerKind::Memory) &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529 
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535 
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542 
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549 
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556 
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570 
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress();
577       break;
578     }
579 
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588 
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591 
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer();
598 
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608 
609   return RValue::get(Value);
610 }
611 
612 
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620 
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632 
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637 
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645 
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652 
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks,
657                                     llvm::Value *ArraySize) {
658   if (!sanitizePerformTypeCheck())
659     return;
660 
661   // Don't check pointers outside the default address space. The null check
662   // isn't correct, the object-size check isn't supported by LLVM, and we can't
663   // communicate the addresses to the runtime handler for the vptr check.
664   if (Ptr->getType()->getPointerAddressSpace())
665     return;
666 
667   // Don't check pointers to volatile data. The behavior here is implementation-
668   // defined.
669   if (Ty.isVolatileQualified())
670     return;
671 
672   SanitizerScope SanScope(this);
673 
674   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675   llvm::BasicBlock *Done = nullptr;
676 
677   // Quickly determine whether we have a pointer to an alloca. It's possible
678   // to skip null checks, and some alignment checks, for these pointers. This
679   // can reduce compile-time significantly.
680   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::CXXRewrittenBinaryOperatorClass:
1271     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1272   case Expr::VAArgExprClass:
1273     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1274   case Expr::DeclRefExprClass:
1275     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1276   case Expr::ConstantExprClass:
1277     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1278   case Expr::ParenExprClass:
1279     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1280   case Expr::GenericSelectionExprClass:
1281     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1282   case Expr::PredefinedExprClass:
1283     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1284   case Expr::StringLiteralClass:
1285     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1286   case Expr::ObjCEncodeExprClass:
1287     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1288   case Expr::PseudoObjectExprClass:
1289     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1290   case Expr::InitListExprClass:
1291     return EmitInitListLValue(cast<InitListExpr>(E));
1292   case Expr::CXXTemporaryObjectExprClass:
1293   case Expr::CXXConstructExprClass:
1294     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1295   case Expr::CXXBindTemporaryExprClass:
1296     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1297   case Expr::CXXUuidofExprClass:
1298     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1299   case Expr::LambdaExprClass:
1300     return EmitAggExprToLValue(E);
1301 
1302   case Expr::ExprWithCleanupsClass: {
1303     const auto *cleanups = cast<ExprWithCleanups>(E);
1304     enterFullExpression(cleanups);
1305     RunCleanupsScope Scope(*this);
1306     LValue LV = EmitLValue(cleanups->getSubExpr());
1307     if (LV.isSimple()) {
1308       // Defend against branches out of gnu statement expressions surrounded by
1309       // cleanups.
1310       llvm::Value *V = LV.getPointer();
1311       Scope.ForceCleanup({&V});
1312       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1313                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1314     }
1315     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1316     // bitfield lvalue or some other non-simple lvalue?
1317     return LV;
1318   }
1319 
1320   case Expr::CXXDefaultArgExprClass: {
1321     auto *DAE = cast<CXXDefaultArgExpr>(E);
1322     CXXDefaultArgExprScope Scope(*this, DAE);
1323     return EmitLValue(DAE->getExpr());
1324   }
1325   case Expr::CXXDefaultInitExprClass: {
1326     auto *DIE = cast<CXXDefaultInitExpr>(E);
1327     CXXDefaultInitExprScope Scope(*this, DIE);
1328     return EmitLValue(DIE->getExpr());
1329   }
1330   case Expr::CXXTypeidExprClass:
1331     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1332 
1333   case Expr::ObjCMessageExprClass:
1334     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1335   case Expr::ObjCIvarRefExprClass:
1336     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1337   case Expr::StmtExprClass:
1338     return EmitStmtExprLValue(cast<StmtExpr>(E));
1339   case Expr::UnaryOperatorClass:
1340     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1341   case Expr::ArraySubscriptExprClass:
1342     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1343   case Expr::OMPArraySectionExprClass:
1344     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1345   case Expr::ExtVectorElementExprClass:
1346     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1347   case Expr::MemberExprClass:
1348     return EmitMemberExpr(cast<MemberExpr>(E));
1349   case Expr::CompoundLiteralExprClass:
1350     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1351   case Expr::ConditionalOperatorClass:
1352     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1353   case Expr::BinaryConditionalOperatorClass:
1354     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1355   case Expr::ChooseExprClass:
1356     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1357   case Expr::OpaqueValueExprClass:
1358     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1359   case Expr::SubstNonTypeTemplateParmExprClass:
1360     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1361   case Expr::ImplicitCastExprClass:
1362   case Expr::CStyleCastExprClass:
1363   case Expr::CXXFunctionalCastExprClass:
1364   case Expr::CXXStaticCastExprClass:
1365   case Expr::CXXDynamicCastExprClass:
1366   case Expr::CXXReinterpretCastExprClass:
1367   case Expr::CXXConstCastExprClass:
1368   case Expr::ObjCBridgedCastExprClass:
1369     return EmitCastLValue(cast<CastExpr>(E));
1370 
1371   case Expr::MaterializeTemporaryExprClass:
1372     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1373 
1374   case Expr::CoawaitExprClass:
1375     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1376   case Expr::CoyieldExprClass:
1377     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1378   }
1379 }
1380 
1381 /// Given an object of the given canonical type, can we safely copy a
1382 /// value out of it based on its initializer?
1383 static bool isConstantEmittableObjectType(QualType type) {
1384   assert(type.isCanonical());
1385   assert(!type->isReferenceType());
1386 
1387   // Must be const-qualified but non-volatile.
1388   Qualifiers qs = type.getLocalQualifiers();
1389   if (!qs.hasConst() || qs.hasVolatile()) return false;
1390 
1391   // Otherwise, all object types satisfy this except C++ classes with
1392   // mutable subobjects or non-trivial copy/destroy behavior.
1393   if (const auto *RT = dyn_cast<RecordType>(type))
1394     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1395       if (RD->hasMutableFields() || !RD->isTrivial())
1396         return false;
1397 
1398   return true;
1399 }
1400 
1401 /// Can we constant-emit a load of a reference to a variable of the
1402 /// given type?  This is different from predicates like
1403 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1404 /// in situations that don't necessarily satisfy the language's rules
1405 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1406 /// to do this with const float variables even if those variables
1407 /// aren't marked 'constexpr'.
1408 enum ConstantEmissionKind {
1409   CEK_None,
1410   CEK_AsReferenceOnly,
1411   CEK_AsValueOrReference,
1412   CEK_AsValueOnly
1413 };
1414 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1415   type = type.getCanonicalType();
1416   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1417     if (isConstantEmittableObjectType(ref->getPointeeType()))
1418       return CEK_AsValueOrReference;
1419     return CEK_AsReferenceOnly;
1420   }
1421   if (isConstantEmittableObjectType(type))
1422     return CEK_AsValueOnly;
1423   return CEK_None;
1424 }
1425 
1426 /// Try to emit a reference to the given value without producing it as
1427 /// an l-value.  This is just an optimization, but it avoids us needing
1428 /// to emit global copies of variables if they're named without triggering
1429 /// a formal use in a context where we can't emit a direct reference to them,
1430 /// for instance if a block or lambda or a member of a local class uses a
1431 /// const int variable or constexpr variable from an enclosing function.
1432 CodeGenFunction::ConstantEmission
1433 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1434   ValueDecl *value = refExpr->getDecl();
1435 
1436   // The value needs to be an enum constant or a constant variable.
1437   ConstantEmissionKind CEK;
1438   if (isa<ParmVarDecl>(value)) {
1439     CEK = CEK_None;
1440   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1441     CEK = checkVarTypeForConstantEmission(var->getType());
1442   } else if (isa<EnumConstantDecl>(value)) {
1443     CEK = CEK_AsValueOnly;
1444   } else {
1445     CEK = CEK_None;
1446   }
1447   if (CEK == CEK_None) return ConstantEmission();
1448 
1449   Expr::EvalResult result;
1450   bool resultIsReference;
1451   QualType resultType;
1452 
1453   // It's best to evaluate all the way as an r-value if that's permitted.
1454   if (CEK != CEK_AsReferenceOnly &&
1455       refExpr->EvaluateAsRValue(result, getContext())) {
1456     resultIsReference = false;
1457     resultType = refExpr->getType();
1458 
1459   // Otherwise, try to evaluate as an l-value.
1460   } else if (CEK != CEK_AsValueOnly &&
1461              refExpr->EvaluateAsLValue(result, getContext())) {
1462     resultIsReference = true;
1463     resultType = value->getType();
1464 
1465   // Failure.
1466   } else {
1467     return ConstantEmission();
1468   }
1469 
1470   // In any case, if the initializer has side-effects, abandon ship.
1471   if (result.HasSideEffects)
1472     return ConstantEmission();
1473 
1474   // Emit as a constant.
1475   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1476                                                result.Val, resultType);
1477 
1478   // Make sure we emit a debug reference to the global variable.
1479   // This should probably fire even for
1480   if (isa<VarDecl>(value)) {
1481     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1482       EmitDeclRefExprDbgValue(refExpr, result.Val);
1483   } else {
1484     assert(isa<EnumConstantDecl>(value));
1485     EmitDeclRefExprDbgValue(refExpr, result.Val);
1486   }
1487 
1488   // If we emitted a reference constant, we need to dereference that.
1489   if (resultIsReference)
1490     return ConstantEmission::forReference(C);
1491 
1492   return ConstantEmission::forValue(C);
1493 }
1494 
1495 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1496                                                         const MemberExpr *ME) {
1497   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1498     // Try to emit static variable member expressions as DREs.
1499     return DeclRefExpr::Create(
1500         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1501         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1502         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1503   }
1504   return nullptr;
1505 }
1506 
1507 CodeGenFunction::ConstantEmission
1508 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1509   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1510     return tryEmitAsConstant(DRE);
1511   return ConstantEmission();
1512 }
1513 
1514 llvm::Value *CodeGenFunction::emitScalarConstant(
1515     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1516   assert(Constant && "not a constant");
1517   if (Constant.isReference())
1518     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1519                             E->getExprLoc())
1520         .getScalarVal();
1521   return Constant.getValue();
1522 }
1523 
1524 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1525                                                SourceLocation Loc) {
1526   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1527                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1528                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1529 }
1530 
1531 static bool hasBooleanRepresentation(QualType Ty) {
1532   if (Ty->isBooleanType())
1533     return true;
1534 
1535   if (const EnumType *ET = Ty->getAs<EnumType>())
1536     return ET->getDecl()->getIntegerType()->isBooleanType();
1537 
1538   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1539     return hasBooleanRepresentation(AT->getValueType());
1540 
1541   return false;
1542 }
1543 
1544 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1545                             llvm::APInt &Min, llvm::APInt &End,
1546                             bool StrictEnums, bool IsBool) {
1547   const EnumType *ET = Ty->getAs<EnumType>();
1548   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1549                                 ET && !ET->getDecl()->isFixed();
1550   if (!IsBool && !IsRegularCPlusPlusEnum)
1551     return false;
1552 
1553   if (IsBool) {
1554     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1555     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1556   } else {
1557     const EnumDecl *ED = ET->getDecl();
1558     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1559     unsigned Bitwidth = LTy->getScalarSizeInBits();
1560     unsigned NumNegativeBits = ED->getNumNegativeBits();
1561     unsigned NumPositiveBits = ED->getNumPositiveBits();
1562 
1563     if (NumNegativeBits) {
1564       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1565       assert(NumBits <= Bitwidth);
1566       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1567       Min = -End;
1568     } else {
1569       assert(NumPositiveBits <= Bitwidth);
1570       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1571       Min = llvm::APInt(Bitwidth, 0);
1572     }
1573   }
1574   return true;
1575 }
1576 
1577 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1578   llvm::APInt Min, End;
1579   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1580                        hasBooleanRepresentation(Ty)))
1581     return nullptr;
1582 
1583   llvm::MDBuilder MDHelper(getLLVMContext());
1584   return MDHelper.createRange(Min, End);
1585 }
1586 
1587 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1588                                            SourceLocation Loc) {
1589   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1590   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1591   if (!HasBoolCheck && !HasEnumCheck)
1592     return false;
1593 
1594   bool IsBool = hasBooleanRepresentation(Ty) ||
1595                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1596   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1597   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1598   if (!NeedsBoolCheck && !NeedsEnumCheck)
1599     return false;
1600 
1601   // Single-bit booleans don't need to be checked. Special-case this to avoid
1602   // a bit width mismatch when handling bitfield values. This is handled by
1603   // EmitFromMemory for the non-bitfield case.
1604   if (IsBool &&
1605       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1606     return false;
1607 
1608   llvm::APInt Min, End;
1609   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1610     return true;
1611 
1612   auto &Ctx = getLLVMContext();
1613   SanitizerScope SanScope(this);
1614   llvm::Value *Check;
1615   --End;
1616   if (!Min) {
1617     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1618   } else {
1619     llvm::Value *Upper =
1620         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1621     llvm::Value *Lower =
1622         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1623     Check = Builder.CreateAnd(Upper, Lower);
1624   }
1625   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1626                                   EmitCheckTypeDescriptor(Ty)};
1627   SanitizerMask Kind =
1628       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1629   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1630             StaticArgs, EmitCheckValue(Value));
1631   return true;
1632 }
1633 
1634 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1635                                                QualType Ty,
1636                                                SourceLocation Loc,
1637                                                LValueBaseInfo BaseInfo,
1638                                                TBAAAccessInfo TBAAInfo,
1639                                                bool isNontemporal) {
1640   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1641     // For better performance, handle vector loads differently.
1642     if (Ty->isVectorType()) {
1643       const llvm::Type *EltTy = Addr.getElementType();
1644 
1645       const auto *VTy = cast<llvm::VectorType>(EltTy);
1646 
1647       // Handle vectors of size 3 like size 4 for better performance.
1648       if (VTy->getNumElements() == 3) {
1649 
1650         // Bitcast to vec4 type.
1651         llvm::VectorType *vec4Ty =
1652             llvm::VectorType::get(VTy->getElementType(), 4);
1653         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1654         // Now load value.
1655         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1656 
1657         // Shuffle vector to get vec3.
1658         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1659                                         {0, 1, 2}, "extractVec");
1660         return EmitFromMemory(V, Ty);
1661       }
1662     }
1663   }
1664 
1665   // Atomic operations have to be done on integral types.
1666   LValue AtomicLValue =
1667       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1668   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1669     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1670   }
1671 
1672   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1673   if (isNontemporal) {
1674     llvm::MDNode *Node = llvm::MDNode::get(
1675         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1676     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1677   }
1678 
1679   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1680 
1681   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1682     // In order to prevent the optimizer from throwing away the check, don't
1683     // attach range metadata to the load.
1684   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1685     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1686       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1687 
1688   return EmitFromMemory(Load, Ty);
1689 }
1690 
1691 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1692   // Bool has a different representation in memory than in registers.
1693   if (hasBooleanRepresentation(Ty)) {
1694     // This should really always be an i1, but sometimes it's already
1695     // an i8, and it's awkward to track those cases down.
1696     if (Value->getType()->isIntegerTy(1))
1697       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1698     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1699            "wrong value rep of bool");
1700   }
1701 
1702   return Value;
1703 }
1704 
1705 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1706   // Bool has a different representation in memory than in registers.
1707   if (hasBooleanRepresentation(Ty)) {
1708     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1709            "wrong value rep of bool");
1710     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1711   }
1712 
1713   return Value;
1714 }
1715 
1716 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1717                                         bool Volatile, QualType Ty,
1718                                         LValueBaseInfo BaseInfo,
1719                                         TBAAAccessInfo TBAAInfo,
1720                                         bool isInit, bool isNontemporal) {
1721   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1722     // Handle vectors differently to get better performance.
1723     if (Ty->isVectorType()) {
1724       llvm::Type *SrcTy = Value->getType();
1725       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1726       // Handle vec3 special.
1727       if (VecTy && VecTy->getNumElements() == 3) {
1728         // Our source is a vec3, do a shuffle vector to make it a vec4.
1729         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1730                                   Builder.getInt32(2),
1731                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1732         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1733         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1734                                             MaskV, "extractVec");
1735         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1736       }
1737       if (Addr.getElementType() != SrcTy) {
1738         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1739       }
1740     }
1741   }
1742 
1743   Value = EmitToMemory(Value, Ty);
1744 
1745   LValue AtomicLValue =
1746       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1747   if (Ty->isAtomicType() ||
1748       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1749     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1750     return;
1751   }
1752 
1753   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1754   if (isNontemporal) {
1755     llvm::MDNode *Node =
1756         llvm::MDNode::get(Store->getContext(),
1757                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1758     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1759   }
1760 
1761   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1762 }
1763 
1764 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1765                                         bool isInit) {
1766   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1767                     lvalue.getType(), lvalue.getBaseInfo(),
1768                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1769 }
1770 
1771 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1772 /// method emits the address of the lvalue, then loads the result as an rvalue,
1773 /// returning the rvalue.
1774 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1775   if (LV.isObjCWeak()) {
1776     // load of a __weak object.
1777     Address AddrWeakObj = LV.getAddress();
1778     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1779                                                              AddrWeakObj));
1780   }
1781   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1782     // In MRC mode, we do a load+autorelease.
1783     if (!getLangOpts().ObjCAutoRefCount) {
1784       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1785     }
1786 
1787     // In ARC mode, we load retained and then consume the value.
1788     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1789     Object = EmitObjCConsumeObject(LV.getType(), Object);
1790     return RValue::get(Object);
1791   }
1792 
1793   if (LV.isSimple()) {
1794     assert(!LV.getType()->isFunctionType());
1795 
1796     // Everything needs a load.
1797     return RValue::get(EmitLoadOfScalar(LV, Loc));
1798   }
1799 
1800   if (LV.isVectorElt()) {
1801     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1802                                               LV.isVolatileQualified());
1803     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1804                                                     "vecext"));
1805   }
1806 
1807   // If this is a reference to a subset of the elements of a vector, either
1808   // shuffle the input or extract/insert them as appropriate.
1809   if (LV.isExtVectorElt())
1810     return EmitLoadOfExtVectorElementLValue(LV);
1811 
1812   // Global Register variables always invoke intrinsics
1813   if (LV.isGlobalReg())
1814     return EmitLoadOfGlobalRegLValue(LV);
1815 
1816   assert(LV.isBitField() && "Unknown LValue type!");
1817   return EmitLoadOfBitfieldLValue(LV, Loc);
1818 }
1819 
1820 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1821                                                  SourceLocation Loc) {
1822   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1823 
1824   // Get the output type.
1825   llvm::Type *ResLTy = ConvertType(LV.getType());
1826 
1827   Address Ptr = LV.getBitFieldAddress();
1828   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1829 
1830   if (Info.IsSigned) {
1831     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1832     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1833     if (HighBits)
1834       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1835     if (Info.Offset + HighBits)
1836       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1837   } else {
1838     if (Info.Offset)
1839       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1840     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1841       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1842                                                               Info.Size),
1843                               "bf.clear");
1844   }
1845   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1846   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1847   return RValue::get(Val);
1848 }
1849 
1850 // If this is a reference to a subset of the elements of a vector, create an
1851 // appropriate shufflevector.
1852 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1853   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1854                                         LV.isVolatileQualified());
1855 
1856   const llvm::Constant *Elts = LV.getExtVectorElts();
1857 
1858   // If the result of the expression is a non-vector type, we must be extracting
1859   // a single element.  Just codegen as an extractelement.
1860   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1861   if (!ExprVT) {
1862     unsigned InIdx = getAccessedFieldNo(0, Elts);
1863     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1864     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1865   }
1866 
1867   // Always use shuffle vector to try to retain the original program structure
1868   unsigned NumResultElts = ExprVT->getNumElements();
1869 
1870   SmallVector<llvm::Constant*, 4> Mask;
1871   for (unsigned i = 0; i != NumResultElts; ++i)
1872     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1873 
1874   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1875   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1876                                     MaskV);
1877   return RValue::get(Vec);
1878 }
1879 
1880 /// Generates lvalue for partial ext_vector access.
1881 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1882   Address VectorAddress = LV.getExtVectorAddress();
1883   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1884   QualType EQT = ExprVT->getElementType();
1885   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1886 
1887   Address CastToPointerElement =
1888     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1889                                  "conv.ptr.element");
1890 
1891   const llvm::Constant *Elts = LV.getExtVectorElts();
1892   unsigned ix = getAccessedFieldNo(0, Elts);
1893 
1894   Address VectorBasePtrPlusIx =
1895     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1896                                    "vector.elt");
1897 
1898   return VectorBasePtrPlusIx;
1899 }
1900 
1901 /// Load of global gamed gegisters are always calls to intrinsics.
1902 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1903   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1904          "Bad type for register variable");
1905   llvm::MDNode *RegName = cast<llvm::MDNode>(
1906       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1907 
1908   // We accept integer and pointer types only
1909   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1910   llvm::Type *Ty = OrigTy;
1911   if (OrigTy->isPointerTy())
1912     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1913   llvm::Type *Types[] = { Ty };
1914 
1915   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1916   llvm::Value *Call = Builder.CreateCall(
1917       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1918   if (OrigTy->isPointerTy())
1919     Call = Builder.CreateIntToPtr(Call, OrigTy);
1920   return RValue::get(Call);
1921 }
1922 
1923 
1924 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1925 /// lvalue, where both are guaranteed to the have the same type, and that type
1926 /// is 'Ty'.
1927 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1928                                              bool isInit) {
1929   if (!Dst.isSimple()) {
1930     if (Dst.isVectorElt()) {
1931       // Read/modify/write the vector, inserting the new element.
1932       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1933                                             Dst.isVolatileQualified());
1934       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1935                                         Dst.getVectorIdx(), "vecins");
1936       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1937                           Dst.isVolatileQualified());
1938       return;
1939     }
1940 
1941     // If this is an update of extended vector elements, insert them as
1942     // appropriate.
1943     if (Dst.isExtVectorElt())
1944       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1945 
1946     if (Dst.isGlobalReg())
1947       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1948 
1949     assert(Dst.isBitField() && "Unknown LValue type");
1950     return EmitStoreThroughBitfieldLValue(Src, Dst);
1951   }
1952 
1953   // There's special magic for assigning into an ARC-qualified l-value.
1954   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1955     switch (Lifetime) {
1956     case Qualifiers::OCL_None:
1957       llvm_unreachable("present but none");
1958 
1959     case Qualifiers::OCL_ExplicitNone:
1960       // nothing special
1961       break;
1962 
1963     case Qualifiers::OCL_Strong:
1964       if (isInit) {
1965         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1966         break;
1967       }
1968       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1969       return;
1970 
1971     case Qualifiers::OCL_Weak:
1972       if (isInit)
1973         // Initialize and then skip the primitive store.
1974         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1975       else
1976         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1977       return;
1978 
1979     case Qualifiers::OCL_Autoreleasing:
1980       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1981                                                      Src.getScalarVal()));
1982       // fall into the normal path
1983       break;
1984     }
1985   }
1986 
1987   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1988     // load of a __weak object.
1989     Address LvalueDst = Dst.getAddress();
1990     llvm::Value *src = Src.getScalarVal();
1991      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1992     return;
1993   }
1994 
1995   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1996     // load of a __strong object.
1997     Address LvalueDst = Dst.getAddress();
1998     llvm::Value *src = Src.getScalarVal();
1999     if (Dst.isObjCIvar()) {
2000       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2001       llvm::Type *ResultType = IntPtrTy;
2002       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2003       llvm::Value *RHS = dst.getPointer();
2004       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2005       llvm::Value *LHS =
2006         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2007                                "sub.ptr.lhs.cast");
2008       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2009       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2010                                               BytesBetween);
2011     } else if (Dst.isGlobalObjCRef()) {
2012       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2013                                                 Dst.isThreadLocalRef());
2014     }
2015     else
2016       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2017     return;
2018   }
2019 
2020   assert(Src.isScalar() && "Can't emit an agg store with this method");
2021   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2022 }
2023 
2024 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2025                                                      llvm::Value **Result) {
2026   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2027   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2028   Address Ptr = Dst.getBitFieldAddress();
2029 
2030   // Get the source value, truncated to the width of the bit-field.
2031   llvm::Value *SrcVal = Src.getScalarVal();
2032 
2033   // Cast the source to the storage type and shift it into place.
2034   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2035                                  /*isSigned=*/false);
2036   llvm::Value *MaskedVal = SrcVal;
2037 
2038   // See if there are other bits in the bitfield's storage we'll need to load
2039   // and mask together with source before storing.
2040   if (Info.StorageSize != Info.Size) {
2041     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2042     llvm::Value *Val =
2043       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2044 
2045     // Mask the source value as needed.
2046     if (!hasBooleanRepresentation(Dst.getType()))
2047       SrcVal = Builder.CreateAnd(SrcVal,
2048                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2049                                                             Info.Size),
2050                                  "bf.value");
2051     MaskedVal = SrcVal;
2052     if (Info.Offset)
2053       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2054 
2055     // Mask out the original value.
2056     Val = Builder.CreateAnd(Val,
2057                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2058                                                      Info.Offset,
2059                                                      Info.Offset + Info.Size),
2060                             "bf.clear");
2061 
2062     // Or together the unchanged values and the source value.
2063     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2064   } else {
2065     assert(Info.Offset == 0);
2066   }
2067 
2068   // Write the new value back out.
2069   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2070 
2071   // Return the new value of the bit-field, if requested.
2072   if (Result) {
2073     llvm::Value *ResultVal = MaskedVal;
2074 
2075     // Sign extend the value if needed.
2076     if (Info.IsSigned) {
2077       assert(Info.Size <= Info.StorageSize);
2078       unsigned HighBits = Info.StorageSize - Info.Size;
2079       if (HighBits) {
2080         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2081         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2082       }
2083     }
2084 
2085     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2086                                       "bf.result.cast");
2087     *Result = EmitFromMemory(ResultVal, Dst.getType());
2088   }
2089 }
2090 
2091 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2092                                                                LValue Dst) {
2093   // This access turns into a read/modify/write of the vector.  Load the input
2094   // value now.
2095   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2096                                         Dst.isVolatileQualified());
2097   const llvm::Constant *Elts = Dst.getExtVectorElts();
2098 
2099   llvm::Value *SrcVal = Src.getScalarVal();
2100 
2101   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2102     unsigned NumSrcElts = VTy->getNumElements();
2103     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2104     if (NumDstElts == NumSrcElts) {
2105       // Use shuffle vector is the src and destination are the same number of
2106       // elements and restore the vector mask since it is on the side it will be
2107       // stored.
2108       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2109       for (unsigned i = 0; i != NumSrcElts; ++i)
2110         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2111 
2112       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2113       Vec = Builder.CreateShuffleVector(SrcVal,
2114                                         llvm::UndefValue::get(Vec->getType()),
2115                                         MaskV);
2116     } else if (NumDstElts > NumSrcElts) {
2117       // Extended the source vector to the same length and then shuffle it
2118       // into the destination.
2119       // FIXME: since we're shuffling with undef, can we just use the indices
2120       //        into that?  This could be simpler.
2121       SmallVector<llvm::Constant*, 4> ExtMask;
2122       for (unsigned i = 0; i != NumSrcElts; ++i)
2123         ExtMask.push_back(Builder.getInt32(i));
2124       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2125       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2126       llvm::Value *ExtSrcVal =
2127         Builder.CreateShuffleVector(SrcVal,
2128                                     llvm::UndefValue::get(SrcVal->getType()),
2129                                     ExtMaskV);
2130       // build identity
2131       SmallVector<llvm::Constant*, 4> Mask;
2132       for (unsigned i = 0; i != NumDstElts; ++i)
2133         Mask.push_back(Builder.getInt32(i));
2134 
2135       // When the vector size is odd and .odd or .hi is used, the last element
2136       // of the Elts constant array will be one past the size of the vector.
2137       // Ignore the last element here, if it is greater than the mask size.
2138       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2139         NumSrcElts--;
2140 
2141       // modify when what gets shuffled in
2142       for (unsigned i = 0; i != NumSrcElts; ++i)
2143         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2144       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2145       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2146     } else {
2147       // We should never shorten the vector
2148       llvm_unreachable("unexpected shorten vector length");
2149     }
2150   } else {
2151     // If the Src is a scalar (not a vector) it must be updating one element.
2152     unsigned InIdx = getAccessedFieldNo(0, Elts);
2153     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2154     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2155   }
2156 
2157   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2158                       Dst.isVolatileQualified());
2159 }
2160 
2161 /// Store of global named registers are always calls to intrinsics.
2162 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2163   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2164          "Bad type for register variable");
2165   llvm::MDNode *RegName = cast<llvm::MDNode>(
2166       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2167   assert(RegName && "Register LValue is not metadata");
2168 
2169   // We accept integer and pointer types only
2170   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2171   llvm::Type *Ty = OrigTy;
2172   if (OrigTy->isPointerTy())
2173     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2174   llvm::Type *Types[] = { Ty };
2175 
2176   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2177   llvm::Value *Value = Src.getScalarVal();
2178   if (OrigTy->isPointerTy())
2179     Value = Builder.CreatePtrToInt(Value, Ty);
2180   Builder.CreateCall(
2181       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2182 }
2183 
2184 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2185 // generating write-barries API. It is currently a global, ivar,
2186 // or neither.
2187 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2188                                  LValue &LV,
2189                                  bool IsMemberAccess=false) {
2190   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2191     return;
2192 
2193   if (isa<ObjCIvarRefExpr>(E)) {
2194     QualType ExpTy = E->getType();
2195     if (IsMemberAccess && ExpTy->isPointerType()) {
2196       // If ivar is a structure pointer, assigning to field of
2197       // this struct follows gcc's behavior and makes it a non-ivar
2198       // writer-barrier conservatively.
2199       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2200       if (ExpTy->isRecordType()) {
2201         LV.setObjCIvar(false);
2202         return;
2203       }
2204     }
2205     LV.setObjCIvar(true);
2206     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2207     LV.setBaseIvarExp(Exp->getBase());
2208     LV.setObjCArray(E->getType()->isArrayType());
2209     return;
2210   }
2211 
2212   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2213     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2214       if (VD->hasGlobalStorage()) {
2215         LV.setGlobalObjCRef(true);
2216         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2217       }
2218     }
2219     LV.setObjCArray(E->getType()->isArrayType());
2220     return;
2221   }
2222 
2223   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2224     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2225     return;
2226   }
2227 
2228   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2229     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2230     if (LV.isObjCIvar()) {
2231       // If cast is to a structure pointer, follow gcc's behavior and make it
2232       // a non-ivar write-barrier.
2233       QualType ExpTy = E->getType();
2234       if (ExpTy->isPointerType())
2235         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2236       if (ExpTy->isRecordType())
2237         LV.setObjCIvar(false);
2238     }
2239     return;
2240   }
2241 
2242   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2243     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2244     return;
2245   }
2246 
2247   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2248     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2249     return;
2250   }
2251 
2252   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2253     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2254     return;
2255   }
2256 
2257   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2258     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2259     return;
2260   }
2261 
2262   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2263     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2264     if (LV.isObjCIvar() && !LV.isObjCArray())
2265       // Using array syntax to assigning to what an ivar points to is not
2266       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2267       LV.setObjCIvar(false);
2268     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2269       // Using array syntax to assigning to what global points to is not
2270       // same as assigning to the global itself. {id *G;} G[i] = 0;
2271       LV.setGlobalObjCRef(false);
2272     return;
2273   }
2274 
2275   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2276     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2277     // We don't know if member is an 'ivar', but this flag is looked at
2278     // only in the context of LV.isObjCIvar().
2279     LV.setObjCArray(E->getType()->isArrayType());
2280     return;
2281   }
2282 }
2283 
2284 static llvm::Value *
2285 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2286                                 llvm::Value *V, llvm::Type *IRType,
2287                                 StringRef Name = StringRef()) {
2288   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2289   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2290 }
2291 
2292 static LValue EmitThreadPrivateVarDeclLValue(
2293     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2294     llvm::Type *RealVarTy, SourceLocation Loc) {
2295   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2296   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2297   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2298 }
2299 
2300 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2301                                            const VarDecl *VD, QualType T) {
2302   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2303       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2304   // Return an invalid address if variable is MT_To and unified
2305   // memory is not enabled. For all other cases: MT_Link and
2306   // MT_To with unified memory, return a valid address.
2307   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2308                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2309     return Address::invalid();
2310   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2311           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2312            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2313          "Expected link clause OR to clause with unified memory enabled.");
2314   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2315   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2316   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2317 }
2318 
2319 Address
2320 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2321                                      LValueBaseInfo *PointeeBaseInfo,
2322                                      TBAAAccessInfo *PointeeTBAAInfo) {
2323   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2324                                             RefLVal.isVolatile());
2325   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2326 
2327   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2328                                             PointeeBaseInfo, PointeeTBAAInfo,
2329                                             /* forPointeeType= */ true);
2330   return Address(Load, Align);
2331 }
2332 
2333 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2334   LValueBaseInfo PointeeBaseInfo;
2335   TBAAAccessInfo PointeeTBAAInfo;
2336   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2337                                             &PointeeTBAAInfo);
2338   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2339                         PointeeBaseInfo, PointeeTBAAInfo);
2340 }
2341 
2342 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2343                                            const PointerType *PtrTy,
2344                                            LValueBaseInfo *BaseInfo,
2345                                            TBAAAccessInfo *TBAAInfo) {
2346   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2347   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2348                                                BaseInfo, TBAAInfo,
2349                                                /*forPointeeType=*/true));
2350 }
2351 
2352 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2353                                                 const PointerType *PtrTy) {
2354   LValueBaseInfo BaseInfo;
2355   TBAAAccessInfo TBAAInfo;
2356   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2357   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2358 }
2359 
2360 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2361                                       const Expr *E, const VarDecl *VD) {
2362   QualType T = E->getType();
2363 
2364   // If it's thread_local, emit a call to its wrapper function instead.
2365   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2366       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2367     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2368   // Check if the variable is marked as declare target with link clause in
2369   // device codegen.
2370   if (CGF.getLangOpts().OpenMPIsDevice) {
2371     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2372     if (Addr.isValid())
2373       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2374   }
2375 
2376   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2377   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2378   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2379   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2380   Address Addr(V, Alignment);
2381   // Emit reference to the private copy of the variable if it is an OpenMP
2382   // threadprivate variable.
2383   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2384       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2385     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2386                                           E->getExprLoc());
2387   }
2388   LValue LV = VD->getType()->isReferenceType() ?
2389       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2390                                     AlignmentSource::Decl) :
2391       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2392   setObjCGCLValueClass(CGF.getContext(), E, LV);
2393   return LV;
2394 }
2395 
2396 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2397                                                const FunctionDecl *FD) {
2398   if (FD->hasAttr<WeakRefAttr>()) {
2399     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2400     return aliasee.getPointer();
2401   }
2402 
2403   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2404   if (!FD->hasPrototype()) {
2405     if (const FunctionProtoType *Proto =
2406             FD->getType()->getAs<FunctionProtoType>()) {
2407       // Ugly case: for a K&R-style definition, the type of the definition
2408       // isn't the same as the type of a use.  Correct for this with a
2409       // bitcast.
2410       QualType NoProtoType =
2411           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2412       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2413       V = llvm::ConstantExpr::getBitCast(V,
2414                                       CGM.getTypes().ConvertType(NoProtoType));
2415     }
2416   }
2417   return V;
2418 }
2419 
2420 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2421                                      const Expr *E, const FunctionDecl *FD) {
2422   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2423   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2424   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2425                             AlignmentSource::Decl);
2426 }
2427 
2428 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2429                                       llvm::Value *ThisValue) {
2430   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2431   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2432   return CGF.EmitLValueForField(LV, FD);
2433 }
2434 
2435 /// Named Registers are named metadata pointing to the register name
2436 /// which will be read from/written to as an argument to the intrinsic
2437 /// @llvm.read/write_register.
2438 /// So far, only the name is being passed down, but other options such as
2439 /// register type, allocation type or even optimization options could be
2440 /// passed down via the metadata node.
2441 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2442   SmallString<64> Name("llvm.named.register.");
2443   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2444   assert(Asm->getLabel().size() < 64-Name.size() &&
2445       "Register name too big");
2446   Name.append(Asm->getLabel());
2447   llvm::NamedMDNode *M =
2448     CGM.getModule().getOrInsertNamedMetadata(Name);
2449   if (M->getNumOperands() == 0) {
2450     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2451                                               Asm->getLabel());
2452     llvm::Metadata *Ops[] = {Str};
2453     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2454   }
2455 
2456   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2457 
2458   llvm::Value *Ptr =
2459     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2460   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2461 }
2462 
2463 /// Determine whether we can emit a reference to \p VD from the current
2464 /// context, despite not necessarily having seen an odr-use of the variable in
2465 /// this context.
2466 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2467                                                const DeclRefExpr *E,
2468                                                const VarDecl *VD,
2469                                                bool IsConstant) {
2470   // For a variable declared in an enclosing scope, do not emit a spurious
2471   // reference even if we have a capture, as that will emit an unwarranted
2472   // reference to our capture state, and will likely generate worse code than
2473   // emitting a local copy.
2474   if (E->refersToEnclosingVariableOrCapture())
2475     return false;
2476 
2477   // For a local declaration declared in this function, we can always reference
2478   // it even if we don't have an odr-use.
2479   if (VD->hasLocalStorage()) {
2480     return VD->getDeclContext() ==
2481            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2482   }
2483 
2484   // For a global declaration, we can emit a reference to it if we know
2485   // for sure that we are able to emit a definition of it.
2486   VD = VD->getDefinition(CGF.getContext());
2487   if (!VD)
2488     return false;
2489 
2490   // Don't emit a spurious reference if it might be to a variable that only
2491   // exists on a different device / target.
2492   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2493   // cross-target reference.
2494   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2495       CGF.getLangOpts().OpenCL) {
2496     return false;
2497   }
2498 
2499   // We can emit a spurious reference only if the linkage implies that we'll
2500   // be emitting a non-interposable symbol that will be retained until link
2501   // time.
2502   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2503   case llvm::GlobalValue::ExternalLinkage:
2504   case llvm::GlobalValue::LinkOnceODRLinkage:
2505   case llvm::GlobalValue::WeakODRLinkage:
2506   case llvm::GlobalValue::InternalLinkage:
2507   case llvm::GlobalValue::PrivateLinkage:
2508     return true;
2509   default:
2510     return false;
2511   }
2512 }
2513 
2514 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2515   const NamedDecl *ND = E->getDecl();
2516   QualType T = E->getType();
2517 
2518   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2519          "should not emit an unevaluated operand");
2520 
2521   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2522     // Global Named registers access via intrinsics only
2523     if (VD->getStorageClass() == SC_Register &&
2524         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2525       return EmitGlobalNamedRegister(VD, CGM);
2526 
2527     // If this DeclRefExpr does not constitute an odr-use of the variable,
2528     // we're not permitted to emit a reference to it in general, and it might
2529     // not be captured if capture would be necessary for a use. Emit the
2530     // constant value directly instead.
2531     if (E->isNonOdrUse() == NOUR_Constant &&
2532         (VD->getType()->isReferenceType() ||
2533          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2534       VD->getAnyInitializer(VD);
2535       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2536           E->getLocation(), *VD->evaluateValue(), VD->getType());
2537       assert(Val && "failed to emit constant expression");
2538 
2539       Address Addr = Address::invalid();
2540       if (!VD->getType()->isReferenceType()) {
2541         // Spill the constant value to a global.
2542         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2543                                            getContext().getDeclAlign(VD));
2544         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2545         auto *PTy = llvm::PointerType::get(
2546             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2547         if (PTy != Addr.getType())
2548           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2549       } else {
2550         // Should we be using the alignment of the constant pointer we emitted?
2551         CharUnits Alignment =
2552             getNaturalTypeAlignment(E->getType(),
2553                                     /* BaseInfo= */ nullptr,
2554                                     /* TBAAInfo= */ nullptr,
2555                                     /* forPointeeType= */ true);
2556         Addr = Address(Val, Alignment);
2557       }
2558       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2559     }
2560 
2561     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2562 
2563     // Check for captured variables.
2564     if (E->refersToEnclosingVariableOrCapture()) {
2565       VD = VD->getCanonicalDecl();
2566       if (auto *FD = LambdaCaptureFields.lookup(VD))
2567         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2568       else if (CapturedStmtInfo) {
2569         auto I = LocalDeclMap.find(VD);
2570         if (I != LocalDeclMap.end()) {
2571           if (VD->getType()->isReferenceType())
2572             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2573                                              AlignmentSource::Decl);
2574           return MakeAddrLValue(I->second, T);
2575         }
2576         LValue CapLVal =
2577             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2578                                     CapturedStmtInfo->getContextValue());
2579         return MakeAddrLValue(
2580             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2581             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2582             CapLVal.getTBAAInfo());
2583       }
2584 
2585       assert(isa<BlockDecl>(CurCodeDecl));
2586       Address addr = GetAddrOfBlockDecl(VD);
2587       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2588     }
2589   }
2590 
2591   // FIXME: We should be able to assert this for FunctionDecls as well!
2592   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2593   // those with a valid source location.
2594   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2595           !E->getLocation().isValid()) &&
2596          "Should not use decl without marking it used!");
2597 
2598   if (ND->hasAttr<WeakRefAttr>()) {
2599     const auto *VD = cast<ValueDecl>(ND);
2600     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2601     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2602   }
2603 
2604   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2605     // Check if this is a global variable.
2606     if (VD->hasLinkage() || VD->isStaticDataMember())
2607       return EmitGlobalVarDeclLValue(*this, E, VD);
2608 
2609     Address addr = Address::invalid();
2610 
2611     // The variable should generally be present in the local decl map.
2612     auto iter = LocalDeclMap.find(VD);
2613     if (iter != LocalDeclMap.end()) {
2614       addr = iter->second;
2615 
2616     // Otherwise, it might be static local we haven't emitted yet for
2617     // some reason; most likely, because it's in an outer function.
2618     } else if (VD->isStaticLocal()) {
2619       addr = Address(CGM.getOrCreateStaticVarDecl(
2620           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2621                      getContext().getDeclAlign(VD));
2622 
2623     // No other cases for now.
2624     } else {
2625       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2626     }
2627 
2628 
2629     // Check for OpenMP threadprivate variables.
2630     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2631         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2632       return EmitThreadPrivateVarDeclLValue(
2633           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2634           E->getExprLoc());
2635     }
2636 
2637     // Drill into block byref variables.
2638     bool isBlockByref = VD->isEscapingByref();
2639     if (isBlockByref) {
2640       addr = emitBlockByrefAddress(addr, VD);
2641     }
2642 
2643     // Drill into reference types.
2644     LValue LV = VD->getType()->isReferenceType() ?
2645         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2646         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2647 
2648     bool isLocalStorage = VD->hasLocalStorage();
2649 
2650     bool NonGCable = isLocalStorage &&
2651                      !VD->getType()->isReferenceType() &&
2652                      !isBlockByref;
2653     if (NonGCable) {
2654       LV.getQuals().removeObjCGCAttr();
2655       LV.setNonGC(true);
2656     }
2657 
2658     bool isImpreciseLifetime =
2659       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2660     if (isImpreciseLifetime)
2661       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2662     setObjCGCLValueClass(getContext(), E, LV);
2663     return LV;
2664   }
2665 
2666   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2667     return EmitFunctionDeclLValue(*this, E, FD);
2668 
2669   // FIXME: While we're emitting a binding from an enclosing scope, all other
2670   // DeclRefExprs we see should be implicitly treated as if they also refer to
2671   // an enclosing scope.
2672   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2673     return EmitLValue(BD->getBinding());
2674 
2675   llvm_unreachable("Unhandled DeclRefExpr");
2676 }
2677 
2678 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2679   // __extension__ doesn't affect lvalue-ness.
2680   if (E->getOpcode() == UO_Extension)
2681     return EmitLValue(E->getSubExpr());
2682 
2683   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2684   switch (E->getOpcode()) {
2685   default: llvm_unreachable("Unknown unary operator lvalue!");
2686   case UO_Deref: {
2687     QualType T = E->getSubExpr()->getType()->getPointeeType();
2688     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2689 
2690     LValueBaseInfo BaseInfo;
2691     TBAAAccessInfo TBAAInfo;
2692     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2693                                             &TBAAInfo);
2694     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2695     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2696 
2697     // We should not generate __weak write barrier on indirect reference
2698     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2699     // But, we continue to generate __strong write barrier on indirect write
2700     // into a pointer to object.
2701     if (getLangOpts().ObjC &&
2702         getLangOpts().getGC() != LangOptions::NonGC &&
2703         LV.isObjCWeak())
2704       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2705     return LV;
2706   }
2707   case UO_Real:
2708   case UO_Imag: {
2709     LValue LV = EmitLValue(E->getSubExpr());
2710     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2711 
2712     // __real is valid on scalars.  This is a faster way of testing that.
2713     // __imag can only produce an rvalue on scalars.
2714     if (E->getOpcode() == UO_Real &&
2715         !LV.getAddress().getElementType()->isStructTy()) {
2716       assert(E->getSubExpr()->getType()->isArithmeticType());
2717       return LV;
2718     }
2719 
2720     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2721 
2722     Address Component =
2723       (E->getOpcode() == UO_Real
2724          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2725          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2726     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2727                                    CGM.getTBAAInfoForSubobject(LV, T));
2728     ElemLV.getQuals().addQualifiers(LV.getQuals());
2729     return ElemLV;
2730   }
2731   case UO_PreInc:
2732   case UO_PreDec: {
2733     LValue LV = EmitLValue(E->getSubExpr());
2734     bool isInc = E->getOpcode() == UO_PreInc;
2735 
2736     if (E->getType()->isAnyComplexType())
2737       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2738     else
2739       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2740     return LV;
2741   }
2742   }
2743 }
2744 
2745 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2746   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2747                         E->getType(), AlignmentSource::Decl);
2748 }
2749 
2750 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2751   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2752                         E->getType(), AlignmentSource::Decl);
2753 }
2754 
2755 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2756   auto SL = E->getFunctionName();
2757   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2758   StringRef FnName = CurFn->getName();
2759   if (FnName.startswith("\01"))
2760     FnName = FnName.substr(1);
2761   StringRef NameItems[] = {
2762       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2763   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2764   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2765     std::string Name = SL->getString();
2766     if (!Name.empty()) {
2767       unsigned Discriminator =
2768           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2769       if (Discriminator)
2770         Name += "_" + Twine(Discriminator + 1).str();
2771       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2772       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2773     } else {
2774       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2775       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2776     }
2777   }
2778   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2779   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2780 }
2781 
2782 /// Emit a type description suitable for use by a runtime sanitizer library. The
2783 /// format of a type descriptor is
2784 ///
2785 /// \code
2786 ///   { i16 TypeKind, i16 TypeInfo }
2787 /// \endcode
2788 ///
2789 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2790 /// integer, 1 for a floating point value, and -1 for anything else.
2791 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2792   // Only emit each type's descriptor once.
2793   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2794     return C;
2795 
2796   uint16_t TypeKind = -1;
2797   uint16_t TypeInfo = 0;
2798 
2799   if (T->isIntegerType()) {
2800     TypeKind = 0;
2801     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2802                (T->isSignedIntegerType() ? 1 : 0);
2803   } else if (T->isFloatingType()) {
2804     TypeKind = 1;
2805     TypeInfo = getContext().getTypeSize(T);
2806   }
2807 
2808   // Format the type name as if for a diagnostic, including quotes and
2809   // optionally an 'aka'.
2810   SmallString<32> Buffer;
2811   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2812                                     (intptr_t)T.getAsOpaquePtr(),
2813                                     StringRef(), StringRef(), None, Buffer,
2814                                     None);
2815 
2816   llvm::Constant *Components[] = {
2817     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2818     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2819   };
2820   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2821 
2822   auto *GV = new llvm::GlobalVariable(
2823       CGM.getModule(), Descriptor->getType(),
2824       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2825   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2826   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2827 
2828   // Remember the descriptor for this type.
2829   CGM.setTypeDescriptorInMap(T, GV);
2830 
2831   return GV;
2832 }
2833 
2834 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2835   llvm::Type *TargetTy = IntPtrTy;
2836 
2837   if (V->getType() == TargetTy)
2838     return V;
2839 
2840   // Floating-point types which fit into intptr_t are bitcast to integers
2841   // and then passed directly (after zero-extension, if necessary).
2842   if (V->getType()->isFloatingPointTy()) {
2843     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2844     if (Bits <= TargetTy->getIntegerBitWidth())
2845       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2846                                                          Bits));
2847   }
2848 
2849   // Integers which fit in intptr_t are zero-extended and passed directly.
2850   if (V->getType()->isIntegerTy() &&
2851       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2852     return Builder.CreateZExt(V, TargetTy);
2853 
2854   // Pointers are passed directly, everything else is passed by address.
2855   if (!V->getType()->isPointerTy()) {
2856     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2857     Builder.CreateStore(V, Ptr);
2858     V = Ptr.getPointer();
2859   }
2860   return Builder.CreatePtrToInt(V, TargetTy);
2861 }
2862 
2863 /// Emit a representation of a SourceLocation for passing to a handler
2864 /// in a sanitizer runtime library. The format for this data is:
2865 /// \code
2866 ///   struct SourceLocation {
2867 ///     const char *Filename;
2868 ///     int32_t Line, Column;
2869 ///   };
2870 /// \endcode
2871 /// For an invalid SourceLocation, the Filename pointer is null.
2872 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2873   llvm::Constant *Filename;
2874   int Line, Column;
2875 
2876   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2877   if (PLoc.isValid()) {
2878     StringRef FilenameString = PLoc.getFilename();
2879 
2880     int PathComponentsToStrip =
2881         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2882     if (PathComponentsToStrip < 0) {
2883       assert(PathComponentsToStrip != INT_MIN);
2884       int PathComponentsToKeep = -PathComponentsToStrip;
2885       auto I = llvm::sys::path::rbegin(FilenameString);
2886       auto E = llvm::sys::path::rend(FilenameString);
2887       while (I != E && --PathComponentsToKeep)
2888         ++I;
2889 
2890       FilenameString = FilenameString.substr(I - E);
2891     } else if (PathComponentsToStrip > 0) {
2892       auto I = llvm::sys::path::begin(FilenameString);
2893       auto E = llvm::sys::path::end(FilenameString);
2894       while (I != E && PathComponentsToStrip--)
2895         ++I;
2896 
2897       if (I != E)
2898         FilenameString =
2899             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2900       else
2901         FilenameString = llvm::sys::path::filename(FilenameString);
2902     }
2903 
2904     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2905     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2906                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2907     Filename = FilenameGV.getPointer();
2908     Line = PLoc.getLine();
2909     Column = PLoc.getColumn();
2910   } else {
2911     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2912     Line = Column = 0;
2913   }
2914 
2915   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2916                             Builder.getInt32(Column)};
2917 
2918   return llvm::ConstantStruct::getAnon(Data);
2919 }
2920 
2921 namespace {
2922 /// Specify under what conditions this check can be recovered
2923 enum class CheckRecoverableKind {
2924   /// Always terminate program execution if this check fails.
2925   Unrecoverable,
2926   /// Check supports recovering, runtime has both fatal (noreturn) and
2927   /// non-fatal handlers for this check.
2928   Recoverable,
2929   /// Runtime conditionally aborts, always need to support recovery.
2930   AlwaysRecoverable
2931 };
2932 }
2933 
2934 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2935   assert(Kind.countPopulation() == 1);
2936   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2937     return CheckRecoverableKind::AlwaysRecoverable;
2938   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2939     return CheckRecoverableKind::Unrecoverable;
2940   else
2941     return CheckRecoverableKind::Recoverable;
2942 }
2943 
2944 namespace {
2945 struct SanitizerHandlerInfo {
2946   char const *const Name;
2947   unsigned Version;
2948 };
2949 }
2950 
2951 const SanitizerHandlerInfo SanitizerHandlers[] = {
2952 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2953     LIST_SANITIZER_CHECKS
2954 #undef SANITIZER_CHECK
2955 };
2956 
2957 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2958                                  llvm::FunctionType *FnType,
2959                                  ArrayRef<llvm::Value *> FnArgs,
2960                                  SanitizerHandler CheckHandler,
2961                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2962                                  llvm::BasicBlock *ContBB) {
2963   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2964   Optional<ApplyDebugLocation> DL;
2965   if (!CGF.Builder.getCurrentDebugLocation()) {
2966     // Ensure that the call has at least an artificial debug location.
2967     DL.emplace(CGF, SourceLocation());
2968   }
2969   bool NeedsAbortSuffix =
2970       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2971   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2972   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2973   const StringRef CheckName = CheckInfo.Name;
2974   std::string FnName = "__ubsan_handle_" + CheckName.str();
2975   if (CheckInfo.Version && !MinimalRuntime)
2976     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2977   if (MinimalRuntime)
2978     FnName += "_minimal";
2979   if (NeedsAbortSuffix)
2980     FnName += "_abort";
2981   bool MayReturn =
2982       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2983 
2984   llvm::AttrBuilder B;
2985   if (!MayReturn) {
2986     B.addAttribute(llvm::Attribute::NoReturn)
2987         .addAttribute(llvm::Attribute::NoUnwind);
2988   }
2989   B.addAttribute(llvm::Attribute::UWTable);
2990 
2991   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2992       FnType, FnName,
2993       llvm::AttributeList::get(CGF.getLLVMContext(),
2994                                llvm::AttributeList::FunctionIndex, B),
2995       /*Local=*/true);
2996   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2997   if (!MayReturn) {
2998     HandlerCall->setDoesNotReturn();
2999     CGF.Builder.CreateUnreachable();
3000   } else {
3001     CGF.Builder.CreateBr(ContBB);
3002   }
3003 }
3004 
3005 void CodeGenFunction::EmitCheck(
3006     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3007     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3008     ArrayRef<llvm::Value *> DynamicArgs) {
3009   assert(IsSanitizerScope);
3010   assert(Checked.size() > 0);
3011   assert(CheckHandler >= 0 &&
3012          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3013   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3014 
3015   llvm::Value *FatalCond = nullptr;
3016   llvm::Value *RecoverableCond = nullptr;
3017   llvm::Value *TrapCond = nullptr;
3018   for (int i = 0, n = Checked.size(); i < n; ++i) {
3019     llvm::Value *Check = Checked[i].first;
3020     // -fsanitize-trap= overrides -fsanitize-recover=.
3021     llvm::Value *&Cond =
3022         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3023             ? TrapCond
3024             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3025                   ? RecoverableCond
3026                   : FatalCond;
3027     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3028   }
3029 
3030   if (TrapCond)
3031     EmitTrapCheck(TrapCond);
3032   if (!FatalCond && !RecoverableCond)
3033     return;
3034 
3035   llvm::Value *JointCond;
3036   if (FatalCond && RecoverableCond)
3037     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3038   else
3039     JointCond = FatalCond ? FatalCond : RecoverableCond;
3040   assert(JointCond);
3041 
3042   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3043   assert(SanOpts.has(Checked[0].second));
3044 #ifndef NDEBUG
3045   for (int i = 1, n = Checked.size(); i < n; ++i) {
3046     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3047            "All recoverable kinds in a single check must be same!");
3048     assert(SanOpts.has(Checked[i].second));
3049   }
3050 #endif
3051 
3052   llvm::BasicBlock *Cont = createBasicBlock("cont");
3053   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3054   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3055   // Give hint that we very much don't expect to execute the handler
3056   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3057   llvm::MDBuilder MDHelper(getLLVMContext());
3058   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3059   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3060   EmitBlock(Handlers);
3061 
3062   // Handler functions take an i8* pointing to the (handler-specific) static
3063   // information block, followed by a sequence of intptr_t arguments
3064   // representing operand values.
3065   SmallVector<llvm::Value *, 4> Args;
3066   SmallVector<llvm::Type *, 4> ArgTypes;
3067   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3068     Args.reserve(DynamicArgs.size() + 1);
3069     ArgTypes.reserve(DynamicArgs.size() + 1);
3070 
3071     // Emit handler arguments and create handler function type.
3072     if (!StaticArgs.empty()) {
3073       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3074       auto *InfoPtr =
3075           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3076                                    llvm::GlobalVariable::PrivateLinkage, Info);
3077       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3078       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3079       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3080       ArgTypes.push_back(Int8PtrTy);
3081     }
3082 
3083     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3084       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3085       ArgTypes.push_back(IntPtrTy);
3086     }
3087   }
3088 
3089   llvm::FunctionType *FnType =
3090     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3091 
3092   if (!FatalCond || !RecoverableCond) {
3093     // Simple case: we need to generate a single handler call, either
3094     // fatal, or non-fatal.
3095     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3096                          (FatalCond != nullptr), Cont);
3097   } else {
3098     // Emit two handler calls: first one for set of unrecoverable checks,
3099     // another one for recoverable.
3100     llvm::BasicBlock *NonFatalHandlerBB =
3101         createBasicBlock("non_fatal." + CheckName);
3102     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3103     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3104     EmitBlock(FatalHandlerBB);
3105     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3106                          NonFatalHandlerBB);
3107     EmitBlock(NonFatalHandlerBB);
3108     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3109                          Cont);
3110   }
3111 
3112   EmitBlock(Cont);
3113 }
3114 
3115 void CodeGenFunction::EmitCfiSlowPathCheck(
3116     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3117     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3118   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3119 
3120   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3121   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3122 
3123   llvm::MDBuilder MDHelper(getLLVMContext());
3124   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3125   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3126 
3127   EmitBlock(CheckBB);
3128 
3129   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3130 
3131   llvm::CallInst *CheckCall;
3132   llvm::FunctionCallee SlowPathFn;
3133   if (WithDiag) {
3134     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3135     auto *InfoPtr =
3136         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3137                                  llvm::GlobalVariable::PrivateLinkage, Info);
3138     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3139     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3140 
3141     SlowPathFn = CGM.getModule().getOrInsertFunction(
3142         "__cfi_slowpath_diag",
3143         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3144                                 false));
3145     CheckCall = Builder.CreateCall(
3146         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3147   } else {
3148     SlowPathFn = CGM.getModule().getOrInsertFunction(
3149         "__cfi_slowpath",
3150         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3151     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3152   }
3153 
3154   CGM.setDSOLocal(
3155       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3156   CheckCall->setDoesNotThrow();
3157 
3158   EmitBlock(Cont);
3159 }
3160 
3161 // Emit a stub for __cfi_check function so that the linker knows about this
3162 // symbol in LTO mode.
3163 void CodeGenFunction::EmitCfiCheckStub() {
3164   llvm::Module *M = &CGM.getModule();
3165   auto &Ctx = M->getContext();
3166   llvm::Function *F = llvm::Function::Create(
3167       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3168       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3169   CGM.setDSOLocal(F);
3170   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3171   // FIXME: consider emitting an intrinsic call like
3172   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3173   // which can be lowered in CrossDSOCFI pass to the actual contents of
3174   // __cfi_check. This would allow inlining of __cfi_check calls.
3175   llvm::CallInst::Create(
3176       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3177   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3178 }
3179 
3180 // This function is basically a switch over the CFI failure kind, which is
3181 // extracted from CFICheckFailData (1st function argument). Each case is either
3182 // llvm.trap or a call to one of the two runtime handlers, based on
3183 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3184 // failure kind) traps, but this should really never happen.  CFICheckFailData
3185 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3186 // check kind; in this case __cfi_check_fail traps as well.
3187 void CodeGenFunction::EmitCfiCheckFail() {
3188   SanitizerScope SanScope(this);
3189   FunctionArgList Args;
3190   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3191                             ImplicitParamDecl::Other);
3192   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3193                             ImplicitParamDecl::Other);
3194   Args.push_back(&ArgData);
3195   Args.push_back(&ArgAddr);
3196 
3197   const CGFunctionInfo &FI =
3198     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3199 
3200   llvm::Function *F = llvm::Function::Create(
3201       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3202       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3203 
3204   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3205   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3206   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3207 
3208   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3209                 SourceLocation());
3210 
3211   // This function should not be affected by blacklist. This function does
3212   // not have a source location, but "src:*" would still apply. Revert any
3213   // changes to SanOpts made in StartFunction.
3214   SanOpts = CGM.getLangOpts().Sanitize;
3215 
3216   llvm::Value *Data =
3217       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3218                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3219   llvm::Value *Addr =
3220       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3221                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3222 
3223   // Data == nullptr means the calling module has trap behaviour for this check.
3224   llvm::Value *DataIsNotNullPtr =
3225       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3226   EmitTrapCheck(DataIsNotNullPtr);
3227 
3228   llvm::StructType *SourceLocationTy =
3229       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3230   llvm::StructType *CfiCheckFailDataTy =
3231       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3232 
3233   llvm::Value *V = Builder.CreateConstGEP2_32(
3234       CfiCheckFailDataTy,
3235       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3236       0);
3237   Address CheckKindAddr(V, getIntAlign());
3238   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3239 
3240   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3241       CGM.getLLVMContext(),
3242       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3243   llvm::Value *ValidVtable = Builder.CreateZExt(
3244       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3245                          {Addr, AllVtables}),
3246       IntPtrTy);
3247 
3248   const std::pair<int, SanitizerMask> CheckKinds[] = {
3249       {CFITCK_VCall, SanitizerKind::CFIVCall},
3250       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3251       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3252       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3253       {CFITCK_ICall, SanitizerKind::CFIICall}};
3254 
3255   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3256   for (auto CheckKindMaskPair : CheckKinds) {
3257     int Kind = CheckKindMaskPair.first;
3258     SanitizerMask Mask = CheckKindMaskPair.second;
3259     llvm::Value *Cond =
3260         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3261     if (CGM.getLangOpts().Sanitize.has(Mask))
3262       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3263                 {Data, Addr, ValidVtable});
3264     else
3265       EmitTrapCheck(Cond);
3266   }
3267 
3268   FinishFunction();
3269   // The only reference to this function will be created during LTO link.
3270   // Make sure it survives until then.
3271   CGM.addUsedGlobal(F);
3272 }
3273 
3274 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3275   if (SanOpts.has(SanitizerKind::Unreachable)) {
3276     SanitizerScope SanScope(this);
3277     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3278                              SanitizerKind::Unreachable),
3279               SanitizerHandler::BuiltinUnreachable,
3280               EmitCheckSourceLocation(Loc), None);
3281   }
3282   Builder.CreateUnreachable();
3283 }
3284 
3285 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3286   llvm::BasicBlock *Cont = createBasicBlock("cont");
3287 
3288   // If we're optimizing, collapse all calls to trap down to just one per
3289   // function to save on code size.
3290   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3291     TrapBB = createBasicBlock("trap");
3292     Builder.CreateCondBr(Checked, Cont, TrapBB);
3293     EmitBlock(TrapBB);
3294     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3295     TrapCall->setDoesNotReturn();
3296     TrapCall->setDoesNotThrow();
3297     Builder.CreateUnreachable();
3298   } else {
3299     Builder.CreateCondBr(Checked, Cont, TrapBB);
3300   }
3301 
3302   EmitBlock(Cont);
3303 }
3304 
3305 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3306   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3307 
3308   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3309     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3310                                   CGM.getCodeGenOpts().TrapFuncName);
3311     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3312   }
3313 
3314   return TrapCall;
3315 }
3316 
3317 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3318                                                  LValueBaseInfo *BaseInfo,
3319                                                  TBAAAccessInfo *TBAAInfo) {
3320   assert(E->getType()->isArrayType() &&
3321          "Array to pointer decay must have array source type!");
3322 
3323   // Expressions of array type can't be bitfields or vector elements.
3324   LValue LV = EmitLValue(E);
3325   Address Addr = LV.getAddress();
3326 
3327   // If the array type was an incomplete type, we need to make sure
3328   // the decay ends up being the right type.
3329   llvm::Type *NewTy = ConvertType(E->getType());
3330   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3331 
3332   // Note that VLA pointers are always decayed, so we don't need to do
3333   // anything here.
3334   if (!E->getType()->isVariableArrayType()) {
3335     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3336            "Expected pointer to array");
3337     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3338   }
3339 
3340   // The result of this decay conversion points to an array element within the
3341   // base lvalue. However, since TBAA currently does not support representing
3342   // accesses to elements of member arrays, we conservatively represent accesses
3343   // to the pointee object as if it had no any base lvalue specified.
3344   // TODO: Support TBAA for member arrays.
3345   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3346   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3347   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3348 
3349   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3350 }
3351 
3352 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3353 /// array to pointer, return the array subexpression.
3354 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3355   // If this isn't just an array->pointer decay, bail out.
3356   const auto *CE = dyn_cast<CastExpr>(E);
3357   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3358     return nullptr;
3359 
3360   // If this is a decay from variable width array, bail out.
3361   const Expr *SubExpr = CE->getSubExpr();
3362   if (SubExpr->getType()->isVariableArrayType())
3363     return nullptr;
3364 
3365   return SubExpr;
3366 }
3367 
3368 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3369                                           llvm::Value *ptr,
3370                                           ArrayRef<llvm::Value*> indices,
3371                                           bool inbounds,
3372                                           bool signedIndices,
3373                                           SourceLocation loc,
3374                                     const llvm::Twine &name = "arrayidx") {
3375   if (inbounds) {
3376     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3377                                       CodeGenFunction::NotSubtraction, loc,
3378                                       name);
3379   } else {
3380     return CGF.Builder.CreateGEP(ptr, indices, name);
3381   }
3382 }
3383 
3384 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3385                                       llvm::Value *idx,
3386                                       CharUnits eltSize) {
3387   // If we have a constant index, we can use the exact offset of the
3388   // element we're accessing.
3389   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3390     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3391     return arrayAlign.alignmentAtOffset(offset);
3392 
3393   // Otherwise, use the worst-case alignment for any element.
3394   } else {
3395     return arrayAlign.alignmentOfArrayElement(eltSize);
3396   }
3397 }
3398 
3399 static QualType getFixedSizeElementType(const ASTContext &ctx,
3400                                         const VariableArrayType *vla) {
3401   QualType eltType;
3402   do {
3403     eltType = vla->getElementType();
3404   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3405   return eltType;
3406 }
3407 
3408 /// Given an array base, check whether its member access belongs to a record
3409 /// with preserve_access_index attribute or not.
3410 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3411   if (!ArrayBase || !CGF.getDebugInfo())
3412     return false;
3413 
3414   // Only support base as either a MemberExpr or DeclRefExpr.
3415   // DeclRefExpr to cover cases like:
3416   //    struct s { int a; int b[10]; };
3417   //    struct s *p;
3418   //    p[1].a
3419   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3420   // p->b[5] is a MemberExpr example.
3421   const Expr *E = ArrayBase->IgnoreImpCasts();
3422   if (const auto *ME = dyn_cast<MemberExpr>(E))
3423     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3424 
3425   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3426     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3427     if (!VarDef)
3428       return false;
3429 
3430     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3431     if (!PtrT)
3432       return false;
3433 
3434     const auto *PointeeT = PtrT->getPointeeType()
3435                              ->getUnqualifiedDesugaredType();
3436     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3437       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3438     return false;
3439   }
3440 
3441   return false;
3442 }
3443 
3444 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3445                                      ArrayRef<llvm::Value *> indices,
3446                                      QualType eltType, bool inbounds,
3447                                      bool signedIndices, SourceLocation loc,
3448                                      QualType *arrayType = nullptr,
3449                                      const Expr *Base = nullptr,
3450                                      const llvm::Twine &name = "arrayidx") {
3451   // All the indices except that last must be zero.
3452 #ifndef NDEBUG
3453   for (auto idx : indices.drop_back())
3454     assert(isa<llvm::ConstantInt>(idx) &&
3455            cast<llvm::ConstantInt>(idx)->isZero());
3456 #endif
3457 
3458   // Determine the element size of the statically-sized base.  This is
3459   // the thing that the indices are expressed in terms of.
3460   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3461     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3462   }
3463 
3464   // We can use that to compute the best alignment of the element.
3465   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3466   CharUnits eltAlign =
3467     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3468 
3469   llvm::Value *eltPtr;
3470   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3471   if (!LastIndex ||
3472       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3473     eltPtr = emitArraySubscriptGEP(
3474         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3475         loc, name);
3476   } else {
3477     // Remember the original array subscript for bpf target
3478     unsigned idx = LastIndex->getZExtValue();
3479     llvm::DIType *DbgInfo = nullptr;
3480     if (arrayType)
3481       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3482     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3483                                                         addr.getPointer(),
3484                                                         indices.size() - 1,
3485                                                         idx, DbgInfo);
3486   }
3487 
3488   return Address(eltPtr, eltAlign);
3489 }
3490 
3491 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3492                                                bool Accessed) {
3493   // The index must always be an integer, which is not an aggregate.  Emit it
3494   // in lexical order (this complexity is, sadly, required by C++17).
3495   llvm::Value *IdxPre =
3496       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3497   bool SignedIndices = false;
3498   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3499     auto *Idx = IdxPre;
3500     if (E->getLHS() != E->getIdx()) {
3501       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3502       Idx = EmitScalarExpr(E->getIdx());
3503     }
3504 
3505     QualType IdxTy = E->getIdx()->getType();
3506     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3507     SignedIndices |= IdxSigned;
3508 
3509     if (SanOpts.has(SanitizerKind::ArrayBounds))
3510       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3511 
3512     // Extend or truncate the index type to 32 or 64-bits.
3513     if (Promote && Idx->getType() != IntPtrTy)
3514       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3515 
3516     return Idx;
3517   };
3518   IdxPre = nullptr;
3519 
3520   // If the base is a vector type, then we are forming a vector element lvalue
3521   // with this subscript.
3522   if (E->getBase()->getType()->isVectorType() &&
3523       !isa<ExtVectorElementExpr>(E->getBase())) {
3524     // Emit the vector as an lvalue to get its address.
3525     LValue LHS = EmitLValue(E->getBase());
3526     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3527     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3528     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3529                                  LHS.getBaseInfo(), TBAAAccessInfo());
3530   }
3531 
3532   // All the other cases basically behave like simple offsetting.
3533 
3534   // Handle the extvector case we ignored above.
3535   if (isa<ExtVectorElementExpr>(E->getBase())) {
3536     LValue LV = EmitLValue(E->getBase());
3537     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3538     Address Addr = EmitExtVectorElementLValue(LV);
3539 
3540     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3541     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3542                                  SignedIndices, E->getExprLoc());
3543     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3544                           CGM.getTBAAInfoForSubobject(LV, EltType));
3545   }
3546 
3547   LValueBaseInfo EltBaseInfo;
3548   TBAAAccessInfo EltTBAAInfo;
3549   Address Addr = Address::invalid();
3550   if (const VariableArrayType *vla =
3551            getContext().getAsVariableArrayType(E->getType())) {
3552     // The base must be a pointer, which is not an aggregate.  Emit
3553     // it.  It needs to be emitted first in case it's what captures
3554     // the VLA bounds.
3555     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3556     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3557 
3558     // The element count here is the total number of non-VLA elements.
3559     llvm::Value *numElements = getVLASize(vla).NumElts;
3560 
3561     // Effectively, the multiply by the VLA size is part of the GEP.
3562     // GEP indexes are signed, and scaling an index isn't permitted to
3563     // signed-overflow, so we use the same semantics for our explicit
3564     // multiply.  We suppress this if overflow is not undefined behavior.
3565     if (getLangOpts().isSignedOverflowDefined()) {
3566       Idx = Builder.CreateMul(Idx, numElements);
3567     } else {
3568       Idx = Builder.CreateNSWMul(Idx, numElements);
3569     }
3570 
3571     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3572                                  !getLangOpts().isSignedOverflowDefined(),
3573                                  SignedIndices, E->getExprLoc());
3574 
3575   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3576     // Indexing over an interface, as in "NSString *P; P[4];"
3577 
3578     // Emit the base pointer.
3579     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3580     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3581 
3582     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3583     llvm::Value *InterfaceSizeVal =
3584         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3585 
3586     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3587 
3588     // We don't necessarily build correct LLVM struct types for ObjC
3589     // interfaces, so we can't rely on GEP to do this scaling
3590     // correctly, so we need to cast to i8*.  FIXME: is this actually
3591     // true?  A lot of other things in the fragile ABI would break...
3592     llvm::Type *OrigBaseTy = Addr.getType();
3593     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3594 
3595     // Do the GEP.
3596     CharUnits EltAlign =
3597       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3598     llvm::Value *EltPtr =
3599         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3600                               SignedIndices, E->getExprLoc());
3601     Addr = Address(EltPtr, EltAlign);
3602 
3603     // Cast back.
3604     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3605   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3606     // If this is A[i] where A is an array, the frontend will have decayed the
3607     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3608     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3609     // "gep x, i" here.  Emit one "gep A, 0, i".
3610     assert(Array->getType()->isArrayType() &&
3611            "Array to pointer decay must have array source type!");
3612     LValue ArrayLV;
3613     // For simple multidimensional array indexing, set the 'accessed' flag for
3614     // better bounds-checking of the base expression.
3615     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3616       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3617     else
3618       ArrayLV = EmitLValue(Array);
3619     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3620 
3621     // Propagate the alignment from the array itself to the result.
3622     QualType arrayType = Array->getType();
3623     Addr = emitArraySubscriptGEP(
3624         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3625         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3626         E->getExprLoc(), &arrayType, E->getBase());
3627     EltBaseInfo = ArrayLV.getBaseInfo();
3628     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3629   } else {
3630     // The base must be a pointer; emit it with an estimate of its alignment.
3631     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3632     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3633     QualType ptrType = E->getBase()->getType();
3634     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3635                                  !getLangOpts().isSignedOverflowDefined(),
3636                                  SignedIndices, E->getExprLoc(), &ptrType,
3637                                  E->getBase());
3638   }
3639 
3640   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3641 
3642   if (getLangOpts().ObjC &&
3643       getLangOpts().getGC() != LangOptions::NonGC) {
3644     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3645     setObjCGCLValueClass(getContext(), E, LV);
3646   }
3647   return LV;
3648 }
3649 
3650 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3651                                        LValueBaseInfo &BaseInfo,
3652                                        TBAAAccessInfo &TBAAInfo,
3653                                        QualType BaseTy, QualType ElTy,
3654                                        bool IsLowerBound) {
3655   LValue BaseLVal;
3656   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3657     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3658     if (BaseTy->isArrayType()) {
3659       Address Addr = BaseLVal.getAddress();
3660       BaseInfo = BaseLVal.getBaseInfo();
3661 
3662       // If the array type was an incomplete type, we need to make sure
3663       // the decay ends up being the right type.
3664       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3665       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3666 
3667       // Note that VLA pointers are always decayed, so we don't need to do
3668       // anything here.
3669       if (!BaseTy->isVariableArrayType()) {
3670         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3671                "Expected pointer to array");
3672         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3673       }
3674 
3675       return CGF.Builder.CreateElementBitCast(Addr,
3676                                               CGF.ConvertTypeForMem(ElTy));
3677     }
3678     LValueBaseInfo TypeBaseInfo;
3679     TBAAAccessInfo TypeTBAAInfo;
3680     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3681                                                   &TypeTBAAInfo);
3682     BaseInfo.mergeForCast(TypeBaseInfo);
3683     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3684     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3685   }
3686   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3687 }
3688 
3689 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3690                                                 bool IsLowerBound) {
3691   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3692   QualType ResultExprTy;
3693   if (auto *AT = getContext().getAsArrayType(BaseTy))
3694     ResultExprTy = AT->getElementType();
3695   else
3696     ResultExprTy = BaseTy->getPointeeType();
3697   llvm::Value *Idx = nullptr;
3698   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3699     // Requesting lower bound or upper bound, but without provided length and
3700     // without ':' symbol for the default length -> length = 1.
3701     // Idx = LowerBound ?: 0;
3702     if (auto *LowerBound = E->getLowerBound()) {
3703       Idx = Builder.CreateIntCast(
3704           EmitScalarExpr(LowerBound), IntPtrTy,
3705           LowerBound->getType()->hasSignedIntegerRepresentation());
3706     } else
3707       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3708   } else {
3709     // Try to emit length or lower bound as constant. If this is possible, 1
3710     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3711     // IR (LB + Len) - 1.
3712     auto &C = CGM.getContext();
3713     auto *Length = E->getLength();
3714     llvm::APSInt ConstLength;
3715     if (Length) {
3716       // Idx = LowerBound + Length - 1;
3717       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3718         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3719         Length = nullptr;
3720       }
3721       auto *LowerBound = E->getLowerBound();
3722       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3723       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3724         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3725         LowerBound = nullptr;
3726       }
3727       if (!Length)
3728         --ConstLength;
3729       else if (!LowerBound)
3730         --ConstLowerBound;
3731 
3732       if (Length || LowerBound) {
3733         auto *LowerBoundVal =
3734             LowerBound
3735                 ? Builder.CreateIntCast(
3736                       EmitScalarExpr(LowerBound), IntPtrTy,
3737                       LowerBound->getType()->hasSignedIntegerRepresentation())
3738                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3739         auto *LengthVal =
3740             Length
3741                 ? Builder.CreateIntCast(
3742                       EmitScalarExpr(Length), IntPtrTy,
3743                       Length->getType()->hasSignedIntegerRepresentation())
3744                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3745         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3746                                 /*HasNUW=*/false,
3747                                 !getLangOpts().isSignedOverflowDefined());
3748         if (Length && LowerBound) {
3749           Idx = Builder.CreateSub(
3750               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3751               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3752         }
3753       } else
3754         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3755     } else {
3756       // Idx = ArraySize - 1;
3757       QualType ArrayTy = BaseTy->isPointerType()
3758                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3759                              : BaseTy;
3760       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3761         Length = VAT->getSizeExpr();
3762         if (Length->isIntegerConstantExpr(ConstLength, C))
3763           Length = nullptr;
3764       } else {
3765         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3766         ConstLength = CAT->getSize();
3767       }
3768       if (Length) {
3769         auto *LengthVal = Builder.CreateIntCast(
3770             EmitScalarExpr(Length), IntPtrTy,
3771             Length->getType()->hasSignedIntegerRepresentation());
3772         Idx = Builder.CreateSub(
3773             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3774             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3775       } else {
3776         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3777         --ConstLength;
3778         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3779       }
3780     }
3781   }
3782   assert(Idx);
3783 
3784   Address EltPtr = Address::invalid();
3785   LValueBaseInfo BaseInfo;
3786   TBAAAccessInfo TBAAInfo;
3787   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3788     // The base must be a pointer, which is not an aggregate.  Emit
3789     // it.  It needs to be emitted first in case it's what captures
3790     // the VLA bounds.
3791     Address Base =
3792         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3793                                 BaseTy, VLA->getElementType(), IsLowerBound);
3794     // The element count here is the total number of non-VLA elements.
3795     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3796 
3797     // Effectively, the multiply by the VLA size is part of the GEP.
3798     // GEP indexes are signed, and scaling an index isn't permitted to
3799     // signed-overflow, so we use the same semantics for our explicit
3800     // multiply.  We suppress this if overflow is not undefined behavior.
3801     if (getLangOpts().isSignedOverflowDefined())
3802       Idx = Builder.CreateMul(Idx, NumElements);
3803     else
3804       Idx = Builder.CreateNSWMul(Idx, NumElements);
3805     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3806                                    !getLangOpts().isSignedOverflowDefined(),
3807                                    /*signedIndices=*/false, E->getExprLoc());
3808   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3809     // If this is A[i] where A is an array, the frontend will have decayed the
3810     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3811     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3812     // "gep x, i" here.  Emit one "gep A, 0, i".
3813     assert(Array->getType()->isArrayType() &&
3814            "Array to pointer decay must have array source type!");
3815     LValue ArrayLV;
3816     // For simple multidimensional array indexing, set the 'accessed' flag for
3817     // better bounds-checking of the base expression.
3818     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3819       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3820     else
3821       ArrayLV = EmitLValue(Array);
3822 
3823     // Propagate the alignment from the array itself to the result.
3824     EltPtr = emitArraySubscriptGEP(
3825         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3826         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3827         /*signedIndices=*/false, E->getExprLoc());
3828     BaseInfo = ArrayLV.getBaseInfo();
3829     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3830   } else {
3831     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3832                                            TBAAInfo, BaseTy, ResultExprTy,
3833                                            IsLowerBound);
3834     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3835                                    !getLangOpts().isSignedOverflowDefined(),
3836                                    /*signedIndices=*/false, E->getExprLoc());
3837   }
3838 
3839   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3840 }
3841 
3842 LValue CodeGenFunction::
3843 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3844   // Emit the base vector as an l-value.
3845   LValue Base;
3846 
3847   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3848   if (E->isArrow()) {
3849     // If it is a pointer to a vector, emit the address and form an lvalue with
3850     // it.
3851     LValueBaseInfo BaseInfo;
3852     TBAAAccessInfo TBAAInfo;
3853     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3854     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3855     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3856     Base.getQuals().removeObjCGCAttr();
3857   } else if (E->getBase()->isGLValue()) {
3858     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3859     // emit the base as an lvalue.
3860     assert(E->getBase()->getType()->isVectorType());
3861     Base = EmitLValue(E->getBase());
3862   } else {
3863     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3864     assert(E->getBase()->getType()->isVectorType() &&
3865            "Result must be a vector");
3866     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3867 
3868     // Store the vector to memory (because LValue wants an address).
3869     Address VecMem = CreateMemTemp(E->getBase()->getType());
3870     Builder.CreateStore(Vec, VecMem);
3871     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3872                           AlignmentSource::Decl);
3873   }
3874 
3875   QualType type =
3876     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3877 
3878   // Encode the element access list into a vector of unsigned indices.
3879   SmallVector<uint32_t, 4> Indices;
3880   E->getEncodedElementAccess(Indices);
3881 
3882   if (Base.isSimple()) {
3883     llvm::Constant *CV =
3884         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3885     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3886                                     Base.getBaseInfo(), TBAAAccessInfo());
3887   }
3888   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3889 
3890   llvm::Constant *BaseElts = Base.getExtVectorElts();
3891   SmallVector<llvm::Constant *, 4> CElts;
3892 
3893   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3894     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3895   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3896   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3897                                   Base.getBaseInfo(), TBAAAccessInfo());
3898 }
3899 
3900 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3901   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3902     EmitIgnoredExpr(E->getBase());
3903     return EmitDeclRefLValue(DRE);
3904   }
3905 
3906   Expr *BaseExpr = E->getBase();
3907   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3908   LValue BaseLV;
3909   if (E->isArrow()) {
3910     LValueBaseInfo BaseInfo;
3911     TBAAAccessInfo TBAAInfo;
3912     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3913     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3914     SanitizerSet SkippedChecks;
3915     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3916     if (IsBaseCXXThis)
3917       SkippedChecks.set(SanitizerKind::Alignment, true);
3918     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3919       SkippedChecks.set(SanitizerKind::Null, true);
3920     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3921                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3922     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3923   } else
3924     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3925 
3926   NamedDecl *ND = E->getMemberDecl();
3927   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3928     LValue LV = EmitLValueForField(BaseLV, Field);
3929     setObjCGCLValueClass(getContext(), E, LV);
3930     return LV;
3931   }
3932 
3933   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3934     return EmitFunctionDeclLValue(*this, E, FD);
3935 
3936   llvm_unreachable("Unhandled member declaration!");
3937 }
3938 
3939 /// Given that we are currently emitting a lambda, emit an l-value for
3940 /// one of its members.
3941 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3942   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3943   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3944   QualType LambdaTagType =
3945     getContext().getTagDeclType(Field->getParent());
3946   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3947   return EmitLValueForField(LambdaLV, Field);
3948 }
3949 
3950 /// Get the field index in the debug info. The debug info structure/union
3951 /// will ignore the unnamed bitfields.
3952 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3953                                              unsigned FieldIndex) {
3954   unsigned I = 0, Skipped = 0;
3955 
3956   for (auto F : Rec->getDefinition()->fields()) {
3957     if (I == FieldIndex)
3958       break;
3959     if (F->isUnnamedBitfield())
3960       Skipped++;
3961     I++;
3962   }
3963 
3964   return FieldIndex - Skipped;
3965 }
3966 
3967 /// Get the address of a zero-sized field within a record. The resulting
3968 /// address doesn't necessarily have the right type.
3969 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3970                                        const FieldDecl *Field) {
3971   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
3972       CGF.getContext().getFieldOffset(Field));
3973   if (Offset.isZero())
3974     return Base;
3975   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
3976   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
3977 }
3978 
3979 /// Drill down to the storage of a field without walking into
3980 /// reference types.
3981 ///
3982 /// The resulting address doesn't necessarily have the right type.
3983 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3984                                       const FieldDecl *field) {
3985   if (field->isZeroSize(CGF.getContext()))
3986     return emitAddrOfZeroSizeField(CGF, base, field);
3987 
3988   const RecordDecl *rec = field->getParent();
3989 
3990   unsigned idx =
3991     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3992 
3993   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3994 }
3995 
3996 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
3997                                         const FieldDecl *field) {
3998   const RecordDecl *rec = field->getParent();
3999   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
4000       CGF.getContext().getRecordType(rec), rec->getLocation());
4001 
4002   unsigned idx =
4003       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4004 
4005   return CGF.Builder.CreatePreserveStructAccessIndex(
4006       base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4007 }
4008 
4009 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4010   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4011   if (!RD)
4012     return false;
4013 
4014   if (RD->isDynamicClass())
4015     return true;
4016 
4017   for (const auto &Base : RD->bases())
4018     if (hasAnyVptr(Base.getType(), Context))
4019       return true;
4020 
4021   for (const FieldDecl *Field : RD->fields())
4022     if (hasAnyVptr(Field->getType(), Context))
4023       return true;
4024 
4025   return false;
4026 }
4027 
4028 LValue CodeGenFunction::EmitLValueForField(LValue base,
4029                                            const FieldDecl *field) {
4030   LValueBaseInfo BaseInfo = base.getBaseInfo();
4031 
4032   if (field->isBitField()) {
4033     const CGRecordLayout &RL =
4034       CGM.getTypes().getCGRecordLayout(field->getParent());
4035     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4036     Address Addr = base.getAddress();
4037     unsigned Idx = RL.getLLVMFieldNo(field);
4038     const RecordDecl *rec = field->getParent();
4039     if (!IsInPreservedAIRegion &&
4040         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4041       if (Idx != 0)
4042         // For structs, we GEP to the field that the record layout suggests.
4043         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4044     } else {
4045       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4046           getContext().getRecordType(rec), rec->getLocation());
4047       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4048           getDebugInfoFIndex(rec, field->getFieldIndex()),
4049           DbgInfo);
4050     }
4051 
4052     // Get the access type.
4053     llvm::Type *FieldIntTy =
4054       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4055     if (Addr.getElementType() != FieldIntTy)
4056       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4057 
4058     QualType fieldType =
4059       field->getType().withCVRQualifiers(base.getVRQualifiers());
4060     // TODO: Support TBAA for bit fields.
4061     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4062     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4063                                 TBAAAccessInfo());
4064   }
4065 
4066   // Fields of may-alias structures are may-alias themselves.
4067   // FIXME: this should get propagated down through anonymous structs
4068   // and unions.
4069   QualType FieldType = field->getType();
4070   const RecordDecl *rec = field->getParent();
4071   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4072   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4073   TBAAAccessInfo FieldTBAAInfo;
4074   if (base.getTBAAInfo().isMayAlias() ||
4075           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4076     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4077   } else if (rec->isUnion()) {
4078     // TODO: Support TBAA for unions.
4079     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4080   } else {
4081     // If no base type been assigned for the base access, then try to generate
4082     // one for this base lvalue.
4083     FieldTBAAInfo = base.getTBAAInfo();
4084     if (!FieldTBAAInfo.BaseType) {
4085         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4086         assert(!FieldTBAAInfo.Offset &&
4087                "Nonzero offset for an access with no base type!");
4088     }
4089 
4090     // Adjust offset to be relative to the base type.
4091     const ASTRecordLayout &Layout =
4092         getContext().getASTRecordLayout(field->getParent());
4093     unsigned CharWidth = getContext().getCharWidth();
4094     if (FieldTBAAInfo.BaseType)
4095       FieldTBAAInfo.Offset +=
4096           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4097 
4098     // Update the final access type and size.
4099     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4100     FieldTBAAInfo.Size =
4101         getContext().getTypeSizeInChars(FieldType).getQuantity();
4102   }
4103 
4104   Address addr = base.getAddress();
4105   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4106     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4107         ClassDef->isDynamicClass()) {
4108       // Getting to any field of dynamic object requires stripping dynamic
4109       // information provided by invariant.group.  This is because accessing
4110       // fields may leak the real address of dynamic object, which could result
4111       // in miscompilation when leaked pointer would be compared.
4112       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4113       addr = Address(stripped, addr.getAlignment());
4114     }
4115   }
4116 
4117   unsigned RecordCVR = base.getVRQualifiers();
4118   if (rec->isUnion()) {
4119     // For unions, there is no pointer adjustment.
4120     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4121         hasAnyVptr(FieldType, getContext()))
4122       // Because unions can easily skip invariant.barriers, we need to add
4123       // a barrier every time CXXRecord field with vptr is referenced.
4124       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4125                      addr.getAlignment());
4126 
4127     if (IsInPreservedAIRegion ||
4128         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4129       // Remember the original union field index
4130       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4131           getContext().getRecordType(rec), rec->getLocation());
4132       addr = Address(
4133           Builder.CreatePreserveUnionAccessIndex(
4134               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4135           addr.getAlignment());
4136     }
4137 
4138     if (FieldType->isReferenceType())
4139       addr = Builder.CreateElementBitCast(
4140           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4141   } else {
4142     if (!IsInPreservedAIRegion &&
4143         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4144       // For structs, we GEP to the field that the record layout suggests.
4145       addr = emitAddrOfFieldStorage(*this, addr, field);
4146     else
4147       // Remember the original struct field index
4148       addr = emitPreserveStructAccess(*this, addr, field);
4149   }
4150 
4151   // If this is a reference field, load the reference right now.
4152   if (FieldType->isReferenceType()) {
4153     LValue RefLVal =
4154         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4155     if (RecordCVR & Qualifiers::Volatile)
4156       RefLVal.getQuals().addVolatile();
4157     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4158 
4159     // Qualifiers on the struct don't apply to the referencee.
4160     RecordCVR = 0;
4161     FieldType = FieldType->getPointeeType();
4162   }
4163 
4164   // Make sure that the address is pointing to the right type.  This is critical
4165   // for both unions and structs.  A union needs a bitcast, a struct element
4166   // will need a bitcast if the LLVM type laid out doesn't match the desired
4167   // type.
4168   addr = Builder.CreateElementBitCast(
4169       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4170 
4171   if (field->hasAttr<AnnotateAttr>())
4172     addr = EmitFieldAnnotations(field, addr);
4173 
4174   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4175   LV.getQuals().addCVRQualifiers(RecordCVR);
4176 
4177   // __weak attribute on a field is ignored.
4178   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4179     LV.getQuals().removeObjCGCAttr();
4180 
4181   return LV;
4182 }
4183 
4184 LValue
4185 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4186                                                   const FieldDecl *Field) {
4187   QualType FieldType = Field->getType();
4188 
4189   if (!FieldType->isReferenceType())
4190     return EmitLValueForField(Base, Field);
4191 
4192   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4193 
4194   // Make sure that the address is pointing to the right type.
4195   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4196   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4197 
4198   // TODO: Generate TBAA information that describes this access as a structure
4199   // member access and not just an access to an object of the field's type. This
4200   // should be similar to what we do in EmitLValueForField().
4201   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4202   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4203   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4204   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4205                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4206 }
4207 
4208 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4209   if (E->isFileScope()) {
4210     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4211     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4212   }
4213   if (E->getType()->isVariablyModifiedType())
4214     // make sure to emit the VLA size.
4215     EmitVariablyModifiedType(E->getType());
4216 
4217   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4218   const Expr *InitExpr = E->getInitializer();
4219   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4220 
4221   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4222                    /*Init*/ true);
4223 
4224   return Result;
4225 }
4226 
4227 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4228   if (!E->isGLValue())
4229     // Initializing an aggregate temporary in C++11: T{...}.
4230     return EmitAggExprToLValue(E);
4231 
4232   // An lvalue initializer list must be initializing a reference.
4233   assert(E->isTransparent() && "non-transparent glvalue init list");
4234   return EmitLValue(E->getInit(0));
4235 }
4236 
4237 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4238 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4239 /// LValue is returned and the current block has been terminated.
4240 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4241                                                     const Expr *Operand) {
4242   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4243     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4244     return None;
4245   }
4246 
4247   return CGF.EmitLValue(Operand);
4248 }
4249 
4250 LValue CodeGenFunction::
4251 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4252   if (!expr->isGLValue()) {
4253     // ?: here should be an aggregate.
4254     assert(hasAggregateEvaluationKind(expr->getType()) &&
4255            "Unexpected conditional operator!");
4256     return EmitAggExprToLValue(expr);
4257   }
4258 
4259   OpaqueValueMapping binding(*this, expr);
4260 
4261   const Expr *condExpr = expr->getCond();
4262   bool CondExprBool;
4263   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4264     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4265     if (!CondExprBool) std::swap(live, dead);
4266 
4267     if (!ContainsLabel(dead)) {
4268       // If the true case is live, we need to track its region.
4269       if (CondExprBool)
4270         incrementProfileCounter(expr);
4271       return EmitLValue(live);
4272     }
4273   }
4274 
4275   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4276   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4277   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4278 
4279   ConditionalEvaluation eval(*this);
4280   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4281 
4282   // Any temporaries created here are conditional.
4283   EmitBlock(lhsBlock);
4284   incrementProfileCounter(expr);
4285   eval.begin(*this);
4286   Optional<LValue> lhs =
4287       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4288   eval.end(*this);
4289 
4290   if (lhs && !lhs->isSimple())
4291     return EmitUnsupportedLValue(expr, "conditional operator");
4292 
4293   lhsBlock = Builder.GetInsertBlock();
4294   if (lhs)
4295     Builder.CreateBr(contBlock);
4296 
4297   // Any temporaries created here are conditional.
4298   EmitBlock(rhsBlock);
4299   eval.begin(*this);
4300   Optional<LValue> rhs =
4301       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4302   eval.end(*this);
4303   if (rhs && !rhs->isSimple())
4304     return EmitUnsupportedLValue(expr, "conditional operator");
4305   rhsBlock = Builder.GetInsertBlock();
4306 
4307   EmitBlock(contBlock);
4308 
4309   if (lhs && rhs) {
4310     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4311                                            2, "cond-lvalue");
4312     phi->addIncoming(lhs->getPointer(), lhsBlock);
4313     phi->addIncoming(rhs->getPointer(), rhsBlock);
4314     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4315     AlignmentSource alignSource =
4316       std::max(lhs->getBaseInfo().getAlignmentSource(),
4317                rhs->getBaseInfo().getAlignmentSource());
4318     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4319         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4320     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4321                           TBAAInfo);
4322   } else {
4323     assert((lhs || rhs) &&
4324            "both operands of glvalue conditional are throw-expressions?");
4325     return lhs ? *lhs : *rhs;
4326   }
4327 }
4328 
4329 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4330 /// type. If the cast is to a reference, we can have the usual lvalue result,
4331 /// otherwise if a cast is needed by the code generator in an lvalue context,
4332 /// then it must mean that we need the address of an aggregate in order to
4333 /// access one of its members.  This can happen for all the reasons that casts
4334 /// are permitted with aggregate result, including noop aggregate casts, and
4335 /// cast from scalar to union.
4336 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4337   switch (E->getCastKind()) {
4338   case CK_ToVoid:
4339   case CK_BitCast:
4340   case CK_LValueToRValueBitCast:
4341   case CK_ArrayToPointerDecay:
4342   case CK_FunctionToPointerDecay:
4343   case CK_NullToMemberPointer:
4344   case CK_NullToPointer:
4345   case CK_IntegralToPointer:
4346   case CK_PointerToIntegral:
4347   case CK_PointerToBoolean:
4348   case CK_VectorSplat:
4349   case CK_IntegralCast:
4350   case CK_BooleanToSignedIntegral:
4351   case CK_IntegralToBoolean:
4352   case CK_IntegralToFloating:
4353   case CK_FloatingToIntegral:
4354   case CK_FloatingToBoolean:
4355   case CK_FloatingCast:
4356   case CK_FloatingRealToComplex:
4357   case CK_FloatingComplexToReal:
4358   case CK_FloatingComplexToBoolean:
4359   case CK_FloatingComplexCast:
4360   case CK_FloatingComplexToIntegralComplex:
4361   case CK_IntegralRealToComplex:
4362   case CK_IntegralComplexToReal:
4363   case CK_IntegralComplexToBoolean:
4364   case CK_IntegralComplexCast:
4365   case CK_IntegralComplexToFloatingComplex:
4366   case CK_DerivedToBaseMemberPointer:
4367   case CK_BaseToDerivedMemberPointer:
4368   case CK_MemberPointerToBoolean:
4369   case CK_ReinterpretMemberPointer:
4370   case CK_AnyPointerToBlockPointerCast:
4371   case CK_ARCProduceObject:
4372   case CK_ARCConsumeObject:
4373   case CK_ARCReclaimReturnedObject:
4374   case CK_ARCExtendBlockObject:
4375   case CK_CopyAndAutoreleaseBlockObject:
4376   case CK_IntToOCLSampler:
4377   case CK_FixedPointCast:
4378   case CK_FixedPointToBoolean:
4379   case CK_FixedPointToIntegral:
4380   case CK_IntegralToFixedPoint:
4381     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4382 
4383   case CK_Dependent:
4384     llvm_unreachable("dependent cast kind in IR gen!");
4385 
4386   case CK_BuiltinFnToFnPtr:
4387     llvm_unreachable("builtin functions are handled elsewhere");
4388 
4389   // These are never l-values; just use the aggregate emission code.
4390   case CK_NonAtomicToAtomic:
4391   case CK_AtomicToNonAtomic:
4392     return EmitAggExprToLValue(E);
4393 
4394   case CK_Dynamic: {
4395     LValue LV = EmitLValue(E->getSubExpr());
4396     Address V = LV.getAddress();
4397     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4398     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4399   }
4400 
4401   case CK_ConstructorConversion:
4402   case CK_UserDefinedConversion:
4403   case CK_CPointerToObjCPointerCast:
4404   case CK_BlockPointerToObjCPointerCast:
4405   case CK_NoOp:
4406   case CK_LValueToRValue:
4407     return EmitLValue(E->getSubExpr());
4408 
4409   case CK_UncheckedDerivedToBase:
4410   case CK_DerivedToBase: {
4411     const RecordType *DerivedClassTy =
4412       E->getSubExpr()->getType()->getAs<RecordType>();
4413     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4414 
4415     LValue LV = EmitLValue(E->getSubExpr());
4416     Address This = LV.getAddress();
4417 
4418     // Perform the derived-to-base conversion
4419     Address Base = GetAddressOfBaseClass(
4420         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4421         /*NullCheckValue=*/false, E->getExprLoc());
4422 
4423     // TODO: Support accesses to members of base classes in TBAA. For now, we
4424     // conservatively pretend that the complete object is of the base class
4425     // type.
4426     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4427                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4428   }
4429   case CK_ToUnion:
4430     return EmitAggExprToLValue(E);
4431   case CK_BaseToDerived: {
4432     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4433     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4434 
4435     LValue LV = EmitLValue(E->getSubExpr());
4436 
4437     // Perform the base-to-derived conversion
4438     Address Derived =
4439       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4440                                E->path_begin(), E->path_end(),
4441                                /*NullCheckValue=*/false);
4442 
4443     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4444     // performed and the object is not of the derived type.
4445     if (sanitizePerformTypeCheck())
4446       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4447                     Derived.getPointer(), E->getType());
4448 
4449     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4450       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4451                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4452                                 E->getBeginLoc());
4453 
4454     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4455                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4456   }
4457   case CK_LValueBitCast: {
4458     // This must be a reinterpret_cast (or c-style equivalent).
4459     const auto *CE = cast<ExplicitCastExpr>(E);
4460 
4461     CGM.EmitExplicitCastExprType(CE, this);
4462     LValue LV = EmitLValue(E->getSubExpr());
4463     Address V = Builder.CreateBitCast(LV.getAddress(),
4464                                       ConvertType(CE->getTypeAsWritten()));
4465 
4466     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4467       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4468                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4469                                 E->getBeginLoc());
4470 
4471     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4472                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4473   }
4474   case CK_AddressSpaceConversion: {
4475     LValue LV = EmitLValue(E->getSubExpr());
4476     QualType DestTy = getContext().getPointerType(E->getType());
4477     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4478         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4479         E->getType().getAddressSpace(), ConvertType(DestTy));
4480     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4481                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4482   }
4483   case CK_ObjCObjectLValueCast: {
4484     LValue LV = EmitLValue(E->getSubExpr());
4485     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4486                                              ConvertType(E->getType()));
4487     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4488                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4489   }
4490   case CK_ZeroToOCLOpaqueType:
4491     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4492   }
4493 
4494   llvm_unreachable("Unhandled lvalue cast kind?");
4495 }
4496 
4497 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4498   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4499   return getOrCreateOpaqueLValueMapping(e);
4500 }
4501 
4502 LValue
4503 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4504   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4505 
4506   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4507       it = OpaqueLValues.find(e);
4508 
4509   if (it != OpaqueLValues.end())
4510     return it->second;
4511 
4512   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4513   return EmitLValue(e->getSourceExpr());
4514 }
4515 
4516 RValue
4517 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4518   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4519 
4520   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4521       it = OpaqueRValues.find(e);
4522 
4523   if (it != OpaqueRValues.end())
4524     return it->second;
4525 
4526   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4527   return EmitAnyExpr(e->getSourceExpr());
4528 }
4529 
4530 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4531                                            const FieldDecl *FD,
4532                                            SourceLocation Loc) {
4533   QualType FT = FD->getType();
4534   LValue FieldLV = EmitLValueForField(LV, FD);
4535   switch (getEvaluationKind(FT)) {
4536   case TEK_Complex:
4537     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4538   case TEK_Aggregate:
4539     return FieldLV.asAggregateRValue();
4540   case TEK_Scalar:
4541     // This routine is used to load fields one-by-one to perform a copy, so
4542     // don't load reference fields.
4543     if (FD->getType()->isReferenceType())
4544       return RValue::get(FieldLV.getPointer());
4545     return EmitLoadOfLValue(FieldLV, Loc);
4546   }
4547   llvm_unreachable("bad evaluation kind");
4548 }
4549 
4550 //===--------------------------------------------------------------------===//
4551 //                             Expression Emission
4552 //===--------------------------------------------------------------------===//
4553 
4554 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4555                                      ReturnValueSlot ReturnValue) {
4556   // Builtins never have block type.
4557   if (E->getCallee()->getType()->isBlockPointerType())
4558     return EmitBlockCallExpr(E, ReturnValue);
4559 
4560   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4561     return EmitCXXMemberCallExpr(CE, ReturnValue);
4562 
4563   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4564     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4565 
4566   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4567     if (const CXXMethodDecl *MD =
4568           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4569       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4570 
4571   CGCallee callee = EmitCallee(E->getCallee());
4572 
4573   if (callee.isBuiltin()) {
4574     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4575                            E, ReturnValue);
4576   }
4577 
4578   if (callee.isPseudoDestructor()) {
4579     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4580   }
4581 
4582   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4583 }
4584 
4585 /// Emit a CallExpr without considering whether it might be a subclass.
4586 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4587                                            ReturnValueSlot ReturnValue) {
4588   CGCallee Callee = EmitCallee(E->getCallee());
4589   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4590 }
4591 
4592 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4593   if (auto builtinID = FD->getBuiltinID()) {
4594     return CGCallee::forBuiltin(builtinID, FD);
4595   }
4596 
4597   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4598   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4599 }
4600 
4601 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4602   E = E->IgnoreParens();
4603 
4604   // Look through function-to-pointer decay.
4605   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4606     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4607         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4608       return EmitCallee(ICE->getSubExpr());
4609     }
4610 
4611   // Resolve direct calls.
4612   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4613     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4614       return EmitDirectCallee(*this, FD);
4615     }
4616   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4617     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4618       EmitIgnoredExpr(ME->getBase());
4619       return EmitDirectCallee(*this, FD);
4620     }
4621 
4622   // Look through template substitutions.
4623   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4624     return EmitCallee(NTTP->getReplacement());
4625 
4626   // Treat pseudo-destructor calls differently.
4627   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4628     return CGCallee::forPseudoDestructor(PDE);
4629   }
4630 
4631   // Otherwise, we have an indirect reference.
4632   llvm::Value *calleePtr;
4633   QualType functionType;
4634   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4635     calleePtr = EmitScalarExpr(E);
4636     functionType = ptrType->getPointeeType();
4637   } else {
4638     functionType = E->getType();
4639     calleePtr = EmitLValue(E).getPointer();
4640   }
4641   assert(functionType->isFunctionType());
4642 
4643   GlobalDecl GD;
4644   if (const auto *VD =
4645           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4646     GD = GlobalDecl(VD);
4647 
4648   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4649   CGCallee callee(calleeInfo, calleePtr);
4650   return callee;
4651 }
4652 
4653 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4654   // Comma expressions just emit their LHS then their RHS as an l-value.
4655   if (E->getOpcode() == BO_Comma) {
4656     EmitIgnoredExpr(E->getLHS());
4657     EnsureInsertPoint();
4658     return EmitLValue(E->getRHS());
4659   }
4660 
4661   if (E->getOpcode() == BO_PtrMemD ||
4662       E->getOpcode() == BO_PtrMemI)
4663     return EmitPointerToDataMemberBinaryExpr(E);
4664 
4665   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4666 
4667   // Note that in all of these cases, __block variables need the RHS
4668   // evaluated first just in case the variable gets moved by the RHS.
4669 
4670   switch (getEvaluationKind(E->getType())) {
4671   case TEK_Scalar: {
4672     switch (E->getLHS()->getType().getObjCLifetime()) {
4673     case Qualifiers::OCL_Strong:
4674       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4675 
4676     case Qualifiers::OCL_Autoreleasing:
4677       return EmitARCStoreAutoreleasing(E).first;
4678 
4679     // No reason to do any of these differently.
4680     case Qualifiers::OCL_None:
4681     case Qualifiers::OCL_ExplicitNone:
4682     case Qualifiers::OCL_Weak:
4683       break;
4684     }
4685 
4686     RValue RV = EmitAnyExpr(E->getRHS());
4687     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4688     if (RV.isScalar())
4689       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4690     EmitStoreThroughLValue(RV, LV);
4691     return LV;
4692   }
4693 
4694   case TEK_Complex:
4695     return EmitComplexAssignmentLValue(E);
4696 
4697   case TEK_Aggregate:
4698     return EmitAggExprToLValue(E);
4699   }
4700   llvm_unreachable("bad evaluation kind");
4701 }
4702 
4703 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4704   RValue RV = EmitCallExpr(E);
4705 
4706   if (!RV.isScalar())
4707     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4708                           AlignmentSource::Decl);
4709 
4710   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4711          "Can't have a scalar return unless the return type is a "
4712          "reference type!");
4713 
4714   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4715 }
4716 
4717 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4718   // FIXME: This shouldn't require another copy.
4719   return EmitAggExprToLValue(E);
4720 }
4721 
4722 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4723   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4724          && "binding l-value to type which needs a temporary");
4725   AggValueSlot Slot = CreateAggTemp(E->getType());
4726   EmitCXXConstructExpr(E, Slot);
4727   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4728 }
4729 
4730 LValue
4731 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4732   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4733 }
4734 
4735 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4736   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4737                                       ConvertType(E->getType()));
4738 }
4739 
4740 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4741   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4742                         AlignmentSource::Decl);
4743 }
4744 
4745 LValue
4746 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4747   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4748   Slot.setExternallyDestructed();
4749   EmitAggExpr(E->getSubExpr(), Slot);
4750   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4751   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4752 }
4753 
4754 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4755   RValue RV = EmitObjCMessageExpr(E);
4756 
4757   if (!RV.isScalar())
4758     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4759                           AlignmentSource::Decl);
4760 
4761   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4762          "Can't have a scalar return unless the return type is a "
4763          "reference type!");
4764 
4765   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4766 }
4767 
4768 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4769   Address V =
4770     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4771   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4772 }
4773 
4774 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4775                                              const ObjCIvarDecl *Ivar) {
4776   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4777 }
4778 
4779 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4780                                           llvm::Value *BaseValue,
4781                                           const ObjCIvarDecl *Ivar,
4782                                           unsigned CVRQualifiers) {
4783   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4784                                                    Ivar, CVRQualifiers);
4785 }
4786 
4787 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4788   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4789   llvm::Value *BaseValue = nullptr;
4790   const Expr *BaseExpr = E->getBase();
4791   Qualifiers BaseQuals;
4792   QualType ObjectTy;
4793   if (E->isArrow()) {
4794     BaseValue = EmitScalarExpr(BaseExpr);
4795     ObjectTy = BaseExpr->getType()->getPointeeType();
4796     BaseQuals = ObjectTy.getQualifiers();
4797   } else {
4798     LValue BaseLV = EmitLValue(BaseExpr);
4799     BaseValue = BaseLV.getPointer();
4800     ObjectTy = BaseExpr->getType();
4801     BaseQuals = ObjectTy.getQualifiers();
4802   }
4803 
4804   LValue LV =
4805     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4806                       BaseQuals.getCVRQualifiers());
4807   setObjCGCLValueClass(getContext(), E, LV);
4808   return LV;
4809 }
4810 
4811 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4812   // Can only get l-value for message expression returning aggregate type
4813   RValue RV = EmitAnyExprToTemp(E);
4814   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4815                         AlignmentSource::Decl);
4816 }
4817 
4818 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4819                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4820                                  llvm::Value *Chain) {
4821   // Get the actual function type. The callee type will always be a pointer to
4822   // function type or a block pointer type.
4823   assert(CalleeType->isFunctionPointerType() &&
4824          "Call must have function pointer type!");
4825 
4826   const Decl *TargetDecl =
4827       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4828 
4829   CalleeType = getContext().getCanonicalType(CalleeType);
4830 
4831   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4832 
4833   CGCallee Callee = OrigCallee;
4834 
4835   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4836       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4837     if (llvm::Constant *PrefixSig =
4838             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4839       SanitizerScope SanScope(this);
4840       // Remove any (C++17) exception specifications, to allow calling e.g. a
4841       // noexcept function through a non-noexcept pointer.
4842       auto ProtoTy =
4843         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4844       llvm::Constant *FTRTTIConst =
4845           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4846       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4847       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4848           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4849 
4850       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4851 
4852       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4853           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4854       llvm::Value *CalleeSigPtr =
4855           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4856       llvm::Value *CalleeSig =
4857           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4858       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4859 
4860       llvm::BasicBlock *Cont = createBasicBlock("cont");
4861       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4862       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4863 
4864       EmitBlock(TypeCheck);
4865       llvm::Value *CalleeRTTIPtr =
4866           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4867       llvm::Value *CalleeRTTIEncoded =
4868           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4869       llvm::Value *CalleeRTTI =
4870           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4871       llvm::Value *CalleeRTTIMatch =
4872           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4873       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4874                                       EmitCheckTypeDescriptor(CalleeType)};
4875       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4876                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4877                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4878 
4879       Builder.CreateBr(Cont);
4880       EmitBlock(Cont);
4881     }
4882   }
4883 
4884   const auto *FnType = cast<FunctionType>(PointeeType);
4885 
4886   // If we are checking indirect calls and this call is indirect, check that the
4887   // function pointer is a member of the bit set for the function type.
4888   if (SanOpts.has(SanitizerKind::CFIICall) &&
4889       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4890     SanitizerScope SanScope(this);
4891     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4892 
4893     llvm::Metadata *MD;
4894     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4895       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4896     else
4897       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4898 
4899     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4900 
4901     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4902     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4903     llvm::Value *TypeTest = Builder.CreateCall(
4904         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4905 
4906     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4907     llvm::Constant *StaticData[] = {
4908         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4909         EmitCheckSourceLocation(E->getBeginLoc()),
4910         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4911     };
4912     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4913       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4914                            CastedCallee, StaticData);
4915     } else {
4916       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4917                 SanitizerHandler::CFICheckFail, StaticData,
4918                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4919     }
4920   }
4921 
4922   CallArgList Args;
4923   if (Chain)
4924     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4925              CGM.getContext().VoidPtrTy);
4926 
4927   // C++17 requires that we evaluate arguments to a call using assignment syntax
4928   // right-to-left, and that we evaluate arguments to certain other operators
4929   // left-to-right. Note that we allow this to override the order dictated by
4930   // the calling convention on the MS ABI, which means that parameter
4931   // destruction order is not necessarily reverse construction order.
4932   // FIXME: Revisit this based on C++ committee response to unimplementability.
4933   EvaluationOrder Order = EvaluationOrder::Default;
4934   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4935     if (OCE->isAssignmentOp())
4936       Order = EvaluationOrder::ForceRightToLeft;
4937     else {
4938       switch (OCE->getOperator()) {
4939       case OO_LessLess:
4940       case OO_GreaterGreater:
4941       case OO_AmpAmp:
4942       case OO_PipePipe:
4943       case OO_Comma:
4944       case OO_ArrowStar:
4945         Order = EvaluationOrder::ForceLeftToRight;
4946         break;
4947       default:
4948         break;
4949       }
4950     }
4951   }
4952 
4953   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4954                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4955 
4956   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4957       Args, FnType, /*ChainCall=*/Chain);
4958 
4959   // C99 6.5.2.2p6:
4960   //   If the expression that denotes the called function has a type
4961   //   that does not include a prototype, [the default argument
4962   //   promotions are performed]. If the number of arguments does not
4963   //   equal the number of parameters, the behavior is undefined. If
4964   //   the function is defined with a type that includes a prototype,
4965   //   and either the prototype ends with an ellipsis (, ...) or the
4966   //   types of the arguments after promotion are not compatible with
4967   //   the types of the parameters, the behavior is undefined. If the
4968   //   function is defined with a type that does not include a
4969   //   prototype, and the types of the arguments after promotion are
4970   //   not compatible with those of the parameters after promotion,
4971   //   the behavior is undefined [except in some trivial cases].
4972   // That is, in the general case, we should assume that a call
4973   // through an unprototyped function type works like a *non-variadic*
4974   // call.  The way we make this work is to cast to the exact type
4975   // of the promoted arguments.
4976   //
4977   // Chain calls use this same code path to add the invisible chain parameter
4978   // to the function type.
4979   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4980     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4981     CalleeTy = CalleeTy->getPointerTo();
4982 
4983     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4984     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4985     Callee.setFunctionPointer(CalleePtr);
4986   }
4987 
4988   llvm::CallBase *CallOrInvoke = nullptr;
4989   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
4990                          E->getExprLoc());
4991 
4992   // Generate function declaration DISuprogram in order to be used
4993   // in debug info about call sites.
4994   if (CGDebugInfo *DI = getDebugInfo()) {
4995     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4996       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
4997                                   CalleeDecl);
4998   }
4999 
5000   return Call;
5001 }
5002 
5003 LValue CodeGenFunction::
5004 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5005   Address BaseAddr = Address::invalid();
5006   if (E->getOpcode() == BO_PtrMemI) {
5007     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5008   } else {
5009     BaseAddr = EmitLValue(E->getLHS()).getAddress();
5010   }
5011 
5012   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5013 
5014   const MemberPointerType *MPT
5015     = E->getRHS()->getType()->getAs<MemberPointerType>();
5016 
5017   LValueBaseInfo BaseInfo;
5018   TBAAAccessInfo TBAAInfo;
5019   Address MemberAddr =
5020     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5021                                     &TBAAInfo);
5022 
5023   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5024 }
5025 
5026 /// Given the address of a temporary variable, produce an r-value of
5027 /// its type.
5028 RValue CodeGenFunction::convertTempToRValue(Address addr,
5029                                             QualType type,
5030                                             SourceLocation loc) {
5031   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5032   switch (getEvaluationKind(type)) {
5033   case TEK_Complex:
5034     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5035   case TEK_Aggregate:
5036     return lvalue.asAggregateRValue();
5037   case TEK_Scalar:
5038     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5039   }
5040   llvm_unreachable("bad evaluation kind");
5041 }
5042 
5043 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5044   assert(Val->getType()->isFPOrFPVectorTy());
5045   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5046     return;
5047 
5048   llvm::MDBuilder MDHelper(getLLVMContext());
5049   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5050 
5051   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5052 }
5053 
5054 namespace {
5055   struct LValueOrRValue {
5056     LValue LV;
5057     RValue RV;
5058   };
5059 }
5060 
5061 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5062                                            const PseudoObjectExpr *E,
5063                                            bool forLValue,
5064                                            AggValueSlot slot) {
5065   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5066 
5067   // Find the result expression, if any.
5068   const Expr *resultExpr = E->getResultExpr();
5069   LValueOrRValue result;
5070 
5071   for (PseudoObjectExpr::const_semantics_iterator
5072          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5073     const Expr *semantic = *i;
5074 
5075     // If this semantic expression is an opaque value, bind it
5076     // to the result of its source expression.
5077     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5078       // Skip unique OVEs.
5079       if (ov->isUnique()) {
5080         assert(ov != resultExpr &&
5081                "A unique OVE cannot be used as the result expression");
5082         continue;
5083       }
5084 
5085       // If this is the result expression, we may need to evaluate
5086       // directly into the slot.
5087       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5088       OVMA opaqueData;
5089       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5090           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5091         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5092         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5093                                        AlignmentSource::Decl);
5094         opaqueData = OVMA::bind(CGF, ov, LV);
5095         result.RV = slot.asRValue();
5096 
5097       // Otherwise, emit as normal.
5098       } else {
5099         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5100 
5101         // If this is the result, also evaluate the result now.
5102         if (ov == resultExpr) {
5103           if (forLValue)
5104             result.LV = CGF.EmitLValue(ov);
5105           else
5106             result.RV = CGF.EmitAnyExpr(ov, slot);
5107         }
5108       }
5109 
5110       opaques.push_back(opaqueData);
5111 
5112     // Otherwise, if the expression is the result, evaluate it
5113     // and remember the result.
5114     } else if (semantic == resultExpr) {
5115       if (forLValue)
5116         result.LV = CGF.EmitLValue(semantic);
5117       else
5118         result.RV = CGF.EmitAnyExpr(semantic, slot);
5119 
5120     // Otherwise, evaluate the expression in an ignored context.
5121     } else {
5122       CGF.EmitIgnoredExpr(semantic);
5123     }
5124   }
5125 
5126   // Unbind all the opaques now.
5127   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5128     opaques[i].unbind(CGF);
5129 
5130   return result;
5131 }
5132 
5133 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5134                                                AggValueSlot slot) {
5135   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5136 }
5137 
5138 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5139   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5140 }
5141